JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...
Forward and inverse kinematics of double universal joint robot wrists
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1991-01-01
A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.
Apparatus, Systems, and Methods for Reconfigurable Robotic Manipulator and Coupling
NASA Technical Reports Server (NTRS)
Chu, Mars Wei (Inventor); Wolfe, Bryn Tyler (Inventor); Burridge, Robert Raven (Inventor)
2016-01-01
A robotic manipulator arm is disclosed. The arm includes joints that are attachable and detachable in a tool-free manner via a universal mating adapter. The universal mating adapter includes a built-in electrical interface for an operative electrical connection upon mechanical coupling of the adapter portions. The universal mating adapter includes mechanisms and the ability to store and communicate parameter configurations such that the joints can be rearranged for immediate operation of the arm without further reprogramming, recompiling, or other software intervention.
Clark, Kristine L; Sebastianelli, Wayne; Flechsenhar, Klaus R; Aukermann, Douglas F; Meza, Felix; Millard, Roberta L; Deitch, John R; Sherbondy, Paul S; Albert, Ann
2008-05-01
Collagen hydrolysate is a nutritional supplement that has been shown to exert an anabolic effect on cartilage tissue. Its administration appears beneficial in patients with osteoarthritis. To investigate the effect of collagen hydrolysate on activity-related joint pain in athletes who are physically active and have no evidence of joint disease. A prospective, randomized, placebo-controlled, double-blind study was conducted at Penn State University in University Park, Pennsylvania. Parameters including joint pain, mobility, and inflammation were evaluated with the use of a visual analogue scale during a 24-week study phase. Between September 2005 and June 2006, 147 subjects who competed on a varsity team or a club sport were recruited. Data from 97 of 147 subjects could be statistically evaluated. One hundred and forty-seven subjects (72 male, 75 female) were randomly assigned to two groups: a group (n = 73) receiving 25 mL of a liquid formulation that contained 10 g of collagen hydrolysate (CH-Alpha) and a group (n = 74) receiving a placebo, which consisted of 25 mL of liquid that contained xanthan. The primary efficacy parameter was the change in the visual analogue scales from baseline during the study phase in relation to the parameters referring to pain, mobility, and inflammation. When data from all subjects (n = 97) were evaluated, six parameters showed statistically significant changes with the dietary supplement collagen hydrolysate (CH) compared with placebo: joint pain at rest, assessed by the physician (CH vs. placebo (-1.37 +/- 1.78 vs. -0.90 +/- 1.74 (p = 0.025)) and five parameters assessed by study participants: joint pain when walking (-1.11 +/- 1.98 vs. -0.46 +/- 1.63, p = 0.007), joint pain when standing (-0.97 +/- 1.92 vs. -0.43 +/- 1.74, p = 0.011), joint pain at rest (-0.81 +/- 1.77 vs. -0.39 +/- 1.56, p = 0.039), joint pain when carrying objects (-1.45 +/- 2.11 vs. -0.83 +/- 1.71, p = 0.014) and joint pain when lifting (-1.79 +/- 2.11 vs. -1.26 +/- 2.09, p = 0.018). When a subgroup analysis of subjects with knee arthralgia (n = 63) was performed, the difference between the effect of collagen hydrolysate vs. placebo was more pronounced. The parameter joint pain at rest, assessed by the physician, had a statistical significance level of p = 0.001 (-1.67 +/- 1.89 vs. -0.86 +/- 1.77), while the other five parameters based on the participants' assessments were also statistically significant: joint pain when walking (p = 0.003 (-1.38 +/- 2.12 vs. -0.54 +/- 1.65)), joint pain when standing (p = 0.015 (-1.17 +/- 2.06 vs. -0.50 +/- 1.68)), joint pain at rest with (p = 0.021 (-1.01 +/-1.92 vs. -0.47 +/- 1.63)), joint pain when running a straight line (p = 0.027 (-1.50 +/- 1.97 vs. -0.80 +/- 1.66)) and joint pain when changing direction (p = 0.026 (-1.87 +/- 2.18 vs. -1.20 +/- 2.10)). This was the first clinical trial of 24-weeks duration to show improvement of joint pain in athletes who were treated with the dietary supplement collagen hydrolysate. The results of this study have implications for the use of collagen hydrolysate to support joint health and possibly reduce the risk of joint deterioration in a high-risk group. Despite the study's size and limitations, the results suggest that athletes consuming collagen hydrolysate can reduce parameters (such as pain) that have a negative impact on athletic performance. Future studies are needed to support these findings.
JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...
Investigating the Effect of Cosmic Opacity on Standard Candles
NASA Astrophysics Data System (ADS)
Hu, J.; Yu, H.; Wang, F. Y.
2017-02-01
Standard candles can probe the evolution of dark energy over a large redshift range. But the cosmic opacity can degrade the quality of standard candles. In this paper, we use the latest observations, including Type Ia supernovae (SNe Ia) from the “joint light-curve analysis” sample and Hubble parameters, to probe the opacity of the universe. A joint fitting of the SNe Ia light-curve parameters, cosmological parameters, and opacity is used in order to avoid the cosmological dependence of SNe Ia luminosity distances. The latest gamma-ray bursts are used in order to explore the cosmic opacity at high redshifts. The cosmic reionization process is considered at high redshifts. We find that the sample supports an almost transparent universe for flat ΛCDM and XCDM models. Meanwhile, free electrons deplete photons from standard candles through (inverse) Compton scattering, which is known as an important component of opacity. This Compton dimming may play an important role in future supernova surveys. From analysis, we find that about a few per cent of the cosmic opacity is caused by Compton dimming in the two models, which can be corrected.
A pitfall of piecewise-polytropic equation of state inference
NASA Astrophysics Data System (ADS)
Raaijmakers, Geert; Riley, Thomas E.; Watts, Anna L.
2018-05-01
The only messenger radiation in the Universe which one can use to statistically probe the Equation of State (EOS) of cold dense matter is that originating from the near-field vicinities of compact stars. Constraining gravitational masses and equatorial radii of rotating compact stars is a major goal for current and future telescope missions, with a primary purpose of constraining the EOS. From a Bayesian perspective it is necessary to carefully discuss prior definition; in this context a complicating issue is that in practice there exist pathologies in the general relativistic mapping between spaces of local (interior source matter) and global (exterior spacetime) parameters. In a companion paper, these issues were raised on a theoretical basis. In this study we reproduce a probability transformation procedure from the literature in order to map a joint posterior distribution of Schwarzschild gravitational masses and radii into a joint posterior distribution of EOS parameters. We demonstrate computationally that EOS parameter inferences are sensitive to the choice to define a prior on a joint space of these masses and radii, instead of on a joint space interior source matter parameters. We focus on the piecewise-polytropic EOS model, which is currently standard in the field of astrophysical dense matter study. We discuss the implications of this issue for the field.
Banta, E.R.; Hill, M.C.; Poeter, E.; Doherty, J.E.; Babendreier, J.
2008-01-01
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input and output conventions allow application users to access various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate, for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity analysis, data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas. Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example.
ERIC Educational Resources Information Center
Skrzek, Anna; Stefanska, Malgorzata
2012-01-01
The aim of the paper was to evaluate changes in muscle force-velocity parameters (F-v) in elderly women subjected to physical exercise. The examinations encompassed 20 women, aged 62-71, who were students at the University of the Third Age in Wroclaw. The evaluation of flexors and extensors of the knee joint, as well as flexors and extensors of…
Investigating the Effect of Cosmic Opacity on Standard Candles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Yu, H.; Wang, F. Y., E-mail: fayinwang@nju.edu.cn
Standard candles can probe the evolution of dark energy over a large redshift range. But the cosmic opacity can degrade the quality of standard candles. In this paper, we use the latest observations, including Type Ia supernovae (SNe Ia) from the “joint light-curve analysis” sample and Hubble parameters, to probe the opacity of the universe. A joint fitting of the SNe Ia light-curve parameters, cosmological parameters, and opacity is used in order to avoid the cosmological dependence of SNe Ia luminosity distances. The latest gamma-ray bursts are used in order to explore the cosmic opacity at high redshifts. The cosmicmore » reionization process is considered at high redshifts. We find that the sample supports an almost transparent universe for flat ΛCDM and XCDM models. Meanwhile, free electrons deplete photons from standard candles through (inverse) Compton scattering, which is known as an important component of opacity. This Compton dimming may play an important role in future supernova surveys. From analysis, we find that about a few per cent of the cosmic opacity is caused by Compton dimming in the two models, which can be corrected.« less
Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman
2015-03-01
Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Non-experimental, cross-sectional, case-control design. An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Not applicable. Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects.
Vukić, Tamara; Smith, Sean Robinson; Ljubas Kelečić, Dina; Desnica, Lana; Prenc, Ema; Pulanić, Dražen; Vrhovac, Radovan; Nemet, Damir; Pavletic, Steven Z.
2016-01-01
Aim To determine if there are correlations between joint and fascial chronic graft-vs-host disease (cGVHD) with clinical findings, laboratory parameters, and measures of functional capacity. Methods 29 patients were diagnosed with cGVHD based on National Institutes of Health (NIH) Consensus Criteria at the University Hospital Centre Zagreb from October 2013 to October 2015. Physical examination, including functional measures such as 2-minute walk test and hand grip strength, as well as laboratory tests were performed. The relationship between these evaluations and the severity of joint and fascial cGVHD was tested by logistical regression analysis. Results 12 of 29 patients (41.3%) had joint and fascial cGVHD diagnosed according to NIH Consensus Criteria. There was a significant positive correlation of joint and fascial cGVHD and skin cGVHD (P < 0.001), serum C3 complement level (P = 0.045), and leukocytes (P = 0.032). There was a significant negative correlation between 2-minute walk test (P = 0.016), percentage of cytotoxic T cells CD3+/CD8+ (P = 0.022), serum albumin (P = 0.047), and Karnofsky score (P < 0.001). Binary logistic regression model found that a significant predictor for joint and fascial cGVHD was cGVHD skin involvement (odds ratio, 7.79; 95 confidence interval 1.87-32.56; P = 0.005). Conclusion Joint and fascial cGVHD manifestations correlated with multiple laboratory measurements, clinical features, and cGVHD skin involvement, which was a significant predictor for joint and fascial cGVHD. PMID:27374828
Joint Motion Quality in Chondromalacia Progression Assessed by Vibroacoustic Signal Analysis.
Bączkowicz, Dawid; Majorczyk, Edyta
2016-11-01
Because of the specific biomechanical environment of the patellofemoral joint, chondral disorders, including chondromalacia, often are observed in this articulation. Chondromalacia via pathologic changes in cartilage may lead to qualitative impairment of knee joint motion. To determine the patellofemoral joint motion quality in particular chondromalacia stages and to compare with controls. Retrospective, comparative study. Voivodship hospitals, university biomechanical laboratory. A total of 89 knees with chondromalacia (25 with stage I; 30 with stage II and 34 with stage III) from 50 patients and 64 control healthy knees (from 32 individuals). Vibroacoustic signal pattern analysis of joint motion quality. For all knees vibroacoustic signals were recorded. Each obtained signal was described by variation of mean square, mean range (R4), and power spectral density for frequency of 50-250 Hz (P1) and 250-450 Hz (P2) parameters. Differences between healthy controls and all chondromalacic knees as well as chondromalacia patellae groups were observed as an increase of analyzed parameters (P < .001) with only one exception. No statistically significant difference between control group and stage I of chondromalacia patellae was found. All chondromalacia groups were differentiated by the use of all analyzed parameters (P < .01), whose values correspond to the progress of chondromalacia. Chondromalacia generates abnormal vibroacoustic signals, and there seems to be a relationship between the level of signal amplitude as well as frequency and cartilage destruction from the superficial layer to the subchondral bone. IV. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman
2015-01-01
Objective Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Design Non-experimental, cross-sectional, case–control design. Setting An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. Patients A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Interventions Not applicable. Main measures Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Results Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Conclusions Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects. PMID:25437824
Low-Friction, High-Stiffness Joint for Uniaxial Load Cell
NASA Technical Reports Server (NTRS)
Lewis, James L.; Le, Thang; Carroll, Monty B.
2007-01-01
A universal-joint assembly has been devised for transferring axial tension or compression to a load cell. To maximize measurement accuracy, the assembly is required to minimize any moments and non-axial forces on the load cell and to exhibit little or no hysteresis. The requirement to minimize hysteresis translates to a requirement to maximize axial stiffness (including minimizing backlash) and a simultaneous requirement to minimize friction. In practice, these are competing requirements, encountered repeatedly in efforts to design universal joints. Often, universal-joint designs represent compromises between these requirements. The improved universal-joint assembly contains two universal joints, each containing two adjustable pairs of angular-contact ball bearings. One might be tempted to ask why one could not use simple ball-and-socket joints rather than something as complex as universal joints containing adjustable pairs of angularcontact ball bearings. The answer is that ball-and-socket joints do not offer sufficient latitude to trade stiffness versus friction: the inevitable result of an attempt to make such a trade in a ball-and-socket joint is either too much backlash or too much friction. The universal joints are located at opposite ends of an axial subassembly that contains the load cell. The axial subassembly includes an axial shaft, an axial housing, and a fifth adjustable pair of angular-contact ball bearings that allows rotation of the axial housing relative to the shaft. The preload on each pair of angular-contact ball bearings can be adjusted to obtain the required stiffness with minimal friction, tailored for a specific application. The universal joint at each end affords two degrees of freedom, allowing only axial force to reach the load cell regardless of application of moments and non-axial forces. The rotational joint on the axial subassembly affords a fifth degree of freedom, preventing application of a torsion load to the load cell.
NASA Astrophysics Data System (ADS)
Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li
2015-05-01
In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.
JEUMICO: Czech-Bavarian astronomical X-ray optics project
NASA Astrophysics Data System (ADS)
Hudec, R.; Döhring, T.
2017-07-01
Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.
An Optimized Trajectory Planning for Welding Robot
NASA Astrophysics Data System (ADS)
Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao
2018-03-01
In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.
A Computational Study of Transverse Combustion Instability Mechanisms
2014-07-01
April 2001. 7. Selle, L ., Benoit , L ., Poinsot, T., Nicoud, F., Krebs, W., “Joint use of compressible large-eddy simulation and Helmholtz solvers for...Mechanisms Kevin J. Shipley1, William E. Anderson2 Purdue University, West Lafayette, IN, 47906 Matthew E. Harvazinski3, and Venkateswaran Sankaran4...Lafayette, IN, August 2010. 9. Xia, G., Harvazinski, M., Anderson, W., Merkle, C. L ., “Investigation of Modeling and Physical Parameters on Instability
Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model
NASA Astrophysics Data System (ADS)
Yun, Jongyeon; Choi, Kyu-Cheol; Yi, Jonghyuk; Kim, Jaehun; Odstrcil, Dusan
2016-12-01
Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.
Modified Denavit-Hartenberg parameters for better location of joint axis systems in robot arms
NASA Technical Reports Server (NTRS)
Barker, L. K.
1986-01-01
The Denavit-Hartenberg parameters define the relative location of successive joint axis systems in a robot arm. A recent justifiable criticism is that one of these parameters becomes extremely large when two successive joints have near-parallel rotational axes. Geometrically, this parameter then locates a joint axis system at an excessive distance from the robot arm and, computationally, leads to an ill-conditioned transformation matrix. In this paper, a simple modification (which results from constraining a transverse vector between successive joint rotational axes to be normal to one of the rotational axes, instead of both) overcomes this criticism and favorably locates the joint axis system. An example is given for near-parallel rotational axes of the elbow and shoulder joints in a robot arm. The regular and modified parameters are extracted by an algebraic method with simulated measurement data. Unlike the modified parameters, extracted values of the regular parameters are very sensitive to measurement accuracy.
Ultrasonic Welding of Hybrid Joints
NASA Astrophysics Data System (ADS)
Wagner, Guntram; Balle, Frank; Eifler, Dietmar
2012-03-01
A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.
Individuality and universality in the growth-division laws of single E. coli cells
NASA Astrophysics Data System (ADS)
Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2016-01-01
The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.
Joint University Program for Air Transportation Research, 1984
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1987-01-01
The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.
A universal computer control system for motors
NASA Technical Reports Server (NTRS)
Szakaly, Zoltan F. (Inventor)
1991-01-01
A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Nan; Wu Puxun; Zhang Shuangnan
2010-04-15
Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia datamore » points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the {Lambda}CDM model is consistent with the joint data in the 1-{sigma} confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the {Lambda}CDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the {Lambda}CDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.« less
2012 JSOU and NDIA SO/LIC Division Essays
2012-07-01
University (JSOU) provides its publications to contribute toward expanding the body of knowledge about joint special operations. JSOU publications ...Comments about this publication are invited and should be forwarded to Director, Strategic Studies Department, Joint Special Operations University , 7701...Department of Defense, United States Special Operations Command, or the Joint Special Operations University . Recent Publications of the JSOU Press
Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy
NASA Astrophysics Data System (ADS)
Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.
2018-04-01
Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.
Joint University Program for Air Transportation Research, 1988-1989
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1990-01-01
The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.
75 FR 26137 - High-Cost Universal Service Support, Federal-State Joint Board on Universal Service
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... 10-56] High-Cost Universal Service Support, Federal-State Joint Board on Universal Service AGENCY... high-cost support mechanism comports with the requirements of section 254. The Commission also grants... Office of Consumer Advocate for supplemental high-cost universal service support for rural residential...
NASA Technical Reports Server (NTRS)
Williams, Robert L., III
1992-01-01
This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.
NASA Astrophysics Data System (ADS)
Davy, P.; Darcel, C.; Le Goc, R.; Bour, O.
2011-12-01
We discuss the parameters that control fracture density on the Earth. We argue that most of fracture systems are spatially organized according to two main regimes. The smallest fractures can grow independently of each others, defining a "dilute" regime controlled by nuclei occurrence rate and individual fracture growth law. Above a certain length, fractures stop growing due to mechanical interactions between fractures. For this "dense" regime, we derive the fracture density distribution by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of kilometers for faults systems, and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on both flow and mechanical properties. In the dense regime, networks appears to be very close to a critical state.
Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements
NASA Astrophysics Data System (ADS)
Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.
2004-05-01
Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.
FAA/NASA Joint University Program for Air Transportation Research, 1992-1993
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1994-01-01
The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.
Joint University Program for Air Transportation Research, 1983
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1987-01-01
The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.
Park, Y.; Krause, E.; Dodelson, S.; ...
2016-09-30
The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y.; Krause, E.; Dodelson, S.
The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less
NASA Astrophysics Data System (ADS)
Magaña, Juan; Amante, Mario H.; Garcia-Aspeitia, Miguel A.; Motta, V.
2018-05-01
Motivated by an updated compilation of observational Hubble data (OHD) that consist of 51 points in the redshift range of 0.07 < z < 2.36, we study an interesting model known as Cardassian that drives the late cosmic acceleration without a dark energy component. Our compilation contains 31 data points measured with the differential age method by Jimenez & Loeb (2002), and 20 data points obtained from clustering of galaxies. We focus on two modified Friedmann equations: the original Cardassian (OC) expansion and the modified polytropic Cardassian (MPC). The dimensionless Hubble, E(z), and the deceleration parameter, q(z), are revisited in order to constrain the OC and MPC free parameters, first with the OHD and then contrasted with recent observations of type Ia supernova (SN Ia) using the compressed and full joint-light-analysis (JLA) samples (Betoule et al.). We also perform a joint analysis using the combination OHD plus compressed JLA. Our results show that the OC and MPC models are in agreement with the standard cosmology and naturally introduce a cosmological-constant-like extra term in the canonical Friedmann equation with the capability of accelerating the Universe without dark energy.
NASA Astrophysics Data System (ADS)
Dougherty, R. L.; Kim, Kwang Su
This paper provides an overview of the Joint MS Degree Program between Korea University of Technology and Education’ s (KUT) Mechatronics Department and Kansas University’ s (KU) Mechanical Engineering Department. Discussions were initiated in early 2005 which resulted in a formal agreement being approved by both parties in mid-2007. The Joint MS Degree Program is composed of 30 semester credit hours, equally split between the two universities, with the actual degree being awarded by the institution at which the thesis work is performed. Issues addressed during the development of this Joint MS Program included: joint versus dual degrees, institutional acceptance of the transfer of fifteen hours of credit for an MS degree, different admissions requirements and procedures for the two institutions, financial support of the students, faculty advisors at each institution, Graduate Directors at each institution, transcript acknowledgement of the Joint Degree, residency requirements, English speaking requirements/abilities, thesis publication allowances/requirements, and time zone differences for virtual meetings. These issues have been addressed, and the Joint MS Degree Program is functioning with a small number of students having taken advantage of the opportunity since the Program’ s inception. Future considerations are: growing the number of students in the Program, expansion to other Departments besides KU-Mechanical Engineering and KUTMechatronics, including other universities in the Program, expansion to a Joint PhD Degree Program, and stronger funding resources.
Joint University Program for Air Transportation Research, 1987
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1989-01-01
The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.
Kinematics of Hooke universal joint robot wrists
NASA Technical Reports Server (NTRS)
Mckinney, William S., Jr.
1988-01-01
The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.
NASA Technical Reports Server (NTRS)
Robinson, B. A.; Foster, C. L.
1986-01-01
A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying capability of this device. The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would wear-in after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.
Effect of Sacroiliac Joint Manipulation on Selected Gait Parameters in Healthy Subjects.
Wójtowicz, Sebastian; Sajko, Igor; Hadamus, Anna; Mosiołek, Anna; Białoszewski, Dariusz
2017-08-31
The sacroiliac joints have complicated biomechanics. While the movements in the joints are small, they exert a significant effect on gait. This study aimed to assess how sacroiliac joint manipulation influences selected gait parameters. The study enrolled 57 healthy subjects. The experimental group consisted of 26 participants diagnosed with dysfunction of one sacroiliac joint. The control group was composed of 31 persons. All subjects from the experimental group underwent sacroiliac joint manipulation. The experimental group showed significant lengthening of the step on both sides and the stride length in this group increased as well. Moreover, the duration of the stride increased (p=0.000826). The maximum midfoot pressure was higher and maximum heel pressure decreased. The differences were statistically significant. 1. Subclinical dysfunctions of the sacroiliac joints may cause functional gait disturbance. 2. Manipulation of the iliosacral joint exerts a significant effect on gait parameters, which may lead to improved gait economy and effec-tiveness. 3. Following manipulation of one iliosacral joint, altered gait parameters are noted on both the manipulated side and the contralateral side, which may translate into improved quality of locomotion.
Development of Object-Based Teleoperator Control for Unstructured Applications
1996-12-01
4-23 5.1. Module Sampling Rates of Test Set #5 in Appendix C 5-7 A.1. PUMA 560 D-H parameters ....... .................... A-2 A.2. ROBOTICA Input...June, 1996. 33. Schneider, D. L., EENG 540 Class Notes, 1994. 34. Nethery, John, Robotica : User’s guide and reference manual, University of Illnois...case of PUMA robot. First, the overall forward kinematics were computed using the ROBOTICA mathematic software [34], then some of joints are set to be
AMI Go Home - Assessing the Realignment of U.S. Army Forces in Europe
2005-03-18
a major U.S. investment.37 According to Stuart Drury of the Joint Chiefs of Staff, deploying would be much more difficult from Eastern Europe...35 Ibid, xvi. 36 Ibid,12. 37 Ibid, 29. 38 Stuart P. Drury , “The Argument Against Relocating U.S. Forces in Europe,” National Defense University...Europe in the 21st Century,” Parameters (Autumn 2004): 61. 53 Colin Powell, “A Strategy of Partnership,” Foreign Affairs (Jan/Feb 2004): 22. 54 Michael
Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat
NASA Astrophysics Data System (ADS)
Iwasa, Masaaki
The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.
Joint University Program for Air Transportation Research, 1991-1992
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1993-01-01
This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.
ERIC Educational Resources Information Center
Demirkan, Haluk; Goul, Michael; Gros, Mary
2010-01-01
Many e-learning service systems fail. This is particularly true for those sponsored by joint industry/university consortia where substantial economic investments are required up-front. This article provides an industry/university consortia reference model validated through experiences with the 8-year-old Teradata University Network. The reference…
ERIC Educational Resources Information Center
Dow, Ewan G.
2010-01-01
This article makes the case--in three parts--that many Anglo-Chinese university collaborations (joint ventures) to date have seriously underestimated Chinese (student) history, the Chinese university setting and Chinese national governmental steering as part of the process of "glocalisation". Recent turbulence in this particular HE…
Bock, Jens Johannes; Fraenzel, Wolfgang; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner
2008-08-01
The aim of this study was to compare the mechanical strength and microhardness of joints made by conventional brazing and tungsten inert gas (TIG) and laser welding. A standardized end-to-end joint configuration of the orthodontic wire material in spring hard quality was used. The joints were made using five different methods: brazing (soldering > 450 degrees C) with universal silver solder, two TIG, and two laser welders. Laser parameters and welding conditions were used according to the manufacturers' guidance. The tensile strengths were measured with a universal testing machine (Zwick 005). The microhardness measurements were carried out with a hardness tester (Zwick 3202). Data were analysed using one-way analysis of variance and Bonferroni's post hoc correction (P < 0.05). In all cases, brazing joints ruptured at low levels of tensile strength (198 +/- 146 MPa). Significant differences (P < 0.001) between brazing and TIG or laser welding were found. The highest means were observed for TIG welding (699-754 MPa). Laser welding showed a significantly lower mean tensile strength (369-520 MPa) compared with TIG welding. Significant differences (P < 0.001) were found between the original orthodontic wire and the mean microhardness at the centre of the welded area. The mean microhardness differed significantly between brazing (1.99 GPa), TIG (2.22-2.39 GPa) and laser welding (2.21-2.68 GPa). For orthodontic purposes, laser and TIG welding are solder-free alternatives to joining metal. TIG welding with a lower investment cost is comparable with laser welding. However, while expensive, the laser technique is a sophisticated and simple method.
Joint University Program for Air Transportation Research, 1986
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1988-01-01
The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.
FAA/NASA Joint University Program for Air Transportation Research: 1993-1994
NASA Technical Reports Server (NTRS)
Hueschen, Richard M. (Compiler)
1995-01-01
This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.
A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces
NASA Astrophysics Data System (ADS)
Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang
2018-02-01
Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.
Vector-algebra approach to extract Denavit-Hartenberg parameters of assembled robot arms
NASA Technical Reports Server (NTRS)
Barker, L. K.
1983-01-01
The Denavit-Hartenberg parameters characterize the joint axis systems in a robot arm and, naturally, appear in the transformation matrices from one joint axis system to another. These parameters are needed in the control of robot arms and in the passage of sensor information along the arm. This paper presents a vector algebra method to determine these parameters for any assembled robot arm. The idea is to measure the location of the robot hand (or extension) for different joint angles and then use these measurements to calculate the parameters.
NASA Astrophysics Data System (ADS)
Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.
2018-06-01
A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.
PREFACE: International Conference on High Pressure Science and Technology, Joint AIRAPT-22 & HPCJ-50
NASA Astrophysics Data System (ADS)
Viña, Luis; Tejedor, Carlos; Calleja, José M.
2010-01-01
The International Joint AIRAPT-22 & HPCJ-50 Conference was held in Odaiba, Tokyo, on 26-31 July 2009. About 480 scientists from 24 countries attended the conference and 464 papers, including 3 plenary lectures, 39 invited talks, and 156 oral presentations, were presented. It is my great pleasure to present this proceedings volume, which is based on the high quality scientific works presented at the conference. The International AIRAPT conference has been held every two years in various countries around the world since 1965, while High Pressure Conference of Japan (HPCJ) has been held annually since 1959 in various Japanese cities. Pressure is a fundamental parameter to control the property of matter. As a result, both AIRAPT and HPCJ have become highly multidisciplinary, and cover Physics, Chemistry, Materials Science, Earth and Planetary Sciences, Biosciences, Food Science, and Technology. Although each discipline has a unique target, they all have high-pressure research in common. This proceedings volume includes about 200 papers of state-of-the-art studies from numerous fields. I hope this proceedings volume provides excellent pieces of information in various fields to further advance high-pressure research. Conference logo Takehiko Yagi Conference Chairman Institute for Solid State Physics The University of Tokyo 7 December 2009 Conference photograph Participants at the conference venue, Tokyo International Exchange Center, Odaiba, Tokyo, Japan. Editor in Chief TAKEMURA Kenichi National Institute for Materials Science, Japan Editorial board Tadashi KONDO Osaka University, Japan Hitoshi MATSUKI The University of Tokushima, Japan Nobuyuki MATUBAYASI Kyoto University, Japan Yoshihisa MORI Okayama University of Science, Japan Osamu OHTAKA Osaka University, Japan Chihiro SEKINE Muroran Institute of Technology, Japan
Fast super-resolution estimation of DOA and DOD in bistatic MIMO Radar with off-grid targets
NASA Astrophysics Data System (ADS)
Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2018-05-01
In this paper, we focus on the problem of joint DOA and DOD estimation in Bistatic MIMO Radar using sparse reconstruction method. In traditional ways, we usually convert the 2D parameter estimation problem into 1D parameter estimation problem by Kronecker product which will enlarge the scale of the parameter estimation problem and bring more computational burden. Furthermore, it requires that the targets must fall on the predefined grids. In this paper, a 2D-off-grid model is built which can solve the grid mismatch problem of 2D parameters estimation. Then in order to solve the joint 2D sparse reconstruction problem directly and efficiently, three kinds of fast joint sparse matrix reconstruction methods are proposed which are Joint-2D-OMP algorithm, Joint-2D-SL0 algorithm and Joint-2D-SOONE algorithm. Simulation results demonstrate that our methods not only can improve the 2D parameter estimation accuracy but also reduce the computational complexity compared with the traditional Kronecker Compressed Sensing method.
ERIC Educational Resources Information Center
Bondarev, Maxim; Zashchitina, Elena; Andreassen, John-Erik
2016-01-01
This paper represents the experience and outcomes of a joint education and research project of Østfold University College and Southern Federal University. The project goal is to evolve and strengthen the academic cooperation between the universities by developing joint courses and improving the quality of education via mutual exchange of…
ERIC Educational Resources Information Center
Ozturgut, Osman
2008-01-01
This qualitative study explored the political, economic, socio-cultural, and educational challenges of administering a Sino-U.S. joint-venture campus in the People's Republic of China. China American University (CAU) is an educational joint venture between China Investment Company (CIC) and American University (AU) in the U.S. that resulted in…
Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.
Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon
2016-11-01
The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p = 0.006) and FCTP-pre (OR = 2.13, p = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters were not significantly associated with abnormal KJLO after OWHTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
A six-parameter Iwan model and its application
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming
2016-02-01
Iwan model is a practical tool to describe the constitutive behaviors of joints. In this paper, a six-parameter Iwan model based on a truncated power-law distribution with two Dirac delta functions is proposed, which gives a more comprehensive description of joints than the previous Iwan models. Its analytical expressions including backbone curve, unloading curves and energy dissipation are deduced. Parameter identification procedures and the discretization method are also provided. A model application based on Segalman et al.'s experiment works with bolted joints is carried out. Simulation effects of different numbers of Jenkins elements are discussed. The results indicate that the six-parameter Iwan model can be used to accurately reproduce the experimental phenomena of joints.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia
2012-11-01
A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.
Environmental assessment and exposure reduction of cockroaches: A practice parameter
Portnoy, Jay; Chew, Ginger L.; Phipatanakul, Wanda; Williams, P. Brock; Grimes, Carl; Kennedy, Kevin; Matsui, Elizabeth C.; Miller, J. David; Bernstein, David; Blessing-Moore, Joann; Cox, Linda; Khan, David; Lang, David; Nicklas, Richard; Oppenheimer, John; Randolph, Christopher; Schuller, Diane; Spector, Sheldon; Tilles, Stephen A.; Wallace, Dana; Seltzer, James; Sublett, James
2013-01-01
This parameter was developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the joint Council of Allergy, Asthma & Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing “Environmental assessment and remediation: a practice parameter.” This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single person, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). PMID:23938214
Parameters Estimation For A Patellofemoral Joint Of A Human Knee Using A Vector Method
NASA Astrophysics Data System (ADS)
Ciszkiewicz, A.; Knapczyk, J.
2015-08-01
Position and displacement analysis of a spherical model of a human knee joint using the vector method was presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the prepared software. The method itself can be useful when solving problems concerning the displacement and loads analysis in the knee joint.
List of Organizing Committees and Conference Programme
NASA Astrophysics Data System (ADS)
2012-03-01
Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.
NASA Astrophysics Data System (ADS)
Vergara, Maximiliano R.; Van Sint Jan, Michel; Lorig, Loren
2016-04-01
The mechanical behavior of rock containing parallel non-persistent joint sets was studied using a numerical model. The numerical analysis was performed using the discrete element software UDEC. The use of fictitious joints allowed the inclusion of non-persistent joints in the model domain and simulating the progressive failure due to propagation of existing fractures. The material and joint mechanical parameters used in the model were obtained from experimental results. The results of the numerical model showed good agreement with the strength and failure modes observed in the laboratory. The results showed the large anisotropy in the strength resulting from variation of the joint orientation. Lower strength of the specimens was caused by the coalescence of fractures belonging to parallel joint sets. A correlation was found between geometrical parameters of the joint sets and the contribution of the joint sets strength in the global strength of the specimen. The results suggest that for the same dip angle with respect to the principal stresses; the uniaxial strength depends primarily on the joint spacing and the angle between joints tips and less on the length of the rock bridges (persistency). A relation between joint geometrical parameters was found from which the resulting failure mode can be predicted.
Lovelock action with nonsmooth boundaries
NASA Astrophysics Data System (ADS)
Cano, Pablo A.
2018-05-01
We examine the variational problem in Lovelock gravity when the boundary contains timelike and spacelike segments nonsmoothly glued. We show that two kinds of contributions have to be added to the action. The first one is associated with the presence of a boundary in every segment and it depends on intrinsic and extrinsic curvatures. We can think of this contribution as adding a total derivative to the usual surface term of Lovelock gravity. The second one appears in every joint between two segments and it involves the integral along the joint of the Jacobson-Myers entropy density weighted by the Lorentz boost parameter, which relates the orthonormal frames in each segment. We argue that this term can be straightforwardly extended to the case of joints involving null boundaries. As an application, we compute the contribution of these terms to the complexity of global anti-de Sitter space in Lovelock gravity by using the "complexity =action " proposal and we identify possible universal terms for arbitrary values of the Lovelock couplings. We find that they depend on the charge a* controlling the holographic entanglement entropy and on a new constant that we characterize.
Evaluation of notched wedge pavement joints vs. traditional butt joints for use in Connecticut.
DOT National Transportation Integrated Search
2008-01-01
Following up on earlier research performed by several states and the : National Center for Asphalt Technology (NCAT) at Auburn University, the : University of Connecticuts Advanced Pavement Lab (CAP Lab) was : charged with evaluating the longitudi...
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Boccarusso, Luca; Carrino, Luigi; Durante, Massimo; Minutolo, Fabrizio Memola Capece; Squillace, Antonino
2018-05-01
Polycarbonate sheets, 3 mm thick, were successfully friction stir welded in butt joint configuration. Aiming to study the feasibility of the process and the influence of the process parameters joints under different processing conditions, obtained by varying the tool rotational speed and the tool travel speed, were realized. Tensile tests were carried out to characterize the joints. Moreover the forces arising during the process were recorded and carefully studied. The experimental outcomes proved the feasibility of the process when the process parameters are properly set, joints retaining more than 70% of the UTS of the base material were produced. The trend of the forces was described and explained, the influence of the process parameters was also introduced.
Effect of friction stir welding parameters on defect formation
NASA Astrophysics Data System (ADS)
Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.
2015-10-01
Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.
ERIC Educational Resources Information Center
Clark, Stephanie; McCurdy, Alan; Roy, Sharon; Smith, Denise
2006-01-01
Thirty-two recent graduates from the joint food science program of Washington State Univ. (WSU) and The Univ. of Idaho (UI) and 12 of their employers participated in a survey study to assess food science program outcomes. The objective of this study was to assess the joint curriculum in its ability to prepare undergraduate students for critical…
Properties of radar backscatter of forests measured with a multifrequency polarimetric SAR
NASA Technical Reports Server (NTRS)
Amar, F.; Karam, M. A.; Fung, A. K.; De Grandi, G.; Lavalle, C.; Sieber, A.
1992-01-01
Fully polarimetric airborne synthetic aperture radar (AIRSAR) data, collected in Germany during the MAC Europe campaign, are calibrated using software packages developed at the Joint Research Center (JRC) in Italy for both L- and C-bands. During the period of the overflight dates, extensive ground truth was collected in order to describe the physical and statistical parameters of the canopy, the understory, and the soil. These parameters are compiled and converted into electromagnetic parameters suitable for input to the new polarimetric three-layer canopy model developed at the Wave Scattering Research Center (WSRC) at the University of Texas at Arlington. Comparisons between the theoretical predictions from the model and the calibrated data are carried out. Initial results reveal that the trend of the average phase difference can be predicted by the model, and that the backscattering ratio *shh/ svv is sensitive to the distribution of the primary branches.
NASA Astrophysics Data System (ADS)
Ripeanu, R. G.
2017-02-01
The main failures of heat exchangers are: corrosion of tubes and jacket, tubes blockage and failures of tube to tubesheet joints also by corrosion. The most critical zone is tube to tubesheet joints. Depending on types of tube to tubesheet joints, in order to better respect conditions of tension and compression, this paper analyses the tubesheet holes shapes, smooth and with a grove, on corrosion behavior. In the case of welding tubes with tubesheet, welding parameters modify corrosion behavior. Were realized welded joints by three welding regimes and tested at corrosion in two media, tap water and industrial water. Were tested also samples made of smooth tubes, finned tubes and tubes coated with a passive product as applied by a heat exchanger manufacturer. For all samples, the roughness parameters were measured, before and after the corrosion tests. The obtained corrosion rates show that stress values and their distribution along the joint modify the corrosion behavior. The optimum welding parameters were established in order to increase the joint durability. The paper has shown that passive product used is not proper chosen and the technology of obtaining rolled thread pipes diminishes tubes’ durability by increasing the corrosion rate.
Son, Jeong-Hyun; Park, Gi Duck; Park, Hoo Sung
2014-06-01
[Purpose] The present study aimed to determine the effect of an 8-week program of joint mobilization on changes in pelvic obliquity and pain level in seventeen female university students aged in their 20's with sacroiliac joint dysfunction by dividing them into two groups: a joint mobilization group (MWM) and a control group. [Subjects] Seventeen subjects were selected from female university students aged in their 20's attending N University in Cheon-An City, Korea, The subjects had sacroiliac joint syndrome, but experienced no problems with daily living and had no previous experience of joint mobilization exercise. The subjects were randomly assigned to a joint mobilization group of eight and a control group of nine who performed joint mobilization exercise. [Methods] Body fat and lean body mass were measured using InBody 7.0 (Biospace, Korea). The Direct Segmental Multi-frequency Bioelectrical Impedance Analysis Method (DSM-BIA) was used for body composition measurement. A pressure footstool (Pedoscan, DIERS, Germany) and a trunk measurement system (Formetric 4D, DIERS, Germany), a 3D image processing apparatus with high resolution for vertebrae, were used to measure 3D trunk images of the vertebrae and pelvis obliquity, as well as static balance ability. [Result] The MWM group showed a significantly better Balance than the control group. In addition, the results of the left/right and the front/rear balance abilities were significantly better than those of the control group. [Conclusion] This study proved that a combination of mobilization with movement and functional training was effective in reducing pelvis malposition and pain, and improving static stability control.
[Results of the NASA/University Joint Venture (JOVE) Program at the University of Vermont
NASA Technical Reports Server (NTRS)
Yu, Jun
1996-01-01
Sea ice parameters in the north and south polar regions are important components of the global climate system. Current air-sea-ice models do not take into account oscillatory behavior in the ice covers other than for the seasonal cycle, since the relative importance of such oscillations is not known. An analysis of oscillatory behavior then becomes important from the standpoints of determining the significance of the various oscillatory components and perhaps discovery of some new aspects of the air-sea-ice interaction processes. One of these components, the El Nino-Southern Oscillation (ENSO) is known to be associated with weather changes on a global scale. Indeed, its spectral components have also been observed in the sea ice distribution in both hemispheres.
Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints
NASA Astrophysics Data System (ADS)
Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.
2016-02-01
During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.
Analyzing Planck and low redshift data sets with advanced statistical methods
NASA Astrophysics Data System (ADS)
Eifler, Tim
The recent ESA/NASA Planck mission has provided a key data set to constrain cosmology that is most sensitive to physics of the early Universe, such as inflation and primordial NonGaussianity (Planck 2015 results XIII). In combination with cosmological probes of the LargeScale Structure (LSS), the Planck data set is a powerful source of information to investigate late time phenomena (Planck 2015 results XIV), e.g. the accelerated expansion of the Universe, the impact of baryonic physics on the growth of structure, and the alignment of galaxies in their dark matter halos. It is the main objective of this proposal to re-analyze the archival Planck data, 1) with different, more recently developed statistical methods for cosmological parameter inference, and 2) to combine Planck and ground-based observations in an innovative way. We will make the corresponding analysis framework publicly available and believe that it will set a new standard for future CMB-LSS analyses. Advanced statistical methods, such as the Gibbs sampler (Jewell et al 2004, Wandelt et al 2004) have been critical in the analysis of Planck data. More recently, Approximate Bayesian Computation (ABC, see Weyant et al 2012, Akeret et al 2015, Ishida et al 2015, for cosmological applications) has matured to an interesting tool in cosmological likelihood analyses. It circumvents several assumptions that enter the standard Planck (and most LSS) likelihood analyses, most importantly, the assumption that the functional form of the likelihood of the CMB observables is a multivariate Gaussian. Beyond applying new statistical methods to Planck data in order to cross-check and validate existing constraints, we plan to combine Planck and DES data in a new and innovative way and run multi-probe likelihood analyses of CMB and LSS observables. The complexity of multiprobe likelihood analyses scale (non-linearly) with the level of correlations amongst the individual probes that are included. For the multi-probe analysis proposed here we will use the existing CosmoLike software, a computationally efficient analysis framework that is unique in its integrated ansatz of jointly analyzing probes of large-scale structure (LSS) of the Universe. We plan to combine CosmoLike with publicly available CMB analysis software (Camb, CLASS) to include modeling capabilities of CMB temperature, polarization, and lensing measurements. The resulting analysis framework will be capable to independently and jointly analyze data from the CMB and from various probes of the LSS of the Universe. After completion we will utilize this framework to check for consistency amongst the individual probes and subsequently run a joint likelihood analysis of probes that are not in tension. The inclusion of Planck information in a joint likelihood analysis substantially reduces DES uncertainties in cosmological parameters, and allows for unprecedented constraints on parameters that describe astrophysics. In their recent review Observational Probes of Cosmic Acceleration (Weinberg et al 2013) the authors emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. The work we propose follows exactly this idea: 1) cross-checking existing Planck results with alternative methods in the data analysis, 2) checking for consistency of Planck and DES data, and 3) running a joint analysis to constrain cosmology and astrophysics. It is now expedient to develop and refine multi-probe analysis strategies that allow the comparison and inclusion of information from disparate probes to optimally obtain cosmology and astrophysics. Analyzing Planck and DES data poses an ideal opportunity for this purpose and corresponding lessons will be of great value for the science preparation of Euclid and WFIRST.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
NASA Astrophysics Data System (ADS)
Agrawal, B. P.; Ghosh, P. K.
2017-03-01
Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
Curricular Joint Ventures: A New Chapter in US Cross-Border Education?
ERIC Educational Resources Information Center
Eckel, Peter D.; Green, Madeleine F.; Affolter-Caine, Britany
2004-01-01
For universities in industrialized nations such as the United States, globalization poses relatively little threat and offers many benefits. This article identifies and describes one trend emerging from globalization--how American colleges and universities are leveraging their curricula internationally through joint ventures between universities…
Information Retrieval (SPIRES) and Library Automation (BALLOTS) at Stanford University.
ERIC Educational Resources Information Center
Ferguson, Douglas, Ed.
At Stanford University, two major projects have been involved jointly in library automation and information retrieval since 1968: BALLOTS (Bibliographic Automation of Large Library Operations) and SPIRES (Stanford Physics Information Retrieval System). In early 1969, two prototype applications were activated using the jointly developed systems…
Duke University: Licensing and Real Estate Joint Ventures.
ERIC Educational Resources Information Center
McDonald, Eugene J.
1984-01-01
Joint ventures undertaken by Duke University with industry are reported that illustrate the imaginative arrangements and economic and otherwise advantageous structures possible in co-ventures. They include patent and trademark licensing, travel agency commissions, a racquetball and health club, a hotel, and an office building. (MSE)
Joint Chiefs of Staff > Directorates > J7 | Joint Force Development
development: Doctrine, Education, Concept Development & Experimentation, Training, Exercises and Lessons Coalition Partners. Joint Education Develop policies governing officer and enlisted Joint Professional Military Education (JPME), and the National Defense University. Direct JPME educational advisory group and
Joint University Program for Air Transportation Research, 1989-1990
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1990-01-01
Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.
Begon, Mickaël; Andersen, Michael Skipper; Dumas, Raphaël
2018-03-01
Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).
Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.
Wu, Yue; Nan, Bo; Chen, Liang
2014-01-01
3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.
Model-based estimation for dynamic cardiac studies using ECT.
Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O
1994-01-01
The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.
ERIC Educational Resources Information Center
Kertz, Consuelo Lauda; Hasson, James K., Jr.
1986-01-01
Features of the federal income tax law applying to income received from commercially funded university-based scientific research and development activities are discussed, including: industry-sponsored research contracts, separately incorporated entities, partnerships and joint ventures, subsidiaries and unrelated income consequences of…
77 FR 34263 - 2012-2014 Enterprise Housing Goals
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Studies of Harvard University, ``The State of the Nation's Housing, 2011,'' p. 40 (2011) (Table A-8...\\ See The Joint Center for Housing Studies of Harvard University, ``The State of the Nation's Housing...-Up-the-Recovery-Help-Housing.pdf . \\27\\ See The Joint Center for Housing Studies of Harvard...
School District-University Cooperation in Competency-Based Inservice Teacher Education.
ERIC Educational Resources Information Center
Grunewald, Robert N.
This article describes a jointly planned and jointly evaluated course offered through Washington State University General Extension. The purpose of the course was to improve instruction in elementary classrooms through use of competency-based training materials (Minicourses) from the Far West Laboratory for Educational Research and Development.…
The Joint Master Operational Planner
2016-04-04
Daniel H. Hibner, United States Army Joint Forces Staff College Joint Advanced Warfighting School 7800 Hampton Blvd. Norfolk, VA 23511-1702 Approved...Operational Art. Unclass Unclass Unclass Unclassified Unlimited 66 757-443-6301 NATIONAL DEFENSE UNIVERSITY JOINT FORCES STAFF COLLEGE JOINT ADVANCED...of this paper reflect my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the department of Defense. Thesis
2006-05-05
NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint Special Operations University,357 Tully Street...Alison Building,Hurlburt Field,FL,32544 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...leadership. JSOU is a subordinate organization of the US Special Operations Command (USSOCOM), MacDill Air Force Base, Florida. The mission of the Joint
Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia
2016-10-03
Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.
Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico
2016-02-23
A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints.
Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico
2016-01-01
A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints. PMID:28773246
Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables
NASA Technical Reports Server (NTRS)
Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.
2003-01-01
We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general
Volume weighting the measure of the universe from classical slow-roll expansion
NASA Astrophysics Data System (ADS)
Sloan, David; Silk, Joseph
2016-05-01
One of the most frustrating issues in early universe cosmology centers on how to reconcile the vast choice of universes in string theory and in its most plausible high energy sibling, eternal inflation, which jointly generate the string landscape with the fine-tuned and hence relatively small number of universes that have undergone a large expansion and can accommodate observers and, in particular, galaxies. We show that such observations are highly favored for any system whereby physical parameters are distributed at a high energy scale, due to the conservation of the Liouville measure and the gauge nature of volume, asymptotically approaching a period of large isotropic expansion characterized by w =-1 . Our interpretation predicts that all observational probes for deviations from w =-1 in the foreseeable future are doomed to failure. The purpose of this paper is not to introduce a new measure for the multiverse, but rather to show how what is perhaps the most natural and well-known measure, volume weighting, arises as a consequence of the conservation of the Liouville measure on phase space during the classical slow-roll expansion.
A likely universal model of fracture scaling and its consequence for crustal hydromechanics
NASA Astrophysics Data System (ADS)
Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.
2010-10-01
We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.
Excluded from the Institutional Habitus: The Joint Student Experience
ERIC Educational Resources Information Center
Weissmann, Elke
2013-01-01
This article examines the student experience for a particular cohort, namely the joint honours students, at a post-1992 university in the United Kingdom. These students are enrolled in degree courses that combine two subjects at one university. Little attention has so far been given to such students whose experience is decidedly different from…
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramsey, G. ED; Jenkins, Robert C.
1995-01-01
This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
Model-based estimation for dynamic cardiac studies using ECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.
1994-06-01
In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performancemore » to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed.« less
Exploring the joint measurability using an information-theoretic approach
NASA Astrophysics Data System (ADS)
Hsu, Li-Yi
2016-12-01
We explore the legal purity parameters for the joint measurements. Instead of direct unsharpening the measurements, we perform the quantum cloning before the sharp measurements. The necessary fuzziness in the unsharp measurements is equivalently introduced in the imperfect cloning process. Based on the information causality and the consequent noisy nonlocal computation, one can derive the information-theoretic quadratic inequalities that must be satisfied by any physical theory. On the other hand, to guarantee the classicality, the linear Bell-type inequalities deduced by these quadratic ones must be obeyed. As for the joint measurability, the purity parameters must be chosen to obey both types of inequalities. Finally, the quadratic inequalities for purity parameters in the joint measurability region are derived.
IJEMS: Iowa Joint Experiment in Microgravity Solidification
NASA Technical Reports Server (NTRS)
Bendle, John R.; Mashl, Steven J.; Hardin, Richard A.
1995-01-01
The Iowa Joint Experiment in Microgravity Solidification (IJEMS) is a cooperative effort between Iowa State University and the University of Iowa to study the formation of metal-matrix composites in a microgravity environment. Of particular interest is the interaction between the solid/liquid interface and the particles in suspension. The experiment is scheduled to fly on STS-69, Space Shuttle Endeavor on August 3, 1995. This project is unique in its heavy student participation and cooperation between the universities involved.
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
Dynamic analysis of clamp band joint system subjected to axial vibration
NASA Astrophysics Data System (ADS)
Qin, Z. Y.; Yan, S. Z.; Chu, F. L.
2010-10-01
Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.
The impact of the Tulane-HCA joint venture on academic and clinical missions.
Whitecloud, T S; Smathers, J E; Barrack, R L
2001-10-01
As with any joint venture in any given industry, positive and negative impacts are felt. Tulane University School of Medicine experienced impacts on its academic and clinical missions as a result of the joint venture between Tulane University and HCA, a for-profit public company. The laws of business had entered the halls of medicine. Although patients, personnel, and physicians experienced culture shock and inconveniences, Tulane University School of Medicine has been able to maintain viable training programs, and its faculty physicians have a hospital and corporately run clinics across the street. In addition, multidisciplinary centers of excellence, long spoken of in the academic realm, came to fruition through the corporate world. This may not have been the case, had Tulane University not entered into ajoint venture with HCA. Is it worth the effort? For Tulane University, whether one likes the entire package or not, the answer must be yes. The greatest impact is that the orthopaedic surgeons still are in a position to fulfill their academic and clinical missions.
Cho, Misuk
2015-06-01
[Purpose] This study aimed to identify correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students. [Subjects] Thirty female university students were enrolled and their pelvic positions and differences in lower extremity joint angles were measured. [Methods] Pelvic position, pelvic torsion, and pelvic rotation were assessed using the BackMapper. In addition, motion analysis was performed to derive differences between left and right flexion, abduction, and external rotation ranges of hip joints; flexion, abduction, and external rotation ranges of knee joints; and dorsiflexion, inversion, and abduction ranges of ankle joints, according to X, Y, and Z-axes. [Results] Pelvic position was found to be positively correlated with differences between left and right hip flexion (r=0.51), hip abduction (r=0.62), knee flexion (r=0.45), knee abduction (r=0.42), and ankle inversion (r=0.38). In addition, the difference between left and right hip abduction showed a positive correlation with difference between left and right ankle dorsiflexion (r=0.64). Moreover, differences between left and right knee flexion exhibited positive correlations with differences between left and right knee abduction (r=0.41) and ankle inversion (r=0.45). [Conclusion] Bilateral pelvic tilt angles are important as they lead to bilateral differences in lower extremity joint angles during walking.
NASA Astrophysics Data System (ADS)
Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.
2017-12-01
Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.
ERIC Educational Resources Information Center
National Association of State Universities and Land Grant Colleges, Washington, DC.
Recommendations for national action in higher education are offered by the National Association of State Universities and Land-Grant Colleges and the American Association of State Colleges and Universities. The joint policy statement focuses on issues that the federal government needs to consider including: how to broaden educational opportunity…
Direct hip joint distraction during acetabular fracture surgery using the AO universal manipulator.
Calafi, L Afshin; Routt, M L Chip
2010-02-01
Certain acetabular fractures may necessitate distraction of the hip joint for removal of intra-articular debris and assessment of reduction. Distraction can be accomplished by manual traction, using a traction table or an AO universal manipulator (UM). The UM is a relatively simple and an inexpensive device that can provide focal distraction in a controlled manner without the risks associated with the use of a traction table. We describe a technique using the UM for hip joint distraction during acetabular fracture surgery through a Kocher-Langenbeck surgical exposure.
NASA Astrophysics Data System (ADS)
Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal
2017-08-01
To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.
Trans-dimensional joint inversion of seabed scattering and reflection data.
Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2013-03-01
This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.
CTS digital video college curriculum-sharing experiment. [Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Lumb, D. R.; Sites, M. J.
1974-01-01
NASA-Ames Research Center, Stanford University, and Carleton University, Ottawa, Canada, are participating in a joint experiment to evaluate the feasibility and effectiveness of college curriculum sharing using compressed digital television and the Communications Technology Satellite (CTS). Each university will offer televised courses to the other during the 1976-1977 academic year via CTS, a joint program by NASA and the Canadian Department of Communications. The video compression techniques to be demonstrated will enable economical interconnection of educational institutions using existing and planned domestic satellites.
NASA Astrophysics Data System (ADS)
Zhmud, V. A.; Frantsuzova, G. A.; Dimitrov, L. V.; Nosek, J.
2018-05-01
This paper reveals the main problems of creating and implementing double diploma programs between universities of Russia and Europe. Novosibirsk State Technical University implements such programs with Technical Universities of Sofia (Bulgaria) and Liberec (Czech Republic). The paper presents the latest results of this activity and discusses the possibilities of its development in the field of joint postgraduate training, as well as joint scientific research with the involvement of students and postgraduate.
Sudell, Maria; Kolamunnage-Dona, Ruwanthi; Tudur-Smith, Catrin
2016-12-05
Joint models for longitudinal and time-to-event data are commonly used to simultaneously analyse correlated data in single study cases. Synthesis of evidence from multiple studies using meta-analysis is a natural next step but its feasibility depends heavily on the standard of reporting of joint models in the medical literature. During this review we aim to assess the current standard of reporting of joint models applied in the literature, and to determine whether current reporting standards would allow or hinder future aggregate data meta-analyses of model results. We undertook a literature review of non-methodological studies that involved joint modelling of longitudinal and time-to-event medical data. Study characteristics were extracted and an assessment of whether separate meta-analyses for longitudinal, time-to-event and association parameters were possible was made. The 65 studies identified used a wide range of joint modelling methods in a selection of software. Identified studies concerned a variety of disease areas. The majority of studies reported adequate information to conduct a meta-analysis (67.7% for longitudinal parameter aggregate data meta-analysis, 69.2% for time-to-event parameter aggregate data meta-analysis, 76.9% for association parameter aggregate data meta-analysis). In some cases model structure was difficult to ascertain from the published reports. Whilst extraction of sufficient information to permit meta-analyses was possible in a majority of cases, the standard of reporting of joint models should be maintained and improved. Recommendations for future practice include clear statement of model structure, of values of estimated parameters, of software used and of statistical methods applied.
Foot mechanics during the first six years of independent walking.
Samson, William; Dohin, Bruno; Desroches, Guillaume; Chaverot, Jean-Luc; Dumas, Raphaël; Cheze, Laurence
2011-04-29
Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years. Copyright © 2011 Elsevier Ltd. All rights reserved.
PREFACE: 10th Joint Conference on Chemistry
NASA Astrophysics Data System (ADS)
2016-02-01
The 10th Joint Conference on Chemistry is an international conference organized by 4 chemistry departments of 4 universities in central Java, Indonesia. The universities are Sebelas Maret University, Diponegoro University, Semarang State University and Soedirman University. The venue was at Solo, Indonesia, at September 8-9, 2015. The total conference participants are 133 including the invited speakers. The conference emphasized the multidisciplinary chemical issue and impact of today's sustainable chemistry which covering the following topics: • Material innovation for sustainable goals • Development of renewable and sustainable energy based on chemistry • New drug design, experimental and theoretical methods • Green synthesis and characterization of material (from molecule to functionalized materials) • Catalysis as core technology in industry • Natural product isolation and optimization
NASA Astrophysics Data System (ADS)
Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.
2015-11-01
The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.
Zhang, Jian-Bing; Chen, Bai-Cheng; Zhang, Jing; Wang, Zhi-Qiang; Yan, Chang-Bao
2010-11-15
to investigate if the cartilaginous surface and corresponding osseous contour of the patellofemoral joint match in the axial plane for providing theoretical basis with evaluating alignment of patellofemoral joint and designing the part of patellofemoral joint in knee prosthesis. from January 2009 to March 2010, 9 human cadaver knees were prepared, which chandra of patellofemoral joint didn't degenerate. Each specimen was sectioned in the axial plane at 20° to 30° knee flax. The cross-sections revealed characteristics in the bony anatomy and corresponding articular surface geometry of the patellofemoral joint in the axial plane. Evaluating parameters included osseous patella congruence angle (OPCA), chondral patella congruence angle (CPCA), patella chondral convex point parameter (PCCPP), patella subchondral osseous convex point parameter (PSOCPP), the parameters of the deepest (chondral or osseous) point of the intercondylar sulcus. After that, the osseous and cartilaginous contours and subchondral osseous contours of the patella in the axial plane were analyzed through MRI data of 11 patients who didn't degenerate in patellofemoral joint cartilage. Parameters as same as cadaver knees were compared. data from specimens of OPCA was (-4.5 ± 1.1)°, CPCA was (0.5 ± 0.8)°, PCCPP was 1.13 ± 0.11, PSOCPP was 1.67 ± 0.14, PCDPIS was 1.35 ± 0.28, PODPIS was 1.38 ± 0.33. Date from MRI of OPCA was (-3.8 ± 1.4)°, CPCA was (0.7 ± 1.0)°, PCCPP was 1.05 ± 0.21, PSOCPP was 1.73 ± 0.18, PCDPIS was 1.41 ± 0.21, PODPIS was 1.37 ± 0.27. The patella exhibited significant differences in the bony vs. chondral anatomy (P < 0.05), but the intercondylar sulcus nearly match in the bony vs. chondral anatomy. the cartilaginous surface and corresponding osseous contour of the patella don't match in the patellofemoral joint axial plane, but that of the trochlea nearly matches. This is very important for accurately evaluating alignment of patellofemoral joint because the normal osseous alignment of patellofemoral joint don't represent the normal alignment and helpful for designing the part of patellofemoral joint in knee prosthesis.
Zhou, Shiqi
2006-06-01
A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.
NASA Astrophysics Data System (ADS)
Dionisi, D.; Iannarelli, A. M.; Scoccione, A.; Liberti, G. L.; Cacciani, M.; Argentini, S.; Baldini, L.; Barnaba, F.; Campanelli, M.; Casasanta, G.; Diémoz, H.; Di Liberto, L.; Gobbi, G. P.; Petenko, I.; Siani, A. M.; Von Bismarck, J.; Casadio, S.
