Sample records for jointed rock masses

  1. An equivalent viscoelastic model for rock mass with parallel joints

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Ma, Guowei; Zhao, Jian

    2010-03-01

    An equivalent viscoelastic medium model is proposed for rock mass with parallel joints. A concept of "virtual wave source (VWS)" is proposed to take into account the wave reflections between the joints. The equivalent model can be effectively applied to analyze longitudinal wave propagation through discontinuous media with parallel joints. Parameters in the equivalent viscoelastic model are derived analytically based on longitudinal wave propagation across a single rock joint. The proposed model is then verified by applying identical incident waves to the discontinuous and equivalent viscoelastic media at one end to compare the output waves at the other end. When the wavelength of the incident wave is sufficiently long compared to the joint spacing, the effect of the VWS on wave propagation in rock mass is prominent. The results from the equivalent viscoelastic medium model are very similar to those determined from the displacement discontinuity method. Frequency dependence and joint spacing effect on the equivalent viscoelastic model and the VWS method are discussed.

  2. Empirical Assessment of the Mean Block Volume of Rock Masses Intersected by Four Joint Sets

    NASA Astrophysics Data System (ADS)

    Morelli, Gian Luca

    2016-05-01

    The estimation of a representative value for the rock block volume ( V b) is of huge interest in rock engineering in regards to rock mass characterization purposes. However, while mathematical relationships to precisely estimate this parameter from the spacing of joints can be found in literature for rock masses intersected by three dominant joint sets, corresponding relationships do not actually exist when more than three sets occur. In these cases, a consistent assessment of V b can only be achieved by directly measuring the dimensions of several representative natural rock blocks in the field or by means of more sophisticated 3D numerical modeling approaches. However, Palmström's empirical relationship based on the volumetric joint count J v and on a block shape factor β is commonly used in the practice, although strictly valid only for rock masses intersected by three joint sets. Starting from these considerations, the present paper is primarily intended to investigate the reliability of a set of empirical relationships linking the block volume with the indexes most commonly used to characterize the degree of jointing in a rock mass (i.e. the J v and the mean value of the joint set spacings) specifically applicable to rock masses intersected by four sets of persistent discontinuities. Based on the analysis of artificial 3D block assemblies generated using the software AutoCAD, the most accurate best-fit regression has been found between the mean block volume (V_{{{{b}}_{{m}} }}) of tested rock mass samples and the geometric mean value of the spacings of the joint sets delimiting blocks; thus, indicating this mean value as a promising parameter for the preliminary characterization of the block size. Tests on field outcrops have demonstrated that the proposed empirical methodology has the potential of predicting the mean block volume of multiple-set jointed rock masses with an acceptable accuracy for common uses in most practical rock engineering applications.

  3. Model test study on propagation law of plane stress wave in jointed rock mass under different in-situ stresses

    NASA Astrophysics Data System (ADS)

    Dong, Qian

    2017-12-01

    The study of propagation law of plane stress wave in jointed rock mass under in-situ stress has important significance for safety excavation of underground rock mass engineering. A model test of the blasting stress waves propagating in the intact rock and jointed rock mass under different in-situ stresses was carried out, and the influencing factors on the propagation law, such as the scale of static loads and the number of joints were studied respectively. The results show that the transmission coefficient of intact rock is larger than that of jointed rock mass under the same loading condition. With the increase of confining pressure, the transmission coefficients of intact rock and jointed rock mass both show an trend of increasing first and then decreasing, and the variation of transmission coefficients in intact rock is smaller than that of jointed rock mass. Transmission coefficient of jointed rock mass decreases with the increase of the number of joints under the same loading condition, when the confining pressure is relatively small, the reduction of transmission coefficients decreases with the increasing of the number of joints, and the variation law of the reduction of transmission coefficients is contrary when the confining pressure is large.

  4. Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation

    NASA Astrophysics Data System (ADS)

    Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla

    2014-07-01

    Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.

  5. Investigation on the Cracking Character of Jointed Rock Mass Beneath TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Liu, Junfeng; Liu, Bolong

    2018-04-01

    With the purpose to investigate the influence of joint dip angle and spacing on the TBM rock-breaking efficacy and cracking behaviour, experiments that include miniature cutter head tests are carried out on sandstone rock material. In the experiment, prefabricated joints of different forms are made in rock samples. Then theoretical analysis is conducted to improve the calculating models of the fractured work and crack length of rock in the TBM process. The experimental results indicate that lower rupture angles appear for specimens with joint dip angles between 45° and 60°. Meanwhile, rock-breaking efficacy for rock mass with joint dip angles in this interval is also higher. Besides, the fracture patterns are transformed from compressive shear mode to tensile shear mode as the joint spacing decreases. As a result, failure in a greater extent is resulted for specimens with smaller joint spacings. The results above suggest that joint dip angle between 45° and 60° and joint spacing of 1 cm are the optimal rock-breaking conditions for the tested specimens. Combining the present experimental data and taking the joint dip angle and spacing into consideration, the calculating model for rock fractured work that proposed by previous scholars is improved. Finally, theoretical solution of rock median and side crack length is also derived based on the analytical method of elastoplastic invasion fracture for indenter. The result of the analytical solution is also in good agreement with the actual measured experimental result. The present study may provide some primary knowledge about the rock cracking character and breaking efficacy under different engineering conditions.

  6. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel

    NASA Astrophysics Data System (ADS)

    Hao, Xian-Jie; Feng, Xia-Ting; Yang, Cheng-Xiang; Jiang, Quan; Li, Shao-Jun

    2016-04-01

    Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton-Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.

  7. Long-Wavelength Elastic Wave Propagation Across Naturally Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Mohd-Nordin, Mohd Mustaqim; Song, Ki-Il; Cho, Gye-Chun; Mohamed, Zainab

    2014-03-01

    Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper's framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.

  8. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    PubMed

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  9. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    PubMed Central

    Cho, Gye-Chun

    2018-01-01

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371

  10. Experimental Studies on the Mechanical Behaviour of Rock Joints with Various Openings

    NASA Astrophysics Data System (ADS)

    Li, Y.; Oh, J.; Mitra, R.; Hebblewhite, B.

    2016-03-01

    The mechanical behaviour of rough joints is markedly affected by the degree of joint opening. A systematic experimental study was conducted to investigate the effect of the initial opening on both normal and shear deformations of rock joints. Two types of joints with triangular asperities were produced in the laboratory and subjected to compression tests and direct shear tests with different initial opening values. The results showed that opened rock joints allow much greater normal closure and result in much lower normal stiffness. A semi-logarithmic law incorporating the degree of interlocking is proposed to describe the normal deformation of opened rock joints. The proposed equation agrees well with the experimental results. Additionally, the results of direct shear tests demonstrated that shear strength and dilation are reduced because of reduced involvement of and increased damage to asperities in the process of shearing. The results indicate that constitutive models of rock joints that consider the true asperity contact area can be used to predict shear resistance along opened rock joints. Because rock masses are loosened and rock joints become open after excavation, the model suggested in this study can be incorporated into numerical procedures such as finite-element or discrete-element methods. Use of the model could then increase the accuracy and reliability of stability predictions for rock masses under excavation.

  11. Analysis of borehole expansion and gallery tests in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    1991-01-01

    Closed-form solutions are used to show how rock anisotropy affects the variation of the modulus of deformation around the walls of a hole in which expansion tests are conducted. These tests include dilatometer and NX-jack tests in boreholes and gallery tests in tunnels. The effects of rock anisotropy on the modulus of deformation are shown for transversely isotropic and regularly jointed rock masses with planes of transverse isotropy or joint planes parallel or normal to the hole longitudinal axis for plane strain or plane stress condition. The closed-form solutions can also be used when determining the elastic properties of anisotropic rock masses (intact or regularly jointed) in situ. ?? 1991.

  12. Numerical built-in method for the nonlinear JRC/JCS model in rock joint.

    PubMed

    Liu, Qunyi; Xing, Wanli; Li, Ying

    2014-01-01

    The joint surface is widely distributed in the rock, thus leading to the nonlinear characteristics of rock mass strength and limiting the effectiveness of the linear model in reflecting characteristics. The JRC/JCS model is the nonlinear failure criterion and generally believed to describe the characteristics of joints better than other models. In order to develop the numerical program for JRC/JCS model, this paper established the relationship between the parameters of the JRC/JCS and Mohr-Coulomb models. Thereafter, the numerical implement method and implementation process of the JRC/JCS model were discussed and the reliability of the numerical method was verified by the shear tests of jointed rock mass. Finally, the effect of the JRC/JCS model parameters on the shear strength of the joint was analyzed.

  13. Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses

    NASA Astrophysics Data System (ADS)

    Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.

    2016-12-01

    We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Shear Behaviour and Acoustic Emission Characteristics of Bolted Rock Joints with Different Roughnesses

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Yongzheng; Jiang, Yujing; Liu, Peixun; Guo, Yanshuang; Liu, Jiankang; Ma, Ming; Wang, Ke; Wang, Shugang

    2018-06-01

    To study shear failure, acoustic emission counts and characteristics of bolted jointed rock-like specimens are evaluated under compressive shear loading. Model joint surfaces with different roughnesses are made of rock-like material (i.e. cement). The jointed rock masses are anchored with bolts with different elongation rates. The characteristics of the shear mechanical properties, the failure mechanism, and the acoustic emission parameters of the anchored joints are studied under different surface roughnesses and anchorage conditions. The shear strength and residual strength increase with the roughness of the anchored joint surface. With an increase in bolt elongation, the shear strength of the anchored joint surface gradually decreases. When the anchored structural plane is sheared, the ideal cumulative impact curve can be divided into four stages: initial emission, critical instability, cumulative energy, and failure. With an increase in the roughness of the anchored joint surface, the peak energy rate and the cumulative number of events will also increase during macro-scale shear failure. With an increase in the bolt elongation, the energy rate and the event number increase during the shearing process. Furthermore, the peak energy rate, peak number of events and cumulative energy will all increase with the bolt elongation. The results of this study can provide guidance for the use of the acoustic emission technique in monitoring and predicting the static shear failure of anchored rock masses.

  15. Rational Design of Tunnel Supports: An Interactive Graphics Based Analysis of the Support Requirements of Excavations in Jointed Rock Masses.

    DTIC Science & Technology

    1979-09-01

    joint orientetion and joint slippage than to failure of the intact rock mass. Dixon (1971) noted the importance of including the confining influence of...dedicated computer. The area of research not covered by this investigation which holds promise for a future study is a detailed comparison of the results of...block data, type key "W". The program writes this data on Linc tapes for future retripval. This feature can be used to store the consolidated block

  16. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  17. Numerical method to determine mechanical parameters of engineering design in rock masses.

    PubMed

    Xue, Ting-He; Xiang, Yi-Qiang; Guo, Fa-Zhong

    2004-07-01

    This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium; and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. The experimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Delta and the uniaxial pressure-resistant strength sc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice.

  18. Formulations and algorithms for problems on rock mass and support deformation during mining

    NASA Astrophysics Data System (ADS)

    Seryakov, VM

    2018-03-01

    The analysis of problem formulations to calculate stress-strain state of mine support and surrounding rocks mass in rock mechanics shows that such formulations incompletely describe the mechanical features of joint deformation in the rock mass–support system. The present paper proposes an algorithm to take into account the actual conditions of rock mass and support interaction and the algorithm implementation method to ensure efficient calculation of stresses in rocks and support.

  19. Determination of the mechanical parameters of rock mass based on a GSI system and displacement back analysis

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam

    2017-08-01

    It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.

  20. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and

  1. Gravity-induced rock mass damage related to large en masse rockslides: Evidence from Vajont

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Bolla, Alberto

    2015-04-01

    to failure, unstable rock slopes can be affected by diffuse newly formed gravity-driven joints that are absent in the surrounding area and within the underlying bedrock, as the Vajont case history demonstrates (joint sets J9 and J10). These fractures, caused by critical tensile and shear stresses, represent an important mechanical clue to recognizing, on a geological basis, the instability condition of a rock slope under investigation. Owing to its complex geological evolution, the Vajont landslide is an outstanding example to help learn about cumulative GRMD effects that can accumulate over time when an ancient rockslide is further remobilized by a sudden en masse sliding motion.

  2. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  3. Evaluation of Rock Joint Coefficients

    NASA Astrophysics Data System (ADS)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.

  4. Fractal Analysis of Rock Joint Profiles

    NASA Astrophysics Data System (ADS)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  5. Rock cities, periglacial mass-wasting, and honeycomb weathering in Warren County, northwestern Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inners, J.D.; Sevon, W.D.; Moore, M.E.

    1993-03-01

    Imposing hilltop rock-cities developed from widely jointed outcrops of Olean conglomerate (Lower Pennsylvanian) create picturesque scenery on the Allegheny High Plateau in Warren Co., Pa. At least six such rock cities 2 to 5 acres in extent are associated with the Late Wisconsinan glacial border in the northern half of the county. Farther to the south, jumbled Olean and Knapp (Lower Mississippian) joint blocks occur on steep slopes below valley-wall cliffs. The rock cities and accumulations of displaced joint blocks are largely relics of Late Wisconsinan periglacial mass-wasting. Frost splitting initiated opening of bedrock joints to form buildings. Gravity, soilmore » wedging, and possibly gelifluction then widened the fissures into streets. Gelifluction moved blocks downslope and oriented their long axes parallel with slope (Warren Rocks). Forward toppling of high, unstable blocks contributed to mass-movement on some steep slopes (Rimrock). Today, rock cities and downslope blocks are stable in areas of gentle (less than 10 percent) slopes, but toppling, solifluction, creep, and debris flows cause continued slow movement of large blocks on moderately steep to steep (greater than 30 percent) slopes. Blocks of Olean and Knapp conglomerate have both stratabound pitting and intricate honeycomb weathering. Deep pitting is controlled largely by variations in silica cementation. Honeycomb weathering is most evident in sandy layers and results from patterns of iron-oxide impregnation. Both are Holocene surface-weathering processes.« less

  6. First results of infrared thermography applied to the evaluation of hydraulic conductivity in rock masses

    NASA Astrophysics Data System (ADS)

    Pappalardo, Giovanna

    2018-03-01

    An innovative methodological approach using infrared thermography (IRT) provides a potential contribution to the indirect assessment of hydraulic conductivity of jointed rock masses. This technique proved a suitable tool to evaluate the degree of fracturing of rock masses along with their discontinuity systems, which expedite water flow within the rock mass itself. First, based on the latest scientific outcomes on the application of IRT to the geomechanics of rock systems, rock mass surveys were carried out at different outcrops (dolostone, limestone and porphyroid) and hydraulic conductivity was empirically assessed through approaches well known in the international literature. Then, IRT campaigns were performed at each surveyed rock mass, with the purpose of evaluating the corresponding Cooling Rate Index, strictly linked to the cooling attitude of the rock. Such index was correlated with the assessed hydraulic conductivity and satisfactory regression equations were achieved. The interesting results show that hydraulic conductivity values are likely to be linked with the cooling behavior of rock masses, which, in turn, is affected by spacing, aperture and persistence of discontinuities.

  7. Rock glaciers originating from mass movements: A new model based on field data

    NASA Astrophysics Data System (ADS)

    Reitner, J. M.; Gruber, A.

    2009-04-01

    The morphological and geological conditions for the formation of rock glaciers in Alpine environments seem to be clear according to our present knowledge (BARSCH, 1996; HAEBERLI et al. 2006). All known examples derive from porous more or less coarse grained sedimentary bodies, either from moraines or, in most cases, from talus fans. In the latter case the debris accumulation originates overwhelmingly from physical weathering, rock falls or rock avalanches in proximity to rockwalls. However, in the course of geological mapping in the crystalline areas of Eastern and Northern Tyrol (Schober Gruppe, Tuxer Alpen) we found an additional setting. Some relict rock glaciers occur directly at the bulging toe of bedrock slopes, which had been affected by deep-seated gravitational slope deformations (REITNER, 2003; GRUBER, 2005). Furthermore rock glaciers are also present in ridge-top depressions and similar graben-like features that originated from gravitational processes in jointed bedrock. In all these cases talus fans with debris accumulation are missing in the source area of those rock glaciers. According to our model the disintegration of jointed rocks by creeping mass movements resulted in an increased volume of joint space. This enabled the formation of interstitial ice under permafrost conditions. Increased ice saturation led to the reduction of the angle of internal friction and finally to the initial formation of a rock glacier. Abundant material was provided for the further movement and thus for formation of quite large rock glaciers due to the previous and maybe still ongoing slope deformation. Most rock glaciers of this type originated from mass movements of sagging -type (Sackung sensu ZISCHINSKY, 1966), which illustrates the continuous transition from gravitational to periglacial creep process in high Alpine areas. All studied examples are of Lateglacial age according to the altitude in correspondence to the known amount of permafrost depression compared to

  8. Experimental Studies on Permeability of Intact and Singly Jointed Meta-Sedimentary Rocks Under Confining Pressure

    NASA Astrophysics Data System (ADS)

    Wong, Louis Ngai Yuen; Li, Diyuan; Liu, Gang

    2013-01-01

    spanning from 1.25 to 5.0 MPa, which represent the typical ground stress conditions in the cavern. The in situ hydraulic conductivity measurements conducted in six boreholes by the injection test showed that the in situ permeability of rock mass varies between 10-18 and 10-11 m2. The lower bound of the in situ permeability is larger than that of the present laboratory-tested intact rock specimens, while the upper bound of the in situ permeability is less than that of the present laboratory-tested jointed rock specimens. The in situ permeability test results were thus compatible with our present laboratory permeability results of both intact and jointed rock specimens.

  9. Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint

    NASA Astrophysics Data System (ADS)

    Nouailletas, O.; Perlot, C.; Rivard, P.; Ballivy, G.; La Borderie, C.

    2017-06-01

    The mechanical behaviour of structural discontinuities in rock mass is a key element of the stability analysis in civil engineering, petroleum engineering and mining engineering. In this paper, the mechanical analysis is coupled with the acidic attack of a rock joint associated with leakage of CO2 through a geological fault in the context of carbon sequestration. Experiments were conducted at the laboratory scale to assess the shear behaviour of degraded joint: direct shear tests were performed on rock joints that have been previously immersed into water or into an acidic solution (pH 0.2). The shear behaviour of joints is governed by the roughness of its walls: the parameters Z2, Z3, Z4 and RL characterize the rough surfaces. They are calculated from the scans of joint surfaces after and before immersion. Their comparison pointed out a slight impact of the acidic attack. However, the results of the direct shear tests show significant modifications in the shear behaviour for the degraded joints: the tangential stress peak disappears, the tangential stiffness decreases in the stress/displacement curve, and the contraction increases, the dilation angle decreases in the dilation curve. Acid attack has a greater impact on the mechanical properties of the asperities than their geometric characteristics. The results of this study will be used to improve chemo-mechanical modelling to better simulate with higher accuracy the fault stability in different cases of civil engineering, petroleum engineering and mining engineering.

  10. Diminishing friction of joint surfaces as initiating factor for destabilising permafrost rocks?

    NASA Astrophysics Data System (ADS)

    Funk, Daniel; Krautblatter, Michael

    2010-05-01

    Degrading alpine permafrost due to changing climate conditions causes instabilities in steep rock slopes. Due to a lack in process understanding, the hazard is still difficult to asses in terms of its timing, location, magnitude and frequency. Current research is focused on ice within joints which is considered to be the key-factor. Monitoring of permafrost-induced rock failure comprises monitoring of temperature and moisture in rock-joints. The effect of low temperatures on the strength of intact rock and its mechanical relevance for shear strength has not been considered yet. But this effect is signifcant since compressive and tensile strength is reduced by up to 50% and more when rock thaws (Mellor, 1973). We hypotheisze, that the thawing of permafrost in rocks reduces the shear strength of joints by facilitating the shearing/damaging of asperities due to the drop of the compressive/tensile strength of rock. We think, that decreasing surface friction, a neglected factor in stability analysis, is crucial for the onset of destabilisation of permafrost rocks. A potential rock slide within the permafrost zone in the Wetterstein Mountains (Zugspitze, Germany) is the basis for the data we use for the empirical joint model of Barton (1973) to estimate the peak shear strength of the shear plane. Parameters are the JRC (joint roughness coefficient), the JCS (joint compressive strength) and the residual friction angle (φr). The surface roughness is measured in the field with a profile gauge to create 2D-profiles of joint surfaces. Samples of rock were taken to the laboratory to measure compressive strength using a high-impact Schmidt-Hammer under air-dry, saturated and frozen conditions on weathered and unweathered surfaces. Plugs where cut out of the rock and sand blasted for shear tests under frozen and unfrozen conditions. Peak shear strength of frozen and unfrozen rocks will be calculated using Barton's model. First results show a mean decrease of compressive

  11. A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis

    PubMed Central

    Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge

    2015-01-01

    Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability. PMID:26585247

  12. Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation

    NASA Astrophysics Data System (ADS)

    Hartlieb, Philipp; Bock, Stefan

    2018-03-01

    This study presents a theoretical analysis of the influence of the rock mass rating on the cutting performance of roadheaders. Existing performance prediction models are assessed for their suitability for forecasting the influence of pre-damaging the rock mass with alternative methods like lasers or microwaves, prior to the mechanical excavation process. Finally, the RMCR model was chosen because it is the only reported model incorporating a range of rock mass properties into its calculations. The results show that even very tough rocks could be mechanically excavated if the occurrence, orientation and condition of joints are favourable for the cutting process. The calculated improvements in the cutting rate (m3/h) are up to 350% for the most favourable cases. In case of microwave irradiation of hard rocks with an UCS of 200 MPa, a reasonable improvement in the performance by 120% can be achieved with as little as an extra 0.7 kWh/m3 (= 1% more energy) compared to cutting only.

  13. Numerical Modeling of Exploitation Relics and Faults Influence on Rock Mass Deformations

    NASA Astrophysics Data System (ADS)

    Wesołowski, Marek

    2016-12-01

    This article presents numerical modeling results of fault planes and exploitation relics influenced by the size and distribution of rock mass and surface area deformations. Numerical calculations were performed using the finite difference program FLAC. To assess the changes taking place in a rock mass, an anisotropic elasto-plastic ubiquitous joint model was used, into which the Coulomb-Mohr strength (plasticity) condition was implemented. The article takes as an example the actual exploitation of the longwall 225 area in the seam 502wg of the "Pokój" coal mine. Computer simulations have shown that it is possible to determine the influence of fault planes and exploitation relics on the size and distribution of rock mass and its surface deformation. The main factor causing additional deformations of the area surface are the abandoned workings in the seam 502wd. These abandoned workings are the activation factor that caused additional subsidences and also, due to the significant dip, they are a layer on which the rock mass slides down in the direction of the extracted space. These factors are not taken into account by the geometrical and integral theories.

  14. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  15. Design of Raft Foundations for High-Rise Buildings on Jointed Rock

    NASA Astrophysics Data System (ADS)

    Justo, J. L.; García-Núñez, J.-C.; Vázquez-Boza, M.; Justo, E.; Durand, P.; Azañón, J. M.

