Sample records for joint task group

  1. Group benefits in joint perceptual tasks-a review.

    PubMed

    Wahn, Basil; Kingstone, Alan; König, Peter

    2018-05-12

    In daily life, humans often perform perceptual tasks together to reach a shared goal. In these situations, individuals may collaborate (e.g., by distributing task demands) to perform the task better than when the task is performed alone (i.e., attain a group benefit). In this review, we identify the factors influencing if, and to what extent, a group benefit is attained and provide a framework of measures to assess group benefits in perceptual tasks. In particular, we integrate findings from two frequently investigated joint perceptual tasks: visuospatial tasks and decision-making tasks. For both task types, we find that an exchange of information between coactors is critical to improve joint performance. Yet, the type of exchanged information and how coactors collaborate differs between tasks. In visuospatial tasks, coactors exchange information about the performed actions to distribute task demands. In perceptual decision-making tasks, coactors exchange their confidence on their individual perceptual judgments to negotiate a joint decision. We argue that these differences can be explained by the task structure: coactors distribute task demands if a joint task allows for a spatial division and stimuli can be accurately processed by one individual. Otherwise, they perform the task individually and then integrate their individual judgments. © 2018 New York Academy of Sciences.

  2. Concurrent Path Planning with One or More Humanoid Robots

    NASA Technical Reports Server (NTRS)

    Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)

    2014-01-01

    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.

  3. Effect of obesity on posture and hip joint moments during a standing task, and trunk forward flexion motion.

    PubMed

    Gilleard, W; Smith, T

    2007-02-01

    Effects of obesity on trunk forward flexion motion in sitting and standing, and postural adaptations and hip joint moment for a standing work task. Cross-sectional comparison of obese and normal weight groups. Ten obese subjects (waist girth 121.2+/-16.8 cm, body mass index (BMI) 38.9+/-6.6 kg m(-2)) and 10 age- and height-matched normal weight subjects (waist girth 79.6+/-6.4 cm, BMI 21.7+/-1.5 kg m(-2)). Trunk motion during seated and standing forward flexion, and trunk posture, hip joint moment and hip-to-bench distance during a simulated standing work task were recorded. Forward flexion motion of the thoracic segment and thoracolumbar spine was decreased for the obese group with no change in pelvic segment and hip joint motion. Obese subjects showed a more flexed trunk posture and increased hip joint moment and hip-to-bench distance for a simulated standing work task. Decreased range of forward flexion motion, differing effects within the trunk, altered posture during a standing work task and concomitant increases in hip joint moment give insight into the aetiology of functional decrements and musculoskeletal pain seen in obesity.

  4. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    PubMed Central

    Kochanowicz, Andrzej

    2018-01-01

    The aims of this study were (1) to assess the relationship between joint position (JPS) and force sense (FS) and muscle strength (MS) and (2) to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR) and passive reproduction (PR) task and a force reproduction (FR) task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72°) than during the AR task (3.1 ± 1.93°). Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors. PMID:29670901

  5. Biomechanical compensations of the trunk and lower extremities during stepping tasks after unilateral transtibial amputation.

    PubMed

    Murray, Amanda M; Gaffney, Brecca M; Davidson, Bradley S; Christiansen, Cory L

    2017-11-01

    Lower extremity movement compensations following transtibial amputation are well-documented and are likely influenced by trunk posture and movement. However, the biomechanical compensations of the trunk and lower extremities, especially during high-demand tasks such as step ascent and descent, remain unclear. Kinematic and kinetic data were collected during step ascent and descent tasks for three groups of individuals: diabetic/transtibial amputation, diabetic, and healthy. An ANCOVA was used to compare peak trunk, hip and knee joint angles and moments in the sagittal and frontal planes between groups. Paired t-tests were used to compare peak joint angles and moments between amputated and intact limbs of the diabetic/transtibial amputation group. During step ascent and descent, the transtibial amputation group exhibited greater trunk forward flexion and lateral flexion compared to the other two groups (P<0.016), which resulted in greater low back moments and asymmetric loading patterns in the lower extremity joints. The diabetic group exhibited similar knee joint loading patterns compared to the amputation group (P<0.016), during step descent. This study highlights the biomechanical compensations of the trunk and lower extremities in individuals with dysvascular transtibial amputation, by identifying low back, hip, and knee joint moment patterns unique to transtibial amputation during stepping tasks. In addition, the results suggest that some movement compensations may be confounded by the presence of diabetes and precede limb amputation. The increased and asymmetrical loading patterns identified may predispose individuals with transtibial amputation to the development of secondary pain conditions, such as low back pain or osteoarthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Influence of Task Complexity on Knee Joint Kinetics Following ACL Reconstruction

    PubMed Central

    Schroeder, Megan J.; Krishnan, Chandramouli; Dhaher, Yasin Y.

    2015-01-01

    Background Previous research indicates that subjects with anterior cruciate ligament reconstruction exhibit abnormal knee joint movement patterns during functional activities like walking. While the sagittal plane mechanics have been studied extensively, less is known about the secondary planes, specifically with regard to more demanding tasks. This study explored the influence of task complexity on functional joint mechanics in the context of graft-specific surgeries. Methods In 25 participants (10 hamstring tendon graft, 6 patellar tendon graft, 9 matched controls), three-dimensional joint torques were calculated using a standard inverse dynamics approach during level walking and stair descent. The stair descent task was separated into two functionally different sub-tasks—step-to-floor and step-to-step. The differences in external knee moment profiles were compared between groups; paired differences between the reconstructed and non-reconstructed knees were also assessed. Findings The reconstructed knees, irrespective of graft type, typically exhibited significantly lower peak knee flexion moments compared to control knees during stair descent, with the differences more pronounced in the step-to-step task. Frontal plane adduction torque deficits were graft-specific and limited to the hamstring tendon knees during the step-to-step task. Internal rotation torque deficits were also primarily limited to the hamstring tendon graft group during stair descent. Collectively, these results suggest that task complexity was a primary driver of differences in joint mechanics between anterior cruciate ligament reconstructed individuals and controls, and such differences were more pronounced in individuals with hamstring tendon grafts. Interpretation The mechanical environment experienced in the cartilage during repetitive, cyclical tasks such as walking and other activities of daily living has been argued to contribute to the development of degenerative changes to the joint and ultimately osteoarthritis. Given the task-specific and graft-specific differences in joint mechanics detected in this study, care should be taken during the rehabilitation process to mitigate these changes. PMID:26101055

  7. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  8. Biomechanical balance response during induced falls under dual task conditions in people with knee osteoarthritis.

    PubMed

    Levinger, Pazit; Nagano, Hanatsu; Downie, Calum; Hayes, Alan; Sanders, Kerrie M; Cicuttini, Flavia; Begg, Rezaul

    2016-07-01

    People with knee osteoarthritis (OA) are at twice the risk of falling compared to older people without knee OA, however the mechanism for this is poorly understood. This study investigated the biomechanical response of the trunk and lower limb joints during a forward induced fall under different task conditions in people with and without knee OA. Twenty-four participants with OA (68.6±6.2 years) and 15 asymptomatic controls (72.4±4.8 years) participated in the study. Forward fall was induced by releasing participants from a static forward leaning position. Participants were required to recover balance during three conditions: normal, physical (obstacle clearance) and cognitive dual tasks (counting backwards). Spatiotemporal parameters, lower limb joint kinematics and kinetics of the recovery limb were compared between the two groups and across the three task conditions. The OA group demonstrated slower spatio-temporal characteristics and reduced hip and knee flexion angles, joint moments/powers and reduced muscle negative work at the knee and ankle (p<0.05). Cognitive dual task resulted in reduced centre of mass velocity and step length (p=0.03) compared to the physical dual task condition. Reduced knee (p=0.02) and hip joint powers (p=0.03) were demonstrated in the OA group in the physical task condition. When simulating a forward fall, participants with OA demonstrated difficulty in absorbing the impact and slowing down the forward momentum of the body during a recovery step. Moreover, poor dynamic postural control was demonstrated as task complexity increased. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. What It Takes. Air Force Command of Joint Operations

    DTIC Science & Technology

    2009-01-01

    Iraq Assistance Group IDE intermediate developmental education IO international organization ISAF International Security and Assistance Force ISR...Operations Table A.1—Continued Joint Task Force Mission/Operation Start End Service Command Rank JTF–Joint Area Support Group (JASG) Iraqi Freedom...be of interest to a wide group of Air Force personnel involved in the development and func- tion of the service’s command organizations, including

  10. Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning.

    PubMed

    Kia, Seyed Mostafa; Pedregosa, Fabian; Blumenthal, Anna; Passerini, Andrea

    2017-06-15

    The use of machine learning models to discriminate between patterns of neural activity has become in recent years a standard analysis approach in neuroimaging studies. Whenever these models are linear, the estimated parameters can be visualized in the form of brain maps which can aid in understanding how brain activity in space and time underlies a cognitive function. However, the recovered brain maps often suffer from lack of interpretability, especially in group analysis of multi-subject data. To facilitate the application of brain decoding in group-level analysis, we present an application of multi-task joint feature learning for group-level multivariate pattern recovery in single-trial magnetoencephalography (MEG) decoding. The proposed method allows for recovering sparse yet consistent patterns across different subjects, and therefore enhances the interpretability of the decoding model. Our experimental results demonstrate that the mutli-task joint feature learning framework is capable of recovering more meaningful patterns of varying spatio-temporally distributed brain activity across individuals while still maintaining excellent generalization performance. We compare the performance of the multi-task joint feature learning in terms of generalization, reproducibility, and quality of pattern recovery against traditional single-subject and pooling approaches on both simulated and real MEG datasets. These results can facilitate the usage of brain decoding for the characterization of fine-level distinctive patterns in group-level inference. Considering the importance of group-level analysis, the proposed approach can provide a methodological shift towards more interpretable brain decoding models. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Landing Mechanics During Side Hopping and Crossover Hopping Maneuvers in Noninjured Women and Women With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Ortiz, Alexis; Olson, Sharon; Trudelle-Jackson, Elaine; Rosario, Martin; Venegas, Heidi L.

    2011-01-01

    Objective To compare, landing mechanics and electromyographic activity of the lower extremities during side hopping and crossover hopping maneuvers, in noninjured women and women with anterior cruciate ligament (ACL) reconstruction. Design A case-control study. Setting A 3-dimensional motion analysis laboratory. Participants Twenty-eight young women (range, 21–35 years) (15 control subjects and 13 subjects with ACL reconstruction). Patients and Methods All participants performed a side-to-side hopping task that consisted of hopping single-legged 10 times consecutively from side to side across 2 lines marked 30 cm apart on 2 individual force plates. The task was designated as a side hopping when the hop was to the opposite side of the stance leg and as crossover hopping when the hop was toward the side of the stance leg. Main Outcome Measurements Peak hip-/knee-joint angles; peak knee extension/abduction joint moments; electromyographic studies of the gluteus maximus, gluteus medius, rectus femoris, and hamstring muscles; and quadriceps/hamstring co-contraction ratio were compared between the groups by means of 2 × 2 multivariate analysis of variance tests (group × maneuver). Results Noninjured women and women with ACL reconstruction exhibited similar hip-and knee-joint angles during both types of hopping. Hip-joint angles were greater during the crossover hopping in both groups, and knee-joint angles did not differ between the groups or hops. Knee-joint moments demonstrated a significant group × maneuver interaction. Greater knee extension and valgus moments were noted in the control group during crossover hopping, and greater knee abduction moments were noted in the ACL group during side hopping. Electromyographic data revealed no statistically significantly differences between the groups. Conclusions Women with ACL reconstruction exhibited the restoration of functional biomechanical movements such as hip-/knee-joint angles and lower extremity neuromuscular activation during side-to-side athletic tasks. However, not all biomechanical strategies are restored years after surgery, and women who have undergone a procedure such as ACL reconstruction may continue to exhibit knee-joint abduction moments that increase the risk of additional knee injury. PMID:21257128

  12. Lower-limb proprioceptive awareness in professional ballet dancers.

    PubMed

    Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G

    2013-09-01

    Enhanced proprioceptive feedback strengthens synergistic muscle groups and stabilizes the coordination of limbs, thus contributing to the movement efficiency of ballet dancers. The present study compared lower-limb proprioceptive awareness in professional ballet dancers to matched controls who had no dance training. Two assessment methods were used to test the hypothesis that ballet dancers would demonstrate increased proprioceptive awareness in the ankle, knee, and hip: 1. a joint-position matching task to assess static proprioceptive joint awareness, and 2. an eyes-closed, quiet standing task to assess both static and dynamic proprioceptive awareness through measures of center of pressure (COP) variability. Results of the matching task indicated that the dancers exhibited greater proprioceptive awareness than controls for all three joints (p < 0.001). Also, dancers were equally aware of the positioning of their ankle, knee, and hip joints (p > 0.05), whereas controls were less aware of their ankle position compared to their knee and hip joints (p < 0.001). Measures indexing COP variability during quiet standing did not differ between groups and thus failed to reflect increased proprioceptive awareness in dancers (all p > 0.05). This indicates that quiet stance may have limited value as a means for evaluating proprioception. These findings provide preliminary evidence that enhanced proprioceptive awareness of lower limb joints should be considered as an evaluative criterion for dancers' ability to learn complex ballet skills. They also indicate that quiet standing tasks may not provide sufficient challenge for dancers' enhanced proprioceptive awareness to manifest.

  13. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.

    PubMed

    Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R

    2018-04-27

    Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. 76 FR 38642 - Meeting of the Defense Business Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Downsizing Applications for DoD'' Task Groups. The Board will also receive updates from the ``New Ways to... --Corporate Downsizing Applications for DoD 11:45-12 Task Group Updates --New Ways to Execute the Joint... organizations may submit written comments to the Board about its mission and topics pertaining to this public...

  15. Effect of hamstring flexibility on hip and lumbar spine joint excursions during forward-reaching tasks in participants with and without low back pain.

    PubMed

    Johnson, Erica N; Thomas, James S

    2010-07-01

    To examine the correlation between hamstring flexibility and hip and lumbar spine joint excursions during standardized reaching and forward-bending tasks. Retrospective analysis of data obtained during 2 previous prospective studies that examined kinematics and kinetics during forward-reaching tasks in participants with and without low back pain (LBP). The 2 previous studies were conducted in the Motor Control Lab at Ohio University and the Orthopaedic Ergonomics Laboratory at The Ohio State University. Data from a total of 122 subjects from 2 previous studies: study 1: 86 subjects recovered from an episode of acute LBP (recovered) and study 2 (A.I. McCallum, unpublished data): 18 chronic LBP subjects and 18 healthy-matched controls (healthy). Not applicable. Correlation values between hamstring flexibility as measured by straight leg raise (SLR) and amount of hip and lumbar spine joint excursions used during standardized reaching and forward-bending tasks. No significant correlation was found between hamstring flexibility and hip and lumbar joint excursions during forward-bending tasks in the LBP or recovered groups. The SLR had a significant negative correlation with lumbar spine excursions during reaching tasks to a low target in the healthy group (right SLR: P=.011, left SLR: P=.004). Hamstring flexibility is not strongly related to the amount of lumbar flexion used to perform forward-reaching tasks in participants who have chronic LBP or who have recovered from LBP. More research needs to be conducted to examine the influence of hamstring flexibility on observed movement patterns to further evaluate the efficacy of flexibility training in the rehabilitation of patients with LBP. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Conflict's consequences: effects of social motives on postnegotiation creative and convergent group functioning and performance.

    PubMed

    Beersma, Bianca; De Dreu, Carsten K W

    2005-09-01

    Two studies tested the effects of social motives during negotiation on postnegotiation group performance. In both experiments, a prosocial or a proself motivation was induced, and participants negotiated in 3-person groups about a joint market. In Experiment 1, groups subsequently performed an advertisement task. Consistent with the authors' predictions, results showed that proself groups performed worse on the convergent aspects of this task but better on the divergent aspects than prosocial groups. In Experiment 2, the authors manipulated social motive and negotiation (negotiation vs. no negotiation), and groups performed a creativity task (requiring divergent performance) or a planning task (requiring convergent performance). Proself groups showed greater dedication, functioned more effectively, and performed better than prosocial groups on the creativity task, whereas prosocial groups showed greater dedication, functioned more effectively, and performed better than proself groups on the planning task, and these effects only occurred when the task was preceded by group negotiation.

  17. Transferring knowledge during dyadic interaction: The role of the expert in the learning process.

    PubMed

    Mireles, Edwin Johnatan Avila; De Santis, Dalia; Morasso, Pietro; Zenzeri, Jacopo

    2016-08-01

    Physical interaction between man and machines is increasing the interest of the research as well as the industrial community. It is known that physical coupling between active persons can be beneficial and increase the performance of the dyad compared to an individual. However, the factors that may result in performance benefits are still poorly understood. The aim of this work is to investigate how the different initial skill levels of the interacting partners influence the learning of a stabilization task. Twelve subjects, divided in two groups, trained in couples in a joint stabilization task. In the first group the couples were composed of two naive, while in the second a naive was trained together with an expert. Results show that training with an expert results in the greatest performance in the joint task. However, this benefit is not transferred to the individual when performing the same task bimanually.

  18. Pathological Knee Joint Motion Analysis By High Speed Cinephotography

    NASA Astrophysics Data System (ADS)

    Baumann, Jurg U.

    1985-02-01

    The use of cinephotography for evaluation of disturbed knee joint function was compared in three groups of patients. While a sampling rate of 50 images per second was adequate for patients with neuromuscular disorders, a higher frequency of around 300 i.p.s. is necessary in osteoarthritis and ligamentous knee joint injuries, but the task of digitizing is prohibitive unless automated.

  19. Expeditionary Operations Require Joint Force Capabilities in the Future Operating Environment

    DTIC Science & Technology

    2013-03-01

    endeavor, I would like to thank COL Purvis, and the professionals of JAWS Seminar 2 for letting me try to weave my thesis into almost every seminar...joint sea base, expeditionary strike group, or task force. JP 4-0, JSHIP JT&E, ’DLQ MOU Notes: The AFSB is to exploit the flexibility and...of the global commons and select sovereign territory, waters , airspace and cyberspace. 14  The combat task of overcoming the enemy’s anti-access

  20. The Indian Nations At Risk Task Force and the National Advisory Council on Indian Education Joint Issues Sessions Proceedings. Annual Conference of the National Indian Education Association (22nd, San Diego, California, October 15-16, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    The Indian Nations At Risk Task Force and the National Advisory Council on Indian Education (NACIE) held joint sessions to hear testimony on important issues in American Indian education. This document presents statements given at 15 topical sessions and 3 additional sessions held for special groups. The 15 topics addressed were: teaching Native…

  1. Reaction Time and Joint Kinematics During Functional Movement in Recently Concussed Individuals.

    PubMed

    Lynall, Robert C; Blackburn, J Troy; Guskiewicz, Kevin M; Marshall, Stephen W; Plummer, Prudence; Mihalik, Jason P

    2018-05-01

    To compare movement reaction time and joint kinematics between athletes with recent concussion and matched control recreational athletes during 3 functional tasks. Cross-sectional. Laboratory. College-aged recreational athletes (N=30) comprising 2 groups (15 participants each): (1) recent concussion group (median time since concussion, 126d; range, 28-432d) and (2) age- and sex-matched control group with no recent concussions. We investigated movement reaction time and joint kinematics during 3 tasks: (1) jump landing, (2) anticipated cut, and (3) unanticipated cut. Reaction time and reaction time cost (jump landing reaction time-cut reaction time/jump landing reaction time×100%), along with trunk, hip, and knee joint angles in the sagittal and frontal planes at initial ground contact. There were no reaction time between-group differences, but the control group displayed improved reaction time cost (10.7%) during anticipated cutting compared with the concussed group (0.8%; P=.030). The control group displayed less trunk flexion than the concussed group during the nondominant anticipated cut (5.1° difference; P=.022). There were no other kinematic between-group differences (P≥.079). We observed subtle reaction time and kinematic differences between individuals with recent concussion and those without concussion more than a month after return to activity after concussion. The clinical interpretation of these findings remains unclear, but may have future implications for postconcussion management and rehabilitation. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Multi-joint postural behavior in patients with knee osteoarthritis.

    PubMed

    Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane

    2015-12-01

    Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Development of a Geospatial Data-Sharing Method for Unmanned Vehicles Based on the Joint Architecture for Unmanned Systems (JAUS)

    DTIC Science & Technology

    2005-08-01

    the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned Ground Systems ( JAUGS ) Working Group to address these concerns...The JAUGS Working Group was tasked with developing an initial standard for interoperable unmanned ground systems. In 2002, the charter of the... JAUGS Working Group was 1 2 modified such that their efforts would extend to all unmanned systems, not only ground systems. The standard was

  4. The carry-over effect of competition in task-sharing: evidence from the joint Simon task.

    PubMed

    Iani, Cristina; Anelli, Filomena; Nicoletti, Roberto; Rubichi, Sandro

    2014-01-01

    The Simon effect, that is the advantage of the spatial correspondence between stimulus and response locations when stimulus location is a task-irrelevant dimension, occurs even when the task is performed together by two participants, each performing a go/no-go task. Previous studies showed that this joint Simon effect, considered by some authors as a measure of self-other integration, does not emerge when during task performance co-actors are required to compete. The present study investigated whether and for how long competition experienced during joint performance of one task can affect performance in a following joint Simon task. In two experiments, we required pairs of participants to perform together a joint Simon task, before and after jointly performing together an unrelated non-spatial task (the Eriksen flanker task). In Experiment 1, participants always performed the joint Simon task under neutral instructions, before and after performing the joint flanker task in which they were explicitly required either to cooperate with (i.e., cooperative condition) or to compete against a co-actor (i.e., competitive condition). In Experiment 2, they were required to compete during the joint flanker task and to cooperate during the subsequent joint Simon task. Competition experienced in one task affected the way the subsequent joint task was performed, as revealed by the lack of the joint Simon effect, even though, during the Simon task participants were not required to compete (Experiment 1). However, prior competition no longer affected subsequent performance if a new goal that created positive interdependence between the two agents was introduced (Experiment 2). These results suggest that the emergence of the joint Simon effect is significantly influenced by how the goals of the co-acting individuals are related, with the effect of competition extending beyond the specific competitive setting and affecting subsequent interactions.

  5. Medial knee loading is altered in subjects with early osteoarthritis during gait but not during step-up-and-over task

    PubMed Central

    Wesseling, Mariska; Smith, Colin R.; Thelen, Darryl G.; Verschueren, Sabine; Jonkers, Ilse

    2017-01-01

    This study evaluates knee joint loading during gait and step-up-and-over tasks in control subjects, subjects with early knee OA and those with established knee OA. Thirty-seven subjects with varying degrees of medial compartment knee OA severity (eighteen with early OA and sixteen with established OA), and nineteen healthy controls performed gait and step-up-and-over tasks. Knee joint moments, contact forces (KCF), the magnitude of contact pressures and center of pressure (CoP) location were analyzed for the three groups for both activities using a multi-body knee model with articular cartilage contact, 14 ligaments, and six degrees of freedom tibiofemoral and patellofemoral joints. During gait, the first peak of the medial KCF was significantly higher for patients with early knee OA (p = 0.048) and established knee OA (p = 0.001) compared to control subjects. Furthermore, the medial contact pressure magnitudes and CoP location were significantly different in both groups of patients compared to controls. Knee rotation moments (KRMs) and external rotation angles were significantly higher during early stance in both patient groups (p < 0.0001) compared to controls. During step-up-and-over, there was a high variability between the participants and no significant differences in KCF were observed between the groups. Knee joint loading and kinematics were found to be altered in patients with early knee OA only during gait. This is an indication that an excessive medial KCF and altered loading location, observed in these patients, is a contributor to early progression of knee OA. PMID:29117248

  6. Patients with sacroiliac joint dysfunction exhibit altered movement strategies when performing a sit-to-stand task.

    PubMed

    Capobianco, Robyn A; Feeney, Daniel F; Jeffers, Jana R; Nelson-Wong, Erika; Morreale, Joseph; Grabowski, Alena M; Enoka, Roger M

    2018-04-03

    The ability to rise from a chair is a basic functional task that is frequently compromised in individuals diagnosed with orthopedic disorders in the low back and hip. There is no published literature that describes how this task is altered by sacroiliac joint dysfunction (SIJD). The objective of this study was to compare lower extremity biomechanics and the onset of muscle activity when rising from a chair in subjects with SIJD and in healthy persons. Six women with unilateral SIJD and six age-matched healthy controls performed a sit-to-stand task while we measured kinematics, kinetics, and muscle activity. Subjects stood up at a preferred speed from a seated position on an armless and backless adjustable stool. We measured kinematics with a 10-camera motion capture system, ground reaction forces for each leg with force plates, and muscle activity with surface electromyography. Joint angles and torques were calculated using inverse dynamics. Leg-loading rate was quantified as the average slope of vertical ground reaction (VGRF) force during the 500-millisecond interval preceding maximal knee extension. Between-leg differences in loading rates and peak VGRFs were significantly greater for the SIJD group than for the control group. Maximal hip angles were significantly less for the SIJD group (p=.001). Peak hip moment in the SIJD group was significantly greater in the unaffected leg (0.75±0.22 N⋅m/kg) than in the affected leg (0.47±0.29 N⋅m/kg, p=.005). There were no between-leg or between-group differences for peak knee or ankle moments. The onset of activity in the latissimus dorsi muscle on the affected side was delayed and the erector spinae muscles were activated earlier in the SIJD group than in the control group. Subjects with SIJD have a greater VGRF on the unaffected leg, generate a greater peak hip moment in the unaffected leg, use a smaller range of motion at the hip joint of the affected leg, and delay the onset of a key muscle on the affected side when rising from a seated position. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Movement-Pattern Training to Improve Function in People With Chronic Hip Joint Pain: A Feasibility Randomized Clinical Trial.

    PubMed

    Harris-Hayes, Marcie; Czuppon, Sylvia; Van Dillen, Linda R; Steger-May, Karen; Sahrmann, Shirley; Schootman, Mario; Salsich, Gretchen B; Clohisy, John C; Mueller, Michael J

    2016-06-01

    Study Design Feasibility randomized clinical trial. Background Rehabilitation may be an appropriate treatment strategy for patients with chronic hip joint pain; however, the evidence related to the effectiveness of rehabilitation is limited. Objectives To assess feasibility of performing a randomized clinical trial to investigate the effectiveness of movement-pattern training (MPT) to improve function in people with chronic hip joint pain. Methods Thirty-five patients with chronic hip joint pain were randomized into a treatment (MPT) group or a control (wait-list) group. The MPT program included 6 one-hour supervised sessions and incorporated (1) task-specific training for basic functional tasks and symptom-provoking tasks, and (2) strengthening of hip musculature. The wait-list group received no treatment. Primary outcomes for feasibility were patient retention and adherence. Secondary outcomes to assess treatment effects were patient-reported function (Hip disability and Osteoarthritis Outcome Score), lower extremity kinematics, and hip muscle strength. Results Retention rates did not differ between the MPT (89%) and wait-list groups (94%, P = 1.0). Sixteen of the 18 patients (89%) in the MPT group attended at least 80% of the treatment sessions. For the home exercise program, 89% of patients reported performing their home program at least once per day. Secondary outcomes support the rationale for conduct of a superiority randomized clinical trial. Conclusion Based on retention and adherence rates, a larger randomized clinical trial appears feasible and warranted to assess treatment effects more precisely. Data from this feasibility study will inform our future clinical trial. Level of Evidence Therapy, level 2b-. J Orthop Sports Phys Ther 2016;46(6):452-461. Epub 26 Apr 2016. doi:10.2519/jospt.2016.6279.

  8. Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities

    PubMed Central

    Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J

    2017-01-01

    Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group. PMID:25570956

  9. Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities.

    PubMed

    Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J

    2014-01-01

    Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group.

  10. Do you really represent my task? Sequential adaptation effects to unexpected events support referential coding for the joint Simon effect.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2016-07-01

    Recent findings suggest that a Simon effect (SE) can be induced in Individual go/nogo tasks when responding next to an event-producing object salient enough to provide a reference for the spatial coding of one's own action. However, there is skepticism against referential coding for the joint Simon effect (JSE) by proponents of task co-representation. In the present study, we tested assumptions of task co-representation and referential coding by introducing unexpected double response events in a joint go/nogo and a joint independent go/nogo task. In Experiment 1b, we tested if task representations are functionally similar in joint and standard Simon tasks. In Experiment 2, we tested sequential updating of task co-representation after unexpected single response events in the joint independent go/nogo task. Results showed increased JSEs following unexpected events in the joint go/nogo and joint independent go/nogo task (Experiment 1a). While the former finding is in line with the assumptions made by both accounts (task co-representation and referential coding), the latter finding supports referential coding. In contrast to Experiment 1a, we found a decreased SE after unexpected events in the standard Simon task (Experiment 1b), providing evidence against the functional equivalence assumption between joint and two-choice Simon tasks of the task co-representation account. Finally, we found an increased JSE also following unexpected single response events (Experiment 2), ruling out that the findings of the joint independent go/nogo task in Experiment 1a were due to a re-conceptualization of the task situation. In conclusion, our findings support referential coding also for the joint Simon effect.

  11. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.

  12. Lower Body Stiffness Modulation Strategies in Well Trained Female Athletes.

    PubMed

    Millett, Emma L; Moresi, Mark P; Watsford, Mark L; Taylor, Paul G; Greene, David A

    2016-10-01

    Millett, EL, Moresi, MP, Watsford, ML, Taylor, PG, and Greene, DA. Lower body stiffness modulation strategies in well trained female athletes. J Strength Cond Res 30(10): 2845-2856, 2016-Lower extremity stiffness quantifies the relationship between the amount of leg compression and the external load to which the limb are subjected. This study aimed to assess differences in leg and joint stiffness and the subsequent kinematic and kinetic control mechanisms between athletes from various training backgrounds. Forty-seven female participants (20 nationally identified netballers, 13 high level endurance athletes and 14 age and gender matched controls) completed a maximal unilateral countermovement jump, drop jump and horizontal jump to assess stiffness. Leg stiffness, joint stiffness and associated mechanical parameters were assessed with a 10 camera motion analysis system and force plate. No significant differences were evident for leg stiffness measures between athletic groups for any of the tasks (p = 0.321-0.849). However, differences in joint stiffness and its contribution to leg stiffness, jump performance outcome measures and stiffness control mechanisms were evident between all groups. Practitioners should consider the appropriateness of the task utilised in leg stiffness screening. Inclusion of mechanistic and/or more sports specific tasks may be more appropriate for athletic groups.

  13. Distinct cut task strategy in Australian football players with a history of groin pain.

    PubMed

    Edwards, Suzi; Brooke, Hiram C; Cook, Jill L

    2017-01-01

    This study aimed to explore the differences in the magnitude of movement variability and strategies utilized during an unanticipated cut task between players with and without a history of groin pain. Cross-sectional design. Biomechanics laboratory. Male Australian football players with (HISTORY; n = 7) or without (CONTROL; n = 10) a history of groin pain. Three-dimensional ground reaction forces (GRF) and kinematics were recorded during 10 successful trials of an unanticipated cut task, and isokinetic hip adduction and abduction strength. Between-group differences were determined using independent-samples t-tests and the coefficient of variation (CV). Key substantial between-group differences identified were that the HISTORY group displayed decreased knee flexion and hip internal rotation, increased knee internal rotation and T12-L1 right rotation, and higher GRFs during the cut task. They also utilized three invariant systems (ankle, knee and T12-L1 joints), while being connected by a segment (hip and L5-S1 joints) that displayed increased lumbopelvic movement during the cut task, and decreased adductor muscle strength. This identifies the need for clinical management of the lower limb and thoracic segment to improve functional movement patterns in athletes with a history of a groin injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Funding Of Boko Haram And Nigerias Actions To Stop It

    DTIC Science & Technology

    2016-12-01

    Group against Money Laundering in West Africa GSCF Global Security Contingency Fund ISIS Islamic State of Iraq and Syria JTF joint task force...78. 5 Inter-Governmental Action Group against Money Laundering in West Africa (GIABA) and the Financial Action Task Force (FATF) believed that...has failed to address deficiencies such as money laundering and terrorist financing within its banks.96 Having a financial intelligence unit within a

  15. Rescuing Joint Personnel Recovery: Using Air Force Capability to Address Joint Shortfalls

    DTIC Science & Technology

    2011-06-01

    of an IP, the IP is not successfully reintegrated or the lessons learned are not incorporated into other operations. Adversaries will benefit from...Washington, D.C.: Office of Air Force History , United States Air Force, 1980, 117. 47 Durant , Michael J. In the Company of Heroes, Penguin Group... Lessons Learned, 22 September 2005, 3. 2 US Joint Task Force Katrina. The Federal Response to Hurricane Katrina Lessons Learned, February 2006, 54

  16. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    PubMed

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. History of the Joint Chiefs of Staff: The Joint Chiefs of Staff and the War in Vietnam, 1971-1973

    DTIC Science & Technology

    2007-01-01

    34Let’s take a crack at it." The President then approved the Chup opera- tion but called for further study of Tchepone. 7 On 4 January 1971, Admiral...of the Department of Defense.", Kissinger’s tasking included several studies on political and economic matters in Vietnam and Southeast Asia...answer these questions.1 The study was prepared by the Joint Staff and submitted to the Senior Review Group for a meeting on 24 May 1971. The Joint

  18. Joint Loads and Cartilage Stress in Intact Joints of Military Transtibial Amputees: Enhancing Quality of Life

    DTIC Science & Technology

    2017-04-01

    crosstalk); analysis of tested subjects underway. 4) Developed analytical methods to obtain knee joint loads using EMG-driven inverse dynamics; analysis of...13/2018. Completion %: 40. Task 1.3: EMG-driven inverse dynamic (ID) analyses with OpenSim for amputee and control group subjects. Target date: 1...predicted by EMG-driven inverse dynamics. Two-three conference papers are being prepared for submission in February 2017. Other achievements. None

  19. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    PubMed

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  20. U.S. Northern Command > Newsroom > Fact Sheets

    Science.gov Websites

    Operations Command, North U.S. Marine Forces Northern Command U.S. Fleet Forces Command Air Forces Northern U.S. Army North Joint Task Force North Joint Task Force Civil Support Joint Task Force Alaska Joint

  1. A Common Force-Sharing Pattern in Joint Action That Consists of Four People.

    PubMed

    Masumoto, Junya; Inui, Nobuyuki

    2017-12-20

    The authors examined the force-sharing patterns in a joint action performed by a group of two, three, or four people compared with a solo action. In the joint actions, 28 participants produced periodic isometric forces such that the sum of forces they produced cycled between 5% and 10% maximum voluntary contraction with the right hand at 1 Hz. In both the three- and four-person tasks, the correlation between forces produced by two of the three or four participants was negative, and the remaining one or two participants produced intermediate forces. The errors of force and interval and force variabilities were smaller in four- and three-people groups than individuals. Four- and three-people groups thus performed better than individuals.

  2. Coherence between harvest and habitat management -- Joint venture perspectives

    USGS Publications Warehouse

    Baxter, C.K.; Nelson, J.W.; Reinecke, K.J.; Stephens, S.E.

    2006-01-01

    Introduction: In recent months, an ad hoc group of waterfowl scientists, representing the International Association of Fish and Wildlife Agencies (IAFWA) Adaptive Harvest Management (ARM) Task Force and the North American Waterfowl Management Plan (NAWMP) Committee, have collaborated as a Joint Task Group (JTG) to assess options for unifying the population goals guiding waterfowl harvest management and habitat management. The JTG has been charged with bringing coherence to the population goals of the two programs. Characterizing the problem as one of coherence indicates value judgments exist regarding its significance or perhaps existence. For purposes of this paper, we characterize the lack of coherence as the absence of consistent population goals in the two related components of waterfowl conservation habitat and harvest management. Our purpose is to support continued dialogue on the respective goals of these programs and the possible implications of discordant goals to habitat joint ventures. Our objectives are two-fold: (1) illustrate how NAWMP habitat management goals and strategies have been interpreted and pursued in both breeding and wintering areas, and (2) provide perspectives on the linkages between regional habitat management programs and harvest management. The Lower Mississippi Valley and the Prairie Pothole joint ventures (LMVJV and PPJV, respectively) will be used as examples.

  3. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  4. History of Illicit Stimulant Use Is Not Associated with Long-Lasting Changes in Learning of Fine Motor Skills in Humans

    PubMed Central

    Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.

    2016-01-01

    Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778

  5. History of Illicit Stimulant Use Is Not Associated with Long-Lasting Changes in Learning of Fine Motor Skills in Humans.

    PubMed

    Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M

    2016-01-01

    Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.

  6. Barriers to success: physical separation optimizes event-file retrieval in shared workspaces.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2017-07-08

    Sharing tasks with other persons can simplify our work and life, but seeing and hearing other people's actions may also be very distracting. The joint Simon effect (JSE) is a standard measure of referential response coding when two persons share a Simon task. Sequential modulations of the joint Simon effect (smJSE) are interpreted as a measure of event-file processing containing stimulus information, response information and information about the just relevant control-state active in a given social situation. This study tested effects of physical (Experiment 1) and virtual (Experiment 2) separation of shared workspaces on referential coding and event-file processing using a joint Simon task. In Experiment 1, participants performed this task in individual (go-nogo), joint and standard Simon task conditions with and without a transparent curtain (physical separation) placed along the imagined vertical midline of the monitor. In Experiment 2, participants performed the same tasks with and without receiving background music (virtual separation). For response times, physical separation enhanced event-file retrieval indicated by an enlarged smJSE in the joint Simon task with curtain than without curtain (Experiment1), but did not change referential response coding. In line with this, we also found evidence for enhanced event-file processing through physical separation in the joint Simon task for error rates. Virtual separation did neither impact event-file processing, nor referential coding, but generally slowed down response times in the joint Simon task. For errors, virtual separation hampered event-file processing in the joint Simon task. For the cognitively more demanding standard two-choice Simon task, we found music to have a degrading effect on event-file retrieval for response times. Our findings suggest that adding a physical separation optimizes event-file processing in shared workspaces, while music seems to lead to a more relaxed task processing mode under shared task conditions. In addition, music had an interfering impact on joint error processing and more generally when dealing with a more complex task in isolation.

  7. Biomechanical analyses of prolonged handwriting in subjects with and without perceived discomfort.

    PubMed

    Chang, Shao-Hsia; Chen, Chien-Liang; Yu, Nan-Ying

    2015-10-01

    Since wrist-joint position affects finger muscle length and grip strength, we studied its biomechanical relevance in prolonged handwriting. We recruited participants from young adults, aged 18-24, and separated them into control (n=22) and in-pain (n=18) groups, based whether or not they experience pain while handwriting. The participants then performed a writing task for 30 min on a computerized system which measured their wrist-joint angle and documented their handwriting kinematics. The in-pain group perceived more soreness and had a less-extended wrist joint, longer on-paper time, and slower stroke velocity compared to control group. There was no significant difference in handwriting speed and quality between the two groups. The wrist extension angle significantly correlated with perceived soreness. Ergonomic and biomechanical analyses provide important information about the handwriting process. Knowledge of pen tip movement kinematics and wrist-joint position can help occupational therapists plan treatment for individuals with handwriting induced pain. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.

    PubMed

    Kim, Kyung; Song, Won-Kyung; Lee, Jeongsu; Lee, Hwi-Young; Park, Dae Sung; Ko, Byung-Woo; Kim, Jongbae

    2014-03-01

    It is necessary to analyze the kinematic properties of a paralyzed extremity to quantitatively determine the degree of impairment of hemiplegic people during functional activities of daily living (ADL) such as a drinking task. This study aimed to identify the kinematic differences between 16 hemiplegic and 32 able-bodied participants in relation to the task phases when drinking with a cup and the kinematic strategy used during motion with respect to the gravity direction. The subjects performed a drinking task that was divided into five phases according to Murphy's phase definition: reaching, forward transport, drinking, backward transport, and returning. We found that the groups differed in terms of the movement times and the joint angles and angular velocities of the shoulder, elbow, and wrist joints. Compared to the control group, the hemiplegic participants had a larger shoulder abduction angle of at most 17.1° during all the phases, a larger shoulder flexion angle of 7.6° during the reaching phase, and a smaller shoulder flexion angle of 6.4° during the backward transporting phase. Because of these shoulder joint patterns, a smaller elbow pronation peak angle of at most 13.1° and a larger wrist extension peak angle of 12.0° were found in the motions of the hemiplegic participants, as compensation to complete the drinking task. The movement in the gravity direction during the backward transporting phase resulted in a 15.9% larger peak angular velocity for elbow extension in the hemiplegic participants compared to that of the control group. These quantitative kinematic patterns help provide an understanding of the movements of an affected extremity and can be useful in designing rehabilitation robots to assist hemiplegic people with ADL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of comparing outcomes amongst the many research teams that have entered this field, all of which are using different devices implanted at various locations within the visual system and different methods of assessing efficacy. Researchers at the BRIP and BVA believe that use of common methods for testing and for reporting results would benefit all scientists and clinicians in the field, the agencies that regulate human testing, corporations that are invested in the success of this field, and, most importantly, potential patients. The Task Force will be formed with the intent of developing substantive recommendations to provide a measure of consistency and quality control within the field. The guidelines will offer recommendations for the assessment of the: (1) baseline (pre-implant) visual status of potential patients (including specification of the disease diagnosis and impact on visual functioning) and (2) post-operative visual function. The guidelines will be available to the public, research groups and companies. Any groups that choose to adopt the recommendations would be encouraged to include a formal statement of compliance in their presentations and publications. The Task Force will develop these guidelines with the understanding that the ability to perform experiments in the suggested manner might be limited by the particular engineering design and functionality of different prosthesis devices. It is not the intent of the Task Force to write strict test protocols for all parties to follow, but instead to work cooperatively as a research field to develop guidelines about the types of tests that should be implemented, and how they could be reported in a similar format between groups. The opportunity to participate on the Task Force is open to all researchers, clinicians and other specialists who work in the fields of sensory prostheses (both visual and cochlear implants), molecular therapy, stem cells, optogenetics or other fields that share a similar goal of restoring vision to the blind. Decisions about the guidelines will be made democratically, with precautions to prevent any one group or company from having a more dominant voice than any other. One or more smaller working groups may be established to delve more deeply into specific issues, like the ethics of testing or governance structure, and to develop specific wording for recommendations that would be voted on by the entire Task Force group. Ultimately, the various recommendations, once approved democratically, will serve as the consensus document for the Multi-National Joint Task Force. The full list of members of the Task Force and the rules of governance will be published to promote transparency. The Joint Task force will post its guidelines with all signatories on a dedicated page within the website of the Henry Ford Department of Ophthalmology (Detroit). This site was chosen in recognition of the consistent support that Phillip Hessburg MD and the Board of Directors of the Detroit Institute of Ophthalmology, which has recently merged with the Henry Ford Department of Ophthalmology, have so generously and selflessly provided to our field over the past 14 years. This website will also contain a list of all human psychophysical testing that has been performed in the visual prosthetic field, with designations for those studies that were performed in accordance with the guidelines of the Multi-National Task Force, which will assume responsibility for the accuracy of the material. For those who wish to join this Task Force or have further questions, Dr Rizzo and Dr Ayton can be contacted at the email addresses listed above. The founding members of the Task Force anticipate that this digital resource will prove valuable to anyone who has interest in learning more about the achievements in our field, especially our prospective patients, to whom we dedicate our work.

  10. Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups

    NASA Astrophysics Data System (ADS)

    Desmedt, Yvo; Lange, Tanja; Burmester, Mike

    Task-specific groups are often formed in an ad-hoc manner within large corporate structures, such as companies. Take the following typical scenario: A director decides to set up a task force group for some specific project. An order is passed down the hierarchy where it finally reaches a manager who selects some employees to form the group. The members should communicate in a secure way and for efficiency, a symmetric encryption system is chosen. To establish a joint secret key for the group, a group key exchange (GKE) protocol is used. We show how to use an existing Public Key Infrastructure (PKI) to achieve authenticated GKE by modifying the protocol and particularly by including signatures.

  11. An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques

    PubMed Central

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.

    2013-01-01

    Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398

  12. Testing the Construct Validity of a Virtual Reality Hip Arthroscopy Simulator.

    PubMed

    Khanduja, Vikas; Lawrence, John E; Audenaert, Emmanuel

    2017-03-01

    To test the construct validity of the hip diagnostics module of a virtual reality hip arthroscopy simulator. Nineteen orthopaedic surgeons performed a simulated arthroscopic examination of a healthy hip joint using a 70° arthroscope in the supine position. Surgeons were categorized as either expert (those who had performed 250 hip arthroscopies or more) or novice (those who had performed fewer than this). Twenty-one specific targets were visualized within the central and peripheral compartments; 9 via the anterior portal, 9 via the anterolateral portal, and 3 via the posterolateral portal. This was immediately followed by a task testing basic probe examination of the joint in which a series of 8 targets were probed via the anterolateral portal. During the tasks, the surgeon's performance was evaluated by the simulator using a set of predefined metrics including task duration, number of soft tissue and bone collisions, and distance travelled by instruments. No repeat attempts at the tasks were permitted. Construct validity was then evaluated by comparing novice and expert group performance metrics over the 2 tasks using the Mann-Whitney test, with a P value of less than .05 considered significant. On the visualization task, the expert group outperformed the novice group on time taken (P = .0003), number of collisions with soft tissue (P = .001), number of collisions with bone (P = .002), and distance travelled by the arthroscope (P = .02). On the probe examination, the 2 groups differed only in the time taken to complete the task (P = .025) with no significant difference in other metrics. Increased experience in hip arthroscopy was reflected by significantly better performance on the virtual reality simulator across 2 tasks, supporting its construct validity. This study validates a virtual reality hip arthroscopy simulator and supports its potential for developing basic arthroscopic skills. Level III. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  13. Heart Rate Variability During a Joint Attention Task in Toddlers With Autism Spectrum Disorders

    PubMed Central

    Billeci, Lucia; Tonacci, Alessandro; Narzisi, Antonio; Manigrasso, Zaira; Varanini, Maurizio; Fulceri, Francesca; Lattarulo, Caterina; Calderoni, Sara; Muratori, Filippo

    2018-01-01

    Background: Autism Spectrum Disorders (ASD) are a heterogeneous group of neurodevelopmental disorders featuring early impairments in social domain, with autonomic nervous system (ANS) unbalance possibly representing a useful marker for such disturbances. Impairments in joint attention (JA) are one of the earliest markers of social deficits in ASD. In this study, we assessed the feasibility of using wearable technologies for characterizing the ANS response in ASD toddlers during the presentation of JA stimuli. Methods: Twenty ASD toddlers and 20 age- and gender-matched typically developed (TD) children were recorded at baseline and during a JA task through an unobtrusive chest strap for electrocardiography (ECG). Specific algorithms for feature extraction, including Heart Rate (HR), Standard Deviation of the Normal-to-Normal Intervals (SDNN), Coefficient of Variation (CV), pNN10 as well as low frequency (LF) and high frequency (HF), were applied to the ECG signal and a statistical comparison between the two groups was performed. Results: As regards the single phases, SDNN (p = 0.04) and CV (p = 0.021) were increased in ASD at baseline together with increased LF absolute power (p = 0.034). Moreover, CV remained higher in ASD during the task (p = 0.03). Considering the phase and group interaction, LF increased from baseline to task in TD group (p = 0.04) while it decreased in the ASD group (p = 0.04). Conclusions: The results of this study indicate the feasibility of characterizing the ANS response in ASD toddlers through a minimally obtrusive tool. Our analysis showed an increased SDNN and CV in toddlers with ASD particularly at baseline compared to TD and lower LF during the task. These findings could suggest the possibility of using the proposed approach for evaluating physiological correlates of JA response in young children with ASD. PMID:29765335

  14. The joint flanker effect and the joint Simon effect: On the comparability of processes underlying joint compatibility effects.