2018-04-01
A joint instrumental Super Site, combining observation in urban ("Sapienza" University) and semi-rural (ESA-ESRIN and CNR-ISAC) environment, for atmospheric studies and satellites Cal/Val activities, has been set-up in the Rome area (Italy). Ground based active and passive remote sensing instruments located in both sites are operating in synergy, offering information for a wide range of atmospheric parameters. In this work, a comparison of aerosol and water vapor measurements derived by the Rayleigh-Mie-Raman (RMR) lidars, operating simultaneously in both experimental sites, is presented.
ERIC Educational Resources Information Center
Yawan, Li; Ying, Li
2011-01-01
With a view to facilitating good practice and enhancing further exchanges and collaboration with the Open University UK, the Open University of China initiated a joint programme of training to offer online tutors and academic management staff three courses: Student Support, Tutoring On-line, and Course Design. The programme brought in not only a…
ERIC Educational Resources Information Center
Wabwoba, Franklin; Mwakondo, Fullgence M.
2011-01-01
Every year, the Joint Admission Board (JAB) is tasked to determine those students who are expected to join various Kenyan public universities under the government sponsorship scheme. This exercise is usually extensive because of the large number of qualified students compared to the very limited number of slots at various institutions and the…
Flagellar Hook Flexibility Is Essential for Bundle Formation in Swimming Escherichia coli Cells
Brown, Mostyn T.; Steel, Bradley C.; Silvestrin, Claudio; Wilkinson, David A.; Delalez, Nicolas J.; Lumb, Craig N.; Obara, Boguslaw; Berry, Richard M.
2012-01-01
Swimming Escherichia coli cells are propelled by the rotary motion of their flagellar filaments. In the normal swimming pattern, filaments positioned randomly over the cell form a bundle at the posterior pole. It has long been assumed that the hook functions as a universal joint, transmitting rotation on the motor axis through up to ∼90° to the filament in the bundle. Structural models of the hook have revealed how its flexibility is expected to arise from dynamic changes in the distance between monomers in the helical lattice. In particular, each of the 11 protofilaments that comprise the hook is predicted to cycle between short and long forms, corresponding to the inside and outside of the curved hook, once each revolution of the motor when the hook is acting as a universal joint. To test this, we genetically modified the hook so that it could be stiffened by binding streptavidin to biotinylated monomers, impeding their motion relative to each other. We found that impeding the action of the universal joint resulted in atypical swimming behavior as a consequence of disrupted bundle formation, in agreement with the universal joint model. PMID:22522898
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
Optimization of laser butt welding parameters with multiple performance characteristics
NASA Astrophysics Data System (ADS)
Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.
2011-04-01
This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.
Seeing and optimization of the thermal regime in the dome of 1.5-m Telescope Maidanak Observatory
NASA Astrophysics Data System (ADS)
Artamonov, Boris P.
1997-03-01
Beginning in 1975 Sternberg Astronomical Institute of Moscow University (SAI) developed a search of places with the best astroclimate in Middle Asia. Mount Maidanak (150 km to south from Samarkand) was chosen after investigation of the meteorological conditions, temperature fluctuations and seeing quality by astroclimatical expeditions in a different city testing for Moscow University Observatory. Having an isolated summit Maidanak has good astroclimatical parameters: 2000 clean observational hours/year, median seeing about 0.7 arcsec (Artamonov et al. 1987, Bugaenko et al. 1992). At the end of 1992 SAI mainly finished the construction of Maidanak Observatory with a 1.5 meter RC telescope, but in 1993 the development of the observatory was stopped after nationalization by Uzbekistan. At present Sternberg Astronomical Institute and Tashkent Astronomical Institute (new owner of the observatory) continue to work in joint observations and try to create International Maidanak Observatory.
NASA Technical Reports Server (NTRS)
Reese, E. D.; Mohr, J. J.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Holzapfel, W. L.; Hughes, J. P.; Patel, S. K.
2000-01-01
We determine the distances to the z approximately equal to 0.55 galaxy clusters MS 0451.6-0305 and CL 0016+16 from a maximum likelihood joint fit to interferometric Sunyaev-Zel'dovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta-model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an OmegaM = 0.3, OmegaL = 0.7 cosmology, these distances imply a Hubble constant of 63(exp 12)(sub -9)(exp +21)(sub -21) km/s/Mpc, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best fit H(sub o) is 57 km/sec/Mpc for an open OmegaM = 0.3 universe and 52 km/s/Mpc for a flat Omega = 1 universe.
Sunyaev-Zeldovich Effect-Derived Distances to the High-Redshift Clusters
NASA Technical Reports Server (NTRS)
Reese, Erik D.; Mohr, Joseph J.; Carlstrom, John E.; Joy, Marshall; Grego, Laura; Holder, Gilbert P.; Holzapfel, William L.; Hughes, John P.; Patel, Sandeep K.; Donahue, Megan
2000-01-01
We determine the distances to the z approximately equals 0.55 galaxy clusters MS 0451.6 - 0305 and Cl 0016 + 16 from a maximum-likelihood joint fit to interferometric Sunyaev-Zeldovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an Omega(sub M) = 0.3, Omega(sub lambda) = 0.7 cosmology, these distances imply a Hubble constant of 63(sup +12) (sub -9) (sup + 21) (sub -21) km/s Mp/c, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best-fit H(sub 0) is 57 km/s Mp/c for an open (Omega(sub M) = 0.3) universe and 52 km/s Mp/c for a flat (Omega(sub M) = 1) universe.
Dickie, Ben R; Banerji, Anita; Kershaw, Lucy E; McPartlin, Andrew; Choudhury, Ananya; West, Catharine M; Rose, Chris J
2016-10-01
To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic contrast enhanced (DCE) MRI studies of solid tumors. Quantitative DCE-MRI requires an estimate of precontrast T1 , which is obtained prior to fitting a tracer kinetic model. As T1 mapping and tracer kinetic signal models are both a function of precontrast T1 it was hypothesized that its joint estimation would improve the accuracy and precision of both precontrast T1 and tracer kinetic model parameters. Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients. Methods were compared under a number of experimental conditions. In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42 conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed in 18 of 21 conditions (between 4.6% and 38%). Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly rather than sequentially. Magn Reson Med 76:1270-1281, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Searching for dark matter-dark energy interactions: Going beyond the conformal case
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen
2018-01-01
We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.
Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; ...
2016-06-15
Here, we present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitudemore » $${r}_{\\mathrm{lim}}\\sim 27$$ ($$5\\sigma $$), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $$\\gt 10$$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives $${{\\rm{\\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$$, $${\\sigma }_{8}={0.833}_{-0.018}^{+0.011}$$, $${H}_{0}={68.6}_{-1.2}^{+1.4}\\;{\\text{km s}}^{-1}\\;{{\\rm{Mpc}}}^{-1}$$, and $${{\\rm{\\Omega }}}_{b}=0.0475\\pm 0.0012$$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint $${{\\rm{\\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $$w=-{1.02}_{-0.09}^{+0.10}$$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $$w=-1.03\\pm 0.03$$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.« less
Mitani, Yasuhiro
2017-01-01
[Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.
Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.
2018-01-01
Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.
Stephensen, D; Drechsler, W; Winter, M; Scott, O
2009-03-01
Quality of life for children with haemophilia has improved since the introduction of prophylaxis. The frequency of joint haemorrhages has reduced, but the consequences of reduced bleeding on the biomechanical parameters of walking are not well understood. This study explored the differences in sagittal plane biomechanics of walking between a control group (Group 1) of normal age-matched children and children with haemophilia (Group 2) with a target ankle joint. A motion capture system and two force platforms were used to collect sagittal plane kinematic, kinetic and temporal-spatial data during walking of 14 age-matched normal children and 14 children with haemophilia aged 7-13 years. Group differences in maximum and minimum flexion/extension angles and moments of the hip, knee and ankle joints, ground reaction forces and temporal-spatial gait cycle parameters were analysed using one-way anova. Significant changes (P < 0.05) in kinematic and kinetic parameters but not temporal-spatial parameters were found in children with haemophilia; greater flexion angles and external moments of force at the knee, greater ankle plantarflexion external moments and lower hip flexion external moments. These results suggest that early biomechanical changes are present in young haemophilic children with a history of a target ankle joint and imply that lower limb joint function is more impaired than current clinical evaluations indicate. Protocols and quantitative data on the biomechanical gait pattern of children with haemophilia reported in this study provide a baseline to evaluate lower limb joint function and clinical progression.
An investigation on mechanical properties of steel fibre reinforced for underwater welded joint
NASA Astrophysics Data System (ADS)
Navin, K.; Zakaria, M. S.; Zairi, S.
2017-09-01
Underwater pipelines are always exposed to water and have a high tendency to have corrosion especially on the welded joint. This research is about using fiber glass as steel fiber to coat the welded joint to determine the effectiveness in corrosion prevention of the welded joint. Number of coating is varied to determine the better number coating to coat the pipeline. Few samples were left without immersion in salt water and few samples are immersed into salt water with same salinity as sea water. The material sample is prepared in dog bone shape to enable to be used in Universal Tensile Machine (UTM). The material prepared is left immersed for recommended time and tested in Universal Tensile Machine. Upon analyzing the result, the result is used to determine the breakage point whether broken on the welded joint or different place and also the suitable number of coating to be used.
NASA Astrophysics Data System (ADS)
Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok
2018-03-01
Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.
A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints
NASA Astrophysics Data System (ADS)
Wei, Helin; Wang, Kuisheng
2011-11-01
Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.
NASA Technical Reports Server (NTRS)
Jenkins, D. W.
1972-01-01
NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.
Computational toxicity in 21st century safety sciences (China ...
presentation at the Joint Meeting of Analytical Toxicology and Computational Toxicology Committee (Chinese Society of Toxicology) International Workshop on Advanced Chemical Safety Assessment Technologies on 11 May 2016, Fuzhou University, Fuzhou China presentation at the Joint Meeting of Analytical Toxicology and Computational Toxicology Committee (Chinese Society of Toxicology) International Workshop on Advanced Chemical Safety Assessment Technologies on 11 May 2016, Fuzhou University, Fuzhou China
FAA/NASA Joint University Program for Air Transportation Research 1994-1995
NASA Technical Reports Server (NTRS)
Remer, J. H.
1998-01-01
The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.
DOT National Transportation Integrated Search
2013-04-01
The load environment of joint bars was assessed under a variety of loading and track conditions. Bending stresses, thermal stresses, and residual stresses were measured on commonly used joint bars. Crack growth rates from artificially induced cracks ...
[CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].
Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min
2015-08-01
To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated with facet joint degeneration at the lower lumbar spine.
In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...
NASA Astrophysics Data System (ADS)
Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.
2017-07-01
The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.
Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Baruah, M.; Bag, S.
2016-11-01
The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.
Gatecrashing the Oasis? A Joint Doctoral Dissertation Play
ERIC Educational Resources Information Center
Gale, Ken; Speedy, Jane; Wyatt, Jonathan
2010-01-01
This article explores the institutional and individual struggles surrounding the submission for examination of a jointly authored doctoral dissertation at a U.K. civic university. Two of the article's authors (Gale and Wyatt) were the dissertation's authors, and Speedy, the article's third author, is their supervisor. Joint doctoral dissertations…
NASA Astrophysics Data System (ADS)
Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin
2017-03-01
After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.
Lower-Limb Joint Coordination Pattern in Obese Subjects
Ranavolo, Alberto; Donini, Lorenzo M.; Mari, Silvia; Serrao, Mariano; Silvetti, Alessio; Iavicoli, Sergio; Cava, Edda; Asprino, Rosa; Pinto, Alessandro; Draicchio, Francesco
2013-01-01
The coordinative pattern is an important feature of locomotion that has been studied in a number of pathologies. It has been observed that adaptive changes in coordination patterns are due to both external and internal constraints. Obesity is characterized by the presence of excess mass at pelvis and lower-limb areas, causing mechanical constraints that central nervous system could manage modifying the physiological interjoint coupling relationships. Since an altered coordination pattern may induce joint diseases and falls risk, the aim of this study was to analyze whether and how coordination during walking is affected by obesity. We evaluated interjoint coordination during walking in 25 obese subjects as well as in a control group. The time-distance parameters and joint kinematics were also measured. When compared with the control group, obese people displayed a substantial similarity in joint kinematic parameters and some differences in the time-distance and in the coupling parameters. Obese subjects revealed higher values in stride-to-stride intrasubjects variability in interjoint coupling parameters, whereas the coordinative mean pattern was unaltered. The increased variability in the coupling parameters is associated with an increased risk of falls and thus should be taken into account when designing treatments aimed at restoring a normal locomotion pattern. PMID:23484078
Williams, Devin M; Miller, Andy O; Henry, Michael W; Westrich, Geoffrey H; Ghomrawi, Hassan M K
2017-09-01
The risk of prosthetic joint infection increases with Staphylococcus aureus colonization. The cost-effectiveness of decolonization is controversial. We evaluated cost-effectiveness decolonization protocols in high-risk arthroplasty patients. An analytical model evaluated risk under 3 protocols: 4 swabs, 2 swabs, and nasal swab alone. These were compared to no-screening and universal decolonization strategies. Cost-effectiveness was evaluated from the hospital, patient, and societal perspective. Under base case conditions, universal decolonization and 4-swab strategies were most effective. The 2-swab and universal decolonization strategy were most cost-effective from patient and societal perspectives. From the hospital perspective, universal decolonization was the dominant strategy (much less costly and more effective). S aureus decolonization may be cost-effective for reducing prosthetic joint infections in high-risk patients. These results may have important implications for treatment of patients and for cost containment in a bundled payment system. Copyright © 2017 Elsevier Inc. All rights reserved.
Botvin, Judith D
2004-01-01
Fairview-University Medical Center and University of Minnesota Physicians, both in Minneapolis, are enjoying the benefits of a co-branded advertising campaign. It includes print ads, brochures, and other marketing devices.
Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report
NASA Technical Reports Server (NTRS)
Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.
1982-01-01
Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.
Eweka, O M; Ogundana, O M; Agbelusi, G A
2016-01-01
Temporomandibular joint pain dysfunction syndrome (TMJPDS) is the most common temporomandibular disorder. This condition presents with symptoms of pain, restricted jaw movement and joint noise. Other symptoms include otalgia, headache, neck pain and trismus. To determine the pattern of Temporomandibular joint pain dysfunction syndrome patients managed at the Lagos University Teaching Hospital, Lagos, Nigeria. A descriptive study of patients with signs and symptoms of Temporomandibular joint pain dysfunction syndrome attending the Oral Medicine Clinic of Lagos University Teaching Hospital. Twenty-one patients with Temporomandibular joint pain dysfunction syndrome were enrolled into the study, out of which 10(48%) were females and 11(52%) were males. The age range was 23-81years with a mean of 45.2 ± 18.9 years. Majority of the patients 20(95.2%) complained of pain around the joint, in the pre-auricular region, in the muscles of mastication and the ear. While 7(35%) complained of clicking sounds, 10(47.6%) complained of pain on mouth opening and during mastication only. In all 5(23.8%) had impaired movement of the jaws, mouth opening was normal in 18(85.7%) but reduced in 3(14.3%) patients. Over half of patients 12(57%) experienced clicking sounds, there was tenderness around the temporomandibular joint in 16(76.2%) cases, pain in the ear of 7(33.3%) patients and 13(61.9%) people presented with tenderness of the muscles of mastication. Conservative management of all the cases resulted in resolution of the symptoms. Temporomandibular joint pain dysfunction syndrome has diverse clinical presentation and though distressing, it responds to prompt and effective conservative management.
Cosmological constraints from a joint analysis of cosmic growth and expansion
NASA Astrophysics Data System (ADS)
Moresco, M.; Marulli, F.
2017-10-01
Combining measurements on the expansion history of the Universe and on the growth rate of cosmic structures is key to discriminate between alternative cosmological frameworks and to test gravity. Recently, Linder proposed a new diagram to investigate the joint evolutionary track of these two quantities. In this letter, we collect the most recent cosmic growth and expansion rate data sets to provide the state-of-the-art observational constraints on this diagram. By performing a joint statistical analysis of both probes, we test the standard Λcold dark matter model, confirming a mild tension between cosmic microwave background predictions from Planck mission and cosmic growth measurements at low redshift (z < 2). Then we test alternative models allowing the variation of one single cosmological parameter at a time. In particular, we find a larger growth index than the one predicted by general relativity γ =0.65^{+0.05}_{-0.04}. However, also a standard model with total neutrino mass of 0.26 ± 0.10 eV provides a similarly accurate description of the current data. By simulating an additional data set consistent with next-generation dark-energy mission forecasts, we show that growth rate constraints at z > 1 will be crucial to discriminate between alternative models.
Coherent observations of gravitational radiation with LISA and gLISA
NASA Astrophysics Data System (ADS)
Tinto, Massimo; de Araujo, José C. N.
2016-10-01
The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past 5 years, has been under joint study at the Jet Propulsion Laboratory; Stanford University; the National Institute for Space Research (I.N.P.E., Brazil); and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the millihertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from about 3 ×10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 -1 08)M⊙ . Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4-1 03) Hz frequency band.
Numerical built-in method for the nonlinear JRC/JCS model in rock joint.
Liu, Qunyi; Xing, Wanli; Li, Ying
2014-01-01
The joint surface is widely distributed in the rock, thus leading to the nonlinear characteristics of rock mass strength and limiting the effectiveness of the linear model in reflecting characteristics. The JRC/JCS model is the nonlinear failure criterion and generally believed to describe the characteristics of joints better than other models. In order to develop the numerical program for JRC/JCS model, this paper established the relationship between the parameters of the JRC/JCS and Mohr-Coulomb models. Thereafter, the numerical implement method and implementation process of the JRC/JCS model were discussed and the reliability of the numerical method was verified by the shear tests of jointed rock mass. Finally, the effect of the JRC/JCS model parameters on the shear strength of the joint was analyzed.
Polarimetric image reconstruction algorithms
NASA Astrophysics Data System (ADS)
Valenzuela, John R.
In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction quality when estimating intensity images and then transforming to Stokes parameters (traditional estimator), and when estimating Stokes parameters directly (Stokes estimator). We define our cost function for reconstruction by a weighted least squares data fit term and a regularization penalty. It is shown that under quadratic regularization, the traditional and Stokes estimators can be made equal by appropriate choice of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower RMS error in reconstruction. Also, the addition of a cross channel regularization term further lowers the RMS error for both methods especially in the case of low SNR. The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate an object and optical system aberrations. We extend the technique of phase diversity to polarimetric imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes images and optical system aberrations involves a large parameter space. A closed-form expression for the estimate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that reduces the dimensionality of the search space to the number of aberration parameters only. We compare the performance of the joint estimator under both quadratic and edge-preserving regularization. The joint estimator with edge-preserving regularization yields higher fidelity polarization estimates than with quadratic regularization. Under quadratic regularization, using the reduced-parameter search strategy, accurate aberration estimates can be obtained without recourse to regularization "tuning". Phase-diverse wavefront sensing is emerging as a viable candidate wavefront sensor for adaptive-optics systems. In a quadratically penalized weighted least squares estimation framework a closed form expression for the object being imaged in terms of the aberrations in the system is available. This expression offers a dramatic reduction of the dimensionality of the estimation problem and thus is of great interest for practical applications. We have derived an expression for an approximate joint covariance matrix for object and aberrations in the phase diversity context. Our expression for the approximate joint covariance is compared with the "known-object" Cramer-Rao lower bound that is typically used for system parameter optimization. Estimates of the optimal amount of defocus in a phase-diverse wavefront sensor derived from the joint-covariance matrix, the known-object Cramer-Rao bound, and Monte Carlo simulations are compared for an extended scene and a point object. It is found that our variance approximation, that incorporates the uncertainty of the object, leads to an improvement in predicting the optimal amount of defocus to use in a phase-diverse wavefront sensor.
A PHOTOMETRIC ANALYSIS OF SEVENTEEN BINARY STARS USING SPECKLE IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.
2009-11-15
Magnitude differences obtained from speckle imaging are used in combination with other data in the literature to place the components of binary star systems on the H-R diagram. Isochrones are compared with the positions obtained, and a best-fit isochrone is determined for each system, yielding both masses of the components as well as an age range consistent with the system parameters. Seventeen systems are studied, 12 of which were observed with the 0.6 m Lowell-Tololo Telescope at Cerro Tololo Inter-American Observatory and six of which were observed with the WIYN 3.5 m Telescope (The WIYN Observatory is a joint facilitymore » of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories) at Kitt Peak. One system was observed from both sites. In comparing photometric masses to mass information from orbit determinations, we find that the photometric masses agree very well with the dynamical masses, and are generally more precise. For three systems, no dynamical masses exist at present, and therefore the photometrically determined values are the first mass estimates derived for these components.« less
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen
2017-01-01
Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Zhang, Zuchen; Song, Jingming; Wu, Chunxiao; Song, Ningfang
2015-03-01
A splicing parameter optimization method to increase the tensile strength of splicing joint between photonic crystal fiber (PCF) and conventional fiber is demonstrated. Based on the splicing recipes provided by splicer or fiber manufacturers, the optimal values of some major splicing parameters are obtained in sequence, and a conspicuous improvement in the mechanical strength of splicing joints between PCFs and conventional fibers is validated through experiments.
Mason, Jeffrey B; Gurda, Brittney L; Hankenson, Kurt D; Harper, Lindsey R; Carlson, Cathy S; Wilson, James M; Richardson, Dean W
2017-11-01
Our goals in the current experiments were to determine if (a) upregulation of Wnt signaling would induce osteoarthritis changes in stable stifle joints and (b) if downregulation of Wnt signaling in destabilized joints would influence the progression of OA. At 37 weeks of age, rats were injected in the stifle joint with a recombinant adeno-associated viral vector containing the Wnt-inhibitor Dkk-1 or a Wnt10b transgene. At 40 weeks of age, rats underwent surgical destabilization of the joint. At 50 weeks of age, stifle joints were submitted for micro-computed tomography and histopathological analysis. Injection of either Wnt10b or Dkk-1 transgenes in stable joints improved bone architectural parameters, but worsened soft tissue integrity. Osteophytosis was decreased by Dkk-1, but unchanged by Wnt10b. Destabilization negatively influenced bone architecture, increased osteophytosis, and decreased soft tissue integrity. Dkk-1 exacerbated the negative effects of destabilization, whereas Wnt10b had little effect on these parameters. Osteophytosis was improved, whereas soft tissue integrity was worsened by both transgenes in destabilized joints. The Wnt-inhibitor Dkk-1 does not appear to completely inhibit the effects of Wnt signaling on bone remodeling. In vivo upregulation of Wnt10b and its inhibitor, Dkk-1, can produce both parallel or contrasting phenotypic responses depending on the specific parameter measured and the fidelity of the examined joint. These observations elucidate different roles for Wnt signaling in stable versus destabilized joints and may help to explain the conflicting results previously reported for the role of Dkk-1 in joint disease.
Benefits of CMM-Based Software Process Improvement: Initial Results
1994-08-01
Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 This report was prepar the SEI Joint Program Office HQ ESC/ENS 5 Eglin Street Hanscom AFB...Miller, Lt Col, USAF SEI Joint Program Office This work is sponsored by the U.S. Department of Defense. Copyright 0 1994 by Carnegie Mellon University...categories: descriptive information about the organizations, information about their process improvement and measurement programs , and data about the
The Joint Lessons Learned System and Interoperability
1989-06-02
Learned: 1988-1989 As mentioned in the introduction to this chaoter, the Organizacion of the JcinC Chiefs cf Staff .OJCS) ueren significant transformatioi...Organization and Functions Manual . Washington, D.C.: HQDA, Office of the Deputy Chief 0f Staff for Operations and Plans, June 1984. ’..S. Army. Concept...U.S. Department of Defense. Joint Universal Lessons Learned System (JULLS) User’s Manual . Orlando, Florida: University of Central Florida, Institute
Oksanen, A M; Laimi, K; Löyttyniemi, E; Kunttu, K
2014-10-01
There are no nationwide trend surveys of the prevalence of musculoskeletal symptoms among university students. The aim of the study was to examine whether the prevalence of perceived musculoskeletal pain symptoms among Finnish university students has changed from 2000 to 2012, and to explore the co-occurrence of these symptoms. Four cross-sectional nationwide representative samples (n = 11,502) were compared in 2000 (n = 3174), 2004 (n = 3153), 2008 (n = 2750) and 2012 (n = 2425). The prevalence of weekly neck-shoulder, lower back, limb or joint, and temporomandibular joint pain was studied. All the studied pains increased significantly from 2000 to 2012. The prevalence rate of neck-shoulder pain increased from 25% to 29%, lower back pain from 10% to 14%, and limb and joint pain increased from 7% to 8%. The prevalence of pain in temporomandibular joint increased from 4% to 5%. In addition, the co-occurrence of different musculoskeletal pain symptoms increased. All of these pain symptoms were more common among female students and among older students. An increasing trend in the prevalence of frequent musculoskeletal pain was found over the period of 12-years among Finnish university students. © 2014 European Pain Federation - EFIC®
Synek, Alexander; Pahr, Dieter H
2018-06-01
A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com ). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined [Formula: see text] to [Formula: see text] with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans ([Formula: see text]m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10[Formula: see text]-[Formula: see text]) are more robust than the predicted peak load magnitudes (range 2344.8-4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: [Formula: see text], predicted: [Formula: see text]) and magnitude (in vivo: [Formula: see text], predicted: [Formula: see text]). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.
NASA Astrophysics Data System (ADS)
Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda
2017-06-01
The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.
9th Annual Systems Engineering Conference: Volume-1 Monday Tutorial
2006-10-26
Joint Integrating Concepts (JIC) • Forceable Entry Ops • Undersea Superiority • Global Strike Ops • Sea-Basing Ops • Air & Missile Defense • JC2 • Joint...Forceable Entry Ops o Undersea Superiority o Global Strike Ops o Sea-Basing Ops o Air & Missile Defense o JC2 o Joint Logistics Includes an illustrative... Undersea Superiority • Global Strike Ops • Sea-Basing Ops • Air & Missile Defense • JC2 • Joint Logistics Universal Joint Task List (UJTL) • Strategic
SLI Complex Curvature Friction Stir Weld Risk Reduction Program
NASA Technical Reports Server (NTRS)
Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn
2003-01-01
The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir weld process in conjunction with a universal weld system provides a low risk approach to the fabrication of aluminum tanks for future launch vehicle applications.
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-10-18
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805
Summary of 2008 CUAA Chinese University Evaluation and Research Report
ERIC Educational Resources Information Center
Deguo, Zhao; Yanhou, Cai; Yongjun, Feng; Lingfeng, Wang
2009-01-01
Since 2002, the University Evaluation Task Force of China University Alumni Association Network (CUAA), "University Weekly" and "21st Century Talent Report" have made joint efforts in the evaluation of higher education institutions in China. Compared with the ranking in 2007, China's University Ranking in the 2008 report is…
Exploring cosmic origins with CORE: Cosmological parameters
NASA Astrophysics Data System (ADS)
Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as ~ 107 as compared to Planck 2015, and 105 with respect to Planck 2015 + future BAO measurements.
NASA Astrophysics Data System (ADS)
Zavrazhina, T. V.
2007-10-01
A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ℝ2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.
Campus/Industry Joint Ventures.
ERIC Educational Resources Information Center
McDonald, Eugene J.
1985-01-01
Opportunities for joint economic ventures of colleges and industry are discussed, and a variety of ventures undertaken by Duke University are outlined, including a health club, hotel, and office building. Tax and financing considerations are noted. (MSE)
What makes patients aware of their artificial knee joint?
Loth, F L; Liebensteiner, M C; Giesinger, J M; Giesinger, K; Bliem, H R; Holzner, B
2018-01-08
Joint awareness was recently introduced as a new concept for outcome assessment after total knee arthroplasty (TKA). Findings from qualitative and psychometric studies suggest that joint awareness is a distinct concept especially relevant to patients with good surgical outcome and patients at late follow-up time points. The aim of this study was to improve the understanding of the concept of joint awareness by identifying situations in which patients are aware of their artificial knee joint and to investigate what bodily sensations and psychological factors raise a patient's awareness of her/his knee. In addition, we evaluated the relative importance of patient-reported outcome parameters that are commonly assessed in orthopaedics. Qualitative interviews were conducted with patients being at least 12 months after TKA. The interviews focused on when, where and for what reasons patients were aware of their artificial knee joint. To evaluate the relative importance of 'joint awareness' after TKA among nine commonly assessed outcome parameters (e.g. pain or stiffness), we collected importance ratings ('0' indicating no importance at all and '10' indicating high importance). We conducted interviews with 40 TKA patients (mean age 69.0 years; 65.0% female). Joint awareness was found to be frequently triggered by kneeling on the floor (30%), climbing stairs (25%), and starting up after resting (25%). Patients reported joint awareness to be related to activities of daily living (68%), specific movements (60%), or meteoropathy (18%). Sensations causing joint awareness included pain (45%) or stiffness (15%). Psychological factors raising a patient's awareness of his/her knee comprised for example feelings of insecurity (15%), and fears related to revision surgeries, inflammations or recurring pain (8%). Patients' importance ratings of outcome parameters were generally high and did not allow differentiating clearly among them. We have identified a wide range of situations, activities, movements and psychological factors contributing to patients' awareness of their artificial knee joints. This improves the understanding of the concept of joint awareness and of a patient's perception of his/her artificial knee joint. The diversity of sensations and factors raising patient's awareness of their joint encourages taking a broader perspective on outcome after TKA.
ERIC Educational Resources Information Center
Daval, Nicola, Ed.
Papers from the joint meeting are assembled in this document. Each of the meeting's five program sessions featured presentations by a Standing Conference of National and Universal Libraries (SCONUL) director and an Association of Research Libraries (ARL) director. The presentations highlight perspectives from both sides of the Atlantic and are…
2009-09-01
Replace CV boot assembly. 11 Replace propeller shafts , universal joints, and center bearings. 11 Replace front axle spindle . 5 Replace...propeller shafts , universal joints, and center bearings. (SL1/2) 12 Troubleshoot axles. (SL1/2) 11 Replace front axle spindle . (SL1/2) 6...Social Sciences. NOTE: The findings in this report are not to be construed as an official Department of the Army position, unless so designated by
Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements
NASA Astrophysics Data System (ADS)
Lahav, O.; Bridle, S. L.; Hobson, M. P.; Lasenby, A. N.; Sodré, L.