    2014-07-01

    This paper presents calculations of displacements and bending moments in a 2-m-thick reinforced-concrete foundation slab using three-dimensional finite-element software. A preliminary paper was presented by Justo et al. (Rock Mech Rock Eng 43:287-304, 2010). The slab is the base of a tower of 137 m height above foundation, supported on jointed and partly weathered basalt and scoria. Installation of rod extensometers at different depths below foundation allowed comparison between measured displacements and displacements calculated using moduli obtained from rock classification systems and three material models: elastic, Mohr-Coulomb and hardening (H). Although all three material models can provide acceptable results, the H model is preferable when there are unloading processes. Acceptable values of settlement may be achieved with medium meshing and an approximate distribution of loads. The absolute values of negative bending moments (tensions below) increase as the rock mass modulus decreases or when the mesh is refined. The paper stresses the importance of adequately representing the details of the distribution of loads and the necessity for fine meshing to obtain acceptable values of bending moments.

  16. Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen

    2017-01-01

    Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.

  17. Forensic Excavation of Rock Masses: A Technique to Investigate Discontinuity Persistence

    NASA Astrophysics Data System (ADS)

    Shang, J.; Hencher, S. R.; West, L. J.; Handley, K.

    2017-11-01

    True persistence of rock discontinuities (areas with insignificant tensile strength) is an important factor controlling the engineering behaviour of fractured rock masses, but is extremely difficult to quantify using current geological survey methodologies, even where there is good rock exposure. Trace length as measured in the field or using remote measurement devices is actually only broadly indicative of persistence for rock engineering practice and numerical modelling. Visible traces of discontinuities are treated as if they were open fractures within rock mass classifications, despite many such traces being non-persistent and actually retaining considerable strength. The common assumption of 100% persistence, based on trace length, is generally extremely conservative in terms of strength and stiffness, but not always so and may lead to a wrong prediction of failure mechanism or of excavatability. Assuming full persistence would give hopelessly incorrect predictions of hydraulic conductivity. A new technique termed forensic excavation of rock masses is introduced, as a procedure for directly investigating discontinuity persistence. This technique involves non-explosive excavation of rock masses by injecting an expansive chemical splitter along incipient discontinuities. On expansion, the splitter causes the incipient traces to open as true joints. Experiments are described in which near-planar rock discontinuities, through siltstone and sandstone, were opened up by injecting the splitter into holes drilled along the lines of visible traces of the discontinuities in the laboratory and in the field. Once exposed the surfaces were examined to investigate the pre-existing persistence characteristics of the incipient discontinuities. One conclusion from this study is that visible trace length of a discontinuity can be a poor indicator of true persistence (defined for a fracture area with negligible tensile strength). An observation from this series of experiments

  18. Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint

    NASA Astrophysics Data System (ADS)

    Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian

    2017-10-01

    The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.

  19. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    NASA Astrophysics Data System (ADS)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  20. Characterization of Joint Sets Through UAV Photogrammetry on Sedimentary Rock Sea Cliffs and Abrasion Platforms in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, P. C.; LU, A.; Yeh, C. H.; Huang, W. K.; Lin, H. H.; Lin, M. L.

    2017-12-01

    Rockfall hazards are very common in obsequent slope and oblique slope. In the coastal area of northern Taiwan, many sea cliffs are formed by obsequent slope and oblique slope. A famous case of rockfall failure happened on Aug. 31, 2013, a 150-ton rock block fell on the highway in Badouzi, Keelung, during a high intensity rainfall event which was caused by Typhoon No.15 (Kong-rey). To reduce this kind of rockfall hazard, it is important to characterize discontinuous planes in the bedrock because rock blocks are mainly divided from bedrock by two or more sets of discontinuous planes including joint planes and the bedding plane. For doing characterization of those fracture patterns of joint sets, it is necessary to do detailed field investigations. However, the survey of discontinuous planes, especially joint sets, are usually difficult and cannot get enough characterization data about joint sets. The first reason is that doing field investigations on the surface of sea cliffs is very dangerous and difficult for engineers or geologists to approach the upper part of outcrop. The second reason is the complexity of joint sets. In Badouzi area, each cliff is constituted by many different layers such as sandstone, shale, or alternations of sandstone and shale, and each layer has different fracture pattern of joint sets. In this study, we use UAV photogrammetry as a solution of these difficulties. UAV photogrammetry can produce a high-resolution digital surface model (DSM), orthophoto, and anaglyph of sea cliffs and abrasion platforms. Than we use self-developed geoprocessing toolsets to auto-trace joint planes with DSM data and produce fracture pattern of joint sets semi-automatically and systematically. Our method can provide basic information for rock mass rating on rock slope stability and rockfall hazards evaluation.

  1. Lessons Learned from Near Field Modeling and Data Collected at the SPE Chemical Explosions in Jointed Rock Masses

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Ezzedine, S. M.; Hurley, R.; Antoun, T.; Glenn, L.

    2016-12-01

    This work describes the near-field modeling of wave propagation from underground chemicalexplosions conducted at the Nevada National Security Site (NNSS) in fractured granitic rock. Lab testsperformed on granite samples excavated from various locations at the SPE site have shown littlevariability in mechanical properties. Granite at this scale can be considered as an isotropic medium. Wehave shown, however, that on the scale of the pressure waves generated during chemical explosions(tens of meters), the effective mechanical properties may vary significantly and exhibit both elastic andplastic anisotropies due to local variations in joint properties such as spacing orientation, joint aperture,cohesion and saturation. Since including every joint in a discrete fashion in computational model is notfeasible, especially for large-scale calculations ( 1.5 km domain), we have developed a computationaltechnique to upscale mechanical properties for various scales (frequencies) using geophysicalcharacterization conducted during recent SPE tests at the NNSS. Stochastic representation of thesefeatures based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode.Scale dependency in mechanical properties is important in order to understand how the ground motionscales with yield. We hope that such an approach will not only provide a better prediction of theground motion observed in the SPE (where the yield varies from 100 kg to few tons of TNT equivalent)but also will allow us to extrapolate results of the SPE to sources with bigger yields. We have validatedour computational results by comparing the measured and computed ground motion at various rangesfor experiments of various yields (SPE1-SPE5). Using the new model we performed severalcomputational studies to identify the most important mechanical properties of the rock mass specific tothe SPE site and to understand their roles in the observed ground motion in the near-field. We willpresent a series

  2. Fragment Size Distribution of Blasted Rock Mass

    NASA Astrophysics Data System (ADS)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  3. Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Kulatilake, P. H. S. W.; Sandbak, L. A.

    2018-02-01

    The stability of the rock mass around the tunnels in an underground mine was investigated using the distinct element method. A three-dimensional model was developed based on the available geological, geotechnical, and mine construction information. It incorporates a complex lithological system, persistent and non-persistent faults, and a complex tunnel system including backfilled tunnels. The strain-softening constitutive model was applied for the rock masses. The rock mass properties were estimated using the Hoek-Brown equations based on the intact rock properties and the RMR values. The fault material behavior was modeled using the continuously yielding joint model. Sequential construction and rock supporting procedures were simulated based on the way they progressed in the mine. Stress analyses were performed to study the effect of the horizontal in situ stresses and the variability of rock mass properties on tunnel stability, and to evaluate the effectiveness of rock supports. The rock mass behavior was assessed using the stresses, failure zones, deformations around the tunnels, and the fault shear displacement vectors. The safety of rock supports was quantified using the bond shear and bolt tensile failures. Results show that the major fault and weak interlayer have distinct influences on the displacements and stresses around the tunnels. Comparison between the numerical modeling results and the field measurements indicated the cases with the average rock mass properties, and the K 0 values between 0.5 and 1.25 provide satisfactory agreement with the field measurements.

  4. Catastrophe theory—one of the basic components in the analysis of the seismic response of rock mass to explosions

    NASA Astrophysics Data System (ADS)

    Khachay, OA; Khachay, OYu

    2018-03-01

    It is shown that the dynamic process of mining can be controlled using the catastrophe theory. The control parameters can be values of blasting energy and locations of explosions relative to an area under study or operation. The kinematic and dynamic parameters of the deformation waves, as well as the structural features of rock mass through which these waves pass act as internal parameters. The use of the analysis methods for short-term and medium-term forecast of rock mass condition with the control parameters only is insufficient in the presence of sharp heterogeneity. However, the joint use of qualitative recommendations of the catastrophe theory and spatial–temporal data of changes in the internal parameters of rock mass will allow accident prevention in the course of mining.

  5. Estimating small-scale roughness of a rock joint using TLS data

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2016-04-01

    Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface

  6. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Shrivastava, Amit Kumar; Rao, K. Seshagiri

    2018-01-01

    Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.

  7. Dynamic Fragmentation of Jointed Rock Blocks During Rockslide-Avalanches: Insights From Discrete Element Analyses

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano

    2018-04-01

    The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.

  8. Field evidence for control of quarrying by rock bridges in jointed bedrock

    NASA Astrophysics Data System (ADS)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  9. The Development of a new Numerical Modelling Approach for Naturally Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Pine, R. J.; Coggan, J. S.; Flynn, Z. N.; Elmo, D.

    2006-11-01

    An approach for modelling fractured rock masses has been developed which has two main objectives: to maximise the quality of representation of the geometry of existing rock jointing and to use this within a loading model which takes full account of this style of jointing. Initially the work has been applied to the modelling of mine pillars and data from the Middleton Mine in the UK has been used as a case example. However, the general approach is applicable to all aspects of rock mass behaviour including the stress conditions found in hangingwalls, tunnels, block caving, and slopes. The rock mass fracture representation was based on a combination of explicit mapping of rock faces and the synthesis of this data into a three-dimensional model, based on the use of the FracMan computer model suite. Two-dimensional cross sections from this model were imported into the finite element computer model, ELFEN, for loading simulation. The ELFEN constitutive model for fracture simulation includes the Rotating Crack, and Rankine material models, in which fracturing is controlled by tensile strength and fracture energy parameters. For tension/compression stress states, the model is complemented with a capped Mohr-Coulomb criterion in which the softening response is coupled to the tensile model. Fracturing due to dilation is accommodated by introducing an explicit coupling between the inelastic strain accrued by the Mohr-Coulomb yield surface and the anisotropic degradation of the mutually orthogonal tensile yield surfaces of the rotating crack model. Pillars have been simulated with widths of 2.8, 7 and 14 m and a height of 7 m (the Middleton Mine pillars are typically 14 m wide and 7 m high). The evolution of the pillar failure under progressive loading through fracture extension and creation of new fractures is presented, and pillar capacities and stiffnesses are compared with empirical models. The agreement between the models is promising and the new model provides useful

  10. An Analytical Model for Two-Order Asperity Degradation of Rock Joints Under Constant Normal Stiffness Conditions

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Wu, Wei; Li, Bo

    2018-05-01

    Jointed rock masses during underground excavation are commonly located under the constant normal stiffness (CNS) condition. This paper presents an analytical formulation to predict the shear behaviour of rough rock joints under the CNS condition. The dilatancy and deterioration of two-order asperities are quantified by considering the variation of normal stress. We separately consider the dilation angles of waviness and unevenness, which decrease to zero as the normal stress approaches the transitional stress. The sinusoidal function naturally yields the decay of dilation angle as a function of relative normal stress. We assume that the magnitude of transitional stress is proportionate to the square root of asperity geometric area. The comparison between the analytical prediction and experimental data shows the reliability of the analytical model. All the parameters involved in the analytical model possess explicit physical meanings and are measurable from laboratory tests. The proposed model is potentially practicable for assessing the stability of underground structures at various field scales.

  11. A Numerical Study on Toppling Failure of a Jointed Rock Slope by Using the Distinct Lattice Spring Model

    NASA Astrophysics Data System (ADS)

    Lian, Ji-Jian; Li, Qin; Deng, Xi-Fei; Zhao, Gao-Feng; Chen, Zu-Yu

    2018-02-01

    In this work, toppling failure of a jointed rock slope is studied by using the distinct lattice spring model (DLSM). The gravity increase method (GIM) with a sub-step loading scheme is implemented in the DLSM to mimic the loading conditions of a centrifuge test. A classical centrifuge test for a jointed rock slope, previously simulated by the finite element method and the discrete element model, is simulated by using the GIM-DLSM. Reasonable boundary conditions are obtained through detailed comparisons among existing numerical solutions with experimental records. With calibrated boundary conditions, the influences of the tensional strength of the rock block, cohesion and friction angles of the joints, as well as the spacing and inclination angles of the joints, on the flexural toppling failure of the jointed rock slope are investigated by using the GIM-DLSM, leading to some insight into evaluating the state of flexural toppling failure for a jointed slope and effectively preventing the flexural toppling failure of jointed rock slopes.

  12. Correlation of the Rock Mass Rating (RMR) System with the Unified Soil Classification System (USCS): Introduction of the Weak Rock Mass Rating System (W-RMR)

    NASA Astrophysics Data System (ADS)

    Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.

    2016-11-01

    Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.

  13. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    PubMed

    Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang

    2017-01-01

    Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  14. Nature and mechanisms of elastic deformations for a rock mass with several workings. [Deviations from superposition of individual effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagunov, A.S.; Seryakov, V.M.

    1985-07-01

    This paper presents results of a study which indicates that as a result of the solution for a nonuniform rock mass by the FEM it is established that, first, from the direction of the hanging wall of workings and at the surface, the nature of elastic deformation of the rock is equivalent to that observed under natural conditions, and from the direction of the lying wall of workings and close to their ends there is short-lived rotational creation of elastic displacements, extinguished as plastic deformation develops. Second, the superposition principle, taken as the basis for algebraic summation of displacements andmore » deformations due to individual workings, is not entirely observed in their joint effect on the rock mass in the elastic stage, and with plastic and shear deformation of rocks (partial or complete), depending on their bedding conditions.« less

  15. Conducting Rock Mass Rating for tunnel construction on Mars

    NASA Astrophysics Data System (ADS)

    Beemer, Heidi D.; Worrells, D. Scott

    2017-10-01

    Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.

  16. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    forming materials, which were also monitored using an array of environmental sensors. This experiment forms the basis of a long term investigation into the effects of varying environmental conditions on rock mass strength degradation over time. Ultimately, we aim to develop rock mass strength degradation curves to build a quantitative understanding of the interaction between coastal rock cliff behaviour and environmental processes.

  17. Relative scale and the strength and deformability of rock masses

    NASA Astrophysics Data System (ADS)

    Schultz, Richard A.

    1996-09-01

    The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.

  18. Geophysical Signatures of Shear-Induced Damage and Frictional Processes on Rock Joints

    NASA Astrophysics Data System (ADS)

    Hedayat, Ahmadreza; Haeri, Hadi; Hinton, John; Masoumi, Hossein; Spagnoli, Giovanni

    2018-02-01

    In this study, ultrasonic waves recorded during direct shear experiments on rock joints were employed to investigate the shear failure processes. Three types of wave attributes were systematically observed prior to the shear failure of the rock joints: (a) maximum in the amplitude of the transmitted wave, (b) maximum in the dominant frequency of the transmitted wave, and (c) maximum in the velocity of the wave. Different processes occurring during both frictional sliding and stick-slip oscillations were identified in this study: (a) interseismic phase and (b) preseismic phase. The interseismic phase is associated with elastic loading, very small local slip rate, and increasing ultrasonic transmission along the contact surfaces. The rock joint is considered locked, and the increase in ultrasonic transmission represents an increase in the real (true) area of contact because of interlocking and contact aging. The start of the preseismic phase is marked by the onset of precursors for different regions of the rock joint. Following the interseismic and preseismic phases, coseismic phase occurs. The coseismic phase begins with the reduction in the applied shear stress and is associated with an abrupt increase in the local slip rate. The reductions in transmitted amplitude, wave velocity, and dominant frequency all indicate the preseismic phase when the asperity contacts begin to fail before macroscopic frictional sliding. The observation of the preseismic phase in both the loading phase leading to stable sliding and stick-slip failure modes suggests that microphysical processes of fault weakening may share key features for these two failure modes.

  19. Applicability of geomechanical classifications for estimation of strength properties in Brazilian rock masses.

    PubMed

    Santos, Tatiana B; Lana, Milene S; Santos, Allan E M; Silveira, Larissa R C

    2017-01-01

    Many authors have been proposed several correlation equations between geomechanical classifications and strength parameters. However, these correlation equations have been based in rock masses with different characteristics when compared to Brazilian rock masses. This paper aims to study the applicability of the geomechanical classifications to obtain strength parameters of three Brazilian rock masses. Four classification systems have been used; the Rock Mass Rating (RMR), the Rock Mass Quality (Q), the Geological Strength Index (GSI) and the Rock Mass Index (RMi). A strong rock mass and two soft rock masses with different degrees of weathering located in the cities of Ouro Preto and Mariana, Brazil; were selected for the study. Correlation equations were used to estimate the strength properties of these rock masses. However, such correlations do not always provide compatible results with the rock mass behavior. For the calibration of the strength values obtained through the use of classification systems, ​​stability analyses of failures in these rock masses have been done. After calibration of these parameters, the applicability of the various correlation equations found in the literature have been discussed. According to the results presented in this paper, some of these equations are not suitable for the studied rock masses.

  20. Engineering and Design: Rock Mass Classification Data Requirements for Rippability

    DTIC Science & Technology

    1983-06-30

    Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY Distribution Restriction Statement Approved for public release...and Design: Rock Mass Classification Data Requirements for Rippability Contract Number Grant Number Program Element Number Author(s) Project...Technical Letter 1110-2-282 Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY 1“ -“ This ETL contains information on data

  1. Rock mass classification system : transition from RMR to GSI.

    DOT National Transportation Integrated Search

    2013-11-01

    The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...

  2. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  3. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  4. Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1979-01-01

    Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)

  5. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    NASA Astrophysics Data System (ADS)

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  6. Design of Rock Slope Reinforcement: An Himalayan Case Study

    NASA Astrophysics Data System (ADS)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  7. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  8. Ultrasonic constraint of the microfracture anisotropy of flysch rocks from the Podhale Synclinorium (Poland)

    NASA Astrophysics Data System (ADS)

    Kłopotowska, Agnieszka

    2018-01-01

    This paper attempts to show the relationship between joints observed in flysch formations in the field and microfracture fabrics invisible to the naked eye in hand specimens. Ultrasonic measurements demonstrate that the intensity and orientations of domains "memorised" by rock specimens are associated with the historical stresses within the rock mass rather than the rock lamination. The spatial orientations of these microfractures have been measured, and their dynamic-elastic properties have been found to correlate with the orientation of macroscopic joint sets measured in the field. The elastic properties measured vary because of sedimentary diagenetic processes that occured during the tectonic deformations of these flysch rocks in the Podhale Synclinorium of Poland. The structural discontinuities detected by ultrasonic measurements can be perceived as an incipient phase of the macroscopic joints already visible in the field and are attributed to the in situ residual tectonic stresses. Such historical stresses impart a hidden mechanical anisotropy to the entire flysch sequence. The microfractures will develop into macroscopic joints during future relaxation of the exposed rock mass. Understanding the nature and orientation of the invisible microfracture anisotropy that will become macroscopic in the future is vital for the safe and efficient engineering of any rock mass.

  9. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    NASA Astrophysics Data System (ADS)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    Water circulation in rocks represents a very important element to solve many problems linked with civil, environmental and mining engineering. In particular, the interaction of tunnelling with groundwater has become a very relevant problem not only due to the need to safeguard water resources from impoverishment and from the pollution risk, but also to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems. The evaluation of the hydrogeological risk linked to the underground excavation is very complex, either for the large number of variables involved or for the lack of data available during the planning stage. The study is aimed to quantify the influence of some geo-structural parameters (i.e. discontinuities dip and dip direction) on the tunnel drainage process, comparing the traditional analytical method to the modeling approach, with specific reference to the case of anisotropic rock masses. To forecast the tunnel inflows, a few Authors suggest analytic formulations (Goodman et al., 1965; Knutsson et al., 1996; Ribacchi et al., 2002; Park et al., 2008; Perrochet et al., 2007; Cesano et al., 2003; Hwang et al., 2007), valid for infinite, homogeneous and isotropic aquifer, in which the permeability value is given as a modulus of equivalent hydraulic conductivity Keq. On the contrary, in discontinuous rock masses the water flow is strongly controlled by joints orientation, by their hydraulic characteristics and by rocks fracturing conditions. The analytic equations found in the technical literature could be very useful, but often they don't reflect the real phenomena of the tunnel inflow in rock masses. Actually, these equations are based on the hypothesis of homogeneous aquifer, and then they don't give good agreement for an heterogeneous fractured medium. In this latter case, the numerical modelling could provide the best results, but only with a detailed conceptual model of the water circulation, high costs and long

  10. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  11. Crack Damage Parameters and Dilatancy of Artificially Jointed Granite Samples Under Triaxial Compression

    NASA Astrophysics Data System (ADS)

    Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.

    2018-06-01

    A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.

  12. On the physical properties of volcanic rock masses

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Villeneuve, M.; Ball, J. L.; Got, J. L.

    2017-12-01

    The physical properties (e.g., elastic properties, porosity, permeability, cohesion, strength, amongst others) of volcanic rocks are crucial input parameters for modelling volcanic processes. These parameters, however, are often poorly constrained and there is an apparent disconnect between modellers and those who measure/determine rock and rock mass properties. Although it is well known that laboratory measurements are scale dependent, experimentalists, field volcanologists, and modellers should work together to provide the most appropriate model input parameters. Our pluridisciplinary approach consists of (1) discussing with modellers to better understand their needs, (2) using experimental know-how to build an extensive database of volcanic rock properties, and (3) using geotechnical and field-based volcanological know-how to address scaling issues. For instance, increasing the lengthscale of interest from the laboratory-scale to the volcano-scale will reduce the elastic modulus and strength and increase permeability, but to what extent? How variable are the physical properties of volcanic rocks, and is it appropriate to assume constant, isotropic, and/or homogeneous values for volcanoes? How do alteration, depth, and temperature influence rock physical and mechanical properties? Is rock type important, or do rock properties such as porosity exert a greater control on such parameters? How do we upscale these laboratory-measured properties to rock mass properties using the "fracturedness" of a volcano or volcanic outcrop, and how do we quantify fracturedness? We hope to discuss and, where possible, address some of these issues through active discussion between two (or more) scientific communities.

  13. Measurement of rock mass deformation with grouted coaxial antenna cables

    NASA Astrophysics Data System (ADS)

    Dowding, C. H.; Su, M. B.; O'Connor, K.

    1989-01-01

    Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.

  14. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  15. Brittle strength of basaltic rock masses with applications to Venus

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1993-06-01

    Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.

  16. Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel

    PubMed Central

    Jiang, Quan; Cui, Jie; Chen, Jing

    2012-01-01

    In underground tunnels or caverns, time-dependent deformation or failure of rock mass, such as extending cracks, gradual rock falls, etc., are a costly irritant and a major safety concern if the time-dependent damage of surrounding rock is serious. To understand the damage evolution of rock mass in underground engineering, an in situ experimental testing was carried out in a large belowground tunnel with a scale of 28.5 m in width, 21 m in height and 352 m in length. The time-dependent damage of rock mass was detected in succession by an ultrasonic wave test after excavation. The testing results showed that the time-dependent damage of rock mass could last a long time, i.e., nearly 30 days. Regression analysis of damage factors defined by wave velocity, resulted in the time-dependent evolutional damage equation of rock mass, which corresponded with logarithmic format. A damage viscoelastic-plastic model was developed to describe the exposed time-dependent deterioration of rock mass by field test, such as convergence of time-dependent damage, deterioration of elastic modules and logarithmic format of damage factor. Furthermore, the remedial measures for damaged surrounding rock were discussed based on the measured results and the conception of damage compensation, which provides new clues for underground engineering design.

