Sample records for joint task force

  1. U.S. Northern Command > Newsroom > Fact Sheets

    Science.gov Websites

    Operations Command, North U.S. Marine Forces Northern Command U.S. Fleet Forces Command Air Forces Northern U.S. Army North Joint Task Force North Joint Task Force Civil Support Joint Task Force Alaska Joint

  2. Bidirectional transfer between joint and individual actions in a task of discrete force production.

    PubMed

    Masumoto, Junya; Inui, Nobuyuki

    2017-07-01

    The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.

  3. Evaluation of knee joint forces during kneeling work with different kneepads.

    PubMed

    Xu, Hang; Jampala, Sree; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-01-01

    The main purpose of this study is to determine knee joint forces resulting from kneeling work with and without kneepads to quantify how different kneepads redistribute force. Eleven healthy males simulated a tile setting task to different locations during six kneepad states (five different kneepad types and without kneepad). Peak and average forces on the anatomical landmarks of both knees were obtained by custom force sensors. The results revealed that kneepad design can significantly modify the forces on the knee joint through redistribution. The Professional Gel design was preferred among the five tested kneepads which was confirmed with both force measurements and participants' responses. The extreme reaching locations induced significantly higher joint forces on left knee or right knee depending on task. The conclusion of this study is that a properly selected kneepad for specific tasks and a more neutral working posture can modify the force distribution on the knees and likely decrease the risk of knee disorders from kneeling work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Joint Publication 3-31. Command and Control for Joint Land Operations

    DTIC Science & Technology

    2010-06-29

    task force] FALCON .” Admiral James Ellis, Commander, Joint Task Force NOBLE ANVIL during Operation ALLIED FORCE in letter correspondence to RAND...beneficial effect on the gr ound cam paign.” D uring t he ca mpaign, “ Army and M arine artillery were used interchangeably.” SOURCE: Lieutenant...consolidates, prioritizes, and forwards ultra -high frequency tactical satellite requirements to the JFC for channel allocation. k. Establishes, supervises

  5. The Association of Academic Health Sciences Libraries' legislative activities and the Joint Medical Library Association/Association of Academic Health Sciences Libraries Legislative Task Force

    PubMed Central

    Zenan, Joan S.

    2003-01-01

    The Association of Academic Health Sciences Libraries' (AAHSL's) involvement in national legislative activities and other advocacy initiatives has evolved and matured over the last twenty-five years. Some activities conducted by the Medical Library Association's (MLA's) Legislative Committee from 1976 to 1984 are highlighted to show the evolution of MLA's and AAHSL's interests in collaborating on national legislative issues, which resulted in an agreement to form a joint legislative task force. The history, work, challenges, and accomplishments of the Joint MLA/AAHSL Legislative Task Force, formed in 1985, are discussed. PMID:12883581

  6. The Command and Control of Communications in Joint and Combined Operations

    DTIC Science & Technology

    1994-06-03

    war. The Joint Task Force structure is used as the model for command and control relationships . The first part of the thesis assesses the current...Joint Task Force structure is used as the model for conmand and control relationships . The first part of the thesis assesses the current doctrine and...Message Switch Connectivity . . . . . . . 59 10. C4 Architecture Requirements . . . . . . 81 11. Functional Relationships . . . . . . 84 vi LIST OF

  7. What DoD Homeland Security Roles Should the National Guard Fulfill during This Time of Persistent Conflict?

    DTIC Science & Technology

    2010-06-11

    JFHQ Joint Forces Headquarters JFHQ-State Joint Forces Headquarters-State JTF Joint Task Force MACA Military Assistance for Civil Authorities...continuously uses defense support for civil authorities (DSCA) and military assistance for civil authorities ( MACA ) interchangeably with the term

  8. What It Takes. Air Force Command of Joint Operations

    DTIC Science & Technology

    2009-01-01

    Iraq Assistance Group IDE intermediate developmental education IO international organization ISAF International Security and Assistance Force ISR...Operations Table A.1—Continued Joint Task Force Mission/Operation Start End Service Command Rank JTF–Joint Area Support Group (JASG) Iraqi Freedom...be of interest to a wide group of Air Force personnel involved in the development and func- tion of the service’s command organizations, including

  9. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    PubMed

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Organizational and Structural Reform: Transforming the United States Government for 21st Century Contingencies

    DTIC Science & Technology

    2009-04-03

    the concept calls for interagency task forces ( IATF ) co-led by a Special Representative of the President and the Commander of a military Joint Task...functional lines, civilian and military members comprise the IATF staff. Furthermore, when possible, the concept establishes the IATF early outside the...prepare and plan for the complex contingency. When deployed, the IATF relies on the military joint task force for most of its support including

  11. Force sharing and other collaborative strategies in a dyadic force perception task

    PubMed Central

    Tatti, Fabio

    2018-01-01

    When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433

  12. Proximal arm kinematics affect grip force-load force coordination

    PubMed Central

    Vermillion, Billy C.; Lum, Peter S.

    2015-01-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  13. Preserving the Illustrated Text. Report of the Joint Task Force on Text and Image.

    ERIC Educational Resources Information Center

    Commission on Preservation and Access, Washington, DC.

    The mission of the Joint Task Force on Text and Image was to inquire into the problems, needs, and methods for preserving images in text that are important for scholarship in a wide range of disciplines and to draw from that exploration a set of principles, guidelines, and recommendations for a comprehensive national strategy for image…

  14. An Operational Utility Assessment: Measuring the Effectiveness of the Joint Concept Technology Demonstration (JCTD), Joint Forces Protection Advance Security System (JFPASS)

    DTIC Science & Technology

    2008-12-01

    time- on-task in deploying a patrol force, for example. In its most basic form, an FOB consists of a ring of barbed wire around a position with a...Modernizing The Marine Corps’ CH- 53 Super Stallion Helicopter,” Thesis, NPS (December 2001). HIGH LEVEL OF IMPORTANCE LOW 62 TASKS

  15. Pharmacy faculty workplace issues: findings from the 2009-2010 COD-COF Joint Task Force on Faculty Workforce.

    PubMed

    Desselle, Shane P; Peirce, Gretchen L; Crabtree, Brian L; Acosta, Daniel; Early, Johnnie L; Kishi, Donald T; Nobles-Knight, Dolores; Webster, Andrew A

    2011-05-10

    Many factors contribute to the vitality of an individual faculty member, a department, and an entire academic organization. Some of the relationships among these factors are well understood, but many questions remain unanswered. The Joint Task Force on Faculty Workforce examined the literature on faculty workforce issues, including the work of previous task forces charged by the American Association of Colleges of Pharmacy (AACP). We identified and focused on 4 unique but interrelated concepts: organizational culture/climate, role of the department chair, faculty recruitment and retention, and mentoring. Among all 4 resides the need to consider issues of intergenerational, intercultural, and gender dynamics. This paper reports the findings of the task force and proffers specific recommendations to AACP and to colleges and schools of pharmacy.

  16. Expanding the MEU(SOC) Joint Task Force Enabler Concept

    DTIC Science & Technology

    1998-05-28

    concept. 2 The influential twentieth-century linguistic philosopher Ludwig Wittgenstein argued that real understanding rests on the precise use...of language and universally agreed upon meanings. Without clarity and common understanding, Wittgenstein observed, we can never really communicate... Wittgenstein anticipated when we don’t share a common understanding of what a term means. The Joint Task Force Enabler is potentially a critical concept, both

  17. Rescuing Joint Personnel Recovery: Using Air Force Capability to Address Joint Shortfalls

    DTIC Science & Technology

    2011-06-01

    of an IP, the IP is not successfully reintegrated or the lessons learned are not incorporated into other operations. Adversaries will benefit from...Washington, D.C.: Office of Air Force History , United States Air Force, 1980, 117. 47 Durant , Michael J. In the Company of Heroes, Penguin Group... Lessons Learned, 22 September 2005, 3. 2 US Joint Task Force Katrina. The Federal Response to Hurricane Katrina Lessons Learned, February 2006, 54

  18. PRN 2000-7: Non-Dietary Exposure Task Force

    EPA Pesticide Factsheets

    This PR Notice announces an industry-wide task force to jointly develop residential indoor exposure data for pesticides containing one or more of the active ingredients synthetic pyrethroids, pyrethrum and synergists.

  19. Information Operations

    DTIC Science & Technology

    2006-02-13

    restricted frequency list (JRFL). This list specifies protected, guarded, and taboo frequencies that should not normally be disrupted without prior... frequency list JROC Joint Requirement Oversight Council JSC Joint Spectrum Center JTCB joint targeting coordination board JTF joint task force JWAC joint

  20. Empirical Analysis of Human Capital, Learning Culture, and Knowledge Management as Antecedents to Organizational Performance: Theoretical and Practical Implications for Logistics Readiness Officer Force Development

    DTIC Science & Technology

    2014-03-27

    Much of the DoD’s force shaping problems in the active duty military stem from the way in which it chose to absorb the force reductions at the end...indicated the need for more joint oriented education and training to help them in the performance of their primary duties. CLL 016 (Joint Logistics... CLL 054 (Joint Task Force Port Opening) and CLL 055 (Joint Deployment and Distribution Performance Metrics Framework) all received high potential

  1. Pharmacy Faculty Workplace Issues: Findings From the 2009-2010 COD-COF Joint Task Force on Faculty Workforce

    PubMed Central

    Peirce, Gretchen L.; Crabtree, Brian L.; Acosta, Daniel; Early, Johnnie L.; Kishi, Donald T.; Nobles-Knight, Dolores; Webster, Andrew A.

    2011-01-01

    Many factors contribute to the vitality of an individual faculty member, a department, and an entire academic organization. Some of the relationships among these factors are well understood, but many questions remain unanswered. The Joint Task Force on Faculty Workforce examined the literature on faculty workforce issues, including the work of previous task forces charged by the American Association of Colleges of Pharmacy (AACP). We identified and focused on 4 unique but interrelated concepts: organizational culture/climate, role of the department chair, faculty recruitment and retention, and mentoring. Among all 4 resides the need to consider issues of intergenerational, intercultural, and gender dynamics. This paper reports the findings of the task force and proffers specific recommendations to AACP and to colleges and schools of pharmacy. PMID:21769139

  2. Joint Task Force on Undergraduate Physics Programs

    NASA Astrophysics Data System (ADS)

    This session will focus on the guidelines and recommendations being developed by the APS/AAPT Joint Task Force on Undergraduate Physics Programs. J-TUPP is studying how undergraduate physics programs might better prepare physics majors for diverse careers. The guidelines and recommendations will focus on curricular content, flexible tracks, pedagogical methods, research experiences and internships, the development of professional skills, and enhanced advising and mentoring for all physics majors.

  3. Joint Command and Control of Cyber Operations: The Joint Force Cyber Component Command (JFCCC)

    DTIC Science & Technology

    2012-05-04

    relies so heavily on complex command and control systems and interconnectivity in general, cyber warfare has become a serious topic of interest at the...defensive cyber warfare into current and future operations and plans. In particular, Joint Task Force (JTF) Commanders must develop an optimum method to

  4. The development of contact force construction in the dynamic-contact task of cycling [corrected].

    PubMed

    Brown, Nicholas A T; Jensen, Jody L

    2003-01-01

    Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.

  5. Joint Task Force National Capital Region Medical: Integration of Education, Training, and Research

    DTIC Science & Technology

    2009-05-01

    Defense established the Joint Task Force National Capital Region Medical (JTF CapMed ) on the National Naval Medical Center campus in Bethesda, Maryland in...transfor- mation of military health services in the National Capital Area including education, training, and research activities. JTF CAPMED ...BACKGROUND JTF CapMed was established to lead the integration of mili- tary health care in the National Capital Region. The Command is charged with overseeing

  6. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb

    PubMed Central

    van Antwerp, Keith W.; Burkholder, Thomas J.

    2015-01-01

    The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, 3-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees-of-freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in seven different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90° in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally-observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks. PMID:17640652

  7. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  8. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    PubMed

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the knee, it may be important to first manage their pain more effectively.

  9. Extended Task Space Control for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Long, Mark K. (Inventor)

    1996-01-01

    The invention is a method of operating a robot in successive sampling intervals to perform a task, the robot having joints and joint actuators with actuator control loops, by decomposing the task into behavior forces, accelerations, velocities and positions of plural behaviors to be exhibited by the robot simultaneously, computing actuator accelerations of the joint actuators for the current sampling interval from both behavior forces, accelerations velocities and positions of the current sampling interval and actuator velocities and positions of the previous sampling interval, computing actuator velocities and positions of the joint actuators for the current sampling interval from the actuator velocities and positions of the previous sampling interval, and, finally, controlling the actuators in accordance with the actuator accelerations, velocities and positions of the current sampling interval. The actuator accelerations, velocities and positions of the current sampling interval are stored for use during the next sampling interval.

  10. The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.

    PubMed

    West, T; Ng, L; Campbell, A

    2014-12-01

    The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A Study of the Courses, Programs and Facilities at the Okaloosa-Walton Junior College/University of West Florida Joint Center in Fort Walton Beach. Report and Recommendations of the Postsecondary Education Planning Commission, 1987. Report 9.

    ERIC Educational Resources Information Center

    Florida State Postsecondary Education Planning Commission, Tallahassee.

    In 1987, a task force was convened to determine the need for further expansion of the Okaloosa-Walton Junior College/University of West Florida (OWJC/UWF) Joint Center, and, if warranted, to select a permanent site for the facility. The task force undertook a study involving: (1) collection of demographic data on the Greater Fort Walton Beach area…

  12. Expeditionary Operations Require Joint Force Capabilities in the Future Operating Environment

    DTIC Science & Technology

    2013-03-01

    endeavor, I would like to thank COL Purvis, and the professionals of JAWS Seminar 2 for letting me try to weave my thesis into almost every seminar...joint sea base, expeditionary strike group, or task force. JP 4-0, JSHIP JT&E, ’DLQ MOU Notes: The AFSB is to exploit the flexibility and...of the global commons and select sovereign territory, waters , airspace and cyberspace. 14  The combat task of overcoming the enemy’s anti-access

  13. The Indian Nations At Risk Task Force and the National Advisory Council on Indian Education Joint Issues Sessions Proceedings. Annual Conference of the National Indian Education Association (22nd, San Diego, California, October 15-16, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    The Indian Nations At Risk Task Force and the National Advisory Council on Indian Education (NACIE) held joint sessions to hear testimony on important issues in American Indian education. This document presents statements given at 15 topical sessions and 3 additional sessions held for special groups. The 15 topics addressed were: teaching Native…

  14. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    PubMed Central

    Kochanowicz, Andrzej

    2018-01-01

    The aims of this study were (1) to assess the relationship between joint position (JPS) and force sense (FS) and muscle strength (MS) and (2) to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR) and passive reproduction (PR) task and a force reproduction (FR) task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72°) than during the AR task (3.1 ± 1.93°). Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors. PMID:29670901

  15. Joint Task Force-Bravo

    Science.gov Websites

    Air Base Squadron Joint Security Forces Medical Element (MEDEL) JSB / ARFOR En Español Noticias Hojas to provide medical care in Waspam Call to Duty - Senior Airman Nicholas Carssow Operations Support JTF-Bravo partners with Nicaragua to provide medical care in Waspam JTF-Bravo partners with Nicaragua

  16. Detailed Drawings for the Force Balance Test Apparatus

    EPA Pesticide Factsheets

    The American Society of Mechanical Engineers (ASME)/Canadian Standards Association (CSA) Joint Harmonization Task Force on water-efficient showerheads used the force balance test apparatus shown in these drawings.

  17. 2009 Strategic Plan, Air Force District of Washington (AFDW)

    DTIC Science & Technology

    2009-09-11

    JTF CapMed . As the Air Force single voice for Joint matters in the NCR, AFDW has a critical responsibility to protect and enhance the Air...and its surrounding counties, is a critical Area of Responsibility (AOR) for US military organizations. It is the central hub of US political and...NCR and worldwide. Furthermore, AFDW presents forces to Joint Task Force-National Capital Region Medical Command (JTF CapMed ) and, through the

  18. From Conception to Birth: The Forces Responsible for AFCyber’s Evolution

    DTIC Science & Technology

    2014-06-01

    matter how good or bad my days were – and I experienced a fair number of both during the 11-month course – she provided a shoulder to cry on, a...Robert J.  Lamb , “Joint Task Force for Computer Network Defense,” IA Newsletter, Winter 98/99,  Vol 2, No. 3, http://www.iwar.org.uk/infocon/dtic‐ia...Future of Warfare.” Real Clear Defense, 24 February 2014. Lamb , Robert J. “Joint Task Force for Computer Network Defense.” IA Newsletter, Winter 98

  19. A Common Force-Sharing Pattern in Joint Action That Consists of Four People.

    PubMed

    Masumoto, Junya; Inui, Nobuyuki

    2017-12-20

    The authors examined the force-sharing patterns in a joint action performed by a group of two, three, or four people compared with a solo action. In the joint actions, 28 participants produced periodic isometric forces such that the sum of forces they produced cycled between 5% and 10% maximum voluntary contraction with the right hand at 1 Hz. In both the three- and four-person tasks, the correlation between forces produced by two of the three or four participants was negative, and the remaining one or two participants produced intermediate forces. The errors of force and interval and force variabilities were smaller in four- and three-people groups than individuals. Four- and three-people groups thus performed better than individuals.

  20. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    PubMed Central

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  1. National Task Force on a Uniform Measurement Unit for the Recognition of Continuing Education: Working Papers; and The Continuing Education Unit: A Uniform Unit of Measure for Non-Credit Continuing Education Programs (An Interim Statement of the National Task Force).

    ERIC Educational Resources Information Center

    National Univ. Extension Association, Washington, DC.

    In 1968, a national planning conference, under the joint sponsorship of 34 organizations responsing to continuing education needs, created the National Task Force to determine the feasibility of a uniform unit of measurement and develop a proposal for field testing the concept. Stressing that continuing education units should supplement, not…

  2. Force Reconnaissance: A Key Enabler in the Marine Air Ground Task Force and Beyond

    DTIC Science & Technology

    2012-03-13

    round Task Force Advance Force Operations, Deep Reconnaissance, Military Free Fall (MFF), Marine Combatar t Diver ( MCD ), Joint Terminal Attack...Marine Division. These early years focused on developing the doctrine and insertion skills became legendary in the crucible of South East Asia , and...potential for regional powers to threaten critical U.S. interests. Areas of particular concern in the QDR are the Middle East and Asia .41 The United

  3. Early Osteoarthritis of the Trapeziometacarpal Joint Is Not Associated With Joint Instability during Typical Isometric Loading

    PubMed Central

    Halilaj, Eni; Moore, Douglas C.; Patel, Tarpit K.; Ladd, Amy L.; Weiss, Arnold-Peter C.; Crisco, Joseph J.

    2015-01-01

    The saddle-shaped trapeziometacarpal (TMC) joint contributes importantly to the function of the human thumb. A balance between mobility and stability is essential in this joint, which experiences high loads and is prone to osteoarthritis (OA). Since instability is considered a risk factor for TMC OA, we assessed TMC joint instability during the execution of three isometric functional tasks (key pinch, jar grasp, and jar twist) in 76 patients with early TMC OA and 44 asymptomatic controls. Computed tomography images were acquired while subjects held their hands relaxed and while they applied 80% of their maximum effort for each task. Six degree-of-freedom rigid body kinematics of the metacarpal with respect to the trapezium from the unloaded to the loaded task positions were computed in terms of a TMC joint coordinate system. Joint instability was expressed as a function of the metacarpal translation and the applied force. We found that the TMC joint was more unstable during a key pinch task than during a jar grasp or a jar twist task. Sex, age, and early OA did not have an effect on TMC joint instability, suggesting that instability during these three tasks is not a predisposing factor in TMC OA. PMID:25941135

  4. Shaping the National Guard in a Post-War Environment

    DTIC Science & Technology

    2012-09-01

    IRR Individual Ready Reserve xiv JCS Joint Chiefs of Staff JFHQ Joint Forces Headquarters JTF Joint Task Force LAPD Los Angeles ... changing -of- the -guard/. 35 budget is a mirror of 2010, with future budgets projected to be capped at 2009 levels . In a troubled economy, DoD is...thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol

  5. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  6. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    PubMed Central

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  7. Changes in Muscle and Joint Coordination in Learning to Direct Forces

    PubMed Central

    Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.

    2008-01-01

    While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988

  8. Changes in muscle and joint coordination in learning to direct forces.

    PubMed

    Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A

    2008-08-01

    While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.

  9. To Determine if a Combined U.S. and Afghanistan Military-Civilian Counter-Narcotics Joint Task Force Should Be Created to Support the Fight Against Counterinsurgencies in the Afghan Theater of War

    DTIC Science & Technology

    2011-06-10

    AFGHAN THEATER OF WAR, by Major Keith W. Alfeiri, 88 pages. The opium trade is a major funding source for the insurgency in Afghanistan. The Afghan...joint task force should be created to support the fight against counterinsurgencies in the Afghan theater of war. The drug trade has often been used to...remains that drugs fund terrorism and insurgents as the money flows between the drug trade and insurgents. According to a United Nations (UN

  10. Operation Stabilise: U.S. Joint Force Operations in East Timor

    DTIC Science & Technology

    2001-04-01

    September 1999, while deliberating the issue, Adm Blair designated the USS Mobile Bay (CG 53) and the USNS Kilauea (T-AE 26) as Joint Task Force-Timor Sea...Timor Sea Operations, 7th Fleet, Pacific Fleet § USS MOBILE BAY (CG 53), CJTF TSO (CAPT Edward Rogers, USN) § USNS KILAUEA (T-AE 26) § USNS SAN JOSE (T

  11. Interpretation and use of FRAX in clinical practice - position paper of the International Osteoporosis Foundation and the International Society for Clinical Densitometry

    USDA-ARS?s Scientific Manuscript database

    The International Osteoporosis Foundation (IOF) and the International Society for Clinical Densitometry (ISCD) appointed a joint Task Force to develop resource documents in order to make recommendations on how to improve FRAX and better inform clinicians who use FRAX. The Task Force met in November...

  12. Defense.gov - Special Report: Joint Special Operations Task Force

    Science.gov Websites

    Philippines, looks through an improvised explosive device coloring book that teaches children IED awareness Philippine Forces Challenge Children ILIGAN CITY, Philippines, Feb. 25, 2010 – Philippine national police Force Philippines PHOTO Essays U.S., Philippine Forces Train Together Children of the Philippines Await

  13. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of comparing outcomes amongst the many research teams that have entered this field, all of which are using different devices implanted at various locations within the visual system and different methods of assessing efficacy. Researchers at the BRIP and BVA believe that use of common methods for testing and for reporting results would benefit all scientists and clinicians in the field, the agencies that regulate human testing, corporations that are invested in the success of this field, and, most importantly, potential patients. The Task Force will be formed with the intent of developing substantive recommendations to provide a measure of consistency and quality control within the field. The guidelines will offer recommendations for the assessment of the: (1) baseline (pre-implant) visual status of potential patients (including specification of the disease diagnosis and impact on visual functioning) and (2) post-operative visual function. The guidelines will be available to the public, research groups and companies. Any groups that choose to adopt the recommendations would be encouraged to include a formal statement of compliance in their presentations and publications. The Task Force will develop these guidelines with the understanding that the ability to perform experiments in the suggested manner might be limited by the particular engineering design and functionality of different prosthesis devices. It is not the intent of the Task Force to write strict test protocols for all parties to follow, but instead to work cooperatively as a research field to develop guidelines about the types of tests that should be implemented, and how they could be reported in a similar format between groups. The opportunity to participate on the Task Force is open to all researchers, clinicians and other specialists who work in the fields of sensory prostheses (both visual and cochlear implants), molecular therapy, stem cells, optogenetics or other fields that share a similar goal of restoring vision to the blind. Decisions about the guidelines will be made democratically, with precautions to prevent any one group or company from having a more dominant voice than any other. One or more smaller working groups may be established to delve more deeply into specific issues, like the ethics of testing or governance structure, and to develop specific wording for recommendations that would be voted on by the entire Task Force group. Ultimately, the various recommendations, once approved democratically, will serve as the consensus document for the Multi-National Joint Task Force. The full list of members of the Task Force and the rules of governance will be published to promote transparency. The Joint Task force will post its guidelines with all signatories on a dedicated page within the website of the Henry Ford Department of Ophthalmology (Detroit). This site was chosen in recognition of the consistent support that Phillip Hessburg MD and the Board of Directors of the Detroit Institute of Ophthalmology, which has recently merged with the Henry Ford Department of Ophthalmology, have so generously and selflessly provided to our field over the past 14 years. This website will also contain a list of all human psychophysical testing that has been performed in the visual prosthetic field, with designations for those studies that were performed in accordance with the guidelines of the Multi-National Task Force, which will assume responsibility for the accuracy of the material. For those who wish to join this Task Force or have further questions, Dr Rizzo and Dr Ayton can be contacted at the email addresses listed above. The founding members of the Task Force anticipate that this digital resource will prove valuable to anyone who has interest in learning more about the achievements in our field, especially our prospective patients, to whom we dedicate our work.

  14. Joint Communications in Support of Joint Task Force South during Operation Just Cause

    DTIC Science & Technology

    1991-01-01

    the contingent frcm the 35th Signal Brigade under Colonel Jackson Moss arrived at Howard Air Force Base in a C-5A Galaxy . Colonel Moss had put together...to be an operation of short duration with the flowing in of one follow on Brigade of the 7th ID and the immediate redeployment of the Rangers and the

  15. The Role of United States Army Special Forces in Operation NOBEL OBELISK

    DTIC Science & Technology

    2001-06-01

    This thesis will examine U.S. Special Forces contributions to Operation NOBEL OBELISK, a Marine- led joint NEO in Sierra Leone in 1997. It is further...success of Joint Task Force NOBEL OBELISK. This operation led to the eventual safety of in excess of 2,500 civilians. Many of those civilians were... led many observers, both within and outside the country, to be optimistic about the future of democracy and the rule of law.”6 Unfortunately, twenty

  16. Joint Task Force on Undergraduate Physics Programs (J-TUPP): Overview and Major Findings

    NASA Astrophysics Data System (ADS)

    Heron, Paula

    2016-03-01

    The Joint Task Force on Undergraduate Physics Programs (JTUPP) was formed in response to growing awareness in the physics community that physics majors pursue a wide range of careers after graduation, with very few ending up in academia. The task force is charged with identifying the skills and knowledge that undergraduate physics degree holders should possess to be well prepared for a diverse set of careers, and providing guidance for physicists considering revising the undergraduate curriculum to improve the education of a diverse student population. Task force members represent large and small universities, professional societies, and industry, and have expertise in a broad range of areas including entrepreneurship, physics education research and systemic change in education. We reviewed employment data, surveys of employers, and reports generated by other disciplines. We also met with physicists in selected industries to get their views on the strengths and weaknesses of physics graduates, commissioned a series of interviews with recent physics graduates employed in the private sector, and identified exemplary programs that ensure that all of their students are well prepared to pursue a wide range of career paths. The findings and recommendations will be summarized.

  17. Biomechanics of Pediatric Manual Wheelchair Mobility

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Tarima, Sergey; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  18. Biomechanics of Pediatric Manual Wheelchair Mobility.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  19. Implementing Network-Centric Operations in Joint Task Forces: Changes in Joint Doctrine

    DTIC Science & Technology

    2006-06-16

    the hierarchy, explaining the relationship between vertically connected components (Gibson, Ivancevich , and Donnelly 1973, 289). The flow of...John M. Ivancevich , and James H. Donnelly. 1973. Organizations: Structure, Processes, Behavior. Dallas, TX: Business Publication, Inc. Gonzales

  20. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks.

    PubMed

    Khalid, Abdul Jabbar; Harris, Sujae Ian; Michael, Loke; Joseph, Hamill; Qu, Xingda

    2015-01-01

    This study investigated whether neuromuscular fatigue affects the neuromuscular control of an athlete within a sports context setting and whether these effects were more pronounced in the females. Lower limb joint kinetics of 6 male and 6 female inter-varsity soccer players performing side-stepping tasks in non-fatigue versus fatigue and anticipated versus unanticipated conditions were quantified using 10 Motion Analysis Corporation cameras and a Kistler(™) force platform. The Yo-Yo intermittent recovery Level 1 fatigue protocol was employed. Stance foot initial contact and peak forces, and peak joint knee moments of the lower limb were submitted to a 3-way mixed-model repeated measure ANOVA. The results suggested that males tend to elicit significantly higher knee joint loadings when fatigued. In addition, males elicited significantly higher peak proximal tibia anterior/posterior shear force, vertical ground reaction force at initial contact and peak internal rotational moments than females. These findings suggested that males were at greater overall injury risk than females, especially in the sagittal plane. Neuromuscular control-based training programmes/interventions that are designed to reduce the risk of the non-contact ACL injury need to be customised for the different genders.

  1. Determinants and magnitudes of manual force strengths and joint moments during two-handed standing maximal horizontal pushing and pulling.

    PubMed

    Chow, Amy Y; Dickerson, Clark R

    2016-04-01

    Pushing and pulling are common occupational exertions that are increasingly associated with musculoskeletal complaints. This study focuses on the sensitivity of shoulder capacity to gender, handle height, exertion type (push or pull) and handle orientation for these tasks. All factors except for handle orientation influenced unilateral and total manual force strength (p < 0.01), with exertion type being the most influential. Interaction effects also existed between handle height and exertion type. Additionally, joint moments at the shoulders and low back were influenced by all factors studied (p < 0.01), with exertion type again being most influential. Knowledge of the relative influence of multiple factors on shoulder capacity can provide guidance regarding these factors when designing or evaluating occupational pushing and pulling tasks for a diverse population. Practitioner Summary: pushing and pulling comprise nearly half of all manual materials handling tasks. Practitioners often assess, design or modify these tasks while incorporating constraints, including manual force direction and handle interface. This study provides guidance to aid design of pushing and pulling tasks in the context of shoulder physical capacity.

  2. The Challenge and the Promise: Strengthening the Force, Preventing Suicide and Saving Lives. Final Report of the Department of Defense Task Force on the Prevention of Suicide by Members of the Armed Forces

    DTIC Science & Technology

    2010-08-01

    Sergeant Major Ronald Green USMC Major General Philip Volpe, DO, MC USA Marjan Ghahramounlou Holloway, PhD Commander Aaron...and one civilian member serving as co-chairs for the group. Major General Philip Volpe, initially the Deputy Commander of Joint Task Force, National...and representation from each Service. Major General Philip Volpe was appointed as the military co-chair, and Ms. Bonnie Carroll was elected as the

  3. Interim Report of the Defense Science Board (DSB) Task Force on the Survivability of Systems and Assets to Electromagnetic Pulse (EMP) and other Nuclear Weapon Effects (NWE)

    DTIC Science & Technology

    2011-08-01

    Bob Hermann Dr. Maneck Master Dr. Gordon Soper Dr. Jim Tegnelia Dr. Joan Woodard Executive Secretaries (DFOs) John Franco, DTRA COL Jeffrey...Helen Mearns, Ms Kari O’Dell, Joint CBRO Appendix C: Presentations to the Task Force Name Topic July 15 - 16, 2010 Dr. Gordon Soper

  4. A Business Case Analysis of Pre-Positioned Expeditionary Assistance Kit Joint Capability Technology Demonstration

    DTIC Science & Technology

    2013-12-01

    of power from sunlight or a wind turbine (same solar panel tarps used in NEST Raptor Solar Light Trailer) • Global Positioning System (GPS) devices...satellite-enabled rapid wireless communications to the most critical areas and functions, working with Joint Task Forces. The first priority after the...a rapid response wireless communications system from military, civilian government, and non-government organizations. The tasks performed by HFN

  5. Joint Interagency Task Forces; the Right Model to Combat Transnational Organized Crime

    DTIC Science & Technology

    2015-05-18

    of predicting drug movements with incredible accuracy. 8 JIATF-South started life as one of three Department of Defense (DOD) Joint Task...on terrorism, human trafficking, drug smuggling; a JIATF Africa /Middle East focused on terrorism, arms smuggling, infectious diseases; and, a JIATF...narco terrorist threats within the prescribed JOA.” 72 As previously mentioned, JIATF-South has by necessity already started to widen its focus to TCO

  6. DoD Task Force on the Prevention of the Suicide by Members of the Armed Forces

    DTIC Science & Technology

    2010-08-01

    Ronald Green USMC Major General Philip Volpe, DO, MC USA Marjan Ghahramounlou Holloway, PhD Commander Aaron Werbel, PhD USN Table of Contents...and one civilian member serving as co-chairs for the group. Major General Philip Volpe, initially the Deputy Commander of Joint Task Force, National...and representation from each Service. Major General Philip Volpe was appointed as the military co-chair, and Ms. Bonnie Carroll was elected as the

  7. USAF Support to Low Intensity Conflict: Three Case Studies From the 1980s

    DTIC Science & Technology

    1994-06-01

    included armed reconnaissance provided by AC- 130H gunships, and an airdrop of USAF Combat Control Teams and Army Rangers . The main body for the...performance of elite units such as Delta Force, SEALS, Rangers , etc. did not justify the money spent or their claims of eliteness. AU Library Document M-43828...48Adkin, 132. 23 Figure 1 Task Organization for Joint Task Force 120. CJTF 120 Carribean Peacekeeping Force CTF 121 Airborne CTF 123 Rangers

  8. Interchangeable end effector tools utilized on the PFMA

    NASA Technical Reports Server (NTRS)

    Cody, Joe; Carroll, John; Crow, George; Gierow, Paul; Littles, Jay; Maness, Michael; Morrison, Jim

    1992-01-01

    An instrumented task board, used for measuring forces applied by the Protoflight Manipulator Arm (PFMA) to the task board, was fabricated and delivered to Marshall Space Flight Center. SRS Technologies phased out the existing IBM compatible data acquisition system, used with a instrumented task board, and integrated the force measuring electronic hardware in with the Macintosh II data acquisition system. The purpose of this change was to acquire all data with the same time tag, allowing easier and more accurate data reduction in addition to real-time graphics. A three-dimensional optical position sensing system for determining the location of the PFMA's end effect or in reference to the center of the instrumented task board was also designed and delivered under. An improved task board was fabricated which included an improved instrumented beam design. The modified design of the task board improved the force/torque measurement system by increasing the sensitivity, reliability, load range and ease of maintenance. A calibration panel for the optical position system was also designed and fabricated. The calibration method developed for the position sensors enhanced the performance of the sensors as well as simplified the installation and calibration procedures required. The modifications made under this effort expanded the capabilities of the task board system. The system developed determines the arm's position relative to the task board and measures the signals to the joints resulting from the operator's control signals in addition to the task board forces. The software and hardware required to calculate and record the position of the PFMA during the performance of tasks with the instrumented task board were defined, designed and delivered to MSFC. PFMA joint input signals can be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to realtime force and position sensor data presentation.

  9. Interchangeable end effector tools utilized on the PFMA

    NASA Astrophysics Data System (ADS)

    Cody, Joe; Carroll, John; Crow, George; Gierow, Paul; Littles, Jay; Maness, Michael; Morrison, Jim

    1992-02-01

    An instrumented task board, used for measuring forces applied by the Protoflight Manipulator Arm (PFMA) to the task board, was fabricated and delivered to Marshall Space Flight Center. SRS Technologies phased out the existing IBM compatible data acquisition system, used with a instrumented task board, and integrated the force measuring electronic hardware in with the Macintosh II data acquisition system. The purpose of this change was to acquire all data with the same time tag, allowing easier and more accurate data reduction in addition to real-time graphics. A three-dimensional optical position sensing system for determining the location of the PFMA's end effect or in reference to the center of the instrumented task board was also designed and delivered under. An improved task board was fabricated which included an improved instrumented beam design. The modified design of the task board improved the force/torque measurement system by increasing the sensitivity, reliability, load range and ease of maintenance. A calibration panel for the optical position system was also designed and fabricated. The calibration method developed for the position sensors enhanced the performance of the sensors as well as simplified the installation and calibration procedures required. The modifications made under this effort expanded the capabilities of the task board system. The system developed determines the arm's position relative to the task board and measures the signals to the joints resulting from the operator's control signals in addition to the task board forces. The software and hardware required to calculate and record the position of the PFMA during the performance of tasks with the instrumented task board were defined, designed and delivered to MSFC. PFMA joint input signals can be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to realtime force and position sensor data presentation.

  10. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads.

    PubMed

    Gooyers, Chad E; Beach, Tyson A C; Frost, David M; Howarth, Samuel J; Callaghan, Jack P

    2018-02-01

    This investigation examined interactions between the magnitude of external load, movement speed and (a)symmetry of load placement on estimates of in vivo joint loading in the lumbar spine during simulated occupational lifting. Thirty-two participants with manual materials handling experience were included in the study. Three-dimensional motion data, ground reaction forces, and activation of six bilateral trunk muscle groups were captured while participants performed lifts with two loads at two movement speeds and using two load locations. L4-L5 joint compression and shear force-time histories were estimated using an EMG-assisted musculoskeletal model of the lumbar spine. Results from this investigation provide strong evidence that known mechanical low back injury risk factors should not be viewed in isolation. Rather, injury prevention efforts need to consider the complex interactions that exist between external task demands and their combined influence on internal joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Evolving Joint Acquisition Force

    DTIC Science & Technology

    2004-03-19

    COVERED - 4. TITLE AND SUBTITLE An Evolving Joint Acquisition Force 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ...Theodore Jennings 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army War...College,Carlisle Barracks,Carlisle,PA,17013-5050 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10

  12. Increasing hip and knee flexion during a drop-jump task reduces tibiofemoral shear and compressive forces: implications for ACL injury prevention training.

    PubMed

    Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M

    2017-12-01

    Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.

  13. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.

    PubMed

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L

    2013-09-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.