2000-07-01
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ2 function a set of `hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing \\sum \\chi_j2 (where \\chi_j2 is per data set j) we propose to minimize \\sum Nj (\\chi_j2) (where Nj is the number of data points per data set j). We illustrate the method by estimating the Hubble constant H0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.
Double density dynamics: realizing a joint distribution of a physical system and a parameter system
NASA Astrophysics Data System (ADS)
Fukuda, Ikuo; Moritsugu, Kei
2015-11-01
To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.
Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane
2017-11-07
This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Qianci
2018-04-01
Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simultaneously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parameters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters, aiming to force a structural relationship between permittivity and conductivity in the process of model reconstruction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency components in the frequency domain. The joint inverse problem is solved by the truncated Newton method which considering the effect of Hessian operator and using the approximated solution of Newton equation to be the perturbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural similarities between the two parameters, corrects the structures of parameter models, and significantly improves the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.
NASA Astrophysics Data System (ADS)
Soni, Sourabh Kumar; Thomas, Benedict
2018-04-01
The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.
Ocean Drilling Program: Related Sites
) 306-0390 Web site: www.nsf.gov Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) US Members: Columbia University, Lamont-Doherty Earth Observatory Florida State University Oregon State University, College of Oceanic and Atmospheric Sciences Pennsylvania State University, College of Earth and
ERIC Educational Resources Information Center
Oguntoyinbo, Lekan
2012-01-01
From student and faculty exchanges to joint research projects, U.S. universities maintain a broad spectrum of collaborative relationships with African universities. It's unclear how many U.S. colleges and universities have partnerships with African universities. The African Studies Association, an organization of scholars, doesn't keep that kind…
Leveraging Trade Agreements to Meet U.S. Security Aims
2016-04-08
NATIONAL DEFENSE UNIVERSITY JOINT FORCES STAFF COLLEGE JOINT ADVANCED WARFIGHTING SCHOOL LEVERAGING TRADE AGREEMENTS TO MEET U.S. SECURITY AIMS by...Forces Staff College Joint Advanced Warfighting School 7800 Hampton Blvd Norfolk, VA. 2351 1-1702 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the Department of Defense. This paper is entirely my own
ERIC Educational Resources Information Center
Burriss, Annie Hunt
2010-01-01
One innovative, higher-education response to globalization and changing fiscal realities is the curricular joint venture (CJV), a formal collaboration between academic institutions that leverages missions through new joint degrees and research not previously offered by collaborating institutions (Eckel, 2003). In 1997, a pioneering biomedical…
Joint Removal Implications : Thermal Analysis and Life-Cycle Cost
DOT National Transportation Integrated Search
2018-04-01
Deck joints are causing significant bridge deterioration and maintenance problems for Departments of Transportation (DOTs). Colorado State University researchers partnered with the Colorado DOT to analyze the effects of temperature change and thermal...
Testaverde, Lorenzo; Perrone, Anna; Caporali, Laura; Ermini, Antonella; Izzo, Luciano; D'Angeli, Ilaria; Impara, Luca; Mazza, Dario; Izzo, Paolo; Marini, Mario
2011-06-01
To compare Computed Tomography (CT) and Magnetic Resonance (MR) features and their diagnostic potential in the assessment of Synovial Chondromatosis (SC) of the Temporo-Mandibular Joint (TMJ). Eight patients with symptoms and signs compatible with dysfunctional disorders of the TMJ underwent CT and MR scan. We considered the following parameters: soft tissue involvement (disk included), osteostructural alterations of the joints, loose bodies and intra-articular fluid. These parameters were evaluated separately by two radiologists with a "double blinded method" and then, after agreement, definitive assessment of the parameters was given. CT and MR findings were compared. Histopathological results showed metaplastic synovia in all patients and therefore confirmed diagnosis of SC. MR resulted better than CT in the evaluation of all parameters except the osteostructural alterations of the joints, estimated with more accuracy by CT scan. CT scan is excellent to define bony surfaces of the articular joints and flogistic tissue but it fails in the detection of loose bodies when these are not yet calcified. MR scan therefore is the gold standard when SC is suspected since it can visualize loose bodies at early stage and also evaluate disk condition and eventual extra-articular tissues involvement. The use of T2-weighted images and contrast medium allows identifying intra-articular fluid, estimating its entity and discriminating from sinovial tissue. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Static Strength Characteristics of Mechanically Fastened Composite Joints
NASA Technical Reports Server (NTRS)
Fox, D. E.; Swaim, K. W.
1999-01-01
The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.
2016-06-01
unlimited. v List of Tables Table 1 Single-lap-joint experimental parameters ..............................................7 Table 2 Survey ...Joints: Experimental and Workflow Protocols by Robert E Jensen, Daniel C DeSchepper, and David P Flanagan Approved for...TR-7696 ● JUNE 2016 US Army Research Laboratory Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental
Training Shoes do not Decrease the Negative Work of the Lower Extremity Joints.
Hashizume, Satoru; Murai, Akihiko; Hobara, Hiroaki; Kobayashi, Yoshiyuki; Tada, Mitsunori; Mochimaru, Masaaki
2017-11-01
Different types of running shoes may have different influence on the negative work of each lower extremity joint. Clarifying this influence can reduce the potential risk of muscle injury. The present study examined the difference in the negative work and associated kinetic and kinematic parameters of the lower extremity joints between training shoes and racing flats during the contact phase of running. Participants were asked to run on a runway at a speed of 3.0 m·s -1 for both training shoes and racing flats. The negative work and associated kinetic and kinematic parameters of each lower extremity joint were calculated. No difference was found in the negative work of the hip and ankle joints between the two types of running shoes. Meanwhile, the negative work of the knee joint was significantly greater for training shoes than for racing flats. This aspect was related to a longer duration of the negative power of the knee joint with the invariant amplitude of the negative power, moment, and angular velocity. These results suggest a higher potential risk of muscle injury around the knee joint for training shoes than for racing flats. © Georg Thieme Verlag KG Stuttgart · New York.
Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study
NASA Astrophysics Data System (ADS)
Shanavas, S.; Raja Dhas, J. Edwin
2017-10-01
Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.
Dynamic Simulation and Analysis of Human Walking Mechanism
NASA Astrophysics Data System (ADS)
Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.
2017-01-01
Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.
Friction stir welding of T joints of dissimilar aluminum alloy: A review
NASA Astrophysics Data System (ADS)
Thakare, Shrikant B.; Kalyankar, Vivek D.
2018-04-01
Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.
Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
Gomi, H; Kawato, M
1997-03-01
By using a newly designed high-performance manipulandum and a new estimation algorithm, we measured human multi-joint arm stiffness parameters during multi-joint point-to-point movements on a horizontal plane. This manipulandum allows us to apply a sufficient perturbation to subject's arm within a brief period during movement. Arm stiffness parameters were reliably estimated using a new algorithm, in which all unknown structural parameters could be estimated independent of arm posture (i.e., constant values under any arm posture). Arm stiffness during transverse movement was considerably greater than that during corresponding posture, but not during a longitudinal movement. Although the ratios of elbow, shoulder, and double-joint stiffness were varied in time, the orientation of stiffness ellipses during the movement did not change much. Equilibrium-point trajectories that were predicted from measured stiffness parameters and actual trajectories were slightly sinusoidally curved in Cartesian space and their velocity profiles were quite different from the velocity profiles of actual hand trajectories. This result contradicts the hypothesis that the brain does not take the dynamics into account in movement control depending on the neuromuscular servo mechanism; rather, it implies that the brain needs to acquire some internal models of controlled objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Justin
Here we report the results from a project aimed at developing a fully superconducting joint between two REBCO coated conductors using electric field processing (EFP). Due to a reduction in the budget and time period of this contract, we reduced the project scope and focused first on the key scientific issues for forming a strong bond between conductors, and subsequently focused on improving through-the-joint transport. A modified timeline and task list is shown in Table 1, summarizing accomplishments to date. In the first period, we accomplished initial surface characterization as well as rounds of EFP experiments to begin to understandmore » processing parameters which produce well-bonded tapes. In the second phase, we explored the effects of two fundamental EFP parameters, voltage and pressure, and the limitations they place on the process. In the third phase, we achieved superconducting joints and established base characteristics of both the bonding process and the types of tapes best suited to this process. Finally, we investigated some of the parameters related to kinetics which appeared inhibit joint quality and performance.« less
Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014
NASA Astrophysics Data System (ADS)
Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.
2013-01-01
Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.
Fiber laser welding of nickel based superalloy Inconel 625
NASA Astrophysics Data System (ADS)
Janicki, Damian M.
2013-01-01
The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.
[On practicability of implementing the speciality "podiatry" in traumatology and orthopedics].
2011-01-01
The absence of single opinion concerning the classification of foot and ankle joint pathology does not permit to formulate universal and practical approach to the identification of pathological syndromes in case of patient foot lesion. The situation is aggravated by the unsolved issues related to the terminological definition of podiatry as a direction in orthopedics to solve the issues of foot and ankle joint pathology. In actual conditions the implementation of new technologies into the structure of traumatological orthopedics care is needed. This approach permits to combine the qualities of models of effective and optimized care to patients with foot and ankle joint pathology. The study of issue related to the systematization of podiatric pathology revealed that actually no single universal classification easy-to-use in practice exists. Hence the development of original applied working scheme of foot and ankle joint pathology is proposed.
A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys
NASA Astrophysics Data System (ADS)
Chan, Dennis K.
SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the localization of stress to the interface of solder joints at high strain rates. The MEFM is further extended to predict failure in brittle materials. Such an extension allows for fracture prediction within intermetallic compounds (IMCs) in solder joints. It has been experimentally observed that the failure mode shifts from bulk solder to the IMC layer with increasing loading rates. The extension of the MEFM would allow for prediction of the fracture mode within the solder joint under different loading conditions. A fracture model capable of predicting failure modes at higher strain rates is necessary, as mobile electronics are becoming ubiquitous. Mobile devices are prone to being dropped which can induce loading rates within solder joints that are much larger than experienced under thermo-mechanical fatigue. A range of possible damage accumulation parameters for Cu6Sn 5 is determined for the MEFM. A value within the aforementioned range is used to demonstrate the increasing likelihood of IMC fracture in solder joints with larger loading rates. The thesis is concluded with remarks about ongoing work that include determining a more accurate damage accumulation parameter for Cu6Sn 5 IMC, and on using machining as a technique for extracting failure parameters for the MEFM.
Mottaghi, Ahmad; Razavi, S Mohammad; Pozveh, Elham Zamani; Jahangirmoghaddam, Milad
2011-12-01
Temporomandibular joint is one of the most complicated joints of the body and plays an important role in the head and neck system. One of the factors affecting the temporomandibular joint and lead to temporomandibular disorder is anxiety with all the events causing it. The aim of this study was to determine a relationship between anxiety and temporomandibular disorders. In this prospective study, subjects were randomly selected. One hundred and thirty pre-university students in Isfahan were evaluated with Ketel's test of anxiety, exam stress test and temporomandibular disorder questionnaires. The evaluation was done in two stages 10 months and 1 month prior to the university entrance exam (Konkour), clinical assessments consisted of masticatory muscles and sternocleidomastoid muscle palpation, temporomandibular joint palpation for pain and noise and its movement, and mouth opening limitations. The Wilcoxon rank test and paired t-test were used to analyze the data and the P value under 0.05 was considered significant. The level of anxiety and occurrence of temporomandibular disorders were increased between two stages and had the highest level in the second stage. There was a significant increase between two stages (P<0.001). The parallel increase of temporomandibular disorders and anxiety between the two stages can suggest a possible relationship between anxiety and temporomandibular disorders. Therefore, the effect of anxiety in triggering temporomandibular disorder symptoms is probable.
Cosmological Results from High-z Supernovae
NASA Astrophysics Data System (ADS)
Tonry, John L.; Schmidt, Brian P.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Hogan, Craig; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Phillips, Mark M.; Riess, Adam G.; Schommer, Robert; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.
2003-09-01
The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z=0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z~1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4+/-0.5)×10-4h3Mpc-3yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w=-1, then H0t0=0.96+/-0.04, and ΩΛ-1.4ΩM=0.35+/-0.14. Including the constraint of a flat universe, we find ΩM=0.28+/-0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48
Matriculation Related Wastage in Nigerian Universities
ERIC Educational Resources Information Center
Ofoegbu, Felicia I.; Ojogwu, Chiaka
2006-01-01
The objective of the study was to provide substantial evidence on the rate of matriculation related wastage in Nigerian universities. Five federal universities were used for the study. The Joint Admission Matriculation Board (JAMB) admission list and the university matriculation clearance documents of the 2002/2003 and 2003/2004 admission years…
75 FR 41157 - Stanford University Habitat Conservation Plan; Extension of Comment Period
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... Fish and Wildlife Service RIN 0648-XX52 Stanford University Habitat Conservation Plan; Extension of... extending the comment period for our joint request for comments on the Stanford University Habitat... issued Stanford University Habitat Conservation Plan, a DEIS for Authorization of Incidental Take and...
Ultrasonic Nondestructive Characterization of Adhesive Bonds
NASA Technical Reports Server (NTRS)
Qu, Jianmin
1999-01-01
Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.
Detecting severity of delamination in a lap joint using S-parameters
NASA Astrophysics Data System (ADS)
Islam, M. M.; Huang, H.
2018-03-01
The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.
Gauging the cosmic acceleration with recent type Ia supernovae data sets
NASA Astrophysics Data System (ADS)
Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.
2018-04-01
We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.
Parametric motion control of robotic arms: A biologically based approach using neural networks
NASA Technical Reports Server (NTRS)
Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.
1993-01-01
A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.
Virtual Passive Controller for Robot Systems Using Joint Torque Sensors
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
Needs, barriers, and analysis methods for integrated urban freight transportation : final report.
DOT National Transportation Integrated Search
2015-08-01
In this joint project University of Maryland, West Virginia University, and Morgan State University worked together to : solve critical problems associated with urban freight systems. A review of literature and case studies on freight : villages and ...
Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints
NASA Astrophysics Data System (ADS)
Florea, Radu Stefanel
This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.
Enhanced Gravitational Wave Science with LISA and gLISA.
NASA Astrophysics Data System (ADS)
Tinto, Massimo
2017-05-01
The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past five years, has been under joint study at the Jet Propulsion Laboratory, Stanford University, the National Institute for Space Research (I.N.P.E., Brazil), and Space Systems Loral. With an arm length of 73,000 km, gLISA will display optimal sensitivity over a frequency region that is exactly in between those accessible by LISA and LIGO. Such a GW frequency band is characterized by the presence of a very large ensemble of coalescing black-hole binaries (BHBs) similar to those first observed by LIGO and with masses that are 10 to 100 times the mass of the Sun. gLISA will detect thousands of such signals with good signal-to-noise ratio (SNR) and enhance the LIGO science by measuring with high precision the parameters characterizing such signals (source direction, chirp parameter, time to coalescence, etc.) well before they will enter the LIGO band. This valuable information will improve LIGO’s ability to detect these signals and facilitate its study of the merger and ring-down phases not observable by space-based detectors. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the milliHertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is “white” from about 3 × 10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), BHBs with masses in the range (10 - 107)M ⊙. Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black-holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4 - 103) Hz frequency band.
Selection of optimal multispectral imaging system parameters for small joint arthritis detection
NASA Astrophysics Data System (ADS)
Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija
2018-02-01
Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.
MIT Experiments with Joint Venture Contract.
ERIC Educational Resources Information Center
American School and University, 1981
1981-01-01
A new dormitory at Massachusetts Institute of Technology was constructed using a joint venture contract with safeguards and incentives that brought university, architect, and building contractor into a closer and more productive relationship than under conventional contract arrangements. (Author/MLF)
A nano universal joint made from curved double-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Kun; Cai, Haifang; Shi, Jiao
2015-06-15
A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors aremore » investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.« less
A nano universal joint made from curved double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.
2015-06-01
A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.
Kolars, Joseph C; Fang, Weigang; Zheng, Kai; Huang, Amy Y; Sun, Qiudan; Wang, Yanfang; Woolliscroft, James O; Ke, Yang
2017-03-01
Clinical and translational research is increasing in China, attracting faculty-to-faculty collaborations between U.S. and Chinese researchers. However, examples of successful institution-to-institution collaborations to facilitate this research are limited. The authors describe a partnership between Peking University Health Science Center (PUHSC) and the University of Michigan Medical School (UMMS) designed to enable faculty-initiated joint translational and clinical research projects. In 2009, UMMS leadership identified PUHSC as the most appropriate institutional partner, and the Joint Institute for Translational and Clinical Research was established in 2010. Each contributed $7 million for joint research projects in areas of mutual interest. A shared governance structure, four thematic programs (pulmonary, cardiovascular, liver, and renal diseases), three joint research-enabling cores, and processes for awarding funding have been established along with methods for collaborating and mechanisms to share data and biomaterials. As of November 2015, 52 joint faculty proposals have been submitted, and 25 have been funded. These projects have involved more than 100,000 patients in the United States and China and have generated 13 peer-reviewed publications. Pilot data have been leveraged to secure $3.3 million of U.S. extramural funding. Faculty and trainee exchanges take place regularly (including an annual symposium), and mechanisms exist to link faculty seeking collaborations. Critical determinants of success include having co-ownership at all levels with coinvestment of resources. Each institution is committed to continuing its support with a repeat $7 million investment. Next steps include initiating studies in new clinical areas and pursuing large clinical intervention trials.
Component separation of a isotropic Gravitational Wave Background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parida, Abhishek; Jhingan, Sanjay; Mitra, Sanjit, E-mail: abhishek@jmi.ac.in, E-mail: sanjit@iucaa.in, E-mail: sjhingan@jmi.ac.in
2016-04-01
A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of 0∼ 50−100 Hz, considering one spectral shape at a time. However, one strong componentmore » can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for 'component separation' of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components and place upper limits. The method is rather straightforward and needs negligible amount of computation. It utilises the linear relationship between the measurements and the amplitudes of the actual components, alleviating the need for a sampling based method, e.g., Markov Chain Monte Carlo (MCMC) or matched filtering, which are computationally intensive and cumbersome in a multi-dimensional parameter space. Using this formalism we could also study how many independent components can be separated using a given dataset from a network of current and upcoming ground based interferometric detectors.« less
ERIC Educational Resources Information Center
Florida State Postsecondary Education Planning Commission, Tallahassee.
In 1987, a task force was convened to determine the need for further expansion of the Okaloosa-Walton Junior College/University of West Florida (OWJC/UWF) Joint Center, and, if warranted, to select a permanent site for the facility. The task force undertook a study involving: (1) collection of demographic data on the Greater Fort Walton Beach area…
Mehta, Saurabh; Szturm, Tony; El-Gabalawy, Hani S.
2011-01-01
ABSTRACT Purpose: The objective of this study was to examine the effects of intra-articular corticosteroid injection (ICI) on ipsilateral knee flexion/extension, ankle dorsiflexion/plantarflexion (DF/PF), and hip abduction/adduction (abd/add) during stance phase in people with an acute exacerbation of rheumatoid arthritis (RA) of the knee joint. The study also assessed the effects of ICI on spatiotemporal parameters of gait and functional status in this group. Methods: Nine people with an exacerbation of RA of the knee were recruited. Kinematic and spatiotemporal gait parameters were obtained for each participant. Knee-related functional status was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Spatiotemporal gait parameters and joint angles (knee flexion, ankle DF/PF, hip abd/add) of the affected side were compared pre- and post-ICI. Results: Data for eight people were available for analysis. Median values for knee flexion and ankle PF increased significantly following ICI. Gait parameters of cadence, velocity, bilateral stride length, bilateral step length, step width, double-support percentage, and step time on the affected side also showed improvement. Pain and knee-related functional status as measured by the KOOS showed improvement. Conclusions: This study demonstrated a beneficial short-term effect of ICI on knee-joint movements, gait parameters, and knee-related functional status in people with acute exacerbation of RA of the knee. PMID:22942516
Behaviour of Frictional Joints in Steel Arch Yielding Supports
NASA Astrophysics Data System (ADS)
Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel
2014-10-01
The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.
Transfer and Joint Programs - do they Work?
NASA Astrophysics Data System (ADS)
Chapman, P.; Chang, P.; Wu, D.
2013-12-01
With the increased interest in internationalization, many western universities have been working to attract students from China and other Asian countries. Texas A&M University has had a collaborative Ph.D. program with Ocean University, Qingdao, China since 2008. Chinese students spend their first one or two years in Qingdao, then transfer to TAMU to complete their coursework and carry out research. The program has so far produced 6 PhDs and one MS degree, and another 14 students are registered through the program. We anticipate sending U.S. students to China on a reciprocal basis, although the lack of Chinese-speaking U.S. students is an issue. Additionally, the Memorandum of Understanding has led to joint research projects between the two universities, with publications in top journals. Novel aspects of the program include joint funding by the U.S. and China, co-chairing graduate committees by both university faculties, interviewing students in Qingdao before they are accepted by TAMU, and initial studies in one country and then transfer to the other. Such programs require 'heroes' on each side to set up and continue the program who trust each other, as well as support from the upper administration. Even with such support, outside influences and different cultures can affect the effectiveness of the program.
The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.
Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian
2018-05-01
The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.
Influence of control parameters on the joint tracking performance of a coaxial weld vision system
NASA Technical Reports Server (NTRS)
Gangl, K. J.; Weeks, J. L.
1985-01-01
The first phase of a series of evaluations of a vision-based welding control sensor for the Space Shuttle Main Engine Robotic Welding System is described. The robotic welding system is presently under development at the Marshall Space Flight Center. This evaluation determines the standard control response parameters necessary for proper trajectory of the welding torch along the joint.
Development and evaluation of a musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.
Page, Sue L; Birden, Hudson H; Hudson, J Nicky; Thistlethwaite, Jill E; Roberts, Chris; Wilson, Ian; Bushnell, John; Hogg, John; Freedman, S Ben; Yeomans, Neville
2008-02-04
The medical schools at the University of Western Sydney, University of Wollongong and University of Sydney have developed a joint program for training medical students through placements of up to 40 weeks on the New South Wales North Coast. The new partnership agency - the North Coast Medical Education Collaboration - builds on the experience of regional doctors and their academic partners. A steering committee has identified the availability and support requirements of local practitioners to provide training, and has undertaken a comparative mapping of learning objectives and assessments from the courses of the three universities. The goals of the program include preparing doctors who can perform effectively in rural settings and multidisciplinary health care teams, and to advance research in medical education.
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
Guerrero, Anthony; Wiguna, Tjhin; McDermott, John
2014-04-01
The authors describe the University of Hawaii/University of Indonesia collaboration, which introduced the specialty of child psychiatry to Indonesia in the early 1970s via a specially designed program, based in Hawaii, for five jointly selected Indonesian psychiatrists. All five graduates remained in Indonesia to practice and establish their own training program, which has since trained all of the "newer generation," such that there are currently 40 child and adolescent psychiatrists in Indonesia. Since 2009, collaboration between the two institutions has been renewed and modernized through videoteleconferencing, jointly conducted with teaching sessions. The authors present this program as an example of a collaboration that developed the local workforce and that has utilized modern technology in international, bidirectionally beneficial education.
NASA Astrophysics Data System (ADS)
Ferreira, Nadja; McLeod, David; McLeod, Roger
2006-10-01
Naturoptic Vision Improvement Methods developed and first propagated in the Americas can be transferred to other locales, particularly to Germany, Austria, and German-speaking areas of Switzerland, and to British (or former) Commonwealth areas, France, Greece, Russia, and diverse areas of Africa and Asia, particularly Japan. The method will attempt to mimic any successful transplants already in progress, or in the planning stages. It will consist primarily in recruiting visually impaired students who have finished their undergraduate work, and who are outstanding enough to be admitted into an appropriate university of their choice. Joint-degree linkages with universities in mentoring agreements with any potential universities, naturopathic or otherwise, are among our favorites. Potential faculty for proposed universities will have longer term use of an appropriate franchise in some profit- free franchisor agreements.
Advanced Offshore Wind Energy - Atlantic Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing amore » course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.« less
Mission Command: Making it work at Battalion Level
2013-04-01
National Training Center, CA, February 2012. 29 Litwin , G.H., and R.A.Stringer, Motivation & Organizational Climate, Harvard University Press...for Joint Land Operations, Washington, DC: Joint Staff, 29 June 2010. Litwin , George H., and Robert A. Stringer Jr., Motivation & Organizational
A Synchronous Distance Education Course for Non-Scientists Coordinated among Three Universities
ERIC Educational Resources Information Center
Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine
2010-01-01
A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…
ERIC Educational Resources Information Center
Fleming, Michele J.; Grace, Diana M.
2017-01-01
Central to the widening participation agenda in Australia is a focus on rural and regional students given their continued underrepresentation in higher education. The ACT University Experience camp is a joint venture by the Country Education Foundation Australia, the University of Canberra and the Australian National University providing…
The Role of the University: A Global Perspective.
ERIC Educational Resources Information Center
Husen, Torsten, Ed.
This collection of 12 essays is drawn from a May 1990 panel meeting in Paris, France in conjunction with a joint United Nations University/United Nations Educational, Scientific, and Cultural Organization project on "The Changing Role of the Universities." Papers are grouped into those on: the general role of the university, regional…
The UK-Japan Young Scientist Workshop Programme...
ERIC Educational Resources Information Center
Albone, Eric; Okano, Toru
2012-01-01
The authors have been running UK-Japan Young Scientist Workshops at universities in Britain and Japan since 2001: for the past three years in England with Cambridge University and, last year, also with Kyoto University and Kyoto University of Education. For many years they have worked jointly with colleagues in a group of Super Science High…
A Comparison of the Forecast Skills among Three Numerical Models
NASA Astrophysics Data System (ADS)
Lu, D.; Reddy, S. R.; White, L. J.
2003-12-01
Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.
2011-12-01
Policy. Graduates will develop an ability to think strategically, analyze past operations, and apply historical lessons to future joint and combined...Naval Special Warfare Development Group O-## Officer, ## Rank OPMEP Officer, Professional Military Education Program OPTEMPO Operational Tempo...Marine Corps. 2 Joint Special Operations University (2007). MCSOCOM Prrof of Concept Deployment Evaluation Report. Hurlburt Field : Joint Special
The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.
Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi
2012-06-01
The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, P<0.01) and gait speed (r=0.66, P<0.05). In contrast, quasi-joint stiffness in controls negatively correlated with maximal ankle power (r=-0.73, P<0.05) and gait speed (r=-0.76, P<0.05). Our findings suggested that ankle power during gait might be generated by increasing quasi-joint stiffness in patients with hemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Nagashima, Shigehiro; Shaikh, Tanvir R; Thomas, Dennis R; Chen, James Z; Derosier, David J; Kitao, Akio; Namba, Keiichi
2004-10-28
The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.
Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
Hyperspectral imaging for detection of arthritis: feasibility and prospects
NASA Astrophysics Data System (ADS)
Milanic, Matija; Paluchowski, Lukasz A.; Randeberg, Lise L.
2015-09-01
Rheumatoid arthritis (RA) is a disease that frequently leads to joint destruction. It has a high incidence rate worldwide, and the disease significantly reduces patients' quality of life. Detecting and treating inflammatory arthritis before structural damage to the joint has occurred is known to be essential for preventing patient disability and pain. Existing diagnostic technologies are expensive, time consuming, and require trained personnel to collect and interpret data. Optical techniques might be a fast, noninvasive alternative. Hyperspectral imaging (HSI) is a noncontact optical technique which provides both spectral and spatial information in one measurement. In this study, the feasibility of HSI in arthritis diagnostics was explored by numerical simulations and optimal imaging parameters were identified. Hyperspectral reflectance and transmission images of RA and normal human joint models were simulated using the Monte Carlo method. The spectral range was 600 to 1100 nm. Characteristic spatial patterns for RA joints and two spectral windows with transmission were identified. The study demonstrated that transmittance images of human joints could be used as one parameter for discrimination between arthritic and unaffected joints. The presented work shows that HSI is a promising imaging modality for the diagnostics and follow-up monitoring of arthritis in small joints.
Sarkalkan, Nazli; Loeve, Arjo J; van Dongen, Koen W A; Tuijthof, Gabrielle J M; Zadpoor, Amir A
2014-12-24
(Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.
NASA Astrophysics Data System (ADS)
Jiao, Junke; Xu, Zifa; Wang, Qiang; Sheng, Liyuan; Zhang, Wenwu
2018-07-01
Experiments with different joining parameters were carried out on fiber laser welding system to explore the mechanism of CFRTP/stainless steel joining and the influence of the parameters on the joining quality. The thermal defect and the microstructure of the joint was tested by SEM, EDS. The joint strength and the thermal defect zone width was measured by the tensile tester and the laser confocal microscope, respectively. The influence of parameters such as the laser power, the joining speed and the clamper pressure on the stainless steel surface thermal defect and the joint strength was analyzed. The result showed that the thermal defect on the stainless steel surface would change metal's mechanical properties and reduce its service life. A chemical bonding was found between the CFRTP and the stainless steel besides the physical bonding and the mechanical bonding. The highest shear stress was obtained as the laser power, the joining speed and the clamper pressure is 280 W, 4 mm/s and 0.15 MPa, respectively.
Is there a concordance value for H0?