  17. The influence of normal fault on initial state of stress in rock mass

    NASA Astrophysics Data System (ADS)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  18. Effect of joint spacing and joint dip on the stress distribution around tunnels using different numerical methods

    NASA Astrophysics Data System (ADS)

    Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza

    2016-11-01

    Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.

  19. Examining the relation between rock mass cuttability index and rock drilling properties

    NASA Astrophysics Data System (ADS)

    Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram

    2016-12-01

    Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.

  20. Rock falls from Glacier Point above Camp Curry, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.

    1999-01-01

    A series of rock falls from the north face of Glacier Point above Camp Curry, Yosemite National Park, California, have caused reexamination of the rock-fall hazard because beginning in June, 1999 a system of cracks propagated through a nearby rock mass outlining a future potential rock fall. If the estimated volume of the potential rock fall fails as a single piece, there could be a risk from rock-fall impact and airborne rock debris to cabins in Camp Curry. The role of joint plane orientation and groundwater pressure in the fractured rock mass are discussed in light of the pattern of developing cracks and potential modes of failure.

  1. Mass balance of a highly active rock glacier during the period 1954 and 2016

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor; Rieckh, Matthias

    2017-04-01

    Active rock glaciers are creep phenomena of permafrost in high-relief terrain moving slowly downwards and are often characterised by distinct flow structures with ridges and furrows. Active rock glaciers consist of ice and rock material. The ice component might be either congelation (refreezing of liquid water) or sedimentary ('glacier') ice whereas the rock material might be either of periglacial or glacial origin. The formation period of rock glaciers lasts for centuries to millennia as judged from relative or absolute dating approaches. The input of ice and debris onto the rock glacier mass transport system over such long periods might change substantially over time. Long-term monitoring of mass transport, mass changes and nourishment processes of rock glaciers are rare. In this study we analysed on a decadal-scale mass transport (based on photogrammetric and geodetic data; series 1969-2016), mass changes (geodetically-based mass balance quantification; series 1954-2012), and mass input (based on optical data from an automatic digital camera; series 2006-2016) onto the Hinteres Langtal Rock Glacier. This rock glacier is 900 m long, up to 300 m wide, covers an area of 0.17 km2 and is one of the most active ones in the Eastern European Alps. Mass transport rates at the surface indicate relatively low mean annual surface velocities until the beginning of this millennium. A first peak in the horizontal surface velocity was reached in 2003/04 followed by a period of deceleration until 2007/08. Afterwards the rates increased again substantially from year to year with maximum values in 2014/15 (exceeding 6 m/a). This increase in surface velocities during the last decades was accompanied by crevasse formation and landslide activities at its front. Mass changes show for all six analysed periods between 1954 and 2012 a clear negative surface elevation change with mean annual values ranging from -0.016 to -0.058 m/a. This implies a total volume decrease of -435,895 m3

  2. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    NASA Astrophysics Data System (ADS)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  3. Numerical Simulation of Creep Characteristic for Composite Rock Mass with Weak Interlayer

    NASA Astrophysics Data System (ADS)

    Li, Jian-guang; Zhang, Zuo-liang; Zhang, Yu-biao; Shi, Xiu-wen; Wei, Jian

    2017-06-01

    The composite rock mass with weak interlayer is widely exist in engineering, and it’s essential to research the creep behavior which could cause stability problems of rock engineering and production accidents. However, due to it is difficult to take samples, the losses and damages in delivery and machining process, we always cannot get enough natural layered composite rock mass samples, so the indirect test method has been widely used. In this paper, we used ANSYS software (a General Finite Element software produced by American ANSYS, Inc) to carry out the numerical simulation based on the uniaxial compression creep experiments of artificial composite rock mass with weak interlayer, after experimental data fitted. The results show that the laws obtained by numerical simulations and experiments are consistent. Thus confirmed that carry out numerical simulation for the creep characteristics of rock mass with ANSYS software is feasible, and this method can also be extended to other underground engineering of simulate the weak intercalations.

  4. Numerical Model for the Study of the Strength and Failure Modes of Rock Containing Non-Persistent Joints

    NASA Astrophysics Data System (ADS)

    Vergara, Maximiliano R.; Van Sint Jan, Michel; Lorig, Loren

    2016-04-01

    The mechanical behavior of rock containing parallel non-persistent joint sets was studied using a numerical model. The numerical analysis was performed using the discrete element software UDEC. The use of fictitious joints allowed the inclusion of non-persistent joints in the model domain and simulating the progressive failure due to propagation of existing fractures. The material and joint mechanical parameters used in the model were obtained from experimental results. The results of the numerical model showed good agreement with the strength and failure modes observed in the laboratory. The results showed the large anisotropy in the strength resulting from variation of the joint orientation. Lower strength of the specimens was caused by the coalescence of fractures belonging to parallel joint sets. A correlation was found between geometrical parameters of the joint sets and the contribution of the joint sets strength in the global strength of the specimen. The results suggest that for the same dip angle with respect to the principal stresses; the uniaxial strength depends primarily on the joint spacing and the angle between joints tips and less on the length of the rock bridges (persistency). A relation between joint geometrical parameters was found from which the resulting failure mode can be predicted.

  5. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    NASA Astrophysics Data System (ADS)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  6. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  7. Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein

    2018-02-01

    In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.

  8. On the generation of tangential ground motion by underground explosions in jointed rocks

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  9. Process of breaking and rendering permeable a subterranean rock mass

    DOEpatents

    Lekas, Mitchell A.

    1980-01-01

    The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

  10. A new design concept of fully grouted rock bolts in underground construction

    NASA Astrophysics Data System (ADS)

    Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke

    2018-04-01

    The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.

  11. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2018-01-01

    This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.

  12. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2017-09-22

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  13. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  14. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  15. An Illustration of Determining Quantitatively the Rock Mass Quality Parameters of the Hoek-Brown Failure Criterion

    NASA Astrophysics Data System (ADS)

    Wu, Li; Adoko, Amoussou Coffi; Li, Bo

    2018-04-01

    In tunneling, determining quantitatively the rock mass strength parameters of the Hoek-Brown (HB) failure criterion is useful since it can improve the reliability of the design of tunnel support systems. In this study, a quantitative method is proposed to determine the rock mass quality parameters of the HB failure criterion, namely the Geological Strength Index (GSI) and the disturbance factor ( D) based on the structure of drilling core and weathering condition of rock mass combined with acoustic wave test to calculate the strength of rock mass. The Rock Mass Structure Index and the Rock Mass Weathering Index are used to quantify the GSI while the longitudinal wave velocity ( V p) is employed to derive the value of D. The DK383+338 tunnel face of Yaojia tunnel of Shanghai-Kunming passenger dedicated line served as illustration of how the methodology is implemented. The values of the GSI and D are obtained using the HB criterion and then using the proposed method. The measured in situ stress is used to evaluate their accuracy. To this end, the major and minor principal stresses are calculated based on the GSI and D given by HB criterion and the proposed method. The results indicated that both methods were close to the field observation which suggests that the proposed method can be used for determining quantitatively the rock quality parameters, as well. However, these results remain valid only for rock mass quality and rock type similar to those of the DK383+338 tunnel face of Yaojia tunnel.

  16. Geo-Mechanical Characterization of Carbonate Rock Masses by Means of Laser Scanner Technique

    NASA Astrophysics Data System (ADS)

    Palma, Biagio; Parise, Mario; Ruocco, Anna

    2017-12-01

    Knowledge of the geometrical and structural setting of rock masses is crucial to evaluate the stability and to design the most suitable stabilization works. In this work we use the Terrestrial Laser Scanning (TLS) at the site of the Grave of the Castellana Caves, a famous show cave in southern Italy. The Grave is the natural access to the cave system, produced by collapse of the vault, due to upward progression of instabilities in the carbonate rock masses. It is about 55-m high, bell-shaped, with maximum width of 120 m. Aim of the work is the characterization of carbonate rock masses from the structural and geo-mechanical standpoints through the use of innovative survey techniques. TLS survey provides a product consisting of millions of geo-referenced points, to be managed in space, to become a suitable database for the morphological and geological-structural analysis. Studying by means of TLS a rock face, partly inaccessible or located in very complex environments, allows to investigate slopes in their overall areal extent, thus offering advantages both as regards safety of the workers and time needed for the survey. In addition to TLS, the traditional approach was also followed by performing scanlines surveys along the rims of the Grave, following the ISRM recommendations for characterization of discontinuity in rock masses. A quantitative comparison among the data obtained by TLS technique and those deriving from the classical geo-mechanical survey is eventually presented, to discuss potentiality of drawbacks of the different techniques used for surveying the rock masses.

  17. Stand up time in tunnel base on rock mass rating Bieniawski 1989

    NASA Astrophysics Data System (ADS)

    Nata, Refky Adi; M. S., Murad

    2017-11-01

    RMR (Rock Mass Rating), or also known as the geo mechanics classification has been modified and made as the International Standard in determination of rock mass weighting. Rock Mass Rating Classification has been developed by Bieniawski (since 1973, 1976, and 1989). The goals of this research are investigate the class of rocks base on classification rock mass rating Bieniawski 1989, to investigate the long mass of the establishment rocks, and also to investigate the distance of the opening tunnel without a support especially in underground mine. On the research measuring: strength intact rock material, RQD (Rock Quality Designation), spacing of discontinuities, condition of discontinuities, groundwater, and also adjustment for discontinuity orientations. On testing samples in the laboratory for coal obtained strong press UCS of 30.583 MPa. Based on the classification according to Bieniawski has a weight of 4. As for silt stone obtained strong press of 35.749 MPa, gained weight also by 4. From the results of the measurements obtained for coal RQD value average 97.38 %, so it has a weight of 20. While in siltstone RQD value average 90.10 % so it has weight 20 also. On the coal the average distance measured in field is 22.6 cm so as to obtain a weight of 10, while for siltstone has an average is 148 cm, so it has weight = 15. Presistence in the field vary, on coal = 57.28 cm, so it has weight is 6 and persistence on siltstone 47 cm then does it weight to 6. Base on table Rock Mass Rating according to Bieniawski 1989, aperture on coal = 0.41 mm. That is located in the range 0.1-1 mm, so it has weight is 4. Besides that, for the siltstone aperture = 21.43 mm. That is located in the range > 5 mm, so the weight = 0. Roughness condition in coal and siltstone classified into rough so it has weight 5. Infilling condition in coal and siltstone classified into none so it has weight 6. Weathering condition in coal and siltstone classified into highly weathered so it has weight

  18. A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks

    NASA Astrophysics Data System (ADS)

    Fazio, Nunzio Luciano; Lollino, Piernicola; Perrotti, Michele; Parise, Mario; Bonamini, Marco; Di Maggio, Cipriano; Madonia, Giuliana; Vattano, Marco

    2016-04-01

    Anthropogenic sinkholes have recently occurred in built-up areas of Sicily (southern Italy) and are generally associated with the presence of ancient underground quarries for the extraction of soft calcarenite rock, used as building material. These quarries were poorly excavated and then were abandoned in the following decades; urban expansion has recently enlarged to involve the areas affected by presence of the cavities, so that the likely collapse of the underground systems poses serious risks to people, buildings and infrastructures. The present work focuses on the case of the town of Marsala, where in 2003 a sinkhole opened at the outskirts of town, near peri-urban buildings. Field surveys, structural analysis of the joint networks in the rock mass and numerical modeling were carried out in order to investigate the most significant factors responsible of the instability processes of the underground quarry. In particular, a geotechnical three-dimensional model has been defined based on in-situ measurements and surveys. The FEM analyses have been performed with the code Plaxis-3D, by using initially the Mohr-Coulomb elasto-plastic model and then assessing the influence of the joint systems on the rock-mass stability with a jointed rock anisotropic model. Discrete planar bands have been also used to simulate the effect of specific joints, as an alternative to the jointed rock model. The results are in good agreement with the failure mechanism generated during the 2003 sinkhole event, and confirm that reliable analyses of these problems requires 3-D sophisticated tools.

  19. Excavatability and the effect of weathering degree on the excavatability of rock masses: An example from Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Gurocak, Zulfu; Yalcin, Erkut

    2016-06-01

    In this study, the effect of the weathering degree on the excavatability of rock masses was investigated. The ophiolitic rock mass along the route of Komurhan Tunnel was chosen as the case study. Both laboratory and field studies were carried out for this purpose. In the first stage, the ophiolitic rock mass along the tunnel route was classified into three subzones according to the weathering degree and the ophiolitic rock masses of the each subzones were classified using the empirical excavatability classifications proposed by the different researchers. Furthermore, in-situ excavatability classes of rock masses in each zone were determined and the results were compared. The in-situ excavatability class of fresh (Zone-I) and slightly weathered (Zone-II) rock masses was determined as Blasting and that of moderately weathered (Zone-III) rock mass was determined as Very Hard/Very Difficult. As the obtained results were compared, it was found that the weathering degree has a significant effect on the excavatability and that it is more appropriate to prefer empirical classifications in the empirical determination of excavatability classes of rock masses having the same lithology by taking the weathering degree into account.

  20. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    NASA Astrophysics Data System (ADS)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  1. Calculation of muscle loading and joint contact forces during the rock step in Irish dance.

    PubMed

    Shippen, James M; May, Barbara

    2010-01-01

    A biomechanical model for the analysis of dancers and their movements is described. The model consisted of 31 segments, 35 joints, and 539 muscles, and was animated using movement data obtained from a three-dimensional optical tracking system that recorded the motion of dancers. The model was used to calculate forces within the muscles and contact forces at the joints of the dancers in this study. Ground reaction forces were measured using force plates mounted in a sprung floor. The analysis procedure is generic and can be applied to any dance form. As an exemplar of the application process an Irish dance step, the rock, was analyzed. The maximum ground reaction force found was 4.5 times the dancer's body weight. The muscles connected to the Achilles tendon experienced a maximum force comparable to their maximal isometric strength. The contact force at the ankle joint was 14 times body weight, of which the majority of the force was due to muscle contraction. It is suggested that as the rock step produces high forces, and therefore the potential to cause injury, its use should be carefully monitored.

  2. Geotechnical Descriptions of Rock and Rock Masses.

    DTIC Science & Technology

    1985-04-01

    determined in the field on core speci ns by the standard Rock Testing Handbook Methods . afls GA DTIC TAB thannounod 13 Justifiatlo By Distributin...to provide rock strength descriptions from the field. The point-load test has proven to be a reliable method of determining rock strength properties...report should qualify the reported spacing values by stating the methods used to determine spacing. Preferably the report should make the determination

  3. Determination of Critical Rock Mass in a Bucket of a Dinting Loader

    NASA Astrophysics Data System (ADS)

    Remiorz, Eryk

    2017-09-01

    The extraction of hard coal deposits lying in increasing depth causes significant problems with maintenance of roadways (maingates, tailgates, etc.). The reduction of the cross section of such excavations, caused by the floor upheaval, leads to the occurrence of many problems with transport and ventilation. Dinting loaders are employed to restore the original size of roadways tightened due to the activity of adverse stresses occurring in the rock mass. These are tracked machines, usually with small width of about 1 m. They often work in roadways with high longitudinal and lateral inclination, as a result of which they are especially susceptible to overturning. The article presents a mathematical model allowing to determine the critical mass of broken rock in a bucket. The model also allows to determine spatial coordinates of a dinting loader's centre of gravity depending on temporary position of movable elements of the loader such as a turntable, boom, coupler and bucket, and depending on the level of loading the bucket with broken rock. It also enables to determine critical angles of the roadways' longitudinal and lateral inclination. The outcomes of computer studies of variations in the position of the loader's centre of gravity depending on deflection angles of moving elements of the loader and the mass of broken rock in the bucket are also presented. Variability ranges of spatial coordinates of the centre of gravity of the loader are also established and examples are given for values of the critical mass of broken rock in the bucket.

  4. Ground Support Strategies at the Turquoise Ridge Joint Venture, Nevada

    NASA Astrophysics Data System (ADS)

    Sandbak, L. A.; Rai, A. R.

    2013-05-01

    Weak rock masses of high grade Carlin-trend gold mineralization are encountered in the Turquoise Ridge Joint Venture underground mine. The sediments consist of very weak and altered limestone, mudstone, and carbon-rich clays. The rock mass ratings are described as very poor to poor (Bieniawski in Proceedings of the symposium on exploration for rock engineering, Johannesburg, South Africa, pp. 97-106, 1976). The undercut and fill or boxes stoping mining methods are used because of the low dipping ore body geometry, complex geology, and weak rock mass. Design criteria are chosen to keep openings in weak rock as small as possible to prevent unraveling and to minimize supplementary support. Typical ground support for drifting includes the use of bolts, mesh, spiling, and shotcrete. Quality control of cemented rock fill (CRF) through sampling and aggregate sieve testing is necessary to insure high support strength. Specific support may include shotcrete arches with steel ring sets and CRF "arches" as a replacement of weak rock masses around long-term mine openings. Movement monitoring is utilized in problem areas and is needed to quantify and validate computer modeling.

  5. The spatial-temporal evolution law of microseismic activities in the failure process of deep rock masses

    NASA Astrophysics Data System (ADS)

    Yuan-hui, Li; Gang, Lei; Shi-da, Xu; Da-wei, Wu

    2018-07-01

    Under high stress and blasting disturbance, the failure of deep rock masses is a complex, dynamic evolutionary process. To reveal the relation between macroscopic failure of deep rock masses and spatial-temporal evolution law of micro-cracking within, the initiation, extension, and connection of micro-cracks under blasting disturbance and the deformation and failure mechanism of deep rock masses were studied. The investigation was carried out using the microseismic (MS) monitoring system established in the deep mining area of Ashele Copper Mine (Xinjiang Uygur Autonomous Region, China). The results showed that the failure of the deep rock masses is a dynamic process accompanied with stress release and stress adjustment. It is not only related to the blasting-based mining, but also associated with zones of stress concentration formed due to the mining. In that space, the concentrated area in the cloud chart for the distribution of MS event density before failure of the rocks shows the basically same pattern with the damaged rocks obtained through scanning of mined-out areas, which indicates that the cloud chart can be used to determine potential risk areas of rocks in the spatial domain. In the time domain, relevant parameters of MS events presented different changes before the failure of the rocks: the energy index decreased while the cumulative apparent volume gradually increased, the magnitude distribution of microseismic events decreased rapidly, and the fractal dimension decreased at first and then remained stable. This demonstrates that the different changes in relevant MS parameters allow researchers to predict the failure time of the rocks. By analysing the dynamic evolution process of the failure of the deep rock masses, areas at potential risk can be predicted spatially and temporally. The result provides guidance for those involved in the safe production and management of underground engineering and establishes a theoretical basis for the study on the

  6. Microseismicity of an Unstable Rock Mass: From Field Monitoring to Laboratory Testing

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Comina, C.; Vinciguerra, S.; Benson, P. M.

    2018-02-01

    The field-scale microseismic (MS) activity of an unstable rock mass is known to be an important tool to assess damage and cracking processes eventually leading to macroscopic failures. However, MS-event rates alone may not be enough for a complete understanding of the trigger mechanisms of mechanical instabilities. Acoustic Emission (AE) techniques at the laboratory scale can be used to provide complementary information. In this study, we report a MS/AE comparison to assess the stability of a granitic rock mass in the northwestern Italian Alps (Madonna del Sasso). An attempt to bridge the gap between the two different scales of observation, and the different site and laboratory conditions, is undertaken to gain insights on the rock mass behavior as a function of external governing factors. Time- and frequency-domain parameters of the MS/AE waveforms are compared and discussed with this aim. At the field scale, special attention is devoted to the correlation of the MS-event rate with meteorological parameters (air temperature and rainfalls). At the laboratory scale, AE rates, waveforms, and spectral content, recorded under controlled temperature and fluid conditions, are analyzed in order to better constrain the physical mechanisms responsible for the observed field patterns. The factors potentially governing the mechanical instability at the site were retrieved from the integration of the results. Abrupt thermal variations were identified as the main cause of the site microsesimicity, without highlighting irreversible acceleration in the MS-event rate potentially anticipating the rock mass collapse.

  7. The Distribution and Composition Characteristics of Siliceous Rocks from Qinzhou Bay-Hangzhou Bay Joint Belt, South China: Constraint on the Tectonic Evolution of Plates in South China

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak. PMID:24302882

  8. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  9. Masses of Fluid for Cylindrical Tanks in Rock With Partial Uplift of Bottom Plate

    PubMed Central

    Taniguchi, Tomoyo; Katayama, Yukihiro

    2016-01-01

    This study proposes the use of a slice model consisting of a set of thin rectangular tanks for evaluating the masses of fluid contributing to the rocking motion of cylindrical tanks; the effective mass of fluid for rocking motion, that for rocking–bulging interaction, effective moment inertia of fluid for rocking motion and its centroid. They are mathematically or numerically quantified, normalized, tabulated, and depicted as functions of the aspect of tanks for different values of the ratio of the uplift width of the tank bottom plate to the diameter of tank for the designer's convenience. PMID:27303110

  10. In-situ GPR test for three-dimensional mapping of the dielectric constant in a rock mass

    NASA Astrophysics Data System (ADS)

    Elkarmoty, Mohamed; Colla, Camilla; Gabrielli, Elena; Papeschi, Paolo; Bonduà, Stefano; Bruno, Roberto

    2017-11-01

    The Ground Penetrating Radar (GPR) is used to detect subsurface anomalies in several applications. The more the velocity of propagation or the dielectric constant is estimated accurately, the more the detection of anomalies at true subsurface depth can be accurately obtained. Since many GPR applications are performed in rock mass with non-homogeneous discontinuous nature, errors in estimating a bulk velocity of propagation or dielectric constant are possible. This paper presents a new in-situ GPR test for mapping the dielectric constant variability in a rock mass. The main aim is to investigate to what extent the dielectric constant is variable in the micro and macro scale of a typical rock mass and to give attention to GPR users in rock mass mediums. The methodology of this research is based on the insertion of steel rods in a rock mass, thus acting as reflectors. The velocity of propagation can be then modeled, from hyperbolic reflections, in the form of velocity pathways from antenna positions to a buried rod. Each pathway is characterized by discrete points which are assumed in three dimensions as centers of micro cubic rock mass. This allows converting the velocity of propagation into a dielectric constant for mapping and modeling the dielectric constant in a volumetric rock mass using a volumetric data visualization software program (Voxler). In a case study, 6 steel drilling rods were diagonally inserted in a vertical face of a bench in a sandstone quarry. Five equally spaced parallel lines, almost perpendicular to the orientations of the rods, were surveyed by a dual frequency GPR antenna of 200 and 600 MHz. The results show that the dielectric constant is randomly varied within the micro and macro scale either in single radargrams or in the volumetric rock mass. The proposed method can be useful if considered in signal processing software programs, particularly in presence of subsurface utilities with known geometry and dimension, allowing converting

  11. The Practical Application of Aqueous Geochemistry in Mapping Groundwater Flow Systems in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Bursey, G.; Seok, E.; Gale, J. E.