  14. The Funding Of Boko Haram And Nigerias Actions To Stop It

    DTIC Science & Technology

    2016-12-01

    Group against Money Laundering in West Africa GSCF Global Security Contingency Fund ISIS Islamic State of Iraq and Syria JTF joint task force...78. 5 Inter-Governmental Action Group against Money Laundering in West Africa (GIABA) and the Financial Action Task Force (FATF) believed that...has failed to address deficiencies such as money laundering and terrorist financing within its banks.96 Having a financial intelligence unit within a

  15. Bilateral ground reaction forces and joint moments for lateral sidestepping and crossover stepping tasks

    PubMed Central

    Kuntze, Gregor; Sellers, William I.; Mansfield, Neil

    2009-01-01

    Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of overuse injuryThe leading and trailing limbs perform distinct roles, acting as a generator of vertical force and shock absorber respectively.This distinct contribution may contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. PMID:24150549

  16. American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force Report on omalizumab-associated anaphylaxis.

    PubMed

    Cox, Linda; Platts-Mills, Thomas A E; Finegold, Ira; Schwartz, Lawrence B; Simons, F Estelle R; Wallace, Dana V

    2007-12-01

    The American Academy of Allergy, Asthma & Immunology and the American College of Allergy, Asthma and Immunology Executive Committees formed the Omalizumab Joint Task Force with the purpose of reviewing the Genentech Xolair (omalizumab) clinical trials and postmarketing surveillance data on anaphylaxis and anaphylactoid reactions. Using the definition of anaphylaxis proposed at a 2005 multidisciplinary symposia, the Omalizumab Joint Task Force concluded that 35 patients had 41 episodes of anaphylaxis associated with Xolair (omalizumab) administration between June 1, 2003, and December 31, 2005. With 39,510 patients receiving Xolair (omalizumab) during the same period of time, this would correspond to an anaphylaxis-reporting rate of 0.09% of patients. Of those 36 events for which the time of reaction was known, 22 (61%) reactions occurred in the first 2 hours after one of the first 3 doses. Five (14%) of the events after the fourth or later doses occurred within 30 minutes. Considering the timing of these 36 events, an observation period of 2 hours for the first 3 injections and 30 minutes for subsequent injections would have captured 75% of the anaphylactic reactions. The OJTF report provides recommendations for physicians who prescribe Xolair (omalizumab) on (1) the suggested wait periods after administration and (2) patient education regarding anaphylaxis.

  17. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.

    PubMed

    Yun, M H; Cannon, D; Freivalds, A; Thomas, G

    1997-10-01

    Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system will be used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. Here, an operator gives directives to a robot in the same natural way that human may direct another. Phrases such as "put that there" cause the robot to define a grasping strategy and motion strategy to complete the task on its own. In the VR-PAD concept, pointing is done using virtual tools such that an operator can appear to graphically grasp real items in live video. Rather than requiring full duplication of forces and kinesthetic movement throughout a task as is required in manual telemanipulation, hand posture and force are now specified only once. The grasp parameters then become object flavors. The robot maintains the specified force and hand posture flavors for an object throughout the task in handling the real workpiece or item of interest. In the Computer integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with Force-Sensitive Resistor (FSR) (pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach will finesse the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.

  18. Muscle activity patterns altered during pedaling at different body orientations.

    PubMed

    Brown, D A; Kautz, S A; Dairaghi, C A

    1996-10-01

    Gravity is a contributing force that is believed to influence strongly the control of limb movements since it affects sensory input and also contributes to task mechanics. By altering the relative contribution of gravitational force to the overall forces used to control pedaling at different body orientations, we tested the hypothesis that joint torque and muscle activation patterns would be modified to generate steady-state pedaling at altered body orientations. Eleven healthy subjects pedaled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload (80 J), cadence (60 rpm), and hip and knee kinematics. Pedal reaction forces and crank and pedal kinematics were measured and used to calculate joint torques and angles. EMG was recorded from four muscles (tibialis anterior, triceps surae, rectus femoris, biceps femoris). Measures of muscle activation (joint torque and EMG activity) showed strong dependence on body orientation, indicating that muscle activity is not fixed and is modified in response to altered body orientation. Simulations confirmed that, while joint torque changes were not necessary to pedal at different body orientations, observed changes were necessary to maintain consistent crank angular velocity profiles. Dependence of muscle activity on body orientation may be due to neural integration of sensory information with an internal model that includes characteristics of the endpoint, to produce consistent pedaling trajectories. Thus, both sensory consequences and mechanical aspects of gravitational forces are important determinants of locomotor tasks such as pedaling.

  19. THROW AWAY THE BOX: RETHINKING LOGISTICS INTEGRATION BETWEEN SPECIAL OPERATIONS AND GENERAL PURPOSE FORCES

    DTIC Science & Technology

    2015-02-13

    Ft Carson CO; Logistics Officer, 10th Special Forces Group ( SFG ) Airborne (A) and Combined Joint Special Operations Task Force (CJSOTF) Arabian...ENDURING FREEDOM; Commander 7th SFG (A) Group Support Battalion, Eglin AFB, FL for two years and deployed to Afghanistan twice serving as the

  20. Influence of rotator cuff tears on glenohumeral stability during abduction tasks.

    PubMed

    Hölscher, Thomas; Weber, Tim; Lazarev, Igor; Englert, Carsten; Dendorfer, Sebastian

    2016-09-01

    One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision-making. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1628-1635, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Developing a musculoskeletal model of the primate skull: predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

    PubMed

    Shi, Junfen; Curtis, Neil; Fitton, Laura C; O'Higgins, Paul; Fagan, Michael J

    2012-10-07

    An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is that of muscle activation pattern indeterminacy. A very large number of possible muscle force combinations will satisfy a particular functional task. This makes predicting physiological muscle recruitment patterns difficult. Here we describe in detail the process of development of a complex multibody computer model of a primate skull (Macaca fascicularis), that aims to predict muscle recruitment patterns during biting. Using optimisation criteria based on minimisation of muscle stress we predict working to balancing side muscle force ratios, peak bite forces, and joint reaction forces during unilateral biting. Validation of such models is problematic; however we have shown comparable working to balancing muscle activity and TMJ reaction ratios during biting to those observed in vivo and that peak predicted bite forces compare well to published experimental data. To our knowledge the complexity of the musculoskeletal model is greater than any previously reported for a primate. This complexity, when compared to more simple representations provides more nuanced insights into the functioning of masticatory muscles. Thus, we have shown muscle activity to vary throughout individual muscle groups, which enables them to function optimally during specific masticatory tasks. This model will be utilised in future studies into the functioning of the masticatory apparatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  3. A Common Foundation of Information and Analytical Capability for AFSPC Decision Making

    DTIC Science & Technology

    2005-06-23

    System Strategic Master Plan MAPs/MSP CRRAAF TASK FORCE CONOPS MUA Task Weights Engagement Analysis ASIIS Optimization ACEIT COST Analysis...Engangement Architecture Analysis Architecture MUA AFSPC POM S&T Planning Military Utility Analysis ACEIT COST Analysis Joint Capab Integ Develop System

  4. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Foreign Police Development: The Third Time’s the Charm

    DTIC Science & Technology

    2010-02-10

    inclusive concept of a standing Interagency Task Force ( IATF ) headquarters, which would deploy on short notice as part of a combatant command’s...COCOM) combined joint task force (CJTF). In this case, the President would appoint a senior civilian to lead the IATF and its fully integrated civil...agencies in support seems the most practical, flexible, and cost-effective. Part of that IATF would be a fully integrated police development team

  6. The influence of lower leg configurations on muscle force variability.

    PubMed

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p < 0.05). Regularities in force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p < 0.05). The findings support the notion that limb configuration influences the magnitude and regularities in force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of External Ankle Support on Ankle and Knee Biomechanics During the Cutting Maneuver in Basketball Players.

    PubMed

    Klem, Nardia-Rose; Wild, Catherine Y; Williams, Sian A; Ng, Leo

    2017-03-01

    Despite the high prevalence of lower extremity injuries in female basketball players as well as a high proportion of athletes who wear ankle braces, there is a paucity of research pertaining to the effects of ankle bracing on ankle and knee biomechanics during basketball-specific tasks. To compare the effects of a lace-up brace (ASO), a hinged brace (Active T2), and no ankle bracing (control) on ankle and knee joint kinematics and joint reaction forces in female basketball athletes during a cutting maneuver. Controlled laboratory study. Twenty healthy, semi-elite female basketball players performed a cutting task under both ankle brace conditions (lace-up ankle brace and hinged ankle brace) and a no-brace condition. The 3-dimensional kinematics of the ankle and knee during the cutting maneuver were measured with an 18-camera motion analysis system (250 Hz), and ground-reaction force data were collected by use of a multichannel force plate (2000 Hz) to quantify ankle and knee joint reaction forces. Conditions were randomized using a block randomization method. Compared with the control condition, the hinged ankle brace significantly restricted peak ankle inversion (mean difference, 1.7°; P = .023). No significant difference was found between the lace-up brace and the control condition ( P = .865). Compared with the lace-up brace, the hinged brace significantly reduced ankle and knee joint compressive forces at the time of peak ankle dorsiflexion (mean difference, 1.5 N/kg [ P = .018] and 1.4 N/kg [ P = .013], respectively). Additionally, the hinged ankle brace significantly reduced knee anterior shear forces compared with the lace-up brace both during the deceleration phase and at peak ankle dorsiflexion (mean difference, 0.8 N/kg [ P = .018] and 0.9 N/kg [ P = .011], respectively). The hinged ankle brace significantly reduced ankle inversion compared with the no-brace condition and reduced ankle and knee joint forces compared with the lace-up brace in a female basketball population during a cutting task. Compared with the lace-up brace, the hinged brace may be a better choice of prophylactic ankle support for female basketball players from a biomechanical perspective. However, both braces increased knee internal rotation and knee abduction angles, which may be problematic for a population that already has a high prevalence of knee injuries.

  8. Technology and Employment. Joint Hearings before the Subcommittee on Science, Research and Technology of the Committee on Science and Technology and the Task Force on Education and Employment of the Committee on the Budget, U.S. House of Representatives, Ninety-Eighth Congress, First Session (June 7, 9, 10, 14-16, and 23, 1983).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    These are transcripts of joint Congressional hearings on technology and employment. Objectives stated for the hearings are to identify how technology is leading to changes in the nation's work force and work environment and to make recommendations for governmental action that will ease the adjustment of the work force and workplace to technology,…

  9. FRAX(®) Clinical Task Force of the 2010 Joint International Society for Clinical Densitometry & International Osteoporosis Foundation Position Development Conference.

    PubMed

    McCloskey, Eugene V; Binkley, Neil

    2011-01-01

    The World Health Organization fracture risk assessment tool, FRAX(®), is an advance in clinical care that can assist in clinical decision-making. However, with increasing clinical utilization, numerous questions have arisen regarding how to best estimate fracture risk in an individual patient. Recognizing the need to assist clinicians in optimal use of FRAX(®), the International Osteoporosis Foundation (IOF) in conjunction with the International Society for Clinical Densitometry (ISCD) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX(®) usage. As part of the process, the charge of the FRAX(®) Clinical Task Force was to review and synthesize data surrounding a number of recognized clinical risk factors including rheumatoid arthritis, smoking, alcohol, prior fracture, falls, bone turnover markers and glucocorticoid use. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the Clinical Task Force composition and charge is presented here. Copyright © 2011. Published by Elsevier Inc.

  10. A biomechanical analysis of common lunge tasks in badminton.

    PubMed

    Kuntze, Gregor; Mansfield, Neil; Sellers, William

    2010-01-01

    The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, approximately 15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.

  11. Getting to Best: Reforming the Defense Acquisition Enterprise. A Business Imperative for Change from the Task Force on Defense Acquisition Law and Oversight

    DTIC Science & Technology

    2009-07-01

    Colorado and Distinguished Fellow at the New America Foundation. He was recently named chair- man of the Council for a Livable World and is chairman of the...Joint Forces Com- mand. He is Chairman of the Durango Group, the MITRE Air Force Advisory Board, and the National Academies Air Force Studies Board

  12. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.

    PubMed

    Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline; Donnelly, Cyril

    2018-06-14

    Unplanned sidestepping and single-leg landing have both been used to screen athletes for injury risk in sport. The aim of this study was to directly compare the lower limb mechanics of three single-leg landing tasks and an unplanned sidestepping task. Thirteen elite female team sport athletes completed a series of non-contact single-leg drop landings, single-leg countermovement jumps, single-leg jump landings and unplanned sidestepping in a randomized counterbalanced design. Three dimensional kinematics (250 Hz) and ground reaction force (2,000 Hz) data with a participant specific lower limb skeletal model were used to calculate and compare hip, knee and ankle joint kinematics, peak joint moments, instantaneous joint power and joint work during the weight acceptance phase of each sporting task (α=0.05). Peak knee joint moments and relevant injury risk thresholds were used to classify each athlete's anterior cruciate ligament injury risk during unplanned sidestepping and single-leg jump landing. Results showed that peak joint moments, power and work were greater during the single-leg jump landing task when compared to the single-leg drop landings and single-leg countermovement jumps tasks. Peak frontal and sagittal plane knee joint moments, knee joint power, as well as hip and knee joint work were greater during unplanned sidestepping when compared to the landing tasks. Peak ankle joint moments, power and work were greater during the landing tasks when compared to unplanned sidestepping. For 4 of the 13 athletes tested, their anterior cruciate ligament injury risk classification changed depending on whether they performed an unplanned sidestepping or single-leg jump landing testing procedure. To summarize, a single-leg jump landing testing procedure places a larger mechanical on the ankle joint when compared to single-leg drop landings, single-leg countermovement jumps and unplanned sidestepping. An unplanned sidestepping testing procedure places a larger mechanical demand on the knee joint when compared to single-leg landing tasks. Both unplanned sidestepping and single-leg jump landing testing procedures are recommended for classifying an athlete's anterior cruciate ligament injury risk in sport. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.

    PubMed

    Proietti, Tommaso; Guigon, Emmanuel; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2017-06-12

    The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination). Adaptation was evidenced by a partial decrease of the movement deviations due to the fields, during the repetitions, but it occurred only on 21% of the motions. Nonetheless post-effects were observed in 86% of cases during the wash-out and follow up periods (right after the removal of the perturbation by the fields and after 30 minutes of being detached from the exoskeleton). Important inter-individual differences were observed but with small variability within subjects. In particular, a group of subjects showed an over-shoot with respect to the original unexposed trajectories (in 30% of cases), but the most frequent consequence (in 55% of cases) was the partial persistence of the modified upper-limb coordination, adopted at the time of the perturbation. Temporal and spatial generalizations were also evidenced by the deviation of the movement trajectories, both at the end-effector and at the intermediate joints and the modification of the final pointing postures towards targets which were never exposed to any field. Such results are the first quantified characterization of the effects of modification of the upper-limb coordination in healthy subjects, by imposing modification through viscous force fields distributed at the joint level, and could pave the way towards opportunities to rehabilitate pathological arm synergies with robots.

  14. Environmental assessment and exposure reduction of cockroaches: A practice parameter

    PubMed Central

    Portnoy, Jay; Chew, Ginger L.; Phipatanakul, Wanda; Williams, P. Brock; Grimes, Carl; Kennedy, Kevin; Matsui, Elizabeth C.; Miller, J. David; Bernstein, David; Blessing-Moore, Joann; Cox, Linda; Khan, David; Lang, David; Nicklas, Richard; Oppenheimer, John; Randolph, Christopher; Schuller, Diane; Spector, Sheldon; Tilles, Stephen A.; Wallace, Dana; Seltzer, James; Sublett, James

    2013-01-01

    This parameter was developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the joint Council of Allergy, Asthma & Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing “Environmental assessment and remediation: a practice parameter.” This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single person, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). PMID:23938214

  15. Air Force Tech Order Management System (AFTOMS). Automation Plan-Final Report. Version 1.0

    DOT National Transportation Integrated Search

    1988-02-01

    Computer aided Acquisition and Logistics Support (CALS) is a Department of Defense (DoD) program designed to improve weapon systems support through digital automation. In June 1985, the joint industry/DoD Task Force on CALS issued a five volume repor...

  16. Joint Tactics, Techniques, and Procedures for Joint Special Operations Task Force Operations

    DTIC Science & Technology

    2001-12-19

    phase? Is a ration cycle proposed? •• Are fresh eggs, fresh fruits and vegetables, fresh meats, juices, milk , and canned soft-drink supplements to ration...measures designed to mislead the enemy by manipulation, distortion, or falsification of evidence to induce the enemy to react in a manner prejudicial to

  17. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1.

    PubMed

    Caro, J Jaime; Briggs, Andrew H; Siebert, Uwe; Kuntz, Karen M

    2012-01-01

    Models-mathematical frameworks that facilitate estimation of the consequences of health care decisions-have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR modeling task force reported in 2003 has led to a new task force, jointly convened with the Society for Medical Decision Making, and this series of seven papers presents the updated recommendations for best practices in conceptualizing models; implementing state-transition approaches, discrete event simulations, or dynamic transmission models; dealing with uncertainty; and validating and reporting models transparently. This overview introduces the work of the task force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these papers includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making.

  18. Joint Command Support Through Workspace Analysis, Design and Optimization (Soutien du Commandement Interarmees au Moyen de L’Analyse, de la Conception et de L’Optimisation de L’Espace de Travail)

    DTIC Science & Technology

    2009-10-01

    WACC ); and • Joint Task Force (Games) Joint Operations Centre (GJOC). In May 2008, DRDC Toronto initiated two studies to support the workspace...Voice-over-IP WACC Whistler Area Command Centre DRDC Toronto TR 2009-100 39 Distribution list Document No.: DRDC CR 2009-028 LIST

  19. Comparison of joint space versus task force load distribution optimization for a multiarm manipulator system

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I.; Alberts, Thomas E.

    1989-01-01

    It is often proposed that the redundancy in choosing a force distribution for multiple arms grasping a single object should be handled by minimizing a quadratic performance index. The performance index may be formulated in terms of joint torques or in terms of the Cartesian space force/torque applied to the body by the grippers. The former seeks to minimize power consumption while the latter minimizes body stresses. Because the cost functions are related to each other by a joint angle dependent transformation on the weight matrix, it might be argued that either method tends to reduce power consumption, but clearly the joint space minimization is optimal. A comparison of these two options is presented with consideration given to computational cost and power consumption. Simulation results using a two arm robot system are presented to show the savings realized by employing the joint space optimization. These savings are offset by additional complexity, computation time and in some cases processor power consumption.

  20. WaterSense Specification for Showerheads Supporting Statement

    EPA Pesticide Factsheets

    WaterSense collaborated with the American Society of Mechanical Engineers (ASME)/Canadian Standards Association (CSA) Joint Harmonization Task Force to develop the specification criteria for high-efficiency showerheads.

  1. Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements

    PubMed Central

    Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus

    2018-01-01

    Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235

  2. Modeling the Creation of Actionable Knowledge within a Joint Task Force Command System (Project GNOSIS)

    DTIC Science & Technology

    2006-08-01

    Force Research Laboratory This report is published in the interest of scientific and technical information exchange, and its publication does not...SYSTEM SJ SYSTEM INTERACTIONS AND INFLUENCES SOCIAL ORGANIZATIONAL SYSTEM SYSTEM I Multiple actors egaglng In comunities of Commrunitles of Interest

  3. American Therapeutic Recreation Association

    MedlinePlus

    ... Affiliates ATRA Committees ATRA Task Forces ATRA Sections International RT/TR Month Member Directory Social Networking Board Calls and Member-Only Webinars Federal Public Policy Coverage Joint Commission (JC) Commission on Accreditation ...

  4. Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative.

    PubMed

    Galanopoulou, Aristea S; French, Jacqueline A; O'Brien, Terence; Simonato, Michele

    2017-11-01

    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  5. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  6. Current guidelines for the evaluation and management of atopic dermatitis: A comparison of the Joint Task Force Practice Parameter and American Academy of Dermatology guidelines.

    PubMed

    Eichenfield, Lawrence F; Ahluwalia, Jusleen; Waldman, Andrea; Borok, Jenna; Udkoff, Jeremy; Boguniewicz, Mark

    2017-04-01

    Atopic dermatitis (AD) is a chronic pruritic inflammatory disease that commonly presents in the pediatric population. Although definitions and diagnosis of AD have largely been agreed upon, allergists and dermatologists have similar and divergent approaches to the management of AD. This review facilitated integration of the American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma & Immunology Joint Task Force 2012 AD Practice Parameter and the 2014 American Academy of Dermatology guidelines to highlight the basic principles of AD management and discuss therapies and management of AD from the distinct perspectives of the allergist and dermatologist. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Foot kinematics and loading of professional athletes in American football-specific tasks.

    PubMed

    Riley, Patrick O; Kent, Richard W; Dierks, Tracy A; Lievers, W Brent; Frimenko, Rebecca E; Crandall, Jeff R

    2013-09-01

    The purpose of this study was to describe stance foot and ankle kinematics and the associated ground reaction forces at the upper end of human performance in professional football players during commonly performed football-specific tasks. Nine participants were recruited from the spring training squad of a professional football team. In a motion analysis laboratory setting, participants performed three activities used at the NFL Scouting Combine to assess player speed and agility: the 3-cone drill, the shuttle run, and the standing high jump. The talocrural and first metatarsophalangial joint dorsiflexion, subtalar joint inversion, and the ground reaction forces were determined for the load bearing portions of each activity. We documented load-bearing foot and ankle kinematics of elite football players performing competition-simulating activities, and confirmed our hypothesis that the talocrural, subtalar, and metatarsophalangeal joint ranges of motion for the activities studied approached or exceeded reported physiological limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Verifying the equivalence of representations of the knee joint moment vector from a drop vertical jump task.

    PubMed

    Nichols, Julia K; O'Reilly, Oliver M

    2017-03-01

    Biomechanics software programs, such as Visual3D, Nexus, Cortex, and OpenSim, have the capability of generating several distinct component representations for joint moments and forces from motion capture data. These representations include those for orthonormal proximal and distal coordinate systems and a non-orthogonal joint coordinate system. In this article, a method is presented to address the challenging problem of evaluating and verifying the equivalence of these representations. The method accommodates the difficulty that there are two possible sets of non-orthogonal basis vectors that can be used to express a vector in the joint coordinate system and is illuminated using motion capture data from a drop vertical jump task. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Training Community Modeling and Simulation Business Plan: 2008 Edition

    DTIC Science & Technology

    2009-12-01

    Collaborative information environment. Collaborative tools will help CCDRs and joint staffs plan and disseminate operations, link the staffs to subject matter...anticipating direct and indirect effects as they propagate through political, military, economic, sociological, and information infrastructures. Capabilities...will also 5-11 enhance training for joint staffs and task forces; crisis management; JUO; information warfare; interagency, intergovernmental, and

  10. Specific interpretation of augmented feedback changes motor performance and cortical processing.

    PubMed

    Lauber, Benedikt; Keller, Martin; Leukel, Christian; Gollhofer, Albert; Taube, Wolfgang

    2013-05-01

    It is well established that the presence of external feedback, also termed augmented feedback, can be used to improve performance of a motor task. The present study aimed to elucidate whether differential interpretation of the external feedback signal influences the time to task failure of a sustained submaximal contraction and modulates motor cortical activity. In Experiment 1, subjects had to maintain a submaximal contraction (30% of maximum force) performed with their thumb and index finger. Half of the tested subjects were always provided with feedback about joint position (pF-group), whereas the other half of the subjects were always provided with feedback about force (fF-group). Subjects in the pF-group were led to belief in half of their trials that they would receive feedback about the applied force, and subjects in the fF-group to receive feedback about the position. In both groups (fF and pF), the time to task failure was increased when subjects thought to receive feedback about the force. In Experiment 2, subthreshold transcranial magnetic stimulation was applied over the right motor cortex and revealed an increased motor cortical activity when subjects thought to receive feedback about the joint position. The results showed that the interpretation of feedback influences motor behavior and alters motor cortical activity. The current results support previous studies suggesting a distinct neural control of force and position.

  11. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks

    PubMed Central

    Pizzolato, Claudio; Lloyd, David G.; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F.; Fregly, Benjamin J.; Reggiani, Monica

    2015-01-01

    Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. PMID:26522621

  12. Age-related differences in muscle fatigue vary by contraction type: a meta-analysis.

    PubMed

    Avin, Keith G; Law, Laura A Frey

    2011-08-01

    During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18-45 years of age) and old (≥ 55 years of age) adults who were healthy were considered. Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥ 50% of maximum voluntary contraction). Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in peak torque.

  13. Muscle function in glenohumeral joint stability during lifting task.

    PubMed

    Blache, Yoann; Begon, Mickaël; Michaud, Benjamin; Desmoulins, Landry; Allard, Paul; Dal Maso, Fabien

    2017-01-01

    Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task.

  14. Muscle function in glenohumeral joint stability during lifting task

    PubMed Central

    Begon, Mickaël; Michaud, Benjamin; Desmoulins, Landry; Allard, Paul

    2017-01-01

    Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task. PMID:29244838

  15. Report of the Defense Science Board/Air Force Scientific Advisory Board Joint Task Force on Acquisition of National Security Space Programs

    DTIC Science & Technology

    2003-05-01

    space requires both contractors---at least until sustainable performance is demonstrated • EELV program has occurred in highly cost constrained...both contractors • Take necessary actions to assure both contractors remain viable---at least until sustainable performance is demonstrated

  16. 2014 Texas Military Value Task Force: Preparing for the Future

    DTIC Science & Technology

    2014-01-01

    Mayor Bob Bruggeman, City of Texarkana 4. Naval Air Station Fort Worth Joint Reserve Base, City of Fort Worth 5. Dyess Air Force Base, Mayor Norm...Ellington Field): Composite – 98.2 Killeen (Fort Hood): Composite – 85.0 San Antonio (JBSA): Composite – 92.5 Texarkana (RRAD): Composite – 94.6 Wichita

  17. The DISAM Journal of International Security Assistance Management. Volume 29, Number 3, July 2007

    DTIC Science & Technology

    2007-07-01

    with Canada and Mexico, with relatively very few permanently assigned forces . You can read about a number of issues addressed by contributing authors...26 Commander Curtis Jenkins, USNR, Lockheed Martin “Taking the Communication High Ground The Case for a Joint Inter-Agency Task Force ...permanently assigned forces . The command is assigned forces whenever necessary to execute missions, as ordered by the president and secretary of

  18. Kinematics of the six-degree-of-freedom force-reflecting Kraft Master

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    Presented here are kinematic equations for a six degree of freedom force-reflecting hand controller. The forward kinematics solution is developed and shown in simplified form. The Jacobian matrix, which uses terms from the forward kinematics solution, is derived. Both of these kinematic solutions require joint angle inputs. A calibration method is presented to determine the hand controller joint angles given the respective potentiometer readings. The kinematic relationship describing the mechanical coupling between the hand and controller shoulder and elbow joints is given. These kinematic equations may be used in an algorithm to control the hand controller as a telerobotic system component. The purpose of the hand controller is two-fold: operator commands to the telerobotic system are entered using the hand controller, and contact forces and moments from the task are reflected to the operator via the hand controller.

  19. Additional Research Opportunities | Cancer Prevention Fellowship Program

    Cancer.gov

    NCI-FDA Joint Training in Cancer Prevention Cancer Prevention Fellows are eligible to participate in Track 4 of the Interagency Oncology Task Force Fellowship program—offered as a partnership of the National

  20. Characteristics of personal health records: findings of the Medical Library Association/National Library of Medicine Joint Electronic Personal Health Record Task Force.

    PubMed

    Jones, Dixie A; Shipman, Jean P; Plaut, Daphne A; Selden, Catherine R

    2010-07-01

    The Medical Library Association (MLA)/National Library of Medicine (NLM) Joint Electronic Personal Health Record Task Force examined the current state of personal health records (PHRs). A working definition of PHRs was formulated, and a database was built with fields for specified PHR characteristics. PHRs were identified and listed. Each task force member was assigned a portion of the list for data gathering. Findings were recorded in the database. Of the 117 PHRs identified, 91 were viable. Almost half were standalone products. A number used national standards for nomenclature and/or record structure. Less than half were mobile device enabled. Some were publicly available, and others were offered only to enrollees of particular health plans or employees at particular institutions. A few were targeted to special health conditions. The PHR field is very dynamic. While most PHR products have some common elements, their features can vary. PHRs can link their users with librarians and information resources. MLA and NLM have taken an active role in making this connection and in encouraging librarians to assume this assistance role with PHRs.

  1. Forces and moments generated by the human arm: Variability and control

    PubMed Central

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM

    2012-01-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  2. Concept of Operations for the Establishment of the Joint Pathology Center

    DTIC Science & Technology

    2008-12-19

    the Joint Task Force National Capital Region Medical (JTF CapMed ) in collaboration with the Uniformed Services University of Health Sciences (USUHS...Medical Examiner (OAFME). The Board deems the identification of appropriate support for the OAFME as critical , since with the disestablishment of...the DoD. The establishment of the JPC within JTF CapMed is a logical choice to the extent that JTF Cap Med is a joint medical organization and can

  3. 75 FR 42792 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... public. The public session will be podcast. MATTERS TO BE CONSIDERED: PORTIONS OPEN TO THE PUBLIC: 1... active cases. 4. Report on recent activites of the Joint Periodicals Task Force and status of the report...

  4. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario

  5. Command and Control for Joint Air Operations.

    DTIC Science & Technology

    1994-11-14

    publication apply to the throughout the range of military commanders of combatant commands, operations. subunified commands, joint task forces, and...this doctrine (or operations as well as the doctrinal basis JTTP) will be followed except when, in for US military involvement in the judgment of the...commander, multinational and interagency operations. exceptional circumstances dictate It provides military guidance for the otherwise. If conflicts

  6. Computer-Mediated Training Tools to Enhance Joint Task Force Cognitive Leadership Skills

    DTIC Science & Technology

    2007-04-01

    University); and 5d. TASK NUMBER Barclay Lewis (American Systems) 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ...ple G am ing Platform D ecisive A ction for Training ..................................................... 43 6. Perform ance M etrics...Figure 15: Automated Performance Measurement System ................................................................... 48 iv COMPUTER-MEDIATED TRAINING

  7. Essential Civil Support Tasks

    DTIC Science & Technology

    2010-12-01

    food, water, beds , bedding , clothing, and temporary shelters. They utilized vacant warehouses and parking lots to enable receipt, storage, and...Adequate Water Provide Food Provide Clothing and Bedding Provide Beds Develop National and Local Logistics Infrastructure for Receipt, Storage...Defense Support of Civil Authorities FEMA Federal Emergency Management Agency FM Field Manual JTF Joint Task Force NRF National Response Framework

  8. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--1.

    PubMed

    Caro, J Jaime; Briggs, Andrew H; Siebert, Uwe; Kuntz, Karen M

    2012-01-01

    Models--mathematical frameworks that facilitate estimation of the consequences of health care decisions--have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR Modeling Task Force reported in 2003 has led to a new Task Force, jointly convened with the Society for Medical Decision Making, and this series of seven articles presents the updated recommendations for best practices in conceptualizing models; implementing state-transition approaches, discrete event simulations, or dynamic transmission models; and dealing with uncertainty and validating and reporting models transparently. This overview article introduces the work of the Task Force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these articles includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Multi-joint postural behavior in patients with knee osteoarthritis.

    PubMed

    Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane

    2015-12-01

    Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  11. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury. © 2016 The Author(s).

  12. Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.

    PubMed

    Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N

    2016-12-08

    The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.

  13. Environmental Security in the Danube River Basin: Policy Implications for the United States

    DTIC Science & Technology

    1999-01-01

    United Nations Environmental Programme and Centre for Human Settlements jointly formed a Balkans Task Force that has been conducting independent and...1199 V ACKNOWLEDGMENTS I would like to thank the United States Air Force Institute for National Security Studies (TNSS) and the Army Environmental...regularly scheduled course on Responsibilities of Military Forces in Environmental Protection. Mr. Robert Jarrett of AEPI provided valuable review

  14. Defense Horizons. Number 25, March 2003. Biology and the Battlefield

    DTIC Science & Technology

    2003-03-01

    Joint Task Force is notified that they will deploy to Southwest Asia within 36 hours. The team will insert 65 miles behind enemy forces, in the...10 Ibid. 11 Carol Ezzell , “Proteins Rule,” Scientific American 286, no. 4 (April 2002), 40–47. 12 “Protein,” accessed at <http://encarta.msn.com/encnet

  15. Proprioception Is Robust under External Forces

    PubMed Central

    Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.

    2013-01-01

    Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959

  16. Joint Vision 2010 Command and Control: A Case for Standing Joint Task Forces and Purple Aircraft Carriers

    DTIC Science & Technology

    1998-02-13

    the Department of Joint Military Operations. The contents of this paper reflect my personal views and are not necessarily endorsed by the ...reflect my own personal views and are not necessarily endorsed by the NWC or the Department of the Navy. 14. Ten key words that relate to your paper...Contrast, for example, the redundant following quotes. In one recent article the CNO stressed, The real challenge is in changing our way of

  17. Executive Report: JSOU (Joint Special Operations University) First Annual Symposium, 2-5 May 2006, Hurlburt Field, Florida

    DTIC Science & Technology

    2006-05-05

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint Special Operations University,357 Tully Street...Alison Building,Hurlburt Field,FL,32544 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...leadership. JSOU is a subordinate organization of the US Special Operations Command (USSOCOM), MacDill Air Force Base, Florida. The mission of the Joint

  18. The efficacy of elastic therapeutic tape variations on measures of ankle function and performance.

    PubMed

    Brogden, Christopher Michael; Marrin, Kelly; Page, Richard Michael; Greig, Matt

    2018-04-23

    To investigate the effects of different variations of elastic therapeutic taping (ETT) on tests used to screen for ankle injury risk and function. Randomized crossover. Laboratory. Twelve professional male soccer players completed three experimental trials: No tape (NT), RockTape™ (RT), and Kinesio™ Tape (KT) applied to the ankle complex. Clinical and functional ankle screening tests were used to assess the effects of ETT on measures of joint position sense, postural stability and ground reaction forces. KT (P = 0.04) and RT (P = 0.01) demonstrated significant improvements in end range joint position sense. When compared to NT, RT significantly (P = 0.02) improved mid-range joint position sense at 15°, and time to complete a drop landing task. No significant differences were observed for measures of postural stability (P ≥ 0.12) nor ground reaction force variables (P ≥ 0.33). Results advocate the use of ETT for proprioceptive and functional tasks when applied to the ankles of healthy male soccer players. However, a greater number of practical and significant differences were observed when RT only was applied, indicating that practitioners may potentially advocate the use of RT for tasks requiring proprioception and functional performance. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  19. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.

    PubMed

    Pizzolato, Claudio; Lloyd, David G; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F; Fregly, Benjamin J; Reggiani, Monica

    2015-11-05

    Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Native Language and Culture. INAR/NACIE Joint Issues Sessions. National Indian Education Association (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on educational issues related to Native American language and culture. Educators, students, parents, and tribal officials made presentations concerning: the importance for academic success…

  1. Academic Performance. INAR/NACIE Joint Issues Sessions. National Indian Education Association (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on issues related to the academic performance of Native American students. Educators, employers, parents, and tribal officials testified on the following topics: Native students' high…

  2. Proper Employment of Special Operations Forces: Geographic Combatant Command Planner Considerations for Special Operations Forces Employment

    DTIC Science & Technology

    2010-04-01

    October 2008, in Figure 2-1 below. TACON Best Practices 1) For the respective commanders to jointly determine the required tasks and organize the... organization . 2) Provide the gaining commander of the TACON force the requisite expertise to effectively plan and exercise TACON of the force. We sometimes...the TACON of SOF is given to an organization other than the parent organization . As changes occur, a plan may change requiring a shift in end state

  3. Shoulder Kinematics and Spatial Pattern of Trapezius Electromyographic Activity in Real and Virtual Environments

    PubMed Central

    Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal

    2015-01-01

    The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform. PMID:25768123

  4. The Jet Propulsion Laboratory shared control architecture and implementation

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad

    1990-01-01

    A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.

  5. Impact of the Joint Task Force on Undergraduate Physics Programs for Innovation and Entrepreneurship Education in Physics

    NASA Astrophysics Data System (ADS)

    Arion, Douglas

    The Joint Task Force on Undergraduate Physics Programs has worked diligently to develop recommendations for what physics programs could and should be doing to prepare graduates for 21st century careers. While the `traditional' physics curriculum has served for many years, the demands of the new workforce, and the recognition that only a few percent of physics students actually become faculty - the vast majority entering the workforce and applying their skills to a very diverse range of problems, projects, and products - implies that a review of the education undergraduates receives is in order. The outcomes of this study point to the need to provide greater connection between the education process and the actual skills, knowledge, and abilities that the workplace demands. This presentation will summarize these considerations, and show how entrepreneurship and innovation programs and curricula are a particularly effective means of bringing these elements to physics students.

  6. An Examination of the Roles of Medical Units in Support of Chemical, Biological, Radiological, or Nuclear Event (CBRN) under Joint Task Force Civil Support (JF-CS)

    DTIC Science & Technology

    2012-05-16

    diabetes, obesity, pediatrics, geriatrics, obstetrics , are some of the areas that the military medical response forces are currently not capable of...rebellion or unlawful “assemblage” precludes enforcement of the law through judicial proceedings; and to suppress “any insurrection, domestic violence

  7. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling.

    PubMed

    Modenese, Luca; Montefiori, Erica; Wang, Anqi; Wesarg, Stefan; Viceconti, Marco; Mazzà, Claudia

    2018-05-17

    The generation of subject-specific musculoskeletal models of the lower limb has become a feasible task thanks to improvements in medical imaging technology and musculoskeletal modelling software. Nevertheless, clinical use of these models in paediatric applications is still limited for what concerns the estimation of muscle and joint contact forces. Aiming to improve the current state of the art, a methodology to generate highly personalized subject-specific musculoskeletal models of the lower limb based on magnetic resonance imaging (MRI) scans was codified as a step-by-step procedure and applied to data from eight juvenile individuals. The generated musculoskeletal models were used to simulate 107 gait trials using stereophotogrammetric and force platform data as input. To ensure completeness of the modelling procedure, muscles' architecture needs to be estimated. Four methods to estimate muscles' maximum isometric force and two methods to estimate musculotendon parameters (optimal fiber length and tendon slack length) were assessed and compared, in order to quantify their influence on the models' output. Reported results represent the first comprehensive subject-specific model-based characterization of juvenile gait biomechanics, including profiles of joint kinematics and kinetics, muscle forces and joint contact forces. Our findings suggest that, when musculotendon parameters were linearly scaled from a reference model and the muscle force-length-velocity relationship was accounted for in the simulations, realistic knee contact forces could be estimated and these forces were not sensitive the method used to compute muscle maximum isometric force. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Partnerships of Schools, Tribes, Communities, Parents, and Businesses. INAR/NACIE Joint Issues Sessions. National Indian Education Association (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on educational partnerships in Native American education. Successful partnerships are described, including: (1) school-business partnerships that allow students to explore career…

  9. Teacher and Administrator Training, Recruitment and Retention. INAR/NACIE Joint Issues Sessions National Indian Education Assocation (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on Native American issues in educator training and employment. Issues and problems related to recruitment of Native Americans into teacher education include raised admission standards, more…

  10. Shaping future Naval warfare with unmanned systems, the impact across the fleet, and joint considerations

    NASA Astrophysics Data System (ADS)

    Hudson, E. C.; Johnson, Gordon; Summey, Delbert C.; Portmann, Helmut H., Jr.