    PubMed

    Dittrich, Kerstin; Bossert, Marie-Luise; Rothe-Wulf, Annelie; Klauer, Karl Christoph

    2017-09-01

    Previous studies observed compatibility effects in different interference paradigms such as the Simon and flanker task even when the task was distributed across two co-actors. In both Simon and flanker tasks, performance is improved in compatible trials relative to incompatible trials if one actor works on the task alone as well as if two co-actors share the task. These findings have been taken to indicate that actors automatically co-represent their co-actor's task. However, recent research on the joint Simon and joint flanker effect suggests alternative non-social interpretations. To which degree both joint effects are driven by the same underlying processes is the question of the present study, and it was scrutinized by manipulating the visibility of the co-actor. While the joint Simon effect was not affected by the visibility of the co-actor, the joint flanker effect was reduced when participants did not see their co-actors but knew where the co-actors were seated. These findings provide further evidence for a spatial interpretation of the joint Simon effect. In contrast to recent claims, however, we propose a new explanation of the joint flanker effect that attributes the effect to an impairment in the focusing of spatial attention contingent on the visibility of the co-actor.

  15. Joint Blind Source Separation by Multi-set Canonical Correlation Analysis

    PubMed Central

    Li, Yi-Ou; Adalı, Tülay; Wang, Wei; Calhoun, Vince D

    2009-01-01

    In this work, we introduce a simple and effective scheme to achieve joint blind source separation (BSS) of multiple datasets using multi-set canonical correlation analysis (M-CCA) [1]. We first propose a generative model of joint BSS based on the correlation of latent sources within and between datasets. We specify source separability conditions, and show that, when the conditions are satisfied, the group of corresponding sources from each dataset can be jointly extracted by M-CCA through maximization of correlation among the extracted sources. We compare source separation performance of the M-CCA scheme with other joint BSS methods and demonstrate the superior performance of the M-CCA scheme in achieving joint BSS for a large number of datasets, group of corresponding sources with heterogeneous correlation values, and complex-valued sources with circular and non-circular distributions. We apply M-CCA to analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects and show its utility in estimating meaningful brain activations from a visuomotor task. PMID:20221319

  16. Kinematics and muscle activity of the head, lumbar and knee joints during 180° turning and sitting down task in older adults.

    PubMed

    Kuo, Fang-Chuan; Hong, Chang-Zern; Liau, Ben-Yi

    2014-01-01

    The "180° turning and sitting down task" is a very conscious movement that requires focusing on turning at the exact moment, and very few studies address on this topic in older adults. The purpose of the study was to compare kinematics and electromyography of the head, lumbar and knee joints during 180°turning in older and young adults. Twenty older adults and 20 younger adults were assessed. A 16-channel telemetry electromyography system with electrogoniometers and an inclinometer were used to record the head, lumbar and knee joint kinematic and electromyography data during the 180° turning. This movement had been further divided into 4 phases (braking, mid-stance, swing, and terminal loading) for analysis. There were significant differences in the joint displacement and muscular activity among the different phases. Comparison between groups showed that the older adults group had less lateral lumbar flexion, less knee flexion and lower velocity of the head and knee flexion compared to young adults during turning. The electromyography data of the left biceps femoris, left gastrocnemius and left erector spinae muscles in the older adults group showed significantly higher levels than in the young adults. Older adults need to adjust velocities of moving joints and increase the extensor synergy muscles of the back and the stance leg to provide posture stability. Kinematics and neuromuscular modulations of the head, lumbar and knee are required according to the various phases of the turn movements and change with aging. © 2013.

  17. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads.

    PubMed

    Gooyers, Chad E; Beach, Tyson A C; Frost, David M; Howarth, Samuel J; Callaghan, Jack P

    2018-02-01

    This investigation examined interactions between the magnitude of external load, movement speed and (a)symmetry of load placement on estimates of in vivo joint loading in the lumbar spine during simulated occupational lifting. Thirty-two participants with manual materials handling experience were included in the study. Three-dimensional motion data, ground reaction forces, and activation of six bilateral trunk muscle groups were captured while participants performed lifts with two loads at two movement speeds and using two load locations. L4-L5 joint compression and shear force-time histories were estimated using an EMG-assisted musculoskeletal model of the lumbar spine. Results from this investigation provide strong evidence that known mechanical low back injury risk factors should not be viewed in isolation. Rather, injury prevention efforts need to consider the complex interactions that exist between external task demands and their combined influence on internal joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identifying the control structure of multijoint coordination during pistol shooting.

    PubMed

    Scholz, J P; Schöner, G; Latash, M L

    2000-12-01

    The question of degrees of freedom in the control of multijoint movement is posed as the problem of discovering how the motor control system constrains the many possible combinations of joint postures to stabilize task-dependent essential variables. Success at a task can be achieved, in principle, by always adopting a particular joint combination. In contrast, we propose a more selective control strategy: variations of the joint configuration that leave the values of essential task variables unchanged are predicted to be less controlled (i.e., stabilized to a lesser degree) than joint configuration changes that shift the values of the task variables. Our experimental task involved shooting with a laser pistol at a target under four conditions. The seven joint angles of the arm were obtained from the recorded positions of markers on the limb segments. The joint configurations observed at each point in normalized time were analyzed with respect to trial-to-trial variability. Different hypotheses about relevant task variables were used to define sets of joint configurations ("uncontrolled manifolds" or UCMs) that, if realized, would leave essential task variables unchanged. The variability of joint configurations was decomposed into components lying parallel to those sets and components lying in their complement. The orientation of the gun's barrel relative to a vector pointing from the gun to the target was the task variable most successful at showing a difference between the two components of joint variability. This variable determines success at the task. Throughout the movement, not only while the gun was pointing at the target, fluctuations of joint configuration that affected this variable were much reduced compared with fluctuations that did not affect this variable. The UCM principle applied to relative gun orientation thus captures the structure of the motor control system across different parts of joint configuration space as the movement evolves in time. This suggests a specific control strategy in which changes of joint configuration that are irrelevant to success at the task are selectively released from control. By contrast, constraints representing an invariant spatial position of the gun or of the arm's center of mass structured joint configuration variability in the early and mid-portion of the movement trajectory, but not at the time of shooting. This specific control strategy is not trivial, because a target can be hit successfully also by controlling irrelevant directions in joint space equally to relevant ones. The results indicate that the method can be successfully used to determine the structure of coordination in joint space that underlies the control of the essential variables for a given task.

  19. Bidirectional transfer between joint and individual actions in a task of discrete force production.

    PubMed

    Masumoto, Junya; Inui, Nobuyuki

    2017-07-01

    The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.

  20. Developments in Neuropsychological and Neurophysiological Assessment: An Overview of Progress and Products of the JWGD3 (Joint Working Group on Drug Dependent Degradation) Level I Neuropsychology Task Area Group

    DTIC Science & Technology

    1986-01-01

    995AB.081 IDA303502 11. TITLE (Indclude Security Classafication) Developments in Neuropsychological and Neurophysiological Assessment: An overview of...progress and products of the JWGD3 Level I Neuropsychology Task Area Group 12. PERSONAL AU1TOR(S) Reeves, D.L.; Taube, S.L. 13a. TYPE OF REPORT I13b...Phone: (301) 588-0058 7 Developments in Neuropsychological and Neurophysiological Assessment An Overview of Progress and Products of the JWGD3 Level I

  1. The effects of age and type of carrying task on lower extremity kinematics

    PubMed Central

    Gillette, Jason C.; Stevermer, Catherine A.; Miller, Ross H.; Meardon, Stacey A.; Schwab, Charles V.

    2009-01-01

    The purpose of this study was to determine the effects of age, load amount, and load symmetry on lower extremity kinematics during carrying tasks. Forty-two participants in four age groups (8-10 years, 12-14 years, 15-17 years, and adults) carried loads of 0%, 10%, and 20% body weight (BW) in large or small buckets unilaterally and bilaterally. Reflective markers were tracked to determine total joint ROM and maximum joint angles during the stance phase of walking. Maximum hip extension, hip adduction, and hip internal rotation angles were significantly greater for each of the child/adolescent age groups as compared to adults. In addition, maximum hip internal rotation angles significantly increased when carrying a 20% BW load. The observation that the 8-10 year old age group carried the lightest absolute loads and still displayed the highest maximum hip internal rotation angles suggests a particular necessity in setting carrying guidelines for the youngest children. PMID:20191410

  2. Specific interpretation of augmented feedback changes motor performance and cortical processing.

    PubMed

    Lauber, Benedikt; Keller, Martin; Leukel, Christian; Gollhofer, Albert; Taube, Wolfgang

    2013-05-01

    It is well established that the presence of external feedback, also termed augmented feedback, can be used to improve performance of a motor task. The present study aimed to elucidate whether differential interpretation of the external feedback signal influences the time to task failure of a sustained submaximal contraction and modulates motor cortical activity. In Experiment 1, subjects had to maintain a submaximal contraction (30% of maximum force) performed with their thumb and index finger. Half of the tested subjects were always provided with feedback about joint position (pF-group), whereas the other half of the subjects were always provided with feedback about force (fF-group). Subjects in the pF-group were led to belief in half of their trials that they would receive feedback about the applied force, and subjects in the fF-group to receive feedback about the position. In both groups (fF and pF), the time to task failure was increased when subjects thought to receive feedback about the force. In Experiment 2, subthreshold transcranial magnetic stimulation was applied over the right motor cortex and revealed an increased motor cortical activity when subjects thought to receive feedback about the joint position. The results showed that the interpretation of feedback influences motor behavior and alters motor cortical activity. The current results support previous studies suggesting a distinct neural control of force and position.

  3. Early Osteoarthritis of the Trapeziometacarpal Joint Is Not Associated With Joint Instability during Typical Isometric Loading

    PubMed Central

    Halilaj, Eni; Moore, Douglas C.; Patel, Tarpit K.; Ladd, Amy L.; Weiss, Arnold-Peter C.; Crisco, Joseph J.

    2015-01-01

    The saddle-shaped trapeziometacarpal (TMC) joint contributes importantly to the function of the human thumb. A balance between mobility and stability is essential in this joint, which experiences high loads and is prone to osteoarthritis (OA). Since instability is considered a risk factor for TMC OA, we assessed TMC joint instability during the execution of three isometric functional tasks (key pinch, jar grasp, and jar twist) in 76 patients with early TMC OA and 44 asymptomatic controls. Computed tomography images were acquired while subjects held their hands relaxed and while they applied 80% of their maximum effort for each task. Six degree-of-freedom rigid body kinematics of the metacarpal with respect to the trapezium from the unloaded to the loaded task positions were computed in terms of a TMC joint coordinate system. Joint instability was expressed as a function of the metacarpal translation and the applied force. We found that the TMC joint was more unstable during a key pinch task than during a jar grasp or a jar twist task. Sex, age, and early OA did not have an effect on TMC joint instability, suggesting that instability during these three tasks is not a predisposing factor in TMC OA. PMID:25941135

  4. A CCA+ICA based model for multi-task brain imaging data fusion and its application to schizophrenia.

    PubMed

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey; Yang, Honghui; Sponheim, Scott R; White, Tonya; Calhoun, Vince D

    2010-05-15

    Collection of multiple-task brain imaging data from the same subject has now become common practice in medical imaging studies. In this paper, we propose a simple yet effective model, "CCA+ICA", as a powerful tool for multi-task data fusion. This joint blind source separation (BSS) model takes advantage of two multivariate methods: canonical correlation analysis and independent component analysis, to achieve both high estimation accuracy and to provide the correct connection between two datasets in which sources can have either common or distinct between-dataset correlation. In both simulated and real fMRI applications, we compare the proposed scheme with other joint BSS models and examine the different modeling assumptions. The contrast images of two tasks: sensorimotor (SM) and Sternberg working memory (SB), derived from a general linear model (GLM), were chosen to contribute real multi-task fMRI data, both of which were collected from 50 schizophrenia patients and 50 healthy controls. When examining the relationship with duration of illness, CCA+ICA revealed a significant negative correlation with temporal lobe activation. Furthermore, CCA+ICA located sensorimotor cortex as the group-discriminative regions for both tasks and identified the superior temporal gyrus in SM and prefrontal cortex in SB as task-specific group-discriminative brain networks. In summary, we compared the new approach to some competitive methods with different assumptions, and found consistent results regarding each of their hypotheses on connecting the two tasks. Such an approach fills a gap in existing multivariate methods for identifying biomarkers from brain imaging data.

  5. Data harmonization and model performance

    NASA Astrophysics Data System (ADS)

    The Joint Committee on Urban Storm Drainage of the International Association for Hydraulic Research (IAHR) and International Association on Water Pollution Research and Control (IAWPRC) was formed in 1982. The current committee members are (no more than two from a country): B. C. Yen, Chairman (USA); P. Harremoes, Vice Chairman (Denmark); R. K. Price, Secretary (UK); P. J. Colyer (UK), M. Desbordes (France), W. C. Huber (USA), K. Krauth (FRG), A. Sjoberg (Sweden), and T. Sueishi (Japan).The IAHR/IAWPRC Joint Committee is forming a Task Group on Data Harmonization and Model Performance. One objective is to promote international urban drainage data harmonization for easy data and information exchange. Another objective is to publicize available models and data internationally. Comments and suggestions concerning the formation and charge of the Task Group are welcome and should be sent to: B. C. Yen, Dept. of Civil Engineering, Univ. of Illinois, 208 N. Romine St., Urbana, IL 61801.

  6. THROW AWAY THE BOX: RETHINKING LOGISTICS INTEGRATION BETWEEN SPECIAL OPERATIONS AND GENERAL PURPOSE FORCES

    DTIC Science & Technology

    2015-02-13

    Ft Carson CO; Logistics Officer, 10th Special Forces Group ( SFG ) Airborne (A) and Combined Joint Special Operations Task Force (CJSOTF) Arabian...ENDURING FREEDOM; Commander 7th SFG (A) Group Support Battalion, Eglin AFB, FL for two years and deployed to Afghanistan twice serving as the

  7. Defense.gov - Special Report: Haiti Earthquake Relief

    Science.gov Websites

    . Top Stories Medical Group Provides Assistance MANDRIN, Haiti, July 14, 2010 - Airmen with the 56th Medical Group provided optometry, dental and general services at the New Horizons medical site. Story assigned to Joint Task Force New Horizons have made major progress on their engineering and medical

  8. Disentangling the initiation from the response in joint attention: an eye-tracking study in toddlers with autism spectrum disorders.

    PubMed

    Billeci, L; Narzisi, A; Campatelli, G; Crifaci, G; Calderoni, S; Gagliano, A; Calzone, C; Colombi, C; Pioggia, G; Muratori, F

    2016-05-17

    Joint attention (JA), whose deficit is an early risk marker for autism spectrum disorder (ASD), has two dimensions: (1) responding to JA and (2) initiating JA. Eye-tracking technology has largely been used to investigate responding JA, but rarely to study initiating JA especially in young children with ASD. The aim of this study was to describe the differences in the visual patterns of toddlers with ASD and those with typical development (TD) during both responding JA and initiating JA tasks. Eye-tracking technology was used to monitor the gaze of 17 children with ASD and 15 age-matched children with TD during the presentation of short video sequences involving one responding JA and two initiating JA tasks (initiating JA-1 and initiating JA-2). Gaze accuracy, transitions and fixations were analyzed. No differences were found in the responding JA task between children with ASD and those with TD, whereas, in the initiating JA tasks, different patterns of fixation and transitions were shown between the groups. These results suggest that children with ASD and those with TD show different visual patterns when they are expected to initiate joint attention but not when they respond to joint attention. We hypothesized that differences in transitions and fixations are linked to ASD impairments in visual disengagement from face, in global scanning of the scene and in the ability to anticipate object's action.

  9. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.

    PubMed

    Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn

    2017-08-01

    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, Francois G.

    2002-06-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus,more » there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and type of constraints and in task objectives, and can adapt to changes in kinematics configurations (change of module, change of tool, joint failure adaptation, etc.).« less

  11. The influence of the Japanese waving cat on the joint spatial compatibility effect: A replication and extension of Dolk, Hommel, Prinz, and Liepelt (2013).

    PubMed

    Puffe, Lydia; Dittrich, Kerstin; Klauer, Karl Christoph

    2017-01-01

    In a joint go/no-go Simon task, each of two participants is to respond to one of two non-spatial stimulus features by means of a spatially lateralized response. Stimulus position varies horizontally and responses are faster and more accurate when response side and stimulus position match (compatible trial) than when they mismatch (incompatible trial), defining the social Simon effect or joint spatial compatibility effect. This effect was originally explained in terms of action/task co-representation, assuming that the co-actor's action is automatically co-represented. Recent research by Dolk, Hommel, Prinz, and Liepelt (2013) challenged this account by demonstrating joint spatial compatibility effects in a task-setting in which non-social objects like a Japanese waving cat were present, but no real co-actor. They postulated that every sufficiently salient object induces joint spatial compatibility effects. However, what makes an object sufficiently salient is so far not well defined. To scrutinize this open question, the current study manipulated auditory and/or visual attention-attracting cues of a Japanese waving cat within an auditory (Experiment 1) and a visual joint go/no-go Simon task (Experiment 2). Results revealed that joint spatial compatibility effects only occurred in an auditory Simon task when the cat provided auditory cues while no joint spatial compatibility effects were found in a visual Simon task. This demonstrates that it is not the sufficiently salient object alone that leads to joint spatial compatibility effects but instead, a complex interaction between features of the object and the stimulus material of the joint go/no-go Simon task.

  12. Age-related differences in muscle fatigue vary by contraction type: a meta-analysis.

    PubMed

    Avin, Keith G; Law, Laura A Frey

    2011-08-01

    During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18-45 years of age) and old (≥ 55 years of age) adults who were healthy were considered. Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥ 50% of maximum voluntary contraction). Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in peak torque.

  13. Hip Kinematics During a Stop-Jump Task in Patients With Chronic Ankle Instability

    PubMed Central

    Brown, Cathleen N.; Padua, Darin A.; Marshall, Stephen W.; Guskiewicz, Kevin M.

    2011-01-01

    Context: Chronic ankle instability (CAI) commonly develops after lateral ankle sprain. Movement pattern differences at proximal joints may play a role in instability. Objective: To determine whether people with mechanical ankle instability (MAI) or functional ankle instability (FAI) exhibited different hip kinematics and kinetics during a stop-jump task compared with “copers.” Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-three recreational athletes, 21 (11 men, 10 women) per group, matched for sex, age, height, mass, and limb dominance. All participants reported a history of a moderate to severe ankle sprain. The participants with MAI and FAI reported 2 or more episodes of giving way at the ankle in the last year and decreased functional ability; copers did not. The MAI group demonstrated clinically positive anterior drawer and talar tilt tests, whereas the FAI group and copers did not. Intervention(s): Participants performed a maximum-speed approach run and a 2-legged stop jump followed by a maximum vertical jump. Main Outcome Measure(s): An electromagnetic tracking device synchronized with a force plate collected data during the stance phase of a 2-legged stop jump. Hip motion was measured from initial contact to takeoff into the vertical jump. Group differences in hip kinematics and kinetics were assessed. Results: The MAI group demonstrated greater hip flexion at initial contact and at maximum (P = .029 and P = .017, respectively) and greater hip external rotation at maximum (P = .035) than the coper group. The MAI group also demonstrated greater hip flexion displacement than both the FAI (P = .050) and coper groups (P = .006). No differences were noted between the FAI and coper groups in hip kinematic variables or among any of the groups in ground reaction force variables. Conclusions: The MAI group demonstrated different hip kinematics than the FAI and coper groups. Proximal joint motion may be affected by ankle joint function and laxity, and clinicians may need to assess proximal joints after repeated ankle sprains. PMID:22488131

  14. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.

    PubMed

    Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline; Donnelly, Cyril

    2018-06-14

    Unplanned sidestepping and single-leg landing have both been used to screen athletes for injury risk in sport. The aim of this study was to directly compare the lower limb mechanics of three single-leg landing tasks and an unplanned sidestepping task. Thirteen elite female team sport athletes completed a series of non-contact single-leg drop landings, single-leg countermovement jumps, single-leg jump landings and unplanned sidestepping in a randomized counterbalanced design. Three dimensional kinematics (250 Hz) and ground reaction force (2,000 Hz) data with a participant specific lower limb skeletal model were used to calculate and compare hip, knee and ankle joint kinematics, peak joint moments, instantaneous joint power and joint work during the weight acceptance phase of each sporting task (α=0.05). Peak knee joint moments and relevant injury risk thresholds were used to classify each athlete's anterior cruciate ligament injury risk during unplanned sidestepping and single-leg jump landing. Results showed that peak joint moments, power and work were greater during the single-leg jump landing task when compared to the single-leg drop landings and single-leg countermovement jumps tasks. Peak frontal and sagittal plane knee joint moments, knee joint power, as well as hip and knee joint work were greater during unplanned sidestepping when compared to the landing tasks. Peak ankle joint moments, power and work were greater during the landing tasks when compared to unplanned sidestepping. For 4 of the 13 athletes tested, their anterior cruciate ligament injury risk classification changed depending on whether they performed an unplanned sidestepping or single-leg jump landing testing procedure. To summarize, a single-leg jump landing testing procedure places a larger mechanical on the ankle joint when compared to single-leg drop landings, single-leg countermovement jumps and unplanned sidestepping. An unplanned sidestepping testing procedure places a larger mechanical demand on the knee joint when compared to single-leg landing tasks. Both unplanned sidestepping and single-leg jump landing testing procedures are recommended for classifying an athlete's anterior cruciate ligament injury risk in sport. © Georg Thieme Verlag KG Stuttgart · New York.

  15. A method for multitask fMRI data fusion applied to schizophrenia.

    PubMed

    Calhoun, Vince D; Adali, Tulay; Kiehl, Kent A; Astur, Robert; Pekar, James J; Pearlson, Godfrey D

    2006-07-01

    It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are "coupled" together by a shared loading parameter. We first compute an activation map for each task and each individual as "features," which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate "decreased" connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate "more similarly" for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks using a variety of tasks and may increase our understanding of coordinated brain networks and the impact of pathology upon them. 2005 Wiley-Liss, Inc.

  16. Battle Management Language Transformations

    DTIC Science & Technology

    2006-10-01

    Simulation (M&S) systems. Battlefield Management Language (BML) is being developed as a common representation of military mission suitable for automated ... processing . Within NATO the task group MSG-048 Coalition BML is defining a BML using the Joint Command, Control and Consultation Information Exchange

  17. Adaptive Postural Control for Joint Immobilization during Multitask Performance

    PubMed Central

    Hsu, Wei-Li

    2014-01-01

    Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477

  18. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference

    PubMed Central

    Thürer, Benjamin; Stein, Thorsten

    2017-01-01

    Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group). PMID:28459833

  19. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference.

    PubMed

    Stockinger, Christian; Thürer, Benjamin; Stein, Thorsten

    2017-01-01

    Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group).

  20. Autonomy, competence, and social relatedness in task interest within project-based education.

    PubMed

    Minnaert, Alexander; Boekaerts, Monique; de Brabander, Cornelis

    2007-10-01

    To prepare students for instructive collaboration, it is necessary to have insight into students' psychological needs and interest development. The framework of self-determination theory was used to conduct a field experiment involving 114 students in vocational education. These students followed a practical business course which required they work in small learning groups. During the course, students were asked to complete the Quality of Working in Groups Instrument, an online measure of how strong autonomy, competence, social relatedness, and task interest are fulfilled. SEM showed that students' psychological needs were jointly and uniquely related to task interest over time. The significance of this on-line test for the assessment of interest within project-based education is discussed.

  1. Enabling Interoperable Space Robots With the Joint Technical Architecture for Robotic Systems (JTARS)

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville

    2005-01-01

    Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.

  2. OPERATION IVY. Report of Commander, Task Group 132.1. Pacific Proving Grounds. Joint Task Force 132

    DTIC Science & Technology

    1984-10-31

    3.4.1 Device Planning One of the major purposes of Operation Greenhouse was to answer key questions relating to the possibility of developing...thermonuclear explosions. The Greenhouse George and Item Shots were Important steps in the investigation of basic problems in the development of a...January 1952, staff studies were made which were based on Greenhouse experience and on the best available estimates of the requirements pe- culiar to

  3. Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative.

    PubMed

    Galanopoulou, Aristea S; French, Jacqueline A; O'Brien, Terence; Simonato, Michele

    2017-11-01

    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  4. The effects of practice on movement distance and final position reproduction: implications for the equilibrium-point control of movements.

    PubMed

    Jaric, S; Corcos, D M; Gottlieb, G L; Ilic, D B; Latash, M L

    1994-01-01

    Predictions of two views on single-joint motor control, namely programming of muscle force patterns and equilibrium-point control, were compared with the results of experiments with reproduction of movement distance and final location during fast unidirectional elbow flexions. Two groups of subjects were tested. The first group practiced movements over a fixed distance (36 degrees), starting from seven different initial positions (distance group, DG). The second group practiced movements from the same seven initial positions to a fixed final location (location group, LG). Later, all the subjects were tested at the practiced task with their eyes closed, and then, unexpectedly for the subjects, they were tested at the other, unpracticed task. In both groups, the task to reproduce final position had lower indices of final position variability than the task to reproduce movement distance. Analysis of the linear regression lines between initial position and final position (or movement distance) also demonstrated a better (more accurate) performance during final position reproduction than during distance reproduction. The data are in a good correspondence with the predictions of the equilibrium-point hypothesis, but not with the predictions of the force-pattern control approach.

  5. Evidence of compensatory joint kinetics during stair ascent and descent in Parkinson's disease.

    PubMed

    Conway, Zachary J; Silburn, Peter A; Blackmore, Tim; Cole, Michael H

    2017-02-01

    Stair ambulation is a challenging activity of daily life that requires larger joint moments than walking. Stabilisation of the body and prevention of lower limb collapse during this task depends upon adequately-sized hip, knee and ankle extensor moments. However, people with Parkinson's disease (PD) often present with strength deficits that may impair their capacity to control the lower limbs and ultimately increase their falls risk. To investigate hip, knee and ankle joint moments during stair ascent and descent and determine the contribution of these joints to the body's support in people with PD. Twelve PD patients and twelve age-matched controls performed stair ascent and descent trials. Data from an instrumented staircase and a three-dimensional motion analysis system were used to derive sagittal hip, knee and ankle moments. Support moment impulses were calculated by summing all extensor moment impulses and the relative contribution of each joint was calculated. Linear mixed model analyses indicated that PD patients walked slower and had a reduced cadence relative to controls. Although support moment impulses were typically not different between groups during stair ascent or descent, a reduced contribution by the ankle joint required an increased knee joint contribution for the PD patients. Despite having poorer knee extensor strength, people with PD rely more heavily on these muscles during stair walking. This adaptation could possibly be driven by the somewhat restricted mobility of this joint, which may provide these individuals with an increased sense of stability during these tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Altered Tibiofemoral Joint Contact Mechanics and Kinematics in Patients with Knee Osteoarthritis and Episodic Complaints of Joint Instability

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Klatt, Brian A.; Gustafson, Jonathan A.; Tashman, Scott; Fitzgerald, G. Kelley

    2014-01-01

    Background To evaluate knee joint contact mechanics and kinematics during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. Methods Forty-three subjects, 11 with medial compartment knee osteoarthritis and self-reported instability (unstable), 7 with medial compartment knee osteoarthritis but no reports of instability (stable), and 25 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a downhill gait task on a treadmill. Findings The medial compartment contact point excursions were longer in the unstable group compared to the stable (p=0.046) and the control groups (p=0.016). The peak medial compartment contact point velocity was also greater for the unstable group compared to the stable (p=0.047) and control groups (p=0.022). Additionally, the unstable group demonstrated a coupled movement pattern of knee extension and external rotation after heel contact which was different than the coupled motion of knee flexion and internal rotation demonstrated by stable and control groups. Interpretation Our findings suggest that knee joint contact mechanics and kinematics are altered during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. The observed longer medial compartment contact point excursions and higher velocities represent objective signs of mechanical instability that may place the arthritic knee joint at increased risk for disease progression. Further research is indicated to explore the clinical relevance of altered contact mechanics and kinematics during other common daily activities and to assess the efficacy of rehabilitation programs to improve altered joint biomechanics in knee osteoarthritis patients with self-reported instability. PMID:24856791

  7. A Method for Multitask fMRI Data Fusion Applied to Schizophrenia

    PubMed Central

    Calhoun, Vince D.; Adali, Tulay; Kiehl, Kent A.; Astur, Robert; Pekar, James J.; Pearlson, Godfrey D.

    2009-01-01

    It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are “coupled” together by a shared loading parameter. We first compute an activation map for each task and each individual as “features, ” which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate “decreased” connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate “more similarly” for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks using a variety of tasks and may increase our understanding of coordinated brain networks and the impact of pathology upon them. PMID:16342150

  8. Task-oriented training with computer gaming in people with rheumatoid arthritisor osteoarthritis of the hand: study protocol of a randomized controlled pilot trial.

    PubMed

    Srikesavan, Cynthia Swarnalatha; Shay, Barbara; Robinson, David B; Szturm, Tony

    2013-03-09

    Significant restriction in the ability to participate in home, work and community life results from pain, fatigue, joint damage, stiffness and reduced joint range of motion and muscle strength in people with rheumatoid arthritis or osteoarthritis of the hand. With modest evidence on the therapeutic effectiveness of conventional hand exercises, a task-oriented training program via real life object manipulations has been developed for people with arthritis. An innovative, computer-based gaming platform that allows a broad range of common objects to be seamlessly transformed into therapeutic input devices through instrumentation with a motion-sense mouse has also been designed. Personalized objects are selected to target specific training goals such as graded finger mobility, strength, endurance or fine/gross dexterous functions. The movements and object manipulation tasks that replicate common situations in everyday living will then be used to control and play any computer game, making practice challenging and engaging. The ongoing study is a 6-week, single-center, parallel-group, equally allocated and assessor-blinded pilot randomized controlled trial. Thirty people with rheumatoid arthritis or osteoarthritis affecting the hand will be randomized to receive either conventional hand exercises or the task-oriented training. The purpose is to determine a preliminary estimation of therapeutic effectiveness and feasibility of the task-oriented training program. Performance based and self-reported hand function, and exercise compliance are the study outcomes. Changes in outcomes (pre to post intervention) within each group will be assessed by paired Student t test or Wilcoxon signed-rank test and between groups (control versus experimental) post intervention using unpaired Student t test or Mann-Whitney U test. The study findings will inform decisions on the feasibility, safety and completion rate and will also provide preliminary data on the treatment effects of the task-oriented training compared with conventional hand exercises in people with rheumatoid arthritis or osteoarthritis of the hand. ClinicalTrials.gov: NCT01635582.

  9. Social task switching: On the automatic social engagement of executive functions.

    PubMed

    Dudarev, Veronica; Hassin, Ran R

    2016-01-01

    Humans are quintessentially social, yet much of cognitive psychology has focused on the individual, in individual settings. The literature on joint action is one of the most prominent exceptions. Joint-action research studies the sociality of our mental representations by examining how the tasks of other people around us affect our own task performance. In this paper we go beyond examining whether we represent others and their tasks, by asking whether we also automatically do their tasks with them, even if they require effortful executive functions. To this end we examine one of the core executive functions, shifting, in a new paradigm that allows us to investigate task-switching in a joint-action setup. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. DoD Task Force on the Prevention of the Suicide by Members of the Armed Forces

    DTIC Science & Technology

    2010-08-01

    Ronald Green USMC Major General Philip Volpe, DO, MC USA Marjan Ghahramounlou Holloway, PhD Commander Aaron Werbel, PhD USN Table of Contents...and one civilian member serving as co-chairs for the group. Major General Philip Volpe, initially the Deputy Commander of Joint Task Force, National...and representation from each Service. Major General Philip Volpe was appointed as the military co-chair, and Ms. Bonnie Carroll was elected as the

  11. Age-Related Differences in Muscle Fatigue Vary by Contraction Type: A Meta-analysis

    PubMed Central

    Avin, Keith G.

    2011-01-01

    Background During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. Purpose The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). Data Sources A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. Study Selection Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18–45 years of age) and old (≥55 years of age) adults who were healthy were considered. Data Extraction Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. Data Synthesis Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. Limitations A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥50% of maximum voluntary contraction). Conclusions Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in peak torque. PMID:21616932

  12. Sex differences in kinematic adaptations to muscle fatigue induced by repetitive upper limb movements.

    PubMed

    Bouffard, Jason; Yang, Chen; Begon, Mickael; Côté, Julie

    2018-04-19

    Muscle fatigue induced by repetitive movements contributes to the development of musculoskeletal disorders. Men and women respond differently to muscle fatigue during isometric single-joint efforts, but sex differences during dynamic multi-joint tasks have not been clearly identified. Moreover, most studies comparing men and women during fatigue development assessed endurance time. However, none evaluated sex differences in kinematic adaptations to fatigue during multi-joint dynamic tasks. The objective of the study was to compare how men and women adapt their upper body kinematics during a fatiguing repetitive pointing task. Forty men and 41 women performed repetitive pointing movements (one per second) between two targets while maintaining their elbow elevated at shoulder height. The task ended when participants rated a perceived level of fatigue of 8/10. Trunk, humerothoracic, and elbow angles were compared between the first and last 30 s of the experiment and between men and women. Linear positions of the index finger (distance from the target) and the elbow (arm elevation) as well as movement timing were documented as task performance measures. Men (7.4 ± 3.2 min) and women (8.3 ± 4.5 min) performed the repetitive pointing task for a similar duration. For both sex groups, trunk range of motion increased with fatigue while shoulder's and elbow's decreased. Moreover, participants modified their trunk posture to compensate for the decreased humerothoracic elevation. Movements at all joints also became more variable with fatigue. However, of the 24 joint angle variables assessed, only two Sex × Fatigue interactions were observed. Although average humerothoracic elevation angle decreased in both subgroups, this decrease was greater in men (standardized response mean [SRM] - 1.63) than in women (SRM - 1.44). Moreover, the movement-to-movement variability of humerothoracic elevation angle increased only in women (SRM 0.42). Despite many similarities between men's and women's response to fatigue induced by repetitive pointing movements, some sex differences were observed. Those subtle differences may indicate that men's shoulder muscles were more fatigued than women's despite a similar level of perceived exertion. They may also indicate that men and women do not adapt the exact same way to a similar fatigue.

  13. Early adversity, RSA, and inhibitory control: evidence of children's neurobiological sensitivity to social context.

    PubMed

    Skowron, Elizabeth A; Cipriano-Essel, Elizabeth; Gatzke-Kopp, Lisa M; Teti, Douglas M; Ammerman, Robert T

    2014-07-01

    This study examined parasympathetic physiology as a moderator of the effects of early adversity (i.e., child abuse and neglect) on children's inhibitory control. Children's respiratory sinus arrhythmia (RSA) was assessed during a resting baseline, two joint challenge tasks with mother, and an individual frustration task. RSA assessed during each of the joint parent-child challenge tasks moderated the effects of child maltreatment (CM) status on children's independently-assessed inhibitory control. No moderation effect was found for RSA assessed at baseline or in the child-alone challenge task. Among CM-exposed children, lower RSA levels during the joint task predicted the lowest inhibitory control, whereas higher joint task RSA was linked to higher inhibitory control scores that were indistinguishable from those of non-CM children. Results are discussed with regard to the importance of considering context specificity (i.e., individual and caregiver contexts) in how biomarkers inform our understanding of individual differences in vulnerability among at-risk children. © 2013 Wiley Periodicals, Inc.

  14. Early Adversity, RSA, and Inhibitory Control: Evidence of Children’s Neurobiological Sensitivity to Social Context

    PubMed Central

    Skowron, Elizabeth A.; Cipriano-Essel, Elizabeth; Gatzke-Kopp, Lisa M.; Teti, Douglas M.; Ammerman, Robert T.

    2014-01-01

    This study examined parasympathetic physiology as a moderator of the effects of early adversity (i.e., child abuse and neglect) on children’s inhibitory control. Children’s respiratory sinus arrhythmia (RSA) was assessed during a resting baseline, two joint challenge tasks with mother, and an individual frustration task. RSA assessed during each of the joint parent–child challenge tasks moderated the effects of child maltreatment (CM) status on children’s independently-assessed inhibitory control. No moderation effect was found for RSA assessed at baseline or in the child-alone challenge task. Among CM-exposed children, lower RSA levels during the joint task predicted the lowest inhibitory control, whereas higher joint task RSA was linked to higher inhibitory control scores that were indistinguishable from those of non-CM children. Results are discussed with regard to the importance of considering context specificity (i.e., individual and caregiver contexts) in how biomarkers inform our understanding of individual differences in vulnerability among at-risk children. PMID:24142832

  15. Aerospace Software Engineering for Advanced Systems Architectures (L’Ingenierie des Logiciels Pour les Architectures des Systemes Aerospatiaux)

    DTIC Science & Technology

    1993-11-01

    Eliezer N. Solomon Steve Sedrel Westinghouse Electronic Systems Group P.O. Box 746, MS 432, Baltimore, Maryland 21203-0746, USA SUMMARY The United States...subset of the Joint Intergrated Avionics NewAgentCollection which has four Working Group (JIAWG), Performance parameters: Acceptor, of type Task._D...Published Noember 1993 Distribution and Availability on Back Cover SAGARD-CP54 ADVISORY GROUP FOR AERSACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE 92200

  16. Autonomy and control in dyads: effects on interaction quality and joint creative performance.

    PubMed

    Weinstein, Netta; Hodgins, Holley S; Ryan, Richard M

    2010-12-01

    Two studies examined interaction quality and joint performance on two creative tasks in unacquainted dyads primed for autonomy or control orientations. It was hypothesized that autonomy-primed dyads would interact more constructively, experience more positive mood, and engage the task more readily, and as a result these dyads would perform better. To test this, Study 1 primed orientation and explored verbal creative performance on the Remote Associates Task (RAT). In Study 2, dyads were primed with autonomy and control orientation and videotaped during two joint creative tasks, one verbal (RAT) and one nonverbal (charades). Videotapes were coded for behavioral indicators of closeness and task engagement. Results showed that autonomy-primed dyads felt closer, were more emotionally and cognitively attuned, provided empathy and encouragement to partners, and performed more effectively. The effects of primed autonomy on creative performance were mediated by interpersonal quality, mood, and joint engagement.

  17. Motor impairment factors related to brain injury timing in early hemiparesis Part I: expression of upper extremity weakness

    PubMed Central

    Sukal-Moulton, Theresa; Krosschell, Kristin J.; Gaebler-Spira, Deborah J.; Dewald, Julius P.A.

    2014-01-01

    Background Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. Objective This study investigated the impact of timing of brain injury on magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. Methods Twenty-four individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n=8), around the time of birth (PERI-natal, n=8) or after 6 months of age (POST-natal, n=8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple degree-of-freedom load cell to quantify torques in 10 directions. A mixed model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. Results There was a significant effect of both time of injury group (p<0.001) and joint torque direction (p<0.001) on the relative weakness of the paretic arm. Distal joints were more affected compared to proximal joints, especially in the POST-natal group. Conclusions The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, while those who sustained later injury may rely more on indirect ipsilateral cortico-bulbospinal projections during the generation of torques with the paretic arm. PMID:24009182

  18. Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. This study investigated the impact of timing of brain injury on the magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. A total of 24 individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), or after 6 months of age (POST-natal, n = 8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple-degree-of-freedom load cell to quantify torques in 10 directions. A mixed-model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. There was a significant effect of both time of injury group (P < .001) and joint torque direction (P < .001) on the relative weakness of the paretic arm. Distal joints were more affected compared with proximal joints, especially in the POST-natal group. The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, whereas those who sustained later injury may rely more on indirect ipsilateral corticobulbospinal projections during the generation of torques with the paretic arm.

  19. The relation of hand and arm configuration variances while tracking geometric figures in Parkinson's disease: aspects for rehabilitation.

    PubMed

    Keresztényi, Zoltán; Cesari, Paola; Fazekas, Gábor; Laczkó, József

    2009-03-01

    Variances of drawing arm movements between patients with Parkinson's disease and healthy controls were compared. The aim was to determine whether differences in joint synergies or individual joint rotations affect the endpoint (hand position) variance. Joint and endpoint coordinates were measured while participants performed drawing tasks. Variances of arm configurations and endpoints were computed and statistically analyzed for 12 patients and 12 controls. The variance of arm movements for patients (both for arm configuration and endpoint) was overall higher than that for the control group. Variation was smaller for drawing a circle versus a square and for drawing with the dominant versus the nondominant hand within both groups. The ratio of arm configuration variances between groups was similar to the ratio of endpoint variances. There were significant differences in the velocity, but not in the path lengths of movements comparing the two groups. Patients presented less movement stability while drawing different figures in different trials. Moreover, the similarity of the ratios suggests that the ill-coordinated hand movement was caused by the error in the movements of individual body parts rather than by the lack of intersegmental coordination. Thus, rehabilitation may focus on the improvement of the precision of individual joint rotations.

  20. Inter-joint coordination strategies during unilateral stance following first-time, acute lateral ankle sprain: A brief report.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn

    2015-07-01

    This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants with an acute, first-time lateral ankle sprain injury in comparison to a control group. Sixty-six participants with an acute first-time lateral ankle sprain and 19 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-D kinematic data for similarity in the aim of establishing patterns of inter-joint coordination for these groups. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.12 [0.09] vs 0.06 [0.04]; η(2)=.16) and condition 2 (sagittal/frontal plane: 0.18 [0.13] vs 0.08 [0.06]; η(2)=0.37). Participants with acute first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study.

    PubMed

    Bicho, Estela; Erlhagen, Wolfram; Louro, Luis; e Silva, Eliana Costa

    2011-10-01

    In this paper we present a model for action preparation and decision making in cooperative tasks that is inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. It implements the coordination of actions and goals among the partners as a dynamic process that integrates contextual cues, shared task knowledge and predicted outcome of others' motor behavior. The control architecture is formalized by a system of coupled dynamic neural fields representing a distributed network of local but connected neural populations. Different pools of neurons encode task-relevant information about action means, task goals and context in the form of self-sustained activation patterns. These patterns are triggered by input from connected populations and evolve continuously in time under the influence of recurrent interactions. The dynamic model of joint action is evaluated in a task in which a robot and a human jointly construct a toy object. We show that the highly context sensitive mapping from action observation onto appropriate complementary actions allows coping with dynamically changing joint action situations. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. The effects of neuromuscular exercise on medial knee joint load post-arthroscopic partial medial meniscectomy: 'SCOPEX', a randomised control trial protocol.

    PubMed

    Hall, Michelle; Hinman, Rana S; Wrigley, Tim V; Roos, Ewa M; Hodges, Paul W; Staples, Margaret; Bennell, Kim L

    2012-11-27

    Meniscectomy is a risk factor for knee osteoarthritis, with increased medial joint loading a likely contributor to the development and progression of knee osteoarthritis in this group. Therefore, post-surgical rehabilitation or interventions that reduce medial knee joint loading have the potential to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have recently undergone a partial medial meniscectomy. 62 people aged 30-50 years who have undergone an arthroscopic partial medial meniscectomy within the previous 3 to 12 months will be recruited and randomly assigned to a neuromuscular exercise or control group using concealed allocation. The neuromuscular exercise group will attend 8 supervised exercise sessions with a physiotherapist and will perform 6 exercises at home, at least 3 times per week for 12 weeks. The control group will not receive the neuromuscular training program. Blinded assessment will be performed at baseline and immediately following the 12-week intervention. The primary outcomes are change in the peak external knee adduction moment measured by 3-dimensional analysis during normal paced walking and one-leg rise. Secondary outcomes include the change in peak external knee adduction moment during fast pace walking and one-leg hop and change in the knee adduction moment impulse during walking, one-leg rise and one-leg hop, knee and hip muscle strength, electromyographic muscle activation patterns, objective measures of physical function, as well as self-reported measures of physical function and symptoms and additional biomechanical parameters. The findings from this trial will provide evidence regarding the effect of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during various tasks in people with a partial medial meniscectomy. If shown to reduce the knee adduction moment, neuromuscular exercise has the potential to prevent the onset of osteoarthritis or slow its progression in those with early disease. Australian New Zealand Clinical Trials Registry reference: ACTRN12612000542897.

  3. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.

    PubMed

    Latash, M L

    1992-01-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.

  4. Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.

    PubMed

    Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang

    2013-11-01

    Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.

  5. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    PubMed

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study

    PubMed Central

    2010-01-01

    Background Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering of their complex mechanism. PMID:20380733

  7. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.

    PubMed

    Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang

    2010-04-10

    Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering of their complex mechanism.

  8. The Future of Amphibious Operations: Shaping the Expeditionary Strike Group to Fight in the Joint Task Force

    DTIC Science & Technology

    2010-02-01

    1 Charles E. Wilhelm, Expeditionary Warfare.marine corps gazette, 79(6), 28-30. Retrieved October 15, 2009, from Career and Technical Education . (Document...Expeditionary warfare.marine corps gazette, 79(6), 28- 30. Retrieved October 15, 2009, from Career and Technical Education . (Document ID: 4455650

  9. Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players.

    PubMed

    Dubose, Dominique F; Herman, Daniel C; Jones, Deborah L; Tillman, Susan M; Clugston, James R; Pass, Anthony; Hernandez, Jorge A; Vasilopoulos, Terrie; Horodyski, Marybeth; Chmielewski, Terese L

    2017-01-01

    Recent research indicates that a concussion increases the risk of musculoskeletal injury. Neuromuscular changes after concussion might contribute to the increased risk of injury. Many studies have examined gait postconcussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Division I football players (13 CONC and 26 UNINJ) were tested pre- and postseason. A motion capture system recorded subjects jumping on one limb from a 25.4-cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus the joint angle plots. Leg stiffness was (peak vertical ground reaction force [PVGRF]/lower extremity vertical displacement) from initial contact to peak vertical ground reaction force. All stiffness values were normalized to body weight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and postseason stiffness values. Average time from concussion to postseason testing was 49.9 d. The CONC group showed an increase in hip stiffness (P = 0.03), a decrease in knee (P = 0.03) and leg stiffness (P = 0.03), but no change in ankle stiffness (P = 0.65) from pre- to postseason. Lower extremity stiffness is altered after concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion.

  10. Lower Extremity Stiffness Changes following Concussion in Collegiate Football Players

    PubMed Central

    DuBose, Dominique F.; Herman, Daniel C.; Jones, Debi L.; Tillman, Susan M.; Clugston, James R.; Pass, Anthony; Hernandez, Jorge A.; Vasilopoulos, Terrie; Horodyski, MaryBeth; Chmielewski, Terese L.

    2016-01-01

    Purpose Recent research indicates that a concussion increases risk of musculoskeletal injury. Neuromuscular changes following concussion might contribute to the increased risk of injury. Many studies have examined gait post-concussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Methods Division I football players (13 CONC, 26 UNINJ) were tested pre- and post-season. A motion-capture system recorded subjects jumping on one limb from a 25.4 cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus joint angle plots. Leg stiffness was (peak vertical ground reaction force (PVGRF)/lower extremity vertical displacement) from initial contact to PVGRF. All stiffness values were normalized to bodyweight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and post-season stiffness values. Results Average time from concussion to post-season testing was 49.9 days. The CONC group showed an increase in hip stiffness (p=0.03), a decrease in knee (p=0.03) and leg stiffness (p=0.03), but no change in ankle stiffness (p=0.65) from pre- to post-season. Conclusion Lower extremity stiffness is altered following concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion. PMID:27501359

  11. Synchronized movement experience enhances peer cooperation in preschool children.

    PubMed

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-08-01

    Cooperating with other people is a key achievement in child development and is essential for human culture. We examined whether we could induce 4-year-old children to increase their cooperation with an unfamiliar peer by providing the peers with synchronized motion experience prior to the tasks. Children were randomly assigned to independent treatment and control groups. The treatment of synchronous motion caused children to enhance their cooperation, as measured by the speed of joint task completion, compared with control groups that underwent asynchronous motion or no motion at all. Further analysis suggested that synchronization experience increased intentional communication between peer partners, resulting in increased coordination and cooperation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Functional roles of lower-limb joint moments while walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  13. The Challenge and the Promise: Strengthening the Force, Preventing Suicide and Saving Lives. Final Report of the Department of Defense Task Force on the Prevention of Suicide by Members of the Armed Forces

    DTIC Science & Technology

    2010-08-01

    Sergeant Major Ronald Green USMC Major General Philip Volpe, DO, MC USA Marjan Ghahramounlou Holloway, PhD Commander Aaron...and one civilian member serving as co-chairs for the group. Major General Philip Volpe, initially the Deputy Commander of Joint Task Force, National...and representation from each Service. Major General Philip Volpe was appointed as the military co-chair, and Ms. Bonnie Carroll was elected as the

  14. Implicit Learning of Predictive Relationships in Three-element Visual Sequences by Young and Old Adults

    PubMed Central

    Howard, James H.; Howard, Darlene V.; Dennis, Nancy A.; Kelly, Andrew J.