    2017-12-01

    Flow to underground mines and open pits takes place through an interconnected network of regular joints/fractures and intermediate to large scale structural features such as faults and fracture zones. Large scale features can serve either as high permeability pathways or as barriers to flow, depending on the internal characteristics of the structure. Predicting long term water quality in barrier-well systems and long-term mine water inflows over a mine life, as a mine expands, requires the use of a 3D numerical flow and transport code. The code is used to integrate the physical geometry of the fractured-rock mass with porosity, permeability, hydraulic heads, storativity and recharge data and construct a model of the flow system. Once that model has been calibrated using hydraulic head and permeability/inflow data, aqueous geochemical and isotopic data provide useful tools for validating flow-system properties, when one is able to recognize and account for the non-ideal or imperfect aspects of the sampling methods used in different mining environments. If groundwater samples are collected from discrete depths within open boreholes, water in those boreholes have the opportunity to move up or down in response to the forces that drive groundwater flow, whether they be hydraulic gradients, gas pressures, or density differences associated with variations in salinity. The use of Br/Cl ratios, for example, can be used to determine if there is active flow into, or out of, the boreholes through open discontinuities in the rock mass (i.e., short-circuiting). Natural groundwater quality can also be affected to varying degrees by mixing with drilling fluids. The combined use of inorganic chemistry and stable isotopes can be used effectively to identify dilution signals and map the dilution patterns through a range of fresh, brackish and saline water types. The stable isotopes of oxygen and hydrogen are nearly ideal natural tracers of water, but situations occur when deep

  12. Correlation and prediction of dynamic human isolated joint strength from lean body mass

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.

    1992-01-01

    A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.

  13. Lithology and Bedrock Geotechnical Properties in Controlling Rock and Ice Mass Movements in Mountain Cryosphere

    NASA Astrophysics Data System (ADS)

    Karki, A.; Kargel, J. S.

    2017-12-01

    Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over

  14. Stress–strain state of adjacent rock mass under slice mining of steeply dipping ore bodies

    NASA Astrophysics Data System (ADS)

    Baryshnikov, VD; Gakhova, LN

    2018-03-01

    Under analysis is the stress state of rock mass surrounding stopes in the initial cutting layer displaced in plan relative to the above-lying extracted layer in the overcut rock mass. The authors determine the boundaries of the post-limiting deformation zones during stoping advance using the Mohr–Coulomb criterion. The sequence of stoping to ensure better support conditions is proposed.

  15. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.

    2012-01-01

    Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.

  16. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    NASA Astrophysics Data System (ADS)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support

  17. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    NASA Astrophysics Data System (ADS)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  18. Coupled thermal-hydrological-mechanical behavior of rock mass surrounding a high-temperature thermal energy storage cavern at shallow depth

    DOE PAGES

    Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo; ...

    2016-01-15

    The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less

  19. Experimental research data on stress state of salt rock mass around an underground excavation

    NASA Astrophysics Data System (ADS)

    Baryshnikov, VD; Baryshnikov, DV

    2018-03-01

    The paper presents the experimental stress state data obtained in surrounding salt rock mass around an excavation in Mir Mine, ALROSA. The deformation characteristics and the values of stresses in the adjacent rock mass are determined. Using the method of drilling a pair of parallel holes in a stressed area, the authors construct linear relationship for the radial displacements of the stress measurement hole boundaries under the short-term loading of the perturbing hole. The resultant elasticity moduli of rocks are comparable with the laboratory core test data. Pre-estimates of actual stresses point at the presence of a plasticity zone in the vicinity of the underground excavation. The stress state behavior at a distance from the excavation boundary disagrees with the Dinnik–Geim hypothesis.

  20. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    NASA Astrophysics Data System (ADS)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  1. In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Hecht, Michael H.; Hurowitz, Joel A.

    2012-01-01

    A miniaturized instrument for performing chemical and isotopic analysis of rocks has been developed. The rock sample is ablated by a laser and the neutral species produced are analyzed using the JPL-invented miniature mass spectrometer. The direct sampling of neutral ablated material and the simultaneous measurement of all the elemental and isotopic species are the novelties of this method. In this laser ablation-miniature mass spectrometer (LA-MMS) method, the ablated neutral atoms are led into the electron impact ionization source of the MMS, where they are ionized by a 70-eV electron beam. This results in a secondary ion pulse typically 10-100 microsecond wide, compared to the original 5-10-nanosecond laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer and measured in parallel by a modified CCD (charge-coupled device) array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LAMMS offers a more quantitative assessment of elemental composition than techniques that detect laser-ionized species produced directly in the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the laser beam, and the ionization energies of the elements. The measurement of high-precision isotopic ratios and elemental composition of different rock minerals by LAMMS method has been demonstrated. The LA-MMS can be applied for the absolute age determination of rocks. There is no such instrument available presently in a miniaturized version that can be used for NASA space missions. Work is in progress in the laboratory for geochronology of rocks using LA-MMS that is based on K-Ar radiogenic dating technique.

  2. Application of Composite Indices for Improving Joint Detection Capabilities of Instrumented Roof Bolt Drills in Underground Mining and Construction

    NASA Astrophysics Data System (ADS)

    Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok

    2018-03-01

    Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.

  3. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less

  4. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Liu, Shanjun; Zhang, Peina; Wu, Lixin; Zhou, Wenhui; Yu, Yinan

    2017-06-01

    Obtaining accurate information on rock mass discontinuities for deformation analysis and the evaluation of rock mass stability is important. Obtaining measurements for high and steep zones with the traditional compass method is difficult. Photogrammetry, three-dimensional (3D) laser scanning and other remote sensing methods have gradually become mainstream methods. In this study, a method that is based on a 3D point cloud is proposed to semi-automatically extract rock mass structural plane information. The original data are pre-treated prior to segmentation by removing outlier points. The next step is to segment the point cloud into different point subsets. Various parameters, such as the normal, dip/direction and dip, can be calculated for each point subset after obtaining the equation of the best fit plane for the relevant point subset. A cluster analysis (a point subset that satisfies some conditions and thus forms a cluster) is performed based on the normal vectors by introducing the firefly algorithm (FA) and the fuzzy c-means (FCM) algorithm. Finally, clusters that belong to the same discontinuity sets are merged and coloured for visualization purposes. A prototype system is developed based on this method to extract the points of the rock discontinuity from a 3D point cloud. A comparison with existing software shows that this method is feasible. This method can provide a reference for rock mechanics, 3D geological modelling and other related fields.

  5. Study of the Rock Mass Failure Process and Mechanisms During the Transformation from Open-Pit to Underground Mining Based on Microseismic Monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Yang, Tianhong; Bohnhoff, Marco; Zhang, Penghai; Yu, Qinglei; Zhou, Jingren; Liu, Feiyue

    2018-05-01

    To quantitatively understand the failure process and failure mechanism of a rock mass during the transformation from open-pit mining to underground mining, the Shirengou Iron Mine was selected as an engineering project case study. The study area was determined using the rock mass basic quality classification method and the kinematic analysis method. Based on the analysis of the variations in apparent stress and apparent volume over time, the rock mass failure process was analyzed. According to the recent research on the temporal and spatial change of microseismic events in location, energy, apparent stress, and displacement, the migration characteristics of rock mass damage were studied. A hybrid moment tensor inversion method was used to determine the rock mass fracture source mechanisms, the fracture orientations, and fracture scales. The fracture area can be divided into three zones: Zone A, Zone B, and Zone C. A statistical analysis of the orientation information of the fracture planes orientations was carried out, and four dominant fracture planes were obtained. Finally, the slip tendency analysis method was employed, and the unstable fracture planes were obtained. The results show: (1) The microseismic monitoring and hybrid moment tensor analysis can effectively analyze the failure process and failure mechanism of rock mass, (2) during the transformation from open-pit to underground mining, the failure type of rock mass is mainly shear failure and the tensile failure is mostly concentrated in the roof of goafs, and (3) the rock mass of the pit bottom and the upper of goaf No. 18 have the possibility of further damage.

  6. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    PubMed

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  7. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    PubMed Central

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166

  8. Calculation of stresses in a rock mass and lining in stagewise face drivage

    NASA Astrophysics Data System (ADS)

    Seryakov, VM; Zhamalova, BR

    2018-03-01

    Using the method of calculating mechanical state of a rock mass for the conditions of stagewise drivage of a production face in large cross-section excavations, the specific features of stress redistribution in lining of excavations are found. The zones of tensile stresses in the lining are detected. The authors discuss the influence of the initial stress state of rocks on the tension stress zones induced in the lining in course of the heading advance

  9. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    NASA Astrophysics Data System (ADS)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  10. A thermomechanical anisotropic model for shock loading of elastic-plastic and elastic-viscoplastic materials with application to jointed rock

    DOE PAGES

    Rubin, M. B.; Vorobiev, O.; Vitali, E.

    2016-04-21

    Here, a large deformation thermomechanical model is developed for shock loading of a material that can exhibit elastic and inelastic anisotropy. Use is made of evolution equations for a triad of microstructural vectors m i(i=1,2,3) which model elastic deformations and directions of anisotropy. Specific constitutive equations are presented for a material with orthotropic elastic response. The rate of inelasticity depends on an orthotropic yield function that can be used to model weak fault planes with failure in shear and which exhibits a smooth transition to isotropic response at high compression. Moreover, a robust, strongly objective numerical algorithm is proposed formore » both rate-independent and rate-dependent response. The predictions of the continuum model are examined by comparison with exact steady-state solutions. Also, the constitutive equations are used to obtain a simplified continuum model of jointed rock which is compared with high fidelity numerical solutions that model a persistent system of joints explicitly in the rock medium.« less

  11. Microseism Induced by Transient Release of In Situ Stress During Deep Rock Mass Excavation by Blasting

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Lu, Wenbo; Chen, Ming; Yan, Peng; Zhou, Chuangbing

    2013-07-01

    During deep rock mass excavation with the method of drill and blast, accompanying the secession of rock fragments and the formation of a new free surface, in situ stress on this boundary is suddenly released within several milliseconds, which is termed the transient release of in situ stress. In this process, enormous strain energy around the excavation face is instantly released in the form of kinetic energy and it inevitably induces microseismic events in surrounding rock masses. Thus, blasting excavation-induced microseismic vibrations in high-stress rock masses are attributed to the combined action of explosion and the transient release of in situ stress. The intensity of stress release-induced microseisms, which depends mainly on the magnitude of the in situ stress and the dimension of the excavation face, is comparable to that of explosion-induced vibrations. With the methods of time-energy density analysis, amplitude spectrum analysis, and finite impulse response (FIR) digital filter, microseismic vibrations induced by the transient release of in situ stress were identified and separated from recorded microseismic signals during a blast of deep rock masses in the Pubugou Hydropower Station. The results show that the low-frequency component in the microseismic records results mainly from the transient release of in situ stress, while the high-frequency component originates primarily from explosion. In addition, a numerical simulation was conducted to demonstrate the occurrence of microseismic events by the transient release of in situ stress, and the results seem to have confirmed fairly well the separated vibrations from microseismic records.

  12. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  13. Stress state of rock mass under open pit mining in the influence zone of tectonic disturbances (in terms of the Oktorkoi Fault, North Tien Shan)

    NASA Astrophysics Data System (ADS)

    Kozhogulov, KCh; Nikolskaya, OV; Rybin, AK; Kuzikov, SI

    2018-03-01

    The qualitative connection between the crack growth direction and the orientation of the main axes of horizontal deformations in rocks mass in the area of the Boordin gold ore province is revealed. The effect of the rock mass quality (RQD) and contact conditions of crack surfaces on the stability index of pit wall rock mass is evaluated, and the influence of the rock mass quality index on the pit wall stability is determined.

  14. Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks

    NASA Astrophysics Data System (ADS)

    Sebastian, Resmi; Sitharam, T. G.

    2018-01-01

    Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.

  15. A model to explain joint patterns found in ignimbrite deposits

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.

    2018-03-01

    The study of fracture systems is of paramount importance for economic applications, such as CO2 storage in rock successions, geothermal and hydrocarbon exploration and exploitation, and also for a better knowledge of seismogenic fault formation. Understanding the origin of joints can be useful for tectonic studies and for a geotechnical characterisation of rock masses. Here, we illustrate a joint pattern discovered in ignimbrite deposits of South America, which can be confused with conjugate tectonic joint sets but which have another origin. The pattern is probably common, but recognisable only in plan view and before tectonic deformation obscures and overprints it. Key sites have been mostly studied by field surveys in Bolivia and Chile. The pattern is represented by hundreds-of-meters up to kilometre-long swarms of master joints, which show circular to semi-circular geometries and intersections that have "X" and "Y" patterns. Inside each swarm, joints are systematic, rectilinear or curvilinear in plan view, and as much as 900 m long. In section view, they are from sub-vertical to vertical and do not affect the underlying deposits. Joints with different orientation mostly interrupt each other, suggesting they have the same age. This joint architecture is here interpreted as resulting from differential contraction after emplacement of the ignimbrite deposit above a complex topography. The set of the joint pattern that has suitable orientation with respect to tectonic stresses may act to nucleate faults.

  16. Dehydration reactions, mass transfer and rock deformation relationships during subduction of Alpine metabauxites: insights from LIBS compositional profiles between metamorphic veins

    NASA Astrophysics Data System (ADS)

    Verlaguet, Anne; Brunet, Fabrice; Goffé, Bruno; Menut, Denis; Findling, Nathaniel; Poinssot, Christophe

    2013-04-01

    In subduction zones, the significant amounts of aqueous fluid released in the course of the successive dehydration reactions occurring during prograde metamorphism are expected to strongly influence the rock rheology, as well as kinetics of metamorphic reactions and mass transfer efficiency. Mineralized veins, ubiquitous in metamorphic rocks, can be seen as preserved witnesses of fluid and mass redistribution that partly accommodate the rock deformation (lateral segregation). However, the driving forces and mechanisms of mass transfer towards fluid-filled open spaces remain somewhat unclear. The aim of this study is to investigate the vein-forming processes and the modalities of mass transfer during local fluid-rock interactions, and their links with fluid production and rock deformation, with new insights from Laser Induced Breakdown Spectroscopy (LIBS) profiles. This study focuses on karstic pockets (metre scale) of Triassic metabauxites embedded in thick carbonate units, that have been isolated from large-scale fluid flow during HP-LT Alpine metamorphism (W. Vanoise, French Alps). These rocks display several generations of metamorphic veins containing various Al-bearing minerals, which give particular insights into mass transfer processes. It is proposed that the internally-derived fluid (~13 vol% produced by successive dehydration reactions) has promoted the opening of fluid-filled open spaces (euhedral habits of vein minerals) and served as medium for diffusive mass transfer from rock to vein. Based on mineralogical and textural features, two vein types can be distinguished: (1) some veins are filled with newly formed products of either prograde (chloritoid) or retrograde (chlorite) metamorphic reactions; in this case, fluid-filled open spaces seem to offer energetically favourable nucleation/growth sites; (2) the second vein type is filled with cookeite (Li-Al-rich chlorite) or pyrophyllite, that were present in the host rock prior to the vein formation. In

  17. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    NASA Astrophysics Data System (ADS)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  18. Geological and geotechnical properties of the medieval rock hewn churches of Lalibela, Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Asrat, Asfawossen; Ayallew, Yodit

    2011-01-01

    Lalibela is a medieval settlement in Northern Ethiopia famous for its 11 beautifully carved rock hewn churches, registered as World Heritage Site in 1978. The rock hewn churches are grouped into three based on their proximity: the Bete Medhane Alem (Church of the Holy Saviour), Bete Gabriel-Rufael (Church of St. Gabriel-Rafael) and Bete Giorgis (Church of St. George) groups. The churches are carved out of a single, massive scoriaceous basalt hill which was deposited along an East-West extending palaeovalley in the Oligo-Miocene Trap basalt of the northwestern Ethiopian plateau. The Rock Mass Rating (RMR) classification scheme was used to classify the rock mass (assuming each church as a separate rock mass) based on their uniaxial compressive strength and the spacing and conditions of discontinuities. Though most of the churches are hewn from medium to high strength rock mass, discontinuities make them vulnerable to other deteriorating agents mainly weathering, and water infiltration. Most of the rock hewn churches are affected by pre-carving cooling joints and bedding plane discontinuities, and by mostly but not necessarily post-carving tectonic and seismic induced cracks and fractures. Material loss due to deep weathering triggered by rain water infiltration and uncontrolled groundwater seepage affects most of the churches, particularly the Bete Merqorios (Church of St. Mark) and Bete Aba Libanos (Church of Father Libanos) churches. The scoriaceous basalt which is porous and permeable allows easy passage of water while the underlying basalt is impermeable, increasing the residence time of water in the porous material, causing deep weathering and subsequent loss of material in some of the churches and adjoining courtyards.

  19. Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix

    USGS Publications Warehouse

    Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.

    2018-01-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.

  20. Hydromechanical Rock Mass Fatigue in Deep-Seated Landslides Accompanying Seasonal Variations in Pore Pressures

    NASA Astrophysics Data System (ADS)

    Preisig, Giona; Eberhardt, Erik; Smithyman, Megan; Preh, Alexander; Bonzanigo, Luca

    2016-06-01

    The episodic movement of deep-seated landslides is often governed by the presence of high pore pressures and reduced effective stresses along active shear surfaces. Pore pressures are subject to cyclic fluctuation under seasonal variations of groundwater recharge, resulting in an intermittent movement characterized by acceleration-deceleration phases. However, it is not always clear why certain acceleration phases reach alarming levels without a clear trigger (i.e., in the absence of an exceptional pore pressure event). This paper presents a conceptual framework linking hydromechanical cycling, progressive failure and fatigue to investigate and explain the episodic behavior of deep-seated landslides using the Campo Vallemaggia landslide in Switzerland as a case study. A combination of monitoring data and advanced numerical modeling is used. The principal processes forcing the slope into a critical disequilibrium state are analyzed as a function of rock mass damage and fatigue. Modeling results suggest that during periods of slope acceleration, the rock slope experiences localized fatigue and gradual weakening through slip along pre-existing natural fractures and yield of critically stressed intact rock bridges. At certain intervals, pockets of critically weakened rock may produce a period of enhanced slope movement in response to a small pore pressure increase similar to those routinely experienced each year. Accordingly, the distribution and connectivity of pre-existing permeable planes of weakness play a central role. These structures are often related to the rock mass's tectonic history or initiate (and dilate) in response to stress changes that disturb the entire slope, such as glacial unloading or seismic loading via large earthquakes. The latter is discussed in detail in a companion paper to this (Gischig et al., Rock Mech Rock Eng, 2015). The results and framework presented further demonstrate that episodic movement and progressive failure of deep

  1. Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.

    PubMed

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.

  2. Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses

    PubMed Central

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683

  3. Dehydration reactions, mass transfer and rock deformation relationships during subduction of Alpine metabauxites: insights from LIBS compositional profiles between metamorphic veins

    NASA Astrophysics Data System (ADS)

    Verlaguet, A.; Brunet, F.; Goffe, B.; Menut, D.; Findling, N.; Poinssot, C.

    2011-12-01

    In subduction zones, the significant amounts of aqueous fluid released in the course of the successive dehydration reactions occurring during prograde metamorphism are expected to strongly influence the rock rheology, as well as kinetics of metamorphic reactions and mass transfer efficiency. Mineralized veins, ubiquitous in metamorphic rocks, can be seen as preserved witnesses of fluid and mass redistribution that partly accommodate the rock deformation (lateral segregation). However, the driving forces and mechanisms of mass transfer towards fluid-filled open spaces remain somewhat unclear. The aim of this study is to investigate the modalities of mass transfer during local fluid-rock interactions, and their links with fluid production and rock deformation. This study focuses on karstic pockets (metre scale) of Triassic metabauxites embedded in thick carbonate units, that have been isolated from large-scale fluid flow during HP-LT Alpine metamorphism (W. Vanoise, French Alps). These rocks display several generations of metamorphic veins containing various Al-bearing minerals, which give particular insights into mass transfer processes. It is proposed that the internally-derived fluid (~13 vol% produced by successive dehydration reactions) has promoted the opening of fluid-filled open spaces (euhedral habits of vein minerals) and served as medium for diffusive mass transfer from rock to vein. Based on mineralogical and textural features, two vein types can be distinguished: (1) some veins are filled with newly formed products of either prograde (chloritoid) or retrograde (chlorite) metamorphic reactions; in this case, fluid-filled open spaces seem to offer energetically favourable nucleation/growth sites; (2) the second vein type is filled with cookeite (Li-Al-rich chlorite) or pyrophyllite, that were present in the host rock prior to the vein formation. In this closed chemical system, mass transfer from rock to vein was achieved through the fluid, in a dissolution

  4. A new method for automatic discontinuity traces sampling on rock mass 3D model

    NASA Astrophysics Data System (ADS)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  5. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  6. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    PubMed

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  7. Development of Helium-Mass-Spectrometry-Permeameter for the Measurement of Permeability of Near-Impermeable Rock

    NASA Astrophysics Data System (ADS)

    Lee, Moo Y.; Bauer, Stephen J.

    2016-12-01

    A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. The Helium-Mass-Spectrometry-Permeameter (HMSP) is duplicating the classic Darcy's experiment with a constant pressure differential and steady-state flow through a sample using helium gas. Under triaxial stress condition, the newly developed HMSP can measure hydraulic permeability of rocks and geomaterials down to the nanoDarcy scale (10-21 m2). The extension of measuring the lower end of the permeability scale may help answer important questions regarding the permeability of rock at great depth where fractures may close completely under high lithostatic stress.

  8. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    NASA Astrophysics Data System (ADS)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  9. Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan

    2016-07-01

    This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.

  10. Numerical Simulation of Rock Mass Damage Evolution During Deep-Buried Tunnel Excavation by Drill and Blast

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Lu, Wenbo; Hu, Yingguo; Chen, Ming; Yan, Peng

    2015-09-01

    Presence of an excavation damage zone (EDZ) around a tunnel perimeter is of significant concern with regard to safety, stability, costs and overall performance of the tunnel. For deep-buried tunnel excavation by drill and blast, it is generally accepted that a combination of effects of stress redistribution and blasting is mainly responsible for development of the EDZ. However, few open literatures can be found to use numerical methods to investigate the behavior of rock damage induced by the combined effects, and it is still far from full understanding how, when and to what degree the blasting affects the behavior of the EDZ during excavation. By implementing a statistical damage evolution law based on stress criterion into the commercial software LS-DYNA through its user-subroutines, this paper presents a 3D numerical simulation of the rock damage evolution of a deep-buried tunnel excavation, with a special emphasis on the combined effects of the stress redistribution of surrounding rock masses and the blasting-induced damage. Influence of repeated blast loadings on the damage extension for practical millisecond delay blasting is investigated in the present analysis. Accompanying explosive detonation and secession of rock fragments from their initial locations, in situ stress in the immediate vicinity of the excavation face is suddenly released. The transient characteristics of the in situ stress release and induced dynamic responses in the surrounding rock masses are also highlighted. From the simulation results, some instructive conclusions are drawn with respect to the rock damage mechanism and evolution during deep-buried tunnel excavation by drill and blast.