NASA Astrophysics Data System (ADS)
Luković, Vladimir V.; D'Agostino, Rocco; Vittorio, Nicola
2016-11-01
Context. We test the theoretical predictions of several cosmological models against different observables to compare the indirect estimates of the current expansion rate of the Universe determined from model fitting with the direct measurements based on Cepheids data published recently. Aims: We perform a statistical analysis of type Ia supernova (SN Ia), Hubble parameter, and baryon acoustic oscillation data. A joint analysis of these datasets allows us to better constrain cosmological parameters, but also to break the degeneracy that appears in the distance modulus definition between H0 and the absolute B-band magnitude of SN Ia, M0. Methods: From the theoretical side, we considered spatially flat and curvature-free ΛCDM, wCDM, and inhomogeneous Lemaître-Tolman-Bondi (LTB) models. To analyse SN Ia we took into account the distributions of SN Ia intrinsic parameters. Results: For the ΛCDM model we find that Ωm = 0.35 ± 0.02, H0 = (67.8 ± 1.0) km s-1 Mpc-1, while the corrected SN absolute magnitude has a normal distribution N(19.13,0.11). The wCDM model provides the same value for Ωm, while H0 = (66.5 ± 1.8) km s-1 Mpc-1 and w = -0.93 ± 0.07. When an inhomogeneous LTB model is considered, the combined fit provides H0 = (64.2 ± 1.9) km s-1 Mpc-1. Conclusions: Both the Akaike information criterion and the Bayes factor analysis cannot clearly distinguish between ΛCDM and wCDM cosmologies, while they clearly disfavour the LTB model. For the ΛCDM, our joint analysis of the SN Ia, the Hubble parameter, and the baryon acoustic oscillation datasets provides H0 values that are consistent with cosmic microwave background (CMB)-only Planck measurements, but they differ by 2.5σ from the value based on Cepheids data.
Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.
Chung, Yujin; Hey, Jody
2017-06-01
We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Structural analysis of three space crane articulated-truss joint concepts
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Sutter, Thomas R.
1992-01-01
Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.
A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy
NASA Astrophysics Data System (ADS)
Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao
2018-04-01
The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.
Evaluation of an Action-Research Project by University Environmental Volunteers
ERIC Educational Resources Information Center
Raimondo, Ana Maria; Monti, Alejandro J. A.; Perales-Palacios, F. Javier; Gutiérrez-Pérez, José
2017-01-01
The university volunteer programs in Argentina encourage entrepreneurship culture through the development of innovative socio-environmental projects that promote a joint effort between the different administrations of the State, the universities and regional social organizations. One, called "environment and social inclusion" has been…
Cai, Y L; Zhang, S X; Yang, P C; Lin, Y
2016-06-01
Through cost-benefit analysis (CBA), cost-effectiveness analysis (CEA) and quantitative optimization analysis to understand the economic benefit and outcomes of strategy regarding preventing mother-to-child transmission (PMTCT) on hepatitis B virus. Based on the principle of Hepatitis B immunization decision analytic-Markov model, strategies on PMTCT and universal vaccination were compared. Related parameters of Shenzhen were introduced to the model, a birth cohort was set up as the study population in 2013. The net present value (NPV), benefit-cost ratio (BCR), incremental cost-effectiveness ratio (ICER) were calculated and the differences between CBA and CEA were compared. A decision tree was built as the decision analysis model for hepatitis B immunization. Three kinds of Markov models were used to simulate the outcomes after the implementation of vaccination program. The PMTCT strategy of Shenzhen showed a net-gain as 38 097.51 Yuan/per person in 2013, with BCR as 14.37. The universal vaccination strategy showed a net-gain as 37 083.03 Yuan/per person, with BCR as 12.07. Data showed that the PMTCT strategy was better than the universal vaccination one and would end with gaining more economic benefit. When comparing with the universal vaccination program, the PMTCT strategy would save 85 100.00 Yuan more on QALY gains for every person. The PMTCT strategy seemed more cost-effective compared with the one under universal vaccination program. In the CBA and CEA hepatitis B immunization programs, the immunization coverage rate and costs of hepatitis B related diseases were the most important influencing factors. Outcomes of joint-changes of all the parameters in CEA showed that PMTCT strategy was a more cost-effective. The PMTCT strategy gained more economic benefit and effects on health. However, the cost of PMTCT strategy was more than the universal vaccination program, thus it is important to pay attention to the process of PMTCT strategy and the universal vaccination program. CBA seemed suitable for strategy optimization while CEA was better for strategy evaluation. Hopefully, programs as combination of the above said two methods would facilitate the process of economic evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
2005-09-20
Institutions Lawrence Livermore National Laboratory conduct similar or complementary research often excel through collaboration. Indeed, much of Lawrence Livermore's research involves collaboration with other institutions, including universities, other national laboratories, government agencies, and private industry. In particular, Livermore's strategic collaborations with other University of California (UC) campuses have proven exceptionally successful in combining basic science and applied multidisciplinary research. In joint projects, the collaborating institutions benefit from sharing expertise and resources as they work toward their distinctive missions in education, research, and public service. As Laboratory scientists and engineers identify resources needed to conduct their work, they often turn tomore » university researchers with complementary expertise. Successful projects can expand in scope to include additional scientists and engineers both from the Laboratory and from UC, and these projects may become an important element of the research portfolios of the cognizant Livermore directorate and the university department. Additional funding may be provided to broaden or deepen a research project or perhaps develop it for transfer to the private sector for commercial release. Occasionally, joint projects evolve into a strategic collaboration at the institutional level, attracting the attention of the Laboratory director and the UC chancellor. Government agencies or private industries may contribute funding in recognition of the potential payoff of the joint research, and a center may be established at one of the UC campuses. Livermore scientists and engineers and UC faculty are recruited to these centers to focus on a particular area and achieve goals through interdisciplinary research. Some of these researchers hold multilocation appointments, allowing them to work at Livermore and another UC campus. Such centers also attract postdoctoral researchers and graduate students pursuing careers in the centers specialized areas of science. foster university collaboration is through the Laboratory's institutes, which have been established to focus university outreach efforts in fields of scientific importance to Livermore's programs and missions. Some of these joint projects may grow to the level of a strategic collaboration. Others may assist in Livermore's national security mission; provide a recruiting pipeline from universities to the Laboratory; or enhance university interactions and the vitality of Livermore's science and technology environment through seminars, workshops, and visitor programs.« less
Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f-noise model
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Le Doussal, Pierre
2016-05-01
We calculate the joint min-max distribution and the Edwards-Anderson's order parameter for the circular model of 1/f-noise. Both quantities, as well as generalisations, are obtained exactly by combining the freezing-duality conjecture and Jack-polynomial techniques. Numerical checks come with significantly improved control of finite-size effects in the glassy phase, and the results convincingly validate the freezing-duality conjecture. Application to diffusive dynamics is discussed. We also provide a formula for the pre-factor ratio of the joint/marginal Carpentier-Le Doussal tail for minimum/maximum which applies to any logarithmic random energy model.
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen
2015-11-01
The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.
Estimating demographic parameters using a combination of known-fate and open N-mixture models
Schmidt, Joshua H.; Johnson, Devin S.; Lindberg, Mark S.; Adams, Layne G.
2015-01-01
Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark–resight data sets. We provide implementations in both the BUGS language and an R package.
Estimating demographic parameters using a combination of known-fate and open N-mixture models.
Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G
2015-10-01
Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.
Identification of temporal pathomechanical factors during the tennis serve.
Martin, Caroline; Kulpa, Richard; Ropars, Mickaël; Delamarche, Paul; Bideau, Benoit
2013-11-01
The purpose of this study was twofold: (a) to measure the effects of temporal parameters on both ball velocity and upper limb joint kinetics to identify pathomechanical factors during the tennis serve and (b) to validate these pathomechanical factors by comparing injured and noninjured players. The serves of expert tennis players were recorded with an optoelectronic motion capture system. These experts were then followed during two seasons to identify overuse injuries of the upper limb. Correlation coefficients assessed the relationships between temporal parameters, ball velocity, and peaks of upper limb joint kinetics to identify pathomechanical factors. Temporal parameters and ball velocity were compared between injured and noninjured groups. Temporal pathomechanical factors were identified. The timings of peak angular velocities of pelvis longitudinal rotation, upper torso longitudinal rotation, trunk sagittal rotation, and trunk transverse rotation and the duration between instants of shoulder horizontal adduction and external rotation were significantly related to upper limb joint kinetics and ball velocity. Injured players demonstrated later timings of trunk rotations, improper differences in time between instants of shoulder horizontal adduction and external rotation, lower ball velocities, and higher joint kinetics. The findings of this study imply that improper temporal mechanics during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus possibly increase overuse injuries of the upper limb.
California Schools Develop Joint Faculty Journalism Project.
ERIC Educational Resources Information Center
Patt, Bruce E.
1995-01-01
Describes the Joint Faculty Journalism project, undertaken in 1994-95 by California's community colleges and universities to develop methods for increasing alliances with journalism practitioners. Discusses project objectives and resulting recommendations related to increasing student recruitment and success. Reviews positive project outcomes and…
The Northern Ireland Framework for Peace: Terrorism and its Aftermath
2012-04-10
Manchester University Press, 2000. Crawshaw , Colonel (Retd) Michael. The Evolution of British COIN. Joint Doctrine Publication 3-40: 19...Margaret E. McGuinness (Maryland: Rowman & Littlefield, 2000), 206. 35 Colonel (Retd) Michael Crawshaw , “The Evolution of British COIN”. Joint
NASA Astrophysics Data System (ADS)
Szałapak, J.; Kiełbasiński, K.; Krzemiński, J.; Jakubowska, M.
2017-08-01
There are few EU directives restricting use of lead and other hazardous substances in electronics. That leads to ban Pb- Sn alloy from use, the consequence of which is a search for new ways of preparing joints. One of the discussed solutions is using silver particles in Low Temperature Joining Technique (LTJT). This technique allows to use different conducting pastes and lower their sintering temperatures with the use of pressure. The most popular material for the joining tests was silver. Due to its high melting temperature and high pressures needed for lowering the temperature, silver nanoparticles were considered and tested. The temperatures of sintering decreased to 300ºC and the pressures went down from about 40 to less than 10 MPa. Due to unsatisfactory parameters of such joints, the authors prepared mixtures of spherical, submicron-sized silver particles with nanoparticles. Joints were tested for their electrical and shears strength parameters. In this article, the authors show the comparison of different variations of the mixtures with joints prepared only with nanoparticles.
Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading
NASA Astrophysics Data System (ADS)
Awadhani, L. V.; Bewoor, Anand, Dr.
2017-08-01
The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.
A Comparative Study of Co-Channel Interference Suppression Techniques
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas
1997-01-01
We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.
NASA Astrophysics Data System (ADS)
Sumesh, A.; Sai Ramnadh, L. V.; Manish, P.; Harnath, V.; Lakshman, V.
2016-09-01
Welding is one of the most common metal joining techniques used in industry for decades. As in the global manufacturing scenario the products should be more cost effective. Therefore the selection of right process with optimal parameters will help the industry in minimizing their cost of production. SA 106 Grade B steel has a wide application in Automobile chassis structure, Boiler tubes and pressure vessels industries. Employing central composite design the process parameters for Gas Tungsten Arc Welding was optimized. The input parameters chosen were weld current, peak current and frequency. The joint tensile strength was the response considered in this study. Analysis of variance was performed to determine the statistical significance of the parameters and a Regression analysis was performed to determine the effect of input parameters over the response. From the experiment the maximum tensile strength obtained was 95 KN reported for a weld current of 95 Amp, frequency of 50 Hz and peak current of 100 Amp. With an aim of maximizing the joint strength using Response optimizer a target value of 100 KN is selected and regression models were optimized. The output results are achievable with a Weld current of 62.6148 Amp, Frequency of 23.1821 Hz, and Peak current of 65.9104 Amp. Using Die penetration test the weld joints were also classified in to 2 categories as good weld and weld with defect. This will also help in getting a defect free joint when welding is performed using GTAW process.
Behavior of single lap composite bolted joint under traction loading: Experimental investigation
NASA Astrophysics Data System (ADS)
Awadhani, L. V.; Bewoor, Anand
2018-04-01
Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies.more » They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.« less
Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe
2017-08-18
Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.
The Metropolitan University: A Joint Venture.
ERIC Educational Resources Information Center
O'Brien, Gregory M. St. L.
1997-01-01
Capital fund-raising campaigns of metropolitan universities must be based on relationships that can generate resources to position the institution in the community. At the University of New Orleans (Louisiana), a successful capital campaign resulted in a welcome increase in external gift resources to support endowed professorships, centers of…
Developing Effective Social Work University-Community Research Collaborations
ERIC Educational Resources Information Center
Begun, Audrey L.; Berger, Lisa K.; Otto-Salaj, Laura L.; Rose, Susan J.
2010-01-01
In many instances, departments of social work in universities and community-based social services agencies have common interests in improving professional practice and advancing knowledge in the profession. Effective university-community research collaborations can help partners achieve these goals jointly, but to be effective these collaborative…
Joint Use of Public Schools: Developing a New Social Contract for the Shared Use of Public Schools
ERIC Educational Resources Information Center
Filardo, Mary; Vincent, Jeff M.; Allen, Marni; Franklin, Jason
2010-01-01
In this paper, the 21st Century School Fund and the Center for Cities and Schools at the University of California Berkeley provide a conceptual frame for the joint use of PK-12 public school buildings. There is a growing conversation about and demand for joint use as a way to provide services to children and families in convenient locations,…
JOMAR: Joint Operations with Mobile Autonomous Robots
2015-12-21
AFRL-AFOSR-JP-TR-2015-0009 JOMAR: Joint Operations with Mobile Autonomous Robots Edwin Olson UNIVERSITY OF MICHIGAN Final Report 12/21/2015...SUBTITLE JOMAR: Joint Operations with Mobile Autonomous Robots 5a. CONTRACT NUMBER FA23861114024 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT Under this grant, we formulated and implemented a variety of novel algorithms that address core problems in multi- robot systems. These
Creation of an Aeronautical Capstone Design Project Program at Ohio State University
2014-12-08
Equation 12 below. As Figure 35 shows, a single adhesively bonded lap joint is considered. The epoxy only sees a load in the axial direction. In...lap joint [1] = = ( ) 12 =stress distribution factor = applied load in the axial direction ...Figure 11. The joints are designed to handle the bending loads of horizontal, vertical and angled deployment and are designed to directly load the carbon
Borenstein, Johann; Granosik, Grzegorz
2005-03-22
An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.
NASA Astrophysics Data System (ADS)
Kumar, Ravindra; Anant, Ramkishor; Ghosh, P. K.; Kumar, Ankit; Agrawal, B. P.
2016-09-01
Butt weld joints are prepared using pulse current gas tungsten arc welding out of thin sheets of AISI 1008 steel using various combinations of pulse parameters. During welding, the welding speed was kept high, but with the increase of welding speed the mean current was also increased to get the required weld joint at the constant heat input. The use of pulse current has led to improvement in mechanical and metallurgical properties of weld joints. It has resulted in less development of humping which is a common problem with high-speed welding. The undercut or dipped weld face is not observed severe. The tensile strength and hardness are enhanced by 12.5 and 12%. The increase of tensile strength and hardness is justified through TEM micrograph showing the presence of dislocation.
D’Urso, Gianluca; Giardini, Claudio
2016-01-01
The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated. PMID:28773810
D'Urso, Gianluca; Giardini, Claudio
2016-08-11
The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.
Improved methods for operating public transportation services.
DOT National Transportation Integrated Search
2013-03-01
In this joint project, West Virginia University and the University of Maryland collaborated in developing improved methods for analyzing and managing public transportation services. Transit travel time data were collected using GPS tracking services ...
A universal six-joint robot controller
NASA Technical Reports Server (NTRS)
Bihn, D. G.; Hsia, T. C.
1987-01-01
A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.
Shariff, Mansoor; Al-Moaleem, Mohammed M; Al-Ahmari, Nasser M
2013-01-01
Pain of the tempro-mandibular joint (TMJ) has a direct bearing to missing teeth and excessive physical activity. Consumption of qat requires chewing on the leaves to extract their juice for long hours. A 65-year-old male Yemeni patient, a Qat chewer, reported to the university dental hospital at King Khalid University complaining of pain in left temporomandibular joint with missing mandibular anterior teeth. A multidisciplinary approach for the overall treatment of the patient was decided. Initial treatment was the relief of patient's pain with the help of a night guard. This was followed by a fabrication of anterior FPD. The case was under maintenance and follow-up protocol for a period of 8 months with no complaint of pain discomfort.
Shariff, Mansoor; Al-Moaleem, Mohammed M.; Al-Ahmari, Nasser M.
2013-01-01
Pain of the tempro-mandibular joint (TMJ) has a direct bearing to missing teeth and excessive physical activity. Consumption of qat requires chewing on the leaves to extract their juice for long hours. A 65-year-old male Yemeni patient, a Qat chewer, reported to the university dental hospital at King Khalid University complaining of pain in left temporomandibular joint with missing mandibular anterior teeth. A multidisciplinary approach for the overall treatment of the patient was decided. Initial treatment was the relief of patient's pain with the help of a night guard. This was followed by a fabrication of anterior FPD. The case was under maintenance and follow-up protocol for a period of 8 months with no complaint of pain discomfort. PMID:23573427
Laser surface texturing of polypropylene to increase adhesive bonding
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Pizzorni, Marco; Lertora, Enrico; Gambaro, Carla
2018-05-01
In this paper, the main parameters of laser surface texturing of polymeric substrates have been studied. The final aim of the texturing is to increase the performance of bonded joints of grey-pigmented polypropylene substrates. The experimental investigation was carried out starting from the identification of the most effective treatment parameters, in order to achieve a good texture without compromising the characteristics of the bulk material. For each of these parameters, three values were individuated and 27 sets of samples were realised. The surface treatment was analysed and related to the mechanical characteristics of the bonded joints performing lap-shear tests. A statistical analysis in order to find the most influential parameter completed the work.
Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima
NASA Astrophysics Data System (ADS)
Lahav, Ofer
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)
Estimation of Inertial Parameters of Rigid Body Links of Manipulators.
1986-02-01
H AN ET RL. FED 86 UNCLRSSIFIED Al-H-88? NSSI4-8- C -O5OS F/ O 13/13 ML mmmmmmmmuhmhEMENOMONEE 1248 = . I 2.2. 36I W 11111 1.0 112.0 ~ Lm 11111 1111 25l...good match was obtained between joint [lror uesq’pre;Act om the estimated parameters and the joint torques computed A" rn fu~ S. C b.. .:. Massachusetts...value o , which if not zero indicates that linear combination of parameters, vYO, is identifiable. Since K is a function only of the geometry of the
Probing dark energy in the scope of a Bianchi type I spacetime
NASA Astrophysics Data System (ADS)
Amirhashchi, Hassan
2018-03-01
It is well known that the flat Friedmann-Robertson-Walker metric is a special case of Bianchi type I spacetime. In this paper, we use 38 Hubble parameter, H (z ), measurements at intermediate redshifts 0.07 ≤z ≤2.36 and its joint combination with the latest "joint light curves" (JLA) sample, comprising 740 type Ia supernovae in the redshift range of z ɛ [0.01 ,1.30 ] to constrain the parameters of the Bianchi type I dark energy model. We also use the same datasets to constrain flat a Λ CDM model. In both cases, we specifically address the expansion rate H0 as well as the transition redshift zt determinations out of these measurements. In both models, we found that using joint combination of datasets gives rise to lower values for model parameters. Also to compare the considered cosmologies, we have made Akaike information criterion and Bayes factor (Ψ ) tests.
NASA Astrophysics Data System (ADS)
Deeying, J.; Asawarungsaengkul, K.; Chutima, P.
2018-01-01
This paper aims to investigate the effect of laser solder jet bonding parameters to the solder joints in Head Gimbal Assembly. Laser solder jet bonding utilizes the fiber laser to melt solder ball in capillary. The molten solder is transferred to two bonding pads by nitrogen gas. The response surface methodology have been used to investigate the effects of laser energy, wait time, nitrogen gas pressure, and focal position on the shear strength of solder joints and the change of pitch static attitude (PSA). The response surface methodology is employed to establish the reliable mathematical relationships between the laser soldering parameters and desired responses. Then, multi-objective optimization is conducted to determine the optimal process parameters that can enhance the joint shear strength and minimize the change of PSA. The validation test confirms that the predicted value has good agreement with the actual value.
Koh, Eun S; Chung, Sun G; Kim, Tae Uk; Kim, Hee Chan
2012-12-01
To investigate whether capsule-preserving hydraulic distension with saline solution and corticosteroid for adhesive capsulitis induces biomechanical alterations in glenohumeral joint capsules along with clinical improvements. A case series. University outpatient clinic of physical medicine and rehabilitation. Eighteen patients with unilateral adhesive capsulitis. INTERVENTION AND MAIN OUTCOME MEASUREMENTS: Three hydraulic distensions with saline solution and corticosteroid were performed with 1-month intervals. To avoid rupturing capsules, all distensions were monitored by using real-time pressure-volume curves. Stiffness, maximal volume capacity, and pressure at the maximal volume capacity of the capsule were measured at each intervention. Clinical parameters, such as pain and range of motion, were recorded before, 3 days after, and 1 month after each distension. Stiffness decreased (47.6 ± 27.1 mm Hg/mL to 31.7 ± 18.4 mm Hg/mL to 24.2 ± 14.0 mm Hg/mL, mean SD) and maximal volume capacity increased (18.8 ± 7.3 mL to 20.5 ± 7.5 mL to 24.2 ± 7.0 mL, mean SD) significantly (P = .001 for both) at each repeated hydraulic distension. Pressure at the maximal volume capacity tended to decrease, but the decrements were not statistically significant (P = .662). The clinical parameters were significantly improved throughout and 1 month after the 3 repeat procedures (P < .05 for all). Capsule-preserving hydraulic distension changed the biomechanical properties of the glenohumeral joint capsule, lessening the stiffness and enlarging the volume capacity. These alterations were accompanied by improved range of motion and relief of pain. Repeated capsule-preserving hydraulic distension with saline solution and corticosteroid would be useful to treat adhesive capsulitis and to evaluate the treatment results. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Isken, Marius P.; Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Bathke, Hannes M.
2017-04-01
We present a modular open-source software framework (pyrocko, kite, grond; http://pyrocko.org) for rapid InSAR data post-processing and modelling of tectonic and volcanic displacement fields derived from satellite data. Our aim is to ease and streamline the joint optimisation of earthquake observations from InSAR and GPS data together with seismological waveforms for an improved estimation of the ruptures' parameters. Through this approach we can provide finite models of earthquake ruptures and therefore contribute to a timely and better understanding of earthquake kinematics. The new kite module enables a fast processing of unwrapped InSAR scenes for source modelling: the spatial sub-sampling and data error/noise estimation for the interferogram is evaluated automatically and interactively. The rupture's near-field surface displacement data are then combined with seismic far-field waveforms and jointly modelled using the pyrocko.gf framwork, which allows for fast forward modelling based on pre-calculated elastodynamic and elastostatic Green's functions. Lastly the grond module supplies a bootstrap-based probabilistic (Monte Carlo) joint optimisation to estimate the parameters and uncertainties of a finite-source earthquake rupture model. We describe the developed and applied methods as an effort to establish a semi-automatic processing and modelling chain. The framework is applied to Sentinel-1 data from the 2016 Central Italy earthquake sequence, where we present the earthquake mechanism and rupture model from which we derive regions of increased coulomb stress. The open source software framework is developed at GFZ Potsdam and at the University of Kiel, Germany, it is written in Python and C programming languages. The toolbox architecture is modular and independent, and can be utilized flexibly for a variety of geophysical problems. This work is conducted within the BridGeS project (http://www.bridges.uni-kiel.de) funded by the German Research Foundation DFG through an Emmy-Noether grant.
Guarín, Diego L.; Kearney, Robert E.
2017-01-01
Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196
ERIC Educational Resources Information Center
Queeney, Donna S.; Melander, Jacqueline J.
The selection of professions that became part of the Continuing Professional Education Development Project, a joint research and development effort of The Pennsylvania State University and the Kellogg Foundation, is discussed. In addition to establishing collaboration between the university and the professions, the project sought to develop and…
Acompanar Obediciendo: Learning to Help in Collaboration with Zapatista Communities
ERIC Educational Resources Information Center
Simonelli, Jeanne; Earle, Duncan; Story, Elizabeth
2004-01-01
Joint service-learning programs of Wake Forest University and the University of Texas-El Paso are working to develop an anthropologically-informed service model for/with the authors' Universities, our students, and our community colleagues. Building on extensive ethnographic fieldwork and experience leading experiential programs, the model results…
MeProRisk - Acquisition and Prediction of thermal and hydraulic properties
NASA Astrophysics Data System (ADS)
Arnold, J.; Mottaghy, D.; Pechnig, R.
2009-04-01
MeProRisk is a joint project of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH (Aachen) and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The MeProRisk project aims to improve strategies to reduce the risk for planning geothermal power plants. Within our subproject we estimate geothermal relevant parameters in the laboratory and in the borehole scale. This basis data will be integrated with hydraulic and seismic experiments to provide a 3D reservoir model. Hitherto we focussed on two different type locations in Germany. These are (1) the crystalline basement in South Germany and (2) the Rotliegend formation and volcanic rocks in the Northern German Sedimentary Basin. In the case of the crystalline basement an extensive dataset could be composed from the 9 km deep KTB borehole including logging, core and cutting data. The whole data could be interpreted with respect to lithology, structure and alteration of the formation which mainly consists of alternating sequences of gneiss and metabasite. For the different rock types the data was analyzed statistically to provide specific values for geothermal key parameters. Important key parameters are for example: p-wave velocity, density, thermal conductivity, permeability and porosity. For the second type location we used logging data recovered within one borehole (> 5 km deep) which was drilled in the so called Voelkersen gas field. The data was supplied by the RWE DEA company. The formation comprises volcanic rocks and sandstones. On corresponding cores we measured p-wave velocity, thermal conductivity, density and porosity in the laboratory. In the same way as for type location (1) the complete data set was analyzed statistically to derive specific values which are relevant for the geothermal reservoir model. Finally this study will end up in a multi-scale implementation of the bore and its direct environment into a 3D reservoir model. For this purpose we provide the basic data which is suitable for the model calculations.
Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.
Jasni, Farahiyah; Hamzaid, Nur Azah; Mohd Syah, Nor Elleeiana; Chung, Tze Y; Abu Osman, Noor Azuan
2017-01-01
The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users) walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the lower limb between the initial and terminal swing phases. The outcome of this cyclogram adoption approach proposed an insight into the method of determining the causal effect of manipulating a particular joint's mechanical properties toward the joint behavior in an amputee's gait by determining the curve closeness, C, of the modified cyclogram curve to the normal conventional curve, to enable quantitative judgment of the effect of changing a particular parameter in the prosthetic leg gait.
Modelling of subject specific based segmental dynamics of knee joint
NASA Astrophysics Data System (ADS)
Nasir, N. H. M.; Ibrahim, B. S. K. K.; Huq, M. S.; Ahmad, M. K. I.
2017-09-01
This study determines segmental dynamics parameters based on subject specific method. Five hemiplegic patients participated in the study, two men and three women. Their ages ranged from 50 to 60 years, weights from 60 to 70 kg and heights from 145 to 170 cm. Sample group included patients with different side of stroke. The parameters of the segmental dynamics resembling the knee joint functions measured via measurement of Winter and its model generated via the employment Kane's equation of motion. Inertial parameters in the form of the anthropometry can be identified and measured by employing Standard Human Dimension on the subjects who are in hemiplegia condition. The inertial parameters are the location of centre of mass (COM) at the length of the limb segment, inertia moment around the COM and masses of shank and foot to generate accurate motion equations. This investigation has also managed to dig out a few advantages of employing the table of anthropometry in movement biomechanics of Winter's and Kane's equation of motion. A general procedure is presented to yield accurate measurement of estimation for the inertial parameters for the joint of the knee of certain subjects with stroke history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan Zhen; Zhang Qizhi; Sobel, Eric S.
Purpose: The aim of this study was to investigate the potential use of multimodality functional imaging techniques to identify the quantitative optical findings that can be used to distinguish between osteoarthritic and normal finger joints. Methods: Between 2006 and 2009, the distal interphalangeal finger joints from 40 female subjects including 22 patients and 18 healthy controls were examined clinically and scanned by a hybrid imaging system. This system integrated x-ray tomosynthetic setup with a diffuse optical imaging system. Optical absorption and scattering images were recovered based on a regularization-based hybrid reconstruction algorithm. A receiver operating characteristic curve was used tomore » calculate the statistical significance of specific optical features obtained from osteoarthritic and healthy joints groups. Results: The three-dimensional optical and x-ray images captured made it possible to quantify optical properties and joint space width of finger joints. Based on the recovered optical absorption and scattering parameters, the authors observed statistically significant differences between healthy and osteoarthritis finger joints. Conclusions: The statistical results revealed that sensitivity and specificity values up to 92% and 100%, respectively, can be achieved when optical properties of joint tissues were used as classifiers. This suggests that these optical imaging parameters are possible indicators for diagnosing osteoarthritis and monitoring its progression.« less
Seaman, Shaun R; Hughes, Rachael A
2018-06-01
Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model. Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the conditional models of full-conditional specification are compatible with that joint model. We show that this asymptotic equivalence of imputation distributions does not imply that joint model multiple imputation and full-conditional specification multiple imputation will also yield asymptotically equally efficient inference about the parameters of the model of interest, nor that they will be equally robust to misspecification of the joint model. When the conditional models used by full-conditional specification multiple imputation are linear, logistic and multinomial regressions, these are compatible with a restricted general location joint model. We show that multiple imputation using the restricted general location joint model can be substantially more asymptotically efficient than full-conditional specification multiple imputation, but this typically requires very strong associations between variables. When associations are weaker, the efficiency gain is small. Moreover, full-conditional specification multiple imputation is shown to be potentially much more robust than joint model multiple imputation using the restricted general location model to mispecification of that model when there is substantial missingness in the outcome variable.
Configuration control of seven-degree-of-freedom arms
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor); Long, Mark K. (Inventor); Lee, Thomas S. (Inventor)
1992-01-01
A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints.
Configuration control of seven degree of freedom arms
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1995-01-01
A seven-degree-of-freedom robot arm with a six-degree-of-freedom end effector is controlled by a processor employing a 6-by-7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more)-by-7 Jacobian matrix for defining 1 (or more) user-specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more)-by-7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7-by-7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arms. One of the kinematic functions constrains the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizing a sum of gravitational torques on the joints. Still another one of the kinematic functions constrains the location of the arm to perform collision avoidance. Generically, one of the kinematic functions minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or position errors or gravity torques associated with individual joints.