    2008-01-01

    Knowledge of sequential relationships enables future events to be anticipated and processed efficiently. Research with the serial reaction time task (SRTT) has shown that sequence learning often occurs implicitly without effort or awareness. Here we report four experiments that use a triplet-learning task (TLT) to investigate sequence learning in young and older adults. In the TLT people respond only to the last target event in a series of discrete, three-event sequences or triplets. Target predictability is manipulated by varying the triplet frequency (joint probability) and/or the statistical relationships (conditional probabilities) among events within the triplets. Results revealed that both groups learned, though older adults showed less learning of both joint and conditional probabilities. Young people used the statistical information in both cues, but older adults relied primarily on information in the second cue alone. We conclude that the TLT complements and extends the SRTT and other tasks by offering flexibility in the kinds of sequential statistical regularities that may be studied as well as by controlling event timing and eliminating motor response sequencing. PMID:18763897

  15. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Yu, Yi-Hsiang; Nielsen, Kim

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30)more » [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.« less

  16. Information Operations

    DTIC Science & Technology

    2006-02-13

    restricted frequency list (JRFL). This list specifies protected, guarded, and taboo frequencies that should not normally be disrupted without prior... frequency list JROC Joint Requirement Oversight Council JSC Joint Spectrum Center JTCB joint targeting coordination board JTF joint task force JWAC joint

  17. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  18. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    PubMed Central

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  19. Task-oriented training with computer gaming in people with rheumatoid arthritisor osteoarthritis of the hand: study protocol of a randomized controlled pilot trial

    PubMed Central

    2013-01-01

    Background Significant restriction in the ability to participate in home, work and community life results from pain, fatigue, joint damage, stiffness and reduced joint range of motion and muscle strength in people with rheumatoid arthritis or osteoarthritis of the hand. With modest evidence on the therapeutic effectiveness of conventional hand exercises, a task-oriented training program via real life object manipulations has been developed for people with arthritis. An innovative, computer-based gaming platform that allows a broad range of common objects to be seamlessly transformed into therapeutic input devices through instrumentation with a motion-sense mouse has also been designed. Personalized objects are selected to target specific training goals such as graded finger mobility, strength, endurance or fine/gross dexterous functions. The movements and object manipulation tasks that replicate common situations in everyday living will then be used to control and play any computer game, making practice challenging and engaging. Methods/Design The ongoing study is a 6-week, single-center, parallel-group, equally allocated and assessor-blinded pilot randomized controlled trial. Thirty people with rheumatoid arthritis or osteoarthritis affecting the hand will be randomized to receive either conventional hand exercises or the task-oriented training. The purpose is to determine a preliminary estimation of therapeutic effectiveness and feasibility of the task-oriented training program. Performance based and self-reported hand function, and exercise compliance are the study outcomes. Changes in outcomes (pre to post intervention) within each group will be assessed by paired Student t test or Wilcoxon signed-rank test and between groups (control versus experimental) post intervention using unpaired Student t test or Mann–Whitney U test. Discussion The study findings will inform decisions on the feasibility, safety and completion rate and will also provide preliminary data on the treatment effects of the task-oriented training compared with conventional hand exercises in people with rheumatoid arthritis or osteoarthritis of the hand. Trial registration ClinicalTrials.gov: NCT01635582 PMID:23497529

  20. Does practicing a wide range of joint angle configurations lead to higher flexibility in a manual obstacle-avoidance target-pointing task?

    PubMed Central

    Bootsma, Reinoud J.; Schoemaker, Marina M.; Otten, Egbert; Mouton, Leonora J.; Bongers, Raoul M.

    2017-01-01

    Flexibility in motor actions can be defined as variability in the use of degrees of freedom (e.g., joint angles in the arm) over repetitions while keeping performance (e.g., fingertip position) stabilized. We examined whether flexibility can be increased through enlarging the joint angle range during practice in a manual obstacle-avoidance target-pointing task. To establish differences in flexibility we partitioned the variability in joint angles over repetitions in variability within (GEV) and variability outside the solution space (NGEV). More GEV than NGEV reflects flexibility; when the ratio of the GEV and NGEV is higher, flexibility is higher. The pretest and posttest consisted of 30 repetitions of manual pointing to a target while moving over a 10 cm high obstacle. To enlarge the joint angle range during practice participants performed 600 target-pointing movements while moving over obstacles of different heights (5–9 cm, 11–15 cm). The results indicated that practicing movements over obstacles of different heights led participants to use enlarged range of joint angles compared to the range of joint angles used in movements over the 10 cm obstacle in the pretest. However, for each individual obstacle neither joint angle variance nor flexibility were higher during practice. We also did not find more flexibility after practice. In the posttest, joint angle variance was in fact smaller than before practice, primarily in GEV. The potential influences of learning effects and the task used that could underlie the results obtained are discussed. We conclude that with this specific type of practice in this specific task, enlarging the range of joint angles does not lead to more flexibility. PMID:28700695

  1. Joining of ceramics for high performance energy systems. Mid-term progress report, August 1, 1979-March 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeltzer, C E; Metcalfe, A G

    The subject program is primarily an exploratory and demonstration study of the use of silicate glass-based adhesives for bonding silicon-base refractory ceramics (SiC, Si/sub 3/N/sub 4/). The projected application is 1250 to 2050/sup 0/F relaxing joint service in high-performance energy conversion systems. The five program tasks and their current status are as follows. Task 1 - Long-Term Joint Stability. Time-temperature-transformation studies of candidate glass adhesives, out to 2000 hours simulated service exposure, are half complete. Task 2 - Environmental and Service Effects on Joint Reliability. Start up delayed due to late delivery of candidate glass fillers and ceramic specimens. Taskmore » 3 - Viscoelastic Damping of Glass Bonded Ceramics. Promising results obtained over approximately the same range of glass viscosity required for joint relaxation function (10/sup 7.5/ to 10/sup 9.5/ poise). Work is 90% complete. Task 4 - Crack Arrest and Crack Diversion by Joints. No work started due to late arrival of materials. Task 5 - Improved Joining and Fabrication Methods. Significant work has been conducted in the area of refractory pre-glazing and the application and bonding of high-density candidate glass fillers (by both hand-artisan and slip-spray techniques). Work is half complete.« less

  2. Hand and Grasp Selection in a Preferential Reaching Task: The Effects of Object Location, Orientation, and Task Intention.

    PubMed

    Scharoun, Sara M; Scanlan, Kelly A; Bryden, Pamela J

    2016-01-01

    As numerous movement options are available in reaching and grasping, of particular interest are what factors influence an individual's choice of action. In the current study a preferential reaching task was used to assess the propensity for right handers to select their preferred hand and grasp a coffee mug by the handle in both independent and joint action object manipulation contexts. Mug location (right-space, midline, and left-space) and handle orientation (toward, away, to left, and to right of the participant) varied in four tasks that differed as a function of intention: (1) pick-up (unimanual, independent); (2) pick-up and pour (bimanual, independent); (3) pick-up and pass (unimanual, joint action); and (4) pick-up, pour and pass (bimanual, joint action). In line with previous reports, a right-hand preference for unimanual tasks was observed. Furthermore, extending existing literature to a preferential reaching task, role differentiation between the hands in bimanual tasks (i.e., preferred hand mobilizing, non-preferred hand stabilizing) was displayed. Finally, right-hand selection was greatest in right space, albeit lower in bimanual tasks compared to what is typically reported in unimanual tasks. Findings are attributed to the desire to maximize biomechanical efficiency in reaching. Grasp postures were also observed to reflect consideration of efficiency. More specifically, within independent object manipulation (pick-up; pick-up and pour) participants only grasped the mug by the handle when it afforded a comfortable posture. Furthermore, in joint action (pick-up and pass; pick-up, pour and pass), the confederate was only offered the handle if the intended action of the confederate was similar or required less effort than that of the participant. Together, findings from the current study add to our knowledge of hand and grasp selection in unimanual and bimanual object manipulation, within the context of both independent and joint action tasks.

  3. The effects of neuromuscular exercise on medial knee joint load post-arthroscopic partial medial meniscectomy: ‘SCOPEX’ a randomised control trial protocol

    PubMed Central

    2012-01-01

    Background Meniscectomy is a risk factor for knee osteoarthritis, with increased medial joint loading a likely contributor to the development and progression of knee osteoarthritis in this group. Therefore, post-surgical rehabilitation or interventions that reduce medial knee joint loading have the potential to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have recently undergone a partial medial meniscectomy. Methods/design 62 people aged 30–50 years who have undergone an arthroscopic partial medial meniscectomy within the previous 3 to 12 months will be recruited and randomly assigned to a neuromuscular exercise or control group using concealed allocation. The neuromuscular exercise group will attend 8 supervised exercise sessions with a physiotherapist and will perform 6 exercises at home, at least 3 times per week for 12 weeks. The control group will not receive the neuromuscular training program. Blinded assessment will be performed at baseline and immediately following the 12-week intervention. The primary outcomes are change in the peak external knee adduction moment measured by 3-dimensional analysis during normal paced walking and one-leg rise. Secondary outcomes include the change in peak external knee adduction moment during fast pace walking and one-leg hop and change in the knee adduction moment impulse during walking, one-leg rise and one-leg hop, knee and hip muscle strength, electromyographic muscle activation patterns, objective measures of physical function, as well as self-reported measures of physical function and symptoms and additional biomechanical parameters. Discussion The findings from this trial will provide evidence regarding the effect of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during various tasks in people with a partial medial meniscectomy. If shown to reduce the knee adduction moment, neuromuscular exercise has the potential to prevent the onset of osteoarthritis or slow its progression in those with early disease. Trial Registration Australian New Zealand Clinical Trials Registry reference: ACTRN12612000542897 PMID:23181415

  4. The Command and Control of Communications in Joint and Combined Operations

    DTIC Science & Technology

    1994-06-03

    war. The Joint Task Force structure is used as the model for command and control relationships . The first part of the thesis assesses the current...Joint Task Force structure is used as the model for conmand and control relationships . The first part of the thesis assesses the current doctrine and...Message Switch Connectivity . . . . . . . 59 10. C4 Architecture Requirements . . . . . . 81 11. Functional Relationships . . . . . . 84 vi LIST OF

  5. Joint Publication 3-31. Command and Control for Joint Land Operations

    DTIC Science & Technology

    2010-06-29

    task force] FALCON .” Admiral James Ellis, Commander, Joint Task Force NOBLE ANVIL during Operation ALLIED FORCE in letter correspondence to RAND...beneficial effect on the gr ound cam paign.” D uring t he ca mpaign, “ Army and M arine artillery were used interchangeably.” SOURCE: Lieutenant...consolidates, prioritizes, and forwards ultra -high frequency tactical satellite requirements to the JFC for channel allocation. k. Establishes, supervises

  6. A Feasible Approach for an Early Manned Lunar Landing. Part II: Detailed Report of Ad Hoc Task Group

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1961-01-01

    This report, in two parts, presents a program development plan for attempting a first manned lunar landing in 1967. The two parts consist of a Summary Report and a Detailed Report representing the coordinated output of the Ad Hoc Task Group assigned to the study. The study was started in response to the request for such a study by the Associate Administrator in his memorandum of May 2, 1961 establishing the Ad Hoc Task Group. The purpose of the study was to take a first cut at the tasks associated with the design, development and construction of the equipment and facilities as well as the development of the crews, and to show the time phasing 6f these tasks. Included are the space sciences, life science and advanced technology tasks whose data and results are needed for designing and developing the systems required in carrying out the mission. The plan presented in the two reports does not presume to be a firm plan. Its basic purpose is, by choosing one feasible method, to size up the scope, schedule and cost of the job, discover the main problems, pacing items and major decisions and provide a threshold from which a firm and detailed project development plan can be jointly formulated by the various elements of NASA.

  7. Intergenerational transmission of somatization behaviour: 2. Observations of joint attention and bids for attention.

    PubMed

    Craig, T K J; Bialas, I; Hodson, S; Cox, A D

    2004-02-01

    Somatoform disorders may have their roots in childhood through processes that involve an enhanced parental focus on health. The aim of this study was to test the hypothesis that somatizing mothers will show less joint involvement than other mothers during play but greater responsiveness when this play involves a 'medical' theme. Cross-sectional observational study of 42 chronic somatizers, 44 organically ill and 50 healthy mothers and their 4-8 year-old children during structured play and a meal. Tasks comprised boxes containing tea-set items, 'medical' items and a light snack. Somatizing mothers were emotionally flatter and showed lower rates of joint attention than other mothers during both play tasks. While the three groups had similar rate of bids for attention, somatizing mothers were more responsive to their child's bids during play with the medical box than at other times. In contrast, the children of somatizing mothers ignored a greater proportion of their mother's bids during play with the medical box than did children of other mothers or during play with a non-medical theme. The study has demonstrated tentative evidence in support of the hypothesis.

  8. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain 'copers'.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To compare the movement patterns and underlying energetics of individuals with chronic ankle instability (CAI) to ankle sprain 'copers' during a landing task. Twenty-eight (age 23.2 ± 4.9 years; body mass 75.5 ± 13.9 kg; height 1.7 ± 0.1 m) participants with CAI and 42 (age 22.7 ± 1.7 years; body mass 73.4 ± 11.3 kg; height 1.7 ± 0.1 m) ankle sprain 'copers' were evaluated 1 year after incurring a first-time lateral ankle sprain injury. Kinematics and kinetics of the hip, knee and ankle joints from 200 ms pre-initial contact (IC) to 200 ms post-IC, in addition to the vertical component of the landing ground reaction force, were acquired during performance of a drop land task. The CAI group adopted a position of increased hip flexion during the landing descent on their involved limb. This coincided with a reduced post-IC flexor pattern at the hip and increased overall hip joint stiffness compared to copers (-0.01 ± 0.05 vs. 0.02 ± 0.05°/Nm kg(-1), p = 0.03). Individuals with CAI display alterations in hip joint kinematics and energetics during a unipodal landing task compared to LAS 'copers'. These alterations may be responsible for the increased risk of injury experienced by individuals with CAI during landing manoeuvres. Thus, clinicians must recognise the potential for joints proximal to the affected ankle to contribute to impaired function following an acute lateral ankle sprain injury and to develop rehabilitation protocols accordingly. Level III.

  9. Hybrid Warfare

    DTIC Science & Technology

    2013-08-01

    gross domestic product matched to technological capability—to projected political end -states—contingency requirements planned against potential...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint...Associate Fellow Jessica Glicken Turnley Ph.D., Cultural Anthropology Galisteo Consulting Group and JSOU Senior Fellow Francisco R. Wong-Diaz J.D

  10. Contextual determinants of the social-transfer-of-learning effect.

    PubMed

    Milanese, Nadia; Iani, Cristina; Sebanz, Natalie; Rubichi, Sandro

    2011-06-01

    A recent study (Milanese et al. in Cogn 116(1):15-22, 2010) showed that performing a spatial compatibility task with incompatible S-R links (i.e., the practice task) alongside a co-actor eliminates the Simon effect in a subsequent joint Simon task (i.e., the transfer task). In the present study, we conducted three experiments to individuate which elements of the practice task need to remain constant for this social-transfer-of-learning to occur. In Experiment 1, participants performed the practice task alongside a co-actor and the Simon task with a different co-actor; in Experiment 2, they performed the practice task alongside a co-actor and the Simon task with the same co-actor after exchanging their seats. Results showed a modulation of the joint Simon effect in Experiment 1 only. In Experiment 2, we found a regular joint Simon effect. These results indicate that, while co-actor identity is not crucial, other elements of the context, such as keeping the same position across tasks, are necessary for the social-transfer-of-learning to occur. On the whole, our data suggest that the social-transfer-of-learning effect is not tuned to a specific co-actor and depends on spatial parameters of the practice and transfer tasks.

  11. Improved configuration control for redundant robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.; Colbaugh, R.

    1990-01-01

    This article presents a singularity-robust task-prioritized reformulation of the configuration control scheme for redundant robot manipulators. This reformulation suppresses large joint velocities near singularities, at the expense of small task trajectory errors. This is achieved by optimally reducing the joint velocities to induce minimal errors in the task performance by modifying the task trajectories. Furthermore, the same framework provides a means for assignment of priorities between the basic task of end-effector motion and the user-defined additional task for utilizing redundancy. This allows automatic relaxation of the additional task constraints in favor of the desired end-effector motion, when both cannot be achieved exactly. The improved configuration control scheme is illustrated for a variety of additional tasks, and extensive simulation results are presented.

  12. Beyond Synchrony: Joint Action in a Complex Production Task Reveals Beneficial Effects of Decreased Interpersonal Synchrony

    PubMed Central

    Mitkidis, Panagiotis; Roepstorff, Andreas

    2016-01-01

    A variety of joint action studies show that people tend to fall into synchronous behavior with others participating in the same task, and that such synchronization is beneficial, leading to greater rapport, satisfaction, and performance. It has been noted that many of these task environments require simple interactions that involve little planning of action coordination toward a shared goal. The present study utilized a complex joint construction task in which dyads were instructed to build model cars while their hand movements and heart rates were measured. Participants built these models under varying conditions, delimiting how freely they could divide labor during a build session. While hand movement synchrony was sensitive to the different tasks and outcomes, the heart rate measure did not show any effects of interpersonal synchrony. Results for hand movements show that the more participants were constrained by a particular building strategy, the greater their behavioral synchrony. Within the different conditions, the degree of synchrony was predictive of subjective satisfaction and objective product outcomes. However, in contrast to many previous findings, synchrony was negatively associated with superior products, and, depending on the constraints on the interaction, positively or negatively correlated with higher subjective satisfaction. These results show that the task context critically shapes the role of synchronization during joint action, and that in more complex tasks, not synchronization of behavior, but rather complementary types of behavior may be associated with superior task outcomes. PMID:27997558

  13. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  14. The Association of Academic Health Sciences Libraries' legislative activities and the Joint Medical Library Association/Association of Academic Health Sciences Libraries Legislative Task Force

    PubMed Central

    Zenan, Joan S.

    2003-01-01

    The Association of Academic Health Sciences Libraries' (AAHSL's) involvement in national legislative activities and other advocacy initiatives has evolved and matured over the last twenty-five years. Some activities conducted by the Medical Library Association's (MLA's) Legislative Committee from 1976 to 1984 are highlighted to show the evolution of MLA's and AAHSL's interests in collaborating on national legislative issues, which resulted in an agreement to form a joint legislative task force. The history, work, challenges, and accomplishments of the Joint MLA/AAHSL Legislative Task Force, formed in 1985, are discussed. PMID:12883581

  15. Prevention of the Posttraumatic Fibrotic Response in Joints

    DTIC Science & Technology

    2015-10-01

    used on a regular basis. Major Task 4: Evaluating the efficacy of inhibitory chIgG to reduce the consequences of traumatic joint injury. During...the second year of study, we successfully employed all assays needed to evaluate the utility of the inhibitory antibody to reduce the flexion...1. Major Task 5: Task 4. Data analysis and statistical evaluation of results. All data from the mechanical measurements, from the biochemical

  16. Time Independent Functional task Training: a case study on the effect of inter-joint coordination driven haptic guidance in stroke therapy.

    PubMed

    Brokaw, Elizabeth B; Murray, Theresa M; Nef, Tobias; Lum, Peter S; Brokaw, Elizabeth B; Nichols, Diane; Holley, Rahsaan J

    2011-01-01

    After a stroke abnormal joint coordination of the arm may limit functional movement and recovery. To aid in training inter-joint movement coordination a haptic guidance method for functional driven rehabilitation after stroke called Time Independent Functional Training (TIFT) has been developed for the ARMin III robot. The mode helps retraining inter-joint coordination during functional movements, such as putting an object on a shelf, pouring from a pitcher, and sorting objects into bins. A single chronic stroke subject was tested for validation of the modality. The subject was given 1.5 hrs of robotic therapy twice a week for 4 weeks. The therapy and the results of training the single stroke subject are discussed. The subject showed a decrease in training joint error for the sorting task across training sessions and increased self-selected movement time in training. In kinematic reaching analysis the subject showed improvements in range of motion and joint coordination in a reaching task, as well as improvements in supination-pronation range of motion at the wrist. © 2011 IEEE

  17. Spatial parameters at the basis of social transfer of learning.

    PubMed

    Lugli, Luisa; Iani, Cristina; Milanese, Nadia; Sebanz, Natalie; Rubichi, Sandro

    2015-06-01

    Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of learning to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of learning in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that learning from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of learning was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-learning effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (c) 2015 APA, all rights reserved).

  18. The effect of dual tasking on foot kinematics in people with functional ankle instability.

    PubMed

    Tavakoli, Sanam; Forghany, Saeed; Nester, Christopher

    2016-09-01

    Some cases of repeated inversion ankle sprains are thought to have a neurological basis and are termed functional ankle instability (FAI). In addition to factors local to the ankle, such as loss of proprioception, cognitive demands have the ability to influence motor control and may increase the risk of repetitive lateral sprains. The purpose of this study was to investigate the effect of cognitive demand on foot kinematics in physically active people with functional ankle instability. 21 physically active participants with FAI and 19 matched healthy controls completed trials of normal walking (single task) and normal walking while performing a cognitive task (dual task). Foot motion relative to the shank was recorded. Cognitive performance, ankle kinematics and movement variability in single and dual task conditions was characterized. During normal walking, the ankle joint was significantly more inverted in FAI compared to the control group pre and post initial contact. Under dual task conditions, there was a statistically significant increase in frontal plane foot movement variability during the period 200ms pre and post initial contact in people with FAI compared to the control group (p<0.05). Dual task also significantly increased plantar flexion and inversion during the period 200ms pre and post initial contact in the FAI group (p<0.05). participants with FAI demonstrated different ankle movement patterns and increased movement variability during a dual task condition. Cognitive load may increase risk of ankle instability in these people. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Effect of Shoulder Muscle Fatigue on Acromiohumeral Distance and Scapular Dyskinesis in Women With Generalized Joint Hypermobility.

    PubMed

    Alibazi, Razie J; Moghadam, Afsun Nodehi; Cools, Ann M; Bakhshi, Enayatollah; Ahari, Alireza Aziz

    2017-12-01

    Muscle fatigue is considered to be one cause of shoulder pain, and subjects with generalized joint hypermobility (GJH) are affected more by shoulder pain. The purpose of this study was to examine the effects of muscle fatigue on acromiohumeral distance (AHD) and scapular dyskinesis in women with GJH. Thirty-six asymptomatic participants were assigned to either a GJH (n = 20) or control group (n = 16) using the Beighton scale. Before and after elevation fatigue trials, AHD was measured with ultrasonography at rest and when the arm was in 90° active elevation. A scapular dyskinesis test was used to visually observe alterations in scapular movement. Our results showed that in both groups, the fatigue reduced AHD in the 90° elevation position and increased the presence of scapular dyskinesis; however, no differences were found between the two groups. Although GJH has been identified as a factor for developing musculoskeletal disorders, generalized joint hypermobility did not result in changes to scapular dyskinesis or AHD, even after an elevation fatigue task. More studies are needed to evaluate the effects of muscle fatigue in subjects with GJH and a history of shoulder instability.

  20. The joint effect of bilingualism and ADHD on executive functions.

    PubMed

    Mor, Billy; Yitzhaki-Amsalem, Sarin; Prior, Anat

    2015-06-01

    The current study investigated the combined effect of ADHD, previously associated with executive function (EF) deficits, and of bilingualism, previously associated with EF enhancement, on EF. Eighty University students, Hebrew monolinguals and Russian Hebrew bilinguals, with and without ADHD participated. Inhibition tasks were a Numeric Stroop task and a Simon arrows task. Shifting tasks were the Trail Making Test (TMT) and a task-switching paradigm. Participants with ADHD performed worse than controls, but we did not find a bilingual advantage in EF. The negative impact of ADHD was more pronounced for bilinguals than for monolinguals, but only in interference suppression tasks. Bilingual participants with ADHD had the lowest performance. Bilingualism might prove to be an added burden for adults with ADHD, leading to reduced EF abilities. Alternatively, the current findings might be ascribed to over- or under-diagnosis of ADHD due to cultural differences between groups. These issues should be pursued in future research. © 2014 SAGE Publications.

  1. Deranged jaw-neck motor control in whiplash-associated disorders.

    PubMed

    Eriksson, Per-Olof; Zafar, Hamayun; Häggman-Henrikson, Birgitta

    2004-02-01

    Recent findings of simultaneous and well coordinated head-neck movements during single as well as rhythmic jaw opening-closing tasks has led to the conclusion that 'functional jaw movements' are the result of activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital and cervical spine joints. It can therefore be assumed that disease or injury to any of these joint systems would disturb natural jaw function. To test this hypothesis, amplitudes, temporal coordination, and spatiotemporal consistency of concomitant mandibular and head-neck movements during single maximal jaw opening-closing tasks were analysed in 25 individuals suffering from whiplash-associated disorders (WAD) using optoelectronic movement recording technique. In addition, the relative durations for which the head position was equal to, leading ahead of, or lagging behind the mandibular position during the entire jaw opening-closing cycle were determined. Compared with healthy individuals, the WAD group showed smaller amplitudes, and changed temporal coordination between mandibular and head-neck movements. No divergence from healthy individuals was found for the spatiotemporal consistency or for the analysis during the entire jaw opening-closing cycle. These findings in the WAD group of a 'faulty', but yet consistent, jaw-neck behavior may reflect a basic importance of linked control of the jaw and neck sensory-motor systems. In conclusion, the present results suggest that neck injury is associated with deranged control of mandibular and head-neck movements during jaw opening-closing tasks, and therefore might compromise natural jaw function.

  2. Radiologic Career Ladder, AFSC 903X0.

    DTIC Science & Technology

    1985-07-01

    SACROILIAC (S-I) JOINTS 87 36 TABLE 10 TOP TASKS FOR 90350 PERSONNEL (PERCENT MEMBERS PERFORMING) PERCENT MEMBERS TASKS PERFORMING M445 LOAD OR UNLOAD...RADIOGRAPHIC EXAMINATIONS OF THE SACROILIAC (S-I) JOINTS 81 G204 PERFORM RADIOGRAPHIC EXAMINATIONS OF THE SACRUM 81 37 en %00 -T in Q C h0 n P. - wlw -% %0... SACROILIAC (S-I) JOINTS 97 0227 SHIELD PATIENTS DURING RADIOGRAPHIC EXAMINATIONS 96 0175 PERFORM RADIOGRAPHIC EXAMINATIONS OF THE ACROKIO CLAVICULAR (A-C

  3. Transfer of Decision Making and Farm Tasks from Father to Son in Father-and-Son Farming Arrangements. RS-51, August 1976.

    ERIC Educational Resources Information Center

    Coughenour, C. Milton; And Others

    The study examined the division of decision-making and farm tasks in a joint father and son enterprise, the extent to which the decisions tended to be shared equally, and the extent to which the principal operator had responsibility for those tasks not shared. Data were collected in 1974 from fathers and sons who were joint operators of 145 farms…

  4. Prevention of the Posttraumatic Fibrotic Response in Joints

    DTIC Science & Technology

    2015-10-01

    are currently used on a regular basis. Major Task 4: Evaluating the efficacy of inhibitory chIgG to reduce the consequences of traumatic joint...injury. During the second year of study, we successfully employed all assays needed to evaluate the utility of the inhibitory antibody to reduce the...32nd week 1. Major Task 5: Task 4. Data analysis and statistical evaluation of results. All data from the mechanical measurements, from the

  5. Prevention of the Posttraumatic Fibrotic Response in Joints

    DTIC Science & Technology

    2015-10-01

    surgical procedures and subsequent collection of tissues have been developed and are currently used on a regular basis. Major Task 4: Evaluating the...needed to evaluate the utility of the inhibitory antibody to reduce the flexion contracture of injured knee joints. The employed techniques include...second surgery to remove a pin, and it did not change by the end of the 32nd week 1. Major Task 5: Task 4. Data analysis and statistical evaluation

  6. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.

    PubMed

    Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen

    2016-01-01

    This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.

  7. Does the Dual-Mobility Hip Prosthesis Produce Better Joint Kinematics During Extreme Hip Flexion Task?

    PubMed

    Catelli, Danilo S; Kowalski, Erik; Beaulé, Paul E; Lamontagne, Mario

    2017-10-01

    Total hip arthroplasty (THA) using dual-mobility (DM) design permits larger hip range of motion. However, it is unclear how it benefits the patients during activities of daily living. The purpose was to compare kinematic variables of the operated limb between THA patients using either DM or single-bearing (SB) implants during a squat task. Twenty-four THA patients were randomly assigned to either a DM or SB implant and matched to 12 healthy controls (CTRLs). They underwent 3-dimensional squat motion analysis before and 9 months after surgery. Sagittal and frontal plane angles of the pelvis and the hip were analyzed using statistical parametric mapping. Paired analyses compared presurgery and postsurgery squat depth. Peak sagittal pelvis angle of DM was closer to normal compared with that of SB. Both implant groups had similar hip angle patterns and magnitude but significantly lower than the CTRLs. SB reached a much large hip abduction compared with the other groups. Both surgical groups had significantly worst squat depth than the CTRLs. Neither THA implant groups were able to return pelvis and hip kinematics to the level of CTRLs. The deficit of DM implants at the pelvis combined with the poorer functional scores should caution clinicians to use this implant design in active patients. SB design causes a larger hip abduction to reach their maximum squat depth. Post-THA rehabilitation should focus on improving joint range of motion and strength. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Postural reconfiguration and cycle-to-cycle variability in patients with work-related musculoskeletal disorders compared to healthy controls and in relation to pain emerging during a repetitive movement task.

    PubMed

    Longo, Alessia; Meulenbroek, Ruud; Haid, Thomas; Federolf, Peter

    2018-05-01

    Movement variability in sustained repetitive tasks is an important factor in the context of work-related musculoskeletal disorders. While a popular hypothesis suggests that movement variability can prevent overuse injuries, pain evolving during task execution may also cause variability. The aim of the current study was to investigate, first, differences in movement behavior between volunteers with and without work-related pain and, second, the influence of emerging pain on movement variability. Upper-body 3D kinematics were collected as 22 subjects with musculoskeletal disorders and 19 healthy volunteers performed a bimanual repetitive tapping task with a self-chosen and a given rhythm. Three subgroups were formed within the patient group according to the level of pain the participants experienced during the task. Principal component analysis was applied to 30 joint angle coordinates to characterize in a combined analysis the movement variability associated with reconfigurations of the volunteers' postures and the cycle-to-cycle variability that occurred during the execution of the task. Patients with no task-related pain showed lower cycle-to-cycle variability compared to healthy controls. Findings also indicated an increase in movement variability as pain emerged, manifesting both as frequent postural changes and large cycle-to-cycle variability. The findings suggested a relationship between work-related musculoskeletal disorders and movement variability but further investigation is needed on this issue. Additionally, the findings provided clear evidence that pain increased motor variability. Postural reconfigurations and cycle-to-cycle variability should be considered jointly when investigating movement variability and musculoskeletal disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Getting to Best: Reforming the Defense Acquisition Enterprise. A Business Imperative for Change from the Task Force on Defense Acquisition Law and Oversight

    DTIC Science & Technology

    2009-07-01

    Colorado and Distinguished Fellow at the New America Foundation. He was recently named chair- man of the Council for a Livable World and is chairman of the...Joint Forces Com- mand. He is Chairman of the Durango Group, the MITRE Air Force Advisory Board, and the National Academies Air Force Studies Board

  10. Identifying Enemies Among Us: Evolving Terrorist Threats and the Continuing Challenges of Domestic Intelligence Collection and Information Sharing

    DTIC Science & Technology

    2014-01-01

    the Los Angeles Police Department ( LAPD ) and the FBI recently negotiated an agreement increasing...Coordination Group JTTF Joint Terrorism Task Force LAPD Los Angeles Police Department NCTC National Counterterrorism Center NSA National Security Agency WMD...Agency (CIA), the Department of Defense (DoD), state and local law enforcement agencies, first-responder organizations, and state- level

  11. Factors influencing analysis of complex cognitive tasks: a framework and example from industrial process control.

    PubMed

    Prietula, M J; Feltovich, P J; Marchak, F

    2000-01-01

    We propose that considering four categories of task factors can facilitate knowledge elicitation efforts in the analysis of complex cognitive tasks: materials, strategies, knowledge characteristics, and goals. A study was conducted to examine the effects of altering aspects of two of these task categories on problem-solving behavior across skill levels: materials and goals. Two versions of an applied engineering problem were presented to expert, intermediate, and novice participants. Participants were to minimize the cost of running a steam generation facility by adjusting steam generation levels and flows. One version was cast in the form of a dynamic, computer-based simulation that provided immediate feedback on flows, costs, and constraint violations, thus incorporating key variable dynamics of the problem context. The other version was cast as a static computer-based model, with no dynamic components, cost feedback, or constraint checking. Experts performed better than the other groups across material conditions, and, when required, the presentation of the goal assisted the experts more than the other groups. The static group generated richer protocols than the dynamic group, but the dynamic group solved the problem in significantly less time. Little effect of feedback was found for intermediates, and none for novices. We conclude that demonstrating differences in performance in this task requires different materials than explicating underlying knowledge that leads to performance. We also conclude that substantial knowledge is required to exploit the information yielded by the dynamic form of the task or the explicit solution goal. This simple model can help to identify the contextual factors that influence elicitation and specification of knowledge, which is essential in the engineering of joint cognitive systems.

  12. Investigation of possible causes for human-performance degradation during microgravity flight

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.; Tuttle, Megan L.

    1992-01-01

    The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior.

  13. Postural control strategies during single limb stance following acute lateral ankle sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-06-01

    Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.

    PubMed

    Proietti, Tommaso; Guigon, Emmanuel; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2017-06-12

    The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination). Adaptation was evidenced by a partial decrease of the movement deviations due to the fields, during the repetitions, but it occurred only on 21% of the motions. Nonetheless post-effects were observed in 86% of cases during the wash-out and follow up periods (right after the removal of the perturbation by the fields and after 30 minutes of being detached from the exoskeleton). Important inter-individual differences were observed but with small variability within subjects. In particular, a group of subjects showed an over-shoot with respect to the original unexposed trajectories (in 30% of cases), but the most frequent consequence (in 55% of cases) was the partial persistence of the modified upper-limb coordination, adopted at the time of the perturbation. Temporal and spatial generalizations were also evidenced by the deviation of the movement trajectories, both at the end-effector and at the intermediate joints and the modification of the final pointing postures towards targets which were never exposed to any field. Such results are the first quantified characterization of the effects of modification of the upper-limb coordination in healthy subjects, by imposing modification through viscous force fields distributed at the joint level, and could pave the way towards opportunities to rehabilitate pathological arm synergies with robots.

  15. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  16. When a Social Experimenter Overwrites Effects of Salient Objects in an Individual Go/No-Go Simon Task - An ERP Study.

    PubMed

    Michel, René; Bölte, Jens; Liepelt, Roman

    2018-01-01

    When two persons share a Simon task, a joint Simon effect occurs. The task co-representation account assumes that the joint Simon effect is the product of a vicarious representation of the co-actor's task. In contrast, recent studies show that even (non-human) event-producing objects could elicit a Simon effect in an individual go/no-go Simon task arguing in favor of the referential coding account. For the human-induced Simon effect, a modulation of the P300 component in Electroencephalography (EEG) is typically considered as a neural indicator of the joint Simon effect and task co-representation. Showing that the object-induced Simon effects also modulates the P300 would lead to a re-evaluation of the interpretation of the P300 in individual go/no-go and joint Simon task contexts. To do so, the present study conceptually replicated Experiment 1 from Dolk et al. (2013a) adding EEG recordings and an experimenter controlling the EEG computer to test whether a modulation of the P300 can also be elicited by adding a Japanese waving cat to the task context. Subjects performed an individual go/no-go Simon task with or without a cat placed next to them. Results show an overall Simon effect regardless of the cat's presence and no modulatory influence of the cat on the P300 (Experiment 1), even when conceivably interfering context factors are diminished (Experiment 2). These findings may suggest that the presence of a spatially aligned experimenter in the laboratory may produce an overall Simon effect overwriting a possible modulation of the Japanese waving cat.

  17. The cognitive processes underlying event-based prospective memory in school-age children and young adults: a formal model-based study.

    PubMed

    Smith, Rebekah E; Bayen, Ute J; Martin, Claudia

    2010-01-01

    Fifty children 7 years of age (29 girls, 21 boys), 53 children 10 years of age (29 girls, 24 boys), and 36 young adults (19 women, 17 men) performed a computerized event-based prospective memory task. All 3 groups differed significantly in prospective memory performance, with adults showing the best performance and with 7-year-olds showing the poorest performance. We used a formal multinomial process tree model of event-based prospective memory to decompose age differences in cognitive processes that jointly contribute to prospective memory performance. The formal modeling results demonstrate that adults differed significantly from the 7-year-olds and the 10-year-olds on both the prospective component and the retrospective component of the task. The 7-year-olds and the 10-year-olds differed only in the ability to recognize prospective memory target events. The prospective memory task imposed a cost to ongoing activities in all 3 age groups. Copyright 2009 APA, all rights reserved.

  18. Use of the internet to study the utility values of the public.

    PubMed Central

    Lenert, Leslie A.; Sturley, Ann E.

    2002-01-01

    One of the most difficult tasks in cost-effectiveness analysis is the measurement of quality weights (utilities) for health states. The task is difficult because subjects often lack familiarity with health states they are asked to rate and because utilities measures such as the standard gamble, ask subjects to perform tasks that are complex and far from everyday experience. A large body of research suggests that computer methods can play an important role in explaining health states and measuring utilities. However, administering computer surveys to a "general public" sample, the most relevant sample for cost-effectiveness analysis, is logistically difficult. In this paper, we describe a software system designed to allow the study of general population preferences in a volunteer Internet survey panel. The approach, which relied on over sampling of ethnic groups and older members of the panel, produced a data set with an ethnically, chronologically and geographically diverse group of respondents, but was not successful in replicating the joint distribution of demographic patterns in the population. PMID:12463862

  19. INFLUENCE OF AGE ON NEUROMUSCULAR CONTROL DURING A DYNAMIC WEIGHT BEARING TASK

    PubMed Central

    Madhavan, Sangeetha; Burkart, Sarah; Baggett, Gail; Nelson, Katie; Teckenburg, Trina; Zwanziger, Mike; Shields, Richard K.

    2009-01-01

    Neuromuscular control strategies may change with age and predispose elderly to knee joint injury. The purposes of this study were to determine if long latency responses (LLR), muscle activation patterns, and movement accuracy differs between the young and elderly during a novel single limb squat (SLS) task. Ten young and ten elderly subjects performed a series of resistive SLS (~0–30 degrees) while matching a computer-generated sinusoidal target. The SLS device provided a 16% body weight resistance to knee movement. Both young and elderly showed significant overshoot error when the knee was perturbed (p < 0.05). Accuracy of the tracking task was similar between the young and elderly (p=0.34), but the elderly required more muscle activity compared to the younger subjects (p < 0.05). The elderly group had larger long latency responses (LLRs) than the younger group (p < 0.05). These results support that neuromuscular control of the knee changes with age, and may contribute to injury. PMID:19799103

  20. Entropy of space-time outcome in a movement speed-accuracy task.

    PubMed

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Organizational and Structural Reform: Transforming the United States Government for 21st Century Contingencies

    DTIC Science & Technology

    2009-04-03

    the concept calls for interagency task forces ( IATF ) co-led by a Special Representative of the President and the Commander of a military Joint Task...functional lines, civilian and military members comprise the IATF staff. Furthermore, when possible, the concept establishes the IATF early outside the...prepare and plan for the complex contingency. When deployed, the IATF relies on the military joint task force for most of its support including

  2. Change of a motor synergy for dampening hand vibration depending on a task difficulty.

    PubMed

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2014-10-01

    The present study investigated the relationship between the number of usable degrees of freedom (DOFs) and joint coordination during a human-dampening hand vibration task. Participants stood on a platform generating an anterior-posterior directional oscillation and held a water-filled cup. Their usable DOFs were changed under the following conditions of limb constraint: (1) no constraint; (2) ankle constrained; and (3) ankle-knee constrained. Kinematic whole-body data were recorded using a three-dimensional position measurement system. The jerk of each body part was evaluated as an index of oscillation intensity. To quantify joint coordination, an uncontrolled manifold (UCM) analysis was applied and the variance of joints related to hand jerk divided into two components: a UCM component that did not affect hand jerk and an orthogonal (ORT) component that directly affected hand jerk. The results showed that hand jerk when the task used a cup filled with water was significantly smaller than when a cup containing stones was used, regardless of limb constraint condition. Thus, participants dampened their hand vibration utilizing usable joint DOFs. According to UCM analysis, increasing the oscillation velocity and the decrease in usable DOFs by the limb constraints led to an increase of total variance of the joints and the UCM component, indicating that a synergy-dampening hand vibration was enhanced. These results show that the variance of usable joint DOFs is more fitted to the UCM subspace when the joints are varied by increasing the velocity and limb constraints and suggest that humans adopt enhanced synergies to achieve more difficult tasks.

  3. Joint attention in parent-child dyads involving children with selective mutism: a comparison between anxious and typically developing children.

    PubMed

    Nowakowski, Matilda E; Tasker, Susan L; Cunningham, Charles E; McHolm, Angela E; Edison, Shannon; Pierre, Jeff St; Boyle, Michael H; Schmidt, Louis A

    2011-02-01

    Although joint attention processes are known to play an important role in adaptive social behavior in typical development, we know little about these processes in clinical child populations. We compared early school age children with selective mutism (SM; n = 19) versus mixed anxiety (MA; n = 18) and community controls (CC; n = 26) on joint attention measures coded from direct observations with their parent during an unstructured free play task and two structured tasks. As predicted, the SM dyads established significantly fewer episodes of joint attention through parental initiation acts than the MA and CC dyads during the structured tasks. Findings suggest that children with SM may withdraw from their parents during stressful situations, thus missing out on opportunities for learning other coping skills. We discuss the implications of the present findings for understanding the maintenance and treatment of SM.

  4. Extended Task Space Control for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Long, Mark K. (Inventor)

    1996-01-01

    The invention is a method of operating a robot in successive sampling intervals to perform a task, the robot having joints and joint actuators with actuator control loops, by decomposing the task into behavior forces, accelerations, velocities and positions of plural behaviors to be exhibited by the robot simultaneously, computing actuator accelerations of the joint actuators for the current sampling interval from both behavior forces, accelerations velocities and positions of the current sampling interval and actuator velocities and positions of the previous sampling interval, computing actuator velocities and positions of the joint actuators for the current sampling interval from the actuator velocities and positions of the previous sampling interval, and, finally, controlling the actuators in accordance with the actuator accelerations, velocities and positions of the current sampling interval. The actuator accelerations, velocities and positions of the current sampling interval are stored for use during the next sampling interval.

  5. The effects of bending speed on the lumbo-pelvic kinematics and movement pattern during forward bending in people with and without low back pain.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Li, Linda M K; Wong, Dim C M; Yip, Millie M P; Lee, Raymond Y W

    2017-04-17

    Impaired lumbo-pelvic movement in people with low back pain during bending task has been reported previously. However, the regional mobility and the pattern of the lumbo-pelvic movement were found to vary across studies. The inconsistency of the findings may partly be related to variations in the speed at which the task was executed. This study examined the effects of bending speeds on the kinematics and the coordination lumbo-pelvic movement during forward bending, and to compare the performance of individuals with and without low back pain. The angular displacement, velocity and acceleration of the lumbo-pelvic movement during the repeated forward bending executed at five selected speeds were acquired using the three dimensional motion tracking system in seventeen males with low back pain and eighteen males who were asymptomatic. The regional kinematics and the degree of coordination of the lumbo-pelvic movement during bending was compared and analysed between two groups. Significantly compromised performance in velocity and acceleration of the lumbar spine and hip joint during bending task at various speed levels was shown in back pain group (p < 0.01). Both groups displayed a high degree of coordination of the lumbo-pelvic displacement during forward bending executed across the five levels of speed examined. Significant between-group difference was revealed in the coordination of the lumbo-pelvic velocity and acceleration (p < 0.01). Asymptomatic group moved with a progressively higher degree of lumbo-pelvic coordination for velocity and acceleration while the back pain group adopted a uniform lumbo-pelvic pattern across all the speed levels examined. The present findings show that bending speed imposes different levels of demand on the kinematics and pattern of the lumbo-pelvic movement. The ability to regulate the lumbo-pelvic movement pattern during the bending task that executed at various speed levels was shown only in pain-free individuals but not in those with low back pain. Individuals with low back pain moved with a stereotyped strategy at their lumbar spine and hip joints. This specific aberrant lumbo-pelvic movement pattern may have a crucial role in the maintenance of the chronicity in back pain.

  6. Verbal Synchrony and Action Dynamics in Large Groups

    PubMed Central

    von Zimmermann, Jorina; Richardson, Daniel C.

    2016-01-01

    While synchronized movement has been shown to increase liking and feelings of togetherness between people, we investigated whether collective speaking in time would change the way that larger groups played a video game together. Anthropologists have speculated that the function of interpersonal coordination in dance, chants, and singing is not just to produce warm, affiliative feelings, but also to improve group action. The group that chants and dances together hunts well together. Direct evidence for this is sparse, as research so far has mainly studied pairs, the effects of coordinated physical movement, and measured cooperation and affiliative decisions. In our experiment, large groups of people were given response handsets to play a computer game together, in which only joint coordinative efforts lead to success. Before playing, the synchrony of their verbal behavior was manipulated. After the game, we measured group members’ affiliation toward their group, their performance on a memory task, and the way in which they played the group action task. We found that verbal synchrony in large groups produced affiliation, enhanced memory performance, and increased group members’ coordinative efforts. Our evidence suggests that the effects of synchrony are stable across modalities, can be generalized to larger groups and have consequences for action coordination. PMID:28082944

  7. Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models

    PubMed Central

    Najnin, Shamima; Banerjee, Bonny

    2018-01-01

    Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The “novel words to novel objects” language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task. PMID:29441027

  8. NDT standards from the perspective of the Department of Defense

    NASA Astrophysics Data System (ADS)

    Strauss, Bernard

    1992-09-01

    The interaction of the DoD non-Government Society (NGS) bodies in the area of nondestructive testing (NDT) are illustrated. The adoption process for NGS is outlined including the criteria for adoption, what adoption means, and the advantages of DoD/NGS interaction. The tasks of the DoD's Standardization Program Plan for NDT are described along with DoD's efforts on a Joint Army, Navy, Air Force (JANNAF) NDE Subcommittee and on an international standardization group (America, Britain, Canada, and Australia) called the Quadripartite Working Group on Proofing, Inspection, and Quality Assurance.

  9. Electromyographic and Joint Kinematic Patterns in Runner's Dystonia.

    PubMed

    Ahmad, Omar F; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin; Alter, Katharine

    2018-04-20

    Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described.

  10. Electromyographic and Joint Kinematic Patterns in Runner’s Dystonia

    PubMed Central

    Ahmad, Omar F.; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin

    2018-01-01

    Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described. PMID:29677101

  11. A neural joint model for entity and relation extraction from biomedical text.

    PubMed

    Li, Fei; Zhang, Meishan; Fu, Guohong; Ji, Donghong

    2017-03-31

    Extracting biomedical entities and their relations from text has important applications on biomedical research. Previous work primarily utilized feature-based pipeline models to process this task. Many efforts need to be made on feature engineering when feature-based models are employed. Moreover, pipeline models may suffer error propagation and are not able to utilize the interactions between subtasks. Therefore, we propose a neural joint model to extract biomedical entities as well as their relations simultaneously, and it can alleviate the problems above. Our model was evaluated on two tasks, i.e., the task of extracting adverse drug events between drug and disease entities, and the task of extracting resident relations between bacteria and location entities. Compared with the state-of-the-art systems in these tasks, our model improved the F1 scores of the first task by 5.1% in entity recognition and 8.0% in relation extraction, and that of the second task by 9.2% in relation extraction. The proposed model achieves competitive performances with less work on feature engineering. We demonstrate that the model based on neural networks is effective for biomedical entity and relation extraction. In addition, parameter sharing is an alternative method for neural models to jointly process this task. Our work can facilitate the research on biomedical text mining.