    2004-09-01

    This paper discusses a comprehensive vision for unmanned systems that will shape the future of Naval Warfare within a larger Joint Force concept, and examines the broad impact that can be anticipated across the Fleet. The vision has been articulated from a Naval perspective in NAVSEA technical report CSS/TR-01/09, Shaping the Future of Naval Warfare with Unmanned Systems, and from a Joint perspective in USJFCOM Rapid Assessment Process (RAP) Report #03-10 (Unmanned Effects (UFX): Taking the Human Out of the Loop). Here, the authors build on this foundation by reviewing the major findings and laying out the roadmap for achieving the vision and truly transforming how we fight wars. The focus is on broad impact across the Fleet - but the implications reach across all Joint forces. The term "Unmanned System" means different things to different people. Most think of vehicles that are remotely teleoperated that perform tasks under remote human control. Actually, unmanned systems are stand-alone systems that can execute missions and tasks without direct physical manned presence under varying levels of human control - from teleoperation to full autonomy. It is important to note that an unmanned system comprises a lot more than just a vehicle - it includes payloads, command and control, and communications and information processing.

  11. On the organizing role of nonmuscular forces during performance of a giant circle in gymnastics.

    PubMed

    Sevrez, Violaine; Rao, Guillaume; Berton, Eric; Bootsma, Reinoud J

    2012-02-01

    Five elite gymnasts performed giant circles on the high bar under different conditions of loading (without and with 6-kg loads attached to the shoulders, waist or ankles). Comparing the gymnasts' kinematic pattern of movement with that of a triple-pendulum moving under the sole influence of nonmuscular forces revealed qualitative similarities, including the adoption of an arched position during the downswing and a piked position during the upswing. The structuring role of nonmuscular forces in the organization of movement was further reinforced by the results of an inverse dynamics analysis, assessing the contributions of gravitational, inertial and muscular components to the net joint torques. Adding loads at the level of the shoulders, waist or ankles systematically influenced movement kinematics and net joint torques. However, with the loads attached at the level of the shoulders or waist, the load-induced changes in gravitational and inertial torques provided the required increase in net joint torque, thereby allowing the muscular torques to remain unchanged. With the loads attached at the level of the ankles, this was no longer the case and the gymnasts increased the muscular torques at the shoulder and hip joints. Together, these results demonstrate that expert gymnasts skillfully exploit the operative nonmuscular forces, employing muscle force only in the capacity of complementary forces needed to perform the task.

  12. Age-Related Differences in Muscle Fatigue Vary by Contraction Type: A Meta-analysis

    PubMed Central

    Avin, Keith G.

    2011-01-01

    Background During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. Purpose The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). Data Sources A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. Study Selection Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18–45 years of age) and old (≥55 years of age) adults who were healthy were considered. Data Extraction Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. Data Synthesis Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. Limitations A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥50% of maximum voluntary contraction). Conclusions Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in peak torque. PMID:21616932

  13. Task and fatigue effects on low-threshold motor units in human hand muscle.

    PubMed

    Enoka, R M; Robinson, G A; Kossev, A R

    1989-12-01

    1. The activity of single motor units was recorded in the first dorsal interosseus muscle of human subjects while they performed an isometric ramp-and-hold maneuver. Motor-unit activity was characterized before and after fatigue by the use of a branched bipolar electrode that was positioned subcutaneously over the test muscle. Activity was characterized in terms of the forces of recruitment and derecruitment and the discharge pattern. The purpose was to determine, before and after fatigue, whether motor-unit activity was affected by the direction in which the force was exerted. 2. Regardless of the task during prefatigue trials, interimpulse intervals were 1) more variable during increases or decreases in force than when force was held constant at the target value (4-6% above the recruitment force), and 2) more clustered around an arbitrary central value than would be expected with a normal (Gaussian) distribution. Both effects were seen during the flexion and abduction tasks. The behavior of low-threshold motor units in first dorsal interosseus is thus largely unaffected by the direction of the force exerted by the index finger. The absence of a task (i.e., a direction of force) effect suggests that the resultant force vector about the metacarpophalangeal joint of the index finger is not coded in terms of discrete populations of motor units, but, rather, it is based on the net muscle activity about the joint. 3. Motor-unit behavior during and after fatigue showed that the relatively homogeneous behavior seen before fatigue could be severely disrupted. The fatiguing protocol involved the continuous repetition, to the endurance limit, of a 15-s ramp-and-hold maneuver in which the abduction target force was 50% of maximum and was held for 10-s epochs (ramps up and down were approximately 2 s each). Motor-unit threshold was assessed by the forces of recruitment and derecruitment associated with each cycle of the fatigue test. Changes in recruitment force during the protocol were either minimal or, when present, not systematic. In contrast, the derecruitment force of all units exhibited a marked and progressive increase over the course of the test. 4. After the fatigue test, when the initial threshold tasks were repeated, the behavior of most motor units changed. These changes included the derecruitment of previously active motor units, the recruitment of additional motor units, and an increased discharge variability of units that remained recruited. The variation in recruitment order seemed to be much greater than that reported previously for nonfatiguing conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Modeling the finger joint moments in a hand at the maximal isometric grip: the effects of friction.

    PubMed

    Wu, John Z; Dong, Ren G; McDowell, Thomas W; Welcome, Daniel E

    2009-12-01

    The interaction between the handle and operator's hand affects the comfort and safety of tool and machine operations. In most of the previous studies, the investigators considered only the normal contact forces. The effect of friction on the joint moments in fingers has not been analyzed. Furthermore, the observed contact forces have not been linked to the internal musculoskeletal loading in the previous experimental studies. In the current study, we proposed a universal model of a hand to evaluate the joint moments in the fingers during grasping tasks. The hand model was developed on the platform of the commercial software package AnyBody. Only four fingers (index, long, ring, and little finger) were included in the model. The anatomical structure of each finger is comprised of four phalanges (distal, middle, proximal, and metacarpal phalange). The simulations were performed using an inverse dynamics technique. The joint angles and the normal contact forces on each finger section reported by previous researchers were used as inputs, while the joint moments of each finger were predicted. The predicted trends of the dependence of the distal interphalangeal (DIP) and proximal interphalangeal (PIP) joint moments on the cylinder diameter agree with those of the contact forces on the fingers observed in the previous experimental study. Our results show that the DIP and PIP joint moments reach their maximums at a cylinder diameter of about 31mm, which is consistent with the trend of the finger contact forces measured in the experiments. The proposed approach will be useful for simulating musculoskeletal loading in the hand for occupational activities, thereby optimizing tool-handle design.

  15. Patients with sacroiliac joint dysfunction exhibit altered movement strategies when performing a sit-to-stand task.

    PubMed

    Capobianco, Robyn A; Feeney, Daniel F; Jeffers, Jana R; Nelson-Wong, Erika; Morreale, Joseph; Grabowski, Alena M; Enoka, Roger M

    2018-04-03

    The ability to rise from a chair is a basic functional task that is frequently compromised in individuals diagnosed with orthopedic disorders in the low back and hip. There is no published literature that describes how this task is altered by sacroiliac joint dysfunction (SIJD). The objective of this study was to compare lower extremity biomechanics and the onset of muscle activity when rising from a chair in subjects with SIJD and in healthy persons. Six women with unilateral SIJD and six age-matched healthy controls performed a sit-to-stand task while we measured kinematics, kinetics, and muscle activity. Subjects stood up at a preferred speed from a seated position on an armless and backless adjustable stool. We measured kinematics with a 10-camera motion capture system, ground reaction forces for each leg with force plates, and muscle activity with surface electromyography. Joint angles and torques were calculated using inverse dynamics. Leg-loading rate was quantified as the average slope of vertical ground reaction (VGRF) force during the 500-millisecond interval preceding maximal knee extension. Between-leg differences in loading rates and peak VGRFs were significantly greater for the SIJD group than for the control group. Maximal hip angles were significantly less for the SIJD group (p=.001). Peak hip moment in the SIJD group was significantly greater in the unaffected leg (0.75±0.22 N⋅m/kg) than in the affected leg (0.47±0.29 N⋅m/kg, p=.005). There were no between-leg or between-group differences for peak knee or ankle moments. The onset of activity in the latissimus dorsi muscle on the affected side was delayed and the erector spinae muscles were activated earlier in the SIJD group than in the control group. Subjects with SIJD have a greater VGRF on the unaffected leg, generate a greater peak hip moment in the unaffected leg, use a smaller range of motion at the hip joint of the affected leg, and delay the onset of a key muscle on the affected side when rising from a seated position. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review.

    PubMed

    Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe

    2017-08-18

    Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.

  17. Local calibration of the MEPDG for flexible pavement design.

    DOT National Transportation Integrated Search

    2011-10-01

    In an effort to move toward pavement designs that employ mechanistic principles, the AASHTO Joint : Task Force on Pavements initiated an effort in 1996 to develop an improved pavement design guide. The : project called for the development of a design...

  18. Managing Conflict from the Middle

    ERIC Educational Resources Information Center

    Cooper, Mary-Beth; Boice-Pardee, Heath

    2011-01-01

    In 2009, leaders representing two professional associations in student affairs, the American College Personnel Association (ACPA-College Student Educators International) and the National Association of Student Personnel Administrators (NASPA-Student Affairs Administrators in Higher Education), came together in a joint task force to establish…

  19. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    PubMed

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. A Checklist for the Development of Faculty Mentorship Programs

    PubMed Central

    Bottenberg, Michelle M.; Brozick, Anna H.; Currie, Jay D.; DiVall, Margarita V.; Haines, Stuart T.; Jolowsky, Christene; Koh-Knox, Cynthia P.; Leonard, Golda Anne; Phelps, Stephanie J.; Rao, Deepa; Webster, Andrew; Yablonski, Elizabeth

    2014-01-01

    Mentoring of junior faculty members continues to be a widespread need in academic pharmacy in both new programs and established schools. The American Association of Colleges of Pharmacy (AACP) Joint Council Task Force on Mentoring was charged with gathering information from member colleges and schools and from the literature to determine best practices that could be shared with the academy. The task force summarized their findings regarding the needs and responsibilities for mentors and protégés at all faculty levels; what mentoring pieces are in existence, which need improvement, and which need to be created; and how effective mentoring is defined and could be measured. Based on these findings, the task force developed several recommendations as well as the PAIRS Faculty Mentorship Checklist. Academic institutions can benefit from the checklist whether they are planning to implement a faculty mentorship program or are interested in modifying existing programs. PMID:24954938

  1. Evaluation of telerobotic systems using an instrumented task board

    NASA Technical Reports Server (NTRS)

    Carroll, John D.; Gierow, Paul A.; Bryan, Thomas C.

    1991-01-01

    An instrumented task board was developed at NASA Marshall Space Flight Center (MSFC). An overview of the task board design, and current development status is presented. The task board was originally developed to evaluate operator performance using the Protoflight Manipulator Arm (PFMA) at MSFC. The task board evaluates tasks for Orbital Replacement Unit (ORU), fluid connect and transfers, electrical connect/disconnect, bolt running, and other basic tasks. The instrumented task board measures the 3-D forces and torques placed on the board, determines the robot arm's 3-D position relative to the task board using IR optics, and provides the information in real-time. The PFMA joint input signals can also be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to real-time force/torque data presentation. The instrumented task board's most promising use is developing benchmarks for NASA centers for comparison and evaluation of telerobotic performance.

  2. Stemming the Flow of Improvised Explosive Device Making Materials through Global Export Control Regimes

    DTIC Science & Technology

    2012-09-01

    reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______. 12a. DISTRIBUTION...Warfare DHS Department of Homeland Security DoD Department of Defense DTMF Dual-Tone Multi-Frequency EOD Explosive Ordnance Disposal EU European...Organization JMTC Joint Multinational Training Command JTF Joint Task Force MANPADS Man Portable Air Defense Systems MERC Multilateral Export Control

  3. Health, Wellness, and Substance Abuse Prevention. INAR/NACIE Joint Issues Sessions. National Indian Education Association (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on health and substance abuse prevention issues relevant to Native American children. Issues and problems fell into the following areas: (1) general health and wellness, including the need…

  4. Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players.

    PubMed

    Dubose, Dominique F; Herman, Daniel C; Jones, Deborah L; Tillman, Susan M; Clugston, James R; Pass, Anthony; Hernandez, Jorge A; Vasilopoulos, Terrie; Horodyski, Marybeth; Chmielewski, Terese L

    2017-01-01

    Recent research indicates that a concussion increases the risk of musculoskeletal injury. Neuromuscular changes after concussion might contribute to the increased risk of injury. Many studies have examined gait postconcussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Division I football players (13 CONC and 26 UNINJ) were tested pre- and postseason. A motion capture system recorded subjects jumping on one limb from a 25.4-cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus the joint angle plots. Leg stiffness was (peak vertical ground reaction force [PVGRF]/lower extremity vertical displacement) from initial contact to peak vertical ground reaction force. All stiffness values were normalized to body weight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and postseason stiffness values. Average time from concussion to postseason testing was 49.9 d. The CONC group showed an increase in hip stiffness (P = 0.03), a decrease in knee (P = 0.03) and leg stiffness (P = 0.03), but no change in ankle stiffness (P = 0.65) from pre- to postseason. Lower extremity stiffness is altered after concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion.

  5. An Engineering Model of Human Balance Control-Part I: Biomechanical Model.

    PubMed

    Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.

  6. Social Network Modeling and Simulation of Integrated Resilient Command and Control (C2) in Contested Cyber Environments

    DTIC Science & Technology

    2011-12-09

    traced to non-state actors it provided the impetus to the creation of Joint Task Force Computer Network Defense (JTF-CND). Since the creation of JTF...telecommunications and IT systems. One of those many efforts by the USAF has been the creation of the 24th Air Force (24th AF), also known as US Air Force...Support For Organizational Structures, Policies, Technologies and People to Improve Resilience Prior to creation of USCYBERCOM, responsibility for

  7. Preventing skin cancer: findings of the Task Force on Community Preventive Services On reducing Exposure to Ultraviolet Light.

    PubMed

    Saraiya, Mona; Glanz, Karen; Briss, Peter; Nichols, Phyllis; White, Cornelia; Das, Debjani

    2003-10-17

    Rates of skin cancer, the most common cancer in the United States, are increasing. The most preventable risk factor for skin cancer is unprotected ultraviolet (UV) exposure. Seeking to identify effective approaches to reducing the incidence of skin cancer by improving individual and community efforts to reduce unprotected UV exposure, the Task Force on Community Preventive Services conducted systematic reviews of community interventions to reduce exposure to ultraviolet light and increase protective behaviors. The Task Force found sufficient evidence to recommend two interventions that are based on improvements in sun protective or "covering-up" behavior (wearing protective clothing including long-sleeved clothing or hats): educational and policy approaches in two settings--primary schools and recreational or tourism sites. They found insufficient evidence to determine the effectiveness of a range of other population-based interventions and recommended additional research in these areas: educational and policy approaches in child care centers, secondary schools and colleges, recreational or tourism sites for children, and workplaces; interventions conducted in health-care settings and targeted to both providers and children's parents or caregivers; media campaigns alone; and community wide multicomponent interventions. This report also presents additional information regarding the recommended community interventions, briefly describes how the reviews were conducted, provides resources for further information, and provides information that can help in applying the interventions locally. The U.S. Preventive Services Task Force conducted a systematic review of counseling by primary care clinicians to prevent skin cancer (CDC. Counseling to prevent skin cancer: recommendation and rationale of the U.S. Preventive Services Task Force. MMWR 2003;52[No. RR-15]:13-17), which is also included in this issue, the first jointly released findings from the Task Force on Community Preventive Services and the U.S. Preventive Services Task Force.

  8. Shoulder muscle forces during driving: Sudden steering can load the rotator cuff beyond its repair limit

    PubMed Central

    Pandis, Petros; Prinold, Joe A.I.; Bull, Anthony M.J.

    2015-01-01

    Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations. PMID:26139549

  9. Psychological Stress in Military Operations Other Than War - Implications for the Joint Task Force Commander

    DTIC Science & Technology

    1999-05-17

    the JTF commander in preventing and countering this stress. New leadership styles and techniques are called for in the future JTF commander to preserve the psychological readiness of his troops to perform in MOOTW scenarios.

  10. Sex-based differences in knee ligament biomechanics during robotically simulated athletic tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-06-14

    ACL injury rates are greater in female athletes than their male counterparts. As female athletes are at increased risk, it is important to understand the underlying mechanics that contribute to this sex bias. The purpose of this investigation was to employ a robotic manipulator to simulate male and female kinematics from athletic tasks on cadaveric specimens and identify sex-based mechanical differences relative to the ACL loading. It was hypothesized that simulations of female motion would generate the higher loads and ligament strains associated with in vivo ACL injury risk than simulations of male motion. A 6-degree-of-freedom robotic manipulator articulated cadaveric lower extremity specimens from 12 donors through simulations of in vivo kinematics recorded from male and female athletic tasks. Simulation of female kinematics exhibited lower peak lateral joint force during the drop vertical jump and lower peak anterior and lateral joint force and external joint torque during the sidestep cut (P<0.05). Peak ACL strain during a drop vertical jump was 6.27% and 6.61% for the female and male kinematic simulations, respectively (P=0.86). Peak ACL strain during a sidestep cut was 4.33% and 7.57% for female and male kinematic simulations respectively (P=0.21). For the tasks simulated, the sex-based loading and strain differences identified were unlikely to have a significant bearing on the increased rate of ACL injures observed in female athletes. Additional perturbation may be necessary to invoke the mechanisms that lead to higher rates of ACL injury in female populations. Copyright © 2016. Published by Elsevier Ltd.

  11. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  12. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.

  13. Humanoid robot Lola: design and walking control.

    PubMed

    Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    2009-01-01

    In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.

  14. The Organization and Training of Joint Task Forces

    DTIC Science & Technology

    1995-06-01

    main focus is on the JTF staff, not the units that comprise the JTF forces. Methodology The Thesis will study the organization and training of JTFs in...function. 33 Waldo D. Freeman, Robert B. Lambert, and Jason D. Mims, "Operation Restore Hope A US CENTCOM...Harlan County , which carried 200 U.S. troops with a mission to improve the professionalism of army and police through training. In July 1994, after

  15. Theater Combat Search and Rescue

    DTIC Science & Technology

    1993-05-06

    response to crises requiring the use of military forces. Theater CINCs receive mission taskings through a warning order transmitted from 5 0 the Joint...Chiefs of Staff. This warning order allocates specific military forces that CINCs may use when planning various courses of action. The CINCs complete and...consists of the President and the 5 Secretary of Defense, and is the only approving authority to order execution of a military action. 10 Deliberate

  16. Airsea Battle: Can the Air Force and the Navy Get Along

    DTIC Science & Technology

    2011-06-01

    staffs at headquarters, Special Operations Command – Korea (SOCKOR) and at Joint Special Operations Task Force – Philippines (JSOTF- P ). His most...Detachment (JSOAD) deputy commander for JSOTF- P . Major Kobs holds a Bachelors of Arts Degree in Political Science from the University of New...1894), p . 26. concept, Glenn H. Curtiss agreed to instruct naval officers for the creation of a naval aviation program. Lieutenant T.G

  17. AORN ergonomic tool 7: pushing, pulling, and moving equipment on wheels.

    PubMed

    Waters, Thomas; Lloyd, John D; Hernandez, Edward; Nelson, Audrey

    2011-09-01

    Pushing and pulling equipment in and around the OR can place high shear force demands on perioperative team members' shoulder and back muscles and joints. These high forces may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 7: Pushing, Pulling, and Moving Equipment on Wheels can help perioperative team members assess the risk of pushing and pulling tasks in the perioperative setting. The tool provides evidence-based suggestions about when assistive devices should be used for these tasks and is based on current ergonomic safety concepts, scientific evidence, and knowledge of effective technology and procedures, including equipment and devices for safe patient handling. Published by Elsevier Inc.

  18. Joint Task Force Two, Test 4.1; B 52 Aircraft Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Department 9210

    1968-10-01

    This volume contains plots of the aircraft position track in the target area. There are also plots of the aircraft altitude above the terrain, normal accelerations, roll angle, pitch angle & slant range from the navigation check points and the targets.

  19. Joint Force Quarterly. Issue 40

    DTIC Science & Technology

    2006-01-01

    incident response. Maintaining national supplies of pharma- ceuticals and vaccines is an essential Federal task, but providing supplies without clear...Bert’s flagship, the battleship King George V, fueled from the tanker Sabine at the same time as the Missouri,” Halsey stated in his memoirs. “I

  20. Whole-body vibration does not influence knee joint neuromuscular function or proprioception.

    PubMed

    Hannah, R; Minshull, C; Folland, J P

    2013-02-01

    This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception. © 2011 John Wiley & Sons A/S.

  1. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: test-retest reliability.

    PubMed

    Comfort, Paul; Jones, Paul A; McMahon, John J; Newton, Robert

    2015-01-01

    The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666-.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.

  2. They Won't All Grow Up to Be You: Preparing Students for Diverse Careers

    NASA Astrophysics Data System (ADS)

    McNeil, Laurie

    The Joint Task Force on Undergraduate Physics Programs (J-TUPP) was formed in response to a growing awareness in the physics community that undergraduate physics majors pursue a wide range of careers after graduation, with very few ending up employed as physics professors. The task force was charged to identify the skills and knowledge that undergraduate physics degree holders should possess to be well prepared for a diverse set of careers, and to provide guidance on how physicists could revise the undergraduate curriculum to improve the education of a diverse student population. Our report (issued in October 2016) is the result of the task force's reviews of employment data, surveys of employers, and reports generated by other disciplines, as well as meetings with physicists in selected industries and interviews with recent physics graduates employed in the private sector. As part of our study we also identified exemplary programs that provide models of how physics departments can ensure that all of their students are well prepared to pursue a wide range of career paths. I will summarize and illustrate the findings and recommendations contained in the task force's report.

  3. The control of mono-articular muscles in multijoint leg extensions in man.

    PubMed Central

    van Ingen Schenau, G J; Dorssers, W M; Welter, T G; Beelen, A; de Groot, G; Jacobs, R

    1995-01-01

    1. Movements often require control of direction and a magnitude of force exerted externally on the environment. Bi-articular upper leg muscles appear to play a unique role in the regulation of the net torques about the hip and knee joints, necessary for the control of this external force. 2. The aim of this study was to test the hypothesis that the mono-articular muscles act as work generators in powerful dynamic leg extensions, which means that they should be activated primarily in the phases during which they can contribute to work, irrespective of the net joint torques required to control the external force. 3. Cycling movements of six trained subjects were analysed by means of inverse dynamics, yielding net joint torques as well as activity patterns and shortening velocities of four mono- and four bi-articular leg muscles. 4. The results show that the mono-articular muscles exert force only in the phase in which these muscles shorten, whereas this appears not to be the case for the bi-articular muscles. 5. Reciprocal patterns of activation of the rectus femoris and hamstring muscles appear to tune the distribution of net joint torques about the hip and knee joints, necessary to control the (changing) direction of the force on the pedal. 6. An analysis of running in man and additional related literature based on animal studies appears to provide further support for the hypothesis that mono- and bi-articular muscles have essentially different roles in these powerful multijoint leg extension tasks. PMID:7602524

  4. Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PI: Lily Y. Young

    2009-06-04

    Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.« less

  5. The Military Utility of Understanding Adversary Culture

    DTIC Science & Technology

    2005-01-01

    squelching of Iraqi freedom of speech . Many members of the Coalition Provi- sional Authority (CPA) and Combined Joint Task Force 7 felt that anticoali- tion...an Iraqi perception that Americans do not really support freedom of speech despite their claims to the contrary, reinforcing their view of Americans

  6. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  7. Landpower 2020: Enabling Regionally Aligned US Army Forces with Threat-Based Planning

    DTIC Science & Technology

    2013-03-01

    situation, EUCOM has prioritized BPC as a tenet of its theater strategy, and it is the only command to have submitted the requirement for additional...Army forces to enable BPC as part of the annual GCC’s submission of integrated priorities to the joint staff.27 In fact, EUCOM has requested...perform BPC tasks in the AOR. However, United States Central Command (CENTCOM) indicated a vulnerability to effectively respond to emerging

  8. The Next Lightweight Fighter: Not Your Grandfather’s Combat Aircraft

    DTIC Science & Technology

    2013-08-01

    devastat- ing Arabian quake in Somalia, which has almost no infrastructure and suffers from ongoing clan warfare. The United States deployed forces to...Kassim, which the quake had virtually leveled. A joint task force based in Djibouti stood up to direct the relief effort, exercising airborne com- mand...the earth prevent low-altitude or dis- tant aircraft from looking into “the next valley” directly. Consequently, many a reconnaissance mission or

  9. Intervertebral reaction force prediction using an enhanced assembly of OpenSim models.

    PubMed

    Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Snedeker, Jess G

    2016-01-01

    OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1-L2, L3-L4 and L4-L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.

  10. Biotechnology for the Environment, A Report on the Joint United States - European Union Celebration of a Decade of Environmental Biotechnology Exchange Activities for Early Career Scientists, Project ID: 0011751

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph M. Suflita

    2006-09-30

    The joint EU-US Task Force on Environmental Biotechnology held a workshop entitled, 'A Celebration of a Decade of Environmental Biotechnology Exchange Activities' on October 17, 2005 in Brussels, Belgium. This was a fitting venue since Brussels was where the EU-US transatlantic initiative originated. The workshop brought together former trainees who are currently active in the field of environmental biotechnology in order to (1) assess the impact of the past training activities; (2) to promote further collaborations; and (3) to highlight working group and task force activities in this field. Presentations by the early career scientists filled the meeting day (seemore » Appendix I and II for meeting agenda and abstract book, respectively). Task Force members chaired the various sessions. An additional poster session provided an opportunity for more intensive scientific exchange. The day culminated with a formal dinner and gathering of all participants. Agencies supporting the activities included DOE, USDA and NSF. Funds received from the DOE were exhausted and USDA and NSF allowed the Task Force to use unexpended monies (via no cost extensions) to facilitate future fellowship exchange activities. Over the past ten years, there has been a high level of sensitivity for working collaboratively with European colleagues. This philosophy simply pervades each and every activity of the EU-US Task Force. Realistically, this means that there is a careful balance between the US and EU participation in all functions. The Brussels 'Celebration' workshop was no exception. The organizers anticipated funding more former U.S. trainees than actually attended the workshop and raised the necessary funds to accomplish this goal. However, the number of U.S. attendees needed to be tempered since the financial resources for our EU counterparts proved more difficult to obtain. In order to maintain the scholarly and political balance on the program of events, fewer U.S. attendees were invited. Details of the expenditure of DOE funds are provided in the Table 1. As indicated in the original proposal, funds were used to support both past trainees (Treves, Leigh, Buchan, Bender, Perez-Jimenez, Becker, and Methe) as well as Task Force members (Zylstra, Suflita, Wall). The general assessment by the trainees was that the past Task Force activities were crucial to their development as scientists. The prevailing feeling was that they wished that more individuals could profit from similar experiences. There was also a high degree of enthusiasm for the trainees to get involved in some way with the Task Force activities. That is, the celebration lead to the organization of our former trainees to serve in an advisory capacity for future endeavors. In addition, the gathering served as an opportunity to plan for another two week environmental biotechnology course at Rutgers.« less

  11. Strategic Planning to Conduct Joint Force Network Operations: A Content Analysis of NETOPS Organizations Strategic Plans

    DTIC Science & Technology

    2007-03-01

    information dominance , Joint Network Operations (NETOPS) organizations need to be strategically aligned. As result, to enhance the capabilities-based effects of NETOPS and reduce our NETOP infrastructures susceptibility to compromise. Once the key organizations were identified, their strategic plans were analyzed using a structured content analysis framework. The results illustrated that the strategic plans were aligned with the community of interests tasking to conduct NETOPS. Further research is required into the strategic alignment beyond the strategic

  12. Observance of National Children's Day. Joint Hearing before the Task Force on Human Resources of the Committee on the Budget and the Select Committee on Children, Youth, and Families of the House of Representatives. One Hundred First Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on the Budget.

    In observance of National Children's Day, this House of Representatives' joint hearing was concerned with children's health, education, and welfare issues. Its purpose was to discuss the first National Children's Day Report Card, which provides information about changes that need to be made in government spending and in the treatment of children…

  13. Not All Is Lost: Old Adults Retain Flexibility in Motor Behaviour during Sit-to-Stand

    PubMed Central

    Greve, Christian; Zijlstra, Wiebren; Hortobágyi, Tibor; Bongers, Raoul M.

    2013-01-01

    Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits. PMID:24204952

  14. The Joint Task Force Structure as a Model for Homeland Security

    DTIC Science & Technology

    2013-05-20

    was the primary entry point for high potency marijuana and 3,4-MethyleneDioxy-n- MethylAmphetamine, ( MDMA ) known as Ecstasy bound for New York and New...into mainland Canada. Smuggling activity increased further with the rise in popularity of high potency hydroponically grown marijuana and MDMA

  15. Alternative Education: The Cutting Edge?

    ERIC Educational Resources Information Center

    Byrne, Jay

    2004-01-01

    Miami Valley Career Technology Youth Connections, an alternative high school located in Dayton, Ohio, has an enrollment of 160 students and was created as a joint venture among local politicians to address the high dropout rates in Montgomery County, Ohio. To achieve this, the Montgomery County commissioners created a task force to develop…

  16. 76 FR 4131 - Flight 93 National Memorial Advisory Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Flight 93 National Memorial Advisory Commission... notice sets forth the date of the February 5, 2011, meeting of the Flight 93 Advisory Commission. DATES.... to 1 p.m. (Eastern). The Commission will meet jointly with the Flight 93 Memorial Task Force...

  17. 75 FR 3488 - Flight 93 National Memorial Advisory Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... DEPARTMENT OF THE INTERIOR National Park Service Flight 93 National Memorial Advisory Commission... forth the date of the February 6, 2010 meeting of the Flight 93 Advisory Commission. DATES: The public.... (Eastern). The Commission will meet jointly with the Flight 93 Memorial Task Force. Location: The meeting...

  18. 75 FR 43199 - Flight 93 National Memorial Advisory Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... DEPARTMENT OF THE INTERIOR National Park Service Flight 93 National Memorial Advisory Commission... sets forth the date of the August 7, 2010, meeting of the Flight 93 Advisory Commission. DATES: The.... (Eastern). The Commission will meet jointly with the Flight 93 Memorial Task Force. Location: The meeting...

  19. 75 FR 17158 - Flight 93 National Memorial Advisory Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... DEPARTMENT OF THE INTERIOR National Park Service Flight 93 National Memorial Advisory Commission... sets forth the date of the May 1, 2010, meeting of the Flight 93 Advisory Commission. DATES: The public...). The Commission will meet jointly with the Flight 93 Memorial Task Force. Location: The meeting will be...

  20. Creating a New Model Curriculum: A Rationale for "Computing Curricula 1990".

    ERIC Educational Resources Information Center

    Bruce, Kim B.

    1991-01-01

    Describes a model for the design of undergraduate curricula in the discipline of computing that was developed by the ACM/IEEE (Association for Computing Machinery/Institute of Electrical and Electronics Engineers) Computer Society Joint Curriculum Task Force. Institutional settings and structures in which computing degrees are awarded are…

  1. Banks: Colleges - A Joint Undertaking.

    ERIC Educational Resources Information Center

    Cordy, Thomas O.

    The banking industry has recognized an increasing need to recruit, hire, and train minorities for positions within the industry. Following this line of thought, the American Bankers Association (ABA) formed a task force composed of bankers and black college educators to develop a program mutually beneficial to industry as well as colleges. A Black…

  2. Summary of 2008 CUAA Chinese University Evaluation and Research Report

    ERIC Educational Resources Information Center

    Deguo, Zhao; Yanhou, Cai; Yongjun, Feng; Lingfeng, Wang

    2009-01-01

    Since 2002, the University Evaluation Task Force of China University Alumni Association Network (CUAA), "University Weekly" and "21st Century Talent Report" have made joint efforts in the evaluation of higher education institutions in China. Compared with the ranking in 2007, China's University Ranking in the 2008 report is…

  3. LABORATORY INVOLVEMENT IN PLANNING FOR AND RESPONDING TO CONTAMINATION THREATS TO DRINKING WATER SYSTEMS

    EPA Science Inventory


    EPA's National Homeland Security Research Center (Office of Research and Development) and Water Protection Task Force (Office of Water) have jointly developed a draft analytical guide that may be used by laboratories to plan for and provide support to a drinking water utility...

  4. Servicing Issues. NASFAA Task Force Report

    ERIC Educational Resources Information Center

    National Association of Student Financial Aid Administrators, 2015

    2015-01-01

    Over the last several years the financial aid community has voiced concern about disruptions, inconsistencies, and lack of quality servicing on federal student loans. It has been difficult to fully grasp the extent to which servicing issues exist and to understand the disparate servicing practices between various servicers. The joint Servicing…

  5. 78 FR 49768 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Joint Task-Force...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...; Peter Dare (Individual), Queensland, AUSTRALIA; CS Meyer, Inc., Grass Valley, CA; Devoncroft Partners, Coronado, CA; Dimension Data, Oberursel, GERMANY; Dimetis GmbH, Dietzenbach, GERMANY; DIRECTV, El Segundo..., San Mateo, CA; Grass Valley, San Francisco, CA; Harmonic Inc., Portland, OR; Harris Broadcast...

  6. Nursing and Allied Health Shortages: TBR Responds.

    ERIC Educational Resources Information Center

    Berryman, Treva

    Staff members of the Tennessee Board of Regents (TBR) and the Tennessee Higher Education Commission worked jointly to establish a task force to investigate and develop recommendations for addressing the workforce shortages in nursing and allied health in Tennessee. The investigation established that Tennessee already has a workforce shortage of…

  7. Validity Of The Nintendo Wii Balance Board To Assess Weight Bearing Asymmetry During Sit-To-Stand And Return-To-Sit Task

    PubMed Central

    Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph

    2015-01-01

    Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC =0.83–0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. PMID:25715680

  8. Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task.

    PubMed

    Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph

    2015-02-01

    Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC=0.83-0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. OPERATION IVY. Report of Commander, Task Group 132.1. Pacific Proving Grounds. Joint Task Force 132

    DTIC Science & Technology

    1984-10-31

    3.4.1 Device Planning One of the major purposes of Operation Greenhouse was to answer key questions relating to the possibility of developing...thermonuclear explosions. The Greenhouse George and Item Shots were Important steps in the investigation of basic problems in the development of a...January 1952, staff studies were made which were based on Greenhouse experience and on the best available estimates of the requirements pe- culiar to

  10. Joint Inflammation and Early Degeneration Induced by High-Force Reaching Are Attenuated by Ibuprofen in an Animal Model of Work-Related Musculoskeletal Disorder

    PubMed Central

    Driban, Jeffrey B.; Barr, Ann E.; Amin, Mamta; Sitler, Michael R.; Barbe, Mary F.

    2011-01-01

    We used our voluntary rat model of reaching and grasping to study the effect of performing a high-repetition and high-force (HRHF) task for 12 weeks on wrist joints. We also studied the effectiveness of ibuprofen, administered in the last 8 weeks, in attenuating HRHF-induced changes in these joints. With HRHF task performance, ED1+ and COX2+ cells were present in subchondral radius, carpal bones and synovium; IL-1alpha and TNF-alpha increased in distal radius/ulna/carpal bones; chondrocytes stained with Terminal deoxynucleotidyl Transferase- (TDT-) mediated dUTP-biotin nick end-labeling (TUNEL) increased in wrist articular cartilages; superficial structural changes (e.g., pannus) and reduced proteoglycan staining were observed in wrist articular cartilages. These changes were not present in normal controls or ibuprofen treated rats, although IL-1alpha was increased in reach limbs of trained controls. HRHF-induced increases in serum C1,2C (a biomarker of collagen I and II degradation), and the ratio of collagen degradation to synthesis (C1,2C/CPII; the latter a biomarker of collage type II synthesis) were also attenuated by ibuprofen. Thus, ibuprofen treatment was effective in attenuating HRHF-induced inflammation and early articular cartilage degeneration. PMID:21403884

  11. A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine.

    PubMed

    Gagnon, Denis; Plamondon, André; Larivière, Christian

    2016-09-06

    Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Protecting the health of U.S. military forces in Romania: endemic disease threat considerations.

    PubMed

    Perkins, Dana

    2009-01-01

    In 2005 the United States and Romania signed a historic access agreement establishing the first U.S. military bases in the former Soviet bloc country of Romania. The bases will host joint exercises aimed at developing regional military cooperation with forces throughout the entire 92-country USEUCOM area of responsibility (AOR). These forward operating bases (FOBs) or "lily pads" will include the Smârdan Training Range, Babadag Training Range, Mihail Kogălniceanu (MK) Air Base, and Cincu Training Range. They will be under the command of Joint Task Force East (JTF-East), headquartered at the MK Air Base. Here described are the naturally occurring pathogens of clinical significance that exist in the region, including those of known biowarfare/bioterrorism (BW/BT) potential. Notwithstanding the length of deployment for training, proactive clinical and environmental surveillance should be linked to the implementation of adequate Force Health Protection (FHP) measures to minimize the impact these medical threats may have on JTF-East operations.