  11. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  12. Is rock slope instability in high-mountain systems driven by topo-climatic, paraglacial or rock mechanical factors? - A question of scale!

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Dikau, Richard

    2016-04-01

    spacing, persistence and orientation of joints turned out to be the most causative bedrock properties for the higher-scale rock mass strength. Rock temperature data suggest that high-frequent, surficial thermal processes, daily freeze-thaw cycles and seasonal ice segregation coupled with a winter snow cover are the major rock breakdown mechanisms. By linking the rockwalls' joint geometric pattern to the size and shape of rockfall blocks lying on the corresponding talus slopes, different rockfall magnitudes and frequencies were identified. Here we show, that the decrease in spatial scale is linked with a shift in variable importance, from topo-climatic and paraglacial factors at the largest scale to rock mechanical parameters at the smallest scale. Therefore, to understand the key destabilising factors of rock slopes in mountain systems and the resulting landforms, a holistic research approach is needed which considers the nested, hierarchical structure of geomorphic systems. Messenzehl, K., Meyer, H., Otto, J.-C., Hoffmann, T., Dikau, R., 2015. Regional-scale controls on the spatial activity of rockfalls. (Turtmann valley, Swiss Alps) - A multivariate modelling approach. In: Geomorphology. Messenzehl, K., Draebing, D., 2015. Multidisciplinary investigations on coupled rockwall talus-systems (Turtmann valley, Swiss Alps). Geophysical Research Abstracts, 17 (EGU2015-1935, 2015).

  13. Rock fall dynamics and deposition: an integrated analysis of the 2009 Ahwiyah Point rock fall, Yosemite National Park, USA.

    USGS Publications Warehouse

    Valerie L. Zimmer,; Collins, Brian D.; Greg M. Stock,; Nicholas Sitar,

    2012-01-01

    We analyzed a combination of airborne and terrestrial LiDAR, high-resolution photography, seismic, and acoustic data in order to gain insights into the initiation, dynamics, and talus deposition of a complex rock fall. A large (46 700 m3) rock fall originated from near Ahwiyah Point in eastern Yosemite Valley and fell a total of 730 m to the valley floor on 28 March 2009. Analyses of remote sensing, seismic, and acoustic data were integrated to reconstruct the rock fall, which consisted of (1) the triggering of a 25 400 m3 rock block in an area of intersecting and sometimes highly weathered joint planes, (2) the sliding and subsequent ballistic trajectory of the block from a steeply dipping ledge, (3) dislodging of additional rock from the cliff surface from beneath the rock fall source area, (4) a mid-cliff ledge impact that detached a volume of rock nearly equivalent in volume to the initial block, (5) sliding of the deteriorating rock mass down the remainder of the cliff, and (6) final impact at the base of the cliff that remobilized the existing talus downward and outward and produced an airblast that knocked down hundreds of trees. The depositional geomorphology indicates that the porosity of the fresh talus is significantly lower than that expected for typical blocky talus slopes, likely because the rock debris from this event was pulverized into smaller, more poorly sorted fragments and densified via dynamic compaction when compared to less energetic, fragmental-type rock falls. These results suggest that accumulation of individual rock-fall boulders tends to steepen talus slopes, whereas large, energetic rock falls tend to flatten them. Detachment and impact signals were recorded by seismic and acoustic instruments and highlight the potential use of this type of instrumentation for generalized rock fall monitoring, while LiDAR and photography data were able to quantify the cliff geometry, rock fall volume, source and impact locations, and

  14. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures

    NASA Astrophysics Data System (ADS)

    Brideau, Marc-André; Yan, Ming; Stead, Doug

    2009-01-01

    Rock slope failures are frequently controlled by a complex combination of discontinuities that facilitate kinematic release. These discontinuities are often associated with discrete folds, faults, and shear zones, and/or related tectonic damage. The authors, through detailed case studies, illustrate the importance of considering the influence of tectonic structures not only on three-dimensional kinematic release but also in the reduction of rock mass properties due to induced damage. The case studies selected reflect a wide range of rock mass conditions. In addition to active rock slope failures they include two major historic failures, the Hope Slide, which occurred in British Columbia in 1965 and the Randa rockslides which occurred in Switzerland in 1991. Detailed engineering geological mapping combined with rock testing, GIS data analysis and for selected case numerical modelling, have shown that specific rock slope failure mechanisms may be conveniently related to rock mass classifications such as the Geological Strength Index (GSI). The importance of brittle intact rock fracture in association with pre-existing rock mass damage is emphasized though a consideration of the processes involved in the progressive-time dependent development not only of though-going failure surfaces but also lateral and rear-release mechanisms. Preliminary modelling data are presented to illustrate the importance of intact rock fracture and step-path failure mechanisms; and the results are discussed with reference to selected field observations. The authors emphasize the importance of considering all forms of pre-existing rock mass damage when assessing potential or operative failure mechanisms. It is suggested that a rock slope rock mass damage assessment can provide an improved understanding of the potential failure mode, the likely hazard presented, and appropriate methods of both analysis and remedial treatment.

  15. Rock Slide Risk Assessment: A Semi-Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Duzgun, H. S. B.

    2009-04-01

    Rock slides can be better managed by systematic risk assessments. Any risk assessment methodology for rock slides involves identification of rock slide risk components, which are hazard, elements at risk and vulnerability. For a quantitative/semi-quantitative risk assessment for rock slides, a mathematical value the risk has to be computed and evaluated. The quantitative evaluation of risk for rock slides enables comparison of the computed risk with the risk of other natural and/or human-made hazards and providing better decision support and easier communication for the decision makers. A quantitative/semi-quantitative risk assessment procedure involves: Danger Identification, Hazard Assessment, Elements at Risk Identification, Vulnerability Assessment, Risk computation, Risk Evaluation. On the other hand, the steps of this procedure require adaptation of existing or development of new implementation methods depending on the type of landslide, data availability, investigation scale and nature of consequences. In study, a generic semi-quantitative risk assessment (SQRA) procedure for rock slides is proposed. The procedure has five consecutive stages: Data collection and analyses, hazard assessment, analyses of elements at risk and vulnerability and risk assessment. The implementation of the procedure for a single rock slide case is illustrated for a rock slope in Norway. Rock slides from mountain Ramnefjell to lake Loen are considered to be one of the major geohazards in Norway. Lake Loen is located in the inner part of Nordfjord in Western Norway. Ramnefjell Mountain is heavily jointed leading to formation of vertical rock slices with height between 400-450 m and width between 7-10 m. These slices threaten the settlements around Loen Valley and tourists visiting the fjord during summer season, as the released slides have potential of creating tsunami. In the past, several rock slides had been recorded from the Mountain Ramnefjell between 1905 and 1950. Among them

  16. Estimating Tunnel Strain in the Weak and Schistose Rock Mass Influenced by Stress Anisotropy: An Evaluation Based on Three Tunnel Cases from Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, Krishna Kanta; Shrestha, Pawan Kumar

    2018-06-01

    Total plastic deformation in tunnels passing through weak and schistose rock mass consists of both time-independent and time-dependent deformations. The extent of this total deformation is heavily influenced by the rock mass deformability properties and in situ stress condition prevailing in the area. If in situ stress is not isotropic, the deformation magnitude is not only different along the longitudinal alignment but also along the periphery of the tunnel wall. This manuscript first evaluates the long-term plastic deformation records of three tunnel projects from the Nepal Himalaya and identifies interlink between the time-independent and time-dependent deformations using the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech 24(3):145-154, 1987a, Int J Rock Mech Min Sci Geomech 24(3):155-164, 1987b). Secondly, the manuscript attempts to establish a correlation between plastic deformations (tunnel strain) and rock mass deformable properties, support pressure and in situ stress conditions. Finally, patterns of time-independent and time-dependent plastic deformations are also evaluated and discussed. The long-term plastic deformation records of 24 tunnel sections representing four different rock types of three different headrace tunnel cases from Nepal Himalaya are extensively used in this endeavor. The authors believe that the proposed findings will be a step further in analysis of plastic deformations in tunnels passing through weak and schistose rock mass and along the anisotropic stress conditions.

  17. Back-analysis of a large landslide in a heterogeneous rock mass

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Gamba, Alberto; Pizziolo, Marco

    2014-05-01

    On April 6, 2013 a large landslide occurred on the mountainside about 2 km above Castel dell'Alpi, a small community located on the Savena River valley (Province of Bologna, Northern Apennines, Italy). Three houses collapsed, two were seriously damaged, and the existing roads and infrastructures were destroyed. The landslide was a massive rotational slide about 900 m long, 600 m wide and covering an area of 0.3 km2. The estimated volume was about 3 million cubic meters. According to eyewitnesses, diffuse ground deformations appeared in the morning of April 6 along the road that runs at the toe of the slope, and became more and more prominent during the afternoon. The landslide suddenly accelerated during the night and moved downslope 50 to 100 m in a few hours. Fortunately, residents were alerted by the sound of cracking wood and left their houses in time, thus resulted in no fatalities or injuries. The landslide created a large, bowl-shaped scar with a steep scarp about 70 m height and 800 m long. The head of the landslide moved almost vertically downward and tilted backwards, while ground bulging and compressive structures occurred at the toe. These kinematic features indicate a strong rotational component of the slide, although the high degree of internal deformation suggests a non-perfectly circular slip surface. It is well known that rotational slides tend to occur in deep homogeneous material such as thick clay soils, weak rocks, or artificial fills. In this case, however, the failure involved a strongly heterogeneous flysch, apparently characterized by good mechanical resistance. The rock belongs to the Monghidoro Formation (Cretaceous sup.-Paleocene) and consists of thinly interbedded sandstone, marl, and shale. The rock mass outcropping on the main scarp is only slight to moderately weathered, with nearly-horizontal bedding planes. Therefore, failure conditions were probably reached within the "fresh" material and, despite its heterogeneity, the flysch

  18. Rock Mass Grouting in the Løren Tunnel: Case Study with the Main Focus on the Groutability and Feasibility of Drill Parameter Interpretation

    NASA Astrophysics Data System (ADS)

    Høien, Are Håvard; Nilsen, Bjørn

    2014-05-01

    The Løren road tunnel is a part of a major project at Ring road 3 in Oslo, Norway. The rock part of the tunnel is 915 m long and has two tubes with three lanes and breakdown lanes. Strict water ingress restriction was specified and continuous rock mass grouting was, therefore, carried out for the entire tunnel, which was excavated in folded Cambro-Silurian shales intruded by numerous dykes. This paper describes the rock mass grouting that was carried out for the Løren tunnel. Particular emphasis is placed on discussing grout consumption and the challenges that were encountered when passing under a distinct rock depression. Measurement while drilling (MWD) technology was used for this project, and, in this paper, the relationships between the drill parameter interpretation (DPI) factors water and fracturing are examined in relation to grout volumes. A lowering of the groundwater table was experienced during excavation under the rock depression, but the groundwater was nearly re-established after completion of the main construction work. A planned 80-m watertight concrete lining was not required to be built due to the excellent results from grouting in the rock depression area. A relationship was found between leakages mapped in the tunnel and the DPI water factor, indicating that water is actually present where the DPI water factor shows water in the rock. It is concluded that, for the Løren tunnel, careful planning and high-quality execution of the rock mass grouting made the measured water ingress meet the restrictions. For future projects, the DPI water factor may be used to give a better understanding of the material in which the rock mass grouting is performed and may also be used to reduce the time spent and volumes used when grouting.

  19. The fracture criticality of crustal rocks

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart

    1994-08-01

    The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before

  20. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    NASA Astrophysics Data System (ADS)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  1. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    NASA Astrophysics Data System (ADS)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    Hydropower reservoirs in deep gorges usually experience slope failures and mass movements. History also showed that some of these projects suffered severe landslides, which left lots of victims and enormous economic loss. Thus, it became vital to make substantial slope stability studies in such reservoirs to ensure safe project development. This study also presents a regional scale instability assessment of the Tekeze Hydropower reservoir slopes. Tekeze hydropower project is a newly constructed double arch dam that completed in August 2009. It is developed on Tekeze River, tributary of Blue Nile River that runs across the northern highlands of Ethiopia. It cuts a savage gorge 2000m deep, the deepest canyon in Africa. The dam is the highest dam in Ethiopia at 188m, 10 m higher than China's Three Gorges Dam. It is being developed by Chinese company at a cost of US350M. The reservoir is designed at 1140 m elevation, as retention level to store more than 9000 million m3 volume of water that covers an area of 150 km2, mainly in channel filling form. In this study, generation of digital elevation model from ASTER satellite imagery and surface field investigation is initially considered for further image processing and terrain parameters' analyses. Digitally processed multi spectral ASTER ortho-images drape over the DEM are used to have different three dimensional perspective views in interpreting lithological, structural and geomorphological features, which are later verified by field mapping. Terrain slopes are also delineated from the relief scene. A GIS database is ultimately developed to facilitate the delineation of geotechnical units for slope rock mass classification. Accordingly, 83 geotechnical units are delineated and, within them, 240 measurement points are established to quantify in-situ geotechnical parameters. Due to geotechnical uncertainties, four classification systems; namely geomorphic rock mass strength classification (RMS), slope mass rating (SMR

  2. The role of post-failure brittleness of soft rocks in the assessment of stability of intact masses: FDEM technique applications to ideal problems

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Andriani, Gioacchino Francesco; Fazio, Nunzio Luciano; Perrotti, Michele

    2016-04-01

    Strain-softening under low confinement stress, i.e. the drop of strength that occurs in the post-failure stage, represents a key factor of the stress-strain behavior of rocks. However, this feature of the rock behavior is generally underestimated or even neglected in the assessment of boundary value problems of intact soft rock masses. This is typically the case when the stability of intact rock masses is treated by means of limit equilibrium or finite element analyses, for which rigid-plastic or elastic perfectly-plastic constitutive models, generally implementing peak strength conditions of the rock, are respectively used. In fact, the aforementioned numerical techniques are characterized by intrinsic limitations that do not allow to account for material brittleness, either for the method assumptions or due to numerical stability problems, as for the case of the finite element method, unless sophisticated regularization techniques are implemented. However, for those problems that concern the stability of intact soft rock masses at low stress levels, as for example the stability of shallow underground caves or that of rock slopes, the brittle stress-strain response of rock in the post-failure stage cannot be disregarded due to the risk of overestimation of the stability factor. This work is aimed at highlighting the role of post-peak brittleness of soft rocks in the analysis of specific ideal problems by means of the use of a hybrid finite-discrete element technique (FDEM) that allows for the simulation of the rock stress-strain brittle behavior in a proper way. In particular, the stability of two ideal cases, represented by a shallow underground rectangular cave and a vertical cliff, has been analyzed by implementing a post-peak brittle behavior of the rock and the comparison with a non-brittle response of the rock mass is also explored. To this purpose, the mechanical behavior of a soft calcarenite belonging to the Calcarenite di Gravina formation, extensively

  3. Rock Mass Behavior Under Hydropower Embankment Dams: A Two-Dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A.; Ask, M. V. S.; Dahlström, L.-O.; Nordlund, E.

    2012-09-01

    Sweden has more than 190 large hydropower dams, of which about 50 are pure embankment dams and over 100 are concrete/embankment dams. This paper presents results from conceptual analyses of the response of typical Swedish rock mass to the construction of a hydropower embankment dam and its first stages of operation. The aim is to identify locations and magnitudes of displacements that are occurring in the rock foundation and grout curtain after construction of the dam, the first filling of its water reservoir, and after one seasonal variation of the water table. Coupled hydro-mechanical analysis was conducted using the two-dimensional distinct element program UDEC. Series of the simulations have been performed and the results show that the first filling of the reservoir and variation of water table induce largest magnitudes of displacement, with the greatest values obtained from the two models with high differential horizontal stresses and smallest spacing of sub-vertical fractures. These results may help identifying the condition of the dam foundation and contribute to the development of proper maintenance measures, which guarantee the safety and functionality of the dam. Additionally, newly developed dams may use these results for the estimation of the possible response of the rock foundation to the construction.

  4. Rock discontinuity surface roughness variation with scale

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We

  5. Selection of basic data for numerical modeling of rock mass stress state at Mirny Mining and Processing Works, Alrosa Group of Companies

    NASA Astrophysics Data System (ADS)

    Bokiy, IB; Zoteev, OV; Pul, VV; Pul, EK

    2018-03-01

    The influence of structural features on the strength and elasticity modulus is studied in rock mass in the area of Mirny Mining and Processing Works. The authors make recommendations on the values of physical properties of rocks.

  6. Sinkhole susceptibility in carbonate rocks of the Apulian karst (southern Italy)

    NASA Astrophysics Data System (ADS)

    Di Santo, Antonio; Fazio, Nunzio L.; Fiore, Antonio; Lollino, Piernicola; Luisi, Michele; Miccoli, Maria N.; Pagliarulo, Rosa; Parise, Mario; Perrotti, Michele; Pisano, Luca; Spalluto, Luigi; Vennari, Carmela; Vessia, Giovanna

    2016-04-01

    modelling the instability processes, and the development of charts for a preliminary evaluation of the stability of underground caves. Two distinct approaches were established to take into account the different petrographic, structural and geotechnical features of both the hard and soft carbonate rocks. The approach dealing with hard carbonate rocks (where natural karst caves develop) is based on speleological and geometrical surveys of the caves and on an integrated geological and geomechanical characterization of the carbonate rock mass, aimed at individuating the main critical aspects of the karst caves in terms of likely effects on the society. On the other hand, the approach to verify the stability of soft rocks where artificial cavities have been excavated is mostly dependent upon the peculiar petrographic and geomechanical characteristics of the calcarenite rock mass, typically massive and unaffected by tectonic discontinuities. As a consequence, the traditional analytical methods of rock mass classification fail in these materials, since the rock strength of soft calcarenites is mostly dependent upon sediment texture, porosity type and distribution and degree of cementation. The fluid circulation into the rock mass is also important because the removal of the rock matrix may induce a rapid deterioration of the mechanical behaviour of the rock mass. The approach to the calcarenite is mostly based on the characterization of petrographic and geotechnical parameters by means of direct sampling from the rock walls and in situ surveys (wells, trenches, etc.). Through implementation of the two approaches, our goal is to reconstruct accurate geometrical, geological and geotechnical models for both natural caves and artificial cavities. These models will be useful also to plan specific monitoring activities in order to understand the development of underground instability, and the related evolution through the rock mass, possibly threatening the urban areas and

  7. Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Vinciguerra, S.

    2017-08-01

    The characterization of the fracturing state of a potentially unstable rock cliff is a crucial requirement for stability assessments and mitigation purposes. Classical measurements of fracture location and orientation can however be limited by inaccessible rock exposures. The steep topography and high-rise morphology of these cliffs, together with the widespread presence of fractures, can additionally condition the success of geophysical prospecting on these sites. In order to mitigate these limitations, an innovative approach combining noncontact geomechanical measurements, active and passive seismic surveys, and 3-D numerical modeling is proposed in this work to characterize the 3-D fracture setting of an unstable rock mass, located in NW Italian Alps (Madonna del Sasso, VB). The 3-D fracture geometry was achieved through a combination of field observations and noncontact geomechanical measurements on oriented pictures of the cliff, resulting from a previous laser-scanning and photogrammetric survey. The estimation of fracture persistence within the rock mass was obtained from surface active seismic surveys. Ambient seismic noise and earthquakes recordings were used to assess the fracture control on the site response. Processing of both data sets highlighted the resonance properties of the unstable rock volume decoupling from the stable massif. A finite element 3-D model of the site, including all the retrieved fracture information, enabled both validation and interpretation of the field measurements. The integration of these different methodologies, applied for the first time to a complex 3-D prone-to-fall mass, provided consistent information on the internal fracturing conditions, supplying key parameters for future monitoring purposes and mitigation strategies.

  8. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement.

    PubMed

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-10-15

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.

  9. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement

    PubMed Central

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-01-01

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits. PMID:24966447

  10. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  11. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  12. Analysis of rock mass dynamic impact influence on the operation of a powered roof support control system

    NASA Astrophysics Data System (ADS)

    Szurgacz, Dawid; Brodny, Jaroław

    2018-01-01

    A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.

  13. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  14. Impact of rock mass temperature on potential power and electricity generation in the ORC installation

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Michał

    2017-11-01

    The basic source of information for determining the temperature distribution in the rock mass and thus the potential for thermal energy contained in geothermal water conversion to electricity, are: temperature measurements in stable geothermic conditions, temperature measurements in unstable conditions, measurements of maximum temperatures at the bottom of the well. Incorrect temperature estimation can lead to errors during thermodynamic parameters calculation and consequently economic viability of the project. The analysis was performed for the geothermal water temperature range of 86-100°C, for dry working fluid R245fa. As a result of the calculations, the data indicate an increase in geothermal power as the geothermal water temperature increases. At 86°C, the potential power is 817.48 kW, increases to 912.20 kW at 88°C and consequently to 1 493.34 kW at 100°C. These results are not surprising, but show a scale of error in assessing the potential that can result improper interpretation of the rock mass and geothermal waters temperature.

  15. Modeling stress–strain state of rock mass under mining of complex-shape extraction pillar

    NASA Astrophysics Data System (ADS)

    Fryanov, VN; Pavlova, LD

    2018-03-01

    Based on the results of numerical modeling of stresses and strains in rock mass, geomechanical parameters of development workings adjacent to coal face operation area are provided for multi-entry preparation and extraction of flat seams with production faces of variable length. The negative effects on the geomechanical situation during the transition from the longwall to shortwall mining in a fully mechanized extraction face are found.

  16. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  17. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  18. The Joint Effects of Body Mass Index and MAOA Gene Polymorphism on Depressive Symptoms.

    PubMed

    Liu, Yangyang

    2015-07-01

    The objective of the present study was to examine the joint effects of the body mass index and the MAOA gene polymorphism on depressive symptoms. In two independent Chinese samples, we measured adolescents' depressive symptoms and body mass index and collected their DNA. The results indicated that the main effects of the MAOA gene polymorphism on depressive symptoms were significant. However, the main effects of body mass index and the interaction of the MAOA gene polymorphism and body mass index on depressive symptoms were not significant. By using Chinese adolescents, this study confirmed that the MAOA gene polymorphism directly influenced adolescents' depressive symptoms.

  19. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  20. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  1. Seismic response of rock slopes: Numerical investigations on the role of internal structure

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Applegate, K.; Gibson, M.; Wartman, J.; Adams, S.; Maclaughlin, M.; Smith, S.; Keefer, D. K.