  12. Differences of muscle co-contraction of the ankle joint between young and elderly adults during dynamic postural control at different speeds.

    PubMed

    Iwamoto, Yoshitaka; Takahashi, Makoto; Shinkoda, Koichi

    2017-08-02

    Agonist and antagonist muscle co-contractions during motor tasks are greater in the elderly than in young adults. During normal walking, muscle co-contraction increases with gait speed in young adults, but not in elderly adults. However, no study has compared the effects of speed on muscle co-contraction of the ankle joint during dynamic postural control in young and elderly adults. We compared muscle co-contractions of the ankle joint between young and elderly subjects during a functional stability boundary test at different speeds. Fifteen young adults and 16 community-dwelling elderly adults participated in this study. The task was functional stability boundary tests at different speeds (preferred and fast). Electromyographic evaluations of the tibialis anterior and soleus were recorded. The muscle co-contraction was evaluated using the co-contraction index (CI). There were no statistically significant differences in the postural sway parameters between the two age groups. Elderly subjects showed larger CI in both speed conditions than did the young subjects. CI was higher in the fast speed condition than in the preferred speed condition in the young subjects, but there was no difference in the elderly subjects. Moreover, after dividing the analytical range into phases (acceleration and deceleration phases), the CI was larger in the deceleration phase than in the acceleration phase in both groups, except for the young subjects in the fast speed conditions. Our results showed a greater muscle co-contraction of the ankle joint during dynamic postural control in elderly subjects than in young subjects not only in the preferred speed condition but also in the fast speed condition. In addition, the young subjects showed increased muscle co-contraction in the fast speed condition compared with that in the preferred speed condition; however, the elderly subjects showed no significant difference in muscle co-contraction between the two speed conditions. This indicates that fast movements cause different influences on dynamic postural control in elderly people, particularly from the point of view of muscle activation. These findings highlight the differences in the speed effects on muscle co-contraction of the ankle joint during dynamic postural control between the two age groups.

  13. Training Analyses Supporting the Land Warrior and Ground Soldier Systems

    DTIC Science & Technology

    2009-07-01

    unit with LW and MW expressed in terms of unit force effectiveness, impacts to the DOTMLPF domains, life cycle cost, and ability to mitigate Joint...other individual tasks, Soldier and/or leader, be added to NET; should any be eliminated? What methods of instruction/resources should remain the...presentation of the training observation results from the nine-day NET. Terminal Learning Objectives The NET POI ( Omega Training Group, 2006

  14. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    PubMed

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Air-sea interaction and remote sensing

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1992-01-01

    The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the air-sea exchange processes and the sea state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared sea surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface fluxes (of momentum, sensible heat, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized.

  16. Design of a Virtual Player for Joint Improvisation with Humans in the Mirror Game

    PubMed Central

    Zhai, Chao; Alderisio, Francesco; Tsaneva-Atanasova, Krasimira; di Bernardo, Mario

    2016-01-01

    Joint improvisation is often observed among humans performing joint action tasks. Exploring the underlying cognitive and neural mechanisms behind the emergence of joint improvisation is an open research challenge. This paper investigates jointly improvised movements between two participants in the mirror game, a paradigmatic joint task example. First, experiments involving movement coordination of different dyads of human players are performed in order to build a human benchmark. No designation of leader and follower is given beforehand. We find that joint improvisation is characterized by the lack of a leader and high levels of movement synchronization. Then, a theoretical model is proposed to capture some features of their interaction, and a set of experiments is carried out to test and validate the model ability to reproduce the experimental observations. Furthermore, the model is used to drive a computer avatar able to successfully improvise joint motion with a human participant in real time. Finally, a convergence analysis of the proposed model is carried out to confirm its ability to reproduce joint movements between the participants. PMID:27123927

  17. Design of a Virtual Player for Joint Improvisation with Humans in the Mirror Game.

    PubMed

    Zhai, Chao; Alderisio, Francesco; Słowiński, Piotr; Tsaneva-Atanasova, Krasimira; di Bernardo, Mario

    2016-01-01

    Joint improvisation is often observed among humans performing joint action tasks. Exploring the underlying cognitive and neural mechanisms behind the emergence of joint improvisation is an open research challenge. This paper investigates jointly improvised movements between two participants in the mirror game, a paradigmatic joint task example. First, experiments involving movement coordination of different dyads of human players are performed in order to build a human benchmark. No designation of leader and follower is given beforehand. We find that joint improvisation is characterized by the lack of a leader and high levels of movement synchronization. Then, a theoretical model is proposed to capture some features of their interaction, and a set of experiments is carried out to test and validate the model ability to reproduce the experimental observations. Furthermore, the model is used to drive a computer avatar able to successfully improvise joint motion with a human participant in real time. Finally, a convergence analysis of the proposed model is carried out to confirm its ability to reproduce joint movements between the participants.

  18. Changes in co-contraction during stair descent after manual therapy protocol in knee osteoarthritis: A pilot, single-blind, randomized study.

    PubMed

    Cruz-Montecinos, Carlos; Flores-Cartes, Rodrigo; Montt-Rodriguez, Agustín; Pozo, Esteban; Besoaín-Saldaña, Alvaro; Horment-Lara, Giselle

    2016-10-01

    Manual therapy has shown clinical results in patients with knee osteoarthritis. However, the biomechanical aspects during functional tasks have not been explored in depth. Through surface electromyography, the medial and lateral co-contractions of the knee were measured while descending stairs, prior and posterior to applying a manual therapy protocol in the knee, with emphasis on techniques of joint mobilization and soft-tissue management. Sixteen females with slight or moderate knee osteoarthritis were recruited (eight experimental, eight control). It was observed that the lateral co-contraction index of the experimental group, posterior to intervention, increased by 11.7% (p = 0.014). The application of a manual therapy protocol with emphasis on techniques of joint mobilization and soft-tissue management modified lateral co-contraction, which would have a protective effect on the joint. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Task representation in individual and joint settings

    PubMed Central

    Prinz, Wolfgang

    2015-01-01

    This paper outlines a framework for task representation and discusses applications to interference tasks in individual and joint settings. The framework is derived from the Theory of Event Coding (TEC). This theory regards task sets as transient assemblies of event codes in which stimulus and response codes interact and shape each other in particular ways. On the one hand, stimulus and response codes compete with each other within their respective subsets (horizontal interactions). On the other hand, stimulus and response code cooperate with each other (vertical interactions). Code interactions instantiating competition and cooperation apply to two time scales: on-line performance (i.e., doing the task) and off-line implementation (i.e., setting the task). Interference arises when stimulus and response codes overlap in features that are irrelevant for stimulus identification, but relevant for response selection. To resolve this dilemma, the feature profiles of event codes may become restructured in various ways. The framework is applied to three kinds of interference paradigms. Special emphasis is given to joint settings where tasks are shared between two participants. Major conclusions derived from these applications include: (1) Response competition is the chief driver of interference. Likewise, different modes of response competition give rise to different patterns of interference; (2) The type of features in which stimulus and response codes overlap is also a crucial factor. Different types of such features give likewise rise to different patterns of interference; and (3) Task sets for joint settings conflate intraindividual conflicts between responses (what), with interindividual conflicts between responding agents (whom). Features of response codes may, therefore, not only address responses, but also responding agents (both physically and socially). PMID:26029085

  20. Joint attention and oromotor abilities in young children with and without autism spectrum disorder.

    PubMed

    Dalton, Jennifer C; Crais, Elizabeth R; Velleman, Shelley L

    2017-09-01

    This study examined the relationship between joint attention ability and oromotor imitation skill in three groups of young children with and without Autism Spectrum Disorder using both nonverbal oral and verbal motor imitation tasks. Research questions addressed a) differences among joint attention and oromotor imitation abilities; b) the relationship between independently measured joint attention and oromotor imitation, both nonverbal oral and verbal motor; c) the relationships between joint attention and verbal motor imitation during interpersonal interaction; and d) the relationship between the sensory input demands (auditory, visual, and tactile) and oromotor imitation, both nonverbal oral and verbal motor. A descriptive, nonexperimental design was used to compare joint attention and oromotor skills of 10 preschool-aged children with ASD, with those of two control groups: 6 typically developing children (TD), and 6 children with suspected Childhood Apraxia of Speech (sCAS) or apraxic-like symptoms. All children had at least a 3.0 mean length utterance. Children with ASD had poorer joint attention skills overall than children with sCAS or typically developing children. Typically developing children demonstrated higher verbal motor imitation skills overall compared to children with sCAS. Correlational analyses revealed that nonverbal oral imitation and verbal motor imitation were positively related to joint attention abilities only in the children with ASD. Strong positive relationships between joint attention in a naturalistic context (e.g., shared story experience) and oromotor imitation skills, both nonverbal oral and verbal motor, were found only for children with ASD. These data suggest there is a strong positive relationship between joint attention skills and the ability to sequence nonverbal oral and verbal motor movements in children with ASD. The combined sensory input approach involving auditory, visual, and tactile modalities contributed to significantly higher nonverbal oral and verbal motor imitation performance for all groups of children. Verbal children with ASD in this study had difficulties with both the social and cognitive demands of oromotor imitation within a natural environment that demanded cross-modal processing of incoming stimuli within an interpersonal interaction. Further, joint attention and oral praxis may serve as components of an important coupling mechanism in the development of spoken communication and later developing socialcognitive skills. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The effect of additional joint mobilization on neuromuscular performance in individuals with functional ankle instability.

    PubMed

    Shih, Yi-Fen; Yu, Hsiang-Ting; Chen, Wen-Yin; Liao, Kwong-Kum; Lin, Hsiu-Chen; Yang, Yea-Ru

    2018-03-01

    To examine the effects of joint mobilization and exercise training on neuromuscular performance in individuals with functional ankle instability (FAI). A cross-sectional study. Forty five subjects with FAI were randomized into three groups: control (CG, n = 15, 27.9 ± 6.6yr), training (TG, n = 15, 26.9 ± 5.8yr) and mobilization with training group (MTG, n = 15, 26.5 ± 4.8yr). Four weeks of neuromuscular training for TG; neuromuscular training and joint mobilization for MTG. Electromyography of the peroneus longus (PL), tibialis anterior (TA), and soleus (SOL) and the reaching distance of the Y balance test (YBT), dorsiflexion range of motion (DFROM), Cumberland ankle instability tool (CAIT), and global rating scale (GRS). Two-way repeated measures MANOVA were used with the significance level p < .05. MANOVA found significant group by time interactions on posterolateral reaching distance (p = .032), PL activation (p = .006-.03), DFROM (p < .001), CAIT (p < .001) and GRS (p < .001). The post hoc tests indicated significantly improved PL muscle activity and posterolateral reaching distance for MTG compared to TG (p = .004) and CG (p = .006). Joint mobilization resulted in additional benefits on self-reported ankle instability severity, dorsiflexion mobility, and posterolateral balance performance in individuals with FAI, but its effects on general improvement, muscle activation, and other balance tasks remained uncertain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Upper limb performance and the structuring of joint movement in teenagers with cerebral palsy: the reciprocal role of task demands and action capabilities.

    PubMed

    Figueiredo, Priscilla Rezende Pereira; Silva, Paula Lanna; Avelar, Bruna Silva; da Fonseca, Sérgio Teixeira; Bootsma, Reinoud J; Mancini, Marisa Cotta

    2015-04-01

    Individuals with unilateral cerebral palsy (CP) demonstrate reduced performance in upper limb tasks compared to typically developing (TD) peers. We examined whether task conditions modify differences between teenagers with and without CP during a reciprocal aiming task. Twenty teenagers (nine CP and 11 TD) moved a pointer between two targets as fast as possible without missing a target. Task conditions were manipulated by changing the targets' size, by modifying the inertial properties of the pointer and by varying the upper limb used to perform the task (preferred/non-affected and non-preferred/affected upper limbs). While compared to TD peers, CP teenagers exhibited lower performance (longer movement times). Such differences were attenuated when the task was performed with the preferred upper limb and when accuracy requirements were less stringent. CP teenagers were not differentially affected by the pointer inertia manipulation. Task conditions not only affected performance but also joint kinematics. CP teenagers revealed less movement at the elbow and more movement at the shoulder when performing the task with their less skilled upper limb. However, both CP and TD teenagers demonstrated a larger contribution of trunk movement when facing more challenging task conditions. The overall pattern of results indicated that the joint kinematics employed by individuals with unilateral CP constituted adaptive responses to task requirements. Thus, the explanation of the effects of unilateral CP on upper limb behavior needs to go beyond a context-indifferent manifestation of the brain injury to include the interaction between task demands and action capabilities.

  3. Biomechanics of Pediatric Manual Wheelchair Mobility

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Tarima, Sergey; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  4. Biomechanics of Pediatric Manual Wheelchair Mobility.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  5. Where is your arm? Variations in proprioception across space and tasks.

    PubMed

    Fuentes, Christina T; Bastian, Amy J

    2010-01-01

    The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.

  6. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives

    PubMed Central

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G.; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R2 = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R2 = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and the number of needed sensors. PMID:23805099

  7. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

    PubMed

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and the number of needed sensors.

  8. Development and Applications of a Self-Contained, Non-Invasive EVA Joint Angle and Muscle Fatigue Sensor System

    NASA Technical Reports Server (NTRS)

    Ranniger, C. U.; Sorenson, E. A.; Akin, D. L.

    1995-01-01

    The University of Maryland Space Systems Laboratory, as a participant in NASA's INSTEP program, is developing a non-invasive, self-contained sensor system which can provide quantitative measurements of joint angles and muscle fatigue in the hand and forearm. The goal of this project is to develop a system with which hand/forearm motion and fatigue metrics can be determined in various terrestrial and zero-G work environments. A preliminary study of the prototype sensor systems and data reduction techniques for the fatigue measurement system are presented. The sensor systems evaluated include fiberoptics, used to measure joint angle, surface electrodes, which measure the electrical signals created in muscle as it contracts; microphones, which measure the noise made by contracting muscle; and accelerometers, which measure the lateral muscle acceleration during contraction. The prototype sensor systems were used to monitor joint motion of the metacarpophalangeal joint and muscle fatigue in flexor digitorum superficialis and flexor carpi ulnaris in subjects performing gripping tasks. Subjects were asked to sustain a 60-second constant-contraction (isometric) exercise and subsequently to perform a repetitive handgripping task to failure. Comparison of the electrical and mechanical signals of the muscles during the different tasks will be used to evaluate the applicability of muscle signal measurement techniques developed for isometric contraction tasks to fatigue prediction in quasi-dynamic exercises. Potential data reduction schemes are presented.

  9. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  10. Preserving the Illustrated Text. Report of the Joint Task Force on Text and Image.

    ERIC Educational Resources Information Center

    Commission on Preservation and Access, Washington, DC.

    The mission of the Joint Task Force on Text and Image was to inquire into the problems, needs, and methods for preserving images in text that are important for scholarship in a wide range of disciplines and to draw from that exploration a set of principles, guidelines, and recommendations for a comprehensive national strategy for image…

  11. An Operational Utility Assessment: Measuring the Effectiveness of the Joint Concept Technology Demonstration (JCTD), Joint Forces Protection Advance Security System (JFPASS)

    DTIC Science & Technology

    2008-12-01

    time- on-task in deploying a patrol force, for example. In its most basic form, an FOB consists of a ring of barbed wire around a position with a...Modernizing The Marine Corps’ CH- 53 Super Stallion Helicopter,” Thesis, NPS (December 2001). HIGH LEVEL OF IMPORTANCE LOW 62 TASKS

  12. An Extended Passive Motion Paradigm for Human-Like Posture and Movement Planning in Redundant Manipulators

    PubMed Central

    Tommasino, Paolo; Campolo, Domenico

    2017-01-01

    A major challenge in robotics and computational neuroscience is relative to the posture/movement problem in presence of kinematic redundancy. We recently addressed this issue using a principled approach which, in conjunction with nonlinear inverse optimization, allowed capturing postural strategies such as Donders' law. In this work, after presenting this general model specifying it as an extension of the Passive Motion Paradigm, we show how, once fitted to capture experimental postural strategies, the model is actually able to also predict movements. More specifically, the passive motion paradigm embeds two main intrinsic components: joint damping and joint stiffness. In previous work we showed that joint stiffness is responsible for static postures and, in this sense, its parameters are regressed to fit to experimental postural strategies. Here, we show how joint damping, in particular its anisotropy, directly affects task-space movements. Rather than using damping parameters to fit a posteriori task-space motions, we make the a priori hypothesis that damping is proportional to stiffness. This remarkably allows a postural-fitted model to also capture dynamic performance such as curvature and hysteresis of task-space trajectories during wrist pointing tasks, confirming and extending previous findings in literature. PMID:29249954

  13. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer's disease through 3D motion capture.

    PubMed

    Rucco, Rosaria; Agosti, Valeria; Jacini, Francesca; Sorrentino, Pierpaolo; Varriale, Pasquale; De Stefano, Manuela; Milan, Graziella; Montella, Patrizia; Sorrentino, Giuseppe

    2017-02-01

    Alzheimer's disease (AD) and behavioral variant of Frontotemporal Dementia (bvFTD) are characterized respectively by atrophy in the medial temporal lobe with memory loss and prefrontal and anterior temporal degeneration with dysexecutive syndrome. In this study, we hypothesized that specific gait patterns are induced by either frontal or temporal degeneration. To test this hypothesis, we studied the gait pattern in bvFTD (23) and AD (22) patients in single and dual task ("motor" and "cognitive") conditions. To detect subtle alterations, we performed motion analysis estimating both spatio-temporal parameters and joint excursions. In the single task condition, the bvFTD group was more unstable and slower compared to healthy subjects, while only two stability parameters were compromised in the AD group. During the motor dual task, both velocity and stability parameters worsened further in the bvFTD group. In the same experimental conditions, AD patients showed a significantly lower speed and stride length than healthy subjects. During the cognitive dual task, a further impairment of velocity and stability parameters was observed in the bvFTD group. Interestingly, during the cognitive dual task, the gait performance of the AD group markedly deteriorated, as documented by the impairment of more indices of velocity and stability. Finally, the kinematic data of thigh, knee, and ankle were more helpful in revealing gait impairment than the spatio-temporal parameters alone. In conclusion, our data showed that the dysexecutive syndrome induces specific gait alterations. Furthermore, our results suggest that the gait worsens in the AD patients when the cognitive resources are stressed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dynamic knee joint mechanics after anterior cruciate ligament reconstruction.

    PubMed

    Clarke, Sarah B; Kenny, Ian C; Harrison, Andrew J

    2015-01-01

    There is scarcity of information on the long-term adaptations in lower limb biomechanics during game-specific movements after anterior cruciate ligament (ACL) reconstruction. Particularly, variables such as knee abduction moments and transverse plane knee motion have not been studied during a game-specific landing and cutting task after ACL reconstruction. The purpose of this study was to compare the hip and knee mechanics between the ACL-reconstructed (ACLr) group and a healthy control group. Thirty-eight reconstructed athletes (18 ACLr, 18 control) participated in the study. Three-dimensional hip, knee, and ankle angles were calculated during a maximal drop jump land from a 0.30-m box and unanticipated cutting task at 45°. During the landing phase, ACLr participants had increased hip flexion (P < 0.003) and transverse plane knee range of motion (P = 0.027). During the cutting phase, the ACLr participant's previously injured limb had increased internal knee abduction moment compared with that of the control group (P = 0.032). No significant differences were reported between the previously injured and contralateral uninjured limb. Previously injured participants demonstrated higher knee abduction moment and transverse plane range of motion when compared with those of control participants during a game-specific landing and cutting task.

  15. Evaluation of knee joint forces during kneeling work with different kneepads.

    PubMed

    Xu, Hang; Jampala, Sree; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-01-01

    The main purpose of this study is to determine knee joint forces resulting from kneeling work with and without kneepads to quantify how different kneepads redistribute force. Eleven healthy males simulated a tile setting task to different locations during six kneepad states (five different kneepad types and without kneepad). Peak and average forces on the anatomical landmarks of both knees were obtained by custom force sensors. The results revealed that kneepad design can significantly modify the forces on the knee joint through redistribution. The Professional Gel design was preferred among the five tested kneepads which was confirmed with both force measurements and participants' responses. The extreme reaching locations induced significantly higher joint forces on left knee or right knee depending on task. The conclusion of this study is that a properly selected kneepad for specific tasks and a more neutral working posture can modify the force distribution on the knees and likely decrease the risk of knee disorders from kneeling work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  17. Skin sensory information from the dorsum of the foot and ankle is necessary for kinesthesia at the ankle joint.

    PubMed

    Lowrey, Catherine R; Strzalkowski, Nick D J; Bent, Leah R

    2010-11-12

    Previous research has shown that skin is capable of providing kinesthetic cues at particular joints but we are unsure how these cues are used by the central nervous system. The current study attempted to identify the role of skin on the dorsum of the ankle during a joint matching task. A 30cm patch of skin was anesthetized and matching accuracy in a passive joint matching task was compared before and after skin anesthetization. Goniometers were used to measure ankle angular displacement. Four target angles were used in the matching task, 7° of dorsiflexion, 7°, 14° and 21° of plantarflexion. We hypothesized that, based on the location of skin anesthetized, only the plantarflexion matching tasks would be affected. Absolute error (accuracy) increased significantly for all angles when the skin was anesthetized. Directional error indicated that overall subjects tended to undershoot the target angles, significantly more so for 21° of plantarflexion when the skin was anesthetized. Following anesthetization, variable error (measure of task difficulty) increased significantly at 7° of dorsiflexion and 21° of plantarflexion. These results indicate that the subjects were less accurate and more variable when skin sensation was reduced suggesting that skin information plays an important role in kinesthesia at the ankle. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    PubMed

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Exploring social influences on the joint Simon task: empathy and friendship

    PubMed Central

    Ford, Ruth M.; Aberdein, Bradley

    2015-01-01

    Tasks for which people must act together to achieve a goal are a feature of daily life. The present study explored social influences on joint action using a Simon procedure for which participants (n = 44) were confronted with a series of images of hands and asked to respond via button press whenever the index finger wore a ring of a certain color (red or green) regardless of pointing direction (left or right). In an initial joint condition they performed the task while sitting next to another person (friend or stranger) who responded to the other color. In a subsequent individual condition they repeated the task on their own; additionally, they completed self-report tests of empathy. Consistent with past research, participants reacted more quickly when the finger pointed toward them rather than their co-actor (the Simon Effect or SE). The effect remained robust when the co-actor was no longer present and was unaffected by degree of acquaintance; however, its magnitude was correlated positively with empathy only among friends. For friends, the SE was predicted by cognitive perspective taking when the co-actor was present and by propensity for fantasizing when the co-actor was absent. We discuss these findings in relation to social accounts (e.g., task co-representation) and non-social accounts (e.g., referential coding) of joint action. PMID:26217281

  20. Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification

    PubMed Central

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-01-01

    Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605

  1. Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement.

    PubMed

    Jones, Christopher L; Kamper, Derek G

    2018-01-01

    Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb ( p  < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing ( p  < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI ( p  < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm ( p  < 0.001). A greater effect was seen during the opening phase ( p  < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies.

  2. Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement

    PubMed Central

    Jones, Christopher L.; Kamper, Derek G.

    2018-01-01

    Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies. PMID:29545767

  3. A review of multivariate methods in brain imaging data fusion

    NASA Astrophysics Data System (ADS)

    Sui, Jing; Adali, Tülay; Li, Yi-Ou; Yang, Honghui; Calhoun, Vince D.

    2010-03-01

    On joint analysis of multi-task brain imaging data sets, a variety of multivariate methods have shown their strengths and been applied to achieve different purposes based on their respective assumptions. In this paper, we provide a comprehensive review on optimization assumptions of six data fusion models, including 1) four blind methods: joint independent component analysis (jICA), multimodal canonical correlation analysis (mCCA), CCA on blind source separation (sCCA) and partial least squares (PLS); 2) two semi-blind methods: parallel ICA and coefficient-constrained ICA (CC-ICA). We also propose a novel model for joint blind source separation (BSS) of two datasets using a combination of sCCA and jICA, i.e., 'CCA+ICA', which, compared with other joint BSS methods, can achieve higher decomposition accuracy as well as the correct automatic source link. Applications of the proposed model to real multitask fMRI data are compared to joint ICA and mCCA; CCA+ICA further shows its advantages in capturing both shared and distinct information, differentiating groups, and interpreting duration of illness in schizophrenia patients, hence promising applicability to a wide variety of medical imaging problems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua

    In 2014, the IEA PVPS Task 13 added the PVPMC as a formal activity to its technical work plan for 2014-2017. The goal of this activity is to expand the reach of the PVPMC to a broader international audience and help to reduce PV performance modeling uncertainties worldwide. One of the main deliverables of this activity is to host one or more PVPMC workshops outside the US to foster more international participation within this collaborative group. This report reviews the results of the first in a series of these joint IEA PVPS Task 13/PVPMC workshops. The 4th PV Performance Modelingmore » Collaborative Workshop was held in Cologne, Germany at the headquarters of TÜV Rheinland on October 22-23, 2015.« less

  5. Expanding the MEU(SOC) Joint Task Force Enabler Concept

    DTIC Science & Technology

    1998-05-28

    concept. 2 The influential twentieth-century linguistic philosopher Ludwig Wittgenstein argued that real understanding rests on the precise use...of language and universally agreed upon meanings. Without clarity and common understanding, Wittgenstein observed, we can never really communicate... Wittgenstein anticipated when we don’t share a common understanding of what a term means. The Joint Task Force Enabler is potentially a critical concept, both

  6. Coordination as a function of skill level in the gymnastics longswing.

    PubMed

    Williams, Genevieve K R; Irwin, Gareth; Kerwin, David G; Hamill, Joseph; Van Emmerik, Richard E A; Newell, Karl M

    2016-01-01

    The purpose of this study was to investigate the nature of inter-joint coordination at different levels of skilled performance to: (1) distinguish learners who were successful versus unsuccessful in terms of their task performance; (2) investigate the pathways of change during the learning of a new coordination pattern and (3) examine how the learner's coordination patterns relate to those of experts in the longswing gymnastics skill. Continuous relative phase of hip and shoulder joint motions was examined for longswings performed by two groups of novices, successful (n = 4) and unsuccessful (n = 4) over five practice sessions, and two expert gymnasts. Principal component analysis showed that during longswing positions where least continuous relative phase variability occurred for expert gymnasts, high variability distinguished the successful from the unsuccessful novice group. Continuous relative phase profiles of successful novices became more out-of-phase over practice and less similar to the closely in-phase coupling of the expert gymnasts. Collectively, the findings support the proposition that at the level in inter-joint coordination a technique emerges that facilitates successful performance but is not more like an expert's movement coordination. This finding questions the appropriateness of inferring development towards a "gold champion" movement coordination.

  7. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.

    PubMed

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L

    2013-09-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.

  8. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  9. Inverting the joint Simon effect by intention.

    PubMed

    Kiernan, Dovin; Ray, Matthew; Welsh, Timothy N

    2012-10-01

    The joint Simon effect (JSE) is a spatial-compatibility effect that emerges when two people complete complementary components of a Simon task. In typical JSE studies, two participants sit beside each other and perform go-no-go tasks in which they respond to one of two stimuli by pressing a button. According to the action co-representation account, JSEs emerge because each participant represents their partner's response in addition to their own, causing the same conflicts in processing that would occur if an individual responded to both stimuli (i.e., as in a two-choice task). Because the response buttons are typically in front of participants, however, an alternative explanation is that JSEs are the result of a dimensional overlap between target and response locations coded with respect to another salient object (e.g., the co-actor's effector). To contrast these hypotheses, the participants in the present study completed two-choice and joint Simon tasks in which they were asked to focus on generating an aftereffect in the space contralateral to their response. Hommel (Psychological Research 55:270-279, 1993) previously reported that, when participants completed a two-choice task under such effect-focused instructions, spatial-compatibility effects emerged that were based on the aftereffect location instead of the response location. Consistent with the co-representation account, the results of the present study were that an inverse aftereffect-based (i.e., not a response-location-based) compatibility effect was observed in both the two-choice and joint tasks. The overall pattern of results does not fit with the spatial-coding account and is discussed in the context of the extant JSE literature.

  10. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2017-02-11

    This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  11. The influence of muscle length on the fatigue-related reduction in joint range of motion of the human dorsiflexors.

    PubMed

    Cheng, Arthur J; Davidson, Andrew W; Rice, Charles L

    2010-06-01

    The fatigue-related reduction in joint range of motion (ROM) during dynamic contraction tasks may be related to muscle length-dependent alterations in torque and contractile kinetics, but this has not been systematically explored previously. Twelve young men performed a repetitive voluntary muscle shortening contraction task of the dorsiflexors at a contraction load of 30% of maximum voluntary isometric contraction (MVC) torque, until total 40 degrees ROM had decreased by 50% at task failure (POST) to 20 degrees ROM. At both a short (5 degrees dorsiflexion) and long muscle length (35 degrees plantar flexion joint angle relative to a 0 degrees neutral ankle joint position), voluntary activation, MVC torque, and evoked tibialis anterior contractile properties of a 52.8 Hz high-frequency isometric tetanus [peak evoked torque, maximum rate of torque development (MRTD), maximum rate of relaxation (MRR)] were evaluated at baseline (PRE), at POST, and up to 10 min of recovery. At POST, we measured similar fatigue-related reductions in torque (voluntary and evoked) and slowing of contractile kinetics (MRTD and MRR) at both the short and long muscle lengths. Thus, the fatigue-related reduction in ROM could not be explained by length-dependent fatigue. Although torque (voluntary and evoked) at both muscle lengths was depressed and remained blunted throughout the recovery period, this was not related to the rapid recovery of ROM at 0.5 min after task failure. The reduction in ROM, however, was strongly related to the reduction in joint angular velocity (R(2) = 0.80) during the fatiguing task, although additional factors cannot yet be overlooked.

  12. Allocation of Attentional Resources toward a Secondary Cognitive Task Leads to Compromised Ankle Proprioceptive Performance in Healthy Young Adults

    PubMed Central

    Yasuda, Kazuhiro; Iimura, Naoyuki; Iwata, Hiroyasu

    2014-01-01

    The objective of the present study was to determine whether increased attentional demands influence the assessment of ankle joint proprioceptive ability in young adults. We used a dual-task condition, in which participants performed an ankle ipsilateral position-matching task with and without a secondary serial auditory subtraction task during target angle encoding. Two experiments were performed with two different cohorts: one in which the auditory subtraction task was easy (experiment 1a) and one in which it was difficult (experiment 1b). The results showed that, compared with the single-task condition, participants had higher absolute error under dual-task conditions in experiment 1b. The reduction in position-matching accuracy with an attentionally demanding cognitive task suggests that allocation of attentional resources toward a difficult second task can lead to compromised ankle proprioceptive performance. Therefore, these findings indicate that the difficulty level of the cognitive task might be the possible critical factor that decreased accuracy of position-matching task. We conclude that increased attentional demand with difficult cognitive task does influence the assessment of ankle joint proprioceptive ability in young adults when measured using an ankle ipsilateral position-matching task. PMID:24523966

  13. A 6-week warm-up injury prevention programme results in minimal biomechanical changes during jump landings: a randomized controlled trial.

    PubMed

    Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J

    2018-01-16

    To examine the extent to which an ACL injury prevention programme modifies lower extremity biomechanics during single- and double-leg landing tasks in both the sagittal and frontal plane. It was hypothesized that the training programme would elicit improvements in lower extremity biomechanics, but that these improvements would be greater during a double-leg sagittal plane landing task than tasks performed on a single leg or in the frontal plane. Ninety-seven competitive multi-directional sport athletes that competed at the middle- or high-school level were cluster randomized into intervention (n = 48, age = 15.4 ± 1.0 years, height = 1.7 ± 0.07 m, mass = 59.9 ± 11.0 kg) and control (n = 49, age = 15.7 ± 1.6 years, height = 1.7 ± 0.06 m, mass = 60.4 ± 7.7 kg) groups. The intervention group participated in an established 6-week warm-up-based ACL injury prevention programme. Three-dimensional biomechanical analyses of a double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and external joint moments were analysed for group differences using 2 (group) × 4 (task) repeated measures MANOVA models of delta scores (post-pre-test value) (α < 0.05). Relative to the control group, no significant biomechanical changes were identified in the intervention group for any of the tasks (n.s.). However, a group by task interaction was identified for knee abduction (λ = 0.80, p = 0.02), such that participants in the intervention group showed relative decreases in knee abduction moments during the SAG-DL compared to the SAG-SL (p = 0.005; d = 0.45, CI = 0.04-0.85) task. A 6-week warm-up-based ACL injury prevention programme resulted in no significant biomechanical changes during a variety of multi-directional jump landings. Clinically, future prevention programmes should provide a greater training stimulus (intensity, volume), more specificity to tasks associated with the mechanism of ACL injury (single-leg, non-sagittal plane jump landings), and longer programme duration (> 6 weeks) to elicit meaningful biomechanical changes. I.

  14. Changes in resting-state functionally connected parietofrontal networks after videogame practice.

    PubMed

    Martínez, Kenia; Solana, Ana Beatriz; Burgaleta, Miguel; Hernández-Tamames, Juan Antonio; Alvarez-Linera, Juan; Román, Francisco J; Alfayate, Eva; Privado, Jesús; Escorial, Sergio; Quiroga, María A; Karama, Sherif; Bellec, Pierre; Colom, Roberto

    2013-12-01

    Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test-retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test-retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions. Copyright © 2012 Wiley Periodicals, Inc.

  15. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.

    PubMed

    Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S

    2008-02-06

    Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.

  16. Joint Task Force on Undergraduate Physics Programs

    NASA Astrophysics Data System (ADS)

    This session will focus on the guidelines and recommendations being developed by the APS/AAPT Joint Task Force on Undergraduate Physics Programs. J-TUPP is studying how undergraduate physics programs might better prepare physics majors for diverse careers. The guidelines and recommendations will focus on curricular content, flexible tracks, pedagogical methods, research experiences and internships, the development of professional skills, and enhanced advising and mentoring for all physics majors.

  17. Joint Task Force - Port Opening: Can this Emerging Capability Expedite Operational Objectives Throughout the Range of Military Operations?

    DTIC Science & Technology

    2009-10-26

    for Acquisition, Technology, and Logistics, 30 July 2007). 16 Craig Koontz , ―U.S. Transportation Command,‖ PowerPoint, 23 September 2009, Newport, RI...Support Group. To Lt Col Michael W. Pratt, Naval War College. Memorandum, 30 September 2009. Koontz , Craig. ―U.S. Transportation Command...PowerPoint. 23 September 2009. 22 Koontz , Craig. Contractor/Advisor to CDR U.S. Transportation Command. To Lt Col Michael W. Pratt, 28

  18. Nonparametric EROC analysis for observer performance evaluation on joint detection and estimation tasks

    NASA Astrophysics Data System (ADS)

    Wunderlich, Adam; Goossens, Bart

    2014-03-01

    The majority of the literature on task-based image quality assessment has focused on lesion detection tasks, using the receiver operating characteristic (ROC) curve, or related variants, to measure performance. However, since many clinical image evaluation tasks involve both detection and estimation (e.g., estimation of kidney stone composition, estimation of tumor size), there is a growing interest in performance evaluation for joint detection and estimation tasks. To evaluate observer performance on such tasks, Clarkson introduced the estimation ROC (EROC) curve, and the area under the EROC curve as a summary figure of merit. In the present work, we propose nonparametric estimators for practical EROC analysis from experimental data, including estimators for the area under the EROC curve and its variance. The estimators are illustrated with a practical example comparing MRI images reconstructed from different k-space sampling trajectories.

  19. The Influence of Social and Nonsocial Variables on the Simon Effect.

    PubMed

    Mussi, Davide R; Marino, Barbara F M; Riggio, Lucia

    2015-01-01

    Recently, the Simon effect (SE) has been observed in social contexts when two individuals share a two-choice task. This joint SE (JSE) has been interpreted as evidence that people co-represent their actions. However, it is still not clear if the JSE is driven by social factors or low-level mechanisms. To address this question, we applied a common paradigm to a joint Simon task (Experiments 1 and 4), a standard Simon task (Experiment 2), and a go/no-go task (Experiment 3). The results showed that both the JSE and the SE were modulated by the repetition/non-repetition of task features. Moreover, the JSE was differently modulated by the gender composition of the two individuals involved in the shared task and by their interpersonal relationship. Taken together, our results do not support a pure social explanation of the JSE, nevertheless, they show the independent role of different social factors in modulating the effect.

  20. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    PubMed

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  1. Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PI: Lily Y. Young

    2009-06-04

    Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.« less

  2. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  3. Report on the Joint EU-US Workshop on Microbial Community Dynamics: Cooperation and Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Judy D.

    2013-07-01

    The European Commission (EC)-United States (US) Task Force on Biotechnology Research has a longstanding joint Working Group on Biotechnology for the Environment whose mission is to foster collaborations between researchers in the European Union (EU) and US in the field of environmental biotechnology. A special focus of the Working Group is to increase scientific interchange between early career scientists in the US and EU. Such interactions initiate a foundation of respect and trust needed to develop long-term collaborations. In order to realize the full potential for the application of modern technologies to obtain a sustainable biosphere, it is vital tomore » create conduits for knowledge exchange among scientists worldwide engaged in environmental microbial biotechnology research. Since its formation in 1994, the Working Group has organized many activities for early career scientists designed to promote this scientific exchange, including two week courses with hands-on research experience, intensive workshops of two or three days, and research scholar exchanges of one to six months. These interactions are focused on environmental problems that respect no international boundaries.« less

  4. Verifying the equivalence of representations of the knee joint moment vector from a drop vertical jump task.

    PubMed

    Nichols, Julia K; O'Reilly, Oliver M

    2017-03-01

    Biomechanics software programs, such as Visual3D, Nexus, Cortex, and OpenSim, have the capability of generating several distinct component representations for joint moments and forces from motion capture data. These representations include those for orthonormal proximal and distal coordinate systems and a non-orthogonal joint coordinate system. In this article, a method is presented to address the challenging problem of evaluating and verifying the equivalence of these representations. The method accommodates the difficulty that there are two possible sets of non-orthogonal basis vectors that can be used to express a vector in the joint coordinate system and is illuminated using motion capture data from a drop vertical jump task. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    PubMed Central

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (p<0.001). The unstable group also demonstrated increased anterior-posterior joint contact point motion variability for the medial tibiofemoral compartment compared to the control (p=0.03) and stable groups (p=0.03). Interpretation The finding of decreased knee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  6. Occupational Physical Loading Tasks and Knee Osteoarthritis: A Review of the Evidence

    PubMed Central

    Ezzat, Allison M.

    2014-01-01

    ABSTRACT Purpose: To perform a systematic review with best evidence synthesis examining the literature on the relationship between occupational loading tasks and knee osteoarthritis (OA). Methods: Two databases were searched to identify articles published between 1946 and April, 2011. Eligible studies were those that (1) included adults reporting on their employment history; (2) measured individuals' exposure to work-related activities with heavy loading in the knee joint; and (3) identified presence of knee OA (determined by X-ray), cartilage defects associated with knee OA (identified by magnetic resonance imaging), or joint replacement surgery. Results: A total of 32 articles from 31 studies met the inclusion criteria. We found moderate evidence that combined heavy lifting and kneeling is a risk factor for knee OA, with odds ratios (OR) varying from 1.8 to 7.9, and limited evidence for heavy lifting (OR=1.4–7.3), kneeling (OR=1.5–6.9), stair climbing (OR=1.6–5.1), and occupational groups (OR=1.4–4.7) as risk factors. When examined by sex, moderate level evidence of knee OA was found in men; however, the evidence in women was limited. Conclusions: Further high-quality prospective studies are warranted to provide further evidence on the role of occupational loading tasks in knee OA, particularly in women. PMID:24719516

  7. What DoD Homeland Security Roles Should the National Guard Fulfill during This Time of Persistent Conflict?

    DTIC Science & Technology

    2010-06-11

    JFHQ Joint Forces Headquarters JFHQ-State Joint Forces Headquarters-State JTF Joint Task Force MACA Military Assistance for Civil Authorities...continuously uses defense support for civil authorities (DSCA) and military assistance for civil authorities ( MACA ) interchangeably with the term

  8. Male and Female Assumptions About Colleagues' Views of Their Competence.

    ERIC Educational Resources Information Center

    Heilman, Madeline E.; Kram, Kathy E.

    1983-01-01

    Compared the assumptions of 100 male and female employees about colleagues' views of their performance on a joint task. Results indicated women anticipated more blame for a joint failure, less credit for a joint success, and a work image of lesser effectiveness, regardless of the co-worker's sex. (JAC)

  9. A Business Case Analysis of Pre-Positioned Expeditionary Assistance Kit Joint Capability Technology Demonstration

    DTIC Science & Technology

    2013-12-01

    of power from sunlight or a wind turbine (same solar panel tarps used in NEST Raptor Solar Light Trailer) • Global Positioning System (GPS) devices...satellite-enabled rapid wireless communications to the most critical areas and functions, working with Joint Task Forces. The first priority after the...a rapid response wireless communications system from military, civilian government, and non-government organizations. The tasks performed by HFN

  10. Joint Interagency Task Forces; the Right Model to Combat Transnational Organized Crime

    DTIC Science & Technology

    2015-05-18

    of predicting drug movements with incredible accuracy. 8 JIATF-South started life as one of three Department of Defense (DOD) Joint Task...on terrorism, human trafficking, drug smuggling; a JIATF Africa /Middle East focused on terrorism, arms smuggling, infectious diseases; and, a JIATF...narco terrorist threats within the prescribed JOA.” 72 As previously mentioned, JIATF-South has by necessity already started to widen its focus to TCO

  11. Joint Task Force National Capital Region Medical: Integration of Education, Training, and Research

    DTIC Science & Technology

    2009-05-01

    Defense established the Joint Task Force National Capital Region Medical (JTF CapMed ) on the National Naval Medical Center campus in Bethesda, Maryland in...transfor- mation of military health services in the National Capital Area including education, training, and research activities. JTF CAPMED ...BACKGROUND JTF CapMed was established to lead the integration of mili- tary health care in the National Capital Region. The Command is charged with overseeing

  12. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  13. Individual Differences in Children's Corepresentation of Self and Other in Joint Action.

    PubMed

    Milward, Sophie J; Kita, Sotaro; Apperly, Ian A

    2017-05-01

    Previous research has shown that children aged 4-5 years, but not 2-3 years, show adult-like interference from a partner when performing a joint task (Milward, Kita, & Apperly, 2014). This raises questions about the cognitive skills involved in the development of such "corepresentation (CR)" of a partner (Sebanz, Knoblich, & Prinz, 2003). Here, individual differences data from one hundred and thirteen 4- to 5-year-olds showed theory of mind (ToM) and inhibitory control (IC) as predictors of ability to avoid CR interference, suggesting that children with better ToM abilities are more likely to succeed in decoupling self and other representations in a joint task, while better IC is likely to help children avoid interference from a partner's response when selecting their own response on the task. © 2016 The Authors. Child Development published by Wiley Periodicals, Inc. on behalf of Society for Research in Child Development.

  14. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography

    PubMed Central

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-01-01

    Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290

  15. Joint optimization of fluence field modulation and regularization in task-driven computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-03-01

    Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  16. Coupling motion between rearfoot and hip and knee joints during walking and single-leg landing.

    PubMed

    Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Okunuki, Takumi; Ishida, Tomoya; Samukawa, Mina; Tohyama, Harukazu

    2017-12-01

    The objective of the current study was to investigate the kinematic relationships between the rearfoot and hip/knee joint during walking and single-leg landing. Kinematics of the rearfoot relative to the shank, knee and hip joints during walking and single-leg landing were analyzed in 22 healthy university students. Kinematic relationships between two types of angular data were assessed by zero-lag cross-correlation coefficients and coupling angles, and were compared between joints and between tasks. During walking, rearfoot eversion/inversion and external/internal rotation were strongly correlated with hip adduction/abduction (R=0.69 and R=0.84), whereas correlations with knee kinematics were not strong (R≤0.51) and varied between subjects. The correlations with hip adduction/abduction were stronger than those with knee kinematics (P<0.001). Most coefficients during single-leg landing were strong (R≥0.70), and greater than those during walking (P<0.001). Coupling angles indicated that hip motion relative to rearfoot motion was greater than knee motion relative to rearfoot motion during both tasks (P<0.001). Interventions to control rearfoot kinematics may affect hip kinematics during dynamic tasks. The coupling motion between the rearfoot and hip/knee joints, especially in the knee, should be considered individually. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The effect of videotape augmented feedback on drop jump landing strategy: Implications for anterior cruciate ligament and patellofemoral joint injury prevention.

    PubMed

    Munro, Allan; Herrington, Lee

    2014-10-01

    Modification of high-risk movement strategies such as dynamic knee valgus is key to the reduction of anterior cruciate ligament (ACL) and patellofemoral joint (PFJ) injuries. Augmented feedback, which includes video and verbal feedback, could offer a quick, simple and effective alternative to training programs for altering high-risk movement patterns. It is not clear whether feedback can reduce dynamic knee valgus measured using frontal plane projection angle (FPPA). Vertical ground reaction force (vGRF), two-dimensional FPPA of the knee, contact time and jump height of 20 recreationally active university students were measured during a drop jump task pre- and post- an augmented feedback intervention. A control group of eight recreationally active university students were also studied at baseline and repeat test. There was a significant reduction in vGRF (p=0.033), FPPA (p<0.001) and jump height (p<0.001) and an increase in contact time (p<0.001) post feedback in the intervention group. No changes were evident in the control group. Augmented feedback leads to significant decreases in vGRF, FPPA and contact time which may help to reduce ACL and PFJ injury risk. However, these changes may result in decreased performance. Augmented feedback reduces dynamic knee valgus, as measured via FPPA, and forces experienced during the drop jump task and therefore could be used as a tool for helping decrease ACL and PFJ injury risk prior to, or as part of, the implementation of injury prevention training programs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Development and evaluation of a predictive algorithm for telerobotic task complexity

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.

    1993-01-01

    There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.

  19. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    PubMed

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  20. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia.

    PubMed

    Liu, Yali; Hong, Yuezhen; Ji, Linhong

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.

  1. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia

    PubMed Central

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654

  2. Joint association discovery and diagnosis of Alzheimer's disease by supervised heterogeneous multiview learning.

    PubMed

    Zhe, Shandian; Xu, Zenglin; Qi, Yuan; Yu, Peng

    2014-01-01

    A key step for Alzheimer's disease (AD) study is to identify associations between genetic variations and intermediate phenotypes (e.g., brain structures). At the same time, it is crucial to develop a noninvasive means for AD diagnosis. Although these two tasks-association discovery and disease diagnosis-have been treated separately by a variety of approaches, they are tightly coupled due to their common biological basis. We hypothesize that the two tasks can potentially benefit each other by a joint analysis, because (i) the association study discovers correlated biomarkers from different data sources, which may help improve diagnosis accuracy, and (ii) the disease status may help identify disease-sensitive associations between genetic variations and MRI features. Based on this hypothesis, we present a new sparse Bayesian approach for joint association study and disease diagnosis. In this approach, common latent features are extracted from different data sources based on sparse projection matrices and used to predict multiple disease severity levels based on Gaussian process ordinal regression; in return, the disease status is used to guide the discovery of relationships between the data sources. The sparse projection matrices not only reveal the associations but also select groups of biomarkers related to AD. To learn the model from data, we develop an efficient variational expectation maximization algorithm. Simulation results demonstrate that our approach achieves higher accuracy in both predicting ordinal labels and discovering associations between data sources than alternative methods. We apply our approach to an imaging genetics dataset of AD. Our joint analysis approach not only identifies meaningful and interesting associations between genetic variations, brain structures, and AD status, but also achieves significantly higher accuracy for predicting ordinal AD stages than the competing methods.