  13. Joint Interagency Task Force-South: The Best Known, Least Understood Interagency Success (INSS Strategic Perspectives, Number 5, June 2011)

    DTIC Science & Technology

    2011-06-01

    CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ...20319 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...its subcomponents execute their mission by performing research and analysis, publication, conferences, policy support, and outreach. The mission of

  14. Shoulder torques resulting from luggage handling tasks in non-inertial frames.

    PubMed

    Shippen, James; May, Barbara

    2018-05-18

    This paper reports on the torques developed in the shoulder joint experienced by occupants of moving vehicles during manual handling tasks. Handling heavy weights can cause musculoskeletal injuries, especially if handling is done with arms extended or at high levels. The aim of the study was to measure the longitudinal and lateral accelerations in a variety of passenger vehicles together with the postures of subjects lifting luggage onto storage shelves. This data enabled the application of inverse dynamics methods in a non-inertial reference frame to calculate the shoulder joint torques. The subjects lifted 3 pieces of luggage of masses of 5 kg, 10 kg and 14 kg onto shelving which were at heights of 1.2 m, 1.6 m and 1.8 m. The movement of subjects was measured using a 12 camera, 3-dimensional optical tracking system. The subjects stood on force plates to measure the ground reaction forces. Sixty-three trials were completed, although 9 trials were aborted because subjects felt unable to complete the task. It was found that the shoulder torques exceeded the levels recommend by the UK Health and Safety Executive for manual handling. A lift assistance device is suggested to reduce the shoulder torques required for luggage handling.

  15. Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task.

    PubMed

    Meinerz, Carolyn M; Malloy, Philip; Geiser, Christopher F; Kipp, Kristof

    2015-09-01

    Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions. To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task. Controlled laboratory study. University biomechanics laboratory. Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg). Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions. Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles. Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases. Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition.

  16. Good Practices for Real-World Data Studies of Treatment and/or Comparative Effectiveness: Recommendations from the Joint ISPOR-ISPE Special Task Force on Real-World Evidence in Health Care Decision Making.

    PubMed

    Berger, Marc L; Sox, Harold; Willke, Richard J; Brixner, Diana L; Eichler, Hans-Georg; Goettsch, Wim; Madigan, David; Makady, Amr; Schneeweiss, Sebastian; Tarricone, Rosanna; Wang, Shirley V; Watkins, John; Mullins, C Daniel

    2017-09-01

    Real-world evidence (RWE) includes data from retrospective or prospective observational studies and observational registries and provides insights beyond those addressed by randomized controlled trials. RWE studies aim to improve health care decision making. The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the International Society for Pharmacoepidemiology (ISPE) created a task force to make recommendations regarding good procedural practices that would enhance decision makers' confidence in evidence derived from RWD studies. Peer review by ISPOR/ISPE members and task force participants provided a consensus-building iterative process for the topics and framing of recommendations. The ISPOR/ISPE Task Force recommendations cover seven topics such as study registration, replicability, and stakeholder involvement in RWE studies. These recommendations, in concert with earlier recommendations about study methodology, provide a trustworthy foundation for the expanded use of RWE in health care decision making. The focus of these recommendations is good procedural practices for studies that test a specific hypothesis in a specific population. We recognize that some of the recommendations in this report may not be widely adopted without appropriate incentives from decision makers, journal editors, and other key stakeholders. Copyright © 2017. Published by Elsevier Inc.

  17. A Candidate Functional Architecture Design for the Detection and Monitoring Process of a Counterdrug Joint Task Force

    DTIC Science & Technology

    1993-06-01

    completes the functional decomposition of the detection and monitoring requirements of the Counterdrug JTF. David Marca in his text SADT, Structural...September 1992. 12. Marca , D. McGowan, C., SADT, Structured Analysis and Design Technique, Mc Graw-Hill , 1988. 13. United States Department of

  18. Improving the Scientific Foundation for Mixtures Joint Toxicity and Risk Assessment: Contributions from the SOT Mixtures Project

    EPA Science Inventory

    This paper summarizes the activities of the SOT (Society of Toxicology) Mixtures Program and the SOT Task Force. As such it provides the history leading to the formation of the SOT Mixtures Project, including its early activity and results and the 2005 Contemporary Concepts in T...

  19. 76 FR 72418 - Statement of Organization, Functions, and Delegations of Authority; Administration on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... components of ACF as well as other public, private, and voluntary sector partners, ADD develops and..., intergovernmental and public-private sector agreements, committees, task forces, commissions or joint-funding... the function to ADD as a result of the Charter Amendment for PCPID governed by Public Law 92-463...

  20. A Computational Approach to Diagnosing Misfits, Inducing Requirements, and Delineating Transformations for Edge Organizations

    DTIC Science & Technology

    2005-06-01

    of current military C2 organizations. The unit of analysis for organizational diagnosis is the Joint Task Force (JTF). It represents a multi-Service...Strategy as Structured Chaos Boston, MA: Harvard Business School Press (1998). [5] Burton, R.M. and Obel, B., Strategic Organizational Diagnosis and

  1. The Future of Amphibious Operations: Shaping the Expeditionary Strike Group to Fight in the Joint Task Force

    DTIC Science & Technology

    2010-02-01

    1 Charles E. Wilhelm, Expeditionary Warfare.marine corps gazette, 79(6), 28-30. Retrieved October 15, 2009, from Career and Technical Education . (Document...Expeditionary warfare.marine corps gazette, 79(6), 28- 30. Retrieved October 15, 2009, from Career and Technical Education . (Document ID: 4455650

  2. Defense.gov - Special Report: Haiti Earthquake Relief

    Science.gov Websites

    . Top Stories Medical Group Provides Assistance MANDRIN, Haiti, July 14, 2010 - Airmen with the 56th Medical Group provided optometry, dental and general services at the New Horizons medical site. Story assigned to Joint Task Force New Horizons have made major progress on their engineering and medical

  3. Unmanned Systems: Operational Considerations for the 21st Century Joint Task Force Commander and Staff

    DTIC Science & Technology

    2012-06-08

    megacities, the majority in the developing countries of Asia, Africa and Latin America . By 2025, there will be another 30 or more . . . megaslums that......the 2006 QDR, they also focus on three critical additional areas: first, reducing risks to the Service members while operating across the

  4. Report of the Joint Industry - DoD Task Force on Computer Aided Logistic Support (CALS). Volume 3. Report of Architecture Subgroup.

    DTIC Science & Technology

    1985-06-01

    competitive commercial items such as automobiles and aircraft. 1.3 Implementation Considerations. 1.3.1 Technical Considerations. The major technical...and easily reprogrammable discs; and integrated portable videocomputer devices will become available. 13 139 1 1.2 Projected Performance of the Target

  5. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models.

    PubMed

    Roelker, Sarah A; Caruthers, Elena J; Baker, Rachel K; Pelz, Nicholas C; Chaudhari, Ajit M W; Siston, Robert A

    2017-11-01

    With more than 29,000 OpenSim users, several musculoskeletal models with varying levels of complexity are available to study human gait. However, how different model parameters affect estimated joint and muscle function between models is not fully understood. The purpose of this study is to determine the effects of four OpenSim models (Gait2392, Lower Limb Model 2010, Full-Body OpenSim Model, and Full Body Model 2016) on gait mechanics and estimates of muscle forces and activations. Using OpenSim 3.1 and the same experimental data for all models, six young adults were scaled in each model, gait kinematics were reproduced, and static optimization estimated muscle function. Simulated measures differed between models by up to 6.5° knee range of motion, 0.012 Nm/Nm peak knee flexion moment, 0.49 peak rectus femoris activation, and 462 N peak rectus femoris force. Differences in coordinate system definitions between models altered joint kinematics, influencing joint moments. Muscle parameter and joint moment discrepancies altered muscle activations and forces. Additional model complexity yielded greater error between experimental and simulated measures; therefore, this study suggests Gait2392 is a sufficient model for studying walking in healthy young adults. Future research is needed to determine which model(s) is best for tasks with more complex motion.

  6. Team Leader: An Approach to Mixed-Initiative Agent Team Management and Evaluation

    DTIC Science & Technology

    2003-03-01

    defined on top of Jini (Arnold, et al., 1999). 5.1 MIXED-INITIATIVE MANAGEMENT OF A JOINT TASK FORCE Our simulation of the US Military’s disaster...coalition military operations. Binni is set in the year 2012 and involves three imaginary countries in Africa – Binni, Gao , and Agadez. Due to a...peacekeeping force. For example, the US, UK, and Australia have a high degree of mutual trust whereas Gao , which is also a member of the coalition, is trusted

  7. United States Air Force Academy Annual Research Report: July 2003 to June 2004

    DTIC Science & Technology

    2004-06-01

    Specifically, the stylus input device Technology allows students to electronically annotate their on-line (AFIIT) textbooks and note pages. These Tablet ...submissions "just-in-time" to adjust the classroom lesson to suit the students’ needs. Now adopted by over 300 faculty in some 25 disciplines at over 100...cognition theories to the Foreign Language Classroom . Using a real Joint Task Force (JTF) Deployment as a model, a simulation was designed to place cadets as

  8. Sino-American Relations in the 21st Century: Taking a Page from the Venezuelan Crisis of 1895

    DTIC Science & Technology

    2015-04-13

    necessarily endorsed by the Joint Forces Staff College or the Department of Defense. This paper is entirely my own work except as documented in...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR Joseph H. Wenckus Lieutenant Colonel, U.S. Air Force 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...transition theory applies. This paper posits that there are real similarities between the peaceful Anglo-American power transition of last century, and

  9. Posture Statement of General Douglas M. Fraser, United States Air Force Commander, United States Southern Command, Before the 112th Congress House Armed Services Committee

    DTIC Science & Technology

    2012-03-06

    1 Aravena, F. Confianza: base para la gobernabilidad y la convivencia democrática en América...Latinoamericano de Ciencias Sociales (FLACSO). 3 Joint Interagency Task Force South (JIATF South), our key component in detection and monitoring of illicit...Central America’s north, the government of Mexico has fully committed to reducing the power and impunity of transnational organized crime and drug

  10. A Prospective Investigation of Biomechanical Risk Factors for Patellofemoral Pain Syndrome. The Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) Cohort

    DTIC Science & Technology

    2009-09-24

    flexion angle, decreased vertical ground-reaction force , and increased hip internal rotation angle during the jump -landing task. Additionally, decreased...was to determine the biomechanical risk factors for PFPS. The specific factors examined were lower extremity kinematics and kinetics during a jump ...ACL Injury [ JUMP -ACL] study) in which baseline data are collected for participants at all 3 service academies (USNA, United States Air Force Academy

  11. Glenohumeral contact force during flat and topspin tennis forehand drives.

    PubMed

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  12. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    PubMed

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-01

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  13. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  14. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society--first revision.

    PubMed

    2010-12-01

    A European Federation of Neurological Societies/Peripheral Nerve Society consensus guideline on the definition, investigation, and treatment of multifocal motor neuropathy (MMN) was published in 2006. The aim is to revise this guideline. Disease experts considered references retrieved from MEDLINE and Cochrane Systematic Reviews published between August 2004 and July 2009 and prepared statements that were agreed to in an iterative fashion. The Task Force agreed on Good Practice Points to define clinical and electrophysiological diagnostic criteria for MMN, investigations to be considered, and principal recommendations for treatment. © 2010 Peripheral Nerve Society.

  15. Global and Regional Sea Level Rise Scenarios for the United States

    NASA Technical Reports Server (NTRS)

    Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris

    2017-01-01

    The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).

  16. New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects

    NASA Astrophysics Data System (ADS)

    Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.

    2014-12-01

    In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.

  17. Kinematic functions for redundancy resolution using configuration control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1994-01-01

    The invention fulfills new goals for redundancy resolution based on manipulator dynamics and end-effector characteristics. These goals are accomplished by employing the recently developed configuration control approach. Redundancy resolution is achieved by controlling the joint inertia matrix of the end-effector mass matrix that affect the inertial torques or by reducing the joint torques due to gravity loading and payload. The manipulator mechanical-advantage and velocity-ratio are also used as performance measures to be improved by proper utilization of redundancy. Furthermore, end-effector compliance, sensitivity, and impulsive force at impact are introduced as redundancy resolution criteria. The new goals for redundancy resolution allow a more efficient utilization of the redundant joints based on the desired task requirements.

  18. Safety update regarding intranasal corticosteroids for the treatment of allergic rhinitis.

    PubMed

    Blaiss, Michael S

    2011-01-01

    Intranasal corticosteroids (INSs) are the most efficacious medication for the treatment of allergic rhinitis. In 2006, the Joint Task Force of the American College of Allergy, Asthma, and Immunology, and the American Academy of Allergy, Asthma, and Immunology, published a white paper on the potential over-the-counter switch of INS (Bielory L, Blaiss M, Fineman SM, et al. Concerns about intranasal corticosteroids for over-the-counter use: Position statement of the Joint Task Force for the American Academy of Allergy, Asthma and Immunology and the American College of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol 96:514-525, 2006). The concern of the paper was the safety of the use of these agents without oversight by a health care professional. The objective of this paper was to review published literature on the safety of INS since the publication of the task force white paper. Recent studies, which evaluated topical and systemic adverse events associated with ciclesonide (CIC), fluticasone furoate (FF), mometasone furoate (MF), triamcinolone acetonide, fluticasone propionate, budesonide, and beclomethasone dipropionate were summarized. In general, no significant topical or systemic complications were observed in these studies, although none were >1 year in duration. The newer formulations of topical corticosteroids for allergic rhinitis, such as CIC, FF, and MF, which have less systemic bioavailability, may be safer for long-term use. New studies continue to add to the reassurance of the safety of INSs in the treatment of allergic rhinitis but still do not answer the question if these agents are appropriate for long-term use without oversight by a health care professional.

  19. Echographic and kinetic changes in the shoulder joint after manual wheelchair propulsion under two different workload settings.

    PubMed

    Gil-Agudo, Ángel; Solís-Mozos, Marta; Crespo-Ruiz, Beatriz; Del-Ama Eng, Antonio J; Pérez-Rizo, Enrique; Segura-Fragoso, Antonio; Jiménez-Díaz, Fernando

    2014-01-01

    Manual wheelchair users with spinal cord injury (SCI) have a high prevalence of shoulder pain due to the use of the upper extremity for independent mobility, transfers, and other activities of daily living. Indeed, shoulder pain dramatically affects quality of life of these individuals. There is limited evidence obtained through radiographic techniques of a relationship between the forces acting on the shoulder during different propulsion conditions and shoulder pathologies. Today, ultrasound is widely accepted as a precise tool in diagnosis, displaying particularly effectiveness in screening the shoulder rotator cuff. Thus, we set out to perform an ultrasound-based study of the acute changes to the shoulder soft tissues after propelling a manual wheelchair in two workload settings. Shoulder joint kinetics was recorded from 14 manual wheelchair users with SCI while they performed high- and low-intensity wheelchair propulsion tests (constant and incremental). Shoulder joint forces and moments were obtained from inverse dynamic methods, and ultrasound screening of the shoulder was performed before and immediately after the test. Kinetic changes were more relevant after the most intensive task, showing the significance of high-intensity activity, yet no differences were found in ultrasound-related parameters before and after each propulsion task. It therefore appears that further studies will be needed to collect clinical data and correlate data regarding shoulder pain with both ultrasound images and data from shoulder kinetics.

  20. Echographic and Kinetic Changes in the Shoulder Joint after Manual Wheelchair Propulsion Under Two Different Workload Settings

    PubMed Central

    Gil-Agudo, Ángel; Solís-Mozos, Marta; Crespo-Ruiz, Beatriz; del-Ama Eng, Antonio J.; Pérez-Rizo, Enrique; Segura-Fragoso, Antonio; Jiménez-Díaz, Fernando

    2014-01-01

    Manual wheelchair users with spinal cord injury (SCI) have a high prevalence of shoulder pain due to the use of the upper extremity for independent mobility, transfers, and other activities of daily living. Indeed, shoulder pain dramatically affects quality of life of these individuals. There is limited evidence obtained through radiographic techniques of a relationship between the forces acting on the shoulder during different propulsion conditions and shoulder pathologies. Today, ultrasound is widely accepted as a precise tool in diagnosis, displaying particularly effectiveness in screening the shoulder rotator cuff. Thus, we set out to perform an ultrasound-based study of the acute changes to the shoulder soft tissues after propelling a manual wheelchair in two workload settings. Shoulder joint kinetics was recorded from 14 manual wheelchair users with SCI while they performed high- and low-intensity wheelchair propulsion tests (constant and incremental). Shoulder joint forces and moments were obtained from inverse dynamic methods, and ultrasound screening of the shoulder was performed before and immediately after the test. Kinetic changes were more relevant after the most intensive task, showing the significance of high-intensity activity, yet no differences were found in ultrasound-related parameters before and after each propulsion task. It therefore appears that further studies will be needed to collect clinical data and correlate data regarding shoulder pain with both ultrasound images and data from shoulder kinetics. PMID:25566539

  1. Joint Task Force -Guantanamo Bay, Cuba: Open or Close?

    DTIC Science & Technology

    2013-03-01

    Obama signed that executive order directing the closure of detention operations at Guantanamo Bay. Subsequently, despite domestically political and...domestically political and international scrutiny, detention operations at Guantanamo Bay, Cuba have evolved into the premier detention facility in the...operations at Guantanamo Bay. Subsequently, despite domestically political and international scrutiny, detention operations at Guantanamo Bay, Cuba

  2. Joint Task Force - Bravo: The U.S. Military Presence in Honduras, U.S. Policy for an Evolving Region

    DTIC Science & Technology

    1994-05-06

    cultural machismo of Latin American militaries makes rank very important in the minds of Latin American officers. Also, the DAO and USMilGP positions are...elected in Nicaragua. The military dictatorship in Haiti, recent coup attempt in Venezuela and insurgency in Mexico point to a Hemisphere that is not

  3. Teaching Information Evaluation and Critical Thinking Skills in Physics Classes

    ERIC Educational Resources Information Center

    Popescu, Adriana; Morgan, James

    2007-01-01

    The physics curriculum at all educational levels can be enriched to include tools for strengthening students' information evaluation skills. The "Report of the Joint APS-AAPT Task Force on Graduate Education in Physics" calls for such training to be part of graduate programs, but training to acquire these lifetime skills can be incorporated in the…

  4. Foreign Disaster Response: Joint Task Force-Haiti Observations

    DTIC Science & Technology

    2010-11-01

    longer-term implementation. Members of the Miami-Dade TF1 rescue of a 2-year-old from the rubble of a destroyed building in Haiti. USAID deployed the...Miami-Dade TF1 squad as part of the comprehensive U.S. response to the earthquake that struck Haiti, 19 January 2010. U S A ID 93MILITARY REVIEW

  5. 76 FR 126 - Requirement for Commercial Users To Use Commercial Public Key Information (PKI) Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ..., SDDC will require all commercial accounts accessing transportation systems and applications to use a...: Department of Defense Instruction number 8520.2, 1 April 2004, 4.4 Joint Task Force-Global Network Operations..._8520.2.pdf ). Randy Moore, CAPT, USN, Division Chief, G6, Information Management/CIO. [FR Doc. 2010...

  6. AFSOF, Integration, and Joint Warfighting: Closing the Training Loop to Force Multiply and Succeed

    DTIC Science & Technology

    2008-04-04

    Succeed 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Maj Michael Jackson 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...unclassified. Research for the case study involved extensive interviews of involved personnel and document research. 101 Michael Jackson , “Ugly Baby Case

  7. Lower Extremity Stiffness Changes following Concussion in Collegiate Football Players

    PubMed Central

    DuBose, Dominique F.; Herman, Daniel C.; Jones, Debi L.; Tillman, Susan M.; Clugston, James R.; Pass, Anthony; Hernandez, Jorge A.; Vasilopoulos, Terrie; Horodyski, MaryBeth; Chmielewski, Terese L.

    2016-01-01

    Purpose Recent research indicates that a concussion increases risk of musculoskeletal injury. Neuromuscular changes following concussion might contribute to the increased risk of injury. Many studies have examined gait post-concussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Methods Division I football players (13 CONC, 26 UNINJ) were tested pre- and post-season. A motion-capture system recorded subjects jumping on one limb from a 25.4 cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus joint angle plots. Leg stiffness was (peak vertical ground reaction force (PVGRF)/lower extremity vertical displacement) from initial contact to PVGRF. All stiffness values were normalized to bodyweight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and post-season stiffness values. Results Average time from concussion to post-season testing was 49.9 days. The CONC group showed an increase in hip stiffness (p=0.03), a decrease in knee (p=0.03) and leg stiffness (p=0.03), but no change in ankle stiffness (p=0.65) from pre- to post-season. Conclusion Lower extremity stiffness is altered following concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion. PMID:27501359

  8. Force Model for Control of Tendon Driven Hands

    NASA Technical Reports Server (NTRS)

    Pena, Edward; Thompson, David E.

    1997-01-01

    Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.

  9. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  10. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.

    PubMed

    Ding, Ziyun; Nolte, Daniel; Kit Tsang, Chui; Cleather, Daniel J; Kedgley, Angela E; Bull, Anthony M J

    2016-02-01

    Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the "Grand Challenge Competition to Predict in vivo Knee Loads" provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for "smooth" and "bouncy" gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.

  11. The carry-over effect of competition in task-sharing: evidence from the joint Simon task.

    PubMed

    Iani, Cristina; Anelli, Filomena; Nicoletti, Roberto; Rubichi, Sandro

    2014-01-01

    The Simon effect, that is the advantage of the spatial correspondence between stimulus and response locations when stimulus location is a task-irrelevant dimension, occurs even when the task is performed together by two participants, each performing a go/no-go task. Previous studies showed that this joint Simon effect, considered by some authors as a measure of self-other integration, does not emerge when during task performance co-actors are required to compete. The present study investigated whether and for how long competition experienced during joint performance of one task can affect performance in a following joint Simon task. In two experiments, we required pairs of participants to perform together a joint Simon task, before and after jointly performing together an unrelated non-spatial task (the Eriksen flanker task). In Experiment 1, participants always performed the joint Simon task under neutral instructions, before and after performing the joint flanker task in which they were explicitly required either to cooperate with (i.e., cooperative condition) or to compete against a co-actor (i.e., competitive condition). In Experiment 2, they were required to compete during the joint flanker task and to cooperate during the subsequent joint Simon task. Competition experienced in one task affected the way the subsequent joint task was performed, as revealed by the lack of the joint Simon effect, even though, during the Simon task participants were not required to compete (Experiment 1). However, prior competition no longer affected subsequent performance if a new goal that created positive interdependence between the two agents was introduced (Experiment 2). These results suggest that the emergence of the joint Simon effect is significantly influenced by how the goals of the co-acting individuals are related, with the effect of competition extending beyond the specific competitive setting and affecting subsequent interactions.

  12. Good practices for real-world data studies of treatment and/or comparative effectiveness: Recommendations from the joint ISPOR-ISPE Special Task Force on real-world evidence in health care decision making.

    PubMed

    Berger, Marc L; Sox, Harold; Willke, Richard J; Brixner, Diana L; Eichler, Hans-Georg; Goettsch, Wim; Madigan, David; Makady, Amr; Schneeweiss, Sebastian; Tarricone, Rosanna; Wang, Shirley V; Watkins, John; Daniel Mullins, C

    2017-09-01

    Real-world evidence (RWE) includes data from retrospective or prospective observational studies and observational registries and provides insights beyond those addressed by randomized controlled trials. RWE studies aim to improve health care decision making. The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the International Society for Pharmacoepidemiology (ISPE) created a task force to make recommendations regarding good procedural practices that would enhance decision makers' confidence in evidence derived from RWD studies. Peer review by ISPOR/ISPE members and task force participants provided a consensus-building iterative process for the topics and framing of recommendations. The ISPOR/ISPE Task Force recommendations cover seven topics such as study registration, replicability, and stakeholder involvement in RWE studies. These recommendations, in concert with earlier recommendations about study methodology, provide a trustworthy foundation for the expanded use of RWE in health care decision making. The focus of these recommendations is good procedural practices for studies that test a specific hypothesis in a specific population. We recognize that some of the recommendations in this report may not be widely adopted without appropriate incentives from decision makers, journal editors, and other key stakeholders. © 2017 The Authors. Pharmacoepidemiology & Drug Safety published by John Wiley & Sons Ltd.

  13. Coherence between harvest and habitat management -- Joint venture perspectives

    USGS Publications Warehouse

    Baxter, C.K.; Nelson, J.W.; Reinecke, K.J.; Stephens, S.E.

    2006-01-01

    Introduction: In recent months, an ad hoc group of waterfowl scientists, representing the International Association of Fish and Wildlife Agencies (IAFWA) Adaptive Harvest Management (ARM) Task Force and the North American Waterfowl Management Plan (NAWMP) Committee, have collaborated as a Joint Task Group (JTG) to assess options for unifying the population goals guiding waterfowl harvest management and habitat management. The JTG has been charged with bringing coherence to the population goals of the two programs. Characterizing the problem as one of coherence indicates value judgments exist regarding its significance or perhaps existence. For purposes of this paper, we characterize the lack of coherence as the absence of consistent population goals in the two related components of waterfowl conservation habitat and harvest management. Our purpose is to support continued dialogue on the respective goals of these programs and the possible implications of discordant goals to habitat joint ventures. Our objectives are two-fold: (1) illustrate how NAWMP habitat management goals and strategies have been interpreted and pursued in both breeding and wintering areas, and (2) provide perspectives on the linkages between regional habitat management programs and harvest management. The Lower Mississippi Valley and the Prairie Pothole joint ventures (LMVJV and PPJV, respectively) will be used as examples.

  14. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference

    PubMed Central

    Thürer, Benjamin; Stein, Thorsten

    2017-01-01

    Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group). PMID:28459833

  15. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference.

    PubMed

    Stockinger, Christian; Thürer, Benjamin; Stein, Thorsten

    2017-01-01

    Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group).

  16. Mechanical lifting energy consumption in work activities designed by means of the “revised NIOSH lifting equation”

    PubMed Central

    RANAVOLO, Alberto; VARRECCHIA, Tiwana; RINALDI, Martina; SILVETTI, Alessio; SERRAO, Mariano; CONFORTO, Silvia; DRAICCHIO, Francesco

    2017-01-01

    The aims of the present work were: to calculate lifting energy consumption (LEC) in work activities designed to have a growing lifting index (LI) by means of revised NIOSH lifting equation; to evaluate the relationship between LEC and forces at the L5-S1 joint. The kinematic and kinetic data of 20 workers were recorded during the execution of lifting tasks in three conditions. We computed kinetic, potential and mechanical energy and the corresponding LEC by considering three different centers of mass of: 1) the load (CoML); 2) the multi-segment upper body model and load together (CoMUpp+L); 3) the whole body and load together (CoMTot). We also estimated compression and shear forces. Results shows that LEC calculated for CoMUpp+L and CoMTot grew significantly with the LI and that all the lifting condition pairs are discriminated. The correlation analysis highlighted a relationship between LEC and forces that determine injuries at the L5-S1 joint. PMID:28781290

  17. Controlling under-actuated robot arms using a high speed dynamics process

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)

    1994-01-01

    The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.

  18. Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.

    PubMed

    Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion

    2007-06-01

    This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.

  19. King has no clothes: The role of the military in responding to a terrorist chemical/biological attack. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterman, J.L.

    1996-06-14

    The United States has begun a program of counterproliferation in order to preempt the use of WMD by such elements, however, the ability to respond to the terrorist employment of biological/chemical weapons is absent. Given the structure, capability and technical expertise in the Federal Emergency Management Agency (FEMA) and the Federal Bureau of Investigation (FBI), the Department of Defense (DoD) will be tasked to conduct the response to such an incident. The geographical Commander in Chief (CINC) and the appointed Joint Task Force (JTF) commander will ultimately be assigned the response mission. Planning, training and coordination is required to developmore » a force capable of responding in a timely and coordinated manner.« less

  20. Do you really represent my task? Sequential adaptation effects to unexpected events support referential coding for the joint Simon effect.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2016-07-01

    Recent findings suggest that a Simon effect (SE) can be induced in Individual go/nogo tasks when responding next to an event-producing object salient enough to provide a reference for the spatial coding of one's own action. However, there is skepticism against referential coding for the joint Simon effect (JSE) by proponents of task co-representation. In the present study, we tested assumptions of task co-representation and referential coding by introducing unexpected double response events in a joint go/nogo and a joint independent go/nogo task. In Experiment 1b, we tested if task representations are functionally similar in joint and standard Simon tasks. In Experiment 2, we tested sequential updating of task co-representation after unexpected single response events in the joint independent go/nogo task. Results showed increased JSEs following unexpected events in the joint go/nogo and joint independent go/nogo task (Experiment 1a). While the former finding is in line with the assumptions made by both accounts (task co-representation and referential coding), the latter finding supports referential coding. In contrast to Experiment 1a, we found a decreased SE after unexpected events in the standard Simon task (Experiment 1b), providing evidence against the functional equivalence assumption between joint and two-choice Simon tasks of the task co-representation account. Finally, we found an increased JSE also following unexpected single response events (Experiment 2), ruling out that the findings of the joint independent go/nogo task in Experiment 1a were due to a re-conceptualization of the task situation. In conclusion, our findings support referential coding also for the joint Simon effect.

  1. Changes in Landing Mechanics after Cold-Water Immersion

    ERIC Educational Resources Information Center

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  2. Psychological Operations: Fighting the War of Ideas

    DTIC Science & Technology

    2007-05-18

    is the success of the Joint Interagency Task Force on the Former Regime Elements (JIATF- FRE) operation to capture Fadhil Ibrahim Habib al-Mashadani... DAPS ), Fly Away Broadcast System (FABS), and Target Audience Analysis Detachment (TAAD). This provides the Brigade a radio development and broadcast...level. Production and dissemination assets must include a Modular Print System (MPS), Deployable Audio Production Suite ( DAPS ), and Special

  3. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.

  4. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  5. The Role of Musculoskeletal Dynamics and Neuromuscular Control in Stress Development in Bone

    NASA Technical Reports Server (NTRS)

    DeWoody, Yssa

    1996-01-01

    The role of forces produced by the musculotendon units in the stress development of the long bones during gait has not been fully analyzed. It is well known that the musculotendons act as actuators producing the joint torques which drive the body. Although the joint torques required to perform certain motor tasks can be recovered through a kinematic analysis, it remains a difficult problem to determine the actual forces produced by each muscle that resulted in these torques. As a consequence, few studies have focused on the role of individual muscles in the development of stress in the bone. This study takes a control theoretic approach to the problem. A seven-link, eight degrees of freedom model of the body is controlled by various muscle groups on each leg to simulate gait. The simulations incorporate Hill-type models of muscles with activation and contraction dynamics controlled through neural inputs. This direct approach allows one to know the exact muscle forces exerted by each musculotendon throughout the gait cycle as well the joint torques and reaction forces at the ankle and knee. Stress and strain computed by finite element analysis on skeletal members will be related to these derived loading conditions. Thus the role of musculoskeletal dynamics and neuromuscular control in the stress development of the tibia during gait can be analyzed.

  6. Lower Body Stiffness Modulation Strategies in Well Trained Female Athletes.

    PubMed

    Millett, Emma L; Moresi, Mark P; Watsford, Mark L; Taylor, Paul G; Greene, David A

    2016-10-01

    Millett, EL, Moresi, MP, Watsford, ML, Taylor, PG, and Greene, DA. Lower body stiffness modulation strategies in well trained female athletes. J Strength Cond Res 30(10): 2845-2856, 2016-Lower extremity stiffness quantifies the relationship between the amount of leg compression and the external load to which the limb are subjected. This study aimed to assess differences in leg and joint stiffness and the subsequent kinematic and kinetic control mechanisms between athletes from various training backgrounds. Forty-seven female participants (20 nationally identified netballers, 13 high level endurance athletes and 14 age and gender matched controls) completed a maximal unilateral countermovement jump, drop jump and horizontal jump to assess stiffness. Leg stiffness, joint stiffness and associated mechanical parameters were assessed with a 10 camera motion analysis system and force plate. No significant differences were evident for leg stiffness measures between athletic groups for any of the tasks (p = 0.321-0.849). However, differences in joint stiffness and its contribution to leg stiffness, jump performance outcome measures and stiffness control mechanisms were evident between all groups. Practitioners should consider the appropriateness of the task utilised in leg stiffness screening. Inclusion of mechanistic and/or more sports specific tasks may be more appropriate for athletic groups.

  7. Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.

    PubMed

    Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G

    2016-11-01

    To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.

  8. Biomechanical Analyses of Stair-climbing while Dual-tasking

    PubMed Central

    Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas

    2015-01-01

    Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590

  9. The relationship between general measures of fitness, passive range of motion and whole-body movement quality.

    PubMed

    Frost, David; Andersen, Jordan; Lam, Thomas; Finlay, Tim; Darby, Kevin; McGill, Stuart

    2013-01-01

    The goal of this study was to establish relationships between fitness (torso endurance, grip strength and pull-ups), hip range of motion (ROM) (extension, flexion, internal and external rotation) and movement quality in an occupational group with physical work demands. Fifty-three men from the emergency task force of a major city police force were investigated. The movement screen comprised standing and seated posture, gait, segmental spine motion and 14 tasks designed to challenge whole-body coordination. Relationships were established between each whole-body movement task, the measures of strength, endurance and ROM. In general, fitness and ROM were not strongly related to the movement quality of any task. This has implications for worker training, in that strategies developed to improve ROM or strength about a joint may not enhance movement quality. Worker-centered injury prevention can be described as fitting workers to tasks by improving fitness and modifying movement patterns; however, the current results show weak correlations between strength, endurance and ROM, and the way individuals move. Therefore, the development of occupation-specific injury prevention strategies may require both fitness and movement-oriented objectives.

  10. The effect of muscle weakness on the capability gap during gross motor function: a simulation study supporting design criteria for exoskeletons of the lower limb.

    PubMed

    Afschrift, Maarten; De Groote, Friedl; De Schutter, Joris; Jonkers, Ilse

    2014-08-04

    Enabling persons with functional weaknesses to perform activities of daily living (ADL) is one of the main challenges for the aging society. Powered orthoses, or exoskeletons, have the potential to support ADL while promoting active participation of the user. For this purpose, assistive devices should be designed and controlled to deliver assistance as needed (AAN). This means that the level of assistance should bridge the capability gap, i.e. the gap between the capabilities of the subjects and the task requirements. However, currently the actuators of exoskeletons are mainly designed using inverse dynamics (ID) based calculations of joint moments. The goal of the present study is to calculate the capability gap for the lower limb during ADL when muscle weakness is present, which is needed for appropriate selection of actuators to be integrated in exoskeletons. A musculoskeletal model (MM) is used to calculate the joint kinematics, joint kinetics and muscle forces of eight healthy subjects during ADL (gait, sit-to-stand, stand-to-sit, stair ascent, stair descent). Muscle weakness was imposed to the MM by a stepwise decrease in maximal isometric force imposed to all muscles. Muscle forces were calculated using static optimization. In order to compensate for muscle weakness, ideal moment actuators that represent the motors of an exoskeleton in the simulation were added to deliver AAN required to perform the task. The ID approach overestimates the required assistance since it relies solely on the demands of the task, whereas the AAN approach incorporates the capabilities of the subject. Furthermore, the ID approach delivers continuous support whereas the AAN approach targets the period where a capability gap occurs. The level of muscle weakness for which the external demands imposed by ADL can no longer be met by active muscle force production, is respectively 40%, 70%, 80% and 30%. The present workflow allows estimating the AAN during ADL for different levels of muscle weakness, which can be used in the mechatronic design and control of powered exoskeletons. The AAN approach is a more physiological approach than the ID approach, since the MM accounts for the subject-specific capabilities of the user.

  11. Baking together-the coordination of actions in activities involving people with dementia.

    PubMed

    Majlesi, Ali Reza; Ekström, Anna

    2016-08-01

    This study explores interaction and collaboration between people with dementia and their spouses in relation to the performance of household chores with the focus on instruction as an interactional context to engage the person with dementia in collaboration to accomplish joint activities. Dementia is generally associated with pathological changes in people's cognitive functions such as diminishing memory functions, communicative abilities and also diminishing abilities to take initiative as well as to plan and execute tasks. Using video recordings of everyday naturally occurring activities, we analyze the sequential organization of actions (see Schegloff, 2007) oriented toward the accomplishment of a joint multi-task activity of baking. The analysis shows the specific ways of collaboration through instructional activities in which the person with dementia exhibits his competence and skills in accomplishing the given tasks through negotiating the instructions with his partner and carrying out instructed actions. Although the driving force of the collaboration seems to be a series of directive sequences only initiated by the partner throughout the baking activity, our analyses highlight how the person with dementia can actively use the material environment-including collaborating partners-to compensate for challenges and difficulties encountered in achieving everyday tasks. The sequential organization of instructions and instructed actions are in this sense argued to provide an interactional environment wherein the person with dementia can make contributions to the joint activity in an efficient way. While a collaborator has been described as necessary for a person with dementia to be able to partake in activities, this study shows that people with dementia are not only guided by their collaborators in joint activities but they can also actively use their collaborators in intricate compensatory ways. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Distinct cut task strategy in Australian football players with a history of groin pain.

    PubMed

    Edwards, Suzi; Brooke, Hiram C; Cook, Jill L

    2017-01-01

    This study aimed to explore the differences in the magnitude of movement variability and strategies utilized during an unanticipated cut task between players with and without a history of groin pain. Cross-sectional design. Biomechanics laboratory. Male Australian football players with (HISTORY; n = 7) or without (CONTROL; n = 10) a history of groin pain. Three-dimensional ground reaction forces (GRF) and kinematics were recorded during 10 successful trials of an unanticipated cut task, and isokinetic hip adduction and abduction strength. Between-group differences were determined using independent-samples t-tests and the coefficient of variation (CV). Key substantial between-group differences identified were that the HISTORY group displayed decreased knee flexion and hip internal rotation, increased knee internal rotation and T12-L1 right rotation, and higher GRFs during the cut task. They also utilized three invariant systems (ankle, knee and T12-L1 joints), while being connected by a segment (hip and L5-S1 joints) that displayed increased lumbopelvic movement during the cut task, and decreased adductor muscle strength. This identifies the need for clinical management of the lower limb and thoracic segment to improve functional movement patterns in athletes with a history of a groin injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The role of impact forces and foot pronation: a new paradigm.