    2013-12-01

    The stability of rock slopes is significantly influenced and often controlled by the internal structure of the slope created by such discontinuities as joints, shear zones, and faults. Under seismic conditions, these discontinuities influence both the resistance of a slope to failure and its response to dynamic loading. The dynamic response, which can be characterized by the slope's natural frequency and amplification of ground motion, governs the loading experienced by the slope in a seismic event and, therefore, influences the slope's stability. In support of the Network for Earthquake Engineering Simulation (NEES) project Seismically-Induced Rock Slope Failure: Mechanisms and Prediction (NEESROCK), we conducted a 2D numerical investigation using the discrete element method (DEM) coupled with simple discrete fracture networks (DFNs). The intact rock mass is simulated with a bonded assembly of discrete particles, commonly referred to as the bonded-particle model (BPM) for rock. Discontinuities in the BPM are formed by the insertion of smooth, unbonded contacts along specified planes. The influence of discontinuity spacing, orientation, and stiffness on slope natural frequency and amplification was investigated with the commercially available Particle Flow Code (PFC2D). Numerical results indicate that increased discontinuity spacing has a non-linear effect in decreasing the amplification and increasing the natural frequency of the slope. As discontinuity dip changes from sub-horizontal to sub-vertical, the slope's level of amplification increases while the natural frequency of the slope decreases. Increased joint stiffness decreases amplification and increases natural frequency. The results reveal that internal structure has a strong influence on rock slope dynamics that can significantly change the system's dynamic response and stability during seismic loading. Financial support for this research was provided by the United States National Science Foundation (NSF

  2. Body mass and weight thresholds for increased prosthetic joint infection rates after primary total joint arthroplasty.

    PubMed

    Lübbeke, Anne; Zingg, Matthieu; Vu, Diemlan; Miozzari, Hermes H; Christofilopoulos, Panayiotis; Uçkay, Ilker; Harbarth, Stephan; Hoffmeyer, Pierre

    2016-01-01

    Obesity increases the risk of deep infection after total joint arthroplasty (TJA). Our objective was to determine whether there may be body mass index (BMI) and weight thresholds indicating a higher prosthetic joint infection rate. We included all 9,061 primary hip and knee arthroplasties (mean age 70 years, 61% women) performed between March 1996 and December 2013 where the patient had received intravenous cefuroxime (1.5 g) perioperatively. The main exposures of interest were BMI (5 categories: < 24.9, 25-29.9, 30-34.9, 35-39.9, and ≥ 40) and weight (5 categories: < 60, 60-79, 80-99, 100-119, and ≥ 120 kg). Numbers of TJAs according to BMI categories (lowest to highest) were as follows: 2,956, 3,350, 1,908, 633, and 214, respectively. The main outcome was prosthetic joint infection. The mean follow-up time was 6.5 years (0.5-18 years). 111 prosthetic joint infections were observed: 68 postoperative, 16 hematogenous, and 27 of undetermined cause. Incidence rates were similar in the first 3 BMI categories (< 35), but they were twice as high with BMI 35-39.9 (adjusted HR = 2.1, 95% CI: 1.1-4.3) and 4 times higher with BMI ≥ 40 (adjusted HR = 4.2, 95% CI: 1.8-9.7). Weight ≥ 100 kg was identified as threshold for a significant increase in infection from the early postoperative period onward (adjusted HR = 2.1, 95% CI: 1.3-3.6). BMI ≥ 35 or weight ≥ 100 kg may serve as a cutoff for higher perioperative dosage of antibiotics.

  3. Landslides and rock fall processes in the proglacial area of the Gepatsch glacier, Tyrol, Austria - Quantitative assessment of controlling factors and process rates

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2013-04-01

    Due to the rapid deglaciation since 1850, lithological structures and topoclimatic factors, mass movements like rock fall, landslides and complex processes are important contributing factors to sediment transport and modification of the earth's surface in the steep, high mountain catchment of the Gepatsch reservoir. Contemporary geotechnical processes, mass movement deposits, their source areas, and controlling factors like material properties and relief parameters are mapped in the field, on Orthofotos and on digital elevation models. The results are presented in an Arc-Gis based geotechnical map. All mapped mass movements are stored in an Arc-Gis geodatabase and can be queried regarding properties, volume and controlling factors, so that statistical analyses can be conducted. The assessment of rock wall retreat rates is carried out by three different methods in multiple locations, which differ in altitude, exposition, lithology and deglaciation time: Firstly, rock fall processes and rates are investigated in detail on five rock fall collector nets with an overall size of 750 m2. Rock fall particles are gathered, weighed and grain size distribution is detected by sieving and measuring the diameter of the particles to distinct between rock fall processes and magnitudes. Rock wall erosion processes like joint formation and expansions are measured with high temporal resolution by electrical crack meters, together with rock- and air temperature. Secondly, in cooperation with the other working groups in the PROSA project, rock fall volumes are determined with multitemporal terrestrial laserscanning from several locations. Lately, already triggered rock falls are accounted by mapping the volume of the deposit and calculating of the bedrock source area. The deposition time span is fixed by consideration of the late Holocene lateral moraines and analysing historical aerial photographs, so that longer term rock wall retreat rates can be calculated. In order to limit

  4. Triggering effect of mining at different horizons in the rock mass with excavations. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eremin, M. O.; Makarov, P. V.

    2017-12-01

    On the basis of a quite simple structural model of rock mass, containing coal seams on two horizons, coal mining is numerically modeled. A finite difference numerical technique is applied. At first, mining starts at the upper horizon and then moves to the lower horizon. It is shown that a mining process at the lower horizon has a significant triggering influence on the growth of damage zones in the roof and floor at the upper horizon. The features of spatiotemporal migration of deformation activity are studied numerically. Foci of large-scale fracture are located at the boundary of the seismic silence zone and the zone where the deformation activity migrates. This boundary has an additional characteristic: the maximum gradient of rock pressure is observed in this zone.

  5. Simulation of Asymmetric Destabilization of Mine-void Rock Masses Using a Large 3D Physical Model

    NASA Astrophysics Data System (ADS)

    Lai, X. P.; Shan, P. F.; Cao, J. T.; Cui, F.; Sun, H.

    2016-02-01

    When mechanized sub-horizontal section top coal caving (SSTCC) is used as an underground mining method for exploiting extremely steep and thick coal seams (ESTCS), a large-scale surrounding rock caving may be violently created and have the potential to induce asymmetric destabilization from mine voids. In this study, a methodology for assessing the destabilization was developed to simulate the Weihuliang coal mine in the Urumchi coal field, China. Coal-rock mass and geological structure characterization were integrated with rock mechanics testing for assessment of the methodology and factors influencing asymmetric destabilization. The porous rock-like composite material ensured accuracy for building a 3D geological physical model of mechanized SSTCC by combining multi-mean timely track monitoring including acoustic emission, crack optical acquirement, roof separation observation, and close-field photogrammetry. An asymmetric 3D modeling analysis for destabilization characteristics was completed. Data from the simulated hydraulic support and buried pressure sensor provided effective information that was linked with stress-strain relationship of the working face in ESTCS. The results of the 3D physical model experiments combined with hybrid statistical methods were effective for predicting dynamic hazards in ESTCS.

  6. Example Building Damage Caused by Mining Exploitation in Disturbed Rock Mass

    NASA Astrophysics Data System (ADS)

    Florkowska, Lucyna

    2013-06-01

    Issues concerning protection of buildings against the impact of underground coal mining pose significant scientific and engineering challenges. In Poland, where mining is a potent and prominent industry assuring domestic energy security, regions within reach of mining influences are plenty. Moreover, due to their industrial character they are also densely built-up areas. Because minerals have been extracted on an industrial scale in majority of those areas for many years, the rock mass structure has been significantly disturbed. Hence, exploitation of successive layers of multi-seam deposits might cause considerable damage - both in terms of surface and existing infrastructure networks. In the light of those facts, the means of mining and building prevention have to be improved on a regular basis. Moreover, they have to be underpinned by reliable analyses holistically capturing the comprehensive picture of the mining, geotechnical and constructional situation of structures. Scientific research conducted based on observations and measurements of mining-induced strain in buildings is deployed to do just that. Presented in this paper examples of damage sustained by buildings armed with protection against mining influences give an account of impact the mining exploitation in disturbed rock mass can have. This paper is based on analyses of mining damage to church and Nursing Home owned by Evangelical Augsburg Parish in Bytom-Miechowice. Neighbouring buildings differ in the date they were built, construction, building technology, geometry of the building body and fitted protection against mining damage. Both the buildings, however, have sustained lately significant deformation and damage caused by repeated mining exploitation. Selected damage has been discussed hereunder. The structures have been characterised, their current situation and mining history have been outlined, which have taken their toll on character and magnitude of damage. Description has been supplemented

  7. Influence of continuous deformations and tremors of rock mass on a building. Case study

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Piotr

    2018-04-01

    This work presents an exemplary analysis of the influence of mining exploitations on a building. Continuous deformations of the ground surface in the location of the object were considered. Analysis of the impact of tremors of rock mass on the object was performed. The results of calculations as well as the measurements of surface vibrations accelerations were taken into account. The performed analyses show the influence of a fault on increase of vibrations accelerations.

  8. Behavioral effect of knee joint motion on body's center of mass during human quiet standing.

    PubMed

    Yamamoto, Akio; Sasagawa, Shun; Oba, Naoko; Nakazawa, Kimitaka

    2015-01-01

    The balance control mechanism during upright standing has often been investigated using single- or double-link inverted pendulum models, involving the ankle joint only or both the ankle and hip joints, respectively. Several studies, however, have reported that knee joint motion during quiet standing cannot be ignored. This study aimed to investigate the degree to which knee joint motion contributes to the center of mass (COM) kinematics during quiet standing. Eight healthy adults were asked to stand quietly for 30s on a force platform. Angular displacements and accelerations of the ankle, knee, and hip joints were calculated from kinematic data obtained by a motion capture system. We found that the amplitude of the angular acceleration was smallest in the ankle joint and largest in the hip joint (ankle < knee < hip). These angular accelerations were then substituted into three biomechanical models with or without the knee joint to estimate COM acceleration in the anterior-posterior direction. Although the "without-knee" models greatly overestimated the COM acceleration, the COM acceleration estimated by the "with-knee" model was similar to the actual acceleration obtained from force platform measurement. These results indicate substantial effects of knee joint motion on the COM kinematics during quiet standing. We suggest that investigations based on the multi-joint model, including the knee joint, are required to reveal the physiologically plausible balance control mechanism implemented by the central nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Solid images generated from UAVs to analyze areas affected by rock falls

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Manconi, Andrea; Allasia, Paolo; Baldo, Marco

    2015-04-01

    The study of rock fall affected areas is usually based on the recognition of principal joints families and the localization of potential instable sectors. This requires the acquisition of field data, although as the areas are barely accessible and field inspections are often very dangerous. For this reason, remote sensing systems can be considered as suitable alternative. Recently, Unmanned Aerial Vehicles (UAVs) have been proposed as platform to acquire the necessary information. Indeed, mini UAVs (in particular in the multi-rotors configuration) provide versatility for the acquisition from different points of view a large number of high resolution optical images, which can be used to generate high resolution digital models relevant to the study area. By considering the recent development of powerful user-friendly software and algorithms to process images acquired from UAVs, there is now a need to establish robust methodologies and best-practice guidelines for correct use of 3D models generated in the context of rock fall scenarios. In this work, we show how multi-rotor UAVs can be used to survey areas by rock fall during real emergency contexts. We present two examples of application located in northwestern Italy: the San Germano rock fall (Piemonte region) and the Moneglia rock fall (Liguria region). We acquired data from both terrestrial LiDAR and UAV, in order to compare digital elevation models generated with different remote sensing approaches. We evaluate the volume of the rock falls, identify the areas potentially unstable, and recognize the main joints families. The use on is not so developed but probably this approach can be considered the better solution for a structural investigation of large rock walls. We propose a methodology that jointly considers the Structure from Motion (SfM) approach for the generation of 3D solid images, and a geotechnical analysis for the identification of joint families and potential failure planes.

  10. The Alteration History of Clovis Class Rocks in Gusev Crater as Determined by Ti-Normalzed Mass Balance Analysis

    NASA Technical Reports Server (NTRS)

    Sutter, Brat; Ming, Douglas W.; Niles, P. B.; Golden, D. C.

    2012-01-01

    The West Spur Clovis class rocks in Gusev Crater are some of the most altered rocks in Gusev Crater and likely contain a mixed sulfate and phyllosilicate mineralogy [1,2]. The high S and Cl content of the Clovis rocks suggests that acidic vapors or fluids of H2SO4 and HCl reacted with the Clovis parent rock to form Ca, Mg,- sulfates, iron-oxyhydroxides and secondary aluminosilicates (approx.60 wt.%) of a poorly crystalline nature (e.g., allophane) [1]. Up to 14-17 wt.% phyllosilicates (e.g., kaolinite, chlorite, serpentine) are hypothesized to exist in the Clovis materials suggesting that Clovis parent materials while possibly exposed to acidic pHs were likely neutralized by basalt dissolution which resulted in mildly acidic pHs (4-6) [1, 2]. This work proposes that subsequent to the alteration of the Clovis rocks, alteration fluids became concentrated in ions resulting in the addition of silicate and salts. The objective of this work is to utilize Ti-normalized mass balance analysis to evaluate (1) mineral gains and losses and (2) elemental gains and losses in the Clovis rocks. Results of this work will be used evaluate the nature of geochemical conditions that affect phyllosilicate and sulfate formation at Gusev crater.

  11. Coupling photogrammetric data with DFN-DEM model for rock slope hazard assessment

    NASA Astrophysics Data System (ADS)

    Donze, Frederic; Scholtes, Luc; Bonilla-Sierra, Viviana; Elmouttie, Marc

    2013-04-01

    Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques [Poropat, 2001] and coupled DFN-DEM models [Harthong et al., 2012] provides a methodology that can be applied to complex 3D configurations. DFN-DEM formulation [Scholtès & Donzé, 2012a,b] has been chosen for modeling since it can explicitly take into account the fracture sets. Analyses conducted in 3D can produce very complex and unintuitive failure mechanisms. Therefore, a modeling strategy must be established in order to identify the key features which control the stability. For this purpose, a realistic case is presented to show the overall methodology from the photogrammetry acquisition to the mechanical modeling. By combining Sirovision and YADE Open DEM [Kozicki & Donzé, 2008, 2009], it can be shown that even for large camera to rock slope ranges (tested about one kilometer), the accuracy of the data are sufficient to assess the role of the structures on the stability of a jointed rock slope. In this case, on site stereo pairs of 2D images were taken to create 3D surface models. Then, digital identification of structural features on the unstable block zone was processed with Sirojoint software [Sirovision, 2010]. After acquiring the numerical topography, the 3D digitalized and meshed surface was imported into the YADE Open DEM platform to define the studied rock mass as a closed (manifold) volume to define the bounding volume for numerical modeling. The discontinuities were then imported as meshed planar elliptic surfaces into the model. The model was then submitted to gravity loading. During this step, high values of cohesion were assigned to the discontinuities in order to avoid failure or block displacements triggered by inertial effects. To assess the respective role of the pre-existing discontinuities in the block stability, different configurations have been tested as well as different degree of

  12. Body mass and weight thresholds for increased prosthetic joint infection rates after primary total joint arthroplasty

    PubMed Central

    Lübbeke, Anne; Zingg, Matthieu; Vu, Diemlan; Miozzari, Hermes H; Christofilopoulos, Panayiotis; Uçkay, Ilker; Harbarth, Stephan; Hoffmeyer, Pierre

    2016-01-01

    Background and purpose — Obesity increases the risk of deep infection after total joint arthroplasty (TJA). Our objective was to determine whether there may be body mass index (BMI) and weight thresholds indicating a higher prosthetic joint infection rate. Patients and methods — We included all 9,061 primary hip and knee arthroplasties (mean age 70 years, 61% women) performed between March 1996 and December 2013 where the patient had received intravenous cefuroxime (1.5 g) perioperatively. The main exposures of interest were BMI (5 categories: < 24.9, 25–29.9, 30–34.9, 35–39.9, and ≥ 40) and weight (5 categories: < 60, 60–79, 80–99, 100–119, and ≥ 120 kg). Numbers of TJAs according to BMI categories (lowest to highest) were as follows: 2,956, 3,350, 1,908, 633, and 214, respectively. The main outcome was prosthetic joint infection. The mean follow-up time was 6.5 years (0.5–18 years). Results — 111 prosthetic joint infections were observed: 68 postoperative, 16 hematogenous, and 27 of undetermined cause. Incidence rates were similar in the first 3 BMI categories (< 35), but they were twice as high with BMI 35–39.9 (adjusted HR = 2.1, 95% CI: 1.1–4.3) and 4 times higher with BMI ≥ 40 (adjusted HR = 4.2, 95% CI: 1.8–9.7). Weight ≥ 100 kg was identified as threshold for a significant increase in infection from the early postoperative period onward (adjusted HR = 2.1, 95% CI: 1.3–3.6). Interpretation — BMI ≥ 35 or weight ≥ 100 kg may serve as a cutoff for higher perioperative dosage of antibiotics. PMID:26731633

  13. Discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia-Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas. ?? 2009 The Geological Society of America.

  14. The discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; ,

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia–Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas.

  15. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture.

    PubMed

    Krawetz, Roman J; Wu, Yiru Elizabeth; Martin, Liam; Rattner, Jerome B; Matyas, John R; Hart, David A

    2012-01-01

    Mesenchymal progenitor cells (MPCs) can differentiate into osteoblasts, adipocytes, and chondrocytes, and are in part responsible for maintaining tissue integrity. Recently, a progenitor cell population has been found within the synovial fluid that shares many similarities with bone marrow MPCs. These synovial fluid MPCs (sfMPCs) share the ability to differentiate into bone and fat, with a bias for cartilage differentiation. In this study, sfMPCs were isolated from human and canine synovial fluid collected from normal individuals and those with osteoarthritis (human: clinician-diagnosed, canine: experimental) to compare the differentiation potential of CD90+ vs. CD90- sfMPCs, and to determine if CD90 (Thy-1) is a predictive marker of synovial fluid progenitors with chondrogenic capacity in vitro. sfMPCs were derived from synovial fluid from normal and OA knee joints. These cells were induced to differentiate into chondrocytes and analyzed using quantitative PCR, immunofluorescence, and electron microscopy. The CD90+ subpopulation of sfMPCs had increased chondrogenic potential compared to the CD90- population. Furthermore, sfMPCs derived from healthy joints did not require a micro-mass step for efficient chondrogenesis. Whereas sfMPCs from OA synovial fluid retain the ability to undergo chondrogenic differentiation, they require micro-mass culture conditions. Overall, this study has demonstrated an increased chondrogenic potential within the CD90+ fraction of human and canine sfMPCs and that this population of cells derived from healthy normal joints do not require a micro-mass step for efficient chondrogenesis, while sfMPCs obtained from OA knee joints do not differentiate efficiently into chondrocytes without the micro-mass procedure. These results reveal a fundamental shift in the chondrogenic ability of cells isolated from arthritic joint fluids, and we speculate that the mechanism behind this change of cell behavior is exposure to the altered milieu of the OA

  16. Modelling of reactive fluid transport in deformable porous rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  17. Reactive solute transport in an asymmetrical fracture-rock matrix system

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  18. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  19. Relationships among body weight, joint moments generated during functional activities, and hip bone mass in older adults

    PubMed Central

    Wang, Man-Ying; Flanagan, Sean P.; Song, Joo-Eun; Greendale, Gail A.; Salem, George J.

    2012-01-01

    Objective To investigate the relationships among hip joint moments produced during functional activities and hip bone mass in sedentary older adults. Methods Eight male and eight female older adults (70–85 yr) performed functional activities including walking, chair sit–stand–sit, and stair stepping at a self-selected pace while instrumented for biomechanical analysis. Bone mass at proximal femur, femoral neck, and greater trochanter were measured by dual-energy X-ray absorptiometry. Three-dimensional hip moments were obtained using a six-camera motion analysis system, force platforms, and inverse dynamics techniques. Pearson’s correlation coefficients were employed to assess the relationships among hip bone mass, height, weight, age, and joint moments. Stepwise regression analyses were performed to determine the factors that significantly predicted bone mass using all significant variables identified in the correlation analysis. Findings Hip bone mass was not significantly correlated with moments during activities in men. Conversely, in women bone mass at all sites were significantly correlated with weight, moments generated with stepping, and moments generated with walking (p < 0.05 to p < 0.001). Regression analysis results further indicated that the overall moments during stepping independently predicted up to 93% of the variability in bone mass at femoral neck and proximal femur; whereas weight independently predicted up to 92% of the variability in bone mass at greater trochanter. Interpretation Submaximal loading events produced during functional activities were highly correlated with hip bone mass in sedentary older women, but not men. The findings may ultimately be used to modify exercise prescription for the preservation of bone mass. PMID:16631283

  20. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  1. Acoustic Emission and Velocity Measurements using a Modular Borehole Prototype Tool to Provide Real Time Rock Mass Characterization.

    NASA Astrophysics Data System (ADS)

    Collins, D. S.; Pettitt, W. S.; Young, R. P.

    2003-04-01

    Permanent changes to rock mass properties can occur due to the application of excavation or thermal induced stresses. This project involves the design of hardware and software for the long term monitoring of a rock volume, and the real time analysis and interpretation of induced microcracks and their properties. A set of borehole sondes have been designed with each sonde containing up to 6 sensor modules. Each piezoelectric sensor is dual mode allowing it to either transmit an ultrasonic pulse through a rock mass, or receive ultrasonic waveform data. Good coupling of the sensors with the borehole wall is achieved through a motorized clamping mechanism. The borehole sondes are connected to a surface interface box and digital acquisition system and controlled by a laptop computer. The system allows acoustic emission (AE) data to be recorded at all times using programmable trigger logic. The AE data is processed in real time for 3D source location and magnitude, with further analysis such as mechanism type available offline. Additionally the system allows velocity surveys to be automatically performed at pre-defined times. A modelling component of the project, using a 3D dynamic finite difference code, is investigating the effect that different microcrack distributions have on velocity waveform data in terms of time and frequency amplitude. The modelling codes will be validated using data recorded from laboratory tests on rocks with known crack fabrics, and then used in insitu experimental tests. This modelling information will be used to help interpret, in real time, microcrack characteristics such as crack density, size, and fluid content. The technology has applications in a number of branches of geotechnical and civil engineering including radioactive waste storage, mining, dams, bridges, and oil reservoir monitoring.

  2. OBSIFRAC: database-supported software for 3D modeling of rock mass fragmentation

    NASA Astrophysics Data System (ADS)

    Empereur-Mot, Luc; Villemin, Thierry

    2003-03-01

    Under stress, fractures in rock masses tend to form fully connected networks. The mass can thus be thought of as a 3D series of blocks produced by fragmentation processes. A numerical model has been developed that uses a relational database to describe such a mass. The model, which assumes the fractures to be plane, allows data from natural networks to test theories concerning fragmentation processes. In the model, blocks are bordered by faces that are composed of edges and vertices. A fracture can originate from a seed point, its orientation being controlled by the stress field specified by an orientation matrix. Alternatively, it can be generated from a discrete set of given orientations and positions. Both kinds of fracture can occur together in a model. From an original simple block, a given fracture produces two simple polyhedral blocks, and the original block becomes compound. Compound and simple blocks created throughout fragmentation are stored in the database. Several fragmentation processes have been studied. In one scenario, a constant proportion of blocks is fragmented at each step of the process. The resulting distribution appears to be fractal, although seed points are random in each fragmented block. In a second scenario, division affects only one random block at each stage of the process, and gives a Weibull volume distribution law. This software can be used for a large number of other applications.