  3. Proprioceptive coordination of movement sequences: role of velocity and position information.

    PubMed

    Cordo, P; Carlton, L; Bevan, L; Carlton, M; Kerr, G K

    1994-05-01

    1. Recent studies have shown that the CNS uses proprioceptive information to coordinate multijoint movement sequences; proprioceptive input related to the kinematics of one joint rotation in a movement sequence can be used to trigger a subsequent joint rotation. In this paper we adopt a broad definition of "proprioception," which includes all somatosensory information related to joint posture and kinematics. This paper addresses how the CNS uses proprioceptive information related to the velocity and position of joints to coordinate multijoint movement sequences. 2. Normal human subjects sat at an experimental apparatus and performed a movement sequence with the right arm without visual feedback. The apparatus passively rotated the right elbow horizontally in the extension direction with either a constant velocity trajectory or an unpredictable velocity trajectory. The subjects' task was to open briskly the right hand when the elbow passed through a prescribed target position, similar to backhand throwing in the horizontal plane. The randomization of elbow velocities and the absence of visual information was used to discourage subjects from using any information other than proprioceptive input to perform the task. 3. Our results indicate that the CNS is able to extract the necessary kinematic information from proprioceptive input to trigger the hand opening at the correct elbow position. We estimated the minimal sensory conduction and processing delay to be 150 ms, and on the basis of this estimate, we predicted the expected performance with different degrees of reduced proprioceptive information. These predictions were compared with the subjects' actual performances, revealing that the CNS was using proprioceptive input related to joint velocity in this motor task. To determine whether position information was also being used, we examined the subjects' performances with unpredictable velocity trajectories. The results from experiments with unpredictable velocity trajectories indicate that the CNS extracts proprioceptive information related to both the velocity and the angular position of the joint to trigger the hand movement in this movement sequence. 4. To determine the generality of proprioceptive triggering in movement sequences, we estimated the minimal movement duration with which proprioceptive information can be used as well as the amount of learning required to use proprioceptive input to perform the task. The temporal limits for proprioceptive processing in this movement task were established by determining the minimal movement time during which the task could be performed.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Failure tolerance strategy of space manipulator for large load carrying tasks

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yuan, Bonan; Jia, Qingxuan; Sun, Hanxu; Guo, Wen

    2018-07-01

    During the execution of large load carrying tasks in long term service, there is a notable risk of space manipulator suffering from locked-joint failure, thus space manipulator should be with enough failure tolerance performance. A research on evaluating failure tolerance performance and re-planning feasible task trajectory for space manipulator performing large load carrying tasks is conducted in this paper. The effects of locked-joint failure on critical performance(reachability and load carrying capacity) of space manipulator are analyzed at first. According to the requirements of load carrying tasks, we further propose a new concept of failure tolerance workspace with load carrying capacity(FTWLCC) to evaluate failure tolerance performance, and improve the classic A* algorithm to search the feasible task trajectory. Through the normalized FTWLCC and the improved A* algorithm, the reachability and load carrying capacity of the degraded space manipulator are evaluated, and the reachable and capable trajectory can be obtained. The establishment of FTWLCC provides a novel idea that combines mathematical statistics with failure tolerance performance to illustrate the distribution of load carrying capacity in three-dimensional space, so multiple performance indices can be analyzed simultaneously and visually. And the full consideration of all possible failure situations and motion states makes FTWLCC and improved A* algorithm be universal and effective enough to be appropriate for random joint failure and variety of requirement of large load carrying tasks, so they can be extended to other types of manipulators.

  5. Redundancy, Self-Motion, and Motor Control

    PubMed Central

    Martin, V.; Scholz, J. P.; Schöner, G.

    2011-01-01

    Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817

  6. Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation.

    PubMed

    Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Joint pathology and behavioral performance in autoimmune MRL-lpr Mice.

    PubMed

    Sakić, B; Szechtman, H; Stead, R H; Denburg, J A

    1996-09-01

    Young autoimmune MRL-lpr mice perform more poorly than age-matched controls in tests of exploration, spatial learning, and emotional reactivity. Impaired behavioral performance coincides temporally with hyperproduction of autoantibodies, infiltration of lymphoid cells into the brain, and mild arthritic-like changes in hind paws. Although CNS mechanisms have been suggested to mediate behavioral deficits, it was not clear whether mild joint pathology significantly affected behavioral performance. Previously we observed that 11-week-old MRL-lpr mice showed a trend for disturbed performance when crossing a narrow beam. The first aim of the present study was to test the significance of this trend by increasing the sample size and, second, to examine the possibility that arthritis-like changes interfere with performance in brief locomotor tasks. For the purpose of the second goal, 18-week-old mice that differ widely in severity of joint disease were selectively taken from the population and tested in beam walking and swimming tasks. It was expected that the severity of joint inflammation would be positively correlated with the degree of locomotor impairment. The larger sample size revealed that young MRL-lpr mice perform significantly more poorly than controls on the beam-walking test, as evidenced by more foot slips and longer traversing time. However, significant correlation between joint pathology scores and measures of locomotion could not be detected. The lack of such relationship suggests that mild joint pathology does not significantly contribute to impaired performance in young, autoimmune MRL-lpr mice tested in short behavioral tasks.

  8. Joint Command and Control of Cyber Operations: The Joint Force Cyber Component Command (JFCCC)

    DTIC Science & Technology

    2012-05-04

    relies so heavily on complex command and control systems and interconnectivity in general, cyber warfare has become a serious topic of interest at the...defensive cyber warfare into current and future operations and plans. In particular, Joint Task Force (JTF) Commanders must develop an optimum method to

  9. Pharmacy faculty workplace issues: findings from the 2009-2010 COD-COF Joint Task Force on Faculty Workforce.

    PubMed

    Desselle, Shane P; Peirce, Gretchen L; Crabtree, Brian L; Acosta, Daniel; Early, Johnnie L; Kishi, Donald T; Nobles-Knight, Dolores; Webster, Andrew A

    2011-05-10

    Many factors contribute to the vitality of an individual faculty member, a department, and an entire academic organization. Some of the relationships among these factors are well understood, but many questions remain unanswered. The Joint Task Force on Faculty Workforce examined the literature on faculty workforce issues, including the work of previous task forces charged by the American Association of Colleges of Pharmacy (AACP). We identified and focused on 4 unique but interrelated concepts: organizational culture/climate, role of the department chair, faculty recruitment and retention, and mentoring. Among all 4 resides the need to consider issues of intergenerational, intercultural, and gender dynamics. This paper reports the findings of the task force and proffers specific recommendations to AACP and to colleges and schools of pharmacy.

  10. A rate-controlled teleoperator task with simulated transport delays

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1983-01-01

    A teleoperator-system simulation was used to examine the effects of two control modes (joint-by-joint and resolved-rate), a proximity-display method, and time delays (up to 2 sec) on the control of a five-degree-of-freedom manipulator performing a probe-in-hole alignment task. Four subjects used proportional rotational control and discrete (on-off) translation control with computer-generated visual displays. The proximity display enabled subjects to separate rotational errors from displacement (translation) errors; thus, when the proximity display was used with resolved-rate control, the simulated task was trivial. The time required to perform the simulated task increased linearly with time delay, but time delays had no effect on alignment accuracy. Based on the results of this simulation, several future studies are recommended.

  11. Inversion Of Jacobian Matrix For Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Report discusses inversion of Jacobian matrix for class of six-degree-of-freedom arms with spherical wrist, i.e., with last three joints intersecting. Shows by taking advantage of simple geometry of such arms, closed-form solution of Q=J-1X, which represents linear transformation from task space to joint space, obtained efficiently. Presents solutions for PUMA arm, JPL/Stanford arm, and six-revolute-joint coplanar arm along with all singular points. Main contribution of paper shows simple geometry of this type of arms exploited in performing inverse transformation without any need to compute Jacobian or its inverse explicitly. Implication of this computational efficiency advanced task-space control schemes for spherical-wrist arms implemented more efficiently.

  12. 9th Annual Systems Engineering Conference: Volume-1 Monday Tutorial

    DTIC Science & Technology

    2006-10-26

    Joint Integrating Concepts (JIC) • Forceable Entry Ops • Undersea Superiority • Global Strike Ops • Sea-Basing Ops • Air & Missile Defense • JC2 • Joint...Forceable Entry Ops o Undersea Superiority o Global Strike Ops o Sea-Basing Ops o Air & Missile Defense o JC2 o Joint Logistics Includes an illustrative... Undersea Superiority • Global Strike Ops • Sea-Basing Ops • Air & Missile Defense • JC2 • Joint Logistics Universal Joint Task List (UJTL) • Strategic

  13. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    PubMed

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  14. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis.

    PubMed

    Robert-Lachaine, Xavier; Mecheri, Hakim; Larue, Christian; Plamondon, André

    2017-04-01

    The potential of inertial measurement units (IMUs) for ergonomics applications appears promising. However, previous IMUs validation studies have been incomplete regarding aspects of joints analysed, complexity of movements and duration of trials. The objective was to determine the technological error and biomechanical model differences between IMUs and an optoelectronic system and evaluate the effect of task complexity and duration. Whole-body kinematics from 12 participants was recorded simultaneously with a full-body Xsens system where an Optotrak cluster was fixed on every IMU. Short functional movements and long manual material handling tasks were performed and joint angles were compared between the two systems. The differences attributed to the biomechanical model showed significantly greater (P ≤ .001) RMSE than the technological error. RMSE was systematically higher (P ≤ .001) for the long complex task with a mean on all joints of 2.8° compared to 1.2° during short functional movements. Definition of local coordinate systems based on anatomical landmarks or single posture was the most influent difference between the two systems. Additionally, IMUs accuracy was affected by the complexity and duration of the tasks. Nevertheless, technological error remained under 5° RMSE during handling tasks, which shows potential to track workers during their daily labour.

  15. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    PubMed Central

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  16. Assessing young children's intention-reading in authentic communicative contexts: preliminary evidence and clinical utility.

    PubMed

    Greenslade, Kathryn J; Coggins, Truman E

    2014-01-01

    Identifying what a communication partner is looking at (referential intention) and why (social intention) is essential to successful social communication, and may be challenging for children with social communication deficits. This study explores a clinical task that assesses these intention-reading abilities within an authentic context. To gather evidence of the task's reliability and validity, and to discuss its clinical utility. The intention-reading task was administered to twenty 4-7-year-olds with typical development (TD) and ten with autism spectrum disorder (ASD). Task items were embedded in an authentic activity, and they targeted the child's ability to identify the examiner's referential and social intentions, which were communicated through joint attention behaviours. Reliability and construct validity evidence were addressed using established psychometric methods. Reliability and validity evidence supported the use of task scores for identifying children whose intention-reading warranted concern. Evidence supported the reliability of task administration and coding, and item-level codes were highly consistent with overall task performance. Supporting task validity, group differences aligned with predictions, with children with ASD exhibiting poorer and more variable task scores than children with TD. Also, as predicted, task scores correlated significantly with verbal mental age and ratings of parental concerns regarding social communication abilities. The evidence provides preliminary support for the reliability and validity of the clinical task's scores in assessing young children's real-time intention-reading abilities, which are essential for successful interactions in school and beyond. © 2014 Royal College of Speech and Language Therapists.

  17. Flexor bias of joint position in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Boorman, G. I.; Roy, R. R.; Edgerton, V. R.

    2003-01-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  18. Flexor bias of joint position in humans during spaceflight.

    PubMed

    McCall, G E; Goulet, C; Boorman, G I; Roy, R R; Edgerton, V R

    2003-09-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  19. EOS Contract Report: The ASTER and MODIS Projects

    NASA Technical Reports Server (NTRS)

    Slater, P.; Thome, K. (Compiler)

    1997-01-01

    Three major tasks occupied the group's efforts during this six months. The first was measuring the bidirectional reflectance properties of four reflectance samples provided by NIST. S. Biggar and P. Spyak made these measurements in both the VNIR and SWIR. The second major task was the group's move to a new facility in March. This required that our calibration laboratory and blacklab be disassembled and reassembled in addition to moving offices and other equipment. The third task was the joint vicarious calibration that took place the latter half of June. This campaign included two weeks of laboratory measurements by the RSG and nine days in the field. Other work during the past six months consisted of Science Team support activities including the attendance at meetings related to MODIS and ASTER. In addition, K. Scott continued work on the cross-calibration software package by developing a graphical interface to 6S, an uncertainty analysis code, and an image registration module. M. Sicard used a trip to Cimel in France to change the Cimel TIR radiometer's field of view and then characterized this new field of view. Z. Rouf and Z. Murshalin processed radiance-based data from last summer's Lunar Lake campaign.

  20. A Study of the Courses, Programs and Facilities at the Okaloosa-Walton Junior College/University of West Florida Joint Center in Fort Walton Beach. Report and Recommendations of the Postsecondary Education Planning Commission, 1987. Report 9.

    ERIC Educational Resources Information Center

    Florida State Postsecondary Education Planning Commission, Tallahassee.

    In 1987, a task force was convened to determine the need for further expansion of the Okaloosa-Walton Junior College/University of West Florida (OWJC/UWF) Joint Center, and, if warranted, to select a permanent site for the facility. The task force undertook a study involving: (1) collection of demographic data on the Greater Fort Walton Beach area…

  1. Evaluating the Relationship between Team Performance and Joint Attention with Longitudinal Multivariate Mixed Models

    DTIC Science & Technology

    2016-09-23

    Lauren Menke3 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER H0HJ (53290813) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...as prior work has demonstrated that friendship can facilitate performance in decision-making and motor tasks (e.g., Shah & Jehn, 1993). However, a...Relationship between Team Performance and Joint Attention with Longitudinal Multivariate Mixed Models 5a. CONTRACT NUMBER FA8650-14-D-6501-0009 5b

  2. The Relation of Hand and Arm Configuration Variances while Tracking Geometric Figures in Parkinson's Disease: Aspects for Rehabilitation

    ERIC Educational Resources Information Center

    Keresztenyi, Zoltan; Cesari, Paola; Fazekas, Gabor; Laczko, Jozsef

    2009-01-01

    Variances of drawing arm movements between patients with Parkinson's disease and healthy controls were compared. The aim was to determine whether differences in joint synergies or individual joint rotations affect the endpoint (hand position) variance. Joint and endpoint coordinates were measured while participants performed drawing tasks.…

  3. The Effect of Joint Control Training on the Acquisition and Durability of a Sequencing Task

    ERIC Educational Resources Information Center

    DeGraaf, Allison; Schlinger, Henry D., Jr.

    2012-01-01

    Gutierrez (2006) experimentally demonstrated the effects of joint control and particularly the role of response mediation in the sequencing behavior of adults using an unfamiliar language. The purpose of the current study was to replicate and extend the procedures used by Gutierrez by comparing the effects of joint control training with the…

  4. Delegation of clinical dietetic tasks in military and civilian hospitals: implications for practice.

    PubMed

    Myers, M E; Gregoire, M B; Spears, M C

    1991-12-01

    The purposes of our research were two-fold: to determine perceptions of the quality of task performance and to identify dietetic personnel currently performing clinical dietetic tasks in military and civilian hospitals. Questionnaires were returned from 309 dietitians and 208 dietetic support personnel at 151 military and civilian hospitals (73% response overall). For tasks completed by support personnel, no task was rated as having optimum quality, 1 was rated as highly acceptable, 6 as acceptable, 19 as somewhat unacceptable, and 4 as unacceptable. Current performance ratings indicated that 1 task was performed solely by dietitians, 21 were completed by dietitians with assistance, 6 were completed jointly by dietitians and support personnel, 2 were completed by support personnel with supervision by dietitians, and no task was completed independently by support personnel. Tasks were grouped into four categories: basic clinical dietetics (11 tasks), intermediate and in-depth clinical dietetics (12 tasks), outpatient nutrition clinic (5 tasks), and nutrition education (community) (4 tasks). Quality scores for the US Air Force (USAF) hospitals were higher for all task categories except intermediate and in-depth clinical dietetic tasks. The quality scores of support personnel were higher than those of dietitians for all task categories. The USAF performance scores indicated significantly more involvement of support personnel. Generally, the performance scores of dietitians increased with experience; the scores of support personnel decreased with experience. Correlations between quality and performance ratings for individual tasks revealed low to moderate relationships. Our results suggest that additional delegation of tasks to dietetic support personnel may be possible without negatively affecting perceptions of the quality of task outcome.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. PRN 2000-7: Non-Dietary Exposure Task Force

    EPA Pesticide Factsheets

    This PR Notice announces an industry-wide task force to jointly develop residential indoor exposure data for pesticides containing one or more of the active ingredients synthetic pyrethroids, pyrethrum and synergists.

  6. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  7. The relationship between general measures of fitness, passive range of motion and whole-body movement quality.

    PubMed

    Frost, David; Andersen, Jordan; Lam, Thomas; Finlay, Tim; Darby, Kevin; McGill, Stuart

    2013-01-01

    The goal of this study was to establish relationships between fitness (torso endurance, grip strength and pull-ups), hip range of motion (ROM) (extension, flexion, internal and external rotation) and movement quality in an occupational group with physical work demands. Fifty-three men from the emergency task force of a major city police force were investigated. The movement screen comprised standing and seated posture, gait, segmental spine motion and 14 tasks designed to challenge whole-body coordination. Relationships were established between each whole-body movement task, the measures of strength, endurance and ROM. In general, fitness and ROM were not strongly related to the movement quality of any task. This has implications for worker training, in that strategies developed to improve ROM or strength about a joint may not enhance movement quality. Worker-centered injury prevention can be described as fitting workers to tasks by improving fitness and modifying movement patterns; however, the current results show weak correlations between strength, endurance and ROM, and the way individuals move. Therefore, the development of occupation-specific injury prevention strategies may require both fitness and movement-oriented objectives.

  8. Not All Is Lost: Old Adults Retain Flexibility in Motor Behaviour during Sit-to-Stand

    PubMed Central

    Greve, Christian; Zijlstra, Wiebren; Hortobágyi, Tibor; Bongers, Raoul M.

    2013-01-01

    Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits. PMID:24204952

  9. Effects of postural specific sensorimotor training in patients with chronic low back pain: study protocol for randomised controlled trial.

    PubMed

    McCaskey, Michael A; Schuster-Amft, Corina; Wirth, Brigitte; de Bruin, Eling D

    2015-12-15

    Sensorimotor training (SMT) is popularly applied as a preventive or rehabilitative exercise method in various sports and rehabilitation settings. Yet, there is only low-quality evidence on its effect on pain and function. This randomised controlled trial will investigate the effects of a theory-based SMT in rehabilitation of chronic (>3 months) non-specific low back pain (CNLBP) patients. A pilot study with a parallel, single-blinded, randomised controlled design. Twenty adult patients referred to the clinic for CNLBP treatment will be included, randomised, and allocated to one of two groups. Each group will receive 9 x 30 minutes of standard physiotherapy (PT) treatment. The experimental group will receive an added 15 minutes of SMT. For SMT, proprioceptive postural exercises are performed on a labile platform with adjustable oscillation to provoke training effects on different entry levels. The active comparator group will perform 15 minutes of added sub-effective low-intensity endurance training. Outcomes are assessed on 4 time-points by a treatment blinded tester: eligibility assessment at baseline (BL) 2-4 days prior to intervention, pre-intervention assessment (T0), post-intervention assessment (T1), and at 4 weeks follow-up (FU). At BL, an additional healthy control group (n = 20) will be assessed to allow cross-sectional comparison with symptom-free participants. The main outcomes are self-reported pain (Visual Analogue Scale) and functional status (Oswestry Disability Index). For secondary analysis, postural control variables after an externally perturbed stance on a labile platform are analysed using a video-based marker tracking system and a pressure plate (sagittal joint-angle variability and centre of pressure confidence ellipse). Proprioception is measured as relative cervical joint repositioning error during a head-rotation task. Effect sizes and mixed-model MANOVA (2 groups × 4 measurements for 5 dependent variables) will be calculated. This is the first attempt to systematically investigate effects of a theory-based sensorimotor training in patients with CNLBP. It will provide analysis of several postural segments during a dynamic task for quantitative analysis of quality and change of the task performance in relation to changes in pain and functional status. Trial registry number on cliniclatrials.gov is NCT02304120 , first registered on 17 November 2014.

  10. Pharmacy Faculty Workplace Issues: Findings From the 2009-2010 COD-COF Joint Task Force on Faculty Workforce

    PubMed Central

    Peirce, Gretchen L.; Crabtree, Brian L.; Acosta, Daniel; Early, Johnnie L.; Kishi, Donald T.; Nobles-Knight, Dolores; Webster, Andrew A.

    2011-01-01

    Many factors contribute to the vitality of an individual faculty member, a department, and an entire academic organization. Some of the relationships among these factors are well understood, but many questions remain unanswered. The Joint Task Force on Faculty Workforce examined the literature on faculty workforce issues, including the work of previous task forces charged by the American Association of Colleges of Pharmacy (AACP). We identified and focused on 4 unique but interrelated concepts: organizational culture/climate, role of the department chair, faculty recruitment and retention, and mentoring. Among all 4 resides the need to consider issues of intergenerational, intercultural, and gender dynamics. This paper reports the findings of the task force and proffers specific recommendations to AACP and to colleges and schools of pharmacy. PMID:21769139

  11. Biomechanical analysis of knee and trunk in badminton players with and without knee pain during backhand diagonal lunges.

    PubMed

    Lin, Cheng-Feng; Hua, Shiang-Hua; Huang, Ming-Tung; Lee, Hsing-Hsan; Liao, Jen-Chieh

    2015-01-01

    The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip-shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.

  12. Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task.

    PubMed

    Meinerz, Carolyn M; Malloy, Philip; Geiser, Christopher F; Kipp, Kristof

    2015-09-01

    Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions. To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task. Controlled laboratory study. University biomechanics laboratory. Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg). Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions. Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles. Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases. Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition.

  13. Assessment of Musculoskeletal Function and its Correlation with Radiological Joint Score in Children with Hemophilia A.

    PubMed

    Gupta, Samriti; Garg, Kapil; Singh, Jagdish

    2015-12-01

    To evaluate the functional independence of children with hemophilia A and its correlation to radiological joint score. The present cross sectional study was conducted at SPMCHI, SMS Medical College, Jaipur, India. Children in the age group of 4-18 y affected with severe, moderate and mild hemophilia A and with a history of hemarthrosis who attended the OPD, emergency or got admitted in wards of SPMCHI, SMS Medical College were examined. Musculoskeletal function was measured in 98 patients using Functional Independence Score in Hemophilia (FISH) and index joints (joints most commonly affected with repeated bleeding) were assessed radiologically with plain X rays using Pettersson score. The mean FISH score was 28.07 ± 3.90 (range 17-32) with squatting, running and step climbing as most affected tasks. The mean Pettersson score was 3.8 ± 3.2. A significant correlation was found between mean Pettersson score and FISH (r = -0.875, P < 0.001) with knee and elbow having r = -0.810 and -0.861 respectively, but not in case of ankle with r = -0.420 (P 0.174). The FISH and radiological joint (Pettersson's) scores may be extremely useful in the clinical practice in the absence of magnetic resonance imaging (MRI), which is considered very sensitive to detect early joint damage, but at a cost that makes it relatively inaccessible. FISH seems to be a reliable tool for assessment of functional independence in patients with hemophilia A.

  14. People’s Republic of China Scientific Abstracts, Number 170

    DTIC Science & Technology

    1977-06-30

    Distribution Unlimited 20000324 188 U. S. JOINT PUBLICATIONS RESEARCH SERVICE REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE Reproduced From Best...Road, Wooster, Ohio, 44691. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service...Performing Organization Name and Addreaa Joint Publications Research Service 1000 North Glebe Road Arlington, Virginia 22201 10. Project/Task/Work

  15. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Koumal, D. E.

    1979-01-01

    The design and evaluation of built-up attachments and bonded joint concepts for use at elevated temperatures is documented. Joint concept screening, verification of GR/PI material, fabrication of design allowables panels, definition of test matrices, and analysis of bonded and bolted joints are among the tasks completed. The results provide data for the design and fabrication of lightly loaded components for advanced space transportation systems and high speed aircraft.

  16. Operational Intelligence in Irregular Warfare: Organized to the Task or to the Technology

    DTIC Science & Technology

    2009-10-23

    50. 9 CJCS, Joint Operations, Change 1 , JP 3 -0 (Washington, DC: CJCS, 13 February 2008), I-8 to I-9. 10 CJCS, Counterinsurgency Operations, JP 3 -24...Warfighting Publication (MCWP) 3 -33.5 (Washington, DC: Government Printing Office, 15 December 2006), 1 -26. 13 David Rohde, “Army Enlists Anthropology in...Joint Intelligence. Joint Publication (JP) 2-0. Washington, DC: CJCS, 22 June 2007. ______. Joint Operations. Change 1 . JP 3 -0. Washington, DC

  17. Joint dynamics of rear- and fore-foot unplanned sidestepping.

    PubMed

    Donnelly, Cyril J; Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline

    2017-01-01

    Compare the lower-limb mechanics and anterior cruciate ligament (ACL) injury risk of athletes using a habitual rear-foot (RF) and fore-foot (FF) fall pattern during unplanned sidestepping (UnSS). Experimental cross-sectional. Nineteen elite female field hockey players attended one biomechanical motion capture testing session, which consisted of a random series of pre-planned and unplanned sidestepping sport tasks. Following data collection, participants were classified as possessing a habitual RF or FF fall pattern during UnSS. Hip, knee and ankle joint angles, moments, instantaneous powers and net joint work were calculated during weight acceptance. Between group differences were evaluated using independent sample t-tests (α=0.05). Athletes using a habitual RF fall pattern during UnSS absorbed significantly more work and power through their knee joint (p<0.001), which was coupled with significantly elevated externally applied peak non-sagittal plane peak ankle moments (p<0.05) as well as peak flexion and abduction knee moments (p<0.005). Athletes using a habitual FF fall pattern during UnSS absorbed more power through their ankle joint (p<0.001). A RF fall pattern during UnSS places a large mechanical demand on the knee joint, which is associated with elevated ACL injury risk. Conversely, a FF fall pattern placed a large mechanical demand on the ankle joint. Modifying an athlete's foot fall pattern during UnSS may be viable technique recommendation when returning from knee or ankle injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Higher order balance control: Distinct effects between cognitive task and manual steadiness constraint on automatic postural responses.

    PubMed

    Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto

    2016-12-01

    In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Visual detail about the body modulates tactile localisation biases.

    PubMed

    Margolis, Aaron N; Longo, Matthew R

    2015-02-01

    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini et al. (Neuropsychologia 49:1194-1201, 2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought.

  20. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  1. Implementing Network-Centric Operations in Joint Task Forces: Changes in Joint Doctrine

    DTIC Science & Technology

    2006-06-16

    the hierarchy, explaining the relationship between vertically connected components (Gibson, Ivancevich , and Donnelly 1973, 289). The flow of...John M. Ivancevich , and James H. Donnelly. 1973. Organizations: Structure, Processes, Behavior. Dallas, TX: Business Publication, Inc. Gonzales

  2. The IRAF Fabry-Perot analysis package: Ring fitting

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.; Cecil, G.

    1992-01-01

    As introduced at ADASSI, a Fabry-Perot analysis package for IRAF is currently under development as a joint effort of ourselves and Frank Valdes of the IRAF group. Although additional portions of the package were also implemented, we report primarily on the development of a robust ring fitting task, useful for fitting the calibration rings obtained in Fabry-Perot observations. The general equation of an ellipse is fit to the shape of the rings, providing information on ring center, ellipticity, and position angle. Such parameters provide valuable information on the wavelength response of the etalon and the geometric stability of the system. Appropriate statistical weighting is applied to the pixels to account for increasing numbers with radius, the Lorentzian cross-section, and uneven illumination. The major problems of incomplete, non-uniform, and multiple rings are addressed with the final task capable of fitting rings regardless of center, cross-section, or completion. The task requires only minimal user intervention, allowing large numbers of rings to be fit in an extremely automated manner.

  3. Adolescent Perceptions of Conflict in Interdependent and Disengaged Friendships

    PubMed Central

    Shulman, Shmuel; Laursen, Brett

    2009-01-01

    Interdependent and disengaged friendships in a middle-class sample of suburban Israeli adolescents were examined for differences in reports of conflict behavior. A total of 194 (100 females, and 94 males) close, reciprocal friends participated in a joint problem-solving task used to categorize friendships. Interdependent friends balanced closeness and individuality by cooperating on the task, whereas disengaged friends emphasized individuality by working independently on the task. In separate interviews, these friends recounted their most important conflict from the previous week. Older adolescents (M = 17.4 years) reported more conflicts over private disrespect than did younger adolescents (M = 12.7 years), whereas younger adolescents reported more conflicts over public disrespect and undependability than did older adolescents. Differences between friendship types in conflict initiation, negative affect, and relationship impact were found among older adolescents but not younger adolescents; differences in conflict resolutions were found in both age groups. In contrast to disengaged friends, interdependent friends were better able to manage conflicts in a manner that emphasized relationship harmony over individual gain. PMID:20090925

  4. Application of Advanced Decision-Analytic Technology to Rapid Deployment Joint Task Force Problems

    DTIC Science & Technology

    1981-06-01

    CHANGE 9 DIEGO GARCIA CHANGE 5: MOMPANA/K FROM I. SO FROM 2: AIRFIELD IMIS TO 2 AIRFIELD IMPS+DRI/II TO 6: COMM/NAV AIDS bENEF IT COET BENEFIT COFF 410...meetings: (1) To organize , display, and update the working group’s judgements about the relative costs and benefits of each level of each variable in...benefit to the organization . (3) Assess costs - In the DESIGN software, there is one type of limited resource to be allocated to the variables. This

  5. A Framework to Describe, Analyze and Generate Interactive Motor Behaviors

    PubMed Central

    Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne

    2012-01-01

    While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks. PMID:23226231

  6. A framework to describe, analyze and generate interactive motor behaviors.

    PubMed

    Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne

    2012-01-01

    While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  7. Effects of a Coactor's Focus of Attention on Task Performance

    ERIC Educational Resources Information Center

    Bockler, Anne; Knoblich, Gunther; Sebanz, Natalie

    2012-01-01

    Coactors take into account certain aspects of each other's tasks even when this is not required to perform their own task. The present experiments investigated whether the way a coactor allocates attention affects one's own attentional relation to stimuli that are attended jointly (Experiment 1), individually (Experiment 2), or in parallel…

  8. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    PubMed

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-01

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  9. Entropy of Movement Outcome in Space-Time.

    PubMed

    Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M

    2015-07-01

    Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.

  10. A novel method for quantifying arm motion similarity.

    PubMed

    Zhi Li; Hauser, Kris; Roldan, Jay Ryan; Milutinovic, Dejan; Rosen, Jacob

    2015-08-01

    This paper proposes a novel task-independent method for quantifying arm motion similarity that can be applied to any kinematic/dynamic variable of interest. Given two arm motions for the same task, not necessarily with the same completion time, it plots the time-normalized curves against one another and generates four real-valued features. To validate these features we apply them to quantify the relationship between healthy and paretic arm motions of chronic stroke patients. Studying both unimanual and bimanual arm motions of eight chronic stroke patients, we find that inter-arm coupling that tends to synchronize the motions of both arms in bimanual motions, has a stronger effect at task-relevant joints than at task-irrelevant joints. It also revealed that the paretic arm suppresses the shoulder flexion of the non-paretic arm, while the latter encourages the shoulder rotation of the former.

  11. Single-limb drop landing biomechanics in active individuals with and without a history of anterior cruciate ligament reconstruction: A total support analysis.

    PubMed

    Pozzi, Federico; Di Stasi, Stephanie; Zeni, Joseph A; Barrios, Joaquin A

    2017-03-01

    The purpose of this study was to characterize the magnitude and distribution of the total support moment during single-limb drop landings in individuals after anterior cruciate ligament reconstruction compared to a control group. Twenty participants after reconstruction and twenty control participants matched on sex, limb dominance and activity level were recruited. Motion analysis was performed during a single-limb drop landing task. Total support moment was determined by summing the internal extensor moments at the ankle, knee, and hip. Each relative joint contribution to the total support moment was calculated by dividing each individual contribution by the total support moment. Data were captured during a landing interval that started at initial contact and ended at the lowest vertical position of the pelvis. Data were then time-normalized and indexed at 25, 50, 75, and 100% of the landing interval. No between-group differences for total support moment magnitude were observed. At both 75% and 100% of the landing, the relative contribution of the knee joint was lower in those with a history of surgery (p<0.001). At the same instances, the relative contribution to the total support moment by the hip joint was greater in those with a history of surgery (p=0.004). In active participants after anterior cruciate ligament reconstruction, relative contributions to anti-gravity support of the center of mass shifted from the knee to the hip joint during single-limb landing, which became evident towards the end of the landing interval. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modifications of the ionosphere prior to large earthquakes: report from the Ionosphere Precursor Study Group

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Devi, M.; Ryu, K.; Chen, C. H.; Liu, J. Y.; Liu, H.; Bankov, L.; Kodama, T.

    2016-12-01

    The current status of ionospheric precursor studies associated with large earthquakes (EQ) is summarized in this report. It is a joint endeavor of the "Ionosphere Precursor Study Task Group," which was formed with the support of the Mitsubishi Foundation in 2014-2015. The group promotes the study of ionosphere precursors (IP) to EQs and aims to prepare for a future EQ dedicated satellite constellation, which is essential to obtain the global morphology of IPs and hence demonstrate whether the ionosphere can be used for short-term EQ predictions. Following a review of the recent IP studies, the problems and specific research areas that emerged from the one-year project are described. Planned or launched satellite missions dedicated (or suitable) for EQ studies are also mentioned.

  13. The effect of equalizing landing task demands on sex differences in lower extremity energy absorption.

    PubMed

    Montgomery, Melissa M; Shultz, Sandra J; Schmitz, Randy J

    2014-08-01

    Less lean mass and strength may result in greater relative task demands on females compared to males when landing from a standardized height and could explain sex differences in energy absorption strategies. We compared the magnitude of sex differences in energy absorption when task demands were equalized relative to the amount of lower extremity lean mass available to dissipate kinetic energy upon landing. Male-female pairs (n=35) were assessed for lower extremity lean mass with dual-energy X-ray absorptiometry. Relative task demands were calculated when landing from a standardized height. Based on the difference in lower extremity lean mass within each pair, task demands were equalized by increasing the drop height for males. Joint energetics were measured while landing from the two heights. Multivariate repeated measures ANOVAs compared the magnitude of sex differences in joint energetics between conditions. The multivariate test for absolute energy absorption was significant (P<0.01). The magnitude of sex difference in energy absorption was greater at the hip and knee (both P<0.01), but not the ankle (P=0.43) during the equalized condition compared to the standardized and exaggerated conditions (all P<0.01). There was no difference in the magnitude of sex differences between equalized, standardized and exaggerated conditions for relative energy absorption (P=0.18). Equalizing task demands increased the difference in absolute hip and knee energy absorption between sexes, but had no effect on relative joint contributions to total energy absorption. Sex differences in energy absorption are likely influenced by factors other than differences in relative task demands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Singularity-robustness and task-prioritization in configuration control of redundant robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.; Colbaugh, R.

    1990-01-01

    The authors present a singularity-robust task-prioritized reformulation of the configuration control for redundant robot manipulators. This reformation suppresses large joint velocities to induce minimal errors in the task performance by modifying the task trajectories. Furthermore, the same framework provides a means for assignment of priorities between the basic task of end-effector motion and the user-defined additional task for utilizing redundancy. This allows automatic relaxation of the additional task constraints in favor of the desired end-effector motion when both cannot be achieved exactly.

  15. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    PubMed Central

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury. PMID:25144599

  16. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.

    PubMed

    Dill, Karli E; Begalle, Rebecca L; Frank, Barnett S; Zinder, Steven M; Padua, Darin A

    2014-01-01

    Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Cross-sectional study. Sports medicine research laboratory. Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury.

  17. Developing a musculoskeletal model of the primate skull: predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

    PubMed

    Shi, Junfen; Curtis, Neil; Fitton, Laura C; O'Higgins, Paul; Fagan, Michael J

    2012-10-07

    An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is that of muscle activation pattern indeterminacy. A very large number of possible muscle force combinations will satisfy a particular functional task. This makes predicting physiological muscle recruitment patterns difficult. Here we describe in detail the process of development of a complex multibody computer model of a primate skull (Macaca fascicularis), that aims to predict muscle recruitment patterns during biting. Using optimisation criteria based on minimisation of muscle stress we predict working to balancing side muscle force ratios, peak bite forces, and joint reaction forces during unilateral biting. Validation of such models is problematic; however we have shown comparable working to balancing muscle activity and TMJ reaction ratios during biting to those observed in vivo and that peak predicted bite forces compare well to published experimental data. To our knowledge the complexity of the musculoskeletal model is greater than any previously reported for a primate. This complexity, when compared to more simple representations provides more nuanced insights into the functioning of masticatory muscles. Thus, we have shown muscle activity to vary throughout individual muscle groups, which enables them to function optimally during specific masticatory tasks. This model will be utilised in future studies into the functioning of the masticatory apparatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. FRAX® International Task Force of the 2010 Joint International Society for Clinical Densitometry & International Osteoporosis Foundation Position Development Conference.

    PubMed

    Cauley, Jane A; El-Hajj Fuleihan, Ghada; Luckey, Marjorie M

    2011-01-01

    Osteoporosis is a serious worldwide epidemic. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors and femoral neck BMD and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. The International Society for Clinical Densitometry (ISCD) in conjunction with the International Osteoporosis Foundation (IOF) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX® usage. As part of the process, the charge of the FRAX® International Task Force was to review and synthesize data regarding geographic and race/ethnic variability in hip fractures, non-hip osteoporotic fractures, and make recommendations about the use of FRAX® in ethnic groups and countries without a FRAX® calculator. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the International Task Force composition and charge is presented here. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  19. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  20. Science Education and Public Outreach in Asia - experiences in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2006-12-01

    ACCENT is the European Network of Excellence in Atmospheric Composition Change (www.accent- network.org). Its Task Training and Education aims at disseminating ACCENT results to a variety of target groups, including emerging countries. Until now, fellowships have been offered for early-career scientists to participate in European science training events. A teacher training workshop has concentrated on cross- cultural aspects of PhD supervision. The involvement of new Associated Partners from Asia has triggered reflections on science education and outreach to politicians and the public in this part of the world. Joint educational and outreach programmes and products are currently developed with China and Mongolia for training activities scheduled in autumn 2006 and autumn 2007. First experiences in joint science education programmes for early-career scientists will be presented, and the challenges associated with communicating science to non-scientists in Asia will be discussed.

  1. Multi-view non-negative tensor factorization as relation learning in healthcare data.

    PubMed

    Hang Wu; Wang, May D

    2016-08-01

    Discovering patterns in co-occurrences data between objects and groups of concepts is a useful task in many domains, such as healthcare data analysis, information retrieval, and recommender systems. These relational representations come from objects' behaviors in different views, posing a challenging task of integrating information from these views to uncover the shared latent structures. The problem is further complicated by the high dimension of data and the large ratio of missing data. We propose a new paradigm of learning semantic relations using tensor factorization, by jointly factorizing multi-view tensors and searching for a consistent underlying semantic space across each views. We formulate the idea as an optimization problem and propose efficient optimization algorithms, with a special treatment of missing data as well as high-dimensional data. Experiments results show the potential and effectiveness of our algorithms.

  2. Evaluation of the walkable neighborhoods for seniors project in Sacramento County.

    PubMed

    Hooker, Steven P; Cirill, Lisa A; Geraghty, Anne

    2009-07-01

    The Walkable Neighborhoods for Seniors project was implemented to foster the creation and promotion of safe and accessible neighborhood walking routes for seniors. This article describes a case study of the efforts put forth by a local task force jointly managed by the Sacramento County Department of Health Services and WALK Sacramento. To facilitate environmental and policy changes that would enable and encourage walking by older adults, these local lead agencies implemented several strategies including organizing a community task force with broad professional and civic representation, conducting environmental audits of selected walking routes, creating walking groups, and advocating for environmental and policy change. Evaluation processes yield information on successes, challenges, and lessons learned that could be applied to similar efforts undertaken by community organizations to improve the walkability of neighborhoods for older adults.

  3. Approaches to dealing with meteoroid and orbital debris protection on the Space Station

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1990-01-01

    Viewgraphs and discussion on approaches to dealing with meteoroid and orbital debris protection on the space station are presented. The National Space Policy of February, 1988, included the following: 'All sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments, and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness.' The policy also tasked the National Security Council, which established an Interagency Group, which in turn produced an Interagency Report. NASA and DoD tasks to establish a joint plan to determine techniques to measure the environment, and techniques to reduce the environment are addressed. Topics covered include: orbital debris environment, meteoroids, orbital debris population, cataloged earth satellite population, USSPACECOM cataloged objects, and orbital debris radar program.

  4. 76 FR 49527 - Joint Motor Carrier Safety Advisory Committee and Medical Review Board Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Task 11-03, regarding the Agency's Cross Border Trucking Pilot Program, will meet. Copies of all MCSAC... Trucking Pilot Program Task The MCSAC Subcommittee will continue its work on Task 11-03 concerning the... a meeting of the Cross-Border Trucking Pilot Program subcommittee. All three days of the meeting...

  5. Working Memory Integration Processes in Benign Childhood Epilepsy with Centrotemporal Spikes.

    PubMed

    Kárpáti, Judit; Donauer, Nándor; Somogyi, Eszter; Kónya, Anikó

    2015-12-01

    Benign epilepsy of childhood with centrotemporal spikes (BECTS) is the most frequent focal epilepsy in children; however, the pattern of affected memory processes remains controversial. Previous studies in BECTS imply deficits in complex working memory tasks, but not in simple modality-specific tasks. We studied working memory processes in children with BECTS by comparing performance in memory binding tasks of different complexities. We compared 17 children with BECTS (aged 6 to 13 years) to 17 healthy children matched for age, sex, and intelligence quotient. We measured spatial and verbal memory components separately and jointly on three single-binding tasks (binding of what and where; what and when; and where and when) and a combined-binding task (integration of what, where, and when). We also evaluated basic visuospatial memory functions with subtests of the Children's Memory Scale, and intellectual abilities with verbal tasks of the Wechsler Intelligence Scale for Children-Fourth Edition and the Raven Progressive Matrices. We found no difference between the BECTS and control groups in single-binding tasks; however, the children with BECTS performed significantly worse on the combined task, which included integration of spatial, verbal, and temporal information. We found no deficits in their intellectual abilities or basic visuospatial memory functions. Children with BECTS may have intact simple maintenance processes of working memory, but difficulty with high-level functions requiring attentional and executive resources. Our findings imply no specific memory dysfunction in BECTS, but suggest difficulties in integrating information within working memory, and possible frontal lobe disturbances.

  6. Comparison of range of motion and function of subjects with reverse anatomy Bayley-Walker shoulder replacement with those of normal subjects.

    PubMed

    Masjedi, Milad; Lovell, Cara; Johnson, Garth R

    2011-12-01

    Patients with rotator cuff tear and degenerative shoulder joint disease commonly experience severe pain and reduced performance during activities of daily living. A popular way to treat these patients is by means of reverse anatomy shoulder prosthesis. Studying the kinematics of subjects with reverse anatomy implant would be useful in order to gain knowledge about functionality of different designs. It is hypothesized that the kinematics of these subjects, in the absence of rotator cuff muscles, differs from that of normal subjects. In this study the upper limb kinematics of 12 subjects with a Bayley-Walker reverse anatomy shoulder prosthesis while performing tasks common in everyday activities and those that represent the range of motion was analyzed and compared to that of 12 normal subjects. Each patient also completed an Oxford Shoulder Score. Substantial reduction in the Bayley-Walker subjects' ranges of motion was observed compared to normal subjects. The mean abduction angle decreased from 109° (±20) for normal subjects to 64° (±25). A similar trend was observed during flexion and axial rotation tasks. Furthermore, the normal group showed less variable ranges of motion performing the standard tasks, whereas for the prosthetic group this varied greatly, which is likely to be dependent on muscle strength. Although the decreased range of motion was prominent, subjects were able to complete most of the tasks by compensating with their elbow and trunk. The most challenging task for Bayley-Walker subjects was lifting an object to head height. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Kinematic alterations of the lower limbs and pelvis during an ascending stairs task are associated with the degree of knee osteoarthritis severity.

    PubMed

    Gonçalves, Glaucia Helena; Selistre, Luiz Fernando Approbato; Petrella, Marina; Mattiello, Stela Márcia

    2017-03-01

    Individuals with knee osteoarthritis (OA) generally demonstrate great difficulty in ascending stairs. The strategies and compensations used by these individuals in stair activities have not been fully established. The purpose of this study was to investigate the joint kinematics of the pelvis, hip, knee and ankle throughout the gait cycle, in the sagittal and frontal planes, in individuals with mild and moderate knee OA, during an ascending stairs task. Thirty-one individuals with knee OA and 19 controls were subjected to clinical and radiographic analysis, divided into three groups: control, mild knee OA, and moderate knee OA. Participants answered a self-reported questionnaire, carried out performance-based tests, and their kinematic data were recorded during an ascending stairs task using an eight-camera Qualisys 3D-Motion analysis system. The individuals with moderate degrees of knee OA demonstrated kinematic alterations in the pelvis, hip, knee, and ankle in the sagittal plane. The individuals with mild degrees of knee OA demonstrated kinematic alterations of the hip in the frontal plane, and kinematic alterations of the ankle in the sagittal plane. The ascending stairs task allowed verification of meaningful information regarding gait strategies used by individuals with mild and moderate knee OA. The strategies of these two groups of individuals are different for this task, although more pronounced in individuals with moderate knee OA. The findings should be taken into account in the development of rehabilitation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of Stretching Combined With Ultrashort Wave Diathermy on Joint Function and Its Possible Mechanism in a Rabbit Knee Contracture Model.

    PubMed

    Zhang, Quan Bing; Zhou, Yun; Zhong, Hua Zhang; Liu, Yi

    2018-05-01

    The aim of this study was to investigate the therapeutic effect of stretching combined with ultrashort wave on joint contracture and explore its possible mechanism. Thirty-two rabbits underwent unilateral immobilization of a knee joint at full extension to cause joint contracture. At 6 wks after immobilization, the rabbits were randomly divided into the following four groups: natural recovery group, stretching treatment group, ultrashort wave treatment group, and combined treatment group. For comparison, eight control group animals of corresponding age were also examined. The effect of stretching and ultrashort wave treatment on joint contracture was assessed by measuring the joint range of motion, evaluating the collagen deposition of joint capsule and assessing the mRNA and protein levels for transforming growth factor β1 in the joint capsule. The combined treatment group led to the best recovery of joint function. The combined treatment with stretching and ultrashort wave was more effective than stretching or ultrashort wave treatment alone against the synovial thickening of suprapatellar joint capsule, the collagen deposition of anterior joint capsule, and the elevated expression of transforming growth factor β1 in the joint capsule. Stretching combined with ultrashort wave treatment was effective in improving joint range of motion, reducing the biomechanical, histological, and molecular manifestations of joint capsule fibrosis in a rabbit model of extending joint contracture.

  9. Effects of volitional spine stabilization on lifting task in recurrent low back pain population.

    PubMed

    Haddas, Ram; Yang, James; Lieberman, Isador

    2016-09-01

    To examine the influence of volitional preemptive abdominal contraction (VPAC) and recurrent low back pain (rLBP) on trunk mechanics and neuromuscular control during a symmetric lifting task. A 2 × 2 crossover mixed design was used to examine the effects of VPAC and group. Thirty-seven healthy individuals and 32 rLBP individuals performed symmetric box lifting trials with and without VPAC to a 1-m height table 3D trunk, pelvis, and hip joint angle and electromyographic magnitude variables were obtained. Selected variables were analyzed using ANOVA. The VPAC induced differences in joint kinematics and muscle activity in rLBP and healthy subjects during symmetric lifting. A significant two-way interaction effect was observed for the semitendinosus activity. The VPAC increased external oblique muscle activity, reduced erector spinae and multifidus muscles activity, and induced greater trunk flexion angle, greater trunk side flexion angle, and greater hip flexion angle, and decreased pelvis obliquity angle in both groups. In addition, the rLBP subjects presented with a reduced external oblique and gluteus maximus muscle activity, greater erector spinae and multifidus muscles activity, and greater pelvis posterior tilt angle. Our results provide evidence that a VPAC strategy performed during symmetric lifting may potentially reduce exposure to biomechanical factors that can contribute to lumbar spine injury. The hamstring muscles may play an important role in achieving pelvic balance during the lifting maneuver. Incorporating the VPAC during dynamic stressful activities appears to help improve sensorimotor control and facilitate positioning of the lower extremities and the pelvis, while protecting the lumbar spine.