    PubMed

    Nigg, B M

    2001-01-01

    This article discusses the possible association between impact forces and foot pronation and the development of running-related injuries, and proposes a new paradigm for impact forces and foot pronation. The article is based on a critical analysis of the literature on heel-toe running addressing kinematics, kinetics, resultant joint movements and forces, muscle activity, subject and material characteristics, epidemiology, and biologic reactions. However, this paper is not a review of the literature but rather an attempt to replace the established concepts of impact forces and movement control with a new paradigm that would allow explaining some of the current contradictions in this topic of research. The analysis included all papers published on this topic over the last 25 years. For the last few years, it concentrated on papers expressing critical concerns on the established concepts of impact and movement control. An attempt was made to find indications in the various publications to support or reject the current concept of impact forces and movement control. Furthermore, the results of the available studies were searched for indications expanding the current understanding of impact forces and movement control in running. Data were synthesized revealing contradictions in the experimental results and the established concepts. Based on the contradictions in the existing research publications, a new paradigm was proposed. Theoretical, experimental, and epidemiological evidence on impact forces showed that one cannot conclude that impact forces are important factors in the development of chronic and/or acute running-related injuries. A new paradigm for impact forces during running proposes that impact forces are input signals that produce muscle tuning shortly before the next contact with the ground to minimize soft tissue vibration and/or reduce joint and tendon loading. Muscle tuning might affect fatigue, comfort, work, and performance. Experimental evidence suggests that the concept of "aligning the skeleton" with shoes, inserts, and orthotics should be reconsidered. They produce only small, not systematic. and subject-specific changes of foot and leg movement. A new paradigm for movement control for the lower extremities proposes that forces acting on the foot during the stance phase act as an input signal producing a muscle reaction. The cost function used in this adaptation process is to maintain a preferred joint movement path for a given movement task. If an intervention counteracts the preferred movement path, muscle activity must be increased. An optimal shoe, insert, or orthotic reduces muscle activity. Thus, shoes, inserts, and orthotics affect general muscle activity and, therefore, fatigue, comfort, work, and performance. The two proposed paradigms suggest that the locomotor system use a similar strategy for "impact" and "movement control." In both cases the locomotor system keeps the general kinematic and kinetic situations similar for a given task. The proposed muscle tuning reaction to impact loading affects the muscle activation before ground contact. The proposed muscle adaptation to provide a constant joint movement pattern affects the muscle activation during ground contact. However, further experimental and theoretical studies are needed to support or reject the proposed paradigms.

  14. Joint Task Force Headquarters Master Training Guide

    DTIC Science & Technology

    2003-09-01

    roles, and relationships that differ from those of Service organizations. (6) Understand the rotation policy for individual augmentees assigned to the...JTF. Although the Combatant Commander ultimately establishes individual and unit rotation policies, they will not necessarily be uniform. One...Service might have a 90-day rotation policy while the other Services have 120-day or 179-day rotation policies. To stabilize key billets, consider

  15. An Analytical Evaluation of Contingency Contracting Operations in Iraq and Afghanistan: Capturing Critical Corporate Knowledge for the Future

    DTIC Science & Technology

    2013-01-07

    Contingency Operations Task Force, 2011, p. 4)...........................68  Figure 25.  Original Organizational Makeup for the CASO (After Deputy...Workforce CAP Civilian Augmentation Program CAP Crisis Action Planning CASO Contingency Acquisition Support Office CBP Capability-Based...its inclusion in joint exercises;  Identify and assign responsibilities to institutionalize OCS lesson development, analysis, documentation and use

  16. Defense Science Board Task Force on SEA BASING

    DTIC Science & Technology

    2003-08-01

    to: Consider the operational requirements, the assets required, the role(s) of new technologies, and the effects of “jointness” Examine the...improve effectiveness , efficiency or economy? Are there other doctrine, organizational, training, materiel, leadership, personnel or facilities aspects...sea of all four Services In effect , sea basing must become a truly joint concept with capabilities that allow for the projection of the full

  17. Countering Air and Missile Threats

    DTIC Science & Technology

    2012-03-23

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources , gathering... apportionment guidance by the JFC. Functional component commands serve to ease the burden on the theater and joint task force staffs, free the JFC to focus...action (COA) to attain the desired objectives. Counterair requires a combination of OCA and DCA operations based on the JFC’s air apportionment

  18. Nonpoint Source Discharge Control on Non-Builtup Military Lands: Compliance Background Analysis Through October 1999

    DTIC Science & Technology

    2000-08-01

    management for NPS. The State nonpoint Source Task Force coordinates joint watershed management efforts with SCS, USFS, BLM. Intense grazing and...nonpoint source water pollution discharges from unimproved lands, particularly military lands. Increasing emphasis at national and state levels on...lands, particularly military lands. Increasing emphasis at national and state levels on controlling pollutant discharges from nonpoint sources and

  19. Defense Headquarters: Geographic Combatant Commands Rely on Subordinate Commands for Mission Management and Execution

    DTIC Science & Technology

    2016-06-30

    These figures do not include personnel performing contract services. The service component commands , subordinate unified commands , and joint task forces...GAO has previously found that the combatant commands do not have oversight or visibility over authorized manpower or assigned personnel at the...Jack Reed Ranking Member Committee on Armed Services United States Senate Defense Headquarters: Geographic Combatant Commands Rely on Subordinate

  20. Task Force on Returning Global War on Terror Heroes

    DTIC Science & Technology

    2007-04-19

    assigning disability ratings used to determine fitness for military retention, level of disability for retirement, and VA disability compensation...process. DoD and VA agreed to develop a joint process of assigning disability ratings used to determine fitness for military retention, level of...charged with deciding fit /unfit status. Servicemembers obviously endeavor to reach the threshold because it results in lifelong benefits such as health

  1. Guidelines for the Delineation of Roles and Responsibilities for the Safe Delivery of Specialized Health Care in the Educational Setting.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA.

    These guidelines were developed by a joint task force of members and staff of four national associations, to be of assistance to persons concerned with the safe delivery of specialized health care in educational settings. The guidelines delineate the roles and responsibilities of personnel involved in the provision of specialized health care. They…

  2. Identifying Enemies Among Us: Evolving Terrorist Threats and the Continuing Challenges of Domestic Intelligence Collection and Information Sharing

    DTIC Science & Technology

    2014-01-01

    the Los Angeles Police Department ( LAPD ) and the FBI recently negotiated an agreement increasing...Coordination Group JTTF Joint Terrorism Task Force LAPD Los Angeles Police Department NCTC National Counterterrorism Center NSA National Security Agency WMD...Agency (CIA), the Department of Defense (DoD), state and local law enforcement agencies, first-responder organizations, and state- level

  3. Coping with Uncertainty: The Joint Task Force and Multi-Service Military Operations

    DTIC Science & Technology

    1991-05-10

    DATE =3. REPORT TYPE AND DATIS COVERED 10 -1y II ION060Nr1 4. TITLE AND SUBTITLE S. FUNDING NUMBERS cO6p i tý6, LJrTi i u N csr .-r. AJ 7y1.; -n E ryo...responsible for keeping French Morocco under control and for invading Spanish Morocco should the Franco regime become less than neutral.57 Axis control...of Ital~y, 11. 57 Ibid., 55. LT’G Mark Clark, commziandiny Fifth U.S. Army in French Morocco , would have been selected to lead the American task

  4. Report of the Cost Assessment and Validation Task Force on the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort. The Program size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap. A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule. The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program. The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required. Completion of ISS assembly is likely to be delayed from one to three years beyond December 2003.

  5. Cost Assessment and Validation Task Force on the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort; The Program, size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap; A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule; The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program; The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program, growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required; and Completion of ISS assembly is likely to be delayed from, one to three years beyond December 2003.

  6. Impacts of the Convention on Long-range Transboundary Air Pollution on air quality in Europe.

    PubMed

    Bull, Keith; Johansson, Matti; Krzyzanowski, Michal

    2008-01-01

    The Convention on Long-range Transboundary Air Pollution has been one of the main ways of protecting the environment in Europe from air pollution. This convention has successfully bridged different political systems even through times of political change, and is a prime example of what can be achieved through intergovernmental cooperation. Through creating an effective framework for controlling and reducing the damage to human health and the environment from transboundary air pollution, this convention has proved successful. This article considers the development of the convention and its work on adverse air pollution effects, in particular on activities related to quantifying effects on human health as carried out by the convention's joint (with WHO) Task Force on the Health Effects of Air Pollution (Task Force on Health), and concludes with some indications of the convention's future priorities.

  7. Evaluation of the walkable neighborhoods for seniors project in Sacramento County.

    PubMed

    Hooker, Steven P; Cirill, Lisa A; Geraghty, Anne

    2009-07-01

    The Walkable Neighborhoods for Seniors project was implemented to foster the creation and promotion of safe and accessible neighborhood walking routes for seniors. This article describes a case study of the efforts put forth by a local task force jointly managed by the Sacramento County Department of Health Services and WALK Sacramento. To facilitate environmental and policy changes that would enable and encourage walking by older adults, these local lead agencies implemented several strategies including organizing a community task force with broad professional and civic representation, conducting environmental audits of selected walking routes, creating walking groups, and advocating for environmental and policy change. Evaluation processes yield information on successes, challenges, and lessons learned that could be applied to similar efforts undertaken by community organizations to improve the walkability of neighborhoods for older adults.

  8. Efficient Jacobian inversion for the control of simple robot manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1988-01-01

    Symbolic inversion of the Jacobian matrix for spherical wrist arms is investigated. It is shown that, taking advantage of the simple geometry of these arms, the closed-form solution of the system Q = J-1X, representing a transformation from task space to joint space, can be obtained very efficiently. The solutions for PUMA, Stanford, and a six-revolute-joint coplanar arm, along with all singular points, are presented. The solution for each joint variable is found as an explicit function of the singular points which provides a better insight into the effect of different singular points on the motion and force exertion of each individual joint. For the above arms, the computation cost of the solution is on the same order as the cost of forward kinematic solution and it is significantly reduced if forward kinematic solution is already obtained. A comparison with previous methods shows that this method is the most efficient to date.

  9. Biomechanical Differences of Multidirectional Jump Landings Among Female Basketball and Soccer Players.

    PubMed

    Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J

    2017-11-01

    Taylor, JB, Ford, KR, Schmitz, RJ, Ross, SE, Ackerman, TA, and Shultz, SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res 31(11): 3034-3045, 2017-Anterior cruciate ligament (ACL) injury prevention programs are less successful in basketball than soccer and may be due to distinct movement strategies that these athletes develop from sport-specific training. The purpose of this study was to identify biomechanical differences between female basketball and soccer players during multidirectional jump landings. Lower extremity biomechanics of 89 female athletes who played competitive basketball (n = 40) or soccer (n = 49) at the middle- or high-school level were analyzed with 3-dimensional motion analysis during a drop vertical jump, double- (SAG-DL) and single-leg forward jump (SAG-SL), and double- (FRONT-DL) and single-leg (FRONT-SL) lateral jump. Basketball players landed with either less hip or knee, or both hip and knee excursion during all tasks (p ≤ 0.05) except for the SAGSL task, basketball players landed with greater peak hip flexion angles (p = 0.04). The FRONT-SL task elicited the most distinct sport-specific differences, including decreased hip adduction (p < 0.001) angles, increased hip internal rotation (p = 0.003), and increased relative knee external rotation (p = 0.001) excursions in basketball players. In addition, the FRONT-SL task elicited greater forces in knee abduction (p = 0.003) and lesser forces in hip adduction (p = 0.001) and knee external rotation (p < 0.001) in basketball players. Joint energetics were different during the FRONT-DL task, as basketball players exhibited less sagittal plane energy absorption at the hip (p < 0.001) and greater hip (p < 0.001) and knee (p = 0.001) joint stiffness. Sport-specific movement strategies were identified during all jump landing tasks, such that soccer players exhibited a more protective landing strategy than basketball players, justifying future efforts toward sport-specific ACL injury prevention programs.

  10. Femoral condyle curvature is correlated with knee walking kinematics in ungulates.

    PubMed

    Sylvester, Adam D

    2015-12-01

    The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. © 2015 Wiley Periodicals, Inc.

  11. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  12. Muscles do more positive than negative work in human locomotion

    PubMed Central

    DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor

    2008-01-01

    Summary Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was −34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs −71 J m−1, P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs −75 J step−1, P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy. PMID:17872990

  13. Muscles do more positive than negative work in human locomotion.

    PubMed

    DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor

    2007-10-01

    Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was -34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs -71 J m(-1), P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs -75 J step(-1), P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy.

  14. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.

    PubMed

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-10-01

    Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.

  15. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    PubMed

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  16. Joint moments and contact forces in the foot during walking.

    PubMed

    Kim, Yongcheol; Lee, Kyoung Min; Koo, Seungbum

    2018-06-06

    The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart's, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Mechanical lifting energy consumption in work activities designed by means of the "revised NIOSH lifting equation".

    PubMed

    Ranavolo, Alberto; Varrecchia, Tiwana; Rinaldi, Martina; Silvetti, Alessio; Serrao, Mariano; Conforto, Silvia; Draicchio, Francesco

    2017-10-07

    The aims of the present work were: to calculate lifting energy consumption (LEC) in work activities designed to have a growing lifting index (LI) by means of revised NIOSH lifting equation; to evaluate the relationship between LEC and forces at the L 5 -S 1 joint. The kinematic and kinetic data of 20 workers were recorded during the execution of lifting tasks in three conditions. We computed kinetic, potential and mechanical energy and the corresponding LEC by considering three different centers of mass of: 1) the load (CoM L ); 2) the multi-segment upper body model and load together (CoM Upp+L ); 3) the whole body and load together (CoM Tot ). We also estimated compression and shear forces. Results shows that LEC calculated for CoM Upp+L and CoM Tot grew significantly with the LI and that all the lifting condition pairs are discriminated. The correlation analysis highlighted a relationship between LEC and forces that determine injuries at the L 5 -S 1 joint.

  18. Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.

    PubMed

    Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2013-12-01

    Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.

  19. An Investigation into the Relation between the Technique of Movement and Overload in Step Aerobics

    PubMed Central

    Wysocka, Katarzyna

    2017-01-01

    The aim of this research was to determine the features of a step workout technique which may be related to motor system overloading in step aerobics. Subjects participating in the research were instructors (n = 15) and students (n = 15) without any prior experience in step aerobics. Kinematic and kinetic data was collected with the use of the BTS SMART system comprised of 6 calibrated video cameras and two Kistler force plates. The subjects' task was to perform basic steps. The following variables were analyzed: vertical, anteroposterior, and mediolateral ground reaction forces; foot flexion and abduction and adduction angles; knee joint flexion angle; and trunk flexion angle in the sagittal plane. The angle of a foot adduction recorded for the instructors was significantly smaller than that of the students. The knee joint angle while stepping up was significantly higher for the instructors compared to that for the students. Our research confirmed that foot dorsal flexion and adduction performed while stepping up increased load on the ankle joint. Both small and large angles of knee flexion while stepping up and down resulted in knee joint injuries. A small trunk flexion angle in the entire cycle of step workout shut down dorsal muscles, which stopped suppressing the load put on the spine. PMID:28348501

  20. Effects of general principles of person transfer techniques on low back joint extension moment.

    PubMed

    Katsuhira, Junji; Yamasaki, Syun; Yamamoto, Sumiko; Maruyama, Hitoshi

    2010-01-01

    The purpose of this study was to examine the effects of general principles of person transfer techniques specifically on the low back joint extension moment. These effects were examined by the following measurable quantitative parameters: 1) trunk bending angle, 2) knee flexion angle, 3) distance between the centers of gravity (COGs) of the caregiver and patient, representing the distance between the caregiver and patient, and 4) the vertical component of the ground reaction force representing the amount of the weight-bearing load on the caregiver's low back during transfers with and without assistive devices. Twenty students each took the role of caregiver, and one healthy adult simulated a patient. The participants performed three different transfer tasks: without any assistive device, with the patient wearing a low back belt, and with the caregiver using a transfer board. We found that the distance between the COGs and the vertical component of the ground reaction force, but not the trunk bending and knee flexion angles, were the variables that affected the low back joint extension moment. Our results suggest that the general principle of decreasing the distance between COGs is most effective for decreasing the low back joint extension moment during transfers under all conditions.

  1. Mission Command in the Joint Task Force -- Port Opening

    DTIC Science & Technology

    2015-06-12

    a significant concern. The appearance of lack of disciplined initiative suggests a laissez - faire attitude on the part of DDOC personnel. A...Chiefs of Staff (CJCS) published the Mission Command White Paper on 03 April 2012, launching Mission Command to the forefront of Army leadership ...trust and leadership - subordinate close proximity; furthermore, research has also shown that the same level of trust was not inherent between leaders

  2. Instrumentation Needs of Academic Departments of Chemistry: A Survey Study. Report of a Joint Task Force of the Committee on Science and Committee on Chemistry and Public Affairs.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A questionnaire was mailed to 50 major chemistry departments, 112 smaller chemistry departments, and 25 chemical engineering (CE) departments. The survey (included in an appendix) consists of a series of questions on two broad subjects--the current inventory at the surveyed institutions and the needs for instrumentation. Responses were received…

  3. OPERATION CASTLE. Radiological Safety. Volume 1

    DTIC Science & Technology

    1985-09-01

    OPERATION CASTLE Radiological Safety Final Report Volume I Headquarters Joint Task Force Seven Technical Branch, J-3 Division Washington, DC...Spring 1954 EXTRACTED VERSION DTIC -uECTE MAR031986 NOTICE: This is an extract of Operation CASTLE, Radiological Safety, Final Report, Volume I ...SYMBOL (If jpQiictbl») ■ i PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c AOORESS (G(y, SU(t tncl ZIRCod») 10 SOURCE OF FUNDING NUMBERS PROGRAM

  4. Price Analysis on Commercial Item Purchases Within the Department of the Navy

    DTIC Science & Technology

    2014-05-22

    workforce should also have the quantitative skills required to effectively perform its duties. The demands of the workforce have grown, with a 63...George Washington (CVN 73) as the sales officer and materials officer. Follow-on tours include food service officer for Joint Task Force Guantanamo...an overview of several reports and educational materials directed toward price reasonableness determinations. Section A focuses on the DODIG, the

  5. Joint Interagency Task Force-Illicit Trafficking: Enhancing the Interagency Organizational Framework for Operations Along the Southwest Border

    DTIC Science & Technology

    2012-05-01

    established trafficking corridors: Southern California, Arizona/ Sonora , New Mexico /West Texas, and Southeast Texas. Each RCC would absorb, consolidate... Mexico , Southwest Border, Transnational Criminal Organizations Unclassified Unclassified Unclassified Unclassified UU 39 United Stales Marine Corps...and smuggle people across the border with Mexico .” —President Barack H. Obama, August 13, 20101 The United States’ (U.S.) 2,000-mile porous

  6. Canadian Light Infantry in Adaptive Dispersed Operations

    DTIC Science & Technology

    2012-05-17

    participated directly or indirectly under the leadership of Combined Joint Task Force (CJTF) MOUNTAIN, which was mostly built around the 10th Mountain...unique and possesses its own characteristics. It has its own ethic which is obtained from its distinctive tactical style , special attitude toward the...it is not organization that determines their light nature but their characteristics and fighting style . He added: “The historical tendency for light

  7. Canadian Light Infantry in Adaptive Dispersed Operations

    DTIC Science & Technology

    2012-05-22

    participated directly or indirectly under the leadership of Combined Joint Task Force (CJTF) MOUNTAIN, which was mostly built around the 10th Mountain...unique and possesses its own characteristics. It has its own ethic which is obtained from its distinctive tactical style , special attitude toward the...it is not organization that determines their light nature but their characteristics and fighting style . He added: “The historical tendency for light

  8. Joint Doctrine for Amphibious Embarkation

    DTIC Science & Technology

    1993-04-16

    remain unopposed through the arrival and assembly phase. 6. Greater Dispersion of Shipping a. The vulnerability of the amphibious task force ( ATF ... ATF to seaward of the landing beach from which assault shipping is phased into the transport area for selective or general offloading by...depends in large measure on the manner in which the ships have been loaded. Proper loading increases the inherent flexibility of the ATF and is a key

  9. JTF CapMed Warrior Transition Division

    DTIC Science & Technology

    2011-01-25

    The Quadruple Aim: Working Together, Achieving Success 2011 Military Health System Conference JTF CapMed Warrior Transition Division 25 January 2011...Colonel Julia Adams 1 Military Health System Conference Joint Task Force National Capital Region Medical (JTF CapMed ) Report Documentation Page Form...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE JTF CapMed Warrior Transition Division 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  10. Unified Medical Command and Control in the Department of Defense

    DTIC Science & Technology

    2012-03-22

    This is the Joint Task Force – Capital Medical (JTF CAPMED ) model, in which organizations, resources, and personnel are aligned under a single...This was demonstrated in the formation of the JTF- CAPMED , designed as a 3-star level command controlling military medical activities in the National...used ground vehicles, helicopters and fixed wing aircraft for strategic casualty evacuation (CASEVAC). Enroute care is standard and critical in

  11. Why Leadership Matters: Joint Task Force Planning with the Department of State

    DTIC Science & Technology

    2013-12-10

    studies: (1) Operation Just Cause, the intervention into Panama to remove the regime of Manuel Noriega and (2) Operation Uphold Democracy; an intervention...States sphere of influence. Conversely, the invasion of Panama specifically targeted the regime of Manuel Noriega and restoration of the legally elected...OPERATION JUST CAUSE Operation Just Cause was executed to remove the regime of Panamanian dictator Manuel Noriega. The reasoning behind the

  12. Training Analyses Supporting the Land Warrior and Ground Soldier Systems

    DTIC Science & Technology

    2009-07-01

    unit with LW and MW expressed in terms of unit force effectiveness, impacts to the DOTMLPF domains, life cycle cost, and ability to mitigate Joint...other individual tasks, Soldier and/or leader, be added to NET; should any be eliminated? What methods of instruction/resources should remain the...presentation of the training observation results from the nine-day NET. Terminal Learning Objectives The NET POI ( Omega Training Group, 2006

  13. Task Force Fury - 4/82 ABN. Operation Enduring Freedom X, Aug 09-Sep 10

    DTIC Science & Technology

    2012-06-01

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Office Secretary of Defense,Joint Advanced Warfighting Program - Analytical Projects...Office,Washington,DC,20301 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...assess our Operational Environments (OE), Afghan partners and ourselves - Remain an agile, adaptive and learning organization (get better every day) ANSF

  14. Operational Stress and Correlates of Mental Health Among Joint Task Force Guantanamo Bay Military Personnel.

    PubMed

    Webb-Murphy, Jennifer A; De La Rosa, Gabriel M; Schmitz, Kimberly J; Vishnyak, Elizabeth J; Raducha, Stephanie C; Roesch, Scott C; Johnston, Scott L

    2015-12-01

    Military personnel deployed to Joint Task Force Guantanamo Bay (JTF-GTMO) faced numerous occupational stressors. As part of a program evaluation, personnel working at JTF-GTMO completed several validated self-report measures. Personnel were at the beginning, middle, or end of their deployment phase. This study presents data regarding symptoms of posttraumatic stress disorder, alcohol abuse, depression, and resilience among 498 U.S. military personnel deployed to JTF-GTMO in 2009. We also investigated individual and organizational correlates of mental health among these personnel. Findings indicated that tenure at JTF-GTMO was positively related to adverse mental health outcomes. Regression models including these variables had R2 values ranging from .02 to .11. Occupation at JTF-GTMO also related to mental health such that guards reported poorer mental health than medical staff. Reluctance to seek out mental health care was also related to mental health outcomes. Those who reported being most reluctant to seek out care tended to report poorer mental health than those who were more willing to seek out care. Results suggested that the JTF-GTMO deployment was associated with significant psychological stress, and that both job-related and attitude-related variables were important to understanding mental health symptoms in this sample. Copyright © 2015 International Society for Traumatic Stress Studies.

  15. Practicing for 2023 and 2024: What the AAS Solar Eclipse Task Force Learned from the "Great American Eclipse" of 2017

    NASA Astrophysics Data System (ADS)

    Fienberg, R. T.; Speck, A. K.; Habbal, S. R.

    2017-12-01

    More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the task force's activities, take stock of what went right and what went wrong, and consider how to do an even better job preparing the nation for the next two "Great American" solar eclipses: the annular eclipse of October 14, 2023, and the total eclipse of April 8, 2024.

  16. Medial knee loading is altered in subjects with early osteoarthritis during gait but not during step-up-and-over task

    PubMed Central

    Wesseling, Mariska; Smith, Colin R.; Thelen, Darryl G.; Verschueren, Sabine; Jonkers, Ilse

    2017-01-01

    This study evaluates knee joint loading during gait and step-up-and-over tasks in control subjects, subjects with early knee OA and those with established knee OA. Thirty-seven subjects with varying degrees of medial compartment knee OA severity (eighteen with early OA and sixteen with established OA), and nineteen healthy controls performed gait and step-up-and-over tasks. Knee joint moments, contact forces (KCF), the magnitude of contact pressures and center of pressure (CoP) location were analyzed for the three groups for both activities using a multi-body knee model with articular cartilage contact, 14 ligaments, and six degrees of freedom tibiofemoral and patellofemoral joints. During gait, the first peak of the medial KCF was significantly higher for patients with early knee OA (p = 0.048) and established knee OA (p = 0.001) compared to control subjects. Furthermore, the medial contact pressure magnitudes and CoP location were significantly different in both groups of patients compared to controls. Knee rotation moments (KRMs) and external rotation angles were significantly higher during early stance in both patient groups (p < 0.0001) compared to controls. During step-up-and-over, there was a high variability between the participants and no significant differences in KCF were observed between the groups. Knee joint loading and kinematics were found to be altered in patients with early knee OA only during gait. This is an indication that an excessive medial KCF and altered loading location, observed in these patients, is a contributor to early progression of knee OA. PMID:29117248

  17. Landing Mechanics During Side Hopping and Crossover Hopping Maneuvers in Noninjured Women and Women With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Ortiz, Alexis; Olson, Sharon; Trudelle-Jackson, Elaine; Rosario, Martin; Venegas, Heidi L.

    2011-01-01

    Objective To compare, landing mechanics and electromyographic activity of the lower extremities during side hopping and crossover hopping maneuvers, in noninjured women and women with anterior cruciate ligament (ACL) reconstruction. Design A case-control study. Setting A 3-dimensional motion analysis laboratory. Participants Twenty-eight young women (range, 21–35 years) (15 control subjects and 13 subjects with ACL reconstruction). Patients and Methods All participants performed a side-to-side hopping task that consisted of hopping single-legged 10 times consecutively from side to side across 2 lines marked 30 cm apart on 2 individual force plates. The task was designated as a side hopping when the hop was to the opposite side of the stance leg and as crossover hopping when the hop was toward the side of the stance leg. Main Outcome Measurements Peak hip-/knee-joint angles; peak knee extension/abduction joint moments; electromyographic studies of the gluteus maximus, gluteus medius, rectus femoris, and hamstring muscles; and quadriceps/hamstring co-contraction ratio were compared between the groups by means of 2 × 2 multivariate analysis of variance tests (group × maneuver). Results Noninjured women and women with ACL reconstruction exhibited similar hip-and knee-joint angles during both types of hopping. Hip-joint angles were greater during the crossover hopping in both groups, and knee-joint angles did not differ between the groups or hops. Knee-joint moments demonstrated a significant group × maneuver interaction. Greater knee extension and valgus moments were noted in the control group during crossover hopping, and greater knee abduction moments were noted in the ACL group during side hopping. Electromyographic data revealed no statistically significantly differences between the groups. Conclusions Women with ACL reconstruction exhibited the restoration of functional biomechanical movements such as hip-/knee-joint angles and lower extremity neuromuscular activation during side-to-side athletic tasks. However, not all biomechanical strategies are restored years after surgery, and women who have undergone a procedure such as ACL reconstruction may continue to exhibit knee-joint abduction moments that increase the risk of additional knee injury. PMID:21257128

  18. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity

    PubMed Central

    Ache, Jan M.; Matheson, Thomas

    2013-01-01

    Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240

  19. The effects of practice on movement distance and final position reproduction: implications for the equilibrium-point control of movements.

    PubMed

    Jaric, S; Corcos, D M; Gottlieb, G L; Ilic, D B; Latash, M L

    1994-01-01

    Predictions of two views on single-joint motor control, namely programming of muscle force patterns and equilibrium-point control, were compared with the results of experiments with reproduction of movement distance and final location during fast unidirectional elbow flexions. Two groups of subjects were tested. The first group practiced movements over a fixed distance (36 degrees), starting from seven different initial positions (distance group, DG). The second group practiced movements from the same seven initial positions to a fixed final location (location group, LG). Later, all the subjects were tested at the practiced task with their eyes closed, and then, unexpectedly for the subjects, they were tested at the other, unpracticed task. In both groups, the task to reproduce final position had lower indices of final position variability than the task to reproduce movement distance. Analysis of the linear regression lines between initial position and final position (or movement distance) also demonstrated a better (more accurate) performance during final position reproduction than during distance reproduction. The data are in a good correspondence with the predictions of the equilibrium-point hypothesis, but not with the predictions of the force-pattern control approach.

  20. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    PubMed

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  1. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    PubMed

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  2. Modelling and control of an upper extremity exoskeleton for rehabilitation

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.

  3. Barriers to success: physical separation optimizes event-file retrieval in shared workspaces.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2017-07-08

    Sharing tasks with other persons can simplify our work and life, but seeing and hearing other people's actions may also be very distracting. The joint Simon effect (JSE) is a standard measure of referential response coding when two persons share a Simon task. Sequential modulations of the joint Simon effect (smJSE) are interpreted as a measure of event-file processing containing stimulus information, response information and information about the just relevant control-state active in a given social situation. This study tested effects of physical (Experiment 1) and virtual (Experiment 2) separation of shared workspaces on referential coding and event-file processing using a joint Simon task. In Experiment 1, participants performed this task in individual (go-nogo), joint and standard Simon task conditions with and without a transparent curtain (physical separation) placed along the imagined vertical midline of the monitor. In Experiment 2, participants performed the same tasks with and without receiving background music (virtual separation). For response times, physical separation enhanced event-file retrieval indicated by an enlarged smJSE in the joint Simon task with curtain than without curtain (Experiment1), but did not change referential response coding. In line with this, we also found evidence for enhanced event-file processing through physical separation in the joint Simon task for error rates. Virtual separation did neither impact event-file processing, nor referential coding, but generally slowed down response times in the joint Simon task. For errors, virtual separation hampered event-file processing in the joint Simon task. For the cognitively more demanding standard two-choice Simon task, we found music to have a degrading effect on event-file retrieval for response times. Our findings suggest that adding a physical separation optimizes event-file processing in shared workspaces, while music seems to lead to a more relaxed task processing mode under shared task conditions. In addition, music had an interfering impact on joint error processing and more generally when dealing with a more complex task in isolation.

  4. An Engineering Model of Human Balance Control—Part I: Biomechanical Model

    PubMed Central

    Barton, Joseph E.; Roy, Anindo; Sorkin, John D.; Rogers, Mark W.; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities. PMID:26328608

  5. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis.

    PubMed

    Kim, K; Lee, S K; Kim, Y H

    2010-10-01

    The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.

  6. Muscle activity and spine load during pulling exercises: influence of stable and labile contact surfaces and technique coaching.

    PubMed

    McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T

    2014-10-01

    This study examined pulling exercises performed on stable surfaces and unstable suspension straps. Specific questions included: which exercises challenged particular muscles, what was the magnitude of resulting spine load, and did technique coaching influence results. Fourteen males performed pulling tasks while muscle activity, external force, and 3D body segment motion were recorded. These data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force, in this way the model was sensitive to each individual's choice of motor control for each task. Muscle forces and linked segment joint loads were used to calculate spine loads. There were gradations of muscle activity and spine load characteristics to every task. It appears that suspension straps alter muscle activity less in pulling exercises, compared to studies reporting on pushing exercises. The chin-up and pull-up exercises created the highest spine load as they required the highest muscle activation, despite the body "hanging" under tractioning gravitational load. Coaching shoulder centration through retraction increased spine loading but undoubtedly adds proximal stiffness. An exercise atlas of spine compression was constructed to help with the decision making process of exercise choice for an individual. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Operation IVY. Joint Task Force 132, 1952

    DTIC Science & Technology

    1985-09-01

    and auxiliary lenses (filters) must have been selected with great care. Knowledge of the light intensities to be experienced is essen- tial in making...pounds. b. !!et’od (1) The theory behind Bhangmeter operation can be described as follows. The light intensity emanated from an atomic bomb explosion...temperature distribution was made by observing the Light signals from selected spots on the outer surface of the steel case. The very early MM1K case

  8. Building Future Transatlantic Interoperability Around a Robust NATO Response Force

    DTIC Science & Technology

    2012-10-01

    than already traveled . However, this accrued wealth of interoperable capa- bility may be at its apogee, soon to decline as the result of two looming...and Bydgo- szcz, Poland, as well as major national training centers such as the bilateral U.S.- Romanian Joint Task Force– East at Kogalniceanu...operations. Increase U.S. and Allied Exchange Students at National and NATO military schools. Austerity measures may eventually affect the investment

  9. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  10. Joint U.S. Defense Science Board, UK Defence Scientific Advisory Council Task Force on Defense Critical Technologies

    DTIC Science & Technology

    2006-03-01

    electrons (e.g., betavoltaics ) in a compact package is emerging as a possible new high energy density power source. Proliferation is not an issue...10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 2 10 3 10 4 10 5 10 6 10 7 Total Dose [rad) Si )] Strategic Space Strategic Missiles St ra te gi

  11. Design and Development of Anthropometrically Correct Head Forms for Joint Strike Fighter Ejection Seat Testing

    DTIC Science & Technology

    2005-02-01

    Testing John A. Plaga Air Force Research Laboratory Chris Albery Mark Boehmer Chuck Goodyear Glenn Thomas Advanced...PROJECT NUMBER 7184 5e. TASK NUMBER 02 6. AUTHOR(S) John A. Plaga *Chris Albery *Mark Boehmer *Chuck Goodyear *Glenn Thomas 5f. WORKUNIT...laser scan 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON: John A. Plaga a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  12. The Global War on Terrorism: Analytical Support, Tools and Metrics of Assessment. MORS Workshop

    DTIC Science & Technology

    2005-08-11

    is the matter of intelligence, as COL(P) Keller pointed out, we need to spend less time in the intelligence cycle on managing information and...models, decision aids: "named things " * Methodologies: potentially useful things "* Resources: databases, people, books? * Meta-data on tools * Develop a...experience. Only one member (Mr. Garry Greco) had served on the Joint Intelligence Task Force for Counter Terrorism. Although Gary heavily participated

  13. Reforming Military Command Arrangements: The Case of the Rapid Deployment Joint Task Force

    DTIC Science & Technology

    2011-03-01

    protected. Organizational theory has identified actions that organizations normally pursue or avoid in order to increase—or at least preserve—their...thesis. See note 1 for details. 85 179. Jeffrey W. Taliaferro, Steven E. Lobell, and Norrin M. Ripsman, “Introduction: Neoclassical Realism, the State...and For- eign Policy,” in Steven E. Lobell, Norrin M. Ripsman and Jeffrey W. Taliaferro, eds., Neoclassical Realism, the State, and Foreign Poli- cy

  14. Training Challenges for the U.S. Army in the Pacific

    DTIC Science & Technology

    2013-03-01

    each other on a frequent enough basis to be thought of as “interoperable.” All the parties involved have different standard operating procedures ...13 All have different command and control technologies and all have different procedures to plan, prepare, coordinate and synchronize operations...does not fix it. Joint Task Force tactics, techniques and procedures are eventually developed but they take time and amount to a band aid as opposed

  15. Method to Select Technical Terms for Glossaries in Support of Joint Task Force Operations

    DTIC Science & Technology

    2012-01-01

    have been prohibitively time-consuming. Instead, we identified two publicly available terminology extractor tools: TerMine (NaCTEM, 2011) and Alchemy ...and that from the latter, by high recall. The Alchemy approach contrasts with that used in TerMine in that Alchemy will process the text with...information categories, such as person, location, and organization, in addition to returning topic keywords. Output from both TerMine and Alchemy

  16. Using Advanced Prosthetics for Stress Inoculation Training and to Teach Life Saving Skills

    DTIC Science & Technology

    2010-04-01

    was successful in applying off-the-shelf video games to their training methods. The effectiveness of video games as a teaching tool can be found...study, we evaluated the physiological responses of trainees during a virtual combat medic video game task performance. In this experiment combat...Shoot House Virtual Reality Videogame (VRVG) MOUT training and testing for joint forces and for echelon one combat trauma care SIT training

  17. Women’s Work: Incorporating Females into the United States Military Strategy to Contain and Degrade Boko Haram

    DTIC Science & Technology

    2017-06-09

    Facilities, Policies FET Female Engagement Team FINER Feasible, Interesting, Novel, Ethical and Relevant MNJTF Multinational Joint Task Force NMS...Engagement Team: All volunteer female team of appropriate rank, experience, and maturity whose mission is to engage with female members of a community ...incredibly successful and led to the U.S. Military’s recognition of the importance of establishing trust and communication with the female populations

  18. Forces Generated by Vastus Lateralis and Vastus Medialis Decrease with Increasing Stair Descent Speed.

    PubMed

    Caruthers, Elena J; Oxendale, Kassandra K; Lewis, Jacqueline M; Chaudhari, Ajit M W; Schmitt, Laura C; Best, Thomas M; Siston, Robert A

    2018-04-01

    Stair descent (SD) is a common, difficult task for populations who are elderly or have orthopaedic pathologies. Joint torques of young, healthy populations during SD increase at the hip and ankle with increasing speed but not at the knee, contrasting torque patterns during gait. To better understand the sources of the knee torque pattern, we used dynamic simulations to estimate knee muscle forces and how they modulate center of mass (COM) acceleration across SD speeds (slow, self-selected, and fast) in young, healthy adults. The vastus lateralis and vastus medialis forces decreased from slow to self-selected speeds as the individual lowered to the next step. Since the vasti are primary contributors to vertical support during SD, they produced lower forces at faster speeds due to the lower need for vertical COM support observed at faster speeds. In contrast, the semimembranosus and rectus femoris forces increased across successive speeds, allowing the semimembranosus to increase acceleration downward and forward and the rectus femoris to provide more vertical support and resistance to forward progression as SD speed increased. These results demonstrate the utility of dynamic simulations to extend beyond traditional inverse dynamics analyses to gain further insight into muscle mechanisms during tasks like SD.