Macklin, K; Healy, A; Chockalingam, N
2012-03-01
Previous research has found that ankle joint equinus can lead to foot pathologies. Calf stretching exercises are a common treatment prescription; however, no dynamic quantitative data on its effectiveness is available. To investigate the effect of calf muscle stretching on ankle joint dorsiflexion and subsequent changes within dynamic forefoot peak plantar pressures (PPP), force and temporal parameters. Thirteen runners with ankle joint equinus were required to perform calf muscle stretching twice a day (morning and evening) on a Flexeramp. Measurements were collected on day 1, week 4 and week 8. A repeated measures ANOVA with Bonferroni-adjusted post hoc comparisons was used to assess differences across the three data collection sessions. Findings indicated that the calf stretching program increased ankle joint dorsiflexion significantly (from 5° to 16°, p≤0.05). The adaptive kinetics brought about by the increased ankle joint range of motion included significantly increased forefoot PPP and maximum force during stance phase but decreased time between heel contact and heel lift and total stance phase time. The calf stretching programme used in this study was found to increase ankle joint dorsiflexion and hence can be used for first line conservative management of ankle equinus. Copyright © 2011 Elsevier Ltd. All rights reserved.
Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus
2018-01-01
Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235
Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding
NASA Astrophysics Data System (ADS)
Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.
2016-04-01
The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.
NASA Astrophysics Data System (ADS)
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-08-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.
ERIC Educational Resources Information Center
Halyo, Nesim; Le, Qiang
2011-01-01
This paper describes the implementation of a revised freshman engineering course, "Introduction to Engineering," at Hampton University and the observations of the instructors during its implementation. The authors collaborated with Auburn University faculty in jointly implementing the same course material at both universities. The revised course…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Hoversten, G.M.
2011-09-15
Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less
Robotic joint experiments under ultravacuum
NASA Technical Reports Server (NTRS)
Borrien, A.; Petitjean, L.
1988-01-01
First, various aspects of a robotic joint development program, including gearbox technology, electromechanical components, lubrication, and test results, are discussed. Secondly, a test prototype of the joint allowing simulation of robotic arm dynamic effects is presented. This prototype is tested under vacuum with different types of motors and sensors to characterize the functional parameters: angular position error, mechanical backlash, gearbox efficiency, and lifetime.
Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin
2014-12-01
Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multispectral diffuse optical tomography of finger joints
NASA Astrophysics Data System (ADS)
Lighter, Daniel; Filer, Andrew; Dehghani, Hamid
2017-07-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial inflammation. The current treatment paradigm for earlier, more aggressive therapy places importance on development of functional imaging modalities, capable of quantifying joint changes at the earliest stages. Diffuse optical tomography (DOT) has shown great promise in this regard, due to its cheap, non-invasive, non-ionizing and high contrast nature. Underlying pathological activity in afflicted joints leads to altered optical properties of the synovial region, with absorption and scattering increasing. Previous studies have used these optical changes as features for classifying diseased joints from healthy. Non-tomographic, single wavelength, continuous wave (CW) measurements of trans-illuminated joints have previously reported achieving this with specificity and sensitivity in the range 80 - 90% [1]. A single wavelength, frequency domain DOT system, combined with machine learning techniques, has been shown to achieve sensitivity and specificity in the range of 93.8 - 100% [2]. A CW system is presented here which collects data at 5 wavelengths, enabling reconstruction of pathophysiological parameters such as oxygenation and total hemoglobin, with the aim of identifying localized hypoxia and angiogenesis associated with inflammation in RA joints. These initial studies focus on establishing levels of variation in recovered parameters from images of healthy controls.
NASA Astrophysics Data System (ADS)
Mortuza, M. R.; Demissie, Y. K.
2015-12-01
In lieu with the recent and anticipated more server and frequently droughts incidences in Yakima River Basin (YRB), a reliable and comprehensive drought assessment is deemed necessary to avoid major crop production loss and better manage the water right issues in the region during low precipitation and/or snow accumulation years. In this study, we have conducted frequency analysis of hydrological droughts and quantified associated uncertainty in the YRB under both historical and changing climate. Streamflow drought index (SDI) was employed to identify mutually correlated drought characteristics (e.g., severity, duration and peak). The historical and future characteristics of drought were estimated by applying tri-variate copulas probability distribution, which effectively describe the joint distribution and dependence of drought severity, duration, and peak. The associated prediction uncertainty, related to parameters of the joint probability and climate projections, were evaluated using the Bayesian approach with bootstrap resampling. For the climate change scenarios, two future representative pathways (RCP4.5 and RCP8.5) from University of Idaho's Multivariate Adaptive Constructed Analogs (MACA) database were considered. The results from the study are expected to provide useful information towards drought risk management in YRB under anticipated climate changes.
The patellofemoral joint: from dysplasia to dislocation
Zaffagnini, Stefano; Grassi, Alberto; Zocco, Gianluca; Rosa, Michele Attilo; Signorelli, Cecilia; Muccioli, Giulio Maria Marcheggiani
2017-01-01
Patellofemoral dysplasia is a major predisposing factor for instability of the patellofemoral joint. However, there is no consensus as to whether patellofemoral dysplasia is genetic in origin, caused by imbalanced forces producing maltracking and remodelling of the trochlea during infancy and growth, or due to other unknown and unexplored factors. The biomechanical effects of patellofemoral dysplasia on patellar stability and on surgical procedures have not been fully investigated. Also, different anatomical and demographic risk factors have been suggested, in an attempt to identify the recurrent dislocators. Therefore, a comprehensive evaluation of all the radiographic, MRI and CT parameters can help the clinician to assess patients with primary and recurrent patellar dislocation and guide management. Patellofemoral dysplasia still represents an extremely challenging condition to manage. Its controversial aetiology and its complex biomechanical behaviour continue to pose more questions than answers to the research community, which reflects the lack of universally accepted guidelines for the correct treatment. However, due to the complexity of this condition, an extremely personalised approach should be reserved for each patient, in considering and addressing the anatomical abnormalities responsible for the symptoms. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160081. Originally published online at www.efortopenreviews.org PMID:28630757
Electromagnetic Studies of Mesons, Nucleons, and Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Oliver K.
Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguangmore » Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.« less
Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian
2017-09-15
In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.
Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S
2015-01-01
Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.
Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian
2017-01-01
In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825
Working at a Joint-Use Library
ERIC Educational Resources Information Center
Robinson, Carla
2007-01-01
The St. Lucie West Library, also known as the FAU Treasure Coast Campus Library, is a joint-use library facility, with Florida Atlantic University partnering with Indian River Community College and the St. Lucie County (FL) Library System. This article will discuss the circulation, course reserves, interlibrary loan, and collection management…
A Partnership for Modeling the Marine Environment of Puget Sound, Washington
2009-03-30
Northwest National Marine Renewable Energy Center, a joint University of Washington - Oregon State project funded by the U.S. Department of Energy. e. A... Marine Renewable Energy Center (NNMREC), a joint Washington - Oregon State project to investigate extraction of wave and tidal energy sponsored by
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Advisory Committee; Notice of Meeting AGENCY: Research and Innovative Technology Administration, U.S... Plan; (5) Evolution of IntelliDrive\\SM\\; (6) ITS Strategic Research Plan, 2010-2014; (7) University... Technology Administration, ITS Joint Program Office, Attention: Stephen Glasscock, 1200 New Jersey Avenue, SE...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Secretary of Defense (OSD), the Military Departments, the Joint Chiefs of Staff (JCS), the Joint Staff, the... Uniformed Services University of the Health Sciences (USUHS), the Defense Agencies, and DoD Field Activities (hereafter referred to collectively as “DoD Components”). The term “Military Services,” as used herein...
A stochastic Iwan-type model for joint behavior variability modeling
NASA Astrophysics Data System (ADS)
Mignolet, Marc P.; Song, Pengchao; Wang, X. Q.
2015-08-01
This paper focuses overall on the development and validation of a stochastic model to describe the dissipation and stiffness properties of a bolted joint for which experimental data is available and exhibits a large scatter. An extension of the deterministic parallel-series Iwan model for the characterization of the force-displacement behavior of joints is first carried out. This new model involves dynamic and static coefficients of friction differing from each other and a broadly defined distribution of Jenkins elements. Its applicability is next investigated using the experimental data, i.e. stiffness and dissipation measurements obtained in harmonic testing of 9 nominally identical bolted joints. The model is found to provide a very good fit of the experimental data for each bolted joint notwithstanding the significant variability of their behavior. This finding suggests that this variability can be simulated through the randomization of only the parameters of the proposed Iwan-type model. The distribution of these parameters is next selected based on maximum entropy concepts and their corresponding parameters, i.e. the hyperparameters of the model, are identified using a maximum likelihood strategy. Proceeding with a Monte Carlo simulation of this stochastic Iwan model demonstrates that the experimental data fits well within the uncertainty band corresponding to the 5th and 95th percentiles of the model predictions which well supports the adequacy of the modeling effort.
Postgraduate Studies in the Field of HCI
NASA Astrophysics Data System (ADS)
Vainio, Teija; Surakka, Veikko; Raisamo, Roope; Räihä, Kari-Jouko; Isokoski, Poika; Väänänen-Vainio-Mattila, Kaisa; Kujala, Sari
In September of 2007, the Tampere Unit for Computer Human Interaction (TAUCHI) at the University of Tampere and The Unit of Human-Centered Technology (IHTE) at the Tampere University of Technology initiated a joint effort to increase collaboration in the field of human-technology interaction (HTI). One of the main aims was to develop higher quality education for university students and to carry out joint internationally recognized HTI research. Both research units have their own master and postgraduate students while the focus of education is at IHTE on usability and humancentered design of interactive products and services whereas TAUCHI focuses on human-technology interaction developing it by harmonizing the potential of technology with human abilities, needs, and limitations. Based on our joint analysis we know now that together TAUCHI and IHTE are offering an internationally competitive master’s program consisting of more than 40 basic, intermediate and advanced level courses. Although both units are partners in the national Graduate School in User- Centered Information Technology (UCIT) led by TAUCHI we have recognized a clear need for developing and systematizing our doctoral education.
Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar
2018-03-01
CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico
2016-11-10
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.
Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.
NASA Astrophysics Data System (ADS)
Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.
2016-08-01
Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.
Exploring University Teacher Perceptions about Out-of-Class Teamwork
ERIC Educational Resources Information Center
Ruiz-Esparza Barajas, Elizabeth; Medrano Vela, Cecilia Araceli; Zepeda Huerta, Jesús Helbert Karim
2016-01-01
This study reports on the first stage of a larger joint research project undertaken by five universities in Mexico to explore university teachers' thinking about out-of-class teamwork. Data from interviews were analyzed using open and axial coding. Although results suggest a positive perception towards teamwork, the study unveiled important…
Joint Standing Committee on Education: Update on Higher Education Personnel Study
ERIC Educational Resources Information Center
West Virginia Higher Education Policy Commission, 2006
2006-01-01
The following topics are included in this update: (1) Comparison of West Virginia classification and compensation systems to those of the University of Michigan, the University system of Maryland, and the University of North Carolina; (2) Classification and Compensation System Training, including an agenda and summary of a two-day seminar devoted…
The State of Enterprise Risk Management at Colleges and Universities Today
ERIC Educational Resources Information Center
Association of Governing Boards of Universities and Colleges, 2009
2009-01-01
This survey was jointly conducted by the Association of Governing Boards of Universities and Colleges (AGB) and United Educators (UE) and reports data on attitudes, practices and policies regarding enterprise risk management among American colleges and universities. The survey was completed by more than 600 respondents in June 2008. The population…
Joint University Program for Air Transportation Research, 1985
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1987-01-01
Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.
Concept of Operations for the Establishment of the Joint Pathology Center
2008-12-19
the Joint Task Force National Capital Region Medical (JTF CapMed ) in collaboration with the Uniformed Services University of Health Sciences (USUHS...Medical Examiner (OAFME). The Board deems the identification of appropriate support for the OAFME as critical , since with the disestablishment of...the DoD. The establishment of the JPC within JTF CapMed is a logical choice to the extent that JTF Cap Med is a joint medical organization and can
NASA Technical Reports Server (NTRS)
1988-01-01
Having recognized at an early stage the critical importance of maintaining detector capabilities which utilize state of the art techniques, a joint program was formulated. This program has involved coordination of a broad range of efforts and activities including joint experiments, collaboration in theoretical studies, instrument design, calibrations, and data analysis. Summaries of the progress made to date are presented. A representative bibliography is also included.
Joint Institute for Nanoscience Annual Report 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Campbell, Charles
2004-02-01
The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW)more » professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N₄). In concept, N₄ is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.« less
Joint Sparsity-Based Robust Multimodal Biometrics Recognition
2012-10-07
Nasrabadi, Rama Chellappa William Marsh Rice University Office of Sponsored Research William Marsh Rice University Houston, TX 77005 - REPORT...Shekhar1, Vishal M. Patel1, Nasser M. Nasrabadi2, and Rama Chellappa1 1 University of Maryland, College Park, USA 2 Army Research Lab, Adelphi, USA...authentication. Unfortunately these systems often have to deal with some of the following inevitable problems [1]: (a) Noisy data (b) Non- universality
Organic light emitting device with conducting cover
Silvernail, Jeffrey; Paynter, Jason; Rajan, Kamala
2014-07-01
The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Princeton University, The University of Southern California, The University of Michigan and Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
Impact of Selected Parameters on the Fatigue Strength of Splices on Multiply Textile Conveyor Belts
NASA Astrophysics Data System (ADS)
Bajda, Mirosław; Błażej, Ryszard; Hardygóra, Monika
2016-10-01
Splices are the weakest points in the conveyor belt loop. The strength of these joints, and thus their design as well as the method and quality of splicing, determine the strength of the whole conveyor belt loop. A special zone in a splice exists, where the stresses in the adjacent plies or cables differ considerably from each other. This results in differences in the elongation of these elements and in additional shearing stresses in the rubber layer. The strength of the joints depends on several factors, among others on the parameters of the joined belt, on the connecting layer and the technology of joining, as well as on the materials used to make the joint. The strength of the joint constitutes a criterion for the selection of a belt suitable for the operating conditions, and therefore methods of testing such joints are of great importance. This paper presents the method of testing fatigue strength of splices made on multi-ply textile conveyor belts and the results of these studies.
TILT : the Treasure Island Liquefaction Test : final report
DOT National Transportation Integrated Search
2002-01-01
This report presents the results of the Treasure Island Liquefaction Test (TILT), a joint project carried out by University of California, San Diego, and Brigham Young University. To improve our understanding of the lateral load behavior of deep foun...
Texas pavement preservation center four-year summary report.
DOT National Transportation Integrated Search
2009-07-04
The Texas Pavement Preservation Center (TPPC), in joint collaboration with the Center for Transportation Research (CTR) of the University of Texas at Austin and the Texas Transportation Institute (TTI) of Texas A&M University, promotes the use of pav...
NASA Astrophysics Data System (ADS)
Abdelhadi, Ousama Mohamed Omer
Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases, η-phase (Cu6Sn 5) and epsilon-phase (Cu3Sn), were found in almost all the cases regardless of the process parameters and size levels. The physics-based analytical model was successfully able to capture the governing mechanisms of IMC growth: chemical reaction controlled and diffusion-controlled. Examination of microstructures of solder joints of different sizes revealed the size of the solder joint has no effect on the type of IMCs formed during the process. Joint size, however, affected the thickness of IMC layers significantly. IMC layers formed in the solder joints of smaller sizes were found to be thicker than those in the solder joints of larger sizes. The growth rate constants and activation energies of Cu3Sn IMC layer were also reported and related to joint thickness. In an effort to optimize the EBSD imaging in the multi-layer configuration, an improved specimen preparation technique and optimum software parameters were determined. Nanoindentation results show that size effects play a major role on the mechanical properties of micro-scale solder joints. Smaller joints show higher Young's modulus, hardness, and yield strength and lower work hardening exponents comparing to thicker joints. To obtain the stress concentration factors in a multilayer specimen with IMC layer as bonding material, a four-point bending notched configuration was used. The analytical solutions developed for peeling and shear stresses in notched structure were used to evaluate the stresses at IMC interface layers. Results were in good agreement with the finite-element simulation. The values of interfacial stresses were utilized in obtaining fracture toughness of the IMC material. (Abstract shortened by UMI.)
Synchrony in Joint Action Is Directed by Each Participant’s Motor Control System
Noy, Lior; Weiser, Netta; Friedman, Jason
2017-01-01
In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader’s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems. PMID:28443047
Estimating unknown parameters in haemophilia using expert judgement elicitation.
Fischer, K; Lewandowski, D; Janssen, M P
2013-09-01
The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design. © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Compositemore » (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.« less
Remote Sensing of Ionosphere by IONOLAB Group
NASA Astrophysics Data System (ADS)
Arikan, Feza
2016-07-01
Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state/temporal transition. IONOLAB group contributes to remote sensing of upper atmosphere, ionosphere and plasmasphere with continuing TUBITAK projects. IONOLAB group is open to joint research and collaboration with researchers from all disciplines that investigate the challenges of ionosphere and space weather. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
Statistical inferences with jointly type-II censored samples from two Pareto distributions
NASA Astrophysics Data System (ADS)
Abu-Zinadah, Hanaa H.
2017-08-01
In the several fields of industries the product comes from more than one production line, which is required to work the comparative life tests. This problem requires sampling of the different production lines, then the joint censoring scheme is appeared. In this article we consider the life time Pareto distribution with jointly type-II censoring scheme. The maximum likelihood estimators (MLE) and the corresponding approximate confidence intervals as well as the bootstrap confidence intervals of the model parameters are obtained. Also Bayesian point and credible intervals of the model parameters are presented. The life time data set is analyzed for illustrative purposes. Monte Carlo results from simulation studies are presented to assess the performance of our proposed method.
NASA Astrophysics Data System (ADS)
Okubo, Michinori; Kon, Tomokuni; Abe, Nobuyuki
Dissimilar smart joints are useful. In this research, welded quality of dissimilar aluminum alloys of 3 mm thickness by various welding processes and process parameters have been investigated by hardness and tensile tests, and observation of imperfection and microstructure. Base metals used in this study are A1050-H24, A2017-T3, A5083-O, A6061-T6 and A7075-T651. Welding processes used are YAG laser beam, electron beam, metal inert gas arc, tungsten inert gas arc and friction stir welding. The properties of weld zones are affected by welding processes, welding parameters and combination of base metals. Properties of high strength aluminum alloy joints are improved by friction stir welding.
2008-05-01
Giacomo Cabri, Francesco De Mola , Letizia Leonardi University of Modena, ITALY Plug-and-Play and Network-Capable Medical Instrumentation and...Janice Crosby CIMIT Steven Dain University of Western Ontario Francesco De Mola University of Modena and Reggio Emilia Ann Demaree CapsuleTech, Inc. Robert...Jennifer Hou Mu Sun University of Kentucky Brent Seales University of Michigan John Hayes University of Modena and Reggio Emilia Francesco De Mola
Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.
2011-07-31
Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test formore » determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.« less
Assessment of the Accounting and Joint Accounting/Computer Information Systems Programs.
ERIC Educational Resources Information Center
Appiah, John; Cernigliaro, James; Davis, Jeffrey; Gordon, Millicent; Richards, Yves; Santamaria, Fernando; Siegel, Annette; Lytle, Namy; Wharton, Patrick
This document presents City University of New York LaGuardia Community College's Department of Accounting and Managerial Studies assessment of its accounting and joint accounting/computer information systems programs report, and includes the following items: (1) description of the mission and goals of the Department of Accounting and Managerial…
Sharing Technology for a Joint-Use Library
ERIC Educational Resources Information Center
Woods, Richard F.
2004-01-01
Building joint-use libraries to foster new types of learning and collaboration is a growing phenomenon that is of great interest to academic library planners around the world. Noteworthy among these efforts, the Dr. Martin Luther King, Jr. Library in San Jose, California, is a collaboration of a metropolitan university library and a major public…
NASA Astrophysics Data System (ADS)
Aslan, Serdar; Taylan Cemgil, Ali; Akın, Ata
2016-08-01
Objective. In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. Approach. In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. Main results. Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. Significance. PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton—CKF (TNF-CKF), a recent robust method which works in filtering sense.
Yamaura, Hiroshi; Matsushita, Kojiro; Kato, Ryu; Yokoi, Hiroshi
2009-01-01
We have developed a hand rehabilitation system for patients suffering from paralysis or contracture. It consists of two components: a hand rehabilitation machine, which moves human finger joints with motors, and a data glove, which provides control of the movement of finger joints attached to the rehabilitation machine. The machine is based on the arm structure type of hand rehabilitation machine; a motor indirectly moves a finger joint via a closed four-link mechanism. We employ a wire-driven mechanism and develop a compact design that can control all three joints (i.e., PIP, DIP and MP ) of a finger and that offers a wider range of joint motion than conventional systems. Furthermore, we demonstrate the hand rehabilitation process, finger joints of the left hand attached to the machine are controlled by the finger joints of the right hand wearing the data glove.
Research on Microstructure and Properties of Welded Joint of High Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai
2018-01-01
BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.
NASA Astrophysics Data System (ADS)
Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Isaacson, Howard; Cargile, Phillip A.; Hebb, Leslie; Fulton, Benjamin J.; Weiss, Lauren M.; Morton, Timothy D.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.; Crossfield, Ian J. M.
2017-09-01
The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA’s Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited ({Kp}< 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60 K in {T}{eff}, 0.10 dex in {log}g, 0.04 dex in [{Fe}/{{H}}], and 1.0 {km} {{{s}}}-1 in V\\sin I. In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.
Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki
2014-01-01
Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P < .05). Persons with visual acuity problems had higher cadence and shorter stance time. In addition, persons with pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.
Summer Sunset: A new ornamental blueberry variety
USDA-ARS?s Scientific Manuscript database
‘Summer Sunset’ is a new blueberry hybrid (Vaccinium sp.) jointly released by the University of Georgia College of Agricultural and Environmental Sciences, the University of Georgia Agricultural Experiment Station, and the United States Department of Agriculture - Agricultural Research Service for t...
ERIC Educational Resources Information Center
National Association of State Universities and Land Grant Colleges, Washington, DC.
This is the report of a joint committee of the National Association of State Universities and Land Grant Colleges (NASULGC) and the Agency for International Development (AID). The committee was asked to consider and recommend measures to improve operating arrangements between AID and the universities, including possible arrangements for…
ERIC Educational Resources Information Center
Darnell, Carl
2017-01-01
Historically Black Colleges and Universities have historically been given less funding than White institutions, a known discrepancy partially rectified by the Civil Rights era desegregation lawsuits. The court-ordered funding, however, came with race-based restrictions for public HBCUs, and many lost academic programs to traditionally White…
High Energy Laser on the Joint Strike Fighter: A Reality in 2025?
2007-02-26
10 October 2006. 19. Siegman , A.E., Nemes, G., Serna, J. “How to (Maybe) Measure Laser Beam Quality,” in DPSS (Diode Pumped Solid State) Lasers ...AIR WAR COLLEGE AIR UNIVERSITY HIGH ENERGY LASER ON THE JOINT STRIKE FIGHTER A REALITY IN 2025? by Jeffrey A. Hausmann, Lt Col, USAF A...00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE High Energy Laser on the Joint Strike Fighter a Reality in 2025? 5a. CONTRACT NUMBER 5b. GRANT
1991-01-01
New Zealand Air Force.4 To further complicate matters, General Douglas MacArthur, as Commander Southwest Pacific Area, and the adjoining theater...Army, Marine, and New Zealand officers and the top job was rotated fairly regularly among the services.10 By early 1943 a truly joint staff had...in joint air operations. 2C. Kenneth Allard, Command, Control, and the Common Defense, Yale University Press, New Haven, 1990. The authors strongly
An optimization method for defects reduction in fiber laser keyhole welding
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei
2016-01-01
Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.
Development of a universal control unit for functional electrical stimulation (FES).
Brandell, B R
1982-12-01
In collaboration with the College of Engineering the author has developed a laboratory, or clinic, based, battery operated "universal" control system, designed to improve disabled gait in upper motor neuron disabilities, especially stroke, hemiplegia, and cerebral palsy, by applying several channels of FES (Functional Electrical Stimulation) to the lower limb muscles while the patient is walking. The timing of the FES pulses, which can be applied to as many as six of the patient's muscles, is determined by potentiometer controlled one-shot timers, which are triggered by any of three switches in the sole of either shoe. Combinations of inverters, flip flops, AND gates and OR gates in the externally connected logic circuits determine the sequence of delays and pulses applied to the patient's muscles. This paper describes and diagrams some of the logic circuits and as an example of the possible application of the concept of a "universal" control unit reports the modifications of gait induced in a hemiplegic, four year post-stroke, patient. The characteristics of this patient's gait with FES in comparison to its characteristics without FES are demonstrated with motion picture frames, EMG recordings and graphic tracings of her right knee and ankle joint positions. They include more symmetrical timing of her right and left stance and swing phases, increased dorsiflexion of her right ankle in the swing phase, followed by a more distinct heel strike, and improved flexion--extension sequences of the knee and ankle joints and an increased heel rise in the stance phase. The author concludes that the gait characteristics of some hemiplegic patients will improve as they become adapted over a period of weeks or months to a control logic, which lessens their functional limitations by the use of a properly timed and amplified sequence of FES pulses. He suggests that the FES control requirements for individual patients should be determined experimentally with a control system "universally" adaptable to a wide range of disabilities, and that these control parameters could then determine the design of portable units, which may be used on a long term basis. These units would include only the operational options needed to duplicate the gait corrections found to be practicable for each individual patient, by the testing procedure, through a universal logic unit as described in this paper.
Investigation into discretization methods of the six-parameter Iwan model
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo
2017-02-01
Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.
NASA Astrophysics Data System (ADS)
Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd
2018-04-01
Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.
NASA Astrophysics Data System (ADS)
Anil Kumar, K. S.; Murigendrappa, S. M.; Kumar, Hemantha
2017-07-01
In the present study, optimum friction stir weld parameters such as plunge depth, tool rotation speed and traverse speed for butt weld of dissimilar aluminum alloy plates, typically 2024-T351 and 7075-T651, are investigated using a bottom-up approach. In the approach, optimum FSW parameters are achieved by varying any one parameter for every trial while remaining parameters are kept constant. The specimens are extracted from the friction stir-welded plates for studying the tensile, hardness and microstructure properties. Optimum friction stir weld individual parameters are selected based on the highest ultimate tensile strength of the friction stir-welded butt joint specimens produced by varying in each case one parameter and keeping the other two constant. The microstructure samples were investigated for presence of defects, grain refinement at the weld nugget (WN), bonding between the two materials and interface of WN, TMAZ (thermomechanically affected zone) of both advancing and retreating sides of the dissimilar joints using optical microscopy and scanning electron microscopy analyses. In the experimental investigations, the optimum FSW parameters such as plunge depth, 6.2 mm, rotation speed, 650 rpm and traverse speed of 150 mm/min result in ultimate tensile strength, 435 MPa, yield strength, 290 MPa, weld joint efficiency, 92% and maximum elongation, 13%. The microstructure of optimized sample in the WN region revealed alternate lamellae material flow pattern with better metallurgical properties, defect free and very fine equiaxed grain size of about 3-5 µm.
NASA Astrophysics Data System (ADS)
McArthur, Barbara. E.; Benedict, G. Fritz; Henry, Gregory W.; Hatzes, Artie; Cochran, William D.; Harrison, Tom E.; Johns-Krull, Chris; Nelan, Ed
2014-11-01
We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 +0.924 -0.432 M JUP for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M JUP or stellar phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and observations with T12 0.8 m automatic photoelectric telescope (APT) at Fairborn Observatory.
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint
Zhang, Xiangming
2011-01-01
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.
Zhang, Xiangming; Gan, Rong Z
2011-10-01
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.
NASA Astrophysics Data System (ADS)
Othman, M. F.; Kurniawan, R.; Schramm, D.; Ariffin, A. K.
2018-05-01
Modeling a cable model in multibody dynamics simulation tool which dynamically varies in length, mass and stiffness is a challenging task. Simulation of cable-driven parallel robots (CDPR) for instance requires a cable model that can dynamically change in length for every desired pose of the platform. Thus, in this paper, a detailed procedure for modeling and simulation of a dynamic cable model in Dymola is proposed. The approach is also applicable for other types of Modelica simulation environments. The cable is modeled using standard mechanical elements like mass, spring, damper and joint. The parameters of the cable model are based on the factsheet of the manufacturer and experimental results. Its dynamic ability is tested by applying it on a complete planar CDPR model in which the parameters are based on a prototype named CABLAR, which is developed in Chair of Mechatronics, University of Duisburg-Essen. The prototype has been developed to demonstrate an application of CDPR as a goods storage and retrieval machine. The performance of the cable model during the simulation is analyzed and discussed.
A kinematic analysis of the modified flight telerobotic servicer manipulator system
NASA Technical Reports Server (NTRS)
Crane, Carl; Carnahan, Tim; Duffy, Joseph
1992-01-01
A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic servicer manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.
Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E
2017-06-01
The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.
A back-fitting algorithm to improve real-time flood forecasting
NASA Astrophysics Data System (ADS)
Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan
2018-07-01
Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali
2013-02-01
Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.
Capturing Revolute Motion and Revolute Joint Parameters with Optical Tracking
NASA Astrophysics Data System (ADS)
Antonya, C.
2017-12-01
Optical tracking of users and various technical systems are becoming more and more popular. It consists of analysing sequence of recorded images using video capturing devices and image processing algorithms. The returned data contains mainly point-clouds, coordinates of markers or coordinates of point of interest. These data can be used for retrieving information related to the geometry of the objects, but also to extract parameters for the analytical model of the system useful in a variety of computer aided engineering simulations. The parameter identification of joints deals with extraction of physical parameters (mainly geometric parameters) for the purpose of constructing accurate kinematic and dynamic models. The input data are the time-series of the marker’s position. The least square method was used for fitting the data into different geometrical shapes (ellipse, circle, plane) and for obtaining the position and orientation of revolute joins.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... is a virtual reality,'' because 92.8 percent of households surveyed in Puerto Rico had wireline or... providing service,'' so ``[i]t need not reflect physical reality in all aspects if it produces `reasonably...