  10. Changes in biomechanics and muscle activation in injured ballet dancers during a jump-land task with turnout (Sissonne Fermée).

    PubMed

    Lee, Hsing-Hsan; Lin, Chia-Wei; Wu, Hong-Wen; Wu, Tzu-Chuan; Lin, Cheng-Feng

    2012-01-01

    Large impact loading with abnormal muscle activity and motion patterns may contribute to lower extremity injuries in ballet dancers. Yet, few studies investigated the influence of injury on the ballet movement. The purpose of this study was to find the neuromuscular and biomechanical characteristics in dancers with and without ankle injury during a jump-landing Sissonne Fermée task. Twenty-two ballet dancers were recruited and divided into the injured group (n = 11) and the uninjured group (n = 11). They performed a ballet movement called "Sissonne Fermée" with reflective markers and electrodes attached to their lower extremities. Ground reaction force, joint kinematics, and muscle activity were measured. The injured dancers had greater peak ankle eversion but smaller hindfoot-to-tibial eversion angles. Also, the injured dancers had greater activity of the hamstring of the dominant leg and tibialis anterior of the non-dominant leg during the pre-landing phase. The injured dancers had greater tibialis anterior activity of the dominant leg but less muscle activity in the medial gastrocnemius of the non-dominant leg during the post-landing phase. The injured dancers had a greater co-contraction index in the non-dominant ankle and a lower loading rate. The higher co-contraction indices showed that the injured dancers required more muscle effort to control ankle stability. Furthermore, the injured dancers used a "load avoidance strategy" to protect themselves from re-injury. Neuromuscular control training of the ankle joint for ballet dancers to prevent injury is necessary.

  11. Acquisition of Joint Attention by a Developmental Learning Model based on Interactions between a Robot and a Caregiver

    NASA Astrophysics Data System (ADS)

    Nagai, Yukie; Asada, Minoru; Hosoda, Koh

    This paper presents a developmental learning model for joint attention between a robot and a human caregiver. The basic idea of the proposed model comes from the insight of the cognitive developmental science that the development can help the task learning. The model consists of a learning mechanism based on evaluation and two kinds of developmental mechanisms: a robot's development and a caregiver's one. The former means that the sensing and the actuating capabilities of the robot change from immaturity to maturity. On the other hand, the latter is defined as a process that the caregiver changes the task from easy situation to difficult one. These two developments are triggered by the learning progress. The experimental results show that the proposed model can accelerate the learning of joint attention owing to the caregiver's development. Furthermore, it is observed that the robot's development can improve the final task performance by reducing the internal representation in the learned neural network. The mechanisms that bring these effects to the learning are analyzed in line with the cognitive developmental science.

  12. Joint Command Support Through Workspace Analysis, Design and Optimization (Soutien du Commandement Interarmees au Moyen de L’Analyse, de la Conception et de L’Optimisation de L’Espace de Travail)

    DTIC Science & Technology

    2009-10-01

    WACC ); and • Joint Task Force (Games) Joint Operations Centre (GJOC). In May 2008, DRDC Toronto initiated two studies to support the workspace...Voice-over-IP WACC Whistler Area Command Centre DRDC Toronto TR 2009-100 39 Distribution list Document No.: DRDC CR 2009-028 LIST

  13. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    PubMed

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  14. Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers

    PubMed Central

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N.

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers. PMID:28694786

  15. Deficiencies in Indian Joint Operations

    DTIC Science & Technology

    2016-05-26

    Pakistan Navy escorted its oil tankers along the Makran Coast to avoid a naval engagement. The key tasks for Operation Talwar included preventing... Informatics plays a major role in ensuring that intelligence is available in time and in the desired form. The US Principles of Joint Operations59 1

  16. Effects of Subsensory Noise and Fatigue on Knee Landing and Cross-over Cutting Biomechanics in Male Athletes.

    PubMed

    Qu, Xingda; Jiang, Jianxin; Hu, Xinyao

    2018-06-01

    The objective of this study was to examine the effects of subsensory noise and fatigue on knee biomechanics during the athletic task of landing followed by cross-over cutting. A total of 32 healthy male athletes participated in the study. They were evenly divided into 2 groups: no fatigue group and fatigue group. Fatigue was induced to the lower extremity by a repetitive squatting exercise in the fatigue group. Subsensory noise was generated by linear miniature vibrators bilaterally placed around the knee joints. During data collection, the participants were instructed to perform landing followed by cross-over cutting in both the subsensory on and off conditions. Dependent variables were selected to assess knee biomechanics in the phases of landing and cross-over cutting, separately. Results showed that fatigue resulted in larger knee flexion during landing and larger knee internal rotation during cross-over cutting. Subsensory noise was found to reduce knee rotation impulse during cross-over cutting. These findings suggest that cross-over cutting is more dangerous than landing in the fatigue condition, and subsensory noise may lead to changes in knee biomechanics consistent with reduced risk of anterior cruciate ligament injuries, but the changes may be task-specific.

  17. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.

    PubMed

    Jenkyn, T R; Shultz, R; Giffin, J R; Birmingham, T B

    2010-02-01

    The weight-bearing in-vivo kinematics and kinetics of the talocrural joint, subtalar joint and joints of the foot were quantified using optical motion analysis. Twelve healthy subjects were studied during level walking and anticipated medial turns at self-selected pace. A multi-segment model of the foot using skin-mounted marker triads tracked four foot segments: the hindfoot, midfoot, lateral and medial forefoot. The lower leg and thigh were also tracked. Motion between each of the segments could occur in three degrees of rotational freedom, but only six inter-segmental motions were reported in this study: (1) talocrural dorsi-plantar-flexion, (2) subtalar inversion-eversion, (3) frontal plane hindfoot motion, (4) transverse plane hindfoot motion, (5) forefoot supination-pronation twisting and (6) the height-to-length ratio of the medial longitudinal arch. The motion at the subtalar joint during stance phase of walking (eversion then inversion) was reversed during a turning task (inversion then eversion). The external subtalar joint moment was also changed from a moderate eversion moment during walking to a larger inversion moment during the turn. The kinematics of the talocrural joint and the joints of the foot were similar between these two tasks. During a medial turn, the subtalar joint may act to maintain the motions in the foot and talocrural joint that occur during level walking. This is occurring despite the conspicuously different trajectory of the centre of mass of the body. This may allow the foot complex to maintain its function of energy absorption followed by energy return during stance phase that is best suited to level walking. Copyright 2009 Elsevier B.V. All rights reserved.

  18. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?

    PubMed Central

    Merad, Manelle; de Montalivet, Étienne; Touillet, Amélie; Martinet, Noël; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2018-01-01

    Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control. PMID:29456499

  20. An optimal resolved rate law for kindematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution was found to cause large joint rates in some case. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to nonplanar manipulators.

  1. Global and Regional Sea Level Rise Scenarios for the United States

    NASA Technical Reports Server (NTRS)

    Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris

    2017-01-01

    The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).

  2. Biomechanical Profiles When Towing a Sled and Wearing a Weighted Vest Once Cleared for Sports Post-ACL Reconstruction.

    PubMed

    Hartigan, Erin; Lawrence, Michael; Murray, Thomas; Shaw, Bernadette; Collins, Erin; Powers, Kaitlin; Townsend, James

    2016-09-01

    Though rehabilitation attempts to correct "stiff knee gait" and control for dynamic limb valgus after anterior cruciate ligament reconstruction (ACLR), impaired biomechanics often persist when an individual is cleared to return to sport (RTS). Reduced knee extension moments (KEMs) and knee flexion angles (KFAs) often continue. While at the hip, increased hip adduction angles (HADDAs) and hip internal rotation angles (HIRAs) often persist in spite of dynamic hip stabilization exercises. Sled towing and weighted vest tasks increase KEM and hip extension moments (HEMs) in healthy individuals, yet biomechanical profiles during these tasks after ACLR are unknown. Weighted gait will increase KEM, HEM, hip abduction moments (HABDMs), and hip external rotation moments (HERMs) and will not increase unwanted biomechanics (limb asymmetries, HIRA, HADDA) compared with normal gait. Controlled laboratory study. Level 4. Fourteen men and 24 women who were 5 to 12 months after ACLR, had no concomitant ligament injuries, and were cleared to RTS were recruited. Sexes were evaluated independently given the sex-specific incidence to ACL injury, reinjury, and gait responses to certain interventions. Joint moment impulses and peak angles over the first 25% of stance were compared between limbs and across tasks (eg, unweighted gait, sled 50% body weight [BW], and vest 50% BW). Men showed that weighted gait increased KEM, HEM, HERM, HADBM (vest only), HADDA, HIRA (sled only), and KFA. Asymmetrical KEM and KFA existed across tasks. Women showed that weighted gait increased KEM, HEM, HERM, HADBM (vest only), HFA (sled only), HADDA, and KFA. Asymmetrical KEM, HEM, HIRA, and KFA (sled only) existed across tasks. Weighted gait generally increased joint moments. Unwanted biomechanics were unique for each weighted gait task. Though joint moments increased, both tasks created unwanted biomechanics after ACLR. Persistent hip (women only) and KEM asymmetries across tasks when cleared to RTS are concerning given the relationship among these biomechanics and decreased functional performance. © 2016 The Author(s).

  3. To Determine if a Combined U.S. and Afghanistan Military-Civilian Counter-Narcotics Joint Task Force Should Be Created to Support the Fight Against Counterinsurgencies in the Afghan Theater of War

    DTIC Science & Technology

    2011-06-10

    AFGHAN THEATER OF WAR, by Major Keith W. Alfeiri, 88 pages. The opium trade is a major funding source for the insurgency in Afghanistan. The Afghan...joint task force should be created to support the fight against counterinsurgencies in the Afghan theater of war. The drug trade has often been used to...remains that drugs fund terrorism and insurgents as the money flows between the drug trade and insurgents. According to a United Nations (UN

  4. The joint effects of personality and workplace social exchange relationships in predicting task performance and citizenship performance.

    PubMed

    Kamdar, Dishan; Van Dyne, Linn

    2007-09-01

    This field study examines the joint effects of social exchange relationships at work (leader-member exchange and team-member exchange) and employee personality (conscientiousness and agreeableness) in predicting task performance and citizenship performance. Consistent with trait activation theory, matched data on 230 employees, their coworkers, and their supervisors demonstrated interactions in which high quality social exchange relationships weakened the positive relationships between personality and performance. Results demonstrate the benefits of consonant predictions in which predictors and outcomes are matched on the basis of specific targets. We discuss theoretical and practical implications. (c) 2007 APA.

  5. Bilateral ground reaction forces and joint moments for lateral sidestepping and crossover stepping tasks

    PubMed Central

    Kuntze, Gregor; Sellers, William I.; Mansfield, Neil

    2009-01-01

    Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of overuse injuryThe leading and trailing limbs perform distinct roles, acting as a generator of vertical force and shock absorber respectively.This distinct contribution may contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. PMID:24150549

  6. Empirical Analysis of Human Capital, Learning Culture, and Knowledge Management as Antecedents to Organizational Performance: Theoretical and Practical Implications for Logistics Readiness Officer Force Development

    DTIC Science & Technology

    2014-03-27

    Much of the DoD’s force shaping problems in the active duty military stem from the way in which it chose to absorb the force reductions at the end...indicated the need for more joint oriented education and training to help them in the performance of their primary duties. CLL 016 (Joint Logistics... CLL 054 (Joint Task Force Port Opening) and CLL 055 (Joint Deployment and Distribution Performance Metrics Framework) all received high potential

  7. A Framework for a Supervisory Expert System for Robotic Manipulators with Joint-Position Limits and Joint-Rate Limits

    NASA Technical Reports Server (NTRS)

    Mutambara, Arthur G. O.; Litt, Jonathan

    1998-01-01

    This report addresses the problem of path planning and control of robotic manipulators which have joint-position limits and joint-rate limits. The manipulators move autonomously and carry out variable tasks in a dynamic, unstructured and cluttered environment. The issue considered is whether the robotic manipulator can achieve all its tasks, and if it cannot, the objective is to identify the closest achievable goal. This problem is formalized and systematically solved for generic manipulators by using inverse kinematics and forward kinematics. Inverse kinematics are employed to define the subspace, workspace and constrained workspace, which are then used to identify when a task is not achievable. The closest achievable goal is obtained by determining weights for an optimal control redistribution scheme. These weights are quantified by using forward kinematics. Conditions leading to joint rate limits are identified, in particular it is established that all generic manipulators have singularities at the boundary of their workspace, while some have loci of singularities inside their workspace. Once the manipulator singularity is identified the command redistribution scheme is used to compute the closest achievable Cartesian velocities. Two examples are used to illustrate the use of the algorithm: A three link planar manipulator and the Unimation Puma 560. Implementation of the derived algorithm is effected by using a supervisory expert system to check whether the desired goal lies in the constrained workspace and if not, to evoke the redistribution scheme which determines the constraint relaxation between end effector position and orientation, and then computes optimal gains.

  8. Kinematics fingerprints of leader and follower role-taking during cooperative joint actions.

    PubMed

    Sacheli, Lucia Maria; Tidoni, Emmanuele; Pavone, Enea Francesco; Aglioti, Salvatore Maria; Candidi, Matteo

    2013-05-01

    Performing online complementary motor adjustments is quintessential to joint actions since it allows interacting people to coordinate efficiently and achieve a common goal. We sought to determine whether, during dyadic interactions, signaling strategies and simulative processes are differentially implemented on the basis of the interactional role played by each partner. To this aim, we recorded the kinematics of the right hand of pairs of individuals who were asked to grasp as synchronously as possible a bottle-shaped object according to an imitative or complementary action schedule. Task requirements implied an asymmetric role assignment so that participants performed the task acting either as (1) Leader (i.e., receiving auditory information regarding the goal of the task with indications about where to grasp the object) or (2) Follower (i.e., receiving instructions to coordinate their movements with their partner's by performing imitative or complementary actions). Results showed that, when acting as Leader, participants used signaling strategies to enhance the predictability of their movements. In particular, they selectively emphasized kinematic parameters and reduced movement variability to provide the partner with implicit cues regarding the action to be jointly performed. Thus, Leaders make their movements more "communicative" even when not explicitly instructed to do so. Moreover, only when acting in the role of Follower did participants tend to imitate the Leader, even in complementary actions where imitation is detrimental to joint performance. Our results show that mimicking and signaling are implemented in joint actions according to the interactional role of the agent, which in turn is reflected in the kinematics of each partner.

  9. Environmental assessment and exposure reduction of cockroaches: A practice parameter

    PubMed Central

    Portnoy, Jay; Chew, Ginger L.; Phipatanakul, Wanda; Williams, P. Brock; Grimes, Carl; Kennedy, Kevin; Matsui, Elizabeth C.; Miller, J. David; Bernstein, David; Blessing-Moore, Joann; Cox, Linda; Khan, David; Lang, David; Nicklas, Richard; Oppenheimer, John; Randolph, Christopher; Schuller, Diane; Spector, Sheldon; Tilles, Stephen A.; Wallace, Dana; Seltzer, James; Sublett, James

    2013-01-01

    This parameter was developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the joint Council of Allergy, Asthma & Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing “Environmental assessment and remediation: a practice parameter.” This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single person, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). PMID:23938214

  10. Investigating the Effects of Planning on L2 Text Chat Performance

    ERIC Educational Resources Information Center

    Hsu, Hsiu-Chen

    2012-01-01

    Over the last decade, a small body of SLA research has examined the effects of task planning on L2 production. This research has revealed positive results concerning the effect of pre-task and online planning on oral and written production. However, no studies to date have investigated the joint effects of pre-task and online planning. In…

  11. Reading Aloud Is Not Automatic: Processing Capacity Is Required to Generate a Phonological Code from Print

    ERIC Educational Resources Information Center

    Reynolds, Michael; Besner, Derek

    2006-01-01

    The present experiments tested the claim that phonological recoding occurs "automatically" by assessing whether it uses central attention in the context of the psychological refractory period paradigm. Task 1 was a tone discrimination task and Task 2 was reading aloud. The joint effects of long-lag word repetition priming and stimulus onset…

  12. Joint Task Force-Bravo

    Science.gov Websites

    Air Base Squadron Joint Security Forces Medical Element (MEDEL) JSB / ARFOR En Español Noticias Hojas to provide medical care in Waspam Call to Duty - Senior Airman Nicholas Carssow Operations Support JTF-Bravo partners with Nicaragua to provide medical care in Waspam JTF-Bravo partners with Nicaragua

  13. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  14. Testosterone and Cortisol Jointly Predict the Ambiguity Premium in an Ellsberg-Urns Experiment.

    PubMed

    Danese, Giuseppe; Fernandes, Eugénia; Watson, Neil V; Zilioli, Samuele

    2017-01-01

    Previous literature has tried to establish whether and how steroid hormones are related to economic risk-taking. In this study, we investigate the relationship between testosterone (T) and cortisol (C) on one side and attitudes toward risk and ambiguity on the other. We asked 78 male undergraduate students to complete several tasks and provide two saliva samples. In the task "Reveal the Bag," participants expressed their beliefs on an ambiguous situation in an incentivized framework. In the task "Ellsberg Bags," we elicited from the participants through an incentive-compatible mechanism the reservation prices for a risky bet and an ambiguous bet. We used the difference between the two prices to calculate each participant's ambiguity premium. We found that participants' salivary T and C levels jointly predicted the ambiguity premium. Participants featuring comparatively lower levels of T and C showed the highest levels of ambiguity aversion. The beliefs expressed by a subset of participants in the "Reveal the Bag" task rationalize (in a revealed preference sense) their choices in the "Ellsberg Bags" task.

  15. Testosterone and Cortisol Jointly Predict the Ambiguity Premium in an Ellsberg-Urns Experiment

    PubMed Central

    Danese, Giuseppe; Fernandes, Eugénia; Watson, Neil V.; Zilioli, Samuele

    2017-01-01

    Previous literature has tried to establish whether and how steroid hormones are related to economic risk-taking. In this study, we investigate the relationship between testosterone (T) and cortisol (C) on one side and attitudes toward risk and ambiguity on the other. We asked 78 male undergraduate students to complete several tasks and provide two saliva samples. In the task “Reveal the Bag,” participants expressed their beliefs on an ambiguous situation in an incentivized framework. In the task “Ellsberg Bags,” we elicited from the participants through an incentive-compatible mechanism the reservation prices for a risky bet and an ambiguous bet. We used the difference between the two prices to calculate each participant's ambiguity premium. We found that participants' salivary T and C levels jointly predicted the ambiguity premium. Participants featuring comparatively lower levels of T and C showed the highest levels of ambiguity aversion. The beliefs expressed by a subset of participants in the “Reveal the Bag” task rationalize (in a revealed preference sense) their choices in the “Ellsberg Bags” task. PMID:28484379

  16. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load.

    PubMed

    Mokhtarinia, Hamid Reza; Sanjari, Mohammad Ali; Chehrehrazi, Mahshid; Kahrizi, Sedigheh; Parnianpour, Mohamad

    2016-02-01

    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and pelvis-thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p=0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p=.008) and Group by Symmetry by Velocity (p=.03) for the DP of pelvis-thigh and lumbar-pelvis couplings, respectively. Asymmetric (p<0.001) and loaded (p=0.04) conditions caused less in-phase coordination. Coordination variability was higher during asymmetric and low velocity conditions (p<0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion-extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion-extension task. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors

    PubMed Central

    Wen, Tanya; Hsieh, Shulan

    2015-01-01

    Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor’s response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human. PMID:26388760

  18. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors.

    PubMed

    Wen, Tanya; Hsieh, Shulan

    2015-01-01

    Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor's response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human.

  19. Inter-joint coordination strategies during unilateral stance 6-months following first-time lateral ankle sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn

    2015-02-01

    Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants, 6-months after they sustained an acute, first-time lateral ankle sprain in comparison to a control group. Sixty-nine participants with a 6-month history of first-time lateral ankle sprain and 20 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-dimensional kinematic data for similarity in the aim of establishing patterns of lower-limb inter-joint coordination. The fractal dimension of the stance limb centre of pressure path was also calculated. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2, and in the fractal dimension of the centre-of-pressure path for condition 2 only. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.15 [0.14] vs 0.06 [0.04]; η(2)=.19; sagittal/transverse plane: 0.14 [0.11] vs 0.09 [0.05]; η(2)=0.14) and condition 2 (sagittal/frontal plane: 0.15 [0.12] vs 0.08 [0.06]; η(2)=0.23), with an associated decrease in the fractal dimension of the centre-of-pressure path (injured limb: 1.23 [0.13] vs 1.36 [0.13]; η(2)=0.20). Participants with a 6-month history of first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Baking together-the coordination of actions in activities involving people with dementia.

    PubMed

    Majlesi, Ali Reza; Ekström, Anna

    2016-08-01

    This study explores interaction and collaboration between people with dementia and their spouses in relation to the performance of household chores with the focus on instruction as an interactional context to engage the person with dementia in collaboration to accomplish joint activities. Dementia is generally associated with pathological changes in people's cognitive functions such as diminishing memory functions, communicative abilities and also diminishing abilities to take initiative as well as to plan and execute tasks. Using video recordings of everyday naturally occurring activities, we analyze the sequential organization of actions (see Schegloff, 2007) oriented toward the accomplishment of a joint multi-task activity of baking. The analysis shows the specific ways of collaboration through instructional activities in which the person with dementia exhibits his competence and skills in accomplishing the given tasks through negotiating the instructions with his partner and carrying out instructed actions. Although the driving force of the collaboration seems to be a series of directive sequences only initiated by the partner throughout the baking activity, our analyses highlight how the person with dementia can actively use the material environment-including collaborating partners-to compensate for challenges and difficulties encountered in achieving everyday tasks. The sequential organization of instructions and instructed actions are in this sense argued to provide an interactional environment wherein the person with dementia can make contributions to the joint activity in an efficient way. While a collaborator has been described as necessary for a person with dementia to be able to partake in activities, this study shows that people with dementia are not only guided by their collaborators in joint activities but they can also actively use their collaborators in intricate compensatory ways. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Shoulder Kinematics and Spatial Pattern of Trapezius Electromyographic Activity in Real and Virtual Environments

    PubMed Central

    Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal

    2015-01-01

    The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform. PMID:25768123

  2. Monitoring Human Performance During Suited Operations: A Technology Feasibility Study Using EMU Gloves

    NASA Technical Reports Server (NTRS)

    Bekdash, Omar; Norcross, Jason; McFarland, Shane

    2015-01-01

    Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.

  3. A Common Foundation of Information and Analytical Capability for AFSPC Decision Making

    DTIC Science & Technology

    2005-06-23

    System Strategic Master Plan MAPs/MSP CRRAAF TASK FORCE CONOPS MUA Task Weights Engagement Analysis ASIIS Optimization ACEIT COST Analysis...Engangement Architecture Analysis Architecture MUA AFSPC POM S&T Planning Military Utility Analysis ACEIT COST Analysis Joint Capab Integ Develop System

  4. Developmental Inter-Relationships Among Concrete Operational Tasks: An Investigation of Piaget's Stage Concept

    ERIC Educational Resources Information Center

    Jamison, Wesley

    1977-01-01

    Two models of intertask relations, Wohlwill's divergent-decalage and reciprocal-interaction patterns, were evaluated for their fit to cross-classification tables which showed the joint classification of 101 children's performance on all possible pairs of eight concrete operational tasks. (SB)

  5. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whethermore » a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.« less

  6. Influence of rotator cuff tears on glenohumeral stability during abduction tasks.

    PubMed

    Hölscher, Thomas; Weber, Tim; Lazarev, Igor; Englert, Carsten; Dendorfer, Sebastian

    2016-09-01

    One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision-making. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1628-1635, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Joint attention studies in normal and autistic children using NIRS

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha

    2011-03-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  8. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  9. Assessment of patient functional performance in different knee arthroplasty designs during unconstrained squat

    PubMed Central

    Verdini, Federica; Zara, Claudio; Leo, Tommaso; Mengarelli, Alessandro; Cardarelli, Stefano; Innocenti, Bernardo

    2017-01-01

    Summary Background In this paper, squat named by Authors unconstrained because performed without constrains related to feet position, speed, knee maximum angle to be reached, was tested as motor task revealing differences in functional performance after knee arthroplasty. It involves large joints ranges of motion, does not compromise joint safety and requires accurate control strategies to maintain balance. Methods Motion capture techniques were used to study squat on a healthy control group (CTR) and on three groups, each characterised by a specific knee arthroplasty design: a Total Knee Arthroplasty (TKA), a Mobile Bearing and a Fixed Bearing Unicompartmental Knee Arthroplasty (respectively MBUA and FBUA). Squat was analysed during descent, maintenance and ascent phase and described by speed, angular kinematics of lower and upper body, the Center of Pressure (CoP) trajectory and muscle activation timing of quadriceps and biceps femoris. Results Compared to CTR, for TKA and MBUA knee maximum flexion was lower, vertical speed during descent and ascent reduced and the duration of whole movement was longer. CoP mean distance was higher for all arthroplasty groups during descent as higher was, CoP mean velocity for MBUA and TKA during ascent and descent. Conclusions Unconstrained squat is able to reveal differences in the functional performance among control and arthroplasty groups and between different arthroplasty designs. Considering the similarity index calculated for the variables showing statistically significance, FBUA performance appears to be closest to that of the CTR group. Level of evidence III a. PMID:29387646

  10. Controlled, cross-sectional MRI evaluation of joint status in severe haemophilia A patients treated with prophylaxis vs. on demand

    PubMed Central

    Oldenburg, J; Zimmermann, R; Katsarou, O; Theodossiades, G; Zanon, E; Niemann, B; Kellermann, E; Lundin, B

    2015-01-01

    In patients with haemophilia A, factor VIII (FVIII) prophylaxis reduces bleeding frequency and joint damage compared with on-demand therapy. To assess the effect of prophylaxis initiation age, magnetic resonance imaging (MRI) was used to evaluate bone and cartilage damage in patients with severe haemophilia A. In this cross-sectional, multinational investigation, patients aged 12–35 years were assigned to 1 of 5 groups: primary prophylaxis started at age <2 years (group 1); secondary prophylaxis started at age 2 to <6 years (group 2), 6 to <12 years (group 3), or 12−18 years (group 4); or on-demand treatment (group 5). Joint status at ankles and knees was assessed using Compatible Additive MRI scoring (maximum and mean ankle; maximum and mean of all 4 joints) and Gilbert scores in the per-protocol population (n = 118). All prophylaxis groups had better MRI joint scores than the on-demand group. MRI scores generally increased with current patient age and later start of prophylaxis. Ankles were the most affected joints. In group 1 patients currently aged 27−35 years, the median of maximum ankle scores was 0.0; corresponding values in groups 4 and 5 were 17.0 and 18.0, respectively [medians of mean index joint scores: 0.0 (group 1), 8.1 (group 2) and 13.8 (group 4)]. Gilbert scores revealed outcomes less pronounced than MRI scores. MRI scores identified pathologic joint status with high sensitivity. Prophylaxis groups had lower annualized joint bleeds and MRI scores vs. the on-demand group. Primary prophylaxis demonstrated protective effects against joint deterioration compared with secondary prophylaxis. PMID:25470205

  11. An optimal resolved rate law for kinematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.

  12. Facet joint disturbance induced by miniscrews in plated cervical laminoplasty

    PubMed Central

    Chen, Hua; Li, Huibo; Wang, Beiyu; Li, Tao; Gong, Quan; Song, Yueming; Liu, Hao

    2016-01-01

    Abstract A retrospective cohort study. Plated cervical laminoplasty is an increasingly common technique. A unique facet joint disturbance induced by lateral mass miniscrews penetrating articular surface was noticed. Facet joints are important to maintain cervical spine stability and kinetic balance. Whether this facet joint disturbance could affect clinical and radiologic results is still unknown. The objective of this study is to investigate the clinical and radiologic outcomes of patients with facet joints disturbance induced by miniscrews in plated cervical laminoplasty. A total of 105 patients who underwent cervical laminoplasty with miniplate fixation between May 2010 and February 2014 were comprised. Postoperative CT images were used to identify whether facet joints destroyed by miniscrews. According to facet joints destroyed number, all the patients were divided into: group A (none facet joint destroyed), group B (1–2 facet joints destroyed), and group C (≥3 facet joints destroyed). Clinical data (JOA, VAS, and NDI scores), radiologic data (anteroposterior diameter and Palov ratio), and complications (axial symptoms and C5 palsy) were evaluated and compared among the groups. There were 38, 40, and 27 patients in group A, B, and C, respectively. The overall facet joints destroyed rate was 30.7%. All groups gained significant JOA and NDI scores improvement postoperatively. The preoperative JOA, VAS, NDI scores, and postoperative JOA scores did not differ significantly among the groups. The group C recorded significant higher postoperative VAS scores than group A (P = 0.002) and B (P = 0.014) and had significant higher postoperative NDI scores than group A (P = 0.002). The pre- and postoperative radiologic data were not significant different among the groups. The group C had a significant higher axial symptoms incidence than group A (12/27 vs 8/38, P = 0.041). Facet joints disturbance caused by miniscrews in plated cervical laminoplasty may not influence neurological recovery and spinal canal expansion, but may negatively affect postoperative axial symptoms. PMID:27661016

  13. Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Logan, Gordon D.

    2009-01-01

    How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…

  14. Joint Terminal Attack Controllers Sensors and Lasers Modernization

    DTIC Science & Technology

    2012-09-01

    and Evaluation Activity MCSC Marine Corps Systems Command MCT Marine Corps Task MCTL Marine Corps Task List MEMS MicroElectroMechanical Systems...functional relationship of the key performance requirements was associated to Marine Corps Tasks ( MCT ), Critical Operational Issues (COIs...to an accomplishment of mission objectives and achievement of desired results [5]. All COIs are linked to a MCT , which are provided within the

  15. Biomechanical Analyses of Stair-climbing while Dual-tasking

    PubMed Central

    Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas

    2015-01-01

    Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590

  16. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  17. Concept of Operations for the Establishment of the Joint Pathology Center

    DTIC Science & Technology

    2008-12-19

    the Joint Task Force National Capital Region Medical (JTF CapMed ) in collaboration with the Uniformed Services University of Health Sciences (USUHS...Medical Examiner (OAFME). The Board deems the identification of appropriate support for the OAFME as critical , since with the disestablishment of...the DoD. The establishment of the JPC within JTF CapMed is a logical choice to the extent that JTF Cap Med is a joint medical organization and can

  18. Joint Duty Prerequisite for Promotion to 07 (Brigadier General

    DTIC Science & Technology

    1989-03-13

    NUMBER)(O LTC Julius E. Coats, Jr. 9. PERFORMING ORGANIZATIN NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. tASK U.S. Army War College AREA 4 WORK...new personnel policy; to wit, the Army leadership at all levels should view joint duty re- quirement for selection for flag officer with a positive...the Army leadership at all levels should view joint duty requirement for selection for flag officer with a positive attitude, not as a means for

  19. Infection-Associated Clinical Outcomes in Hospitalized Medical Evacuees After Traumatic Injury: Trauma Infectious Disease Outcome Study

    DTIC Science & Technology

    2011-07-01

    tissue) or systemic inflammation (fever, leukocytes 12,000/L, elevated C-reactive protein, or elevated erythrocyte sedimentation rate ) or all...elevated erythrocyte sedimentation rate ). Joint/bursa infection Definite: organisms cultured from joint fluid/synovial biopsy or evidence of joint/bursa...McDonald J., Murray C. K., 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United

  20. Shaping the National Guard in a Post-War Environment

    DTIC Science & Technology

    2012-09-01

    IRR Individual Ready Reserve xiv JCS Joint Chiefs of Staff JFHQ Joint Forces Headquarters JTF Joint Task Force LAPD Los Angeles ... changing -of- the -guard/. 35 budget is a mirror of 2010, with future budgets projected to be capped at 2009 levels . In a troubled economy, DoD is...thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol

  1. 77 FR 14584 - Eleventh Meeting: RTCA Special Committee 217, Joint With EUROCAE Working Group-44, Terrain and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Committee 217, Joint With EUROCAE Working Group--44, Terrain and Airport Mapping Databases AGENCY: Federal... Special Committee 217, Joint with EUROCAE Working Group--44, Terrain and Airport Mapping Databases... Committee 217, Joint with EUROCAE Working Group--44, Terrain and Airport Mapping Databases. DATES: The...

  2. The role of vision, speed, and attention in overcoming directional biases during arm movements.

    PubMed

    Dounskaia, Natalia; Goble, Jacob A

    2011-03-01

    Previous research has revealed directional biases (preferences to select movements in specific directions) during horizontal arm movements with the use of a free-stroke drawing task. The biases were interpreted as a result of a tendency to generate motion at either the shoulder or elbow (leading joint) and move the other (subordinate) joint predominantly passively to avoid neural effort for control of interaction torque. Here, we examined influence of vision, movement speed, and attention on the directional biases. Participants performed the free-stroke drawing task, producing center-out strokes in randomly selected directions. Movements were performed with and without vision and at comfortable and fast pace. A secondary, cognitive task was used to distract attention. Preferred directions remained the same in all conditions. Bias strength mildly increased without vision, especially during fast movements. Striking increases in bias strength were caused by the secondary task, pointing to additional cognitive load associated with selection of movements in the non-preferred directions. Further analyses demonstrated that the tendency to minimize active interference with interaction torque at the subordinate joint matched directional biases in all conditions. This match supports the explanation of directional biases as a result of a tendency to minimize neural effort for interaction torque control. The cognitive load may enhance this tendency in two ways, directly, by reducing neural capacity for interaction torque control, and indirectly, by decreasing capacity of working memory that stores visited directions. The obtained results suggest strong directional biases during daily activities because natural arm movements usually subserve cognitive tasks.

  3. The development of contact force construction in the dynamic-contact task of cycling [corrected].

    PubMed

    Brown, Nicholas A T; Jensen, Jody L

    2003-01-01

    Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.

  4. Discriminating Schizophrenia and Bipolar Disorder by Fusing FMRI and DTI in A Multimodal CCA+ Joint ICA Model

    PubMed Central

    Sui, Jing; Pearlson, Godfrey; Adali, Tülay; Kiehl, Kent A.; Caprihan, Arvind; Liu, Jingyu; Yamamoto, Jeremy; Calhoun, Vince D.

    2011-01-01

    Diverse structural and functional brain alterations have been identified in both schizophrenia and bipolar disorder, but with variable replicability, significant overlap and often in limited number of subjects. In this paper, we aimed to clarify differences between bipolar disorder and schizophrenia by combining fMRI (collected during an auditory oddball task) and diffusion tensor imaging (DTI) data. We proposed a fusion method, “multimodal CCA+ joint ICA’, which increases flexibility in statistical assumptions beyond existing approaches and can achieve higher estimation accuracy. The data collected from 164 participants (62 healthy controls, 54 schizophrenia and 48 bipolar) were extracted into “features” (contrast maps for fMRI and fractional anisotropy (FA) for DTI) and analyzed in multiple facets to investigate the group differences for each pair-wised groups and each modality. Specifically, both patient groups shared significant dysfunction in dorsolateral prefrontal cortex and thalamus, as well as reduced white matter (WM) integrity in anterior thalamic radiation and uncinate fasciculus. Schizophrenia and bipolar subjects were separated by functional differences in medial frontal and visual cortex, as well as WM tracts associated with occipital and frontal lobes. Both patients and controls showed similar spatial distributions in motor and parietal regions, but exhibited significant variations in temporal lobe. Furthermore, there were different group trends for age effects on loading parameters in motor cortex and multiple WM regions, suggesting brain dysfunction and WM disruptions occurred in identified regions for both disorders. Most importantly, we can visualize an underlying function-structure network by evaluating the joint components with strong links between DTI and fMRI. Our findings suggest that although the two patient groups showed several distinct brain patterns from each other and healthy controls, they also shared common abnormalities in prefrontal thalamic WM integrity and in frontal brain mechanisms. PMID:21640835

  5. Chernobyl Studies Project: Working group 7.0, Environmental transport and health effects. Progress report, March--September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anspaugh, L.R.; Hendrickson, S.M.

    1994-12-01

    In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as farmore » as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.« less

  6. Joint Attention, Self-Recognition, and Neurocognitive Function in Toddlers

    ERIC Educational Resources Information Center

    Nichols, Kate E.; Fox, Nathan; Mundy, Peter

    2005-01-01

    Recent studies have attempted to understand the processes involved in joint attention because of its relevance to both atypical and normal development. Data from a recent study of young children with autism suggests that performance on a delay nonmatch to sample (DNMS) task associated with ventromedial prefrontal functions, but not an…

  7. Declarative Joint Attention as a Foundation of Theory of Mind

    ERIC Educational Resources Information Center

    Sodian, Beate; Kristen-Antonow, Susanne

    2015-01-01

    Theories of social-cognitive development have attributed a foundational role to declarative joint attention. The present longitudinal study of 83 children, who were assessed on a battery of social-cognitive tasks at multiple measurement points from the age of 12 to 50 months, tested a predictive model of theory of mind (false-belief…

  8. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    ERIC Educational Resources Information Center

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  9. Joint Tactics, Techniques, and Procedures for Joint Special Operations Task Force Operations

    DTIC Science & Technology

    2001-12-19

    phase? Is a ration cycle proposed? •• Are fresh eggs, fresh fruits and vegetables, fresh meats, juices, milk , and canned soft-drink supplements to ration...measures designed to mislead the enemy by manipulation, distortion, or falsification of evidence to induce the enemy to react in a manner prejudicial to

  10. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  11. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    NASA Technical Reports Server (NTRS)

    Sanders, Adam M. (Inventor); Quillin, Nathaniel (Inventor); Platt, Robert J., Jr. (Inventor); Pfeiffer, Joseph (Inventor); Permenter, Frank Noble (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  12. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].

    PubMed

    Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S

    2008-01-01

    We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.

  13. From Conception to Birth: The Forces Responsible for AFCyber’s Evolution

    DTIC Science & Technology

    2014-06-01

    matter how good or bad my days were – and I experienced a fair number of both during the 11-month course – she provided a shoulder to cry on, a...Robert J.  Lamb , “Joint Task Force for Computer Network Defense,” IA Newsletter, Winter 98/99,  Vol 2, No. 3, http://www.iwar.org.uk/infocon/dtic‐ia...Future of Warfare.” Real Clear Defense, 24 February 2014. Lamb , Robert J. “Joint Task Force for Computer Network Defense.” IA Newsletter, Winter 98

  14. Energy flow during Olympic weight lifting.

    PubMed

    Garhammer, J

    1982-01-01

    Data obtained from 16-mm film of world caliber Olympic weight lifters performing at major competitions were analyzed to study energy changes during body segment and barbell movements, energy transfer to the barbell, and energy transfer between segments during the lifting movements contested. Determination of barbell and body segment kinematics and use of rigid-link modeling and energy flow techniques permitted the calculation of segment energy content and energy transfer between segments. Energy generation within and transfer to and from segments were determined at 0.04-s intervals by comparing mechanical energy changes of a segment with energy transfer at the joints, calculated from the scalar product of net joint force with absolute joint velocity, and the product of net joint torque due to muscular activity with absolute segment angular velocity. The results provided a detailed understanding of the magnitude and temporal input of energy from dominant muscle groups during a lift. This information also provided a means of quantifying lifting technique. Comparison of segment energy changes determined by the two methods were satisfactory but could likely be improved by employing more sophisticated data smoothing methods. The procedures used in this study could easily be applied to weight training and rehabilitative exercises to help determine their efficacy in producing desired results or to ergonomic situations where a more detailed understanding of the demands made on the body during lifting tasks would be useful.

  15. Force sharing and other collaborative strategies in a dyadic force perception task

    PubMed Central

    Tatti, Fabio

    2018-01-01

    When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433

  16. Changes in performance over time while learning to use a myoelectric prosthesis

    PubMed Central

    2014-01-01

    Background Training increases the functional use of an upper limb prosthesis, but little is known about how people learn to use their prosthesis. The aim of this study was to describe the changes in performance with an upper limb myoelectric prosthesis during practice. The results provide a basis to develop an evidence-based training program. Methods Thirty-one able-bodied participants took part in an experiment as well as thirty-one age- and gender-matched controls. Participants in the experimental condition, randomly assigned to one of four groups, practiced with a myoelectric simulator for five sessions in a two-weeks period. Group 1 practiced direct grasping, Group 2 practiced indirect grasping, Group 3 practiced fixating, and Group 4 practiced a combination of all three tasks. The Southampton Hand Assessment Procedure (SHAP) was assessed in a pretest, posttest, and two retention tests. Participants in the control condition performed SHAP two times, two weeks apart with no practice in between. Compressible objects were used in the grasping tasks. Changes in end-point kinematics, joint angles, and grip force control, the latter measured by magnitude of object compression, were examined. Results The experimental groups improved more on SHAP than the control group. Interestingly, the fixation group improved comparable to the other training groups on the SHAP. Improvement in global position of the prosthesis leveled off after three practice sessions, whereas learning to control grip force required more time. The indirect grasping group had the smallest object compression in the beginning and this did not change over time, whereas the direct grasping and the combination group had a decrease in compression over time. Moreover, the indirect grasping group had the smallest grasping time that did not vary over object rigidity, while for the other two groups the grasping time decreased with an increase in object rigidity. Conclusions A training program should spend more time on learning fine control aspects of the prosthetic hand during rehabilitation. Moreover, training should start with the indirect grasping task that has the best performance, which is probably due to the higher amount of useful information available from the sound hand. PMID:24568148

  17. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  18. Altered joint moment strategy during stair walking in diabetes patients with and without peripheral neuropathy.

    PubMed

    Brown, Steven J; Handsaker, Joseph C; Maganaris, Constantinos N; Bowling, Frank L; Boulton, Andrew J M; Reeves, Neil D

    2016-05-01

    To investigate lower limb biomechanical strategy during stair walking in patients with diabetes and patients with diabetic peripheral neuropathy, a population known to exhibit lower limb muscular weakness. The peak lower limb joint moments of twenty-two patients with diabetic peripheral neuropathy and thirty-nine patients with diabetes and no neuropathy were compared during ascent and descent of a staircase to thirty-two healthy controls. Fifty-nine of the ninety-four participants also performed assessment of their maximum isokinetic ankle and knee joint moment (muscle strength) to assess the level of peak joint moments during the stair task relative to their maximal joint moment-generating capabilities (operating strengths). Both patient groups ascended and descended stairs slower than controls (p<0.05). Peak joint moments in patients with diabetic peripheral neuropathy were lower (p<0.05) at the ankle and knee during stair ascent, and knee only during stair descent compared to controls. Ankle and knee muscle strength values were lower (p<0.05) in patients with diabetic peripheral neuropathy compared to controls, and lower at knee only in patients without neuropathy. Operating strengths were higher (p<0.05) at the ankle and knee in patients with neuropathy during stair descent compared to the controls, but not during stair ascent. Patients with diabetic peripheral neuropathy walk slower to alter gait strategy during stair walking and account for lower-limb muscular weakness, but still exhibit heightened operating strengths during stair descent, which may impact upon fatigue and the ability to recover a safe stance following postural instability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. [Clinical observation on the effect of joint mobilization in treating elderly patients after distal radius fractures operation].

    PubMed

    Jia, Xue-Feng; Cai, Hong-Xin; Lin, Ge-Sheng; Fang, Ji-Shi; Wang, Yong; Wu, Zhi-Yong; Tu, Xu-Hui

    2017-07-25

    To investigate the effect of joint mobilization on postoperative wrist joint function, pain and grip strength for elderly patients with distal radius fracture. From January 2015 to June 2016, a total of 67 elderly patients with distal radius fracture were randomly divided into routine exercise group and joint mobilization group. Among them, 37 patients in the routine exercise group underwent conventional distal radius fracture postoperative joint function exercise regimen, including 16 males and 21 females with a mean age of (67.8±3.2) years old ranging from 60 to 72 years old;the injured side was dominant in 23 cases and non-dominant in 14 cases;injury mechanism was fall in 26 cases, traffic accident in 11 cases; for AO type, 6 cases were type B3, 18 cases were type C1, 7 cases were type C2, 6 cases was type C3. Other 30 patients in the joint mobilization group underwent joint mobilization on the basis of the routine exercise group including 14 males and 16 females with a mean age of (67.1±4.0) years old ranging from 61 to 74 years old; the injured side was dominant in 21 cases and non-dominant in 9 cases;injury mechanism was fall in 25 cases, traffic accident in 5 cases;for AO type, 8 cases were type B3, 13 cases were type C1, 6 cases were type C2, 9 cases were type C3. The wrist joint activity, Gartland-Werley wrist joint function score, VAS pain score and grip strength were observed at 3 months afrer treatment. After 3 months' treatment, the VAS in the routine exercise group was higher than that of the joint mobilization group ( P <0.05). The grip strength of affected side in both groups were lower than that of contralateral side, but the average grip strength of affected side in joint mobilization group was higher than that in routine exercise group( P <0.05). In routine exercise group, the average angle of flexion, extension, radial deviation were significantly higher than those of joint mobilization group( P <0.05). But ulnar deviation angle in routine exercise group compared with joint mobilization group had no significant difference ( P >0.05). In the comparison of each item of Gartland-Werley, there was no significant difference between two groups in residual deformity and complication( P >0.05); the average score of subjective score, objective score and total score in routine exercise group were significantly higher than those of the joint mobilization group ( P <0.05). The wrist function Gartland-Werley score in routine exercise group after treatment was excellent in 21 cases, good in 10, 6 in fair, while in joint mobilization group, excellent in 23, good in 6, fair in 1( P <0.05). The application of joint mobilization in the treatment of elderly patients with distal radius fracture can improve the joint activity and obtain better wrist function after surgery.

  20. Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data.

    PubMed

    Calhoun, V D; Adali, T; Giuliani, N R; Pekar, J J; Kiehl, K A; Pearlson, G D

    2006-01-01

    The acquisition of both structural MRI (sMRI) and functional MRI (fMRI) data for a given study is a very common practice. However, these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform independent component analysis across image modalities, specifically, gray matter images and fMRI activation images as well as a joint histogram visualization technique. Joint independent component analysis (jICA) is used to decompose a matrix with a given row consisting of an fMRI activation image resulting from auditory oddball target stimuli and an sMRI gray matter segmentation image, collected from the same individual. We analyzed data collected on a group of schizophrenia patients and healthy controls using the jICA approach. Spatially independent joint-components are estimated and resulting components were further analyzed only if they showed a significant difference between patients and controls. The main finding was that group differences in bilateral parietal and frontal as well as posterior temporal regions in gray matter were associated with bilateral temporal regions activated by the auditory oddball target stimuli. A finding of less patient gray matter and less hemodynamic activity for target detection in these bilateral anterior temporal lobe regions was consistent with previous work. An unexpected corollary to this finding was that, in the regions showing the largest group differences, gray matter concentrations were larger in patients vs. controls, suggesting that more gray matter may be related to less functional connectivity in the auditory oddball fMRI task. Hum Brain Mapp, 2005. (c) 2005 Wiley-Liss, Inc.

  1. Impacts Assessment of Dynamic Speed Harmonization with Queue Warning : Task 3, Impacts Assessment Report. [supporting datasets

    DOT National Transportation Integrated Search

    2015-05-31

    The datasets in the .pdf and .zip attached to this record are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-15-222, "Impacts Assessment of Dynamic Speed Harmonization with Queue Warning : Task 3, Impa...

  2. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury. © 2016 The Author(s).

  3. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    PubMed

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  4. Program of arithmetic improvement by means of cognitive enhancement: an intervention in children with special educational needs.