  19. Group benefits in joint perceptual tasks-a review.

    PubMed

    Wahn, Basil; Kingstone, Alan; König, Peter

    2018-05-12

    In daily life, humans often perform perceptual tasks together to reach a shared goal. In these situations, individuals may collaborate (e.g., by distributing task demands) to perform the task better than when the task is performed alone (i.e., attain a group benefit). In this review, we identify the factors influencing if, and to what extent, a group benefit is attained and provide a framework of measures to assess group benefits in perceptual tasks. In particular, we integrate findings from two frequently investigated joint perceptual tasks: visuospatial tasks and decision-making tasks. For both task types, we find that an exchange of information between coactors is critical to improve joint performance. Yet, the type of exchanged information and how coactors collaborate differs between tasks. In visuospatial tasks, coactors exchange information about the performed actions to distribute task demands. In perceptual decision-making tasks, coactors exchange their confidence on their individual perceptual judgments to negotiate a joint decision. We argue that these differences can be explained by the task structure: coactors distribute task demands if a joint task allows for a spatial division and stimuli can be accurately processed by one individual. Otherwise, they perform the task individually and then integrate their individual judgments. © 2018 New York Academy of Sciences.

  20. Army Science Board FY2000 Summer Study. Technical and Tactical Opportunities for Revolutionary Advances in Rapidly Deployable Joint Ground Forces in the 2015-2025 Era. Volume III: Information Dominance Panel Report

    DTIC Science & Technology

    2001-04-01

    Information Dominance , Sustainment and Support, and Training. The study concludes: 1) the FCS concept is sound, but senior level attention is required to ensure technologies are ready for 2006 FCS EMD; and 2) Key technologies will significantly improve force projection and combat power. The Information Dominance Panel was tasked to: 1) Assess required sensors at National and Theater level; 2) Assess the technological opportunity to provide necessary bandwidth for data, voice and video requirements; 3) Ascertain the requirements to deny the threat

  1. Neural network-based position synchronised internal force control scheme for cooperative manipulator system

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Xu, Fan; Lu, GuoDong

    2017-09-01

    More complex problems of simultaneous position and internal force control occur with cooperative manipulator systems than that of a single one. In the presence of unwanted parametric and modelling uncertainties as well as external disturbances, a decentralised position synchronised force control scheme is proposed. With a feedforward neural network estimating engine, a precise model of the system dynamics is not required. Unlike conventional cooperative or synchronised controllers, virtual position and virtual synchronisation errors are introduced for internal force tracking control and task space position synchronisation. Meanwhile joint space synchronisation and force measurement are unnecessary. Together with simulation studies and analysis, the position and the internal force errors are shown to asymptotically converge to zero. Moreover, the controller exhibits different characteristics with selected synchronisation factors. Under certain settings, it can deal with temporary cooperation by an intelligent retreat mechanism, where less internal force would occur and rigid collision can be avoided. Using a Lyapunov stability approach, the controller is proven to be robust in face of the aforementioned uncertainties.

  2. Benchmarking progress in the implementation of the Fourth Joint Societies' Task Force Guidelines on the Prevention of Cardiovascular Disease in Clinical Practice.

    PubMed

    Morgan, Karen; Burke, Helen; McGee, Hannah

    2013-02-01

    The Fourth Joint Societies' Task Force (4th JTF) Guidelines on Cardiovascular Disease Prevention in Clinical Practice are agreed, evidence-based standards of care across European countries and professions. In advance of the publication of the 5th JTF Guidelines in 2012, this work assesses the extent to which the 4th JTF guidelines have been implemented. Qualitative study of guideline implementation in 13 European countries, focusing on the themes of guideline implementation structures, processes, and outcomes. Key personnel in 13 selected countries completed interviews or comparable questionnaires: they were national coordinators for CVD prevention (n = 14) and representatives of the national cardiac society (n = 9), heart foundations (n = 11), health ministry (n = 8), and service providers (n = 3). Interview and service-related data from each country were compiled to provide a detailed overview. Ten of the 13 countries used European Society of Cardiology (ESC) guidelines on prevention at a national level, where three broad approaches to implementation were identified. In all 10 countries, multidisciplinary alliances oversaw implementation, but ongoing promotion of the guidelines was not evident, with just two of the 10 countries conducting evaluation of implementation. Barriers to implementation included weak health authority support, the unwieldy nature of the guidelines, guideline fatigue, and the lesser role of prevention in national healthcare systems. Substantial progress had been made in implementing the guidelines, but countries struggled with the task. Some rebalancing of the ESC focus may be warranted so that part of the effort dedicated to improving guidelines might be redirected at translating them into practice.

  3. Reconfiguration of the upper extremity relative to the pushrim affects load distribution during wheelchair propulsion.

    PubMed

    Munaretto, Joseph M; McNitt-Gray, Jill L; Flashner, Henryk; Requejo, Philip S

    2013-08-01

    Repetitive loading during manual wheelchair propulsion (WCP) is associated with overuse injury to the upper extremity (UE). The aim of this study was to determine how RF redirection and load distribution are affected by changes upper extremity kinematic modifications associated with modifications in seat positions during a WCP task. The aim of this study was to determine how RF redirection and load distribution are affected by upper extremity kinematic changes associated with seat position adjustment during a WCP task. Dynamic simulations using an experiment-based multi-link inverse dynamics model were used to generate solutions for redistributing UE mechanical load in different seating positions without decrements in WCP task performance. Experimental RF and kinematic data were collected for one subject propelling at a self-selected speed and used as input into the model. Shoulder/axle distance, wrist angular position, and RF direction were systematically modified to simulate how the mechanical demand imposed on the upper extremity (elbow and shoulder net joint moments (NJMs) and net joint forces) may vary. Load distribution depended on UE orientation relative to the wheel. At peak force, lower shoulder/axle distances and more anterior wrist positions on the pushrim allowed for more extended elbow positions and reduced total NJM load. Simulation results incorporating subject-specific data may provide mechanically based information to guide clinical interventions that aim to maintain WCP performance and redistribute load by modifying RF direction, seat configuration and hand/rim interaction. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. The joint flanker effect and the joint Simon effect: On the comparability of processes underlying joint compatibility effects.

    PubMed

    Dittrich, Kerstin; Bossert, Marie-Luise; Rothe-Wulf, Annelie; Klauer, Karl Christoph

    2017-09-01

    Previous studies observed compatibility effects in different interference paradigms such as the Simon and flanker task even when the task was distributed across two co-actors. In both Simon and flanker tasks, performance is improved in compatible trials relative to incompatible trials if one actor works on the task alone as well as if two co-actors share the task. These findings have been taken to indicate that actors automatically co-represent their co-actor's task. However, recent research on the joint Simon and joint flanker effect suggests alternative non-social interpretations. To which degree both joint effects are driven by the same underlying processes is the question of the present study, and it was scrutinized by manipulating the visibility of the co-actor. While the joint Simon effect was not affected by the visibility of the co-actor, the joint flanker effect was reduced when participants did not see their co-actors but knew where the co-actors were seated. These findings provide further evidence for a spatial interpretation of the joint Simon effect. In contrast to recent claims, however, we propose a new explanation of the joint flanker effect that attributes the effect to an impairment in the focusing of spatial attention contingent on the visibility of the co-actor.

  5. Concurrent Path Planning with One or More Humanoid Robots

    NASA Technical Reports Server (NTRS)

    Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)

    2014-01-01

    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.

  6. Identifying the control structure of multijoint coordination during pistol shooting.

    PubMed

    Scholz, J P; Schöner, G; Latash, M L

    2000-12-01

    The question of degrees of freedom in the control of multijoint movement is posed as the problem of discovering how the motor control system constrains the many possible combinations of joint postures to stabilize task-dependent essential variables. Success at a task can be achieved, in principle, by always adopting a particular joint combination. In contrast, we propose a more selective control strategy: variations of the joint configuration that leave the values of essential task variables unchanged are predicted to be less controlled (i.e., stabilized to a lesser degree) than joint configuration changes that shift the values of the task variables. Our experimental task involved shooting with a laser pistol at a target under four conditions. The seven joint angles of the arm were obtained from the recorded positions of markers on the limb segments. The joint configurations observed at each point in normalized time were analyzed with respect to trial-to-trial variability. Different hypotheses about relevant task variables were used to define sets of joint configurations ("uncontrolled manifolds" or UCMs) that, if realized, would leave essential task variables unchanged. The variability of joint configurations was decomposed into components lying parallel to those sets and components lying in their complement. The orientation of the gun's barrel relative to a vector pointing from the gun to the target was the task variable most successful at showing a difference between the two components of joint variability. This variable determines success at the task. Throughout the movement, not only while the gun was pointing at the target, fluctuations of joint configuration that affected this variable were much reduced compared with fluctuations that did not affect this variable. The UCM principle applied to relative gun orientation thus captures the structure of the motor control system across different parts of joint configuration space as the movement evolves in time. This suggests a specific control strategy in which changes of joint configuration that are irrelevant to success at the task are selectively released from control. By contrast, constraints representing an invariant spatial position of the gun or of the arm's center of mass structured joint configuration variability in the early and mid-portion of the movement trajectory, but not at the time of shooting. This specific control strategy is not trivial, because a target can be hit successfully also by controlling irrelevant directions in joint space equally to relevant ones. The results indicate that the method can be successfully used to determine the structure of coordination in joint space that underlies the control of the essential variables for a given task.

  7. Composite Overwrapped Pressure Vessels: Database Extension Task 3.0 and Impact Damage Effects Control Task 8.0

    NASA Technical Reports Server (NTRS)

    Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.

    2002-01-01

    This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.

  8. FRAX® International Task Force of the 2010 Joint International Society for Clinical Densitometry & International Osteoporosis Foundation Position Development Conference.

    PubMed

    Cauley, Jane A; El-Hajj Fuleihan, Ghada; Luckey, Marjorie M

    2011-01-01

    Osteoporosis is a serious worldwide epidemic. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors and femoral neck BMD and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. The International Society for Clinical Densitometry (ISCD) in conjunction with the International Osteoporosis Foundation (IOF) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX® usage. As part of the process, the charge of the FRAX® International Task Force was to review and synthesize data regarding geographic and race/ethnic variability in hip fractures, non-hip osteoporotic fractures, and make recommendations about the use of FRAX® in ethnic groups and countries without a FRAX® calculator. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the International Task Force composition and charge is presented here. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. Official Positions for FRAX® clinical regarding international differences from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®.

    PubMed

    Cauley, Jane A; El-Hajj Fuleihan, Ghada; Arabi, Asma; Fujiwara, Saeko; Ragi-Eis, Sergio; Calderon, Andrew; Chionh, Siok Bee; Chen, Zhao; Curtis, Jeffrey R; Danielson, Michelle E; Hanley, David A; Kroger, Heikki; Kung, Annie W C; Lesnyak, Olga; Nieves, Jeri; Pluskiewicz, Wojciech; El Rassi, Rola; Silverman, Stuart; Schott, Anne-Marie; Rizzoli, Rene; Luckey, Marjorie

    2011-01-01

    Osteoporosis is a serious worldwide epidemic. Increased risk of fractures is the hallmark of the disease and is associated with increased morbidity, mortality and economic burden. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors, femoral neck BMD, country specific mortality and fracture data and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator at the time paper was accepted for publication. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. In order to provide additional guidance to clinicians, a FRAX® International Task Force was formed to address specific questions raised by physicians in countries without FRAX® calculators and seeking to integrate FRAX® into their clinical practice. The main questions that the task force tried to answer were the following: The Task Force members conducted appropriate literature reviews and developed preliminary statements that were discussed and graded by a panel of experts at the ISCD-IOF joint conference. The statements approved by the panel of experts are discussed in the current paper. Copyright © 2011. Published by Elsevier Inc.

  10. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  11. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  12. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  13. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain 'copers'.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To compare the movement patterns and underlying energetics of individuals with chronic ankle instability (CAI) to ankle sprain 'copers' during a landing task. Twenty-eight (age 23.2 ± 4.9 years; body mass 75.5 ± 13.9 kg; height 1.7 ± 0.1 m) participants with CAI and 42 (age 22.7 ± 1.7 years; body mass 73.4 ± 11.3 kg; height 1.7 ± 0.1 m) ankle sprain 'copers' were evaluated 1 year after incurring a first-time lateral ankle sprain injury. Kinematics and kinetics of the hip, knee and ankle joints from 200 ms pre-initial contact (IC) to 200 ms post-IC, in addition to the vertical component of the landing ground reaction force, were acquired during performance of a drop land task. The CAI group adopted a position of increased hip flexion during the landing descent on their involved limb. This coincided with a reduced post-IC flexor pattern at the hip and increased overall hip joint stiffness compared to copers (-0.01 ± 0.05 vs. 0.02 ± 0.05°/Nm kg(-1), p = 0.03). Individuals with CAI display alterations in hip joint kinematics and energetics during a unipodal landing task compared to LAS 'copers'. These alterations may be responsible for the increased risk of injury experienced by individuals with CAI during landing manoeuvres. Thus, clinicians must recognise the potential for joints proximal to the affected ankle to contribute to impaired function following an acute lateral ankle sprain injury and to develop rehabilitation protocols accordingly. Level III.

  14. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    PubMed

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both p<0.05) but only for the constant force condition. Furthermore, EMG modulation resulted from uniform scaling of EMG amplitude across all muscles. We conclude that the CNS controlled both extrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. A COMPARISON OF STATIC AND DYNAMIC OPTIMIZATION MUSCLE FORCE PREDICTIONS DURING WHEELCHAIR PROPULSION

    PubMed Central

    Morrow, Melissa M.; Rankin, Jeffery W.; Neptune, Richard R.; Kaufman, Kenton R.

    2014-01-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4 % Fmax error in the middle deltoid) to good (6.4 % Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075

  16. Effects of dopamine replacement therapy on lower extremity kinetics and kinematics during a rapid force production task in persons with Parkinson disease.

    PubMed

    Foreman, K Bo; Singer, Madeline L; Addison, Odessa; Marcus, Robin L; LaStayo, Paul C; Dibble, Leland E

    2014-01-01

    Postural instability appears to be a dopamine resistance motor deficit in persons with Parkinson disease (PD); however, little is known about the effects of dopamine replacement on the relative biomechanical contributions of individual lower extremity joints during postural control tasks. To gain insight, we examined persons with PD using both clinical and laboratory measures. For a clinical measure of motor severity we utilized the Unified Parkinson Disease Rating Scale motor subsection during both OFF and ON medication conditions. For the laboratory measure we utilized data gathered during a rapid lower extremity force production task. Kinematic and kinetic variables at the hip, knee, and ankle were gathered during a counter movement jump during both OFF and ON medication conditions. Sixteen persons with PD with a median Hoehn and Yahr severity of 2.5 completed the study. Medication resulted in significant improvements of angular displacement for the hip, knee, and ankle. Furthermore, significant improvements were revealed only at the hip for peak net moments and average angular velocity compared to the OFF medication condition. These results suggest that dopamine replacement medication result in decreased clinical motor disease severity and have a greater influence on kinetics and kinematics proximally. This proximally focused improvement may be due to active recruitment of muscle force and reductions in passive restraint during lower extremity rapid force production. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Arch structure is associated with unique joint work, relative joint contributions and stiffness during landing.

    PubMed

    Powell, Douglas W; Queen, Robin M; Williams, D S Blaise

    2016-10-01

    To examine lower extremity joint contributions to a landing task in high-(HA) and low-arched (LA) female athletes by quantifying vertical stiffness, joint work and relative joint contributions to landing. Twenty healthy female recreational athletes (10 HA and 10 LA) performed five barefoot drop landings from a height of 30cm. Three-dimensional kinematics (240Hz) and ground reaction forces (960Hz) were recorded simultaneously. Vertical stiffness, joint work values and relative joint work values were calculated using Visual 3D and MatLab. HA athletes had significantly greater vertical stiffness compared to LA athletes (p=0.013). Though no differences in ankle joint work were observed (p=0.252), HA athletes had smaller magnitudes of knee (p=0.046), hip (p=0.019) and total lower extremity joint work values (p=0.016) compared to LA athletes. HA athletes had greater relative contributions of the ankle (p=0.032) and smaller relative contributions of the hip (p=0.049) compared to LA athletes. No differences in relative contributions of the knee were observed (p=0.255). These findings demonstrate that aberrant foot structure is associated with unique contributions of lower extremity joints to load attenuation during landing. These data may provide insight into the unique injury mechanisms associated with arch height in female athletes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Transatlantic Current. Number 7. October 2012. Building Future Transatlantic Interoperability Around a Robust NATO Response Force

    DTIC Science & Technology

    2012-10-01

    inss short, multinational skills have reached an all time high, though there is more road ahead than already traveled . However, this accrued wealth of...training centers such as the bilateral U.S.- Romanian Joint Task Force– East at Kogalniceanu Airbase Romania. Stand up a U.S. Corps Forward Element in...which facilitates practical cooperation downstream, either within NATO or in any coalition operations. Increase U.S. and Allied Exchange Students

  19. Joint Force Pre-Deployment Training: An Initial Analysis and Product Definition (Strategic Mobility 21: IT Planning Document for APS Demonstration Document (Task 3.7)

    DTIC Science & Technology

    2010-04-13

    Office of Naval Research. DISTRIBUTION STATEMENT A . Approved for public release; distribution is unlimited. a . This statement may be used only on...documents resulting from contracted fundamental research efforts will normally be assigned Distribution Statement A , except for those rare and exceptional...circumstances where there is a high likelihood of disclosing performance characteristics of military systems, or of manufacturing technologies that

  20. Telematic Infrastructures for Flexible and Distance Learning "Electronic Universities." A Report from DELTA Workshops on Telematic Networks for Distance Education and Training "Electronic Universities" and on Learning Technology (October 1990, November 1990).

    ERIC Educational Resources Information Center

    Moller, Morten, Ed.; Shaughnessy, Haydn, Ed.

    This report is based on contributions to two workshops arranged jointly by Task Force Human Resources and the DELTA (Developing European Learning through Technological Advance) Unit. The purpose of collecting these papers was to provide an overview of the implications of the DELTA Exploratory Action outcomes for future research. After the preface…

  1. The Glass Ceiling - A Question of Joint Officer Development - Why Only Five USAF Geographic Combatant Commanders?

    DTIC Science & Technology

    2010-07-26

    kit/OEF.asp (accessed March 6, 2011). 19 U.S. Central Command. "US CENTCOM Leadership: General James N. Mattis , Commander,‖ http... Mattis , USMC Commander, USCENTCOM 0 2 Cmdr, Task Force 58 Cmdr, USJFCOM Admiral James G. Stavridis, USN Commander, USEUCOM 1 2 Plans Officer, JCS...U.S. Central Command. "US CENTCOM Leadership." General James N. Mattis . https://slsp.http://www.centcom.mil/en/about-centcom/leadership

  2. The FATA/NWFP Dilemma; Defining United States Policy for Long Term Stability on the Afghanistan-Pakistan Border

    DTIC Science & Technology

    2010-05-18

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES) National Defense University...Joint Forces Staff College, 7800 Hampton Blvd, Norfolk, VA, 23511-1702 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...especially the SEM III crew, thanks for all of the laughs, and above all, thanks for all of the teamwork . I look forward to serving with you all in

  3. Joint Task Force - Port Opening: Can this Emerging Capability Expedite Operational Objectives Throughout the Range of Military Operations?

    DTIC Science & Technology

    2009-10-26

    for Acquisition, Technology, and Logistics, 30 July 2007). 16 Craig Koontz , ―U.S. Transportation Command,‖ PowerPoint, 23 September 2009, Newport, RI...Support Group. To Lt Col Michael W. Pratt, Naval War College. Memorandum, 30 September 2009. Koontz , Craig. ―U.S. Transportation Command...PowerPoint. 23 September 2009. 22 Koontz , Craig. Contractor/Advisor to CDR U.S. Transportation Command. To Lt Col Michael W. Pratt, 28

  4. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications for January 1, 2005 through March 31, 2005 processed by the NASA Center for AeroSpace Center available on the NASA Aeronautics and Space Database. Contents include 1) Electronic Information Management; 2) Decision Support to Combined Joint Task Force and Component Commanders; 3) RTO Technical Publications : A Quarterly Listing (December 2004); 4) The Role of Humans in Intelligent and Automated Systems.

  5. Educating Special Forces Junior Leaders for a Complex Security Environment

    DTIC Science & Technology

    2009-07-01

    Security Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Joint Special Operations University,357 Tully Street Alison Building,Hurlburt Field,FL...32544 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR

  6. Report of the DoD Joint Service Task Force on Software Problems

    DTIC Science & Technology

    1982-07-30

    technology, but this lead can quickly vanish much as the steel and automobile industries’ leads vanished during the last decade. There would be a signi...number of definitions of firmware are in vogue, the most common state that firmware is: o Reprogrammable hardware O Hardware implementation of...and thus would be expected to be easily reprogrammable . In fact, A-49 one of the trade-off considerations would be whether this should be handled as

  7. California's Changing Families: Social, Economic and Demographic Realities. Hearing before the Assembly Human Services Committee, Senate Health and Human Services Committee, and the Joint Select Task Force on the Changing Family (Los Angeles, California, March 1988).

    ERIC Educational Resources Information Center

    California State Legislature, Sacramento. Assembly.

    At the hearing reported in this document, 38 witnesses representing a diverse cross-section of the state testified on the condition of the California family, with some also proposing solutions. Witnesses included legislators from the federal, state, and local levels; administrative and other workers from social service agencies; representatives of…

  8. The Interagency Cometh: Is the National Security System of 1947 Capable of Handling the Challenges of 2009?

    DTIC Science & Technology

    2009-01-01

    command system.2 The United States Southern Command, responsible for Department of Defense planning, coordination, and operations in Central America ...South America and i waters, formed its Joint Interagency Task Force South to enable it to conduct coordinated illicit trafficking operations. ts y...Collin Powell and Secretary of Defense Donald Rumsfeld, the National Security Council has at times been a place for policy to come to die under the

  9. Georgia’s Cyber Left Hook

    DTIC Science & Technology

    2009-01-01

    Relations for the Joint Task Force- Global Network Operations (JTF-GNO/ J5 ). He assists in development of cyber policy and strategy for operations and...History (Manchester, U.K: Manchester Univ. Press, 2000), 1. 10. See The Steamship Appam, 243 U.S. 124 (1917). 11. Jeffrey T. G. Kelsey, “ Hacking into...Arrest for Computer Hacking ,” news release, 1 October 2007, http://www.cybercrime.gov/kingIndict.pdf. 39. Grant Gross, “FBI: Several Nations Eyeing U.S

  10. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises

    PubMed Central

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-01-01

    Context  Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. Objective  To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Design  Descriptive laboratory study. Setting  Laboratory. Patients or Other Participants  A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Intervention(s)  Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Main Outcome Measure(s)  Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. Results  We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Conclusions  Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat. PMID:26418958

  11. Curriculum for neurogastroenterology and motility training: A report from the joint ANMS-ESNM task force.

    PubMed

    Gyawali, C P; Savarino, E; Lazarescu, A; Bor, S; Patel, A; Dickman, R; Pressman, A; Drewes, A M; Rosen, J; Drug, V; Saps, M; Novais, L; Vazquez-Roque, M; Pohl, D; van Tilburg, M A L; Smout, A; Yoon, S; Pandolfino, J; Farrugia, G; Barbara, G; Roman, S

    2018-03-25

    Although neurogastroenterology and motility (NGM) disorders are some of the most frequent disorders encountered by practicing gastroenterologists, a structured competency-based training curriculum developed by NGM experts is lacking. The American Neurogastroenterology and Motility Society (ANMS) and the European Society of Neurogastroenterology and Motility (ESNM) jointly evaluated the components of NGM training in North America and Europe. Eleven training domains were identified within NGM, consisting of functional gastrointestinal disorders, visceral hypersensitivity and pain pathways, motor disorders within anatomic areas (esophagus, stomach, small bowel and colon, anorectum), mucosal disorders (gastro-esophageal reflux disease, other mucosal disorders), consequences of systemic disease, consequences of therapy (surgery, endoscopic intervention, medications, other therapy), and transition of pediatric patients into adult practice. A 3-tiered training curriculum covering these domains is proposed here and endorsed by all NGM societies. Tier 1 NGM knowledge and training is expected of all gastroenterology trainees and practicing gastroenterologists. Tier 2 knowledge and training is appropriate for trainees who anticipate NGM disorder management and NGM function test interpretation being an important part of their careers, which may require competency assessment and credentialing of test interpretation skills. Tier 3 knowledge and training is undertaken by trainees interested in a dedicated NGM career and may be restricted to specific domains within the broad NGM field. The joint ANMS and ESNM task force anticipates that the NGM curriculum will streamline NGM training in North America and Europe and will lead to better identification of centers of excellence where Tier 2 and Tier 3 training can be accomplished. © 2018 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons, Ltd.

  12. Soft tissue balance changes depending on joint distraction force in total knee arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Matsumoto, Tomoyuki; Miya, Hidetoshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2014-03-01

    The influence of joint distraction force on intraoperative soft tissue balance was evaluated using Offset Repo-Tensor® for 78 knees that underwent primary posterior-stabilized total knee arthroplasty. The joint center gap and varus ligament balance were measured between osteotomized surfaces using 20, 40 and 60 lbs of joint distraction force. These values were significantly increased at extension and flexion as the distraction force increased. Furthermore, lateral compartment stiffness was significantly lower than medial compartment stiffness. Thus, larger joint distraction forces led to larger varus ligament balance and joint center gap, because of the difference in soft tissue stiffness between lateral and medial compartments. These findings indicate the importance of the strength of joint distraction force in the assessment of soft tissue balance, especially when using gap-balancing technique. © 2014.

  13. Report of the wwPDB Small-Angle Scattering Task Force: data requirements for biomolecular modeling and the PDB.

    PubMed

    Trewhella, Jill; Hendrickson, Wayne A; Kleywegt, Gerard J; Sali, Andrej; Sato, Mamoru; Schwede, Torsten; Svergun, Dmitri I; Tainer, John A; Westbrook, John; Berman, Helen M

    2013-06-04

    This report presents the conclusions of the July 12-13, 2012 meeting of the Small-Angle Scattering Task Force of the worldwide Protein Data Bank (wwPDB; Berman et al., 2003) at Rutgers University in New Brunswick, New Jersey. The task force includes experts in small-angle scattering (SAS), crystallography, data archiving, and molecular modeling who met to consider questions regarding the contributions of SAS to modern structural biology. Recognizing there is a rapidly growing community of structural biology researchers acquiring and interpreting SAS data in terms of increasingly sophisticated molecular models, the task force recommends that (1) a global repository is needed that holds standard format X-ray and neutron SAS data that is searchable and freely accessible for download; (2) a standard dictionary is required for definitions of terms for data collection and for managing the SAS data repository; (3) options should be provided for including in the repository SAS-derived shape and atomistic models based on rigid-body refinement against SAS data along with specific information regarding the uniqueness and uncertainty of the model, and the protocol used to obtain it; (4) criteria need to be agreed upon for assessment of the quality of deposited SAS data and the accuracy of SAS-derived models, and the extent to which a given model fits the SAS data; (5) with the increasing diversity of structural biology data and models being generated, archiving options for models derived from diverse data will be required; and (6) thought leaders from the various structural biology disciplines should jointly define what to archive in the PDB and what complementary archives might be needed, taking into account both scientific needs and funding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. FRAX(®) Bone Mineral Density Task Force of the 2010 Joint International Society for Clinical Densitometry & International Osteoporosis Foundation Position Development Conference.

    PubMed

    Lewiecki, E Michael; Compston, Juliet E; Miller, Paul D; Adachi, Jonathan D; Adams, Judith E; Leslie, William D; Kanis, John A

    2011-01-01

    FRAX(®) is a fracture risk assessment algorithm developed by the World Health Organization in cooperation with other medical organizations and societies. Using easily available clinical information and femoral neck bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA), when available, FRAX(®) is used to predict the 10-year probability of hip fracture and major osteoporotic fracture. These values may be included in country specific guidelines to aid clinicians in determining when fracture risk is sufficiently high that the patient is likely to benefit from pharmacological therapy to reduce that risk. Since the introduction of FRAX(®) into clinical practice, many practical clinical questions have arisen regarding its use. To address such questions, the International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundations (IOF) assigned task forces to review the best available medical evidence and make recommendations for optimal use of FRAX(®) in clinical practice. Questions were identified and divided into three general categories. A task force was assigned to investigating the medical evidence in each category and developing clinically useful recommendations. The BMD Task Force addressed issues that included the potential use of skeletal sites other than the femoral neck, the use of technologies other than DXA, and the deletion or addition of clinical data for FRAX(®) input. The evidence and recommendations were presented to a panel of experts at the ISCD-IOF FRAX(®) Position Development Conference, resulting in the development of ISCD-IOF Official Positions addressing FRAX(®)-related issues. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  15. Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups

    NASA Astrophysics Data System (ADS)

    Desmedt, Yvo; Lange, Tanja; Burmester, Mike

    Task-specific groups are often formed in an ad-hoc manner within large corporate structures, such as companies. Take the following typical scenario: A director decides to set up a task force group for some specific project. An order is passed down the hierarchy where it finally reaches a manager who selects some employees to form the group. The members should communicate in a secure way and for efficiency, a symmetric encryption system is chosen. To establish a joint secret key for the group, a group key exchange (GKE) protocol is used. We show how to use an existing Public Key Infrastructure (PKI) to achieve authenticated GKE by modifying the protocol and particularly by including signatures.

  16. Mapping Muscles Activation to Force Perception during Unloading

    PubMed Central

    Toma, Simone; Lacquaniti, Francesco

    2016-01-01

    It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity (“muscle-metric function”) that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces. PMID:27032087

  17. Mapping Muscles Activation to Force Perception during Unloading.

    PubMed

    Toma, Simone; Lacquaniti, Francesco

    2016-01-01

    It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function") that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.

  18. The Joint Master Operational Planner

    DTIC Science & Technology

    2016-04-04

    Daniel H. Hibner, United States Army Joint Forces Staff College Joint Advanced Warfighting School 7800 Hampton Blvd. Norfolk, VA 23511-1702 Approved...Operational Art. Unclass Unclass Unclass Unclassified Unlimited 66 757-443-6301 NATIONAL DEFENSE UNIVERSITY JOINT FORCES STAFF COLLEGE JOINT ADVANCED...of this paper reflect my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the department of Defense. Thesis

  19. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis.

    PubMed

    Ward, Sarah; Pearce, Alan J; Pietrosimone, Brian; Bennell, Kim; Clark, Ross; Bryant, Adam L

    2015-03-01

    In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion. © 2014 Wiley Periodicals, Inc.

  20. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  1. Decision Support to Combined Joint Task Force and Component Commanders (L’aide a la prise de decisions pour les commandants de composantes et de groupes de forces interarmees multinationales)

    DTIC Science & Technology

    2004-12-01

    RTO-TR-SAS-044 4 Stapler 4 in total 5 Hole punch 4 in total 6 Long ruler 4 in total 7 Protractor and set squares 4 in total 8 Compass 4 in...ESPAGNE 00187 Roma Information Centre, Building 247 SDG TECEN / DGAM Dstl Porton Down C/ Arturo Soria 289 LUXEMBOURG Salisbury Madrid 28033 Voir...CZECH REPUBLIC H-1525 Budapest P O Box 26 SDG TECEN / DGAM LOM PRAHA s.p. C/ Arturo Soria 289 VTÚL a PVO o.z. ICELAND Madrid 28033 DIS ČR – NATO RTO

  2. Strategies utilized to transfer weight during knee flexion and extension with rotation for individuals with a total knee replacement.

    PubMed

    Ferris, Lauren A; Denney, Linda M; Maletsky, Lorin P

    2013-02-01

    Functional activities in daily life can require squatting and shifting body weight during transverse plane rotations. Stability of the knee can be challenging for people with a total knee replacement (TKR) due to reduced proprioception, nonconforming articular geometry, muscle strength, and soft tissue weakness. The objective of this study was to identify strategies utilized by individuals with TKR in double-stance transferring load during rotation and flexion. Twenty-three subjects were recruited for this study: 11 TKR subjects (age: 65 ± 6 years; BMI 27.4 ± 4.1) and 12 healthy subjects (age: 63 ± 7; BMI 24.6 ± 3.8). Each subject completed a novel crossover button push task where rotation, flexion, and extension of the knee were utilized. Each subject performed two crossover reaching tasks where the subject used the opposite hand to cross over their body and press a button next to either their shoulder (high) or knee (low), then switched hands and rotated to press the opposite button, either low or high. The two tasks related to the order they pressed the buttons while crossing over, either low-to-high (L2H) or high-to-low (H2L). Force platforms measured ground reaction forces under each foot, which were then converted to lead force ratios (LFRs) based on the total force. Knee flexion angles were also measured. No statistical differences were found in the LFRs during the H2L and L2H tasks for the different groups, although differences in the variation of the loading within subjects were noted. A significant difference was found between healthy and unaffected knee angles and a strong trend between healthy and affected subject's knee angles in both H2L and L2H tasks. Large variations in the LFR at mid-task in the TKR subjects suggested possible difficulties in maintaining positional stability during these tasks. The TKR subjects maintained more of an extended knee, which is a consistent quadriceps avoidance strategy seen by other researchers in different tasks. These outcomes suggest that individuals with a TKR utilize strategies, such as keeping an extended knee, to achieve rotary tasks during knee flexion and extension. Repeated compensatory movements could result in forces that may cause difficulty over time in the hip joints or low back. Early identification of these strategies could improve TKR success and the return to activities of daily living that involve flexion and rotation.

  3. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, Francois G.

    2002-06-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus,more » there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and type of constraints and in task objectives, and can adapt to changes in kinematics configurations (change of module, change of tool, joint failure adaptation, etc.).« less

  4. Risk of subacromial shoulder disorder in airport baggage handlers: combining duration and intensity of musculoskeletal shoulder loads.

    PubMed

    Møller, Sanne Pagh; Brauer, Charlotte; Mikkelsen, Sigurd; Alkjær, Tine; Koblauch, Henrik; Pedersen, Ellen Bøtker; Simonsen, Erik B; Thygesen, Lau Caspar

    2018-04-01

    Musculoskeletal shoulder load among baggage handlers measured by combining duration and intensity based on biomechanical and epidemiological information may be a stronger predictor of subacromial shoulder disorders than baggage handler seniority. In 2012, a cohort of baggage handlers employed at Copenhagen Airport in 1990-2012, and a cohort of unskilled otherwise employed men answered a survey. Self-reported information on work tasks during employment in the airport in combination with work task specific biomechanically modelled forces in the shoulder joint was used to estimate shoulder load. Exposure measures were accumulated shoulder abduction moment, accumulated shoulder compression force, accumulated supraspinatus force and baggage handler seniority. The outcome was subacromial shoulder disorder registered in the Danish National Patient Register. When analyses were adjusted by all confounders except age, exposure variables showed close to significant associations with subacromial shoulder disorder. Results could not confirm our hypothesis that combined information on work task duration and shoulder load intensity was stronger associated with subacromial shoulder disorder than seniority. Practitioner Summary: In this study we sought to identify if the exposure to work-related musculoskeletal shoulder loading including duration and intensity among baggage handlers was associated with subacromial shoulder disorder. We found that there was an association but this was not stronger than that between baggage handler seniority and subacromial shoulder disorder.

  5. ESPR uroradiology task force and ESUR Paediatric Work Group--Imaging recommendations in paediatric uroradiology, part VI: childhood renal biopsy and imaging of neonatal and infant genital tract. Minutes from the task force session at the annual ESPR Meeting 2012 in Athens on childhood renal biopsy and imaging neonatal genitalia.

    PubMed

    Riccabona, Michael; Lobo, Maria Luisa; Willi, Ulrich; Avni, Fred; Damasio, Beatrice; Ording-Mueller, Lil-Sofie; Blickman, Johan; Darge, Kassa; Papadopoulou, Frederika; Vivier, Pierre-Hugues

    2014-04-01

    The European Society of Paediatric Radiology Uroradiology Task Force and the ESUR Paediatric Work Group jointly publish guidelines for paediatric urogenital imaging. Two yet unaddressed topics involving patient safety and imaging load are addressed in this paper: renal biopsy in childhood and imaging of the neonatal genital tract, particularly in girls. Based on our thorough review of literature and variable practice in multiple centers, procedural recommendations are proposed on how to perform renal biopsy in children and how to approach the genital tract in (female) neonates. These are statements by consensus due to lack of sufficient evidence-based data. The procedural recommendation on renal biopsy in childhood aims at improving patient safety and reducing the number of unsuccessful passes and/or biopsy-related complications. The recommendation for an imaging algorithm in the assessment of the neonatal genital tract focuses on the potential of ultrasonography to reduce the need for more invasive or radiating imaging, however, with additional fluoroscopy or MRI to be used in selected cases. Adherence to these recommendations will allow comparable data and evidence to be generated for future adaptation of imaging strategies in paediatric uroradiology.

  6. Evaluation of Boreal Summer Monsoon Intraseasonal Variability in the GASS-YOTC Multi-Model Physical Processes Experiment

    NASA Astrophysics Data System (ADS)

    Mani, N. J.; Waliser, D. E.; Jiang, X.

    2014-12-01

    While the boreal summer monsoon intraseasonal variability (BSISV) exerts profound influence on the south Asian monsoon, the capability of present day dynamical models in simulating and predicting the BSISV is still limited. The global model evaluation project on vertical structure and diabatic processes of the Madden Julian Oscillations (MJO) is a joint venture, coordinated by the Working Group on Numerical Experimentation (WGNE) MJO Task Force and GEWEX Atmospheric System Study (GASS) program, for assessing the model deficiencies in simulating the ISV and for improving our understanding of the underlying processes. In this study the simulation of the northward propagating BSISV is investigated in 26 climate models with special focus on the vertical diabatic heating structure and clouds. Following parallel lines of inquiry as the MJO Task Force has done with the eastward propagating MJO, we utilize previously proposed and newly developed model performance metrics and process diagnostics and apply them to the global climate model simulations of BSISV.

  7. The influence of the Japanese waving cat on the joint spatial compatibility effect: A replication and extension of Dolk, Hommel, Prinz, and Liepelt (2013).