  3. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  4. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular

  5. Estimation of the REV Size and Equivalent Permeability Coefficient of Fractured Rock Masses with an Emphasis on Comparing the Radial and Unidirectional Flow Configurations

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie

    2018-05-01

    A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.

  6. Body mass index affects knee joint mechanics during gait differently with and without moderate knee osteoarthritis.

    PubMed

    Harding, Graeme T; Hubley-Kozey, Cheryl L; Dunbar, Michael J; Stanish, William D; Astephen Wilson, Janie L

    2012-11-01

    Obesity is a highly cited risk factor for knee osteoarthritis (OA), but its role in knee OA pathogenesis and progression is not as clear. Excess weight may contribute to an increased mechanical burden and altered dynamic movement and loading patterns at the knee. The objective of this study was to examine the interacting role of moderate knee OA disease presence and obesity on knee joint mechanics during gait. Gait analysis was performed on 104 asymptomatic and 140 individuals with moderate knee OA. Each subject group was divided into three body mass categories based on body mass index (BMI): healthy weight (BMI<25), overweight (25≤BMI≤30), and obese (BMI>30). Three-dimensional knee joint angles and net external knee joint moments were calculated and waveform principal component analysis (PCA) was applied to extract major patterns of variability from each. PC scores for major patterns were compared between groups using a two-factor ANOVA. Significant BMI main effects were found in the pattern of the knee adduction moment, the knee flexion moment, and the knee rotation moment during gait. Two interaction effects between moderate OA disease presence and BMI were also found that described different changes in the knee flexion moment and the knee flexion angle with increased BMI with and without knee OA. Our results suggest that increased BMI is associated with different changes in biomechanical patterns of the knee joint during gait depending on the presence of moderate knee OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. The Q-Slope Method for Rock Slope Engineering

    NASA Astrophysics Data System (ADS)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  8. Detection of regularities in variation in geomechanical behavior of rock mass during multi-roadway preparation and mining of an extraction panel

    NASA Astrophysics Data System (ADS)

    Tsvetkov, AB; Pavlova, LD; Fryanov, VN

    2018-03-01

    The results of numerical simulation of the stress–strain state in a rock block and surrounding mass mass under multi-roadway preparation to mining are presented. The numerical solutions obtained by the nonlinear modeling and using the constitutive relations of the theory of elasticity are compared. The regularities of the stress distribution in the vicinity of the pillars located in the zone of the abutment pressure of are found.

  9. Analytical Study of the Mechanical Behavior of Fully Grouted Bolts in Bedding Rock Slopes

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Li, Y. Z.

    2017-09-01

    Bolting is widely used as a reinforcement means for rock slopes. The support force of a fully grouted bolt is often provided by the combination of the axial and shear forces acting at the cross section of the bolt, especially for bedding rock slopes. In this paper, load distribution and deformation behavior of the deflecting section of a fully grouted bolt were analyzed, and a structural mechanical model was established. Based on force method equations and deformation compatibility relationships, an analytical approach, describing the contribution of the axial and shear forces acting at the intersection between the bolt and the joint plane to the stability of a rock slope, was developed. Influence of the inclination of the bolt to the joint plane was discussed. Laboratory tests were conducted with different inclinations of the bolt to the joint plane. Comparisons between the proposed approach, the experimental data and a code method were made. The calculation results are in good agreement with the test data. It is shown that transverse shear resistance plays a significant role to the bolting contribution and that the bigger the dip of the bolt to the joint plane, the more significant the dowel effect. It is also shown that the design method suggested in the code overestimates the resistance of the bolt. The proposed model considering dowel effect provides a more precise description on bolting properties of bedding rock slopes than the code method and will be helpful to improve bolting design methods.

  10. Workflow for the fast evaluation of rock mass properties and stability of rock slopes along trafficways in Lower Austria

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Zangerl, Christian

    2016-04-01

    In Lower Austria there is a total of 17.000 km of provincial and 24.000 km of communal roads, to be maintained by the province and the municipalities. In addition, there are approx. 1.500 km of railroads, and the Danube as a major waterway. A large part of this infrastructure is, or is potentially, affected by various types of instability of adjacent slopes. Due to insufficient knowledge, as well as slope design and management practice in the past, every year, especially in connection to weather extremes, slopes known to be critical become active landslides again, and unexpected new ones arise, causing damage as well as financial stress. Engineering intervention, if possible, should be quick and effective. Geologists and engineers in public service, not having the means for detailed investigation in most cases, are using guidelines to assess the requirements to be met by slope design on traffic ways. But these guidelines don't reflect many of the newer scientific advances. Therefore, scientists at BOKU and backers in the administration want to gain more insight into causative factors, which, if successful, may render maintenance of traffic lines under critical conditions more effective and predictable. The specific project goal is to produce new guidelines to allow quick assessment of the most likely behaviour of rock masses common in the area, especially when cut into shape along infrastructure lines, using readily available information. The scientific investigations include simple and ready tests (like Schmidt hammer), as well as photogrammetry, laserscanning, and other complex geophysical and numerical techniques, but the final product (guidelines) is expected to work without such difficult methods. It is important to note, on the other hand, that the rock mass stability classification inherent in the new guidelines must allow distinction between conclusions which are safe, and conjectures which are in need of validation by contracted experts. It is planned to

  11. The impact of the structural features of the rock mass on seismicity in Polish coal mines

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata

    2017-11-01

    The article presents seismic activity induced in the coal mines of the Upper Silesian Coal Basin (GZW) in relation to the locations of the occurrence of rockbursts. The comparison of these measurements with the structural features of the rock mass of coal mines indicates the possibility of estimating the so-called Unitary Energy Expenditure (UEE) in a specific time. The obtained values of UEE were compared with the distribution of seismic activity in GZW mines. The level of seismic activity in the analysed period changed and depended on the intensity of mining works and diverse mining and geological conditions. Five regions, where tremors occurred (Bytom Trough, Main Saddle, Main Trough, Kazimierz Trough, and Jejkowice and Chwałowice Trough) which belong to various structural units of the Upper Silesia were analyzed. It was found out that rock bursts were recorded only in three regions: Main Saddle, Bytom Trough, and Jejkowice and Chwałowice Trough.

  12. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  13. Inclusion-based effective medium models for the field-scale permeability of 3D fractured rock masses

    NASA Astrophysics Data System (ADS)

    Ebigbo, Anozie; Lang, Philipp S.; Paluszny, Adriana; Zimmerman, Robert W.

    2016-04-01

    Fractures that are more permeable than their host rock can act as preferential, or at least additional, pathways for fluid to flow through the rock. The additional transmissivity contributed by these fractures will be of great relevance in several areas of earth science and engineering, such as radioactive waste disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs, or hydraulic fracturing. In describing or predicting flow through fractured rock, the effective permeability of the rock mass, comprising both the rock matrix and a network of fractures, is a crucial parameter, and will depend on several geometric properties of the fractures/networks, such as lateral extent, aperture, orientation, and fracture density. This study investigates the ability of classical inclusion-based effective medium models (following the work of Sævik et al., Transp. Porous Media, 2013) to predict this permeability. In these models, the fractures are represented as thin, spheroidal inclusions, the interiors of which are treated as porous media having a high (but finite) permeability. The predictions of various effective medium models, such as the symmetric and asymmetric self-consistent schemes, the differential scheme, and Maxwell's method, are tested against the results of explicit numerical simulations of mono- and polydisperse isotropic fracture networks embedded in a permeable rock matrix. Comparisons are also made with the Hashin-Shrikman bounds, Snow's model, and Mourzenko's heuristic model (Mourzenko et al., Phys. Rev. E, 2011). This problem is characterised mathematically by two small parameters, the aspect ratio of the spheroidal fractures, α, and the ratio between matrix and fracture permeability, κ. Two different regimes can be identified, corresponding to α/κ < 1 and α/κ > 1. The lower the value of α/κ, the more significant is flow through the matrix. Due to differing flow patterns, the dependence of effective permeability on

  14. Rock shape, restitution coefficients and rockfall trajectory modelling

    NASA Astrophysics Data System (ADS)

    Glover, James; Christen, Marc; Bühler, Yves; Bartelt, Perry

    2014-05-01

    Restitution coefficients are used in rockfall trajectory modelling to describe the ratio between incident and rebound velocities during ground impact. They are central to the problem of rockfall hazard analysis as they link rock mass characteristics to terrain properties. Using laboratory experiments as a guide, we first show that restitution coefficients exhibit a wide range of scatter, although the material properties of the rock and ground are constant. This leads us to the conclusion that restitution coefficients are poor descriptors of rock-ground interaction. The primary problem is that "apparent" restitution coefficients are applied at the rock's centre-of-mass and do not account for rock shape. An accurate description of the rock-ground interaction requires the contact forces to be applied at the rock surface with consideration of the momentary rock position and spin. This leads to a variety of rock motions including bouncing, sliding, skipping and rolling. Depending on the impact configuration a wide range of motions is possible. This explains the large scatter of apparent restitution coefficients. We present a rockfall model based on newly developed hard-contact algorithms which includes the effects of rock shape and therefore is able to reproduce the results of different impact configurations. We simulate the laboratory experiments to show that it is possible to reproduce run-out and dispersion of different rock shapes using parameters obtained from independent tests. Although this is a step forward in rockfall trajectory modelling, the problem of parametersing real terrain remains.

  15. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.

    PubMed

    Sobhani Tehrani, Ehsan; Jalaleddini, Kian; Kearney, Robert E

    2017-09-01

    This paper describes a new small signal parametric model of ankle joint intrinsic mechanics in normal subjects. We found that intrinsic ankle mechanics is a third-order system and the second-order mass-spring-damper model, referred to as IBK, used by many researchers in the literature cannot adequately represent ankle dynamics at all frequencies in a number of important tasks. This was demonstrated using experimental data from five healthy subjects with no voluntary muscle contraction and at seven ankle positions covering the range of motion. We showed that the difference between the new third-order model and the conventional IBK model increased from dorsi to plantarflexed position. The new model was obtained using a multi-step identification procedure applied to experimental input/output data of the ankle joint. The procedure first identifies a non-parametric model of intrinsic joint stiffness where ankle position is the input and torque is the output. Then, in several steps, the model is converted into a continuous-time transfer function of ankle compliance, which is the inverse of stiffness. Finally, we showed that the third-order model is indeed structurally consistent with agonist-antagonist musculoskeletal structure of human ankle, which is not the case for the IBK model.

  16. Joint-bounded crescentic scars formed by subglacial clast-bed contact forces: Implications for bedrock failure beneath glaciers

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.; Everest, J. D.; Eyles, N.

    2017-08-01

    Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces recently exposed (< 20 years) beneath a retreating glacier in Iceland, as well as on glacially sculpted Precambrian gneisses in NW Scotland and various Precambrian rocks in Ontario, glaciated during the Late Pleistocene. We suggest a common formation mechanism for these contemporary and relict features, whereby a boulder embedded in basal ice produces a continuously migrating clast-bed contact force as it is dragged over the hard (bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting weaknesses such as joints greatly

  17. Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study

    NASA Astrophysics Data System (ADS)

    Ding, Xiuli; Weng, Yonghong; Zhang, Yuting; Xu, Tangjin; Wang, Tuanle; Rao, Zhiwen; Qi, Zufang

    2017-09-01

    Diversion tunnels are important structures for hydropower projects but are always placed in locations with less favorable geological conditions than those in which other structures are placed. Because diversion tunnels are usually large and closely spaced, the rock pillar between adjacent tunnels in weak rocks is affected on both sides, and conventional support measures may not be adequate to achieve the required stability. Thus, appropriate reinforcement support measures are needed, and the design philosophy regarding large parallel tunnels in weak rocks should be updated. This paper reports a recent case in which two large parallel diversion tunnels are excavated. The rock masses are thin- to ultra-thin-layered strata coated with phyllitic films, which significantly decrease the soundness and strength of the strata and weaken the rocks. The behaviors of the surrounding rock masses under original (and conventional) support measures are detailed in terms of rock mass deformation, anchor bolt stress, and the extent of the excavation disturbed zone (EDZ), as obtained from safety monitoring and field testing. In situ observed phenomena and their interpretation are also included. The sidewall deformations exhibit significant time-dependent characteristics, and large magnitudes are recorded. The stresses in the anchor bolts are small, but the extents of the EDZs are large. The stability condition under the original support measures is evaluated as poor. To enhance rock mass stability, attempts are made to reinforce support design and improve safety monitoring programs. The main feature of these attempts is the use of prestressed cables that run through the rock pillar between the parallel tunnels. The efficacy of reinforcement support measures is verified by further safety monitoring data and field test results. Numerical analysis is constantly performed during the construction process to provide a useful reference for decision making. The calculated deformations are in

  18. An engineering rock classification to evaluate seismic rock-fall susceptibility and its application to the Wasatch Front

    USGS Publications Warehouse

    Harp, E.L.; Noble, M.A.

    1993-01-01

    Investigations of earthquakes world wide show that rock falls are the most abundant type of landslide that is triggered by earthquakes. An engineering classification originally used in tunnel design, known as the rock mass quality designation (Q), was modified for use in rating the susceptibility of rock slopes to seismically-induced failure. Analysis of rock-fall concentrations and Q-values for the 1980 earthquake sequence near Mammoth Lakes, California, defines a well-constrained upper bound that shows the number of rock falls per site decreases rapidly with increasing Q. Because of the similarities of lithology and slope between the Eastern Sierra Nevada Range near Mammoth Lakes and the Wasatch Front near Salt Lake City, Utah, the probabilities derived from analysis of the Mammoth Lakes region were used to predict rock-fall probabilities for rock slopes near Salt Lake City in response to a magnitude 6.0 earthquake. These predicted probabilities were then used to generalize zones of rock-fall susceptibility. -from Authors

  19. Geotechnical Aspects of Rock Erosion in Emergency Spillway Channels. Report 5 Summary of Results, Conclusions and Recommendations

    DTIC Science & Technology

    1990-09-01

    channel. Erosion susceptibility, similar to spillway evaluation, must emphasize rock-mass rating or classification systems (e.g. rippability ) which, when...recommends site-specific "proof of concept" testing of an Erosion Probability Index (EPI) based on rock-mass rippability rating and lithostratigraphic...and rock-mass parameters that provide key input parameters to Weaver’s (1975) Rippability Rating (RR) scheme (or Bieniawski’s (1974) Rock Mass Rating

  20. Why joints are more abundant than faults. A conceptual model to estimate their ratio in layered carbonate rocks

    NASA Astrophysics Data System (ADS)

    Caputo, Riccardo

    2010-09-01

    It is a commonplace field observation that extension fractures are more abundant than shear fractures. The questions of how much more abundant, and why, are posed in this paper and qualitative estimates of their ratio within a rock volume are made on the basis of field observations and mechanical considerations. A conceptual model is also proposed to explain the common range of ratios between extension and shear fractures, here called the j/ f ratio. The model considers three major genetic stress components originated from overburden, pore-fluid pressure and tectonics and assumes that some of the remote genetic stress components vary with time ( i.e. stress-rates are included). Other important assumptions of the numerical model are that: i) the strength of the sub-volumes is randomly attributed following a Weibull probabilistic distribution, ii) all fractures heal after a given time, thus simulating the cementation process, and therefore iii) both extensional jointing and shear fracturing could be recurrent events within the same sub-volume. As a direct consequence of these assumptions, the stress tensor at any point varies continuously in time and these variations are caused by both remote stresses and local stress drops associated with in-situ and neighbouring fracturing events. The conceptual model is implemented in a computer program to simulate layered carbonate rock bodies undergoing brittle deformation. The numerical results are obtained by varying the principal parameters, like depth ( viz. confining pressure), tensile strength, pore-fluid pressure and shape of the Weibull distribution function, in a wide range of values, therefore simulating a broad spectrum of possible mechanical and lithological conditions. The quantitative estimates of the j/ f ratio confirm the general predominance of extensional failure events during brittle deformation in shallow crustal rocks and provide useful insights for better understanding the role played by the different

  1. Thermo-hydro-mechanical stresses during repeat glacial cycles as preparatory factors for paraglacial rock slope instabilities

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz; Moore, Jeffrey R.; Gischig, Valentin; Loew, Simon

    2015-04-01

    Glaciation and deglaciation contribute to stress redistribution in alpine valley rock slopes, generating rock mass damage. However, the physical processes contributing to slope instability during glacial cycles are not well understood, and the mechanical reasoning remains vague. In addition to glacier loading and unloading, thermal strains affect newly exposed bedrock while changes in hillslope hydrology modify effective stresses. Together these can generate damage and reduce rock slope stability over time. Here we explore the role of coupled thermo-hydro-mechanical (THM) stress changes in driving long-term progressive damage and conditioning paraglacial rock slope failure in the Aletsch glacier region of Switzerland. We develop a 2D numerical model using the distinct element code UDEC, creating a fractured rock slope containing rock mass elements of intact rock, discontinuities, and fault zones. Topography, rock properties and glacier history are all loosely based on real conditions in the Aletsch valley. In-situ stresses representing pre-LGM conditions with inherent rock mass damage are initialized. We model stress changes through multiple glacier cycles during the Lateglacial and Holocene; stress redistribution is not only induced by glacier loading, but also by changes in bedrock temperatures and transient hillslope hydrology. Each THM response mechanism is tied to the changing ice extents, therefore stress changes and resulting rock mass damage can be explored in both space and time. We analyze cyclic THM stresses and resulting damage during repeat glacial cycles, and compare spatiotemporal outputs with the mapped landslide distribution in the Aletsch region. Our results extend the concept of glacial debuttressing, lead to improved understanding of the rock mass response to glacial cycles, and clarify coupled interactions driving paraglacial rock mass damage.

  2. Using a hot dry rock geothermal reservoir for load following

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.W.; Duteau, R.J.

    1995-01-01

    Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressuremore » condition with the HDR reservoir region near the production well highly inflated. Upon demand, the production backpressure would be sharply reduced, surging the production flow. The analytical tool used in these investigations has been the transient finite element model of the an HDR reservoir called GEOCRACK, which is being developed by Professor Dan Swenson and his students at Kansas State University. This discrete-element representation of a jointed rock mass has recently been validated for transient operations using the set of cyclic reservoir operating data obtained at the end of the LTFT.« less

  3. Influence of tectonic disturbances on the parameters of excavation support with rock anchor

    NASA Astrophysics Data System (ADS)

    Dyomin, V. F.; Yavorsky, V. V.; Demina, T. V.; Baidikova, N. V.; Protsenko, A. V.

    2017-10-01

    The mechanism of deformation, movement and rockfalls in structurally disturbed nonuniform rock mass using analytical modeling operation for assessment of the strain-stress state (SSS) of the rock mass around mining has been investigated. The SSS research of the rock masses by means of the ANSYS program of the excavation in the “Saransk” mine of coal mining JSC “ArselorMittal Temirtau” in the Karaganda coal basin has been conducted. The parameters of the exploitation of the anchor support on the mines for fixing the rock bolts in the workings to ensure the safety of mining operations in the areas of geological disturbances have been determined.

  4. Deformation and stabilisation mechanisms of slow rock slides in crystalline bedrock

    NASA Astrophysics Data System (ADS)

    Zangerl, C.; Prager, C.

    2009-04-01

    Deep-seated rock slides are slope instabilities which are characterised by deformation along one or several shear zones where most of the measured total slope displacement localizes. Generally, a high danger potential is given when rock slides fail in a rapid manner characterised by very high sliding velocities and/or when they develop into long run-out rock avalanches. However several field surveys and deformation monitoring data show that numerous deep-seated rock slides do not fail in a high velocity regime. In fact, many slides creep downwards at rates of some centimetres per year or even less and do not show any evidence for non-reversible acceleration in the past or in the future. Furthermore some of these slope instabilities are actually inactive (dormant) or have even reached a stabilised final state. Deformation monitoring on active rock slides show that acceleration phases characterised by velocities up to meters per day can occur. The trigger for these phases can be manifold and include heavy rainfall, snow melt, water level fluctuations of reservoirs at the slope foot, changes in the slope's equilibrium state due to antecedent slow creeping processes, changes in the material behaviour within the sliding zone, erosion along the foot of the slope, etc. Whereas the role of these triggers in promoting phases of acceleration are generally understood, the same can not be said regarding the kinematics and dynamic processes/mechanisms by which rock slide masses re-stabilise once the trigger impetus has been removed. In the context of this study the term "stabilisation" is used for rock slides which decelerate from high velocities to slow base activities or even stop moving after a certain amount of displacement. Given that reliable rock slide forecasts require the fundamental understanding of possible slope stabilisation mechanisms this study focuses on field-based and numerically obtained key-properties which influence the long-term slope deformation behaviour

  5. Rippability Assessment of Weathered Sedimentary Rock Mass using Seismic Refraction Methods

    NASA Astrophysics Data System (ADS)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    Rippability or ease of excavation in sedimentary rocks is a significant aspect of the preliminary work of any civil engineering project. Rippability assessment was performed in this study to select an available ripping machine to rip off earth materials using the seismic velocity chart provided by Caterpillar. The research area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. The research was aimed at obtaining seismic velocity, P-wave (Vp) using a seismic refraction method to produce a 2D tomography model. A 2D seismic model was used to delineate the layers into the velocity profile. The conventional geotechnical method of using a borehole was integrated with the seismic velocity method to provide appropriate correlation. The correlated data can be used to categorize machineries for excavation activities based on the available systematic analysis procedure to predict rock rippability. The seismic velocity profile obtained was used to interpret rock layers within the ranges labelled as rippable, marginal, and non-rippable. Based on the seismic velocity method the site can be classified into loose sand stone to moderately weathered rock. Laboratory test results shows that the site’s rock material falls between low strength and high strength. Results suggest that Caterpillar’s smallest ripper, namely, D8R, can successfully excavate materials based on the test results integration from seismic velocity method and laboratory test.

  6. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    NASA Astrophysics Data System (ADS)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (<20 m of rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  7. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  8. Intra-articular post-traumatic ankle joint mass imitating localized pigmented villonodular synovitis (LPVS), the aid of ankle arthroscopy for diagnosis and treatment-a case report.

    PubMed

    Zampeli, Franceska; Giotis, Dimitrios; Mantellos, Georgios; Kosta, Paraskevi; Georgoulis, Anastasios D

    2015-03-01

    Intra-articular post-traumatic ankle joint mass is a rare entity that may mimic other pathologies, mainly localized form of pigmented villonodular synovitis (LPVS) regarding the clinical and imaging characteristics. We report the case of a 16-year-old female patient that presented an intra-articular ankle joint mass 8 months after an ankle joint sprain for which magnetic resonance imaging (MRI) suggested LPVS as possible diagnosis due to the presence of hemosiderin deposits. Diagnosis of a post-traumatic hematoma of her ankle joint was made via fine needle aspiration (FNA) biopsy and anterior ankle arthroscopy. At one-year-follow-up after the arthroscopic excision of the hematoma, the patient remained asymptomatic and pain free while MRI revealed no pathologic findings. This case demonstrates that LPVS is not always the diagnosis when hemosiderin deposits are depicted on the MRI of a solitary intra-articular mass. The FNA biopsy under direct arthroscopic view assists the diagnosis and guides the treatment plan in cases that no definite diagnosis has been reached preoperatively by MRI. Level of evidence IV, case report. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Igneous rocks formed by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not

  10. Influences of Shear History and Infilling on the Mechanical Characteristics and Acoustic Emissions of Joints

    NASA Astrophysics Data System (ADS)

    Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing

    2017-08-01

    Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.