76 FR 4827 - High-Cost Universal Service Support and Federal-State Joint Board on Universal Service
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Wireless Services (``AWS'') licenses. This auction, which was designated as Auction 78, offered 35 licenses in the AWS 1710-1755 MHz and 2110-2155 MHz bands (``AWS-1''). The AWS-1 licenses were licenses for...
Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi
2015-07-01
The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Joint inversion of regional and teleseismic earthquake waveforms
NASA Astrophysics Data System (ADS)
Baker, Mark R.; Doser, Diane I.
1988-03-01
A least squares joint inversion technique for regional and teleseismic waveforms is presented. The mean square error between seismograms and synthetics is minimized using true amplitudes. Matching true amplitudes in modeling requires meaningful estimates of modeling uncertainties and of seismogram signal-to-noise ratios. This also permits calculating linearized uncertainties on the solution based on accuracy and resolution. We use a priori estimates of earthquake parameters to stabilize unresolved parameters, and for comparison with a posteriori uncertainties. We verify the technique on synthetic data, and on the 1983 Borah Peak, Idaho (M = 7.3), earthquake. We demonstrate the inversion on the August 1954 Rainbow Mountain, Nevada (M = 6.8), earthquake and find parameters consistent with previous studies.
Wang, Yiping; Bartelt, Hartmut; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Mörl, Klaus; Ecke, Wolfgang; Willsch, Reinhardt
2008-05-12
A novel technique for splicing a small core Ge-doped photonic crystal fiber (PCF) was demonstrated using a commercial fusion splicer with default discharge parameters for the splicing of two standard single mode fibers (SMFs). Additional discharge parameter adjustments are not required to splice the PCF to several different SMFs. A low splice loss of 1.0 approximately 1.4 dB is achieved. Low or no light reflection is expected at the splice joint due to the complete fusion of the two fiber ends. The splice joint has a high bending strength and does not break when the bending radius is decreased to 4 mm.
EMG-Torque correction on Human Upper extremity using Evolutionary Computation
NASA Astrophysics Data System (ADS)
JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly
2016-09-01
There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.
A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data
NASA Astrophysics Data System (ADS)
Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan
2016-07-01
This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
Chung, Ho Yin; Xu, Xiaopei; Lau, Vince Wing Hang; Ho, Grace; Lee, Ka Lai; Li, Philip Hei; Tsang, Helen Hoi Lun; Kwok, Suet Kei; Lau, Chak Sing; Wong, Chun Sing
2017-01-01
To investigate the usefulness of diffusion weighted imaging (DWI) by comparing with clinical features, blood parameters and traditional short tau inversion recovery (STIR) sequence in detecting spinal and sacroiliac (SI) joint inflammation in axial spondyloarthritis (axSpA) patients. One hundred and ten axSpA patients were recruited. Clinical, radiological and blood parameters were recorded. DWI and STIR MRI were performed simultaneously and results were scored according to the Spondyloarthritis Research Consortium of Canada (SPARCC) for comparison. Apparent diffusion coef cient (ADC) values were also calculated. DWI did not correlate with clinical parameters or blood parameters. It also had lowered sensitivity. When compared with STIR sequence, it correlated well with STIR sequence at the SI joint level (CC 0.76, p<0.001), but weakly at the spinal level (CC 0.23, p=0.02). At the SI joint level, the presence of inflammation on both STIR sequence and DWI was associated with an increase in maximum (B=0.24, p=0.02 in STIR; B=0.37, p<0.001 in DWI) and mean ADC values (B=0.17, p=0.003 in STIR; B=0.15, p=0.01 in DWI). Maximum (B=0.19, p=0.04) and mean spinal ADC values (B=0.18, p=0.01) were also positively associated with DWI detected spinal inflammation. Presence of Modic lesions showed positive correlation with STIR sequence (B=7.12, p=0.01) but not spinal ADC values. Despite DWI correlates with STIR sequence, it has lower sensitivity. However, ADC values appear to be independent of Modic lesions and may supplement STIR sequence to differentiate degeneration.
Joint modelling of longitudinal CEA tumour marker progression and survival data on breast cancer
NASA Astrophysics Data System (ADS)
Borges, Ana; Sousa, Inês; Castro, Luis
2017-06-01
This work proposes the use of Biostatistics methods to study breast cancer in patients of Braga's Hospital Senology Unit, located in Portugal. The primary motivation is to contribute to the understanding of the progression of breast cancer, within the Portuguese population, using a more complex statistical model assumptions than the traditional analysis that take into account a possible existence of a serial correlation structure within a same subject observations. We aim to infer which risk factors aect the survival of Braga's Hospital patients, diagnosed with breast tumour. Whilst analysing risk factors that aect a tumour markers used on the surveillance of disease progression the Carcinoembryonic antigen (CEA). As survival and longitudinal processes may be associated, it is important to model these two processes together. Hence, a joint modelling of these two processes to infer on the association of these was conducted. A data set of 540 patients, along with 50 variables, was collected from medical records of the Hospital. A joint model approach was used to analyse these data. Two dierent joint models were applied to the same data set, with dierent parameterizations which give dierent interpretations to model parameters. These were used by convenience as the ones implemented in R software. Results from the two models were compared. Results from joint models, showed that the longitudinal CEA values were signicantly associated with the survival probability of these patients. A comparison between parameter estimates obtained in this analysis and previous independent survival[4] and longitudinal analysis[5][6], lead us to conclude that independent analysis brings up bias parameter estimates. Hence, an assumption of association between the two processes in a joint model of breast cancer data is necessary. Results indicate that the longitudinal progression of CEA is signicantly associated with the probability of survival of these patients. Hence, an assumption of association between the two processes in a joint model of breast cancer data is necessary.
Reliability analysis of different structure parameters of PCBA under drop impact
NASA Astrophysics Data System (ADS)
Liu, P. S.; Fan, G. M.; Liu, Y. H.
2018-03-01
The establishing process of PCBA is modelled by finite element analysis software ABAQUS. Firstly, introduce the Input-G method and the fatigue life under drop impact are introduced and the mechanism of the solder joint failure in the process of drop is analysed. The main reason of solder joint failure is that the PCB component is suffering repeated tension and compression stress during the drop impact. Finally, the equivalent stress and peel stress of different solder joint and plate-level components under different impact acceleration are also analysed. The results show that the reliability of tin-silver copper joint is better than that of tin- lead solder joint, and the fatigue life of solder joint expectancy decrease as the impact pulse amplitude increases.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Palumbo, Davide; De Finis, Rosa; Galietti, Umberto
2017-10-11
Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength.
Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT
NASA Astrophysics Data System (ADS)
Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang
2016-05-01
Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico
2016-01-01
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration. PMID:28774035
Environmental confounding in gene-environment interaction studies.
Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar
2013-07-01
We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.
Hállux Rígidus: prospective study of joint replacement with hemiarthroplasty
dos Santos, Alexandre Leme Godoy; Duarte, Fernando Aires; Seito, Carlos Augusto Itiu; Ortiz, Rafael Trevisan; Sakaki, Marcos Hideyo; Fernandes, Túlio Diniz
2013-01-01
OBJECTIVE: To report the results of medium-term follow-up after deploying Arthrosurface-HemiCap(r) in patients with diagnosis of Hállux Rigidus (HR). METHOD: Eleven patients underwent partial Arthroplasty of the first metatarsal-phalangeal joint. Six women and five men with an average age 51.9 years (46 to 58 years) and average postoperative follow-up of 3.73 years (3-4 years); were classified through the Kravitz system and evaluated by the American Orthopaedic Foot and Ankle Society (AOFAS) scales for hállux, Visual Analogical Scale (VAS) - analog functional pain - and range of motion in the first metatarsal joint in preoperative, postoperative after six months and present post-operative. RESULTS: The results show significant improvement of the three analyzed parameters, both for overall analysis and for pre and post-operative comparisons individually. The comparative analysis of each variable in the six months and the current postoperative periods do not show statistically significant differences, indicating maintenance of parameters during this interval. CONCLUSION: hemiarthroplasty of first metatarsophalangeal joint is a reproducible and safe option for the surgical treatment of hállux rigidus II and III, with significant improvement of the evaluated parameters for the studied population. Level of Evidence IV, Case Series. PMID:24453646
Joint Venture Arrangement for RN to BSN: A Model of Synergy between Academia and Service.
ERIC Educational Resources Information Center
Bargagliotti, L. Antoinette; And Others
1991-01-01
Joint venture among educational and practice institutions is well on its way toward becoming the norm in nursing education and practice. Kaiser Permanente and the University of San Francisco School of Nursing offer a venture that allows registered nurses to pursue a bachelor of science in nursing degree. (JOW)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
...] Cooperative Agreement To Support the Joint Institute for Food Safety and Applied Nutrition, JIFSAN (U01... and Applied Nutrition (JIFSAN). FDA believes that University of Maryland, College Park (UMCP)-JIFSAN... Applied Nutrition (HFS- 560), Food and Drug Administration, CPK1, Rm. 4A007 (HFS-006), 5100 Paint Branch...
[Research activities in Kobe-Indonesia Collaborative Research Centers].
Utsumi, Takako; Hayashi, Yoshitake; Hotta, Hak
2013-01-01
Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.
Six-degree-of-freedom parallel minimanipulator with three inextensible limbs
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad (Inventor); Tsai, Lung-Wen (Inventor)
1994-01-01
A Six-Degree-of-Freedom Parallel-Manipulator having three inextensible limbs for manipulating a platform is described. The three inextensible limbs are attached via universal joints to the platform at non-collinear points. Each of the inextensible limbs is also attached via universal joints to a two-degree-of-freedom parallel driver such as a five-bar linkage, a pantograph, or a bidirectional linear stepper motor. The drivers move the lower ends of the limbs parallel to a fixed base and thereby provide manipulation of the platform. The actuators are mounted on the fixed base without using any power transmission devices such as gears or belts.
Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.
Influence of Joint Flexibility on Vibration Analysis of Free-Free Beams
NASA Astrophysics Data System (ADS)
Gunda, Jagadish Babu; Krishna, Y.
2014-12-01
In present work, joint flexibility (or looseness) of the free-free beam is investigated by using a two noded beam finite element formulation with transverse displacement and joint rotations as the degrees of freedom per node at joint location. Flexibility of the joint is primarily represented by means of a rotational spring analogy, where the stiffness of the rotational spring characterizes the looseness of the flexible joint for an applied bending moment. Influence of joint location as well as joint stiffness on modal behavior of first five modes of slender, uniform free-free beams are discussed for various values of non-dimensional rotational spring stiffness parameter. Numerical accuracy of the results obtained from the present finite element formulation are validated by using the commercially available finite element software which shows the confidence gained on the numerical results discussed in the present study.
Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.
Latash, M L
1992-07-01
In the framework of the equilibrium-point hypothesis, virtual trajectories and patterns of joint stiffness were reconstructed during voluntary single-joint oscillatory movements in the elbow joint at a variety of frequencies and against two inertial loads. At low frequencies, virtual trajectories were in-phase with the actual joint trajectories. Joint stiffness changed at a doubled frequency. An increase in movement frequency and/or inertial load led to an increase in the difference between the peaks of the actual and virtual trajectories and in both peak and averaged values of joint stiffness. At a certain, critical frequency, virtual trajectory was nearly flat. Further increase in movement frequency led to a 180 degree phase shift between the actual and virtual trajectories. The assessed values of the natural frequency of the system "limb + manipulandum" were close to the critical frequencies for both low and high inertial loads. Peak levels and integrals of the electromyograms of two flexor and two extensor muscles changed monotonically with movement frequency without any special behavior at the critical frequencies. Nearly flat virtual trajectories at the natural frequency make physical sense as hypothetical control signals, unlike the electromyographic recordings, since a system at its natural frequency requires minimal central interference. Modulation of joint stiffness is assumed to be an important adaptive mechanism attenuating difference between the system's natural frequency and desired movement frequency. Virtual trajectory is considered a behavioral observable. Phase transitions between the virtual and actual trajectories are illustrations of behavioral discontinuities introduced by slow changes in a higher level control parameter, movement frequency. Relative phase shift between these two trajectories may be considered an order parameter.
Auhl, Maria; Tan, Jade M.; Levinger, Pazit; Roddy, Edward; Munteanu, Shannon E.
2016-01-01
Objective To evaluate the effects of prefabricated foot orthoses and rocker‐sole footwear on spatiotemporal parameters, hip and knee kinematics, and plantar pressures in people with first metatarsophalangeal (MTP) joint osteoarthritis (OA). Methods. A total of 102 people with first MTP joint OA were randomly allocated to receive prefabricated foot orthoses or rocker‐sole footwear. The immediate biomechanical effects of the interventions (compared to usual footwear) were examined using a wearable sensor motion analysis system and an in‐shoe plantar pressure measurement system. Results Spatiotemporal/kinematic and plantar pressure data were available from 88 and 87 participants, respectively. The orthoses had minimal effect on spatiotemporal or kinematic parameters, while the rocker‐sole footwear resulted in reduced cadence, percentage of the gait cycle spent in stance phase, and sagittal plane hip range of motion. The orthoses increased peak pressure under the midfoot and lesser toes. Both interventions significantly reduced peak pressure under the first MTP joint, and the rocker‐sole shoes also reduced peak pressure under the second through fifth MTP joints and heel. When the effects of the orthoses and rocker‐sole shoes were directly compared, there was no difference in peak pressure under the hallux, first MTP joint, or heel; however, the rocker‐sole shoes exhibited lower peak pressure under the lesser toes, second through fifth MTP joints, and midfoot. Conclusion Prefabricated foot orthoses and rocker‐sole footwear are effective at reducing peak pressure under the first MTP joint in people with first MTP joint OA, but achieve this through different mechanisms. Further research is required to determine whether these biomechanical changes result in improvements in symptoms. PMID:26640157
ERIC Educational Resources Information Center
Bermingham, Nicola; Higham, Gwennan
2017-01-01
This seminar was held at Heriot-Watt University, Edinburgh, on 27 May 2016. It was jointly organised by BAAL members Nicola Bermingham (Heriot-Watt University) and Gwennan Higham (Swansea University) in collaboration with COST Action IS1306 New Speakers in a Multilingual Europe: Opportunities and Challenges, and supported by the Intercultural…
Principles and Guidelines for Establishing Joint Academic Programs and Campuses Abroad
ERIC Educational Resources Information Center
Association of American Universities, 2014
2014-01-01
In the late 20th and early 21st centuries, universities have increasingly begun to embrace a new model: rather than requiring scholars and students to travel to the home city of the university, they have instead begun to establish new campuses, centers, and programs of their own in other. This profound change in the nature of universities requires…
None
2018-06-12
An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas.
ERIC Educational Resources Information Center
Kneller, Robert
2007-01-01
Following the incorporation of Japanese national universities in April 2004, the ownership of university inventions is now similar to that in the USA. However, in contrast to the USA, joint research projects involving close collaboration with company researchers who are frequently named as co-inventors are common. A large proportion of university…
1985-04-01
from observations using the University of Arizona 2.3 meter telescope, the Kitt Peak National Observatory 4 meter telescope and the Multiple Mirror...Telescope. Kitt Peak Natioinal Observatory, a division of the National Optical Astronomy Observatories, is operated by the Association of Universities for...Research in Astronomy, Inc., under contract to the National Science Foundation. The Multiple Mirror Telescope is a joint facility of the University
Success-factors in transition to university mathematics
NASA Astrophysics Data System (ADS)
Bengmark, S.; Thunberg, H.; Winberg, T. M.
2017-11-01
This study examines different factors' relative importance for students' performance in the transition to university mathematics. Students' characteristics (motivation, actions and beliefs) were measured when entering the university and at the end of the first year. Principal component analysis revealed four important constructs: Self-efficacy, Motivation type, Study habits and Views of mathematics. Subsequently, orthogonal partial least squares (OPLS) analysis was used for measuring the constructs' ability to predict students' university mathematics grades. No individual constructs measured at the time of entrance predicted more than 5% of the variation. On the other hand, jointly they predicted 14%, which is almost in pair with upper secondary grades predicting 17%. Constructs measured at the end of the first year were stronger predictors, jointly predicting 37% of the variation in university grades, with Self-efficacy (21%) and Motivation (12%) being the two strongest individual predictors. In general, Study habits were not important for predicting university achievement. However, for students with low upper secondary grades, the textbook and interaction with peers, rather than internet-based resources, contributed positively to achievement. The association between Views of mathematics and performance was weak for all groups and non-existing for students with low grades.
NASA Astrophysics Data System (ADS)
Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.
2006-03-01
In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.
Tuijthof, Gabriëlle Josephine Maria; Zengerink, Maartje; Beimers, Lijkele; Jonges, Remmet; Maas, Mario; van Dijk, Cornelis Niek; Blankevoort, Leendert
2009-07-01
Measuring the range of motion of the ankle joint can assist in accurate diagnosis of ankle laxity. A computed tomography-based stress-test (3D CT stress-test) was used that determines the three-dimensional position and orientation of tibial, calcaneal and talar bones. The goal was to establish a quantitative database of the normal ranges of motion of the talocrural and subtalar joints. A clinical case on suspected subtalar instability demonstrated the relevance the proposed method. The range of motion was measured for the ankle joints in vivo for 20 subjects using the 3D CT stress-test. Motion of the tibia and calcaneus relative to the talus for eight extreme foot positions were described by helical parameters. High consistency for finite helical axis orientation (n) and rotation (theta) was shown for: talocrural extreme dorsiflexion to extreme plantarflexion (root mean square direction deviation (eta) 5.3 degrees and theta: SD 11.0 degrees), talorucral and subtalar extreme combined eversion-dorsiflexion to combined inversion-plantarflexion (eta: 6.7 degrees , theta: SD 9.0 degrees and eta:6.3 degrees , theta: SD 5.1 degrees), and subtalar extreme inversion to extreme eversion (eta: 6.4 degrees, theta: SD 5.9 degrees). Nearly all dorsi--and plantarflexion occurs in the talocrural joint (theta: mean 63.3 degrees (SD 11 degrees)). The inversion and internal rotation components for extreme eversion to inversion were approximately three times larger for the subtalar joint (theta: mean 22.9 degrees and 29.1 degrees) than for the talocrural joint (theta: mean 8.8 degrees and 10.7 degrees). Comparison of the ranges of motion of the pathologic ankle joint with the healthy subjects showed an increased inversion and axial rotation in the talocrural joint instead of in the suspected subtalar joint. The proposed diagnostic technique and the acquired database of helical parameters of ankle joint ranges of motion are suitable to apply in clinical cases.
Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S
2016-04-01
Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.
ERIC Educational Resources Information Center
Harvey, Brian
1976-01-01
A preparatory course and a three-week study safari to Tanzania were conducted jointly by the University of Southampton and Nottingham University. The course sought to increase the participants' understanding of Tanzania's geography, economy, politics, education, and social systems. The actual visit is also described. (Author/EC)
2010-08-12
Research Disciplines Partners/Sponsors Markets Impacted Select Projects Future Goals and Needs 3 •Orlando, FL • 3rd largest University in U.S...ARMY AIR FORCE MARINE CORPS NAVY SAIC UNIVERSITY High School Simulation and Training Technology Center (STTC) INVIVO RESEARC H INC. Joint
ERIC Educational Resources Information Center
Foust, Gretchen E.; Goslee, Patricia A.
2014-01-01
The Professional Development School (PDS) model, a successful collaborative partnership model between university teacher education programs and P-12 schools, focuses on ''preparing future educators, providing current educators with ongoing professional development, encouraging joint school-university faculty investigation of education-related…
Prototyping iridium coated mirrors for x-ray astronomy
NASA Astrophysics Data System (ADS)
Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf
2017-05-01
X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.
Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters
2012-03-01
versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach
Solid State Joining of Magnesium to Steel
NASA Astrophysics Data System (ADS)
Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva P.; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.
Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.
Fundamental Principles of Tremor Propagation in the Upper Limb.
Davidson, Andrew D; Charles, Steven K
2017-04-01
Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.
Fundamental Principles of Tremor Propagation in the Upper Limb
Davidson, Andrew D.; Charles, Steven K.
2017-01-01
Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices. PMID:27957608
Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding
NASA Astrophysics Data System (ADS)
Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.
2018-04-01
In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoye; Tan, Caiwang; Meng, Shenghao; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2018-03-01
Fiber laser welding-brazing of 1-mm-thick AZ31B Mg alloys to 1.5-mm-thick copper (T2) with Mg-based filler was performed in a lap configuration. The weld appearance, interfacial microstructure and mechanical properties were investigated with different heat inputs. The results indicated that processing windows for optimizing appropriate welding parameters were relatively narrow in this case. Visually acceptable joints with certain strength were achieved at appropriate welding parameters. The maximum tensile-shear fracture load of laser-welded-brazed Mg/Cu joint could reach 1730 N at the laser power of 1200 W, representing 64.1% joint efficiency relative to AZ31Mg base metal. The eutectic structure (α-Mg + Mg2Cu) and Mg-Cu intermetallic compound was observed at the Mg/Cu interface, and Mg-Al-Cu ternary intermetallic compound were identified between intermetallics and eutectic structure at high heat input. All the joints fractured at the Mg-Cu interface. However, the fracture mode was found to differ. For laser power of 1200 W, the surface was characterized by tearing edge, while that with poor joint strength was almost dominated by smooth surface or flat tear pattern.
Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.
Latash, M L; Gottlieb, G L
1991-01-01
The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.
NASA Astrophysics Data System (ADS)
Hassan, Wael Mohammed
Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.
Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
Agrawal, Sunil K; Banala, Sai K; Fattah, Abbas; Sangwan, Vivek; Krishnamoorthy, Vijaya; Scholz, John P; Hsu, Wei-Li
2007-09-01
The gravity balancing exoskeleton, designed at University of Delaware, Newark, consists of rigid links, joints and springs, which are adjustable to the geometry and inertia of the leg of a human subject wearing it. This passive exoskeleton does not use any motors but is designed to unload the human leg joints from the gravity load over its range-of-motion. The underlying principle of gravity balancing is to make the potential energy of the combined leg-machine system invariant with configuration of the leg. Additionally, parameters of the exoskeleton can be changed to achieve a prescribed level of gravity assistance, from 0% to 100%. The goal of the results reported in this paper is to provide preliminary quantitative assessment of the changes in kinematics and kinetics of the walking gait when a human subject wears such an exoskeleton. The data on kinematics and kinetics were collected on four healthy and three stroke patients who wore this exoskeleton. These data were computed from the joint encoders and interface torque sensors mounted on the exoskeleton. This exoskeleton was also recently used for a six-week training of a chronic stroke patient, where the gravity assistance was progressively reduced from 100% to 0%. The results show a significant improvement in gait of the stroke patient in terms of range-of-motion of the hip and knee, weight bearing on the hemiparetic leg, and speed of walking. Currently, training studies are underway to assess the long-term effects of such a device on gait rehabilitation of hemiparetic stroke patients.
Automated Geospatial Watershed Assessment Tool (AGWA)
USDA-ARS?s Scientific Manuscript database
The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University ...
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...
"Blue Suede"TM: A southern highbush blueberry for the home gardener
USDA-ARS?s Scientific Manuscript database
‘Blue SuedeTM’ is a new southern highbush blueberry (Vaccinium hybrid) jointly released by the University of Georgia College of Agricultural and Environmental Sciences, the University of Georgia Agricultural Experiment Station, and the U.S. Department of Agriculture - Agricultural Research Service f...
The Changing Role of School Leadership Preparation.
ERIC Educational Resources Information Center
Wilmore, Elaine
2000-01-01
Many U.S. universities are restructuring their administrator-education programs to produce a new breed of principal. The University of Texas at Arlington, Texas A&M, Tarleton State, a Texas A&M-Commerce joint venture, and a regional alternative certification program offer five examples. (Contains 41 references.) (MLH)
Enhancing environmental engineering education in Europe
NASA Astrophysics Data System (ADS)
Caporali, Enrica; Tuneski, Atanasko
2013-04-01
In the frame of knowledge triangle: education-innovation-research, the environmental engineering higher education is here discussed with reference to the TEMPUS-Trans European Mobility Programme for University Studies promoted by the European Commission. Among the focused aspects of TEMPUS are curricula harmonization and lifelong learning programme development in higher education. Two are the curricula, since the first TEMPUS project, coordinated in the period 2005-2008 by University of Firenze in cooperation with colleagues of the Ss Cyril and Methodius University, Skopje. The second three years TEMPUS Joint Project denominated DEREL-Development of Environment and Resources Engineering Learning, is active since October 2010. To the consortium activities participate 4 EU Universities (from Italy, Greece, Germany and Austria), 7 Partner Countries (PC) Universities (from FYR of Macedonia, Serbia and Albania), and 1 PC Ministry, 4 PC National Agencies, 1 PC non governmental organization and 1 PC enterprise. The same 4 EU Universities and the same Macedonian Institutions participated at the first TEMPUS JEP entitled DEREC-Development of Environmental and Resources Engineering Curriculum. Both the first and second cycle curriculum, developed through the co-operation, exchange of know-how and expertise between partners, are based on the European Credit Transfer System and are in accordance with the Bologna Process. Within DEREC a new three-years first cycle curriculum in Environmental and Resources Engineering was opened at the University Ss Cyril and Methodius, Skopje, and the necessary conditions for offering a Joint Degree Title, on the basis of an agreement between the Ss. Cyril and Methodius University and the University of Firenze, were fulfilled. The running DEREL project, as a continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second cycle curriculum in Environment and Resources Engineering at the Ss Cyril and Methodius University in Skopje, FYR of Macedonia, University of Novi Sad, Serbia and Polytechnic University of Tirana, Albania, following the criteria and conditions for setting up a Joint Postgraduate Degree. The new second cycle degree curriculum has been just activated in the current academic year 2012/2013. In DEREL a second objective is to implement a sustainable regional network aimed to offer lifelong learning seminars for environment and resources engineering education and training of interested stakeholders and organize workshops focused on strengthening the links in the knowledge triangle: environment education-innovation-research, with participation of postgraduate students, public services, enterprises and NGO's.
Ultrasonic-assisted soldering of Cu/Ti joints
NASA Astrophysics Data System (ADS)
Cui, Wei; Wang, Chunyu; Li, Yuhang; Zhong, Tongtong; Yang, Jianguo; Bao, Yefeng
2018-03-01
Cu/Ti joints are expected to be used in various applications, while reliable joining method is still to be developed. It is commonly not possible to solder Ti alloys using Sn-based solder alloys because of their poor wettability. In this study, Sn-Ag-Cu soldering filler metal was used to joining TC4 titanium alloy and pure copper using ultrasonic-assisted soldering. The influence of different temperature and different ultrasonic time on the welded joint is studied and explored. Microstructure of the joints was investigated. Shear strength of the joints reached the maximum value, i.e. 38.2MPa. Relationship between the sonication parameters and the microstructure and strength of the joints was discussed. Thus, it is verified that dissimilar metal brazing of TC4 and copper is suitable for low temperature soldering.
Nonlinear PP and PS joint inversion based on the exact Zoeppritz equations: a two-stage procedure
NASA Astrophysics Data System (ADS)
Zhi, Lixia; Chen, Shuangquan; Song, Baoshan; Li, Xiang-yang
2018-04-01
S-velocity and density are very important parameters in distinguishing lithology and estimating other petrophysical properties. A reliable estimate of S-velocity and density is very difficult to obtain, even from long-offset gather data. Joint inversion of PP and PS data provides a promising strategy for stabilizing and improving the results of inversion in estimating elastic parameters and density. For 2D or 3D inversion, the trace-by-trace strategy is still the most widely used method although it often suffers from a lack of clarity because of its high efficiency, which is due to parallel computing. This paper describes a two-stage inversion method for nonlinear PP and PS joint inversion based on the exact Zoeppritz equations. There are several advantages for our proposed methods as follows: (1) Thanks to the exact Zoeppritz equation, our joint inversion method is applicable for wide angle amplitude-versus-angle inversion; (2) The use of both P- and S-wave information can further enhance the stability and accuracy of parameter estimation, especially for the S-velocity and density; (3) The two-stage inversion procedure proposed in this paper can achieve a good compromise between efficiency and precision. On the one hand, the trace-by-trace strategy used in the first stage can be processed in parallel so that it has high computational efficiency. On the other hand, to deal with the indistinctness of and undesired disturbances to the inversion results obtained from the first stage, we apply the second stage—total variation (TV) regularization. By enforcing spatial and temporal constraints, the TV regularization stage deblurs the inversion results and leads to parameter estimation with greater precision. Notably, the computation consumption of the TV regularization stage can be ignored compared to the first stage because it is solved using the fast split Bregman iterations. Numerical examples using a well log and the Marmousi II model show that the proposed joint inversion is a reliable method capable of accurately estimating the density parameter as well as P-wave velocity and S-wave velocity, even when the seismic data is noisy with signal-to-noise ratio of 5.