    PubMed

    Puffe, Lydia; Dittrich, Kerstin; Klauer, Karl Christoph

    2017-01-01

    In a joint go/no-go Simon task, each of two participants is to respond to one of two non-spatial stimulus features by means of a spatially lateralized response. Stimulus position varies horizontally and responses are faster and more accurate when response side and stimulus position match (compatible trial) than when they mismatch (incompatible trial), defining the social Simon effect or joint spatial compatibility effect. This effect was originally explained in terms of action/task co-representation, assuming that the co-actor's action is automatically co-represented. Recent research by Dolk, Hommel, Prinz, and Liepelt (2013) challenged this account by demonstrating joint spatial compatibility effects in a task-setting in which non-social objects like a Japanese waving cat were present, but no real co-actor. They postulated that every sufficiently salient object induces joint spatial compatibility effects. However, what makes an object sufficiently salient is so far not well defined. To scrutinize this open question, the current study manipulated auditory and/or visual attention-attracting cues of a Japanese waving cat within an auditory (Experiment 1) and a visual joint go/no-go Simon task (Experiment 2). Results revealed that joint spatial compatibility effects only occurred in an auditory Simon task when the cat provided auditory cues while no joint spatial compatibility effects were found in a visual Simon task. This demonstrates that it is not the sufficiently salient object alone that leads to joint spatial compatibility effects but instead, a complex interaction between features of the object and the stimulus material of the joint go/no-go Simon task.

  8. Evaluation of Assessment Methodology to Support Combined Joint Task Force-Horn of Africa

    DTIC Science & Technology

    2012-07-01

    average annual income ……………………………………… Value function for unemployment ……………………………………………… Health score value function...internal relations is economic stability. While government and security sectors play a vital role...Page 5 Figure 1.4 Systemigram for african relations Ability to Move People & Goods Rapidly Private Sector Capital Mgmt., Investment

  9. Regional Military Integration in West Africa: A Case Study of the Multi-National Joint Task Force in the Fight against Boko Haram

    DTIC Science & Technology

    2016-06-10

    detailed description of issues surrounding a subject matter. The use of case studies provides the experimental foundation for qualitative analysis. As...The chapter provided a description of the case studies -based QCA methodology, highlighted how the Charles Ragin QCA will be used for data analysis...world. Against this backdrop, a study assessing the challenges and prospects of sub- regional post -conflict peacebuilding efforts will not only be

  10. A Computational Wireless Network Backplane: Performance in a Distributed Speaker Identification Application Postprint

    DTIC Science & Technology

    2008-12-01

    AUTHOR(S) H.T. Kung, Chit-Kwan Lin, Chia-Yung Su, Dario Vlah, John Grieco, Mark Huggins, and Bruce Suter 5d. PROJECT NUMBER WCNA 5e. TASK NUMBER...APPLICATION H. T. Kung, Chit-Kwan Lin, Chia-Yung Su, Dario Vlah John Grieco†, Mark Huggins‡, Bruce Suter† Harvard University Air Force Research Lab†, Oasis...contributing its C7 processors used in our wireless testbed. REFERENCES [1] R. North, N. Browne, and L. Schiavone , “Joint tactical radio system - connecting

  11. Review of Joint Forces Intelligence Command Response to 9/11 Commission

    DTIC Science & Technology

    2008-09-23

    USJFCOM tasked its subordinate organizations, to include the JFIC, lo provide information in response to the DIA inquiry. The USJFCOM sent lhe tasker...first plane hit the World Trade Center. JFIC started lo set up a Crisis Action Support Cell (CASC). The CASC consisted of a Team Leader, Information...the Poi!MiiiFP Analysis Branch Is a "jack of all trades. master of none". As far as we know, JFIC Is one ·of the few DoD entities attempting lo

  12. Acceptance and Effect of Ferrous Fumarate Containing Micronutrient Sprinkles on Anemia, Iron Deficiency and Anthropometrics in Honduran Children

    DTIC Science & Technology

    2012-02-01

    child health and nutrition programs to distribute micronutrient sprinkles and educate parents on their use is feasible and acceptable (Loechl et al...Children Teresa M. Kemmer1, Preston S. Omer2, Vinod K. Gidvani-Diaz3 and Miguel Coello4 1Health and Nutritional Sciences, SDSU Extension and...Antonio Uniformed Services Health Education Consortium, Pediatric Residency San Antonio, 4U.S. Medical Element, Joint Task Force-Bravo, Soto Cano Air

  13. Unraveling CORDS: Lessons Learned from a Joint Inter-Agency Task Force (JIATF)

    DTIC Science & Technology

    2009-04-01

    well as IGOs and NGOs) should not be attempted using usual military command and control structures- which would resemble a Unity of Command/WoG...civil-military response.”50 In August 1966, based on his own in-country trips and analysis as well as the US Army’s PROVN study, Komer began staffing...time-period three. Before the HES, MAC-V and other American officials would make “gut-call” assessments on how well South Vietnam was being pacified

  14. Report of the Joint Industry - DoD Task Force on Computer Aided Logistic Support (CALS). Volume 2. Report of Policy and Legal Constraints Subgroup.

    DTIC Science & Technology

    1985-06-01

    via the LSA process, to determine the best mix of support resource requirements. The data elements required for the LSA process would reside in an...homework. (ii) Policy to deal matrix digital data format/delivery defintion to replace paper world definitions in our current contractive procedures...2.2.2.1 NAPLPS. (North American Presentation Level Protocol Syntax) was developed for the videotex market during 1981-82, based on a series of

  15. Army - Air Force Cooperation: Looking Backward to Move Forward

    DTIC Science & Technology

    2016-05-26

    ELEMENT NUMBER 6. AUTHOR(S) Lt Col Eric A. Smith 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...ES) School of Advanced Military Studies, U.S. Army Command and General Staff College 201 Reyolds Ave., Fort Leavenworth, KS 66027 8. PERFORMING ORG...dispute, the Joint Chiefs of Staff directed US Strike Command to independently test the Army’s new mobility concepts performed separately by both the Army

  16. Health status of Haitian migrants--U.S. Naval Base, Guantanamo Bay, Cuba, November 1991-April 1992.

    PubMed

    1993-02-26

    In November 1991, following a military coup in Haiti, thousands of Haitians fled that country in small open boats. Most migrants were intercepted by U.S. Coast Guard cutters and taken to the U.S. Naval Base at Guantanamo Bay (GTMO), Cuba (Figure 1), where the U.S. Department of Defense (DOD) established a joint task force (JTF) migrant relief operation.* This report summarizes the results of health assessments of migrants conducted by the JTF.

  17. Joint Task Force National Capital Region Medical: Where The Nation Heals Its Heroes

    DTIC Science & Technology

    2011-01-25

    Military Health System Conference JTF CapMed Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Casualty Care is JTF CapMed’s number one priority 2011 MHS Conference JTF CapMed Relationships 3 JTF SECRETARY OF DEFENSE DEPUTY SECRETARY OF DEFENSE...11 March‐11 Complete Modular Furniture Initial Eq Outfitting  Critical  Areas 15 Jun 2011 Construction Furniture & Initial Outfitting LANAvailable Blds

  18. Imaging of the small intestine in Crohn's disease: Joint position statement of the Indian Society of Gastroenterology and Indian Radiological and Imaging Association.

    PubMed

    Kedia, Saurabh; Sharma, Raju; Makharia, Govind K; Ahuja, Vineet; Desai, Devendra; Kandasamy, Devasenathipathy; Eapen, Anu; Ganesan, Karthik; Ghoshal, Uday C; Kalra, Naveen; Karthikeyan, D; Madhusudhan, Kumble Seetharama; Philip, Mathew; Puri, Amarender Singh; Puri, Sunil; Sinha, Saroj K; Banerjee, Rupa; Bhatia, Shobna; Bhat, Naresh; Dadhich, Sunil; Dhali, G K; Goswami, B D; Issar, S K; Jayanthi, V; Misra, S P; Nijhawan, Sandeep; Puri, Pankaj; Sarkar, Avik; Singh, S P; Srivastava, Anshu; Abraham, Philip; Ramakrishna, B S

    2017-11-01

    The Indian Society of Gastroenterology (ISG) Task Force on Inflammatory Bowel Disease and the Indian Radiological and Imaging Association (IRIA) developed combined ISG-IRIA evidence-based best-practice guidelines for imaging of the small intestine in patients with suspected or known Crohn's disease. These 29 position statements, developed through a modified Delphi process, are intended to serve as reference for teaching, clinical practice, and research.

  19. Military Review, Volume 74, Number 1. January 1994. FM 100-5 and Operations Other than War

    DTIC Science & Technology

    1994-01-01

    capable of strategy : 2 achieving decisive victory as part of a joint team 0 Task organize an effective mix of Active on the battlefield--anYwhere in the...At its best, doctrine provides a common approach to thinking about the effective use of military force, but realizing this optimal condition takes time...news coverage with signilicant effects on military operations is an imrportant parl of the future environment of leaders at all levels. I was

  20. Metallurgical Evaluations of Depainting Processes on Aluminum Substrate

    NASA Technical Reports Server (NTRS)

    McGill, Preston

    1999-01-01

    In December 1993, the Environmental Protection Agency (EPA) Emission Standards Division and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) signed an Interagency Agreement (IA) initiating a task force for the technical assessment of alternative technologies for aerospace depainting operations. The United States Air Force (USAF) joined the task force in 1994. The mandates of the task force were: (1) To identify available alternative depainting systems that do not rely on methylene chloride or other ozone-depleting, chlorinated, and volatile organic carbon solvents. (2) To determine the viability, applicability, and pollution prevention potential of each identified alternative. (3) To address issues of safety, environmental impact, reliability, and maintainability. Through a Technical Implementation Committee (TIC), the task force selected and evaluated eight alternative paint stripping technologies: chemical stripping, carbon dioxide (CO2) blasting, xenon flashlamp and CO2 coatings removal (FLASHJET(R)), CO2 laser stripping, plastic media blasting (PMB), sodium bicarbonate wet stripping, high-pressure water blasting (WaterJet), and wheat starch abrasive blasting (Enviro-Strip(R)). (The CO2 blasting study was discontinued after the first depainting sequence.) This final report presents the results of the Joint EPA/NASA/USAF Interagency Depainting Study. Significant topics include: (1) Final depainting sequence data for the chemical stripping, PMB, sodium bicarbonate wet stripping, and WaterJet processes. (2) Strip rates for all eight technologies. (3) Sequential comparisons of surface roughness measurements for the seven viable depainting technologies. (4) Chronological reviews of and lessons learned in the conduct of all eight technologies. (5) An analysis of the surface roughness trends for each of the seven technologies. (6) Metallurgic evaluations of panels Summaries of corrosion and hydrogen embrittlement evaluations of chemical stripping panels, detailed descriptions of which appear in previous reports. Because the requirements for alternative systems are diverse, as are initial setup, training, and on-going operational considerations, this study does not recommend a particular product or process. Users of this study will draw their own conclusions from the data presented herein.

  1. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  2. Analysis of operational comfort in manual tasks using human force manipulability measure.

    PubMed

    Tanaka, Yoshiyuki; Nishikawa, Kazuo; Yamada, Naoki; Tsuji, Toshio

    2015-01-01

    This paper proposes a scheme for human force manipulability (HFM) based on the use of isometric joint torque properties to simulate the spatial characteristics of human operation forces at an end-point of a limb with feasible magnitudes for a specified limb posture. This is also applied to the evaluation/prediction of operational comfort (OC) when manually operating a human-machine interface. The effectiveness of HFM is investigated through two experiments and computer simulations of humans generating forces by using their upper extremities. Operation force generation with maximum isometric effort can be roughly estimated with an HFM measure computed from information on the arm posture during a maintained posture. The layout of a human-machine interface is then discussed based on the results of operational experiments using an electric gear-shifting system originally developed for robotic devices. The results indicate a strong relationship between the spatial characteristics of the HFM and OC levels when shifting, and the OC is predicted by using a multiple regression model with HFM measures.

  3. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading.

    PubMed

    Kingma, Idsart; Bosch, Tim; Bruins, Louis; van Dieën, Jaap H

    2004-10-22

    This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 - 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.

  4. The effects of upper and lower limb position on symmetry of vertical ground reaction force during sit-to-stand in chronic stroke subjects

    PubMed Central

    Lee, Jae Hong; Min, Dong Ki; Choe, Han Seong; Lee, Jin Hwan; Shin, So Hong

    2018-01-01

    [Purpose] The purpose of this study was to evaluate the influence of arm and leg posture elements on symmetrical weight bearing during Sit to Stand tasks in chronic stroke patients. [Subjects and Methods] The subjects were diagnosed with stroke and 22 patients (15 males and 7 females) participated in this study. All participants performed Sit to Stand tasks on three foot postures and two arm postures. Two force plates were used to measure peak of vertical ground reaction force and symmetrical ratio to peak Fz. The data were analyzed using independent t-test and two-way repeated ANOVA. [Results] The results of this study are as follows: 1) Peak Fz placed more weight in non-paretic leg during Sit to Stand. 2) A symmetrical ratio to Peak Fz indicated significant difference between foot and arm posture, and had non-paretic limb supported on a step and paretic at ground level (STP) and grasped arm posture that lock fingers together with shoulder flexion by 90°(GA) (0.79 ± 0.09). [Conclusion] These results suggest that STP posture of the legs and GA posture of the arms should be able to increase the use of the paretic side during Sit to Stand behavior and induce normal Sit to Stand mechanism through the anterior tilt of the hip in clinical practices, by which loads onto the knee joint and the ankle joint can be reduced, and the trunk righting response can be promoted by making the back fully stretched. The outcome of this study is expected to be a reference for exercise or prognosis of Sit to Stand in stroke patients. PMID:29545686

  5. Muscle Forces and Their Contributions to Vertical and Horizontal Acceleration of the Center of Mass During Sit-to-Stand Transfer in Young, Healthy Adults.

    PubMed

    Caruthers, Elena J; Thompson, Julie A; Chaudhari, Ajit M W; Schmitt, Laura C; Best, Thomas M; Saul, Katherine R; Siston, Robert A

    2016-10-01

    Sit-to-stand transfer is a common task that is challenging for older adults and others with musculoskeletal impairments. Associated joint torques and muscle activations have been analyzed two-dimensionally, neglecting possible three-dimensional (3D) compensatory movements in those who struggle with sit-to-stand transfer. Furthermore, how muscles accelerate an individual up and off the chair remains unclear; such knowledge could inform rehabilitation strategies. We examined muscle forces, muscleinduced accelerations, and interlimb muscle force differences during sit-to-stand transfer in young, healthy adults. Dynamic simulations were created using a custom 3D musculoskeletal model; static optimization and induced acceleration analysis were used to determine muscle forces and their induced accelerations, respectively. The gluteus maximus generated the largest force (2009.07 ± 277.31 N) and was a main contributor to forward acceleration of the center of mass (COM) (0.62 ± 0.18 m/s(2)), while the quadriceps opposed it. The soleus was a main contributor to upward (2.56 ± 0.74 m/s(2)) and forward acceleration of the COM (0.62 ± 0.33 m/s(2)). Interlimb muscle force differences were observed, demonstrating lower limb symmetry cannot be assumed during this task, even in healthy adults. These findings establish a baseline from which deficits and compensatory strategies in relevant populations (eg, elderly, osteoarthritis) can be identified.

  6. Obesity-related differences in neural correlates of force control.

    PubMed

    Mehta, Ranjana K; Shortz, Ashley E

    2014-01-01

    Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).

  7. A rapid prototyping model for biomechanical evaluation of pelvic osteotomies.

    PubMed

    Pressel, Thomas; Max, Stefan; Pfeifer, Roman; Ostermeier, Sven; Windhagen, Henning; Hurschler, Christof

    2008-04-01

    The biomechanical consequences of Salter pelvic osteotomy are difficult to assess due to the complex three-dimensional anatomy of the pelvis. Therefore, models of the dysplastic pelvis are required to allow realistic biomechanical simulation of possible outcomes. A polyamide reversed-engineering model of the left hemipelvis and proximal femur was produced from a computed tomography dataset of an 8-year-old child with severe dysplasia of both hips using selective laser sintering. Hip joint forces before and after Salter osteotomy of the hip were measured using an experimental setup in which an industrial robot was exerting hip joint forces and moments representing one-legged stance. Hip extensor and abductor actuator forces were measured which counterbalanced the joint moments. The preoperative hip joint resultant force was 583 N (270% body weight), while after the operation a mean force of 266 N (120% body weight) was measured. The resulting bony model was geometrically accurate, while apparent joint incongruencies were due to the neglected cartilaginous structures in the model. The preoperative joint resultant force was within the limits reported in the literature. The results suggest that Salter innominate osteotomy not only increases joint contact area but also reduces the hip joint force.

  8. The effects of Navy ship ladder descent on the knee internal joint reaction forces

    NASA Astrophysics Data System (ADS)

    Coulter, Jonathan D.; Weinhandl, Joshua T.; Bawab, Sebastian Y.; Ringleb, Stacie I.

    2017-02-01

    Military populations may be at risk for developing knee osteoarthritis and other knee problems when descending a Navy ship ladder, which differs from traditional stairs due to non-overlapping treads, a larger rise and a steeper inclination angle. The purpose of this study was to develop a forward dynamic model of the descent of a Navy ship ladder to determine how this motion affects the internal knee reaction forces and how altering the hamstring/quadriceps ratio affects the internal joint reaction forces in the knee. Kinematic and kinetic data were collected from three male sailors descending a replica of a Navy ship ladder and were used as input into a model constructed in OpenSim. The peak resultant joint reaction force was 6.6 × BW, which was greater than values reported in the literature in traditional stairs. Peak compressive and anterior joint reaction forces, 4.05 × BW and 5.46 × BW, respectively, were greater than reported values for a squat, a motion similar to descending a ship ladder. The average peak vertical and anterior internal joint reaction force at the knee were 4.05 × BW and 5.46 × BW, respectively. The resultant joint reaction forces calculated from the ladder descent were greater than stair descent and squatting. Little effects were found in the joint reaction forces after adjusting the quadriceps to hamstring muscle strength ratios, possibly because these ratios might change the distribution of the contact forces across the joint, not the resultant forces.

  9. Adaptive Postural Control for Joint Immobilization during Multitask Performance

    PubMed Central

    Hsu, Wei-Li

    2014-01-01

    Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477

  10. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants

    PubMed Central

    Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145

  11. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.

    PubMed

    Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.

  12. Why advanced computing? The key to space-based operations

    NASA Astrophysics Data System (ADS)

    Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack

    2000-11-01

    The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'

  13. Intelligent Robotic Systems Study (IRSS), phase 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under the Intelligent Robotics System Study (IRSS) contract, a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). The controller built for the PFMA provides localized position based force control, teleoperation and advanced path recording and playback capabilities. Various hand controllers can be used with the system in conjunction with a synthetic time delay capability to provide a realistic test bed for typical satellite servicing tasks. The configuration of the IRSS system is illustrated and discussed. The PFMA has six computer controllable degrees of freedom (DOF) plus a seventh manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Because the PFMA was not developed to operate in a gravity field, but rather in space, it is counter balanced at the shoulder, elbow and wrist and a spring counterbalance has been added near the wrist to provide additional support. Built with long slender intra-joint linkages, the PFMA has a workspace nearly 2 meters deep and possesses sufficient dexterity to perform numerous satellite servicing tasks. The manipulator is arranged in a shoulder-yaw, pitch, elbow-pitch, and wrist-pitch, yaw, roll configuration, with an indexable shoulder roll joint. Digital control of the PFMA is implemented using a variety of single board computers developed by Heurikon Corporation and other manufacturers. The IRSS controller is designed to be a multi-rate, multi-tasking system. Independent joint servos run at a 134 Hz rate and position based impedance control functions at 67 Hz. Autonomous path generation and hand controller inputs are processed at a 33 Hz.

  14. Objective Assessment of Joint Stiffness: A Clinically Oriented Hardware and Software Device with an Application to the Shoulder Joint.

    PubMed

    McQuade, Kevin; Price, Robert; Liu, Nelson; Ciol, Marcia A

    2012-08-30

    Examination of articular joints is largely based on subjective assessment of the "end-feel" of the joint in response to manually applied forces at different joint orientations. This technical report aims to describe the development of an objective method to examine joints in general, with specific application to the shoulder, and suitable for clinical use. We adapted existing hardware and developed laptop-based software to objectively record the force/displacement behavior of the glenohumeral joint during three common manual joint examination tests with the arm in six positions. An electromagnetic tracking system recorded three-dimensional positions of sensors attached to a clinician examiner and a patient. A hand-held force transducer recorded manually applied translational forces. The force and joint displacement were time-synchronized and the joint stiffness was calculated as a quantitative representation of the joint "end-feel." A methodology and specific system checks were developed to enhance clinical testing reproducibility and precision. The device and testing protocol were tested on 31 subjects (15 with healthy shoulders, and 16 with a variety of shoulder impairments). Results describe the stiffness responses, and demonstrate the feasibility of using the device and methods in clinical settings.

  15. Army Space and Transformation

    DTIC Science & Technology

    2005-09-01

    Command – Space and Global Strike JFCOM Joint Forces Command JFRL Joint Forces Restricted Frequency List JIC Joint Integrating Concept JIM Joint...into the theater’s Joint Restricted Frequency List (JRFL). The ARSST trained the coalition and US soldiers on installation, use and troubleshooting

  16. AORN Ergonomic Tool 3: lifting and holding the patient's legs, arms, and head while prepping.

    PubMed

    Waters, Thomas; Spera, Patrice; Petersen, Carol; Nelson, Audrey; Hernandez, Edward; Applegarth, Shawn

    2011-05-01

    Lifting the arms, legs, or head of a patient while prepping these areas for surgery can exert strong forces on the muscles and joints of the shoulders and backs of perioperative team members who perform this task, which may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 3: Lifting and Holding the Patient's Legs, Arms, and Head While Prepping provides scientifically based determinations of the amount of weight perioperative personnel can safely lift and hold manually for up to one, two, and three minutes using one hand or both. If these weight limits are exceeded, additional staff members or assistive devices are needed to help with the task. Published by Elsevier Inc.

  17. Joint contact loading in forefoot and rearfoot strike patterns during running.

    PubMed

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Increasing Running Step Rate Reduces Patellofemoral Joint Forces

    PubMed Central

    Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.

    2013-01-01

    Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470

  19. Patellofemoral joint contact forces during activities with high knee flexion.

    PubMed

    Trepczynski, Adam; Kutzner, Ines; Kornaropoulos, Evgenios; Taylor, William R; Duda, Georg N; Bergmann, Georg; Heller, Markus O

    2012-03-01

    The patellofemoral (PF) joint plays an essential role in knee function, but little is known about the in vivo loading conditions at the joint. We hypothesized that the forces at the PF joint exceed the tibiofemoral (TF) forces during activities with high knee flexion. Motion analysis was performed in two patients with telemetric knee implants during walking, stair climbing, sit-to-stand, and squat. TF and PF forces were calculated using a musculoskeletal model, which was validated against the simultaneously measured in vivo TF forces, with mean errors of 10% and 21% for the two subjects. The in vivo peak TF forces of 2.9-3.4 bodyweight (BW) varied little across activities, while the peak PF forces showed significant variability, ranging from less than 1 BW during walking to more than 3 BW during high flexion activities, exceeding the TF forces. Together with previous in vivo measurements at the hip and knee, the PF forces determined here provide evidence that peak forces across these joints reach values of around 3 BW during high flexion activities, also suggesting that the in vivo loading conditions at the knee can only be fully understood if the forces at the TF and the PF joints are considered together. Copyright © 2011 Orthopaedic Research Society.

  20. Influence of Muscle-Tendon Wrapping on Calculations of Joint Reaction Forces in the Equine Distal Forelimb

    PubMed Central

    Merritt, Jonathan S.; Davies, Helen M. S.; Burvill, Colin; Pandy, Marcus G.

    2008-01-01

    The equine distal forelimb is a common location of injuries related to mechanical overload. In this study, a two-dimensional model of the musculoskeletal system of the region was developed and applied to kinematic and kinetic data from walking and trotting horses. The forces in major tendons and joint reaction forces were calculated. The components of the joint reaction forces caused by wrapping of tendons around sesamoid bones were found to be of similar magnitude to the reaction forces between the long bones at each joint. This finding highlighted the importance of taking into account muscle-tendon wrapping when evaluating joint loading in the equine distal forelimb. PMID:18509485

  1. Biographies

    Science.gov Websites

    Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Senior Leaders Gen. Joseph F Biography All Joint Staff Biographies Thomas F. Carney, Vice Director for Force Structure, Resources,and

  2. Light touch compensates peripheral somatosensory degradation in postural control of older adults.

    PubMed

    Barela, Ana M F; Caporicci, Sarah; de Freitas, Paulo Barbosa; Jeka, John J; Barela, José A

    2018-06-05

    The present study aimed to investigate the sensitivity of detecting lower limb passive motion and use of additional sensory information from fingertip light touch for the postural control of older adults in comparison with young adults. A total of 11 older and 11 young adults (aged 68.1 ± 5.2 and 24.2 ± 2.2 years, respectively) underwent two tasks. We evaluated their sensitivity to passive ankle joint movement while seated in the first task. Participants then stood quietly on a force plate in a semi-tandem stance, for 30 s under two fingertip contact force conditions (no touch and light touch limited to 1 N). The results showed that the threshold of passive ankle displacement and body sway is higher in older adults than in young adults. The body sway reduced for both older and young adults with the addition of light touch at the fingertips. The maximum cross-correlation coefficient and time lags between body sway and fingertip light touch center of pressure was similar between both groups, suggesting that older adults used light touch to reduce body sway, similar to young adults. A higher threshold in detecting passive ankle joint movement may contribute to the increased body sway observed in older adults. These deficits may be compensated by additional sensory cues that would provide enhanced information used to control the upright stance. Copyright © 2018. Published by Elsevier B.V.

  3. Development of Mathematic Model of Cold Welding at Drawing-up the Flange Joint of Pneumohydraulic Systems

    NASA Astrophysics Data System (ADS)

    Boyko, Y. S.

    2002-01-01

    Provision of high airtightness of joints of pipe- lines of pneumohydraulic systems (PHS) operating under high pressure, is an important task for designing and operation of launch vehicles. In the process of assembly and tests of PHS of launch vehicles, it was found that detachable flange joints do not lose their airtightness after removal of fastening elements, even in conditions of standard loads. The task of this work is in studying a phenomenon connected with initiation of the observed effect of adhesion and also stresses in the zone of contact at drawing- up the flange detachable joints with a plastic gasket. Investigations have shown that density of the joint is kept due to cold welding, as the created conditions are helpful for that process. As a result of the investigations performed, we have developed a mathematic model which is based on application of the theory of metal bonds; that theory explains the essence of the effect observed. Basic factors which provide optimum mode of cold welding, are effort which can cause microplastic deformation and form maximum contact, and also quality of processing the material of the surfaces joined. Strength of all- metal joint depends on factual area of contact. So, surface processing quality defines a configuration of microbulges which come into contact not simultaneously, and their stressed state is different, and it influences the character of dependence of the contact area on loading. Results of calculations by the mathematic model are expressed by dependencies of factual area of contact and a single diameter of the contact spot on the load applied which compresses the materials with various physical properties, and on the surface processing quality. The mathematic model allows to explain the common character of the cold welding process in detachable flange joints with the plastic gasket, to determine the nature and the character of acting forces, to define kinetics and the mechanism of formation of cold welding of detachable joints. It also helps to analyze the state of airtightness and to metal welding technology in the plastic state at drawing- up of detachable flange joints with a plastic gasket and to review cold welding as a positive phenomenon.

  4. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.

    PubMed

    Shell, Courtney E; Segal, Ava D; Klute, Glenn K; Neptune, Richard R

    2017-11-01

    Little evidence exists regarding how prosthesis design characteristics affect performance in tasks that challenge mediolateral balance such as turning. This study assesses the influence of prosthetic foot stiffness on amputee walking mechanics and balance control during a continuous turning task. Three-dimensional kinematic and kinetic data were collected from eight unilateral transtibial amputees as they walked overground at self-selected speed clockwise and counterclockwise around a 1-meter circle and along a straight line. Subjects performed the walking tasks wearing three different ankle-foot prostheses that spanned a range of sagittal- and coronal-plane stiffness levels. A decrease in stiffness increased residual ankle dorsiflexion (10-13°), caused smaller adaptations (<5°) in proximal joint angles, decreased residual and increased intact limb body support, increased residual limb propulsion and increased intact limb braking for all tasks. While changes in sagittal-plane joint work due to decreased stiffness were generally consistent across tasks, effects on coronal-plane hip work were task-dependent. When the residual limb was on the inside of the turn and during straight-line walking, coronal-plane hip work increased and coronal-plane peak-to-peak range of whole-body angular momentum decreased with decreased stiffness. Changes in sagittal-plane kinematics and kinetics were similar to those previously observed in straight-line walking. Mediolateral balance improved with decreased stiffness, but adaptations in coronal-plane angles, work and ground reaction force impulses were less systematic than those in sagittal-plane measures. Effects of stiffness varied with the residual limb inside versus outside the turn, which suggests that actively adjusting stiffness to turn direction may be beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.

    PubMed

    Podraza, Jeffery T; White, Scott C

    2010-08-01

    Investigating landing kinetics and neuromuscular control strategies during rapid deceleration movements is a prerequisite to understanding the non-contact mechanism of ACL injury. The purpose of this study was to quantify the effect of knee flexion angle on ground reaction forces, net knee joint moments, muscle co-contraction and lower extremity muscles during an impact-like, deceleration task. Ground reaction forces and knee joint moments were determined from video and force plate records of 10 healthy male subjects performing rapid deceleration single leg landings from a 10.5 cm height with different degrees of knee flexion at landing. Muscle co-contraction was based on muscle moments calculated from an EMG-to-moment processing model. Ground reaction forces and co-contraction indices decreased while knee extensor moments increased significantly with increased degrees of knee flexion at landing (all p<0.005). Higher ground reaction forces when landing in an extended knee position suggests they are a contributing factor in non-contact ACL injuries. Increased knee extensor moments and less co-contraction with flexed knee landings suggest that quadriceps overload may not be the primary cause of non-contact ACL injuries. The results bring into question the counterbalancing role of the hamstrings during dynamic movements. The soleus may be a valuable synergist stabilizing the tibia against anterior translation at landing. Movement strategies that lessen the propagation of reaction forces up the kinetic chain may help prevent non-contact ACL injuries. The relative interaction of all involved thigh and lower leg muscles, not just the quadriceps and hamstrings should be considered when interpreting non-contact ACL injury mechanisms. Copyright 2010 Elsevier B.V. All rights reserved.

  6. JSpOC Cognitive Task Analysis

    NASA Astrophysics Data System (ADS)

    Aleva, D.; McCracken, J.

    This paper will overview a Cognitive Task Analysis (CTA) of the tasks accomplished by space operators in the Combat Operations Division (COD) of the Joint Space Operations Center (JSpOC). The methodology used to collect data will be presented. The work was performed in support of the AFRL Space Situation Awareness Fusion Intelligent Research Environment (SAFIRE) effort. SAFIRE is a multi-directorate program led by Air Force Research Laboratory (AFRL), Space Vehicles Directorate (AFRL/RV) and supporting Future Long Term Challenge 2.6.5. It is designed to address research areas identified from completion of a Core Process 3 effort for Joint Space Operations Center (JSpOC). The report is intended to be a resource for those developing capability in support of SAFIRE, the Joint Functional Component Command (JFCC) Space Integrated Prototype (JSIP) User-Defined Operating Picture (UDOP), and other related projects. The report is under distribution restriction; our purpose here is to expose its existence to a wider audience so that qualified individuals may access it. The report contains descriptions of the organization, its most salient products, tools, and cognitive tasks. Tasks reported are derived from the data collected and presented at multiple levels of abstraction. Recommendations for leveraging the findings of the report are presented. The report contains a number of appendices that amplify the methodology, provide background or context support, and includes references in support of cognitive task methodology. In a broad sense, the CTA is intended to be the foundation for relevant, usable capability in support of space warfighters. It presents, at an unclassified level, introductory material to familiarize inquirers with the work of the COD; this is embedded in a description of the broader context of the other divisions of the JSpOC. It does NOT provide guidance for the development of Tactics, Techniques, and Procedures (TT&Ps) in the development of JSpOC processes. However, the TT&Ps are a part of the structure of work, and are, therefore, a factor in developing future capability. The authors gratefully acknowledge the cooperation and assistance from the warfighters at the JSpOC as well as the personnel of the JSpOC Capabilities Integration Office (JCIO). Their input to the process created the value of this effort.

  7. Overview of Climate Confluence Security Issues

    NASA Astrophysics Data System (ADS)

    Reisman, J. P.

    2011-12-01

    Presentation will focus on an overview of the security perspectives based on the confluence considerations including energy, economics and climate change. This will include perspectives from reports generated by the Quadrennial Defense Review, Joint Forces Command, the Center for Strategic International Studies, MIT, the Inter-agency Climate Change Adaptation Task Force, the Central Intelligence Agency, the Center for Naval Analysis, and other relevant reports. The presentation will highlight the connections between resource issues and climate change which can be interpreted into security concerns. General discussion of global issues, contextual review of AR4 WGII may be included and any other report updates as applicable. The purpose of this presentation is to give a rounded view of the general qualitative and quantitative perspectives regarding climate related security considerations.

  8. Linnehan on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006790 (15/16 March 2008) --- Astronauts Mike Foreman and Rick Linnehan (partially out of frame), both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  9. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006788 (15/16 March 2008) --- Astronauts Mike Foreman (left) and Rick Linnehan, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  10. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006781 (15/16 March 2008) --- Astronauts Rick Linnehan (right) and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  11. A Cervico-Thoraco-Lumbar Multibody Dynamic Model for the Estimation of Joint Loads and Muscle Forces.

    PubMed

    Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon

    2015-11-01

    Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.

  12. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

    PubMed

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G

    2013-11-15

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. © 2013 Published by Elsevier Ltd.

  13. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    PubMed Central

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  14. Lower Extremity Movement Differences Persist After Anterior Cruciate Ligament Reconstruction and When Returning to Sports.

    PubMed

    Butler, Robert J; Dai, Boyi; Huffman, Nikki; Garrett, William E; Queen, Robin M

    2016-09-01

    To examine how landing mechanics change in patients after anterior cruciate ligament reconstruction (ACL-R) between 6 months and 12 months after surgery. Case-series. Laboratory. Fifteen adolescent patients after ACL-R participated. Lower extremity three-dimensional motion analysis was conducted during a bilateral stop jump task in patients at 6 and 12 months after ACL-R. Joint kinematic and kinetic data, in addition to ground reaction forces, were collected at each time point. During the stop jump landing, the peak joint moments and the initial and peak joint motion at the ankle, knee, and hip were examined. The peak vertical ground reaction force was also examined. Interactions were observed for both the peak knee (P = 0.03) and hip extension moment (P = 0.07). However, only the hip extension moment was symmetrical level at 12 months. Statistically significant (P < 0.05) side-to-side differences existed for the ankle angle at initial contact, peak plantarflexion moment, peak hip flexion angle, and peak impact vertical ground reaction force independent of time. The findings of this study suggest that sagittal plane moments at the knee and hip demonstrate an increase in symmetry between 6 months and 1 year after ACL-R surgery, however, symmetry of the knee extension moment is not established by 12 months after surgery. The lack of change in the variables across time was unexpected. As a result, it is inappropriate to expect a change in landing mechanics solely as a result of time alone after discharge from rehabilitation.

  15. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.

    PubMed

    Harris, Michael D; MacWilliams, Bruce A; Bo Foreman, K; Peters, Christopher L; Weiss, Jeffrey A; Anderson, Andrew E

    2017-03-21

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Higher Medially-directed Joint Reaction Forces are a Characteristic of Dysplastic Hips: A Comparative Study Using Subject-Specific Musculoskeletal Models

    PubMed Central

    Harris, Michael D.; MacWilliams, Bruce A.; Foreman, K. Bo; Peters, Christopher L.; Weiss, Jeffrey A.; Anderson, Andrew E.

    2018-01-01

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. PMID:28233552

  17. Reduced step length reduces knee joint contact forces during running following anterior cruciate ligament reconstruction but does not alter inter-limb asymmetry.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-03-01

    Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Program Calculates Forces in Bolted Structural Joints

    NASA Technical Reports Server (NTRS)

    Buder, Daniel A.

    2005-01-01

    FORTRAN 77 computer program calculates forces in bolts in the joints of structures. This program is used in conjunction with the NASTRAN finite-element structural-analysis program. A mathematical model of a structure is first created by approximating its load-bearing members with representative finite elements, then NASTRAN calculates the forces and moments that each finite element contributes to grid points located throughout the structure. The user selects the finite elements that correspond to structural members that contribute loads to the joints of interest, and identifies the grid point nearest to each such joint. This program reads the pertinent NASTRAN output, combines the forces and moments from the contributing elements to determine the resultant force and moment acting at each proximate grid point, then transforms the forces and moments from these grid points to the centroids of the affected joints. Then the program uses these joint loads to obtain the axial and shear forces in the individual bolts. The program identifies which bolts bear the greatest axial and/or shear loads. The program also performs a fail-safe analysis in which the foregoing calculations are repeated for a sequence of cases in which each fastener, in turn, is assumed not to transmit an axial force.

  19. In vitro investigation of biomechanical changes of the hip after Salter pelvic osteotomy.

    PubMed

    Pfeifer, R; Hurschler, C; Ostermeier, S; Windhagen, H; Pressel, T

    2008-03-01

    Salter innominate osteotomy of the pelvis is widely used to improve the coverage of the femoral head in developmental dysplasia of the hip, but the biomechanical and geometric changes after this osteotomy are not well understood. A CT dataset of an 8-year-old child with severe dysplasia of both hips was used to create a polyamide model of the left hemipelvis and proximal femur. The hemipelvis was mounted to a holding device and the proximal femur attached to a sensor guided industrial robot. The robot was programmed to apply joint forces and torques based on single-leg stance. Two major muscles were represented by wires connected to hydraulic cylinders; muscle forces were adjusted to balance the joint moments. Resulting joint forces were measured using a pressure measuring sensor before and after Salter osteotomy of the hip. Geometric changes were recorded using a three-dimensional ultrasound measurement system. The preoperative hip joint resultant force was 583N (270% body weight), while after the operation a mean force of 266N (120% body weight) was measured. Postoperative muscle forces were roughly half the preoperative values. The hip joint was translated medially and caudally. Postoperatively, the length of gluteus medius and maximus muscles increased. The preoperative value of the resultant hip joint force is comparable to values reported in the literature. The results suggest that Salter innominate osteotomy leads to a reduction of hip joint and muscle forces in addition to increasing joint contact area.