    PubMed

    Deaño, Manuel Deaño; Alfonso, Sonia; Das, Jagannath Prasad

    2015-03-01

    This study reports the cognitive and arithmetic improvement of a mathematical model based on the program PASS Remedial Program (PREP), which aims to improve specific cognitive processes underlying academic skills such as arithmetic. For this purpose, a group of 20 students from the last four grades of Primary Education was divided into two groups. One group (n=10) received training in the program and the other served as control. Students were assessed at pre and post intervention in the PASS cognitive processes (planning, attention, simultaneous and successive processing), general level of intelligence, and arithmetic performance in calculus and solving problems. Performance of children from the experimental group was significantly higher than that of the control group in cognitive process and arithmetic. This joint enhancement of cognitive and arithmetic processes was a result of the operationalization of training that promotes the encoding task, attention and planning, and learning by induction, mediation and verbalization. The implications of this are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Explaining interindividual differences in toddlers' collaboration with unfamiliar peers: individual, dyadic, and social factors

    PubMed Central

    Schuhmacher, Nils; Kärtner, Joscha

    2015-01-01

    During their third year of life, toddlers become increasingly skillful at coordinating their actions with peer partners and they form joint commitments in collaborative situations. However, little effort has been made to explain interindividual differences in collaboration among toddlers. Therefore, we examined the relative influence of distinct individual, dyadic, and social factors on toddlers' collaborative activities (i.e., level of coordination and preference for joint activity) in joint problem-solving situations with unfamiliar peer partners (n = 23 dyads aged M = 35.7 months). We analyzed the dyadic nonindependent data with mixed models. Results indicated that mothers' expectations regarding their children's social behaviors significantly predicted toddlers' level of coordination. Furthermore, the models revealed that toddlers' positive mutual experiences with the unfamiliar partner assessed during an initial free play period (Phase 1) and their level of coordination in an obligatory collaboration task (Phase 2) promoted toddlers' preference for joint activity in a subsequent optional collaboration task (Phase 3). In contrast, children's mastery motivation and shyness conflicted with their collaborative efforts. We discuss the role of parents' socialization goals in toddlers' development toward becoming active collaborators and discuss possible mechanisms underlying the differences in toddlers' commitment to joint activities, namely social preferences and the trust in reliable cooperation partners. PMID:25983696

  6. Shoulder joint loading and posture during medicine cart pushing task.

    PubMed

    Xu, Xu; Lin, Jia-Hua; Boyer, Jon

    2013-01-01

    Excessive physical loads and awkward shoulder postures during pushing and pulling are risk factors for shoulder pain. Pushing a medicine cart is a major component of a work shift for nurses and medical assistants in hospitals and other health care facilities. A laboratory experiment was conducted to examine the effects of common factors (e.g., lane congestion, cart load stability, floor surface friction) on shoulder joint moment and shoulder elevation angle of participants during cart pushing. Participants pushed a medicine cart on straight tracks and turning around right-angle corners. Peak shoulder joint moments reached 25.1 Nm, 20.3 Nm, and 26.8 Nm for initial, transition, and turning phases of the pushing tasks, indicating that shoulder joint loading while pushing a medical cart is comparable to levels previously reported from heavy manual activities encountered in industry (e.g., garbage collection). Also, except for user experience, all other main study factors, including congestion level, cart load stability, location of transition strip, shoulder tendency, surface friction, and handedness, significantly influenced shoulder joint moment and shoulder elevation angle. The findings provide a better understanding of shoulder exposures associated with medicine cart operations and may be helpful in designing and optimizing the physical environment where medicine carts are used.

  7. Rebuilding the Joint Airborne Forward Air Controller: Analyzing Joint Air Tasking Doctrine’s Ability to Facilitate Effective Air-Ground Integration

    DTIC Science & Technology

    2013-12-13

    Air Controller: An Analysis of Mosquito Operations in Korea Since the dawn of powered flight, airpower visionaries and land warfare stalwarts have...properly employed, this aid from the sky in assisting during an attack by our own troops or in repelling an attack or counterattack by the enemy greatly...proliferation of airborne Forward Air Controllers. The Mosquito Airborne Tactical Air Coordinator (TAC(A)) role, known as FAC(A) in modern joint

  8. Joint Vision 2010 Command and Control: A Case for Standing Joint Task Forces and Purple Aircraft Carriers

    DTIC Science & Technology

    1998-02-13

    the Department of Joint Military Operations. The contents of this paper reflect my personal views and are not necessarily endorsed by the ...reflect my own personal views and are not necessarily endorsed by the NWC or the Department of the Navy. 14. Ten key words that relate to your paper...Contrast, for example, the redundant following quotes. In one recent article the CNO stressed, The real challenge is in changing our way of

  9. Journal of Special Operations Medicine, Volume 8, Edition 2

    DTIC Science & Technology

    2008-01-01

    NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint Special...Order Desk — orders@gpo.gov. 4) The JSOM is on- line through the Joint Special Operations University’s new SOF Medical Gateway; it is available to all...From the Command Surgeon WARNER D. “Rocky” FARR COLONEL, U.S. ARMY Command Surgeon HQ USSOCOM • Recommended, and all concurred, that we need a Joint

  10. Executive Report: JSOU (Joint Special Operations University) First Annual Symposium, 2-5 May 2006, Hurlburt Field, Florida

    DTIC Science & Technology

    2006-05-05

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint Special Operations University,357 Tully Street...Alison Building,Hurlburt Field,FL,32544 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...leadership. JSOU is a subordinate organization of the US Special Operations Command (USSOCOM), MacDill Air Force Base, Florida. The mission of the Joint

  11. The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.

    PubMed

    West, T; Ng, L; Campbell, A

    2014-12-01

    The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Fitting model-based psychometric functions to simultaneity and temporal-order judgment data: MATLAB and R routines.

    PubMed

    Alcalá-Quintana, Rocío; García-Pérez, Miguel A

    2013-12-01

    Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.

  13. ESPR uroradiology task force and ESUR Paediatric Work Group--Imaging recommendations in paediatric uroradiology, part VI: childhood renal biopsy and imaging of neonatal and infant genital tract. Minutes from the task force session at the annual ESPR Meeting 2012 in Athens on childhood renal biopsy and imaging neonatal genitalia.

    PubMed

    Riccabona, Michael; Lobo, Maria Luisa; Willi, Ulrich; Avni, Fred; Damasio, Beatrice; Ording-Mueller, Lil-Sofie; Blickman, Johan; Darge, Kassa; Papadopoulou, Frederika; Vivier, Pierre-Hugues

    2014-04-01

    The European Society of Paediatric Radiology Uroradiology Task Force and the ESUR Paediatric Work Group jointly publish guidelines for paediatric urogenital imaging. Two yet unaddressed topics involving patient safety and imaging load are addressed in this paper: renal biopsy in childhood and imaging of the neonatal genital tract, particularly in girls. Based on our thorough review of literature and variable practice in multiple centers, procedural recommendations are proposed on how to perform renal biopsy in children and how to approach the genital tract in (female) neonates. These are statements by consensus due to lack of sufficient evidence-based data. The procedural recommendation on renal biopsy in childhood aims at improving patient safety and reducing the number of unsuccessful passes and/or biopsy-related complications. The recommendation for an imaging algorithm in the assessment of the neonatal genital tract focuses on the potential of ultrasonography to reduce the need for more invasive or radiating imaging, however, with additional fluoroscopy or MRI to be used in selected cases. Adherence to these recommendations will allow comparable data and evidence to be generated for future adaptation of imaging strategies in paediatric uroradiology.

  14. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    PubMed Central

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  15. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb

    PubMed Central

    van Antwerp, Keith W.; Burkholder, Thomas J.

    2015-01-01

    The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, 3-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees-of-freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in seven different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90° in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally-observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks. PMID:17640652

  16. Determinants and magnitudes of manual force strengths and joint moments during two-handed standing maximal horizontal pushing and pulling.

    PubMed

    Chow, Amy Y; Dickerson, Clark R

    2016-04-01

    Pushing and pulling are common occupational exertions that are increasingly associated with musculoskeletal complaints. This study focuses on the sensitivity of shoulder capacity to gender, handle height, exertion type (push or pull) and handle orientation for these tasks. All factors except for handle orientation influenced unilateral and total manual force strength (p < 0.01), with exertion type being the most influential. Interaction effects also existed between handle height and exertion type. Additionally, joint moments at the shoulders and low back were influenced by all factors studied (p < 0.01), with exertion type again being most influential. Knowledge of the relative influence of multiple factors on shoulder capacity can provide guidance regarding these factors when designing or evaluating occupational pushing and pulling tasks for a diverse population. Practitioner Summary: pushing and pulling comprise nearly half of all manual materials handling tasks. Practitioners often assess, design or modify these tasks while incorporating constraints, including manual force direction and handle interface. This study provides guidance to aid design of pushing and pulling tasks in the context of shoulder physical capacity.

  17. A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics

    PubMed Central

    Bates, Nathaniel A.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.

    2015-01-01

    Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks. Input of raw, in vivo, skin-marker-derived motion capture kinematics consistently resulted in specimen failure. The protocol described in this study developed an in-depth methodology to adapt in vivo kinematic recordings into 6-DOF knee motion simulations for drop vertical jumps and sidestep cutting. Our simulation method repeatably produced kinetics consistent with vertical ground reaction patterns while preserving specimen integrity. Athletic task simulation represents an advancement that allows investigators to examine ACL-intact and graft biomechanics during motions that generate greater kinetics, and the athletic tasks are more representative of documented cases of ligament rupture. Establishment of baseline functional mechanics within the knee joint during athletic tasks will serve to advance the prevention, repair and rehabilitation of ACL injuries. PMID:25869454

  18. Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT

    PubMed Central

    Schurz, Matthias; Perner, Josef

    2017-01-01

    In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of “theory of mind (ToM)” but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of “theory of mind” is supposed to be if visual perspective taking is not one of them. PMID:28367446

  19. Skill Learning and Skill Transfer Mediated by Cooperative Haptic Interaction.

    PubMed

    Avila Mireles, Edwin Johnatan; Zenzeri, Jacopo; Squeri, Valentina; Morasso, Pietro; De Santis, Dalia

    2017-07-01

    It is known that physical coupling between two subjects may be advantageous in joint tasks. However, little is known about how two people mutually exchange information to exploit the coupling. Therefore, we adopted a reversed, novel perspective to the standard one that focuses on the ability of physically coupled subjects to adapt to cooperative contexts that require negotiating a common plan: we investigated how training in pairs on a novel task affects the development of motor skills of each of the interacting partners. The task involved reaching movements in an unstable dynamic environment using a bilateral non-linear elastic tool that could be used bimanually or dyadically. The main result is that training with an expert leads to the greatest performance in the joint task. However, the performance in the individual test is strongly affected by the initial skill level of the partner. Moreover, practicing with a peer rather than an expert appears to be more advantageous for a naive; and motor skills can be transferred to a bimanual context, after training with an expert, only if the non-expert subject had prior experience of the dynamics of the novel task.

  20. Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT.

    PubMed

    Arora, Aditi; Schurz, Matthias; Perner, Josef

    2017-01-01

    In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of "theory of mind (ToM)" but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of "theory of mind" is supposed to be if visual perspective taking is not one of them.

  1. A Novel Method for Characterizing Spacesuit Mobility Through Metabolic Cost

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Norcross, Jason R.

    2014-01-01

    Historically, spacesuit mobility has been characterized by directly measuring both range of motion and joint torque of individual anatomic joints. The work detailed herein aims to improve on this method, which is often prone to uncertainly, lack of repeatability, and a general lack of applicability to real-world functional tasks. Specifically, the goal of this work is to characterize suited mobility performance by directly measuring the metabolic performance of the occupant. Pilot testing was conducted in 2013, employing three subjects performing a range of functional tasks in two different suits prototypes, the Mark III and Z-1. Cursory analysis of the results shows the approach has merit, with consistent performance trends toward one suit over the other. Forward work includes the need to look at more subjects, a refined task set, and another suit in a different mass/mobility regime to validate the approach.

  2. Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?

    PubMed

    Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H

    2010-02-01

    The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from < 6 repetitions) was predicted in the seated shoulder dumbbell press performed in unstable (Swiss ball[SB]) and stable (back-support bench) environments. Three CS muscle endurance tests were performed, with 4 CS ratios also calculated. The degree of strength decrement, referred to as the instability strength level (ISL), was calculated by dividing the predicted 1RM Unstable score by the 1RM Stable score. All subjects were categorized as high (ISL > 0.90), moderate (0.85 < or = ISL < or = 0.90), or low (ISL < 0.85). Between-group differences for the high- and low-ISL groups were assessed using analysis of variance and effect sizes. Pearson product moment correlations were then performed to examine the relationships between the CS measures and the ISL for the entire group. No significant between-group differences (p = 0.132-0.999) or large effect sizes were observed for any of the CS measures. Trunk flexion endurance was the only CS measure significantly correlated to the ISL (r = 0.477). In line with muscular strength research, these results suggest that CS exhibits relatively high levels of task specificity and that CS performance in static single-joint exercises may not be highly related to that in more dynamic multijoint activities. Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.

  3. A statistical approach to discriminate between non-fallers, rare fallers and frequent fallers in older adults based on posturographic data.

    PubMed

    Maranesi, E; Merlo, A; Fioretti, S; Zemp, D D; Campanini, I; Quadri, P

    2016-02-01

    Identification of future non-fallers, infrequent and frequent fallers among older people would permit focusing the delivery of prevention programs on selected individuals. Posturographic parameters have been proven to differentiate between non-fallers and frequent fallers, but not between the first group and infrequent fallers. In this study, postural stability with eyes open and closed on both a firm and a compliant surface and while performing a cognitive task was assessed in a consecutive sample of 130 cognitively able elderly, mean age 77(7)years, categorized as non-fallers (N=67), infrequent fallers (one/two falls, N=45) and frequent fallers (more than two falls, N=18) according to their last year fall history. Principal Component Analysis was used to select the most significant features from a set of 17posturographic parameters. Next, variables derived from principal component analysis were used to test, in each task, group differences between the three groups. One parameter based on a combination of a set of Centre of Pressure anterior-posterior variables obtained from the eyes-open on a compliant surface task was statistically different among all groups, thus distinguishing infrequent fallers from both non-fallers (P<0.05) and frequent fallers (P<0.05). For the first time, a method based on posturographic data to retrospectively discriminate infrequent fallers was obtained. The joint use of both the eyes-open on a compliant surface condition and this new parameter could be used, in a future study, to improve the performance of protocols and to verify the ability of this method to identify new-fallers in elderly without cognitive impairment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Individual to collaborative: guided group work and the role of teachers in junior secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Fung, Dennis; Lui, Wai-mei

    2016-05-01

    This paper, through discussion of a teaching intervention at two secondary schools in Hong Kong, demonstrates the learning advancement brought about by group work and dissects the facilitating role of teachers in collaborative discussions. One-hundred and fifty-two Secondary Two (Grade 8) students were divided into three pedagogical groups, namely 'whole-class teaching', 'self-directed group work' and 'teacher-supported group work' groups, and engaged in peer-review, team debate, group presentation and reflection tasks related to a junior secondary science topic (i.e. current electricity). Pre- and post-tests were performed to evaluate students' scientific conceptions, alongside collected written responses and audio-recorded discussions. The results indicate that students achieved greater cognitive growth when they engaged in cooperative learning activities, the interactive and multi-sided argumentative nature of which is considered to apply particularly well to science education and Vygotsky's zone of proximal development framework. Group work learning is also found to be most effective when teachers play a role in navigating students during the joint construction of conceptual knowledge.

  5. Training Community Modeling and Simulation Business Plan: 2008 Edition

    DTIC Science & Technology

    2009-12-01

    Collaborative information environment. Collaborative tools will help CCDRs and joint staffs plan and disseminate operations, link the staffs to subject matter...anticipating direct and indirect effects as they propagate through political, military, economic, sociological, and information infrastructures. Capabilities...will also 5-11 enhance training for joint staffs and task forces; crisis management; JUO; information warfare; interagency, intergovernmental, and

  6. Intelligent Control of Flexible-Joint Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Gallegos, G.

    1997-01-01

    This paper considers the trajectory tracking problem for uncertain rigid-link. flexible.joint manipulators, and presents a new intelligent controller as a solution to this problem. The proposed control strategy is simple and computationally efficient, requires little information concerning either the manipulator or actuator/transmission models and ensures uniform boundedness of all signals and arbitrarily accurate task-space trajectory tracking.

  7. Individual Differences in Children's Corepresentation of Self and Other in Joint Action

    ERIC Educational Resources Information Center

    Milward, Sophie J.; Kita, Sotaro; Apperly, Ian A.

    2017-01-01

    Previous research has shown that children aged 4-5 years, but not 2-3 years, show adult-like interference from a partner when performing a joint task (Milward, Kita, & Apperly, 2014). This raises questions about the cognitive skills involved in the development of such "corepresentation (CR)" of a partner (Sebanz, Knoblich, &…

  8. Changes of catecholamine excretion during long-duration confinement.

    PubMed

    Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C

    2002-06-01

    Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.

  9. Femoral condyle curvature is correlated with knee walking kinematics in ungulates.

    PubMed

    Sylvester, Adam D

    2015-12-01

    The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. © 2015 Wiley Periodicals, Inc.

  10. [effectiveness of open reduction and internal fixation without opening joint capsule on tibial plateau fracture].

    PubMed

    Chen, Qi; Xu, Xiaofeng; Huang, Yonghui; Cao, Xingbing; Meng, Chen; Cao, Xueshu; Wei, Changbao

    2014-12-01

    To introduce the surgery method to reset and fix tibial plateau fracture without opening joint capsule, and evaluate the safety and effectiveness of this method. Between July 2011 and July 2013, 51 patients with tibial plateau fracture accorded with the inclusion criteria were included. All of 51 patients, 17 cases underwent open reduction and internal fixation without opening joint capsule in trial group, and 34 cases underwent traditional surgery method in control group. There was no significant difference in gender, age, cause of injury, time from injury to admission, side of injury, and types of fracture between 2 groups (P > 0.05). The operation time, intraoperative blood loss, incision length, incision healing, and fracture healing were compared between 2 groups. The tibial-femoral angle and collapse of joint surface were measured on X-ray film. At last follow-up, joint function was evaluated with Hospital for Special Surgery (HSS) knee function scale. The intraoperative blood loss in trial group was significantly less than that in control group (P < 0.05). The incision length in trial group was significantly shorter than that in control group (P < 0.05). Difference was not significant in operation time and the rate of incision healing between 2 groups (P > 0.05). The patients were followed up 12-30 months (mean, 20.4 months) in trial group and 12-31 months (mean, 18.2 months) in control group. X-ray films indicated that all cases in 2 groups obtained fracture healing; there was no significant difference in the fracture healing time between 2 groups (t=1.382, P=0.173). On X-ray films, difference was not significant in tibial-femoral angle and collapse of joint surface between 2 groups (P > 0.05). HSS score of the knee in trial group was significantly higher than that of control group (t=3.161, P=0.003). It can reduce the intraoperative blood loss and shorten the incision length to use open reduction and internal fixation without opening joint capsule for tibial plateau fracture. Traction of joint capsule is helpful in the reduction and good recovery of joint surface collapse. In addition, the surgery without opening joint capsule can avoid joint stiffness and obtain better joint function.

  11. Joint symptoms associated with anastrozole and letrozole in patients with breast cancer: a retrospective comparative study.

    PubMed

    Morimoto, Yoshihito; Sarumaru, Shuhei; Oshima, Yuko; Tsuruta, Chiho; Watanabe, Kazuhiro

    2017-01-01

    Joint symptoms are a common side effect of aromatase inhibitors. However, it is not known if the risk of these symptoms varies between the members of this drug class. The aim of this study was to compare the frequency of joint symptoms associated with anastrozole and that associated with letrozole. We retrospectively reviewed patients with breast cancer who were treated with anastrozole or letrozole at Tsukiji Breast Clinic, Japan, between April 2008 and July 2014. Joint symptoms were deemed to include both joint pain and painless joint symptoms. The time to onset of joint symptoms in the anastrozole group was compared with that in the letrozole group using Kaplan-Meier curves and the log-rank test. Of 141 patients identified to have received aromatase inhibitors, 70 had been treated with anastrozole and 71 with letrozole. Joint symptoms occurred in 60.3% of the 141 patients (60.0% in the anastrozole group and 60.6% in the letrozole group; p  = 1). Median time to appearance of joint symptoms was 583 days, with no significant difference between the anastrozole and letrozole groups ( p  = 0.962). There was no significant difference in time to onset of joint pain ( p  = 0.139); however, time to onset of painless joint symptoms was significantly shorter in the anastrozole group ( p  = 0.022). The sites at which joint symptoms occurred were similar in the two groups. The results of this study indicate that there is no difference in the pattern of occurrence of joint symptoms caused by anastrozole and those caused by letrozole. Trial registration was not required for this study because of its retrospective nature and lack of intervention.

  12. Face Aging Effect Simulation Using Hidden Factor Analysis Joint Sparse Representation.

    PubMed

    Yang, Hongyu; Huang, Di; Wang, Yunhong; Wang, Heng; Tang, Yuanyan

    2016-06-01

    Face aging simulation has received rising investigations nowadays, whereas it still remains a challenge to generate convincing and natural age-progressed face images. In this paper, we present a novel approach to such an issue using hidden factor analysis joint sparse representation. In contrast to the majority of tasks in the literature that integrally handle the facial texture, the proposed aging approach separately models the person-specific facial properties that tend to be stable in a relatively long period and the age-specific clues that gradually change over time. It then transforms the age component to a target age group via sparse reconstruction, yielding aging effects, which is finally combined with the identity component to achieve the aged face. Experiments are carried out on three face aging databases, and the results achieved clearly demonstrate the effectiveness and robustness of the proposed method in rendering a face with aging effects. In addition, a series of evaluations prove its validity with respect to identity preservation and aging effect generation.

  13. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    PubMed Central

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  14. Quantification and visualization of coordination during non-cyclic upper extremity motion.

    PubMed

    Fineman, Richard A; Stirling, Leia A

    2017-10-03

    There are many design challenges in creating at-home tele-monitoring systems that enable quantification and visualization of complex biomechanical behavior. One such challenge is robustly quantifying joint coordination in a way that is intuitive and supports clinical decision-making. This work defines a new measure of coordination called the relative coordination metric (RCM) and its accompanying normalization schemes. RCM enables quantification of coordination during non-constrained discrete motions. Here RCM is applied to a grasping task. Fifteen healthy participants performed a reach, grasp, transport, and release task with a cup and a pen. The measured joint angles were then time-normalized and the RCM time-series were calculated between the shoulder-elbow, shoulder-wrist, and elbow-wrist. RCM was normalized using four differing criteria: the selected joint degree of freedom, angular velocity, angular magnitude, and range of motion. Percent time spent in specified RCM ranges was used asa composite metric and was evaluated for each trial. RCM was found to vary based on: (1) chosen normalization scheme, (2) the stage within the task, (3) the object grasped, and (4) the trajectory of the motion. The RCM addresses some of the limitations of current measures of coordination because it is applicable to discrete motions, does not rely on cyclic repetition, and uses velocity-based measures. Future work will explore clinically relevant differences in the RCM as it is expanded to evaluate different tasks and patient populations. Copyright © 2017. Published by Elsevier Ltd.

  15. Can symptomatic acromioclavicular joints be differentiated from asymptomatic acromioclavicular joints on 3-T MR imaging?

    PubMed

    Choo, Hye Jung; Lee, Sun Joo; Kim, Jung Han; Cha, Seong Sook; Park, Young Mi; Park, Ji Sung; Lee, Jun Woo; Oh, Minkyung

    2013-04-01

    To evaluate retrospectively whether symptomatic acromioclavicular joints can be differentiated from asymptomatic acromioclavicular joints on 3-T MR imaging. This study included 146 patients who underwent physical examination of acromioclavicular joints and 3-T MR imaging of the shoulder. Among them, 67 patients showing positive results on physical examination were assigned to the symptomatic group, whereas 79 showing negative results were assigned to the asymptomatic group. The following MR findings were compared between the symptomatic and asymptomatic groups: presence of osteophytes, articular surface irregularity, subchondral cysts, acromioclavicular joint fluid, subacromial fluid, subacromial bony spurs, joint capsular distension, bone edema, intraarticular enhancement, periarticular enhancement, superior and inferior joint capsular distension degree, and joint capsular thickness. The patients were subsequently divided into groups based on age (younger, older) and the method of MR arthrography (direct MR arthrography, indirect MR arthrography), and all the MR findings in each subgroup were reanalyzed. The meaningful cutoff value of each significant continuous variable was calculated using receiver operating characteristic analysis. The degree of superior capsular distension was the only significant MR finding of symptomatic acromioclavicular joints and its meaningful cutoff value was 2.1mm. After subgroup analyses, this variable was significant in the older age group and indirect MR arthrography group. On 3-T MR imaging, the degree of superior joint capsular distension might be a predictable MR finding in the diagnosis of symptomatic acromioclavicular joints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms

    PubMed Central

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2016-01-01

    The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque change, the variance components, and the index of synergy as well as the human subjects. We concluded that UCM reference feedback control can reproduce human-like joint coordination. The inference for motor control of the human central nervous system based on the proposed method was discussed. PMID:27462215

  17. Proximal arm kinematics affect grip force-load force coordination

    PubMed Central

    Vermillion, Billy C.; Lum, Peter S.

    2015-01-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  18. The adaptive nature of eye movements in linguistic tasks: how payoff and architecture shape speed-accuracy trade-offs.

    PubMed

    Lewis, Richard L; Shvartsman, Michael; Singh, Satinder

    2013-07-01

    We explore the idea that eye-movement strategies in reading are precisely adapted to the joint constraints of task structure, task payoff, and processing architecture. We present a model of saccadic control that separates a parametric control policy space from a parametric machine architecture, the latter based on a small set of assumptions derived from research on eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009). The eye-control model is embedded in a decision architecture (a machine and policy space) that is capable of performing a simple linguistic task integrating information across saccades. Model predictions are derived by jointly optimizing the control of eye movements and task decisions under payoffs that quantitatively express different desired speed-accuracy trade-offs. The model yields distinct eye-movement predictions for the same task under different payoffs, including single-fixation durations, frequency effects, accuracy effects, and list position effects, and their modulation by task payoff. The predictions are compared to-and found to accord with-eye-movement data obtained from human participants performing the same task under the same payoffs, but they are found not to accord as well when the assumptions concerning payoff optimization and processing architecture are varied. These results extend work on rational analysis of oculomotor control and adaptation of reading strategy (Bicknell & Levy, ; McConkie, Rayner, & Wilson, 1973; Norris, 2009; Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic control that is shaped by quantitatively varying task demands and the dynamics of processing architecture. Copyright © 2013 Cognitive Science Society, Inc.

  19. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  20. Variation in work tasks in relation to pinch grip strength among middle-aged female dentists.

    PubMed

    Ding, Hebo; Leino-Arjas, Päivi; Murtomaa, Heikki; Takala, Esa-Pekka; Solovieva, Svetlana

    2013-11-01

    We aimed to investigate the relationship of task variation during dental work history with pinch grip strength among dentists. We measured pinch grip strength among 295 female Finnish dentists aged 45-63 years. Variation in dental work tasks during work history was empirically defined by cluster analysis. Three clusters of task variation emerged: low (most work time in restoration treatment/endodontics), moderate (about 50% in the former and 50% in prosthodontics/periodontics/surgery), and high (variable tasks including administrative duties). Hand radiographs were examined for the presence of OA in the wrist and each joint of the 1-3rd fingers. Information on hand-loading leisure-time activities, and joint pain was obtained by questionnaire. Glove size was used as a proxy for hand size. BMI (kg/m2) was based on measured weight and self-reported height. Dentists with low variation of work task history had an increased risk of low pinch grip strength in the right hand (OR 2.3, 95% CI 1.2-4.3), but not in the left (1.13, 0.62-2.08), compared to dentists with high task variation, independent of age, hand size, hand-loading leisure-time activities, BMI and symptomatic hand OA. The dentists with the most hand-loading tasks were at an increased risk of low pinch grip strength, independent of e.g. symptomatic hand OA. It is advisable among dentists to perform as diverse work tasks as possible to reduce the risk of decreased pinch grip strength. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. PLANNING AND COORDINATION OF ACTIVITIES SUPPORTING THE RUSSIAN SYSTEM OF CONTROL AND ACCOUNTING OF NUCLEAR MATERIALS AT ROSATOM FACILITIES IN THE FRAMEWORK OF THE U.S.-RUSSIAN COOPERATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.

    2005-05-16

    The MC&A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC&A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC&A Program. This plan developed by the Rosatom's Russian MC&A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC&A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC&A-related working groups and joint site project teams. This cooperation allowsmore » to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC&A system. These activities are conducted within the joint Russian-US MPC&A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials.« less

  2. Effectiveness of individual resource-oriented joint protection education in people with rheumatoid arthritis. A randomized controlled trial.

    PubMed

    Niedermann, Karin; de Bie, Rob A; Kubli, Regula; Ciurea, Adrian; Steurer-Stey, Claudia; Villiger, Peter M; Büchi, Stefan

    2011-01-01

    the modern joint protection (JP) concept for people with rheumatoid arthritis (RA) is an active coping strategy to improve daily tasks and role performance by changing working methods and using assistive devices. Effective group JP education includes psycho-educational interventions. The Pictorial Representation of Illness and Self Measure (PRISM) is an interactive hands-on-tool, assessing (a) the individual's perceived burden of illness and (b) relevant individual resources. Both issues are important for intrinsic motivation to take action and change behaviour. This study compared individual conventional JP education (C-JP) with PRISM-based JP education (PRISM-JP). an assessor-blinded multicentre randomized controlled trial, including four JP education sessions over 3 weeks, with assessments at baseline and 3 months. in total 53 RA patients participated. At 3 months, the PRISM-JP (n=26) participants did significantly better compared to the C-JP participants (n=27) in JP behaviour (p=0.02 and p=0.008 when corrected for baseline values), Arthritis Self-efficacy (ASES, p=0.015) and JP self-efficacy (JP-SES, p=0.047). Within-group analysis also showed less hand pain (p<0.001) in PRISM-JP group. PRISM-JP more effectively supported learning of JP methods, with meaningful occupations, resource activation and self-efficacy acting as important mediators. PRISM improved patient-clinician communication and is feasible for occupational therapy. 2010 Elsevier Ireland Ltd. All rights reserved.

  3. The joint Simon effect: a review and theoretical integration

    PubMed Central

    Dolk, Thomas; Hommel, Bernhard; Colzato, Lorenza S.; Schütz-Bosbach, Simone; Prinz, Wolfgang; Liepelt, Roman

    2014-01-01

    The social or joint Simon effect has been developed to investigate how and to what extent people mentally represent their own and other persons' action/task and how these cognitive representations influence an individual's own behavior when interacting with another person. Here, we provide a review of the available evidence and theoretical frameworks. Based on this review, we suggest a comprehensive theory that integrates aspects of earlier approaches–the Referential Coding Account. This account provides an alternative to the social interpretation of the (joint) go-nogo Simon effect (aka the social Simon effect) and is able to integrate seemingly opposite findings on joint action. PMID:25249991

  4. The kinematics of upper extremity reaching: a reliability study on people with and without shoulder impingement syndrome

    PubMed Central

    2010-01-01

    Background Tasks chosen to evaluate motor performance should reflect the movement deficits characteristic of the target population and present an appropriate challenge for the patients who would be evaluated. A reaching task that evaluates impairment characteristics of people with shoulder impingement syndrome (SIS) was developed to evaluate the motor performance of this population. The objectives of this study were to characterize the reproducibility of this reaching task in people with and without SIS and to evaluate the impact of the number of trials on reproducibility. Methods Thirty subjects with SIS and twenty healthy subjects participated in the first measurement session to evaluate intrasession reliability. Ten healthy subjects were retested within 2 to 7 days to assess intersession reliability. At each measurement session, upper extremity kinematic patterns were evaluated during a reaching task. Ten trials were recorded. Thereafter, the upper extremity position at the end of reaching and total joint excursion that occurred during reaching were calculated. Intraclass correlation coefficient (ICC) and minimal detectable change (MDC) were used to estimate intra and intersession reliability. Results Intrasession reliability for total joint excursion was good to very good when based on the first two trials (0.770.92). As for end-reach position, intrasession reliability was very good when using either the first two, first five or last five trials (ICC>0.82). Globally, MDC were smaller for the last five trials. Intersession reliability of total joint excursion and position at the end of reaching was good to very good when using the mean of the first two or five trials (0.690.82). For most joints, MDC were smaller when using all ten trials. Conclusions The reaching task proposed to evaluate the upper limb motor performance was found reliable in people with and without SIS. Furthermore, the minimal difference necessary to infer a meaningful change in motor performance was determined, indicating that relatively small changes in task performance can be interpreted as a change in motor performance. PMID:20331889

  5. Effect of Sacroiliac Joint Manipulation on Selected Gait Parameters in Healthy Subjects.

    PubMed

    Wójtowicz, Sebastian; Sajko, Igor; Hadamus, Anna; Mosiołek, Anna; Białoszewski, Dariusz

    2017-08-31

    The sacroiliac joints have complicated biomechanics. While the movements in the joints are small, they exert a significant effect on gait. This study aimed to assess how sacroiliac joint manipulation influences selected gait parameters. The study enrolled 57 healthy subjects. The experimental group consisted of 26 participants diagnosed with dysfunction of one sacroiliac joint. The control group was composed of 31 persons. All subjects from the experimental group underwent sacroiliac joint manipulation. The experimental group showed significant lengthening of the step on both sides and the stride length in this group increased as well. Moreover, the duration of the stride increased (p=0.000826). The maximum midfoot pressure was higher and maximum heel pressure decreased. The differences were statistically significant. 1. Subclinical dysfunctions of the sacroiliac joints may cause functional gait disturbance. 2. Manipulation of the iliosacral joint exerts a significant effect on gait parameters, which may lead to improved gait economy and effec-tiveness. 3. Following manipulation of one iliosacral joint, altered gait parameters are noted on both the manipulated side and the contralateral side, which may translate into improved quality of locomotion.

  6. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  7. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  8. Non-Sagittal Knee Joint Kinematics and Kinetics during Gait on Level and Sloped Grounds with Unicompartmental and Total Knee Arthroplasty Patients

    PubMed Central

    Komnik, Igor; David, Sina; Weiss, Stefan; Potthast, Wolfgang

    2016-01-01

    After knee arthroplasty (KA) surgery, patients experience abnormal kinematics and kinetics during numerous activities of daily living. Biomechanical investigations have focused primarily on level walking, whereas walking on sloped surfaces, which is stated to affect knee kinematics and kinetics considerably, has been neglected to this day. This study aimed to analyze over-ground walking on level and sloped surfaces with a special focus on transverse and frontal plane knee kinematics and kinetics in patients with KA. A three-dimensional (3D) motion analysis was performed by means of optoelectronic stereophogrammetry 1.8 ± 0.4 years following total knee arthroplasty (TKA) and unicompartmental arthroplasty surgery (UKA). AnyBody™ Modeling System was used to conduct inverse dynamics. The TKA group negotiated the decline walking task with reduced peak knee internal rotation angles compared with a healthy control group (CG). First-peak knee adduction moments were diminished by 27% (TKA group) and 22% (UKA group) compared with the CG during decline walking. No significant differences were detected between the TKA and UKA groups, regardless of the locomotion task. Decline walking exposed apparently more abnormal knee frontal and transverse plane adjustments in KA patients than level walking compared with the CG. Hence, walking on sloped surfaces should be included in further motion analysis studies investigating KA patients in order to detect potential deficits that might be not obvious during level walking. PMID:28002437

  9. Comparison of the effects of forefoot joint-preserving arthroplasty and resection-replacement arthroplasty on walking plantar pressure distribution and patient-based outcomes in patients with rheumatoid arthritis.

    PubMed

    Ebina, Kosuke; Hirao, Makoto; Takagi, Keishi; Ueno, Sachi; Morimoto, Tokimitsu; Matsuoka, Hozo; Kitaguchi, Kazuma; Iwahashi, Toru; Hashimoto, Jun; Yoshikawa, Hideki

    2017-01-01

    The purpose of this retrospective study is to clarify the difference in plantar pressure distribution during walking and related patient-based outcomes between forefoot joint-preserving arthroplasty and resection-replacement arthroplasty in patients with rheumatoid arthritis (RA). Four groups of patients were recruited. Group1 included 22 feet of 11 healthy controls (age 48.6 years), Group2 included 36 feet of 28 RA patients with deformed non-operated feet (age 64.8 years, Disease activity score assessing 28 joints with CRP [DAS28-CRP] 2.3), Group3 included 27 feet of 20 RA patients with metatarsal head resection-replacement arthroplasty (age 60.7 years, post-operative duration 5.6 years, DAS28-CRP 2.4), and Group4 included 34 feet of 29 RA patients with metatarsophalangeal (MTP) joint-preserving arthroplasty (age 64.6 years, post-operative duration 3.2 years, DAS28-CRP 2.3). Patients were cross-sectionally examined by F-SCAN II to evaluate walking plantar pressure, and the self-administered foot evaluation questionnaire (SAFE-Q). Twenty joint-preserving arthroplasty feet were longitudinally examined at both pre- and post-operation. In the 1st MTP joint, Group4 showed higher pressure distribution (13.7%) than Group2 (8.0%) and Group3 (6.7%) (P<0.001). In the 2nd-3rd MTP joint, Group4 showed lower pressure distribution (9.0%) than Group2 (14.5%) (P<0.001) and Group3 (11.5%) (P<0.05). On longitudinal analysis, Group4 showed increased 1st MTP joint pressure (8.5% vs. 14.7%; P<0.001) and decreased 2nd-3rd MTP joint pressure (15.2% vs. 10.7%; P<0.01) distribution. In the SAFE-Q subscale scores, Group4 showed higher scores than Group3 in pain and pain-related scores (84.1 vs. 71.7; P<0.01) and in shoe-related scores (62.5 vs. 43.1; P<0.01). Joint-preserving arthroplasty resulted in higher 1st MTP joint and lower 2nd-3rd MTP joint pressures than resection-replacement arthroplasty, which were associated with better patient-based outcomes.

  10. Neuromuscular adaptations induced by adjacent joint training.

    PubMed

    Ema, R; Saito, I; Akagi, R

    2018-03-01

    Effects of resistance training are well known to be specific to tasks that are involved during training. However, it remains unclear whether neuromuscular adaptations are induced after adjacent joint training. This study examined the effects of hip flexion training on maximal and explosive knee extension strength and neuromuscular performance of the rectus femoris (RF, hip flexor, and knee extensor) compared with the effects of knee extension training. Thirty-seven untrained young men were randomly assigned to hip flexion training, knee extension training, or a control group. Participants in the training groups completed 4 weeks of isometric hip flexion or knee extension training. Standardized differences in the mean change between the training groups and control group were interpreted as an effect size, and the substantial effect was assumed to be ≥0.20 of the between-participant standard deviation at baseline. Both types of training resulted in substantial increases in maximal (hip flexion training group: 6.2% ± 10.1%, effect size = 0.25; knee extension training group: 20.8% ± 9.9%, effect size = 1.11) and explosive isometric knee extension torques and muscle thickness of the RF in the proximal and distal regions. Improvements in strength were accompanied by substantial enhancements in voluntary activation, which was determined using the twitch interpolation technique and RF activation. Differences in training effects on explosive torques and neural variables between the two training groups were trivial. Our findings indicate that hip flexion training results in substantial neuromuscular adaptations during knee extensions similar to those induced by knee extension training. © 2017 The Authors. Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  11. Radiographic hand osteoarthritis: patterns and associations with hand pain and function in a community-dwelling sample.

    PubMed

    Marshall, M; van der Windt, D; Nicholls, E; Myers, H; Hay, E; Dziedzic, K

    2009-11-01

    Patterns of radiographic osteoarthritis (ROA) of the hand are often examined by row, with the four joints of the thumb studied inconsistently. The objectives of this study were to determine relationships of ROA at different hand joints, use the findings to define radiographic sub-groups and investigate their associations with pain and function. Sixteen joints in each hand were scored for the presence of ROA in a community-dwelling cohort of adults, 50-years-and-over, with self-reported hand pain or problems. Principal components analysis (PCA) with varimax rotation was used to study patterns of ROA in the hand joints and identify distinct sub-groups. Differences in pain and function between these sub-groups were assessed using Australian/Canadian Osteoarthritis Index (AUSCAN), Grip Ability Test (GAT) and grip and pinch strength. PCA was undertaken on data from 592 participants and identified four components: distal interphalangeal joints (DIPs), proximal interphalangeal joints (PIPs), metacarpophalangeal joints (MCPs), thumb joints. However, the left thumb interphalangeal (IP) joint cross-loaded with the PIP and thumb groups. On this basis, participants were categorised into four radiographic sub-groups: no osteoarthritis (OA), finger only OA, thumb only OA and combined thumb and finger OA. Statistically significant differences were found between the sub-groups for AUSCAN function, and in women alone for grip and pinch strength. Participants with combined thumb and finger OA had the worst scores. Individual thumb joints can be clustered together as a joint group in ROA. Four radiographic sub-groups of hand OA can be distinguished. Pain and functional difficulties were highest in participants with both thumb and finger OA.

  12. Rotational and translational stability of different methods for direct acromioclavicular ligament repair in anatomic acromioclavicular joint reconstruction.

    PubMed

    Beitzel, Knut; Obopilwe, Elifho; Apostolakos, John; Cote, Mark P; Russell, Ryan P; Charette, Ryan; Singh, Hardeep; Arciero, Robert A; Imhoff, Andreas B; Mazzocca, Augustus D

    2014-09-01

    Many reconstructions of acromioclavicular (AC) joint dislocations have focused on the coracoclavicular (CC) ligaments and neglected the functional contribution of the AC ligaments and the deltotrapezial fascia. To compare the modifications of previously published methods for direct AC reconstruction in addition to a CC reconstruction. The hypothesis was that there would be significant differences within the variations of surgical reconstructions. Controlled laboratory study. A total of 24 cadaveric shoulders were tested with a servohydraulic testing system. Two digitizing cameras evaluated the 3-dimensional movement. All reconstructions were based on a CC reconstruction using 2 clavicle tunnels and a tendon graft. The following techniques were used to reconstruct the AC ligaments: a graft was shuttled underneath the AC joint back from anterior and again sutured to the acromial side of the joint (group 1), a graft was fixed intramedullary in the acromion and distal clavicle (group 2), a graft was passed over the acromion and into an acromial tunnel (group 3), and a FiberTape was fixed in a cruciate configuration (group 4). Anterior, posterior, and superior translation, as well as anterior and posterior rotation, were tested. Group 1 showed significantly less posterior translation compared with the 3 other groups (P < .05) but did not show significant differences compared with the native joint. Groups 3 and 4 demonstrated significantly more posterior translation than the native joint. Group 1 showed significantly less anterior translation compared with groups 2 and 3. Group 3 demonstrated significantly more anterior translation than the native joint. Group 1 demonstrated significantly less superior translation compared with the other groups and with the native joint. The AC joint of group 1 was pulled apart less compared with all other reconstructions. Only group 1 reproduced the native joint for the anterior rotation at the posterior marker. Group 4 showed significantly increased distances for all 3 measure points when the clavicle was rotated posteriorly. Reconstruction of the AC ligament by direct wrapping and suturing of the remaining graft around the AC joint (group 1) was the most stable method and was the only one to show anterior rotation comparable with the native joint. In contrast, the transacromial technique (group 3) showed the most translation and rotation. An anatomic repair should address both the CC ligaments and the AC ligaments to control the optimal physiologic function (translation and rotation). © 2014 The Author(s).

  13. Emergence of joint attention: relationships between gaze following, social referencing, imitation, and naming in infancy.

    PubMed

    Slaughter, Virginia; McConnell, Danielle

    2003-03-01

    The authors investigated the extent to which the joint-attention behaviors of gaze following, social referencing, and object-directed imitation were related to each other and to infants' vocabulary development in a sample of 60 infants between the ages of 8 and 14 months. Joint-attention skills and vocabulary development were assessed in a laboratory setting. Split-half reliability analyses on the joint-attention measures indicated that the tasks reliably assessed infants' capabilities. In the main analysis, no significant correlations were found among the joint-attention behaviors except for a significant relationship between gaze following and the number of names in infants' productive vocabularies. The overall pattern of results did not replicate results of previous studies (e.g., M. Carpenter, K. Nagell, & M. Tomasello, 1998) that found relationships between various emerging joint-attention behaviors.

  14. Operation Stabilise: U.S. Joint Force Operations in East Timor

    DTIC Science & Technology

    2001-04-01

    September 1999, while deliberating the issue, Adm Blair designated the USS Mobile Bay (CG 53) and the USNS Kilauea (T-AE 26) as Joint Task Force-Timor Sea...Timor Sea Operations, 7th Fleet, Pacific Fleet § USS MOBILE BAY (CG 53), CJTF TSO (CAPT Edward Rogers, USN) § USNS KILAUEA (T-AE 26) § USNS SAN JOSE (T

  15. Maintaining the Dialogue: Joint Involvement in a Stand-Alone CD-Rom Chinese Course.

    ERIC Educational Resources Information Center

    Orton, Jane

    2003-01-01

    Presents a stand-alone CD-Rom version of a Web-based course in Modern Standard Chinese and addresses the problem of losing opportunities for negotiation in joint involvement episodes with teachers and peers in the CD-ROM course. Demonstrates trials of a mode of self-assessment in tasks using annotated sample texts generated by other students. (VWL)

  16. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario

  17. Students Selection for University Course Admission at the Joint Admissions Board (Kenya) Using Trained Neural Networks

    ERIC Educational Resources Information Center

    Wabwoba, Franklin; Mwakondo, Fullgence M.

    2011-01-01

    Every year, the Joint Admission Board (JAB) is tasked to determine those students who are expected to join various Kenyan public universities under the government sponsorship scheme. This exercise is usually extensive because of the large number of qualified students compared to the very limited number of slots at various institutions and the…

  18. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  19. Command and Control for Joint Air Operations.

    DTIC Science & Technology

    1994-11-14

    publication apply to the throughout the range of military commanders of combatant commands, operations. subunified commands, joint task forces, and...this doctrine (or operations as well as the doctrinal basis JTTP) will be followed except when, in for US military involvement in the judgment of the...commander, multinational and interagency operations. exceptional circumstances dictate It provides military guidance for the otherwise. If conflicts

  20. American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force Report on omalizumab-associated anaphylaxis.

    PubMed

    Cox, Linda; Platts-Mills, Thomas A E; Finegold, Ira; Schwartz, Lawrence B; Simons, F Estelle R; Wallace, Dana V

    2007-12-01

    The American Academy of Allergy, Asthma & Immunology and the American College of Allergy, Asthma and Immunology Executive Committees formed the Omalizumab Joint Task Force with the purpose of reviewing the Genentech Xolair (omalizumab) clinical trials and postmarketing surveillance data on anaphylaxis and anaphylactoid reactions. Using the definition of anaphylaxis proposed at a 2005 multidisciplinary symposia, the Omalizumab Joint Task Force concluded that 35 patients had 41 episodes of anaphylaxis associated with Xolair (omalizumab) administration between June 1, 2003, and December 31, 2005. With 39,510 patients receiving Xolair (omalizumab) during the same period of time, this would correspond to an anaphylaxis-reporting rate of 0.09% of patients. Of those 36 events for which the time of reaction was known, 22 (61%) reactions occurred in the first 2 hours after one of the first 3 doses. Five (14%) of the events after the fourth or later doses occurred within 30 minutes. Considering the timing of these 36 events, an observation period of 2 hours for the first 3 injections and 30 minutes for subsequent injections would have captured 75% of the anaphylactic reactions. The OJTF report provides recommendations for physicians who prescribe Xolair (omalizumab) on (1) the suggested wait periods after administration and (2) patient education regarding anaphylaxis.