Integrated Defense: Lessons Learned from Joint Base Balad
2013-01-01
Fall 2004): 65–74. http://www.airpower.au.af.mil/airchronicles /apj/apj04/fal04/Fal04.pdf. Butterfield, SSgt Phillip . “Iraqi Army Returns to Joint...PhD Air University Press Team Chief Editor Jerry L. Gantt Copy Editor Sherry Terrell Cover Art and Book Design Daniel Armstrong Composition and Prepress Production Nedra Looney Print Preparation and Distribution Diane Clark
Joint Training In Combined Entry Operations
2014-02-13
AIR WAR COLLEGE AIR UNIVERSITY JOINT TRAINING IN COMBINED ENTRY OPERATIONS by Ethan Mitchell, CDR, USN A Research Report Submitted...government. DISTRIBUTION A . Approved for public release: distribution unlimited. 2 Biography CDR Ethan Mitchell is assigned to the Air War College...Areas of Responsibility. Ashore, her served in the requirements directorate on the Commander, Second Fleet staff and earned a Master’s of Science
Blogs and Military Information Strategy
2006-06-01
organization of the US Special Operations Command (USSOCOM), MacDill Air Force Base, Florida. The mission of the Joint Special Operations...tion in academic, interagency and US military communities. The JSOU portal is https://jsou.socom.mil. Joint Special Operations University Brigadier...long-term conflict where the use of the global communications tool, the inter- net, plays a prominent role. The authors examine blogging from a
Mapping the Future: Optimizing Joint Geospatial Engineering Support
2006-05-16
Environment. Maxwell Air Force Base, AL.: Air University, 1990. Babbage , Ross and Desmond Ball. Geographic Information Systems: Defence Applications...Joint Pub 4-04. Washington, DC: 27 September 2001. Wertz, Charles J. The Data Dictionary, Concepts and Uses. Wellesley, MA: QED Information...Force Defense Mapping for Future Operations, Washington, DC: September 1995, 1-7. 18 Charles J. Wertz, The Data Dictionary, Concepts and Uses
The Decline and Fall of Joint Acquisition Programs
2014-04-30
S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Studies have...Massachusetts Institute of Technology Ed Crawley, Massachusetts Institute of Technology Acquisition Risks in a World of Joint Capabilities: A Study of...University and a graduate assistant in the CERT Insider Threat Center. In addition to information security, Collins has focused his graduate studies
Gender and autistic traits modulate implicit motor synchrony
Cheng, Miao; Kato, Masaharu
2017-01-01
Interpersonal motor synchrony during walking or dancing is universally observed across cultures, and this joint movement was modulated by physical and social parameters. However, human interactions are greatly shaped by our unique traits, and self-related factors are surprisingly little studied in the context of interpersonal motor synchrony. In this study, we investigated two such factors known to be highly associated with motor coordination: gender and autistic traits. We employed a real-world task extending our understanding beyond laboratory tasks. Participants of the same gender were paired up to walk and chat in a natural environment. A cover story was introduced so that participants would not know their walking steps were being recorded and instead believed that their location was being tracked by a global positioning system (GPS), so they would ignore the motor recording. We found that the female pairs’ steps were more synchronized than those of the males, and higher autistic tendencies (measured by the autism-spectrum quotient) attenuated synchronous steps. Those who synchronized better had higher impression rating increase for their walking partners (measured by interpersonal judgement scale) than those who synchronized less well. Our results indicated that the participants’ joint movements were shaped by predisposed traits and might share similar mechanism with social functions such as empathy. PMID:28873419
Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.
Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo
2016-10-01
Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.
Model independent inference of the expansion history and implications for the growth of structure
NASA Astrophysics Data System (ADS)
Joudaki, Shahab; Kaplinghat, Manoj; Keeley, Ryan; Kirkby, David
2018-06-01
We model the expansion history of the Universe as a Gaussian process and find constraints on the dark energy density and its low-redshift evolution using distances inferred from the Luminous Red Galaxy and Lyman-alpha data sets of the Baryon Oscillation Spectroscopic Survey, supernova data from the Joint Light-Curve Analysis sample, cosmic microwave background data from the Planck satellite, and local measurement of the Hubble parameter from the Hubble Space Telescope (H 0 ). Our analysis shows that the cosmic microwave background, Luminous Red Galaxy, Lyman-alpha, and Joint Light-Curve Analysis data are consistent with each other and with a Λ CDM cosmology, but the H 0 data are inconsistent at moderate significance. Including the presence of dark radiation does not alleviate the H 0 tension in our analysis. While some of these results have been noted previously, the strength here lies in that we do not assume a particular cosmological model. We calculate the growth of the gravitational potential in General Relativity corresponding to these general expansion histories and show that they are well approximated by Ωm0.55 given the current precision. We assess the prospects for upcoming surveys to measure deviations from Λ CDM using this model-independent approach.
Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F
2016-09-01
Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance.
Army Contracting Command Workforce Model Analysis
2012-02-09
Empresas in Madrid. His Air Force contracting experience includes F-22 Fighter, C-17 Cargo Transport , and a contingency deployment as director of Joint...and the University of Maryland (University College). He has also conducted visiting seminars at American University in Cairo and Instituto de ...the long total process times that are sometimes involved in weapon system contracting, such an assessment may equate to a de facto future work
Software Acquisition Patterns of Failure and How to Recognize Them
2013-04-01
Acquisition Processes Danielle Worger and Teresa Wu, Arizona State University Eugene Rex Jalao, Arizona State University and University of the Philippines...Robert Wirthlin Air Force Institute of Technology The RITE Approach to Agile Acquisition Timothy Boyce, Iva Sherman, and Nicholas Roussel Space...the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change Kathryn Aten and John T . Dillard
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Entangling measurements for multiparameter estimation with two qubits
NASA Astrophysics Data System (ADS)
Roccia, Emanuele; Gianani, Ilaria; Mancino, Luca; Sbroscia, Marco; Somma, Fabrizia; Genoni, Marco G.; Barbieri, Marco
2018-01-01
Careful tailoring the quantum state of probes offers the capability of investigating matter at unprecedented precisions. Rarely, however, the interaction with the sample is fully encompassed by a single parameter, and the information contained in the probe needs to be partitioned on multiple parameters. There exist, then, practical bounds on the ultimate joint-estimation precision set by the unavailability of a single optimal measurement for all parameters. Here, we discuss how these considerations are modified for two-level quantum probes — qubits — by the use of two copies and entangling measurements. We find that the joint estimation of phase and phase diffusion benefits from such collective measurement, while for multiple phases no enhancement can be observed. We demonstrate this in a proof-of-principle photonics setup.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
Rohani, Farbod; Richter, Hanz; van den Bogert, Antonie J
2017-01-01
In this paper, we present the design of an electromechanical above-knee active prosthesis with energy storage and regeneration. The system consists of geared knee and ankle motors, parallel springs for each motor, an ultracapacitor, and controllable four-quadrant power converters. The goal is to maximize the performance of the system by finding optimal controls and design parameters. A model of the system dynamics was developed, and used to solve a combined trajectory and design optimization problem. The objectives of the optimization were to minimize tracking error relative to human joint motions, as well as energy use. The optimization problem was solved by the method of direct collocation, based on joint torque and joint angle data from ten subjects walking at three speeds. After optimization of controls and design parameters, the simulated system could operate at zero energy cost while still closely emulating able-bodied gait. This was achieved by controlled energy transfer between knee and ankle, and by controlled storage and release of energy throughout the gait cycle. Optimal gear ratios and spring parameters were similar across subjects and walking speeds.
Fast myopic 2D-SIM super resolution microscopy with joint modulation pattern estimation
NASA Astrophysics Data System (ADS)
Orieux, François; Loriette, Vincent; Olivo-Marin, Jean-Christophe; Sepulveda, Eduardo; Fragola, Alexandra
2017-12-01
Super-resolution in structured illumination microscopy (SIM) is obtained through de-aliasing of modulated raw images, in which high frequencies are measured indirectly inside the optical transfer function. Usual approaches that use 9 or 15 images are often too slow for dynamic studies. Moreover, as experimental conditions change with time, modulation parameters must be estimated within the images. This paper tackles the problem of image reconstruction for fast super resolution in SIM, where the number of available raw images is reduced to four instead of nine or fifteen. Within an optimization framework, the solution is inferred via a joint myopic criterion for image and modulation (or acquisition) parameters, leading to what is frequently called a myopic or semi-blind inversion problem. The estimate is chosen as the minimizer of the nonlinear criterion, numerically calculated by means of a block coordinate optimization algorithm. The effectiveness of the proposed method is demonstrated for simulated and experimental examples. The results show precise estimation of the modulation parameters jointly with the reconstruction of the super resolution image. The method also shows its effectiveness for thick biological samples.
Bivariate categorical data analysis using normal linear conditional multinomial probability model.
Sun, Bingrui; Sutradhar, Brajendra
2015-02-10
Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.
Comparison of structural performance of one- and two-bay rotary joints for truss applications
NASA Technical Reports Server (NTRS)
Vail, J. Douglas; Lake, Mark S.
1991-01-01
The structural performance of one- and two-bay large-diameter discrete-bearing rotary joints was addressed for application to truss-beam structures such as the Space Station Freedom. Finite element analyses are performed to determine values for rotary joint parameters that give the same bending vibration frequency as the parent truss beam. The structural masses and maximum internal loads of these joints are compared to determine their relative structural efficiency. Results indicate that no significant difference exists in the masse of one- and two-bay rotary joints. This conclusion is reinforced with closed-form calculations of rotary joint structural efficiency in extension. Also, transition truss-member loads are higher in the one-bay rotary joint. However, because of the increased buckling strength of these members, the external load-carrying capability of the one-bay concept is higher than that of the two-bay concept.
Anand constitutive model of lead-free solder joints in 3D IC device
NASA Astrophysics Data System (ADS)
Zhang, Liang; Liu, Zhi-quan; Ji, Yu-tong
2016-08-01
Anand constitutive relation of SnAgCu and SnAgCu-nano Al solders were studied under uniaxial tension, and the constitutive model was used in the finite element simulation to analyze the stress-strain response of lead-free solder joints in 3D IC devices. The results showed that the nine parameters of the Anand model can be determined from separated constitutive relations and experimental results. Based on Anand model, the finite element method was selected to calculate the stress-strain response of lead-free solder joints, it was found that in the 3D IC device the maximum stress-strain concentrated in the concern solder joints, the stress-strain of SnAgCu-nano Al solder joints was lower than that of SnAgCu solder joints, which represented that the addition of nano Al particles can enhance the reliability of lead-free solder joints in 3D IC devices.
Potentials of nanotechnology application in forest protection
Yadong Qi; K. Lian; Q. Wu; Y. Li; M. Danzy; R. Menard; K.L. Chin; D. Collins; F. Oliveria; Kier Klepzig
2013-01-01
This joint research project formed by Southern University, Louisiana State University, and the USDA Forest Service focuses on applying nanotechnology in forest health and natural resource management. The targeted nanotechnology is derived from a new generation of renewable composite nano-material called Copper-Carbon Core-Shell Nanoparticles (CCCSNs), which have...
The Canada/China Teacher Education Project: A Chinese Initiative.
ERIC Educational Resources Information Center
Fahmy, Jane Jackson; And Others
In 1991, Saint Mary's University (SMU) (Canada) and Beijing Normal University (BNU) (China) began an 18-month joint teacher education project intended to meet professional needs of BNU foreign language teachers. The project had three components: professional development of teachers; adaptation of the existing national curriculum to meet special…
Recommendations for National Action Affecting Higher Education. A Joint Statement.
ERIC Educational Resources Information Center
National Association of State Universities and Land Grant Colleges, Washington, DC.
At their annual meetings in November 1969, the National Association of State Universities and Land-Grant Colleges and the American Association of State Colleges and Universities adopted a "Statement of Policy Positions." Their recommendations call for: immediate funding of, first, existing federal programs providing institutional aid, then…
Toward a More Effective Economic Principles Class: The Florida State University Experience.
ERIC Educational Resources Information Center
Tuckman, Barbara; Tuckman, Howard
1975-01-01
This special issue explores alternative approaches to teaching the college introductory economics course. Using insights gained from learning theory, suggestions from the Joint Council on Economic Education, and trial and error, several faculty members at the Florida State University experimented with various techniques and approaches designed to…
The Departmental Planning Team: A Bridge to the Future.
ERIC Educational Resources Information Center
Cross, Cynthia S.; And Others
1989-01-01
One of the primary vehicles for coordinating information technology services at the University of Michigan is the Departmental Planning Team, a joint effort of the administrative and academic computing units of the University's Information Technology Division. The evolution of this group and its activities are described. (Author/MLW)
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execut...
Innovative University-Industry-Government Collaboration. Six Case Studies from the USA.
ERIC Educational Resources Information Center
Dryden, R. D.; Erzurumlu, H. C. M.
1996-01-01
University-industry-government collaborations face challenges that necessitate a new culture or mindset. Six U.S. case examples demonstrate ways to create a win-win-win scenario and sustain partnerships: Oregon Joint Graduate Schools of Engineering; Network for Engineering and Research in Oregon; Blacksburg Electronic Village; research…
USPAS | U.S. Particle Accelerator School
U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology Home About About University Credits Joint International Accelerator School University-Style Programs Symposium-Style Programs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... contain any new, modified, or proposed ``information collection burden for small business concerns with fewer than 25 employees'' pursuant to the Small Business Paperwork Relief Act of 2002. B. Initial... same meaning as the terms ``small business,'' ``small organization,'' and ``small governmental...
Why Academic Depth and Rigour in University-Based Coursework Matters for Prospective Teachers
ERIC Educational Resources Information Center
Rusznyak, Lee; Balfour, Robert; Van Vollenhoven, Willie; Sosibo, Lungi
2016-01-01
This special issue of "Perspectives in Education" arises from a symposium entitled "Academic depth and rigour in initial teacher education" jointly organised by four universities in South Africa. The symposium, held in October 2014, attracted 125 delegates from 18 South African higher education institutions (HEIs).…
Joint Statement of California's College and University Presidents and Chancellors.
ERIC Educational Resources Information Center
Teacher Education Quarterly, 2001
2001-01-01
California's colleges and universities must share responsibility for preparing teachers who are knowledgeable about what they teach and proficient in how and whom they teach. Teacher preparation programs must recruit and train highly qualified teachers and strategically address public school needs. Higher education leaders must promote better…
ERIC Educational Resources Information Center
Silver, Alan
In March 1995, Australia's Royal Melbourne Institute of Technology began offering Australian and Chinese students an Associate Diploma of Business in International Trade at the Wuhan Yejin University of Science and Technology, in China. The course is offered at the University's China Iron and Steel Industry Training Centre, a joint project between…
The JOVE initiative - A NASA/university Joint Venture in space science
NASA Technical Reports Server (NTRS)
Six, F.; Chappell, R.
1990-01-01
The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.
Taebi, Behnam; Kastenberg, William E
2016-07-13
A joint effort by the University of California at Berkeley and Delft University of Technology to develop a graduate engineering ethics course for PhD students encountered two types of challenges: academic and institutional. Academically, long-term collaborative research efforts between engineering and philosophy faculty members might be needed before successful engineering ethics courses can be initiated; the teaching of ethics to engineering graduate students and collaborative research need to go hand-in-hand. Institutionally, both bottom-up approaches at the level of the faculty and as a joint research and teaching effort, and top-down approaches that include recognition by a University's administration and the top level of education management, are needed for successful and sustainable efforts to teach engineering ethics.
Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan
2017-07-01
Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.
The special effort processing of FGGE data
NASA Technical Reports Server (NTRS)
1983-01-01
The basic FGGE level IIb data set was enhanced. It focused on removing deficiencies in the objective methods of quality assurance, removing efficiencies in certain types of operationally produced satellite soundings, and removing deficiencies in certain types of operationally produced cloud tracked winds. The Special Effort was a joint NASA-NOAA-University of Wisconsin effort. The University of Wisconsin installed an interactive McIDAS capability on the Amdahl computer at the Goddard Laboratory of Atmospheric Sciences (GLAS) with one interactive video terminal at Goddard and the other at the World Weather Building. With this interactive capability a joint processing effort was undertaken to reprocess certain FGGE data sets. NOAA produced a specially edited data set for the special observing periods (SOPs) of FGGE. NASA produced an enhanced satellite sounding data set for the SOPs while the University of Wisconsin produced an enhanced cloud tracked wind set from the Japanese geostationary satellite images.
Effective theories of universal theories
Wells, James D.; Zhang, Zhengkang
2016-01-20
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf 2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less
Effective theories of universal theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, James D.; Zhang, Zhengkang
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf 2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.
This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infusedmore » and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.« less
Evaluation of joint findings with gait analysis in children with hemophilia.
Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat
2014-01-01
Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.
NASA Astrophysics Data System (ADS)
Jahani, K.; Rafiei, M. M.; Aghazadeh, P.
2017-09-01
In this paper, the influence of the joint region between a piezoelectric energy harvesting beam and the vibratory main structure is studied. The investigations are conducted in two separate sections, namely numerical and experimental studies. In numerical studies, the effects of nonlinear parameters on generated power are investigated while the joint characteristics the between vibrating base and a piezoelectric energy harvester are taken into consideration. A unimorph beam with a tip mass and a nonlinear piezoelectric layer that undergoes a large-amplitude deflection is considered as an energy harvester. By applying the Euler-Lagrange equation and Gauss’s law the mechanical and electrical equations of motion are obtained, respectively. The excitation frequency is assumed to be close to the first natural frequency. Thus, a unimodal response is considered to be like that of a system with a single degree of freedom (SDOF). The joint between the vibrating main structure and the cantilevered beam is then added to the SDOF model. The joint characteristics are simulated with a light mass, mj , linear spring stiffness, kj , and equivalent viscous damper, cj . In two scenarios, i.e. with a rigid joint and with a flexible one, a numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on the harvested power. In experimental studies, the influence of a bolted joining technique and a flexible adhesive bonding method on the harvested power is investigated. The results achieved experimentally confirm those obtained numerically, i.e. a stiffer joint leads to a greater power produced by the harvester. In other words, neglecting the joint characteristics will cause the performance (maximum output power and the range of excitation frequency) of the harvester to be overestimated in numerical simulations.
NASA Astrophysics Data System (ADS)
Liberini, Mariacira; Esposito, Sara; Reshad, Kambitz; Previtali, Barbara; Viola, Marco; Squillace, Antonino
2016-10-01
Every manufacturing process leaves on the surface of the piece a typical "technology signature". In particular, the laser welding leaves a feature at the edge of the weld bead called "undercut". In this work an experimental campaign has been conducted on Ti6Al4V butt joints. In particular a Central Composite Design (CCD) with the central point repeated three times has been investigated. In the CCD there are two factors (power and speed of the fiber laser) and five levels for each factor. This paper deals with the investigation about the correlation between the severity of the undercut and the process parameters of the laser welding. In particular, through the confocal microscopy, the original geometry of the joint was accurately acquired and rebuilt in order to make a FEM model and simulate the mechanical behavior using Ansys14.5. Moreover, response surfaces and level curves were carried out to understand and predict the depth and the width of the undercut starting from the power and the speed of the laser. At last a mathematic and geometry regression was performed in order to find a unique conical curve that interpolates all the different undercuts and that varies its parameters according to the process parameters. It is established that the process with higher speed minimizes and optimizes the undercut in the joints.
NASA Astrophysics Data System (ADS)
Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi
2010-01-01
The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
2003-09-20
is defined at 3000 km s1 by the outer boundary of the Virgo cluster (Binggeli, Popescu, & Tammann 1993). We note that it is an LSB galaxy, with LB... Research Laboratory, 4555 OverlookAvenue SW, Code 7600A,Washington, DC 20375 Eric M. Monier Department of Astronomy, Ohio State University, Columbus...Association of Universities for Research in Astronomy (AURA), Inc. (WIYN is a joint facility of University of Wisconsin, Indiana University, Yale University
Design of splints based on the NiTi alloy for the correction of joint deformities in the fingers
2010-01-01
Background The proximal interphalange joint (PIP) is fundamental for the functional nature of the hand. The contracture in flexion of the PIP, secondary to traumatisms or illnesses leads to an important functional loss. The use of correcting splints is the common procedure for treating this problem. Its functioning is based on the application of a small load and a prolonged stress which can be dynamic, static progressive or static serial. It is important that the therapist has a splint available which can release a constant and sufficient force to correct the contracture in flexion. Nowadays NiTi is commonly used in bio-engineering, due to its superelastical characteristics. The experience of the authors in the design of other devices based on the NiTi alloy, makes it possible to carry out a new design in this work - the production of a finger splint for the treatment of the contracture in flexion of the PIP joint. Methods Commercial orthosis have been characterized using a universal INSTRON 5565 machine. A computational simulation of the proposed design has been conducted, reproducing its performance and using a model "ad hoc" for the NiTi material. Once the parameters have been adjusted, the design is validated using the same type of test as those carried out on commercial orthosis. Results and Discussion For commercial splint the recovering force falls to excessively low values as the angle increases. Angle curves for different lengths and thicknesses of the proposed design have been obtained, with a practically constant recovering force value over a wide range of angles that vary between 30° and 150° in every case. Then the whole treatment is possible with only one splint, and without the need of progressive replacements as the joint recovers. Conclusions A new model of splint based on NiTi alloy has been designed, simulated and tested comparing its behaviour with two of the most regularly used splints. Its uses is recommended instead of other dynamic orthosis used in orthopaedics for the PIP joint. Besides, its extremely simple design, makes its manufacture and use on the part of the specialist easier. PMID:20836874
Cognitive diagnosis modelling incorporating item response times.
Zhan, Peida; Jiao, Hong; Liao, Dandan
2018-05-01
To provide more refined diagnostic feedback with collateral information in item response times (RTs), this study proposed joint modelling of attributes and response speed using item responses and RTs simultaneously for cognitive diagnosis. For illustration, an extended deterministic input, noisy 'and' gate (DINA) model was proposed for joint modelling of responses and RTs. Model parameter estimation was explored using the Bayesian Markov chain Monte Carlo (MCMC) method. The PISA 2012 computer-based mathematics data were analysed first. These real data estimates were treated as true values in a subsequent simulation study. A follow-up simulation study with ideal testing conditions was conducted as well to further evaluate model parameter recovery. The results indicated that model parameters could be well recovered using the MCMC approach. Further, incorporating RTs into the DINA model would improve attribute and profile correct classification rates and result in more accurate and precise estimation of the model parameters. © 2017 The British Psychological Society.
Modal parameters of space structures in 1 G and 0 G
NASA Technical Reports Server (NTRS)
Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett
1993-01-01
Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.
Inference of missing data and chemical model parameters using experimental statistics
NASA Astrophysics Data System (ADS)
Casey, Tiernan; Najm, Habib
2017-11-01
A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.
NASA Astrophysics Data System (ADS)
Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.
2016-11-01
In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.
NASA Astrophysics Data System (ADS)
Qin, Y.; Rana, A.; Moradkhani, H.
2014-12-01
The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated by the joint precipitation and temperature, will provide useful information/insights for hydrological and climate change predictions.
Hand-Eye Calibration in Visually-Guided Robot Grinding.
Li, Wen-Long; Xie, He; Zhang, Gang; Yan, Si-Jie; Yin, Zhou-Ping
2016-11-01
Visually-guided robot grinding is a novel and promising automation technique for blade manufacturing. One common problem encountered in robot grinding is hand-eye calibration, which establishes the pose relationship between the end effector (hand) and the scanning sensor (eye). This paper proposes a new calibration approach for robot belt grinding. The main contribution of this paper is its consideration of both joint parameter errors and pose parameter errors in a hand-eye calibration equation. The objective function of the hand-eye calibration is built and solved, from which 30 compensated values (corresponding to 24 joint parameters and six pose parameters) are easily calculated in a closed solution. The proposed approach is economic and simple because only a criterion sphere is used to calculate the calibration parameters, avoiding the need for an expensive and complicated tracking process using a laser tracker. The effectiveness of this method is verified using a calibration experiment and a blade grinding experiment. The code used in this approach is attached in the Appendix.
NASA Technical Reports Server (NTRS)
Russell, C. K.; Malone, T. W.; Cato, S. N.
2004-01-01
The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated a 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples. This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.
Computational problems in autoregressive moving average (ARMA) models
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.
1981-01-01
The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.
Modelling Accuracy of a Car Steering Mechanism with Rack and Pinion and McPherson Suspension
NASA Astrophysics Data System (ADS)
Knapczyk, J.; Kucybała, P.
2016-08-01
Modelling accuracy of a car steering mechanism with a rack and pinion and McPherson suspension is analyzed. Geometrical parameters of the model are described by using the coordinates of centers of spherical joints, directional unit vectors and axis points of revolute, cylindrical and prismatic joints. Modelling accuracy is assumed as the differences between the values of the wheel knuckle position and orientation coordinates obtained using a simulation model and the corresponding measured values. The sensitivity analysis of the parameters on the model accuracy is illustrated by two numerical examples.
Influence of solder joint length to the mechanical aspect during the thermal stress analysis
NASA Astrophysics Data System (ADS)
Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che
2017-09-01
Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.
Axisymmetric shell analysis of the Space Shuttle solid rocket booster field joint
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Anderson, Melvin S.
1989-01-01
The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. The presence of structural deformations between the clevis inner leg and the tang, substantial enough to prevent the O-ring seals from eliminating hot gas flow through the joints, has emerged as a likely cause of the vehicle failure. This paper presents results of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint recently flown on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
Optimal Synthesis of the Joint Unitary Evolutions
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun
2018-07-01
Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.
Optimal Synthesis of the Joint Unitary Evolutions
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun
2018-03-01
Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.
Lower Limbs Function and Pain Relationships after Unilateral Total Knee Arthroplasty
ERIC Educational Resources Information Center
Tali, Maie; Maaroos, Jaak
2010-01-01
The aim of the study was to evaluate gait characteristics, lower limbs joint function, and pain relationships associated with knee osteoarthritis of female patients before and 3 months after total knee arthroplasty at an outpatient clinic rehabilitation department. Gait parameters were registered, the active range of lower extremity joints was…
An Analysis of the U.S. Army’s T-11 Advanced Tactical Parachute System and Potential Path Forward
2016-12-01
Oversight Council JRTC Joint Readiness Training Center JWG Joint Working Group kias Knots indicated air speed KPP Key Performance Parameter KSA Key...AGL +/- 125 feet altitude holding error) at 130 - 150 knots indicated airspeed ( KIAS ) with a parachutist weighing 332 pounds including equipment
Joint Institute for Nanoscience Annual Report 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Campbell, Charles
Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Majormore » portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The JIN agreement recognizes that cooperation beyond UW and PNNL is highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N4). In concept, N4 is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.« less
NASA Astrophysics Data System (ADS)
Petchsang, S.; Phung-on, I.; Poopat, B.
2016-12-01
Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.
Joint Bayesian Component Separation and CMB Power Spectrum Estimation
NASA Technical Reports Server (NTRS)
Eriksen, H. K.; Jewell, J. B.; Dickinson, C.; Banday, A. J.; Gorski, K. M.; Lawrence, C. R.
2008-01-01
We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground- CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3 deg FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Galietti, Umberto
2017-01-01
Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength. PMID:29019948
Influence of training on the biokinematics in trotting Andalusian horses.
Cano, M R; Miró, F; Diz, A M; Agüera, E; Galisteo, A M
2000-11-01
The aim of this study was to determine the influence of a 10-month training programme on the linear, temporal and angular characteristics of the fore and hind limbs at the trot in the Andalusian horse, using standard computer-aided videography. Sixteen male Andalusian horses were observed before and after training. Six strides were randomly selected for analysis in each horse and linear, temporal and angular parameters were calculated for fore and hind limbs. The training programme used here produced significant changes in kinematic parameters, such as shortening of stride length, and increase in swing duration and a decrease in hind limb stance percentage. No significant differences were recorded in the angular values for the forelimb joints. In trained horses, the more proximal joints of the hind limb, especially the hip and stifle, had a greater flexion while the fetlock showed a smaller extension angle. At the beginning of the swing phase, hip and stifle joints presented angles that were significantly more flexed. When the hind limbs came into contact with the ground, all the joints presented greater flexion after training.
Laser welding of a cobalt-chromium removable partial denture alloy.
NaBadalung, D P; Nicholls, J I
1998-03-01
The electric alloy brazed joints of removable partial denture alloys have failed frequently after routine usage. A technique providing higher joint strengths was investigated. This investigation compared the tensile strengths of electric-brazed and laser-welded joints for a cobalt-chromium removable partial denture alloy. Twenty-four cobalt-chromium standard tensile testing rods were prepared and divided into three groups of eight. All specimens in the control group (group 1) were left in the as-cast condition. Groups 2 and 3 were the test specimens, which were sectioned at the center of the rod. Eight specimens were joined by using electric brazing, and the remaining specimens were joined by using laser welding. After joining, each joint was ground to a uniform diameter, then tested to tensile failure on an Instron universal testing machine. Failure loads were recorded and fracture stress calculated. Statistical analysis was applied. The student-Newman-Keuls test showed a highly significant difference between the joint strengths of the as-cast control specimens, the electric-brazed and laser-welded joints. The tensile strengths of the as-cast joints were higher than those for the laser-welded joints, and both were higher than the electric-brazed joint strengths.
2013-10-01
Joint Chiefs of Staff. The university conducts JPME seminars, symposia, and professional development and conferencing for DOD and Congressional...all enlisted personnel. Basic Enlisted JPME addresses educational guidelines that should be completed by pay grade E -6,20 while Career Enlisted JPME...addresses educational guidelines for senior enlisted personnel in grades E -6 or E -7 and above. Beyond these
ERIC Educational Resources Information Center
Meyer, Herman Skeets
2012-01-01
This is the report of a policy research study that examined the potential outcomes of instituting a standardized "Joint Reserve Officer Training Corps" during the first two years of college. Focus groups at three ROTC universities and interviews with subject matter experts were conducted to explore the meaning and purpose of jointness…
The National Guard: Recommendations to Develop the Joint Future Force
2010-03-01
0209airpowerinafghan.pdf. 23 Statement of General James N. Mattis , USMC, Commander, United States Joint Forces Command, House Armed Services... James R. Locher III, Victory on the Potomac: the Goldwater-Nichols Act Unifies the Pentagon, (College Station: Texas A & M University Press, 2002), 19...pick snubs National Guard, Thursday January 14, 2010, Congress.org, http://www.congress.org/congressorg/ bio /userletter/?letter_id=4520675821
Expanding the MEU(SOC) Joint Task Force Enabler Concept
1998-05-28
concept. 2 The influential twentieth-century linguistic philosopher Ludwig Wittgenstein argued that real understanding rests on the precise use...of language and universally agreed upon meanings. Without clarity and common understanding, Wittgenstein observed, we can never really communicate... Wittgenstein anticipated when we don’t share a common understanding of what a term means. The Joint Task Force Enabler is potentially a critical concept, both
ERIC Educational Resources Information Center
Michigan Univ., Ann Arbor. School of Education.
The papers presented in this volume are the team research reports of the Joint Hampton-Michigan Program conducted in 1979-1980 for junior faculty members of the Hampton Institute (Virginia) and graduate students and faculty members of the University of Michigan. The titles of the papers are: (1) Social and Economic Implications of Teacher Training…