  20. Hip Kinematics During a Stop-Jump Task in Patients With Chronic Ankle Instability

    PubMed Central

    Brown, Cathleen N.; Padua, Darin A.; Marshall, Stephen W.; Guskiewicz, Kevin M.

    2011-01-01

    Context: Chronic ankle instability (CAI) commonly develops after lateral ankle sprain. Movement pattern differences at proximal joints may play a role in instability. Objective: To determine whether people with mechanical ankle instability (MAI) or functional ankle instability (FAI) exhibited different hip kinematics and kinetics during a stop-jump task compared with “copers.” Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-three recreational athletes, 21 (11 men, 10 women) per group, matched for sex, age, height, mass, and limb dominance. All participants reported a history of a moderate to severe ankle sprain. The participants with MAI and FAI reported 2 or more episodes of giving way at the ankle in the last year and decreased functional ability; copers did not. The MAI group demonstrated clinically positive anterior drawer and talar tilt tests, whereas the FAI group and copers did not. Intervention(s): Participants performed a maximum-speed approach run and a 2-legged stop jump followed by a maximum vertical jump. Main Outcome Measure(s): An electromagnetic tracking device synchronized with a force plate collected data during the stance phase of a 2-legged stop jump. Hip motion was measured from initial contact to takeoff into the vertical jump. Group differences in hip kinematics and kinetics were assessed. Results: The MAI group demonstrated greater hip flexion at initial contact and at maximum (P = .029 and P = .017, respectively) and greater hip external rotation at maximum (P = .035) than the coper group. The MAI group also demonstrated greater hip flexion displacement than both the FAI (P = .050) and coper groups (P = .006). No differences were noted between the FAI and coper groups in hip kinematic variables or among any of the groups in ground reaction force variables. Conclusions: The MAI group demonstrated different hip kinematics than the FAI and coper groups. Proximal joint motion may be affected by ankle joint function and laxity, and clinicians may need to assess proximal joints after repeated ankle sprains. PMID:22488131

  1. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    PubMed

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. 3 CFR - Disestablishment of United States Joint Forces Command

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Command Presidential Documents Other Presidential Documents Memorandum of January 6, 2011 Disestablishment of United States Joint Forces Command Memorandum for the Secretary of Defense Pursuant to my... States Joint Forces Command, effective on a date to be determined by the Secretary of Defense. I direct...

  3. The Judge Advocate’s Dual Mission in a Low-Intensity Conflict Environment. Case Study: Joint Task Force-Bravo, Where Can I Shoot the Prisoners? Is Never the Question

    DTIC Science & Technology

    1991-04-01

    pressured the most accessible debtors into payment, while the CJA filed a request for assistance with the Auditoria General (AG) (essentially, The Judge...Assists J-3, and DCSENG in Procuring Land Use Agreements. Works in tandem with Mobile District Engineers and Auditoria General in Drafting Land Leases...approved by the Embassy, and endorsed by the Auditoria General to exonerate A-lI U.S. from payment of three existing bills then coordination among

  4. Cultural Resources Survey and Monitoring of Joint Task Force Six (JTF-6) Actions in Webb, Zapata, Dimmit, La Salle, Duvall, and Jim Hogg Counties, Texas

    DTIC Science & Technology

    1994-08-01

    vegetation, game, and riverine resources. A recent survey conducted for the proposed Camino Colombia Toll Road resulted in the recording of numerous...Trevino, who was reportedly from old Guerrero (also called Revilla, one of the 12 original Spanish colonies founded by Jose De Escandon in 1749 [(Hume 1972...1985). (Scale 1:1) 19 a b c de Figure 10. Diagnostic projectile points of the Lae Archaic period of South Texas: (a) Ensor (Bell 1960); (b) Frio (Turner

  5. Application of Advanced Decision-Analytic Technology to Rapid Deployment Joint Task Force Problems

    DTIC Science & Technology

    1981-06-01

    CHANGE 9 DIEGO GARCIA CHANGE 5: MOMPANA/K FROM I. SO FROM 2: AIRFIELD IMIS TO 2 AIRFIELD IMPS+DRI/II TO 6: COMM/NAV AIDS bENEF IT COET BENEFIT COFF 410...meetings: (1) To organize , display, and update the working group’s judgements about the relative costs and benefits of each level of each variable in...benefit to the organization . (3) Assess costs - In the DESIGN software, there is one type of limited resource to be allocated to the variables. This

  6. NDT standards from the perspective of the Department of Defense

    NASA Astrophysics Data System (ADS)

    Strauss, Bernard

    1992-09-01

    The interaction of the DoD non-Government Society (NGS) bodies in the area of nondestructive testing (NDT) are illustrated. The adoption process for NGS is outlined including the criteria for adoption, what adoption means, and the advantages of DoD/NGS interaction. The tasks of the DoD's Standardization Program Plan for NDT are described along with DoD's efforts on a Joint Army, Navy, Air Force (JANNAF) NDE Subcommittee and on an international standardization group (America, Britain, Canada, and Australia) called the Quadripartite Working Group on Proofing, Inspection, and Quality Assurance.

  7. Using a Model of Team Collaboration to Investigate Inter-Organizational Collaboration During the Relief Effort of the January 2010 Haiti Earthquake

    DTIC Science & Technology

    2011-06-01

    adoption among aid workers. The site was designed to be easy to use in order to facilitate use by personnel who may not be technologically savvy...SOUTHCOM establishes Joint Task Force – Haiti and designates it as the lead command and control organization for the DoD’s relief efforts. • 15 January...of empty seats left on flights out of PaP airport, with people unable to utilize them. TIE PD 5. A lot of equipment was damaged or lost because

  8. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    PubMed

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  9. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    PubMed

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Functional roles of lower-limb joint moments while walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  11. Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.

    PubMed

    Silverman, Anne K; Neptune, Richard R

    2014-08-22

    Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dynamics simulations. We predicted that the intact knee contact forces would be higher than those of the residual leg and non-amputees. In the axial and mediolateral directions, the intact and non-amputee legs had greater peak tibio-femoral contact forces and impulses relative to the residual leg. The peak axial contact force was greater in the intact leg relative to the non-amputee leg, but the stance phase impulse was greater in the non-amputee leg. The vasti and hamstrings muscles in early stance and gastrocnemius in late stance were the largest contributors to the joint contact forces in the non-amputee and intact legs. Through dynamic coupling, the soleus and gluteus medius also had large contributions, even though they do not span the knee joint. In the residual leg, the prosthesis had large contributions to the joint forces, similar to the soleus in the intact and non-amputee legs. These results identify the muscles that contribute to knee joint contact forces during transtibial amputee walking and suggest that the peak knee contact forces may be more important than the knee contact impulses in explaining the high prevalence of intact leg osteoarthritis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.

    PubMed

    Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse

    2013-09-03

    The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    PubMed Central

    2011-01-01

    Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: [1] Cumberland Ankle Instability Tool (CAIT) scores, [2] Star Excursion Balance Test (SEBT) reach distances, [3] ankle joint plantar flexion during drop landing and drop vertical jumping, and [4] ground reaction forces (GRFs) during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors. PMID:21658224

  14. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report.

    PubMed

    O'Driscoll, Jeremiah; Kerin, Fearghal; Delahunt, Eamonn

    2011-06-09

    Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT) scores, 2 Star Excursion Balance Test (SEBT) reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs) during walking. CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  15. Are manual therapies, passive physical modalities, or acupuncture effective for the management of patients with whiplash-associated disorders or neck pain and associated disorders? An update of the Bone and Joint Decade Task Force on Neck Pain and Its Associated Disorders by the OPTIMa collaboration.

    PubMed

    Wong, Jessica J; Shearer, Heather M; Mior, Silvano; Jacobs, Craig; Côté, Pierre; Randhawa, Kristi; Yu, Hainan; Southerst, Danielle; Varatharajan, Sharanya; Sutton, Deborah; van der Velde, Gabrielle; Carroll, Linda J; Ameis, Arthur; Ammendolia, Carlo; Brison, Robert; Nordin, Margareta; Stupar, Maja; Taylor-Vaisey, Anne

    2016-12-01

    In 2008, the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders (Neck Pain Task Force) found limited evidence on the effectiveness of manual therapies, passive physical modalities, or acupuncture for the management of whiplash-associated disorders (WAD) or neck pain and associated disorders (NAD). This review aimed to update the findings of the Neck Pain Task Force, which examined the effectiveness of manual therapies, passive physical modalities, and acupuncture for the management of WAD or NAD. This is a systematic review and best evidence synthesis. The sample includes randomized controlled trials, cohort studies, and case-control studies comparing manual therapies, passive physical modalities, or acupuncture with other interventions, placebo or sham, or no intervention. The outcome measures were self-rated or functional recovery, pain intensity, health-related quality of life, psychological outcomes, or adverse events. We systematically searched five databases from 2000 to 2014. Random pairs of independent reviewers critically appraised eligible studies using the Scottish Intercollegiate Guidelines Network criteria. Studies with a low risk of bias were stratified by the intervention's stage of development (exploratory vs. evaluation) and synthesized following best evidence synthesis principles. Funding was provided by the Ministry of Finance. We screened 8,551 citations, and 38 studies were relevant and 22 had a low risk of bias. Evidence from seven exploratory studies suggests that (1) for recent but not persistent NAD grades I-II, thoracic manipulation offers short-term benefits; (2) for persistent NAD grades I-II, technical parameters of cervical mobilization (eg, direction or site of manual contact) do not impact outcomes, whereas one session of cervical manipulation is similar to Kinesio Taping; and (3) for NAD grades I-II, strain-counterstrain treatment is no better than placebo. Evidence from 15 evaluation studies suggests that (1) for recent NAD grades I-II, cervical and thoracic manipulation provides no additional benefit to high-dose supervised exercises, and Swedish or clinical massage adds benefit to self-care advice; (2) for persistent NAD grades I-II, home-based cupping massage has similar outcomes to home-based muscle relaxation, low-level laser therapy (LLLT) does not offer benefits, Western acupuncture provides similar outcomes to non-penetrating placebo electroacupuncture, and needle acupuncture provides similar outcomes to sham-penetrating acupuncture; (3) for WAD grades I-II, needle electroacupuncture offers similar outcomes as simulated electroacupuncture; and (4) for recent NAD grades III, a semi-rigid cervical collar with rest and graded strengthening exercises lead to similar outcomes, and LLLT does not offer benefits. Our review adds new evidence to the Neck Pain Task Force and suggests that mobilization, manipulation, and clinical massage are effective interventions for the management of neck pain. It also suggests that electroacupuncture, strain-counterstrain, relaxation massage, and some passive physical modalities (heat, cold, diathermy, hydrotherapy, and ultrasound) are not effective and should not be used to manage neck pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of obesity on posture and hip joint moments during a standing task, and trunk forward flexion motion.

    PubMed

    Gilleard, W; Smith, T

    2007-02-01

    Effects of obesity on trunk forward flexion motion in sitting and standing, and postural adaptations and hip joint moment for a standing work task. Cross-sectional comparison of obese and normal weight groups. Ten obese subjects (waist girth 121.2+/-16.8 cm, body mass index (BMI) 38.9+/-6.6 kg m(-2)) and 10 age- and height-matched normal weight subjects (waist girth 79.6+/-6.4 cm, BMI 21.7+/-1.5 kg m(-2)). Trunk motion during seated and standing forward flexion, and trunk posture, hip joint moment and hip-to-bench distance during a simulated standing work task were recorded. Forward flexion motion of the thoracic segment and thoracolumbar spine was decreased for the obese group with no change in pelvic segment and hip joint motion. Obese subjects showed a more flexed trunk posture and increased hip joint moment and hip-to-bench distance for a simulated standing work task. Decreased range of forward flexion motion, differing effects within the trunk, altered posture during a standing work task and concomitant increases in hip joint moment give insight into the aetiology of functional decrements and musculoskeletal pain seen in obesity.

  17. Design and control of a macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff

    1993-01-01

    Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.

  18. The Influence of Task Complexity on Knee Joint Kinetics Following ACL Reconstruction

    PubMed Central

    Schroeder, Megan J.; Krishnan, Chandramouli; Dhaher, Yasin Y.

    2015-01-01

    Background Previous research indicates that subjects with anterior cruciate ligament reconstruction exhibit abnormal knee joint movement patterns during functional activities like walking. While the sagittal plane mechanics have been studied extensively, less is known about the secondary planes, specifically with regard to more demanding tasks. This study explored the influence of task complexity on functional joint mechanics in the context of graft-specific surgeries. Methods In 25 participants (10 hamstring tendon graft, 6 patellar tendon graft, 9 matched controls), three-dimensional joint torques were calculated using a standard inverse dynamics approach during level walking and stair descent. The stair descent task was separated into two functionally different sub-tasks—step-to-floor and step-to-step. The differences in external knee moment profiles were compared between groups; paired differences between the reconstructed and non-reconstructed knees were also assessed. Findings The reconstructed knees, irrespective of graft type, typically exhibited significantly lower peak knee flexion moments compared to control knees during stair descent, with the differences more pronounced in the step-to-step task. Frontal plane adduction torque deficits were graft-specific and limited to the hamstring tendon knees during the step-to-step task. Internal rotation torque deficits were also primarily limited to the hamstring tendon graft group during stair descent. Collectively, these results suggest that task complexity was a primary driver of differences in joint mechanics between anterior cruciate ligament reconstructed individuals and controls, and such differences were more pronounced in individuals with hamstring tendon grafts. Interpretation The mechanical environment experienced in the cartilage during repetitive, cyclical tasks such as walking and other activities of daily living has been argued to contribute to the development of degenerative changes to the joint and ultimately osteoarthritis. Given the task-specific and graft-specific differences in joint mechanics detected in this study, care should be taken during the rehabilitation process to mitigate these changes. PMID:26101055

  19. Computational simulation of extravehicular activity dynamics during a satellite capture attempt.

    PubMed

    Schaffner, G; Newman, D J; Robinson, S K

    2000-01-01

    A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.

  20. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.

    PubMed

    Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum

    2016-02-01

    Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.

  1. Thrust Force Analysis of Tripod Constant Velocity Joint Using Multibody Model

    NASA Astrophysics Data System (ADS)

    Sugiura, Hideki; Matsunaga, Tsugiharu; Mizutani, Yoshiteru; Ando, Yosei; Kashiwagi, Isashi

    A tripod constant velocity joint is used in the driveshaft of front wheel drive vehicles. Thrust force generated by this joint causes lateral vibration in these vehicles. To analyze the thrust force, a detailed model is constructed based on a multibody dynamics approach. This model includes all principal parts of the joint defined as rigid bodies and all force elements of contact and friction acting among these parts. This model utilizes a new contact modeling method of needle roller bearings for more precise and faster computation. By comparing computational and experimental results, the appropriateness of this model is verified and the principal factors inducing the second and third rotating order components of the thrust force are clarified. This paper also describes the influence of skewed needle rollers on the thrust force and evaluates the contribution of friction forces at each contact region to the thrust force.

  2. Social task switching: On the automatic social engagement of executive functions.

    PubMed

    Dudarev, Veronica; Hassin, Ran R

    2016-01-01

    Humans are quintessentially social, yet much of cognitive psychology has focused on the individual, in individual settings. The literature on joint action is one of the most prominent exceptions. Joint-action research studies the sociality of our mental representations by examining how the tasks of other people around us affect our own task performance. In this paper we go beyond examining whether we represent others and their tasks, by asking whether we also automatically do their tasks with them, even if they require effortful executive functions. To this end we examine one of the core executive functions, shifting, in a new paradigm that allows us to investigate task-switching in a joint-action setup. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Leveraging Trade Agreements to Meet U.S. Security Aims

    DTIC Science & Technology

    2016-04-08

    NATIONAL DEFENSE UNIVERSITY JOINT FORCES STAFF COLLEGE JOINT ADVANCED WARFIGHTING SCHOOL LEVERAGING TRADE AGREEMENTS TO MEET U.S. SECURITY AIMS by...Forces Staff College Joint Advanced Warfighting School 7800 Hampton Blvd Norfolk, VA. 2351 1-1702 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the Department of Defense. This paper is entirely my own

  4. Influence of altered gait patterns on the hip joint contact forces.

    PubMed

    Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J

    2014-01-01

    Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.

  5. Joint Implications for Contracted Logistics

    DTIC Science & Technology

    2007-03-30

    authority with the host nation country and policy on using UCMJ for contracted personnel. As tailored theater policies are developed and contracting...responsibility, this paper recommends better joint training, leader development and joint enablers for contracting operations. JOINT...U.S. Joint Forces Command (JFCOM) are analyzing Congressional and DOD policy to develop procedures and force structure to support contractor

  6. Early adversity, RSA, and inhibitory control: evidence of children's neurobiological sensitivity to social context.

    PubMed

    Skowron, Elizabeth A; Cipriano-Essel, Elizabeth; Gatzke-Kopp, Lisa M; Teti, Douglas M; Ammerman, Robert T

    2014-07-01

    This study examined parasympathetic physiology as a moderator of the effects of early adversity (i.e., child abuse and neglect) on children's inhibitory control. Children's respiratory sinus arrhythmia (RSA) was assessed during a resting baseline, two joint challenge tasks with mother, and an individual frustration task. RSA assessed during each of the joint parent-child challenge tasks moderated the effects of child maltreatment (CM) status on children's independently-assessed inhibitory control. No moderation effect was found for RSA assessed at baseline or in the child-alone challenge task. Among CM-exposed children, lower RSA levels during the joint task predicted the lowest inhibitory control, whereas higher joint task RSA was linked to higher inhibitory control scores that were indistinguishable from those of non-CM children. Results are discussed with regard to the importance of considering context specificity (i.e., individual and caregiver contexts) in how biomarkers inform our understanding of individual differences in vulnerability among at-risk children. © 2013 Wiley Periodicals, Inc.

  7. Early Adversity, RSA, and Inhibitory Control: Evidence of Children’s Neurobiological Sensitivity to Social Context

    PubMed Central

    Skowron, Elizabeth A.; Cipriano-Essel, Elizabeth; Gatzke-Kopp, Lisa M.; Teti, Douglas M.; Ammerman, Robert T.

    2014-01-01

    This study examined parasympathetic physiology as a moderator of the effects of early adversity (i.e., child abuse and neglect) on children’s inhibitory control. Children’s respiratory sinus arrhythmia (RSA) was assessed during a resting baseline, two joint challenge tasks with mother, and an individual frustration task. RSA assessed during each of the joint parent–child challenge tasks moderated the effects of child maltreatment (CM) status on children’s independently-assessed inhibitory control. No moderation effect was found for RSA assessed at baseline or in the child-alone challenge task. Among CM-exposed children, lower RSA levels during the joint task predicted the lowest inhibitory control, whereas higher joint task RSA was linked to higher inhibitory control scores that were indistinguishable from those of non-CM children. Results are discussed with regard to the importance of considering context specificity (i.e., individual and caregiver contexts) in how biomarkers inform our understanding of individual differences in vulnerability among at-risk children. PMID:24142832

  8. The collision forces and lower-extremity inter-joint coordination during running.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Wang, I-Lin; Siao, Sheng-Wun; Chen, Szu-Ting

    2018-06-01

    The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.

  9. Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction.

    PubMed

    Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J

    2018-05-29

    Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

  10. Methodological considerations of task and shoe wear on joint energetics during landing.

    PubMed

    Shultz, Sandra J; Schmitz, Randy J; Tritsch, Amanda J; Montgomery, Melissa M

    2012-02-01

    To better understand methodological factors that alter landings strategies, we compared sagittal plane joint energetics during the initial landing phase of drop jumps (DJ) vs. drop landings (DL), and when shod vs. barefoot. Surface electromyography, kinematic and kinetic data were obtained on 10 males and 10 females during five consecutive drop landings and five consecutive drop jumps (0.45m) when shod and when barefoot. Energy absorption was greater in the DJ vs. DL (P=.002), due to increased energy absorption at the hip during the DJ. Joint stiffness/impedance was more affected by shoe condition, where overall stiffness/impedance was greater in shod compared to barefoot conditions (P=.036). Further, hip impedance was greater in shod vs. barefoot for the DL only (via increased peak hip extensor moment in DL), while ankle stiffness was greater in the barefoot vs. shod condition for the DJ only (via decreased joint excursion and increased peak joint moment in DJ vs. DL) (P=.011). DJ and DL place different neuromechanical demands upon the lower extremities, and shoe wear may alter impact forces that modulate stiffness/impedance strategies. The impact of these methodological differences should be considered when comparing landing biomechanics across studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Autonomy and control in dyads: effects on interaction quality and joint creative performance.

    PubMed

    Weinstein, Netta; Hodgins, Holley S; Ryan, Richard M

    2010-12-01

    Two studies examined interaction quality and joint performance on two creative tasks in unacquainted dyads primed for autonomy or control orientations. It was hypothesized that autonomy-primed dyads would interact more constructively, experience more positive mood, and engage the task more readily, and as a result these dyads would perform better. To test this, Study 1 primed orientation and explored verbal creative performance on the Remote Associates Task (RAT). In Study 2, dyads were primed with autonomy and control orientation and videotaped during two joint creative tasks, one verbal (RAT) and one nonverbal (charades). Videotapes were coded for behavioral indicators of closeness and task engagement. Results showed that autonomy-primed dyads felt closer, were more emotionally and cognitively attuned, provided empathy and encouragement to partners, and performed more effectively. The effects of primed autonomy on creative performance were mediated by interpersonal quality, mood, and joint engagement.

  12. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production.

    PubMed

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves

    2008-04-01

    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  13. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006787 (15/16 March 2008) --- Astronauts Mike Foreman and Rick Linnehan (partially out of frame), both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  14. The effect of glenosphere diameter and eccentricity on deltoid power in reverse shoulder arthroplasty.

    PubMed

    Scalise, J; Jaczynski, A; Jacofsky, M

    2016-02-01

    The eccentric glenosphere was principally introduced into reverse shoulder arthroplasty to reduce the incidence of scapular notching. There is only limited information about the influence of its design on deltoid power and joint reaction forces. The aim of our study was to investigate how the diameter and eccentricity of the glenosphere affect the biomechanics of the deltoid and the resultant joint reaction forces. Different sizes of glenosphere and eccentricity were serially tested in ten cadaveric shoulders using a custom shoulder movement simulator. Increasing the diameter of the glenosphere alone did not alter the deltoid moment arm. However, using an eccentric glenosphere increased the moment arm of the deltoid, lowered the joint reaction force and required less deltoid force to generate movement. Eccentricity is an independent variable which increases deltoid efficiency and lowers joint reaction forces in a reverse shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:218-23. ©2016 The British Editorial Society of Bone & Joint Surgery.

  15. 75 FR 45606 - Interagency Ocean Policy Task Force-Final Recommendations of the Interagency Ocean Policy Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... COUNCIL ON ENVIRONMENTAL QUALITY Interagency Ocean Policy Task Force--Final Recommendations of the Interagency Ocean Policy Task Force AGENCY: Council on Environmental Quality. ACTION: Notice of Availability, Interagency Ocean Policy Task Force's [[Page 45607

  16. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton.

    PubMed

    Frisoli, Antonio; Sotgiu, Edoardo; Procopio, Caterina; Bergamasco, Massimo; Rossi, Bruno; Chisari, Carmelo

    2011-01-01

    The distinguishing features of active exoskeletons are the capability of guiding arm movement at the level of the full kinematic chain of the human arm, and training full 3D spatial movements. We have specifically developed a PD sliding mode control for upper limb rehabilitation with gain scheduling for providing "assistance as needed", according to the force capability of the patient, and an automatic measurement of the impaired arm joint torques, to evaluate the hypertonia associated to the movement during the execution of the training exercise. Two different training tasks in Virtual Reality were devised, that make use of the above control, and allow to make a performance based evaluation of patient's motor status. The PERCRO L-Exos (Light-Exoskeleton) was used to evaluate the proposed algorithms and training exercises in two clinical case studies of patients with chronic stroke, that performed 6 weeks of robotic assisted training. Clinical evaluation (Fugl-Meyer Scale, Modified Ashworth Scale, Bimanual Activity Test) was conducted before and after treatment and compared to the scores and the quantitative indices, such as task time, position/joint error and resistance torques, associated to the training exercises. © 2011 IEEE

  17. The effect of videotape augmented feedback on drop jump landing strategy: Implications for anterior cruciate ligament and patellofemoral joint injury prevention.

    PubMed

    Munro, Allan; Herrington, Lee

    2014-10-01

    Modification of high-risk movement strategies such as dynamic knee valgus is key to the reduction of anterior cruciate ligament (ACL) and patellofemoral joint (PFJ) injuries. Augmented feedback, which includes video and verbal feedback, could offer a quick, simple and effective alternative to training programs for altering high-risk movement patterns. It is not clear whether feedback can reduce dynamic knee valgus measured using frontal plane projection angle (FPPA). Vertical ground reaction force (vGRF), two-dimensional FPPA of the knee, contact time and jump height of 20 recreationally active university students were measured during a drop jump task pre- and post- an augmented feedback intervention. A control group of eight recreationally active university students were also studied at baseline and repeat test. There was a significant reduction in vGRF (p=0.033), FPPA (p<0.001) and jump height (p<0.001) and an increase in contact time (p<0.001) post feedback in the intervention group. No changes were evident in the control group. Augmented feedback leads to significant decreases in vGRF, FPPA and contact time which may help to reduce ACL and PFJ injury risk. However, these changes may result in decreased performance. Augmented feedback reduces dynamic knee valgus, as measured via FPPA, and forces experienced during the drop jump task and therefore could be used as a tool for helping decrease ACL and PFJ injury risk prior to, or as part of, the implementation of injury prevention training programs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  19. Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study.

    PubMed

    Bicho, Estela; Erlhagen, Wolfram; Louro, Luis; e Silva, Eliana Costa

    2011-10-01

    In this paper we present a model for action preparation and decision making in cooperative tasks that is inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. It implements the coordination of actions and goals among the partners as a dynamic process that integrates contextual cues, shared task knowledge and predicted outcome of others' motor behavior. The control architecture is formalized by a system of coupled dynamic neural fields representing a distributed network of local but connected neural populations. Different pools of neurons encode task-relevant information about action means, task goals and context in the form of self-sustained activation patterns. These patterns are triggered by input from connected populations and evolve continuously in time under the influence of recurrent interactions. The dynamic model of joint action is evaluated in a task in which a robot and a human jointly construct a toy object. We show that the highly context sensitive mapping from action observation onto appropriate complementary actions allows coping with dynamically changing joint action situations. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. 32 CFR 855.20 - Joint-use agreements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Joint-use agreements. 855.20 Section 855.20 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855.20 Joint-use agreements. An agreement between...

  1. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.

    PubMed

    Latash, M L

    1992-01-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.

  2. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.

    PubMed

    Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R

    2018-04-27

    Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  4. Comparison of Ball-And-Racket Impact Force in Two-Handed Backhand Stroke Stances for Different-Skill-Level Tennis Players.

    PubMed

    Lo, Kuo-Cheng; Hsieh, Yung-Chun

    2016-06-01

    This study compared the kinetic roles of the upper extremities in racket impact force generation between the open stance (OS) and square stance (SS) for tennis players with different skill levels in two-handed backhand strokes. Twelve male tennis players were divided into an advanced group (AG) (L3-L2 skill level) and intermediate group (IG) (L7-L6 skill level), and their data were used in a three-dimensional kinetic analysis. Their motions were captured using 21 reflective markers attached to anatomic landmarks for two-handed backhand stroke motion data collection. During the acceleration phase, significant differences were not observed between both stances, but they were observed between the groups with different skill levels for the force of the upper extremities (p = 0.027). The joint forces were significantly lower in the AG than in the IG. Players performing the SS had significantly larger pronation and supination of the wrist joint moment than those in the OS (p = 0.032) during the acceleration phase, irrespective of the playing level. Higher internal rotation moment after impact was observed at each joint, particularly among young intermediate tennis players, regardless of their stance. The AG demonstrated a higher joint force and moment at every joint compared with the IG at impact. Moreover, the AG demonstrated superior stroke efficiency and effectively reduced joint moment after impact and sports injury. Key pointsAdvanced players, regardless of open stance or square stance, have larger joint force and moment at each joint before ball impact resulting in better stroke efficiency and reduced chance of injury.Intermediate players, regardless of stance, have higher internal rotation moment at each joint instead of larger joint force as compared to advanced players before ball impact. The higher internal rotation moment will induce higher joint impact force which makes the player injury-prone.Young intermediate tennis players may want to avoid excessive follow-through movement after ball impact to prevent injury in their early career.

  5. Improved Automatically Locking/Unlocking Orthotic Knee Joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1995-01-01

    Proposed orthotic knee joint improved version of one described in "Automatically Locking/Unlocking Orthotic Knee Joint" (MFS-28633). Locks automatically upon initial application of radial force (wearer's weight) and unlocks automatically, but only when all loads (radial force and bending) relieved. Joints lock whenever wearer applies weight to knee at any joint angle between full extension and 45 degree bend. Both devices offer increased safety and convenience relative to conventional orthotic knee joints.

  6. Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.

    PubMed

    Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang

    2013-11-01

    Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.

  7. 76 FR 60863 - Aquatic Nuisance Species Task Force Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ...] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: This notice announces a meeting of the Aquatic Nuisance Species Task Force (ANS Task Force). The ANS Task Force's purpose is to develop and implement a program for U.S. waters to prevent...

  8. 78 FR 29378 - Aquatic Nuisance Species Task Force; Public Teleconference/Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-FF09F14000-134] Aquatic Nuisance Species Task Force; Public Teleconference/ Webinar AGENCY: Fish and Wildlife... teleconference/webinar of the Aquatic Nuisance Species Task Force (ANS Task Force). The ANS Task Force's purpose... aquatic nuisance species; to monitor, control, and study such species; and to disseminate related...

  9. Keepin' On: Five Years Down the Road to Better Schools. Reports of the Task Force on Improving Kentucky's Schools and the Task Force on Restructuring Time and Learning.

    ERIC Educational Resources Information Center

    Prichard Committee for Academic Excellence, Lexington, KY.

    This report contains the findings of two task forces established during 1994 by the Prichard Committee for Academic Excellence: (1) the Task Force on Improving Kentucky Schools; and (2) the Task Force on Restructuring Time and Learning. The task forces, comprised of parents and business members of the Prichard Committee, examined key elements of…

  10. Managing Non-Standard Force Demands: Risk Implications of the Global Force Management System

    DTIC Science & Technology

    2012-04-26

    GLOBAL FORCE MANAGEMENT SYSTEM by James C. Wright GS-14, Department of Defense A paper submitted to the Faculty of the Joint Advanced Warfighting...School in partial satisfaction of the requirements of a Master of Science Degree in Joint Campaign Planning and Strategy. The contents of this paper ...reflect my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the Department of Defense. This paper is entirely

  11. Can a Soft Robotic Probe Use Stiffness Control Like a Human Finger to Improve Efficacy of Haptic Perception?

    PubMed

    Sornkarn, Nantachai; Nanayakkara, Thrishantha

    2017-01-01

    When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.

  12. Neuromuscular Fatigue Alters Postural Control and Sagittal Plane Hip Biomechanics in Active Females With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Frank, Barnett S.; Gilsdorf, Christine M.; Goerger, Benjamin M.; Prentice, William E.; Padua, Darin A.

    2014-01-01

    Background: Females with history of anterior cruciate ligament (ACL) injury and subsequent ligament reconstruction are at high risk for future ACL injury. Fatigue may influence the increased risk of future injury in females by altering lower extremity biomechanics and postural control. Hypothesis: Fatigue will promote lower extremity biomechanics and postural control deficits associated with ACL injury. Study Design: Descriptive laboratory study. Methods: Fourteen physically active females with ACL reconstruction (mean age, 19.64 ± 1.5 years; mean height, 163.52 ± 6.18 cm; mean mass, 62.6 ± 13.97 kg) volunteered for this study. Postural control and lower extremity biomechanics were assessed in the surgical limb during single-leg balance and jump-landing tasks before and after a fatigue protocol. Main outcome measures were 3-dimensional hip and knee joint angles at initial contact, peak angles, joint angular displacements and peak net joint moments, anterior tibial shear force, and vertical ground reaction force during the first 50% of the loading phase of the jump-landing task. During the single-leg stance task, the main outcome measure was center of pressure sway speed. Results: Initial contact hip flexion angle decreased (t = −2.82, P = 0.01; prefatigue, 40.98° ± 9.79°; postfatigue, 36.75° ± 8.61°) from pre- to postfatigue. Hip flexion displacement (t = 2.23, P = 0.04; prefatigue, 45.19° ± 14.1°; postfatigue, 47.48° ± 14.21°) and center of pressure sway speed (t = 3.95, P < 0.05; prefatigue, 5.18 ± 0.96 cm/s; postfatigue, 6.20 ± 1.72 cm/s) increased from pre- to postfatigue. There was a trending increase in hip flexion moment (t = 2.14, P = 0.05; prefatigue, 1.66 ± 0.68 Nm/kg/m; postfatigue, 1.91 ± 0.62 Nm/kg/m) from pre- to postfatigue. Conclusion: Fatigue may induce lower extremity biomechanics and postural control deficits that may be associated with ACL injury in physically active females with ACL reconstruction. Clinical Relevance: Rehabilitation and maintenance programs should incorporate activities that aim to improve muscular endurance and improve the neuromuscular system’s tolerance to fatiguing exercise in efforts to maintain stability and safe landing technique during subsequent physical activity. PMID:24982701

  13. Clinical effects of leg length discrepancy through ground and joint reaction force responses: A review

    NASA Astrophysics Data System (ADS)

    Zabri, S. W. K. Ali; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Daud, R.

    2017-09-01

    Leg length discrepancy (LLD) is caused either due to functional disorder or shortening of bone structure. This disorder could contribute to the significant effects on body weight distribution and lumbar scoliosis at the certain extend. Ground reaction force and joint reaction force are the parameters that can be used to analyze the responses in weight distribution and kinetics changes on the body joints, respectively. Hence, the purpose of this paper is to review the studies that focus on the clinical effects of LLD to the lower limb and spine through ground and joint reaction force responses that could lead to the orthopedics disorder.

  14. Walking patterns and hip contact forces in patients with hip dysplasia.

    PubMed

    Skalshøi, Ole; Iversen, Christian Hauskov; Nielsen, Dennis Brandborg; Jacobsen, Julie; Mechlenburg, Inger; Søballe, Kjeld; Sørensen, Henrik

    2015-10-01

    Several studies have investigated walking characteristics in hip dysplasia patients, but so far none have described all hip rotational degrees of freedom during the whole gait cycle. This descriptive study reports 3D joint angles and torques, and furthermore extends previous studies with muscle and joint contact forces in 32 hip dysplasia patients and 32 matching controls. 3D motion capture data from walking and standing trials were analysed. Hip, knee, ankle and pelvis angles were calculated with inverse kinematics for both standing and walking trials. Hip, knee and ankle torques were calculated with inverse dynamics, while hip muscle and joint contact forces were calculated with static optimisation for the walking trials. No differences were found between the two groups while standing. While walking, patients showed decreased hip extension, increased ankle pronation and increased hip abduction and external rotation torques. Furthermore, hip muscle forces were generally lower and shifted to more posteriorly situated muscles, while the hip joint contact force was lower and directed more superiorly. During walking, patients showed lower and more superiorly directed hip joint contact force, which might alleviate pain from an antero-superiorly degenerated joint. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Influence of Joint Distraction Force on the Soft-Tissue Balance Using Modified Gap-Balancing Technique in Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Takeoka, Yoshiki; Tsubosaka, Masanori; Kuroda, Ryosuke; Matsumoto, Tomoyuki

    2017-10-01

    During modified gap-balancing technique, there is no consensus on the best method for obtaining appropriate soft-tissue balance and determining the femoral component rotation. Sixty-five varus osteoarthritic patients underwent primary posterior-stabilized total knee arthroplasty using modified gap-balancing technique. The influence of joint distraction force on the soft-tissue balance measurement during the modified gap-balancing technique was evaluated with Offset Repo-Tensor between the osteotomized surfaces at extension, and between femoral posterior condyles and tibial osteotomized surface at flexion of the knee before the resection of femoral posterior condyles. The joint center gap (millimeters) and varus ligament balance (°) were measured under 20, 40, and 60 pounds of joint distraction forces, and the differences in these values at extension and flexion (the value at flexion minus the value at extension) were also calculated. The differences in joint center gap (-6.7, -6.8, and -6.9 mm for 20, 40, and 60 pounds, respectively) and varus ligament balance (3.5°, 3.8°, and 3.8°) at extension and flexion were not significantly different among different joint distraction forces, although the joint center gap and varus ligament balance significantly increased stepwise at extension and flexion as the joint distraction force increased. The difference in joint center gap and varus ligament balance at extension and flexion were consistent even among the different joint distraction forces. This novel index would be useful for the determination of femoral component rotation during the modified gap-balancing technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Grip force and force sharing in two different manipulation tasks with bottles.

    PubMed

    Cepriá-Bernal, Javier; Pérez-González, Antonio; Mora, Marta C; Sancho-Bru, Joaquín L

    2017-07-01

    Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.

  17. Power, muscular work, and external forces in cycling.

    PubMed

    de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J

    1994-01-01

    Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. PRN 94-9: Announcing the Formation of Two Industry-Wide Task Forces: Agricultural Reentry Task Force and Outdoor Residential Exposure Task Force

    EPA Pesticide Factsheets

    This Notice announces two industry-wide Task Forces being formed in response to generic exposure data requirements. It contains EPA's policy on a registrant's options for, and responsibilities when joining Task Force as a way to satisfy data requirements.

  19. 78 FR 60306 - Aquatic Nuisance Species Task Force Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...-FF09F14000-134] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior... the Aquatic Nuisance Species (ANS) Task Force. The ANS Task Force's purpose is to develop and... Task Force will meet from 8 a.m. to 4:30 p.m. on Wednesday, November 6, through Thursday, November 7...

  20. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    PubMed

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

Top