  1. The efficacy of elastic therapeutic tape variations on measures of ankle function and performance.

    PubMed

    Brogden, Christopher Michael; Marrin, Kelly; Page, Richard Michael; Greig, Matt

    2018-04-23

    To investigate the effects of different variations of elastic therapeutic taping (ETT) on tests used to screen for ankle injury risk and function. Randomized crossover. Laboratory. Twelve professional male soccer players completed three experimental trials: No tape (NT), RockTape™ (RT), and Kinesio™ Tape (KT) applied to the ankle complex. Clinical and functional ankle screening tests were used to assess the effects of ETT on measures of joint position sense, postural stability and ground reaction forces. KT (P = 0.04) and RT (P = 0.01) demonstrated significant improvements in end range joint position sense. When compared to NT, RT significantly (P = 0.02) improved mid-range joint position sense at 15°, and time to complete a drop landing task. No significant differences were observed for measures of postural stability (P ≥ 0.12) nor ground reaction force variables (P ≥ 0.33). Results advocate the use of ETT for proprioceptive and functional tasks when applied to the ankles of healthy male soccer players. However, a greater number of practical and significant differences were observed when RT only was applied, indicating that practitioners may potentially advocate the use of RT for tasks requiring proprioception and functional performance. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  2. Joint image restoration and location in visual navigation system

    NASA Astrophysics Data System (ADS)

    Wu, Yuefeng; Sang, Nong; Lin, Wei; Shao, Yuanjie

    2018-02-01

    Image location methods are the key technologies of visual navigation, most previous image location methods simply assume the ideal inputs without taking into account the real-world degradations (e.g. low resolution and blur). In view of such degradations, the conventional image location methods first perform image restoration and then match the restored image on the reference image. However, the defective output of the image restoration can affect the result of localization, by dealing with the restoration and location separately. In this paper, we present a joint image restoration and location (JRL) method, which utilizes the sparse representation prior to handle the challenging problem of low-quality image location. The sparse representation prior states that the degraded input image, if correctly restored, will have a good sparse representation in terms of the dictionary constructed from the reference image. By iteratively solving the image restoration in pursuit of the sparest representation, our method can achieve simultaneous restoration and location. Based on such a sparse representation prior, we demonstrate that the image restoration task and the location task can benefit greatly from each other. Extensive experiments on real scene images with Gaussian blur are carried out and our joint model outperforms the conventional methods of treating the two tasks independently.

  3. Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection.

    PubMed

    Khan, Arifa S; Vacante, Dominick A; Cassart, Jean-Pol; Ng, Siemon H S; Lambert, Christophe; Charlebois, Robert L; King, Kathryn E

    Several nucleic-acid based technologies have recently emerged with capabilities for broad virus detection. One of these, high throughput sequencing, has the potential for novel virus detection because this method does not depend upon prior viral sequence knowledge. However, the use of high throughput sequencing for testing biologicals poses greater challenges as compared to other newly introduced tests due to its technical complexities and big data bioinformatics. Thus, the Advanced Virus Detection Technologies Users Group was formed as a joint effort by regulatory and industry scientists to facilitate discussions and provide a forum for sharing data and experiences using advanced new virus detection technologies, with a focus on high throughput sequencing technologies. The group was initiated as a task force that was coordinated by the Parenteral Drug Association and subsequently became the Advanced Virus Detection Technologies Interest Group to continue efforts for using new technologies for detection of adventitious viruses with broader participation, including international government agencies, academia, and technology service providers. © PDA, Inc. 2016.

  4. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    PubMed

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  5. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  6. Foot kinematics and loading of professional athletes in American football-specific tasks.

    PubMed

    Riley, Patrick O; Kent, Richard W; Dierks, Tracy A; Lievers, W Brent; Frimenko, Rebecca E; Crandall, Jeff R

    2013-09-01

    The purpose of this study was to describe stance foot and ankle kinematics and the associated ground reaction forces at the upper end of human performance in professional football players during commonly performed football-specific tasks. Nine participants were recruited from the spring training squad of a professional football team. In a motion analysis laboratory setting, participants performed three activities used at the NFL Scouting Combine to assess player speed and agility: the 3-cone drill, the shuttle run, and the standing high jump. The talocrural and first metatarsophalangial joint dorsiflexion, subtalar joint inversion, and the ground reaction forces were determined for the load bearing portions of each activity. We documented load-bearing foot and ankle kinematics of elite football players performing competition-simulating activities, and confirmed our hypothesis that the talocrural, subtalar, and metatarsophalangeal joint ranges of motion for the activities studied approached or exceeded reported physiological limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Commercial Crew Development Environmental Control and Life Support System Status: 2011-2012

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Development (CCDev) - 2 Program is managed within the new Commercial Crew Program Office (CCPO) to help develop a commercial crew transportation system to low earth orbit (LEO). It is intended to foster entrepreneurial activities with a few selected companies. The entrepreneurial activities were encouraged with these few selected companies by NASA providing only part of the total funding to complete specific tasks that were jointly agreed to by NASA and the company. These joint agreements were documented in a Space Act Agreement (SAA) that was signed jointly by NASA and the selected company. This paper will provide an overview of the CCDev - 2 Program and also it will discuss in a high level the Active Thermal Control System (ATCS) / Environmental Control and Life Support (ECLS) System tasks that were performed under CCDev - 2 from the start of CCDev - 2 to March 2012. It will also discuss the extension of the CCDev - 2 Program being proposed for the near future. 1

  8. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  9. Upper-limb kinematic reconstruction during stroke robot-aided therapy.

    PubMed

    Papaleo, E; Zollo, L; Garcia-Aracil, N; Badesa, F J; Morales, R; Mazzoleni, S; Sterzi, S; Guglielmelli, E

    2015-09-01

    The paper proposes a novel method for an accurate and unobtrusive reconstruction of the upper-limb kinematics of stroke patients during robot-aided rehabilitation tasks with end-effector machines. The method is based on a robust analytic procedure for inverse kinematics that simply uses, in addition to hand pose data provided by the robot, upper arm acceleration measurements for computing a constraint on elbow position; it is exploited for task space augmentation. The proposed method can enable in-depth comprehension of planning strategy of stroke patients in the joint space and, consequently, allow developing therapies tailored for their residual motor capabilities. The experimental validation has a twofold purpose: (1) a comparative analysis with an optoelectronic motion capturing system is used to assess the method capability to reconstruct joint motion; (2) the application of the method to healthy and stroke subjects during circle-drawing tasks with InMotion2 robot is used to evaluate its efficacy in discriminating stroke from healthy behavior. The experimental results have shown that arm angles are reconstructed with a RMSE of 8.3 × 10(-3) rad. Moreover, the comparison between healthy and stroke subjects has revealed different features in the joint space in terms of mean values and standard deviations, which also allow assessing inter- and intra-subject variability. The findings of this study contribute to the investigation of motor performance in the joint space and Cartesian space of stroke patients undergoing robot-aided therapy, thus allowing: (1) evaluating the outcomes of the therapeutic approach, (2) re-planning the robotic treatment based on patient needs, and (3) understanding pathology-related motor strategies.

  10. Proximal and distal muscle fatigue differentially affect movement coordination

    PubMed Central

    Cowley, Jeffrey C.

    2017-01-01

    Muscle fatigue can cause people to change their movement patterns and these changes could contribute to acute or overuse injuries. However, these effects depend on which muscles are fatigued. The purpose of this study was to determine the differential effects of proximal and distal upper extremity muscle fatigue on repetitive movements. Fourteen subjects completed a repetitive ratcheting task before and after a fatigue protocol on separate days. The fatigue protocol either fatigued the proximal (shoulder flexor) or distal (finger flexor) muscles. Pre/Post changes in trunk, shoulder, elbow, and wrist kinematics were compared to determine how proximal and distal fatigue affected multi-joint movement patterns and variability. Proximal fatigue caused a significant increase (7°, p < 0.005) in trunk lean and velocity, reduced humeral elevation (11°, p < 0.005), and increased elbow flexion (4°, p < 0.01). In contrast, distal fatigue caused small but significant changes in trunk angles (2°, p < 0.05), increased velocity of wrench movement relative to the hand (17°/s, p < 0.001), and earlier wrist extension (4%, p < 0.005). Movement variability increased at proximal joints but not distal joints after both fatigue protocols (p < 0.05). Varying movements at proximal joints may help people adapt to fatigue at either proximal or distal joints. The identified differences between proximal and distal muscle fatigue adaptations could facilitate risk assessment of occupational tasks. PMID:28235005

  11. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  12. Side-to-side asymmetries in landing mechanics from a drop vertical jump test are not related to asymmetries in knee joint laxity following anterior cruciate ligament reconstruction.

    PubMed

    Meyer, Christophe A G; Gette, Paul; Mouton, Caroline; Seil, Romain; Theisen, Daniel

    2018-02-01

    Asymmetries in knee joint biomechanics and increased knee joint laxity in patients following anterior cruciate ligament reconstruction (ACLR) are considered risk factors for re-tear or early onset of osteoarthritis. Nevertheless, the relationship between these factors has not been established. The aim of the study was to compare knee mechanics during landing from a bilateral drop vertical jump in patients following ACLR and control participants and to study the relationship between side-to-side asymmetries in landing mechanics and knee joint laxity. Seventeen patients following ACLR were evaluated and compared to 28 healthy controls. Knee sagittal and frontal plane kinematics and kinetics were evaluated using three-dimensional motion capture (200 Hz) and two synchronized force platforms (1000 Hz). Static anterior and internal rotation knee laxities were measured for both groups and legs using dedicated arthrometers. Group and leg differences were investigated using a mixed model analysis of variance. The relationship between side-to-side differences in sagittal knee power/energy absorption and knee joint laxities was evaluated using univariate linear regression. A significant group-by-leg interaction (p = 0.010) was found for knee sagittal plane energy absorption, with patients having 25% lower values in their involved compared to their non-involved leg (1.22 ± 0.39 vs. 1.62 ± 0.40 J kg -1 ). Furthermore, knee sagittal plane energy absorption was 18% lower at their involved leg compared to controls (p = 0.018). Concomitantly, patients demonstrated a 27% higher anterior laxity of the involved knee compared to the non-involved knee, with an average side-to-side difference of 1.2 mm (p < 0.001). Laxity of the involved knee was also 30% higher than that of controls (p < 0.001) (leg-by-group interaction: p = 0.002). No relationship was found between sagittal plane energy absorption and knee laxity. Nine months following surgery, ACLR patients were shown to employ a knee unloading strategy of their involved leg during bilateral landing. However, this strategy was unrelated to their increased anterior knee laxity. Side-to-side asymmetries during simple bilateral landing tasks may put ACLR patients at increased risk of second ACL injury or early-onset osteoarthritis development. Detecting and correcting asymmetric landing strategies is highly relevant in the framework of personalized rehabilitation, which calls for complex biomechanical analyses to be applied in clinical routine. III.

  13. Complete 3D kinematics of upper extremity functional tasks.

    PubMed

    van Andel, Carolien J; Wolterbeek, Nienke; Doorenbosch, Caroline A M; Veeger, DirkJan H E J; Harlaar, Jaap

    2008-01-01

    Upper extremity (UX) movement analysis by means of 3D kinematics has the potential to become an important clinical evaluation method. However, no standardized protocol for clinical application has yet been developed, that includes the whole upper limb. Standardization problems include the lack of a single representative function, the wide range of motion of joints and the complexity of the anatomical structures. A useful protocol would focus on the functional status of the arm and particularly the orientation of the hand. The aim of this work was to develop a standardized measurement method for unconstrained movement analysis of the UX that includes hand orientation, for a set of functional tasks for the UX and obtain normative values. Ten healthy subjects performed four representative activities of daily living (ADL). In addition, six standard active range of motion (ROM) tasks were executed. Joint angles of the wrist, elbow, shoulder and scapula were analyzed throughout each ADL task and minimum/maximum angles were determined from the ROM tasks. Characteristic trajectories were found for the ADL tasks, standard deviations were generally small and ROM results were consistent with the literature. The results of this study could form the normative basis for the development of a 'UX analysis report' equivalent to the 'gait analysis report' and would allow for future comparisons with pediatric and/or pathologic movement patterns.

  14. Agonist and antagonist muscle activation in elite athletes: influence of age.

    PubMed

    Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola

    2015-01-01

    Age-related neuromuscular control adaptations have been investigated mainly in untrained populations, where higher antagonist activation in adults was observed with respect to children. In elite athletes age-related differences in neuromuscular control have scarcely been investigated. Therefore, this study aims at investigating differences in co-activation about the knee joint in two groups of karate athletes belonging to the Junior (JK) and Senior (SK) age categories, performing the roundhouse kick (RK). Six SK and six JK performed the RK impacting on a punching bag. Each participant performed three attempts during which kicking limb kinematics and sEMG from the vastus lateralis (VL) and from the biceps femoris (BF) were recorded. Co-activation index during knee flexion and extension (CIF; CIE) and agonist and antagonist activation areas of VL and BF (I AGO-VL; I AGO-BF; I ANT-VL; I ANT-BF) were computed. Hip and knee range of motion, peak angular velocity and minima and maxima of lower limb angular momentum were computed. During knee extension, the SK demonstrated higher CIE, higher IANT-BF and higher total angular momentum with respect to the JK. Significant relationships were observed between I ANT-BF and total angular momentum maxima, and between I ANT-BF and age. IANT-BF is partially related to the age of the group and to joint protection upon impact. Moreover, given the very brief duration of the task, a feed-forward mechanism modulating antagonist activation partly based on the stress imposed on the knee joint could be hypothesized. This mechanism potentially involves skill dependent re-modelling of the peripheral and central nervous system.

  15. Body sway reflects leadership in joint music performance.

    PubMed

    Chang, Andrew; Livingstone, Steven R; Bosnyak, Dan J; Trainor, Laurel J

    2017-05-23

    The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers' ratings of the "goodness" of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships.

  16. Body sway reflects leadership in joint music performance

    PubMed Central

    Livingstone, Steven R.; Bosnyak, Dan J.; Trainor, Laurel J.

    2017-01-01

    The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers’ ratings of the “goodness” of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships. PMID:28484007

  17. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements

    PubMed Central

    Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  18. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    PubMed

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  19. Explicit Reasoning, Creativity and Co-Construction in Primary School Children's Collaborative Activities

    ERIC Educational Resources Information Center

    Rojas-Drummond, Sylvia; Mazon, Nancy; Fernandez, Manuel; Wegerif, Rupert

    2006-01-01

    This paper describes research that explored the question of whether or not it is possible to characterise and teach a single type of educationally productive talk. We analysed and compared the quality of children's interactional strategies when jointly working on a reasoning task and a psycholinguistic task. The latter involved writing an…

  20. Computer-Mediated Training Tools to Enhance Joint Task Force Cognitive Leadership Skills

    DTIC Science & Technology

    2007-04-01

    University); and 5d. TASK NUMBER Barclay Lewis (American Systems) 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ...ple G am ing Platform D ecisive A ction for Training ..................................................... 43 6. Perform ance M etrics...Figure 15: Automated Performance Measurement System ................................................................... 48 iv COMPUTER-MEDIATED TRAINING

  1. The Event-Related Brain Potential as an Index of Information Processing and Cognitive Activity: A Program of Basic Research.

    DTIC Science & Technology

    1986-02-20

    related brain potential at the Joint EEG Society/ ohp hysioogical Society (ERP) and measures of the electromyogram Meeting. Bristol (England), 1983. and...proving the memory representation of the task ( mem - manipulations of primary-task difficulty attenuated ory data limits). If the P300 amplitude does in

  2. Essential Civil Support Tasks

    DTIC Science & Technology

    2010-12-01

    food, water, beds , bedding , clothing, and temporary shelters. They utilized vacant warehouses and parking lots to enable receipt, storage, and...Adequate Water Provide Food Provide Clothing and Bedding Provide Beds Develop National and Local Logistics Infrastructure for Receipt, Storage...Defense Support of Civil Authorities FEMA Federal Emergency Management Agency FM Field Manual JTF Joint Task Force NRF National Response Framework

  3. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    DTIC Science & Technology

    2008-08-01

    Twentieth International Joint Conference on Artificial Intelli - gence, 2007. 304 Fumihide Tanaka and Masayuki Yamamura. Multitask reinforcement learning...Functions . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Instance-based...tures [Laird et al., 1986, Choi et al., 2007]. However, TL for RL tasks has only recently been gaining attention in the artificial intelligence

  4. Interpretation and use of FRAX in clinical practice - position paper of the International Osteoporosis Foundation and the International Society for Clinical Densitometry

    USDA-ARS?s Scientific Manuscript database

    The International Osteoporosis Foundation (IOF) and the International Society for Clinical Densitometry (ISCD) appointed a joint Task Force to develop resource documents in order to make recommendations on how to improve FRAX and better inform clinicians who use FRAX. The Task Force met in November...

  5. [CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].

    PubMed

    Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min

    2015-08-01

    To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated with facet joint degeneration at the lower lumbar spine.

  6. Evaluation of joint findings with gait analysis in children with hemophilia.

    PubMed

    Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat

    2014-01-01

    Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.

  7. Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis.

    PubMed

    Wiegant, Karen; Intema, Femke; van Roermund, Peter M; Barten-van Rijbroek, Angelique D; Doornebal, Arie; Hazewinkel, Herman A W; Lafeber, Floris P J G; Mastbergen, Simon C

    2015-02-01

    Knee osteoarthritis (OA) is a degenerative joint disorder characterized by cartilage, bone, and synovial tissue changes that lead to pain and functional impairment. Joint distraction is a treatment that provides long-term improvement in pain and function accompanied by cartilage repair, as evaluated indirectly by imaging studies and measurement of biochemical markers. The purpose of this study was to evaluate cartilage tissue repair directly by histologic and biochemical assessments after joint distraction treatment. In 27 dogs, OA was induced in the right knee joint (groove model; surgical damage to the femoral cartilage). After 10 weeks of OA development, the animals were randomized to 1 of 3 groups. Two groups were fitted with an external fixator, which they wore for a subsequent 10 weeks (one group with and one without joint distraction), and the third group had no external fixation (OA control group). Pain/function was studied by force plate analysis. Cartilage integrity and chondrocyte activity of the surgically untouched tibial plateaus were analyzed 25 weeks after removal of the fixator. Changes in force plate analysis values between the different treatment groups were not conclusive. Features of OA were present in the OA control group, in contrast to the generally less severe damage after joint distraction. Those treated with joint distraction had lower macroscopic and histologic damage scores, higher proteoglycan content, better retention of newly formed proteoglycans, and less collagen damage. In the fixator group without distraction, similarly diminished joint damage was found, although it was less pronounced. Joint distraction as a treatment of experimentally induced OA results in cartilage repair activity, which corroborates the structural observations of cartilage repair indicated by surrogate markers in humans. Copyright © 2015 by the American College of Rheumatology.

  8. Effects of Low-Intensity Pulsed Ultrasound for Preventing Joint Stiffness in Immobilized Knee Model in Rats.

    PubMed

    Itaya, Nobuyuki; Yabe, Yutake; Hagiwara, Yoshihiro; Kanazawa, Kenji; Koide, Masashi; Sekiguchi, Takuya; Yoshida, Shinichirou; Sogi, Yasuhito; Yano, Toshihisa; Tsuchiya, Masahiro; Saijo, Yoshihumi; Itoi, Eiji

    2018-06-01

    The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) in preventing joint stiffness. Unilateral knee joints were immobilized in two groups of rats (n = 6/period/group). Under general anesthesia, the immobilized knee joints were exposed to LIPUS for 20 min/d, 5 d/wk, using an existing LIPUS device (LIPUS group, 1.5-MHz frequency, 1.0-kHz repetition cycle, 200-µs burst width and 30-mW/cm 2 power output) until endpoints (2, 4 or 6 wk). In the control group, general anesthesia alone was administered in the same manner as in the other group. The variables compared between the groups included joint angles; histologic, histomorphometric and immunohistochemical analyses; quantitative reverse transcription polymerase chain reactions; and tissue elasticity. LIPUS had a preventive effect on joint stiffness, resulting in decreased adhesion, fibrosis and inflammation and hypoxic response after joint immobilization. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  9. Integrated propulsion technology demonstrator. Program plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA and Rockwell have embarked on a cooperative agreement to define, develop, fabricate, and operate an integrated propulsion technology demonstrator (IPTD) for the purpose of validating design, process, and technology improvements of launch vehicle propulsion systems. This program, a result of NRA8-11, Task Area 1 A, is jointly funded by both NASA and Rockwell and is sponsored by the Reusable Launch Vehicle office at NASA Marshall Space flight Center. This program plan provides to the joint NASA/Rockwell integrated propulsion technology demonstrator (IPTD) team a description of the activities within tasks / sub tasks and associated schedules required to successfully achieve program objectives. This document also defines the cost elements and manpower allocations for each sub task for purpose of program control. This plan is updated periodically by developing greater depth of direction for outyear tasks as the program matures. Updating is accomplished by adding revisions to existing pages or attaching page revisions to this plan. In either case, revisions will be identified by appropriate highlighting of the change, or specifying a revision page through the use of footnotes on the bottom right of each change page. Authorization for the change is provided by the principal investigators to maintain control of this program plan document and IPTD program activities.

  10. The Cat Is out of the Bag: The Joint Influence of Previous Experience and Looking Behavior on Infant Categorization

    ERIC Educational Resources Information Center

    Kovack-Lesh, Kristine A.; Horst, Jessica S.; Oakes, Lisa M.

    2008-01-01

    We examined the effect of 4-month-old infants' previous experience with dogs, cats, or both and their online looking behavior on their learning of the adult-defined category of "cat" in a visual familiarization task. Four-month-old infants' (N = 123) learning in the laboratory was jointly determined by whether or not they had experience…

  11. Native Language and Culture. INAR/NACIE Joint Issues Sessions. National Indian Education Association (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on educational issues related to Native American language and culture. Educators, students, parents, and tribal officials made presentations concerning: the importance for academic success…

  12. Academic Performance. INAR/NACIE Joint Issues Sessions. National Indian Education Association (NIEA) Annual Conference (22nd, San Diego, California, October 15, 1990).

    ERIC Educational Resources Information Center

    National Advisory Council on Indian Education, Washington, DC.

    This report summarizes two joint sessions held by the Indian Nations At Risk Task Force and the National Advisory Council on Indian Education to hear testimony on issues related to the academic performance of Native American students. Educators, employers, parents, and tribal officials testified on the following topics: Native students' high…

  13. Joint Communications in Support of Joint Task Force South during Operation Just Cause

    DTIC Science & Technology

    1991-01-01

    the contingent frcm the 35th Signal Brigade under Colonel Jackson Moss arrived at Howard Air Force Base in a C-5A Galaxy . Colonel Moss had put together...to be an operation of short duration with the flowing in of one follow on Brigade of the 7th ID and the immediate redeployment of the Rangers and the

  14. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  15. Radiographic Shape of Foot With Second Metatarsophalangeal Joint Dislocation Associated With Hallux Valgus.

    PubMed

    Kokubo, Tetsuro; Hashimoto, Takeshi; Suda, Yasunori; Waseda, Akeo; Ikezawa, Hiroko

    2017-12-01

    Second metatarsophalangeal (MTP) joint dislocation is associated with hallux valgus, and the treatment of complete dislocation can be difficult. The purpose of this study was to radiographically clarify the characteristic foot shape in the presence of second MTP joint dislocation. Weight-bearing foot radiographs of the 268 patients (358 feet) with hallux valgus were examined. They were divided into 2 groups: those with second MTP joint dislocation (study group = 179 feet) and those without dislocation (control group = 179 feet). Parameters measured included the hallux valgus angle (HVA), first-second intermetatarsal angle (IMA), second MTP joint angle, hallux interphalangeal angle (IPA), second metatarsal protrusion distance (MPD), metatarsus adductus angle (MAA), and the second metatarsal declination angle (2MDA). Furthermore, the dislocation group was divided into 3 subgroups according to second toe deviation direction: group M (medial type), group N (neutral type), and group L (lateral type). The IPA and the 2MDA were significantly greater in the study group than in the control group. By multiple comparison analysis, the IMA was greatest in group M and smallest in group L. The IPA was smaller and 2MDA greater in group N than in group L. The HVA and MAA in group L were greatest, and MPD in group L was smallest. The patients with second MTP joint dislocation associated with hallux valgus had greater hallux interphalangeal joint varus and a second metatarsal more inclined than with hallux valgus alone. The second toe deviated in a different direction according to the foot shape. Level III, retrospective comparative study.

  16. Joint source based morphometry identifies linked gray and white matter group differences.

    PubMed

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D

    2009-02-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray-white matter regions identified in each of the joint sources included: 1) temporal--corpus callosum, 2) occipital/frontal--inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal--superior longitudinal fasciculus and 4) parietal/frontal--thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences.

  17. Copula Regression Analysis of Simultaneously Recorded Frontal Eye Field and Inferotemporal Spiking Activity during Object-Based Working Memory

    PubMed Central

    Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin

    2015-01-01

    Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909

  18. Sex-based differences in knee ligament biomechanics during robotically simulated athletic tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-06-14

    ACL injury rates are greater in female athletes than their male counterparts. As female athletes are at increased risk, it is important to understand the underlying mechanics that contribute to this sex bias. The purpose of this investigation was to employ a robotic manipulator to simulate male and female kinematics from athletic tasks on cadaveric specimens and identify sex-based mechanical differences relative to the ACL loading. It was hypothesized that simulations of female motion would generate the higher loads and ligament strains associated with in vivo ACL injury risk than simulations of male motion. A 6-degree-of-freedom robotic manipulator articulated cadaveric lower extremity specimens from 12 donors through simulations of in vivo kinematics recorded from male and female athletic tasks. Simulation of female kinematics exhibited lower peak lateral joint force during the drop vertical jump and lower peak anterior and lateral joint force and external joint torque during the sidestep cut (P<0.05). Peak ACL strain during a drop vertical jump was 6.27% and 6.61% for the female and male kinematic simulations, respectively (P=0.86). Peak ACL strain during a sidestep cut was 4.33% and 7.57% for female and male kinematic simulations respectively (P=0.21). For the tasks simulated, the sex-based loading and strain differences identified were unlikely to have a significant bearing on the increased rate of ACL injures observed in female athletes. Additional perturbation may be necessary to invoke the mechanisms that lead to higher rates of ACL injury in female populations. Copyright © 2016. Published by Elsevier Ltd.

  19. Contribution of calcaneal and leg segment rotations to ankle joint dorsiflexion in a weight-bearing task.

    PubMed

    Chizewski, Michael G; Chiu, Loren Z F

    2012-05-01

    Joint angle is the relative rotation between two segments where one is a reference and assumed to be non-moving. However, rotation of the reference segment will influence the system's spatial orientation and joint angle. The purpose of this investigation was to determine the contribution of leg and calcaneal rotations to ankle rotation in a weight-bearing task. Forty-eight individuals performed partial squats recorded using a 3D motion capture system. Markers on the calcaneus and leg were used to model leg and calcaneal segment, and ankle joint rotations. Multiple linear regression was used to determine the contribution of leg and calcaneal segment rotations to ankle joint dorsiflexion. Regression models for left (R(2)=0.97) and right (R(2)=0.97) ankle dorsiflexion were significant. Sagittal plane leg rotation had a positive influence (left: β=1.411; right: β=1.418) while sagittal plane calcaneal rotation had a negative influence (left: β=-0.573; right: β=-0.650) on ankle dorsiflexion. Sagittal plane rotations of the leg and calcaneus were positively correlated (left: r=0.84, P<0.001; right: r=0.80, P<0.001). During a partial squat, the calcaneus rotates forward. Simultaneous forward calcaneal rotation with ankle dorsiflexion reduces total ankle dorsiflexion angle. Rear foot posture is reoriented during a partial squat, allowing greater leg rotation in the sagittal plane. Segment rotations may provide greater insight into movement mechanics that cannot be explained via joint rotations alone. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Light touch compensates peripheral somatosensory degradation in postural control of older adults.

    PubMed

    Barela, Ana M F; Caporicci, Sarah; de Freitas, Paulo Barbosa; Jeka, John J; Barela, José A

    2018-06-05

    The present study aimed to investigate the sensitivity of detecting lower limb passive motion and use of additional sensory information from fingertip light touch for the postural control of older adults in comparison with young adults. A total of 11 older and 11 young adults (aged 68.1 ± 5.2 and 24.2 ± 2.2 years, respectively) underwent two tasks. We evaluated their sensitivity to passive ankle joint movement while seated in the first task. Participants then stood quietly on a force plate in a semi-tandem stance, for 30 s under two fingertip contact force conditions (no touch and light touch limited to 1 N). The results showed that the threshold of passive ankle displacement and body sway is higher in older adults than in young adults. The body sway reduced for both older and young adults with the addition of light touch at the fingertips. The maximum cross-correlation coefficient and time lags between body sway and fingertip light touch center of pressure was similar between both groups, suggesting that older adults used light touch to reduce body sway, similar to young adults. A higher threshold in detecting passive ankle joint movement may contribute to the increased body sway observed in older adults. These deficits may be compensated by additional sensory cues that would provide enhanced information used to control the upright stance. Copyright © 2018. Published by Elsevier B.V.

  1. Evaluation of Boreal Summer Monsoon Intraseasonal Variability in the GASS-YOTC Multi-Model Physical Processes Experiment

    NASA Astrophysics Data System (ADS)

    Mani, N. J.; Waliser, D. E.; Jiang, X.

    2014-12-01

    While the boreal summer monsoon intraseasonal variability (BSISV) exerts profound influence on the south Asian monsoon, the capability of present day dynamical models in simulating and predicting the BSISV is still limited. The global model evaluation project on vertical structure and diabatic processes of the Madden Julian Oscillations (MJO) is a joint venture, coordinated by the Working Group on Numerical Experimentation (WGNE) MJO Task Force and GEWEX Atmospheric System Study (GASS) program, for assessing the model deficiencies in simulating the ISV and for improving our understanding of the underlying processes. In this study the simulation of the northward propagating BSISV is investigated in 26 climate models with special focus on the vertical diabatic heating structure and clouds. Following parallel lines of inquiry as the MJO Task Force has done with the eastward propagating MJO, we utilize previously proposed and newly developed model performance metrics and process diagnostics and apply them to the global climate model simulations of BSISV.

  2. Growth Models of Dyadic Synchrony and Mother-Child Vagal Tone in the Context of Parenting At-Risk

    PubMed Central

    Giuliano, Ryan J.; Skowron, Elizabeth A.; Berkman, Elliot T.

    2015-01-01

    We used multilevel modeling to examine dynamic changes in respiratory sinus arrhythmia (RSA) and observer-coded interactive synchrony for mother-child dyads engaged in a laboratory interaction, to characterize parenting-at-risk. Seventy-nine preschooler-mother dyads including a subset with documented child maltreatment (CM; n=43) were observed completing a joint puzzle task while physiological measures were recorded. Dyads led by CM mothers showed decreases in positive synchrony over time, whereas no variation was observed in non-CM dyads. Growth models of maternal RSA indicated that mothers who maintained high levels of positive interactive synchrony with their child evidenced greater RSA reactivity, characterized by an initial withdrawal followed by augmentation as the task progressed, after accounting for CM group status. These results help to clarify patterns of RSA responding in the context of caregiver-child interactions, and demonstrate the importance of modeling dynamic changes in physiology over time in order to better understanding biological correlates of parenting-at-risk. PMID:25542759

  3. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    PubMed

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the knee, it may be important to first manage their pain more effectively.

  4. Effects of Early Bilingual Experience with a Tone and a Non-Tone Language on Speech-Music Integration

    PubMed Central

    Asaridou, Salomi S.; Hagoort, Peter; McQueen, James M.

    2015-01-01

    We investigated music and language processing in a group of early bilinguals who spoke a tone language and a non-tone language (Cantonese and Dutch). We assessed online speech-music processing interactions, that is, interactions that occur when speech and music are processed simultaneously in songs, with a speeded classification task. In this task, participants judged sung pseudowords either musically (based on the direction of the musical interval) or phonologically (based on the identity of the sung vowel). We also assessed longer-term effects of linguistic experience on musical ability, that is, the influence of extensive prior experience with language when processing music. These effects were assessed with a task in which participants had to learn to identify musical intervals and with four pitch-perception tasks. Our hypothesis was that due to their experience in two different languages using lexical versus intonational tone, the early Cantonese-Dutch bilinguals would outperform the Dutch control participants. In online processing, the Cantonese-Dutch bilinguals processed speech and music more holistically than controls. This effect seems to be driven by experience with a tone language, in which integration of segmental and pitch information is fundamental. Regarding longer-term effects of linguistic experience, we found no evidence for a bilingual advantage in either the music-interval learning task or the pitch-perception tasks. Together, these results suggest that being a Cantonese-Dutch bilingual does not have any measurable longer-term effects on pitch and music processing, but does have consequences for how speech and music are processed jointly. PMID:26659377

  5. Effects of Early Bilingual Experience with a Tone and a Non-Tone Language on Speech-Music Integration.

    PubMed

    Asaridou, Salomi S; Hagoort, Peter; McQueen, James M

    2015-01-01

    We investigated music and language processing in a group of early bilinguals who spoke a tone language and a non-tone language (Cantonese and Dutch). We assessed online speech-music processing interactions, that is, interactions that occur when speech and music are processed simultaneously in songs, with a speeded classification task. In this task, participants judged sung pseudowords either musically (based on the direction of the musical interval) or phonologically (based on the identity of the sung vowel). We also assessed longer-term effects of linguistic experience on musical ability, that is, the influence of extensive prior experience with language when processing music. These effects were assessed with a task in which participants had to learn to identify musical intervals and with four pitch-perception tasks. Our hypothesis was that due to their experience in two different languages using lexical versus intonational tone, the early Cantonese-Dutch bilinguals would outperform the Dutch control participants. In online processing, the Cantonese-Dutch bilinguals processed speech and music more holistically than controls. This effect seems to be driven by experience with a tone language, in which integration of segmental and pitch information is fundamental. Regarding longer-term effects of linguistic experience, we found no evidence for a bilingual advantage in either the music-interval learning task or the pitch-perception tasks. Together, these results suggest that being a Cantonese-Dutch bilingual does not have any measurable longer-term effects on pitch and music processing, but does have consequences for how speech and music are processed jointly.

  6. United States Research and Development effort on ITER magnet tasks

    DOE PAGES

    Martovetsky, Nicolai N.; Reierson, Wayne T.

    2011-01-22

    This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.

  7. An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization

    DTIC Science & Technology

    2015-09-30

    2015) Characterizing the behavior of gravity wave propagation into a floating or submerged viscous layer , 2015 AGU Joint Assembly Meeting, May 3–7...are the PI and a PhD student. Task 1: Use an analytical method to determine the propagation of waves through a floating viscoelastic mat for a wide...and Ben Holt. 2 Task 3: Assemble all existing laboratory and field data of wave propagation in ice covers. Task 4: Determine if all existing

  8. National Task Force on a Uniform Measurement Unit for the Recognition of Continuing Education: Working Papers; and The Continuing Education Unit: A Uniform Unit of Measure for Non-Credit Continuing Education Programs (An Interim Statement of the National Task Force).

    ERIC Educational Resources Information Center

    National Univ. Extension Association, Washington, DC.

    In 1968, a national planning conference, under the joint sponsorship of 34 organizations responsing to continuing education needs, created the National Task Force to determine the feasibility of a uniform unit of measurement and develop a proposal for field testing the concept. Stressing that continuing education units should supplement, not…

  9. Practice analysis of chiropractic radiology: identifying items for part I of the clinical competency examination.

    PubMed

    Smith, Sara Dawn; Beran, Tanya N

    2012-01-01

    The purpose of this study was to describe the current scope of practice of chiropractic radiologists by identifying frequent tasks conducted as well as those conditions most often seen and those that present the greatest risk of harm to patients. A mixed-methods approach was used. An online survey was conducted with 91 diplomates listed with the American Chiropractic Board of Radiology. Participants rated the frequency of tasks they perform and conditions they see on a 5-point scale from "never" to "daily." They also rated the level of risk each condition presents to patients on a 5-point scale from "no risk" to "severe risk." Frequency and risk ratings were then presented in rank order to 22 subject matter experts at 3 focus groups. The most frequent task reported was writing radiology reports (mean [SD], 4.29 [1.58]). Ratings of the frequency of conditions seen in practice and the risk they present to patients were ranked from the highest to lowest for frequency and risk separately. The most frequent conditions seen were reportedly those with structural or joint derangement; the highest risk conditions seen are those that are systemic. Focus group members recommended that some conditions receive higher rankings and that certain conditions be recategorized for future practice analyses. This study helps to define the current scope of practice of chiropractic radiologists and identify frequent tasks and conditions. These results inform the development of a new test outline for Part I of the chiropractic radiology certification examination to ensure that examinees are tested on the most important conditions chiropractic radiologists see in practice. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  10. Context effects and the temporal stability of stated preferences.

    PubMed

    Liebe, Ulf; Hundeshagen, Cordula; Beyer, Heiko; Cramon-Taubadel, Stephan von

    2016-11-01

    In stated preference studies it is assumed that individuals' answers reflect true preferences and are stable over time. We test these two assumptions of validity and reliability using as an example a choice experiment study on ethical consumption that measures preferences for a Peace Product jointly produced by Israeli and Palestinian producers as well as for organic products. In a web survey conducted in Germany, we investigate the validity assumption by manipulating the question context and presenting one group of respondents with questions on anti-Semitic and anti-Arabic attitudes before the choice tasks, and presenting another group with these questions after the choice tasks. In order to test the assumption of temporal stability, the same experimental set-up was repeated in a second survey based on a new sample ten months after the first. However, prior to the second survey an external event, a major violent dispute between Israelis and the Palestinians occurred. Overall, we find evidence for a context effect but not for temporal instability. In both surveys, the placement of the attitudinal questions before the choice tasks has a positive effect on the valuation of products from Israel, Palestinian products and the Peace Product (i.e. a directional context effect). The respondents seem to act according to an anti-discrimination norm. In line with this reasoning, we find an attention shift caused by the attitudinal questions. Organic products are valued much less positively if discriminatory attitudes are surveyed before the choice tasks. Furthermore, despite the violent dispute, stated preferences are very stable over time. This indicates high reliability of stated preference studies and encourages the use of study results by private and public decision makers. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The juggling paradigm: a novel social neuroscience approach to identify neuropsychophysiological markers of team mental models.

    PubMed

    Filho, Edson; Bertollo, Maurizio; Robazza, Claudio; Comani, Silvia

    2015-01-01

    Since the discovery of the mirror neuron system in the 1980s, little, if any, research has been devoted to the study of interactive motor tasks (Goldman, 2012). Scientists interested in the neuropsychophysiological markers of joint motor action have relied on observation paradigms and passive tasks rather than dynamic paradigms and interactive tasks (Konvalinka and Roepstorff, 2012). Within this research scenario, we introduce a novel research paradigm that uses cooperative juggling as a platform to capture peripheral (e.g., skin conductance, breathing and heart rates, electromyographic signals) and central neuropsychophysiological (e.g., functional connectivity within and between brains) markers underlying the notion of team mental models (TMM). We discuss the epistemological and theoretical grounds of a cooperative juggling paradigm, and propose testable hypotheses on neuropsychophysiological markers underlying TMM. Furthermore, we present key methodological concerns that may influence peripheral responses as well as single and hyperbrain network configurations during joint motor action. Preliminary findings of the paradigm are highlighted. We conclude by delineating avenues for future research.

  12. Study to design and develop remote manipulator system. [computer simulation of human performance

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Mcgovern, D. E.; Sword, A. J.

    1974-01-01

    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance.

  13. Study to design and develop remote manipulator system

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.

  14. Biomechanical evaluation of the impact of various facet joint lesions on the primary stability of anterior plate fixation in cervical dislocation injuries: a cadaver study: Laboratory investigation.

    PubMed

    Oberkircher, Ludwig; Born, Sebastian; Struewer, Johannes; Bliemel, Christopher; Buecking, Benjamin; Wack, Christina; Bergmann, Martin; Ruchholtz, Steffen; Krüger, Antonio

    2014-10-01

    Injuries of the subaxial cervical spine including facet joints and posterior ligaments are common. Potential surgical treatments consist of anterior, posterior, or anterior-posterior fixation. Because each approach has its advantages and disadvantages, the best treatment is debated. This biomechanical cadaver study compared the effect of different facet joint injuries on primary stability following anterior plate fixation. Fractures and plate fixation were performed on 15 fresh-frozen intact cervical spines (C3-T1). To simulate a translation-rotation injury in all groups, complete ligament rupture and facet dislocation were simulated by dissecting the entire posterior and anterior ligament complex between C-4 and C-5. In the first group, the facet joints were left intact. In the second group, one facet joint between C-4 and C-5 was removed and the other side was left intact. In the third group, both facet joints between C-4 and C-5 were removed. The authors next performed single-level anterior discectomy and interbody grafting using bone material from the respective thoracic vertebral bodies. An anterior cervical locking plate was used for fixation. Continuous loading was performed using a servohydraulic test bench at 2 N/sec. The mean load failure was measured when the implant failed. In the group in which both facet joints were intact, the mean load failure was 174.6 ± 46.93 N. The mean load failure in the second group where only one facet joint was removed was 127.8 ± 22.83 N. In the group in which both facet joints were removed, the mean load failure was 73.42 ± 32.51 N. There was a significant difference between the first group (both facet joints intact) and the third group (both facet joints removed) (p < 0.05, Kruskal-Wallis test). In this cadaver study, primary stability of anterior plate fixation for dislocation injuries of the subaxial cervical spine was dependent on the presence of the facet joints. If the bone in one or both facet joints is damaged in the clinical setting, anterior plate fixation in combination with bone grafting might not provide sufficient stabilization; additional posterior stabilization may be needed.

  15. Generalized Cross Entropy Method for estimating joint distribution from incomplete information

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Yan; Kuo, Shyh-Hao; Li, Guoqi; Legara, Erika Fille T.; Zhao, Daxuan; Monterola, Christopher P.

    2016-07-01

    Obtaining a full joint distribution from individual marginal distributions with incomplete information is a non-trivial task that continues to challenge researchers from various domains including economics, demography, and statistics. In this work, we develop a new methodology referred to as ;Generalized Cross Entropy Method; (GCEM) that is aimed at addressing the issue. The objective function is proposed to be a weighted sum of divergences between joint distributions and various references. We show that the solution of the GCEM is unique and global optimal. Furthermore, we illustrate the applicability and validity of the method by utilizing it to recover the joint distribution of a household profile of a given administrative region. In particular, we estimate the joint distribution of the household size, household dwelling type, and household home ownership in Singapore. Results show a high-accuracy estimation of the full joint distribution of the household profile under study. Finally, the impact of constraints and weight on the estimation of joint distribution is explored.

  16. Immediate effects of neuromuscular joint facilitation intervention after anterior cruciate ligament reconstruction.

    PubMed

    Wang, Lei

    2016-07-01

    [Purpose] The aim of this study was to examine the immediate effects of neuromuscular joint facilitation (NJF) on the functional activity level after rehabilitation of anterior cruciate ligament (ACL) reconstruction. [Subjects and Methods] Ten young subjects (8 males and 2 females) who underwent ACL reconstruction were included in the study. The subjects were divided into two groups, namely, knee joint extension muscle strength training (MST) group and knee joint extension outside rotation pattern of NJF group. Extension strength was measured in both groups before and after the experiment. Surface electromyography (sEMG) of the vastus medialis and vastus lateralis muscles and joint position error (JPE) test of the knee joint were also conducted. [Results] JPE test results and extension strength measurements in the NJF group were improved compared with those in the MST group. Moreover, the average discharge of the vastus medialis and vastus lateralis muscles on sEMG in the NJF group was significantly increased after MST and NJF treatments. [Conclusion] The obtained results suggest that NJF training in patients with ACL reconstruction can improve knee proprioception ability and muscle strength.

  17. Joint Group on Pollution Prevention: Partnering for Progress

    NASA Technical Reports Server (NTRS)

    Hill, R.

    2001-01-01

    This viewgraph presentation outlines the Joint Group on Pollution Prevention (JG-PP) partnership. Details are given on what groups comprise JG-PP, the proven methodology for what JG-PP can accomplish, the common problems, joint solutions, and shared efforts, and some of the JG-PP projects.

  18. In-vivo patellar tracking in individuals with patellofemoral pain and healthy individuals.

    PubMed

    Esfandiarpour, Fateme; Lebrun, Constance M; Dhillon, Sukhvinder; Boulanger, Pierre

    2018-02-28

    Understanding of the exact cause of patellofemoral pain has been limited by methodological challenges to evaluate in-vivo joint motion. This study compared six degree-of-freedom patellar motion during a dynamic lunge task between individuals with patellofemoral pain and healthy individuals. Knee joints of eight females with patellofemoral pain and ten healthy females were imaged using a CT scanner in supine lying position, then by a dual-orthogonal fluoroscope while they performed a lunge. To quantify patellar motion, the three-dimensional models of the knee bones, reconstructed from CT scans, were registered on the fluoroscopy images using the Fluomotion registration software. At full knee extension, the patella was in a significantly laterally tilted (PFP: 11.77° ± 7.58° vs. healthy: 0.86° ± 4.90°; p = 0.002) and superiorly shifted (PFP: 17.49 ± 8.44 mm vs. healthy: 9.47 ± 6.16 mm, p = 0. 033) position in the patellofemoral pain group compared with the healthy group. There were also significant differences between the groups for patellar tilt at 45°, 60°, and 75° of knee flexion, and for superior-inferior shift of the patella at 30° flexion (p ≤ 0.031). In the non-weight-bearing knee extended position, the patella was in a significantly laterally tilted position in the patellofemoral pain group (7.44° ± 6.53°) compared with the healthy group (0.71° ± 4.99°). These findings suggest the critical role of passive and active patellar stabilizers as potential causative factors for patellar malalignment/maltracking. Future studies should investigate the associations between patellar kinematics with joint morphology, muscle activity, and tendon function in a same sample for a thorough understanding of the causes of patellofemoral pain. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Joint Task Force on Undergraduate Physics Programs (J-TUPP): Overview and Major Findings

    NASA Astrophysics Data System (ADS)

    Heron, Paula

    2016-03-01

    The Joint Task Force on Undergraduate Physics Programs (JTUPP) was formed in response to growing awareness in the physics community that physics majors pursue a wide range of careers after graduation, with very few ending up in academia. The task force is charged with identifying the skills and knowledge that undergraduate physics degree holders should possess to be well prepared for a diverse set of careers, and providing guidance for physicists considering revising the undergraduate curriculum to improve the education of a diverse student population. Task force members represent large and small universities, professional societies, and industry, and have expertise in a broad range of areas including entrepreneurship, physics education research and systemic change in education. We reviewed employment data, surveys of employers, and reports generated by other disciplines. We also met with physicists in selected industries to get their views on the strengths and weaknesses of physics graduates, commissioned a series of interviews with recent physics graduates employed in the private sector, and identified exemplary programs that ensure that all of their students are well prepared to pursue a wide range of career paths. The findings and recommendations will be summarized.

  20. Benign joint hypermobility syndrome in soldiers; what is the effect of military training courses on associated joint instabilities?

    PubMed

    Azma, Kamran; Mottaghi, Peyman; Hosseini, Alireza; Abadi, Hossein Hassan; Nouraei, Mohammad Hadi

    2014-07-01

    Hypermobile joints are joints with beyond normal range of motion and may be associated with joint derangements. This study aimed to evaluate the prevalence of benign joint hypermobility syndrome (BJHS) among soldiers and effect of training courses on related joint instabilities. In a prospective cohort study on 721 soldiers of Iran Army in Isfahan in 2013 the prevalence of joint hypermobility was obtained by using Beighton criteria. Soldiers divided in two groups of healthy and suffered based on their scores. The prevalence of ankle sprain, shoulder and temporomandibular joint (TMJ) dislocations identified before beginning service by history-taking and reviewing paraclinical documents. After 3 months of military training, a recent occurrence of mentioned diseases was revaluated in two groups. The collected data were analyzed using SPSS-20 software using Independent-T and Chi-square tests. The frequency of BJHS before military training was 29.4%. After passing military training period, the incidence of ankle sprain was significantly higher in suffered group achieving the minimum Beighton score (BS) of 4 (4.3%, P = 0.03), 5 (5.5%, P = 0.005) and also 6 out of 9 (6.5%, P = 0.01). The incidence of TMJ dislocation was not significantly different based on a minimum score of 4, while it was higher in suffered group when considering the score of 5 (2.1%) and 6 (2.6%) for discrimination of two groups (P = 0.03). There was no significant difference between two groups in case of shoulder dislocation anyway. Military training can increase the incidence of ankle sprains and TMJ dislocations in hypermobility persons with higher BS in comparison with healthy people. Therefore, screening of joint hypermobility may be useful in identifying individuals at increased risk for joint instabilities.

Top