  11. Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA

    USGS Publications Warehouse

    Wieczorek, G.F.; Stock, Gregory M.; Reichenbach, P.; Snyder, J.B.; Borchers, J.W.; Godt, J.W.

    2008-01-01

    Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m 3 of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.

  12. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  13. Gravitational stresses in long symmetric ridges and valleys in anisotropic rock

    USGS Publications Warehouse

    Pan, E.; Amadei, B.; Savage, W.Z.

    1994-01-01

    The effect of topography and rock mass anisotropy on gravitational stresses in long isolated symmetric ridges and valleys is modeled using an analytical method proposed earlier by the first two authors. The rock mass deforms under a condition of plane strain. A parametric study is presented on the effect of (1) topography, (2) orientation of anisotropy and (3) degree of anisotropy on the magnitude and distribution of gravitational stresses in transversely isotropic rock masses with planes of anisotropy striking parallel to the ridge or valley axis. It is found that compressive stresses develop near ridge crests and that tensile stresses develop in valley bottoms and valley walls. The magnitude of the gravitational stresses is of the order of the characteristics stress ??{variant}g??b?? where ??{variant} is the rock density, g is the gravitational acceleration and ??b?? is the height of the ridge or depth of the valley. ?? 1994.

  14. Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks

    NASA Astrophysics Data System (ADS)

    Borrelli, Luigi; Gullà, Giovanni

    2017-08-01

    Deep-seated rock slides (DSRSs), recognised as one of the most important mass wasting processes worldwide, involve large areas and cause several consequences in terms of environmental and economic damage; they result from a complex of controlling features and processes. DSRSs are common in Calabria (southern Italy) where the complex geo-structural setting plays a key role in controlling the geometry of the failure surface and its development. This paper describes an integrated multi-disciplinary approach to investigate a DSRS in Palaeozoic high-grade metamorphic rocks of the Sila Massif; it focuses on the definition of the internal structure and the predisposing factors of the Serra di Buda landslide near the town of Acri, which is a paradigm for numerous landslides in this area. An integrated interdisciplinary study based on geological, structural, and geomorphological investigations-including field observations of weathering grade of rocks, minero-petrographic characterisations, geotechnical investigations and, in particular, fifteen years of displacement monitoring-is presented. Stereoscopic analysis of aerial photographs and field observations indicate that the Serra di Buda landslide consists of two distinct compounded bodies: (i) an older and dormant body ( 7 ha) and (ii) a more recent and active body ( 13 ha) that overlies the previous one. The active landslide shows movement linked to a deep-seated translational rock slide (block slide); the velocity scale ranges from slow (1.6 m/year during paroxysmal stages) to extremely slow (< 16 mm/year during stable creep stages). The geological structures and rock weathering have played a key role in the landslide's initiation and further development. Steep slope angles, rugged topography, river deepening and erosion at the toe of the slope are also responsible for the formation of this landslide. In particular, the landslide shows a strongly tectonic constraint: the flanks are bounded by high-angle faults, and the

  15. Transient Non Lin Deformation in Fractured Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, Enrico

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  16. Earth rocks on Mars: Must planetary quarantine be rethought

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1988-01-01

    Recent geochemical, isotopic, and rare gas studies suggest that eight SNC meteorites originated on the planet Mars. Since Martian rocks are found on Earth, consideration is being given to finding Earth rocks on Mars. Detailed consideration of the mechanism by which these meteorites were lofted into space strongly suggest that the process of stress-wave spallation near a large impact with, perhaps, an assist from vapor plume expansion, is the fundamental process by which lightly-shocked rock debris is ejected into interplanetary space. The theory of spall ejection was used to examine the mass and velocity of material ejected from the near vicinity of an impact. It seems likely that the half-dozen largest impact events on Earth would have ejected considerable masses of near surface rocks into interplanetary space. No computations were performed to indicate how long Earth ejecta would take to reach Mars.

  17. High Bone Mass is associated with bone-forming features of osteoarthritis in non-weight bearing joints independent of body mass index.

    PubMed

    Gregson, C L; Hardcastle, S A; Murphy, A; Faber, B; Fraser, W D; Williams, M; Davey Smith, G; Tobias, J H

    2017-04-01

    High Bone Mass (HBM) is associated with (a) radiographic knee osteoarthritis (OA), partly mediated by increased BMI, and (b) pelvic enthesophytes and hip osteophytes, suggestive of a bone-forming phenotype. We aimed to establish whether HBM is associated with radiographic features of OA in non-weight-bearing (hand) joints, and whether such OA demonstrates a bone-forming phenotype. HBM cases (BMD Z-scores≥+3.2) were compared with family controls. A blinded assessor graded all PA hand radiographs for: osteophytes (0-3), joint space narrowing (JSN) (0-3), subchondral sclerosis (0-1), at the index Distal Interphalangeal Joint (DIPJ) and 1st Carpometacarpal Joint (CMCJ), using an established atlas. Analyses used a random effects logistic regression model, adjusting a priori for age and gender. Mediating roles of BMI and bone turnover markers (BTMs) were explored by further adjustment. 314 HBM cases (mean age 61.1years, 74% female) and 183 controls (54.3years, 46% female) were included. Osteophytes (grade≥1) were more common in HBM (DIPJ: 67% vs. 45%, CMCJ: 69% vs. 50%), with adjusted OR [95% CI] 1.82 [1.11, 2.97], p=0.017 and 1.89 [1.19, 3.01], p=0.007 respectively; no differences were seen in JSN. Further adjustment for BMI failed to attenuate ORs for osteophytes in HBM cases vs. controls; DIPJ 1.72 [1.05, 2.83], p=0.032, CMCJ 1.76 [1.00, 3.06], p=0.049. Adjustment for BTMs (concentrations lower amongst HBM cases) did not attenuate ORs. HBM is positively associated with OA in non-weight-bearing joints, independent of BMI. HBM-associated OA is characterised by osteophytes, consistent with a bone-forming phenotype, rather than JSN reflecting cartilage loss. Systemic factors (e.g. genetic architecture) which govern HBM may also increase bone-forming OA risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    NASA Astrophysics Data System (ADS)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  19. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Geotechnical Aspects of Rock Erosion in Emergency Spillway Channels. Report 3. Remediation

    DTIC Science & Technology

    1988-09-01

    identified early and treated promptly. The same authors proposed that the rock-mass parameters that govern rippability , when combined with...lithostratigraphic continuity factors, may provide predictive erosion indices from a geotechnical point of view. 16. Rippability is a form of rock-mass...The rock-mass parameters from which a rippability rating (RR) is derived include rock type, hardness, weathering, structure (strike and dip orientation

  20. A case study on the application of isotope ratio mass spectrometry (IRMS) in determining the provenance of a rock used in an alleged nickel switching incident.

    PubMed

    Roelofse, F; Horstmann, U E

    2008-01-15

    The application of isotope ratio mass spectrometry (IRMS) in forensic science to establish the provenance of a range of questioned substances including soils, drugs, explosives, currency, ivory and rhino horn has been widely documented. The present study wishes to highlight the applicability of IRMS and specifically stable carbon IRMS in determining the provenance of a carbonate rock that was switched for nickel metal exported from South Africa to Israel. The technique employed effectively argued against a South African origin for the rock whilst simultaneously supporting an Israeli origin, enabling investigators to focus their attention accordingly. The study represents the first documented instance known to the authors where IRMS has been employed in the forensic geo-location of a rock.

  1. Physical property measurements on analog granites related to the joint verification experiment

    NASA Astrophysics Data System (ADS)

    Martin, Randolph J., III; Coyner, Karl B.; Haupt, Robert W.

    1990-08-01

    A key element in JVE (Joint Verification Experiment) conducted jointly between the United States and the USSR is the analysis of the geology and physical properties of the rocks in the respective test sites. A study was initiated to examine unclassified crystalline rock specimens obtained from areas near the Soviet site, Semipalatinsk and appropriate analog samples selected from Mt. Katadin, Maine. These rocks were also compared to Sierra White and Westerly Granite which have been studied in great detail. Measurements performed to characterize these rocks were: (1) Uniaxial strain with simultaneous compressional and shear wave velocities; (2) Hydrostatic compression to 150 MPa with simultaneous compressional and shear wave velocities; (3) Attenuation measurements as a function of frequency and strain amplitude for both dry and water saturated conditions. Elastic moduli determined from the hydrostatic compression and uniaxial strain test show that the rock matrix/mineral properties were comparable in magnitudes which vary within 25 percent from sample to sample. These properties appear to be approximately isotropic, especially at high pressures. However, anisotropy evident for certain samples at pressures below 35 MPa is attributed to dominant pre-existing microcrack populations and their alignments. Dependence of extensional attenuation and Young's modulus on strain amplitude were experimentally determined for intact Sierra White granite using the hysteresis loop technique.

  2. Disclosing the temperature of columnar jointing in lavas.

    PubMed

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  3. A Novel Technique for Cervical Facet Joint Hyperplasia-Spondylotic Radiculopathy by Laminar and Lateral Mass Screw Cofixations.

    PubMed

    Sheng, Sun-Ren; Wang, Ke; Nisar, Majid; Chen, Jiao-Xiang; Wu, Ai-Min; Wang, Xiang-Yang

    2018-02-01

    We sought to describe the novel technique and report the outcomes of cervical spondylotic radiculopathy caused by facet joint hyperplasia treated with minimally invasive surgery by laminar and lateral mass screw cofixations. In this retrospective study, patients with spondylotic radiculopathy caused by facet joint hyperplasia underwent this technique in our unit between January 2010 and June 2015. Hospital charts, magnetic resonance imaging studies, and follow-up records for all the patients were reviewed. Outcomes were assessed on the basis of neurologic status, magnetic resonance imaging, and visual analog scale for neck and radicular pain and by the short form-36 health survey questionnaire. Thirteen men and 5 women, aged 47-73 years (mean, 61.8 years), were included in this study. The follow-up time ranged from 19-50 months (mean, 32.4 months). The mean visual analog scale scores for radicular pain and neck pain, as well as the scores for all 8 domains of the short form-36 health survey questionnaire, showed significant improvements (P < 0.05). Cervical lordosis showed bending, whereas the height of the targeted disk segment showed no change (P > 0.05). Complications included 2 cases of neck pain that lasted for 3 months. Minimally invasive surgery by lamina and lateral mass screw cofixation is safe and effective for the treatment of cervical spondylotic radiculopathy caused by facet joint hyperplasia. In addition to sufficient decompression, this technique provides relative stability to the cervical spine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. The Impact of the Rock Mass Deformation on Geometric Changes of a Historical Chimney in the Salt Mine of Bochnia

    NASA Astrophysics Data System (ADS)

    Szafarczyk, Anna; Gawałkiewicz, Rafał

    2018-03-01

    There are many ways of the geometry measurement of slim objects, with the application of geodetic and photogrammetric methods. A modern solution in the diagnostics of slim objects is the application of laser scanning, with the use of a scanner of a scanning total station. The point cloud, obtained from the surface of the scanned object gives the possibility of generating not only information on structural surface deformations, but also facilitates obtaining the data on the geometry of the axis of the building, as a basic indicator of the characteristics of its deformation. The cause of the change in the geometry of slim objects is the impact of many external and internal factors. These objects are located in the areas of working or closed underground mines. They can be impacted by the ground and they can face the results of the convergence of cavities. A specific structure of the salt rock mass causes subsequent convergence of the post-exploitation cavities, which has the influence on the behaviour of the terrain surface and the related objects. The authors analysed the impact of the changes in the rock mass and the surface on the changes of the industrial chimney in the Bochnia Salt Mine.

  5. Automatic extraction of blocks from 3D point clouds of fractured rock

    NASA Astrophysics Data System (ADS)

    Chen, Na; Kemeny, John; Jiang, Qinghui; Pan, Zhiwen

    2017-12-01

    This paper presents a new method for extracting blocks and calculating block size automatically from rock surface 3D point clouds. Block size is an important rock mass characteristic and forms the basis for several rock mass classification schemes. The proposed method consists of four steps: 1) the automatic extraction of discontinuities using an improved Ransac Shape Detection method, 2) the calculation of discontinuity intersections based on plane geometry, 3) the extraction of block candidates based on three discontinuities intersecting one another to form corners, and 4) the identification of "true" blocks using an improved Floodfill algorithm. The calculated block sizes were compared with manual measurements in two case studies, one with fabricated cardboard blocks and the other from an actual rock mass outcrop. The results demonstrate that the proposed method is accurate and overcomes the inaccuracies, safety hazards, and biases of traditional techniques.

  6. 1963 Vajont rock slide: a comparison between 3D DEM and 3D FEM

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni; Utili, Stefano; Castellanza, Riccardo; Agliardi, Federico; Bistacchi, Andrea; Weng Boon, Chia

    2013-04-01

    Data on the exact location of the failure surface of the landslide have been used as the starting point for the modelling of the landslide. 3 dimensional numerical analyses were run employing both the discrete element method (DEM) and a Finite Element Method (FEM) code. In this work the focus is on the prediction of the movement of the landlside during its initial phase of detachment from Mount Toc. The results obtained by the two methods are compared and conjectures on the observed discrepancies of the predictions between the two methods are formulated. In the DEM simulations the internal interaction of the sliding blocks and the expansion of the debris is obtained as a result of the kinematic interaction among the rock blocks resulting from the jointing of the rock mass involved in the slide. In the FEM analyses, the c-phi reduction technique was employed along the predefine failure surface until the onset of the landslide occurred. In particular, two major blocks of the landslide were identified and the stress, strain and displacement fields at the interface between the two blocks were analysed in detail.

  7. Odyssey/White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Mars Odyssey images show the 'White Rock' feature on Mars in both infrared (left) and visible (right) wavelengths. The images were acquired simultaneously on March 11, 2002. The box shows where the visible image is located in the infrared image. 'White Rock' is the unofficial name for this unusual landform that was first observed during the Mariner 9 mission in the early 1970's. The variations in brightness in the infrared image are due to differences in surface temperature, where dark is cool and bright is warm. The dramatic differences between the infrared and visible views of White Rock are the result of solar heating. The relatively bright surfaces observed at visible wavelengths reflect more solar energy than the darker surfaces, allowing them to stay cooler and thus they appear dark in the infrared image. The new thermal emission imaging system data will help to address the long standing question of whether the White Rock deposit was produced in an ancient crater lake or by dry processes of volcanic or wind deposition. The infrared image has a resolution of 100 meters (328 feet) per pixel and is 32 kilometers (20 miles) wide. The visible image has a resolution of 18 meters per pixel and is approximately 18 kilometers (11 miles) wide. The images are centered at 8.2 degrees south latitude and 24.9 degrees east longitude.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Increasing rock-avalanche frequency correlates with increasing seismic moment release in New Zealand's Southern Alps

    NASA Astrophysics Data System (ADS)

    McSaveney, Mauri; Cox, Simon; Hancox, Graham

    2015-04-01

    series of moderate earthquakes west of North Island, New Zealand, which was felt widely in North Island. The New Zealand seismological record is complete enough since 1969 for earthquake magnitudes ≥4.0 to enable determination of seismic moment release. We applied an exponential distance attenuation to the accumulating moment release with an empirical decay constant of 2093 km to obtain closely matching trends between our two data sets. Such a relatively slow decay with distance may imply that ong-wavelength surface waves are affecting the slopes. On the other hand, the increasing landslide frequency sometimes leads the increasing seismic moment, suggesting that the two may be driven by a third process such as accumulating regional crustal strain in the South Pacific. An earthquake of M>8.0 occurred over 290 years ago (ca. 1717 AD) on the Alpine fault with no major release of regional crustal strain there since that time. This earthquake is expected to have triggered widespread landsliding in the central Southern Alps. Since that regional release of elastic crustal strain, the underlying rock mass of the S. Alps has been accumulating elastic strain beneath a relatively thin skin of semi-detached, brittle and closely jointed rock. The estimated mean recurrence time of ruptures on the Alpine fault is about 330 years, and so, the expected misfits between the deforming intact rock and the overlying dilated granular masses of potential landslides can be expected to be approaching average levels not present since before 1717 AD. Perhaps this is the reason why more of the semi-detached masses are completing the detachment process and falling off. We do not discount an additional link with permafrost decay, which is a mechanism with potential to lower the cohesion in granular rock masses in the permafrost zone of the higher Southern Alps. But permafrost decay does not create granular rock masses.

  9. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  10. Geo-structural modelling for potential large rock slide in Machu Picchu

    NASA Astrophysics Data System (ADS)

    Spizzichino, D.; Delmonaco, G.; Margottini, C.; Mazzoli, S.

    2009-04-01

    The monumental complex of the Historical Sanctuary of Machu Picchu, declared as World Heritage Site by UNESCO in 1983, is located in the Andean chain at approx. 80 km from Cuzco (Peru) and at an elevation of 2430 m a.s.l. along the Urubamba River Valley. From a geological point of view, the Machu Picchu granitoid pluton, forming part of the larger "Quillabamba granite", is one of a series of plutons intruded along the axial zone of the high Eastern Cordillera Permo-Liassic rift system including a variety of rock types, dominantly granites and granodiorites. The most evident structures at the outcrop scale consist of planar joint sets that may be variably reactivated and exhibiting 4 main orientations. At present, the site is affected by geological risk due to frequent landslides that threaten security and tourist exploitation. In the last years, the international landslide scientific community has promoted a multi-discipline joint programme mainly finalised to slope deformation monitoring and analysis after the warning, launched in 2001, of a potential collapse of the citadel, caused by a huge rock slide. The contribute of the Italian research team was devoted to implement a landslide risk analysis and an innovative remote sensing techniques. The main scope of this work is to present the implementation of a geo-structural modelling aimed at defining present and potential slope stability conditions of the Machu Picchu Citadel. Data have been collected by geological, structural and geomechanical field surveys and laboratory tests in order to reconstruct the geomorphological evolution of the area. Landslide types and evolution are strictly controlled by regional tectonic uplift and structural setting. Several slope instability phenomena have been identified and classified according to mechanism, material involved and state of activity. Rock falls, debris flows, rock slides and debris slides are the main surveyed landslide types. Rock slides and rock falls may produce

  11. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  12. On the seismic response of instable rock slopes based on ambient vibration recordings

    NASA Astrophysics Data System (ADS)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2017-09-01

    Rock slope failures can lead to huge human and economic loss depending on their size and exact location. Reasonable hazard mitigation requires thorough understanding of the underlying slope driving mechanisms and its rock mass properties. Measurements of seismic ambient vibrations could improve the characterization and detection of rock instabilities since there is a link between seismic response and internal structure of the unstable rock mass. An unstable slope near the village Gondo has been investigated. The unstable part shows strongly amplified ground motion with respect to the stable part of the rock slope. The amplification values reach maximum factors of 70. The seismic response on the instable part is highly directional and polarized. Re-measurements have been taken 1 year later showing exactly the same results as the original measurements. Neither the amplified frequencies nor the amplification values have changed. Therefore, ambient vibration measurements are repeatable and stay the same, if the rock mass has not undergone any significant change in structure or volume, respectively. Additionally, four new points have been measured during the re-measuring campaign in order to better map the border of the instability.[Figure not available: see fulltext.

  13. PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...

  14. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2015-09-30

    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  15. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, William

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structuremore » of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.« less

  16. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model.

    PubMed

    Blaker, Carina L; Little, Christopher B; Clarke, Elizabeth C

    2017-08-01

    Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Mass Independent Fractionation of Sulphur Isotopes in Precambrian Sedimentary Rocks: Indicator for Changes in Atmospheric Composition and the Operation of the Global Sulphur Cycle

    NASA Astrophysics Data System (ADS)

    Peters, M.; Farquhar, J.; Strauss, H.

    2005-12-01

    Large mass independent fractionation (MIF) of sulphur isotopes in sedimentary rocks older than 2.3 Ga and the absence of this isotopic anomaly in younger rocks seem to be the consequence of a change in Earth's atmospheric composition from essentially oxygen-free or to oxygen-rich conditions. MIF is produced by photochemical reactions of volcanogenic sulphur dioxide with UV radiation in the absence of an ozone shield. The products of such processes are elemental sulphur with positive and sulphate with negative Δ33S values. Here we present isotope data (32S, 33S, 34S) for sedimentary pyrites from Archaean and Palaeoproterozoic rocks of the Kaapvaal Craton (South Africa), the Pilbara Craton (Australia) and the Greenland Shield (Isua Supercrustal Belt). Their ages range from 3.85 to 2.47 Ga. Large positive Δ33S values up to +9.13 ‰ in several Archaean units from the Kapvaal and Pilbara Cratons are attributed to low atmospheric oxygen at that time. Interestingly, very low Δ33S values between -0.28 and +0.57 ‰ appear to characterize the Witwatersrand succession of South Africa (3.0 Ga). This rather small MIF signature was previously detected in rocks of the same age in Western Australia (OHMOTO et al., 2005). The signature is interpreted as a global signal, which could be the consequence of a shielding effect induced by one or more atmospheric components. The most probable chemical compounds for this process are methane and carbon dioxide. Rocks of the Kameeldoorns Fm. (2.71 Ga), Kaapvaal Craton, display also low values between -0.46 and +0.33 ‰, which are consistent with the small (absent) MIF signal in rocks of the Hardey Fm. (2.76 Ga) of Western Australia (OHMOTO et al., 2005). Very low carbon isotope values between -51 and -40 ‰ in late Archaean kerogens (2.6 - 2.8 Ga) indicate a high concentration of methane in the atmosphere (PAVLOV et al., 2001). This high methane level could produce an organic haze, which absorbed most of the UV radiation and prevented

  18. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  19. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  20. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, E.L.; Reid, M.E.; Godt, J.W.; DeGraff, J.V.; Gallegos, A.J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material. ?? 2008 Springer-Verlag.

  1. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, Edwin L.; Reid, Mark E.; Godt, Jonathan W.; DeGraff, Jerome V.; Gallegos, Alan J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material.

  2. Constitutive Modeling of the Thermomechanical Behavior of Rock Salt

    NASA Astrophysics Data System (ADS)

    Hampel, A.

    2016-12-01

    For the safe disposal of heat-generating high-level radioactive waste in rock salt formations, highly reliable numerical simulations of the thermomechanical and hydraulic behavior of the host rock have to be performed. Today, the huge progress in computer technology has enabled experts to calculate large and detailed computer models of underground repositories. However, the big ad­van­ces in computer technology are only beneficial when the applied material models and modeling procedures also meet very high demands. They result from the fact that the evaluation of the long-term integrity of the geological barrier requires an extra­polation of a highly nonlinear deforma­tion behavior to up to 1 million years, while the underlying experimental investigations in the laboratory or in situ have a duration of only days, weeks or at most some years. Several advanced constitutive models were developed and continuously improved to describe the dependences of various deformation phenomena in rock salt on in-situ relevant boundary conditions: transient and steady-state creep, evolution of damage and dilatancy in the DRZ, failure, post-failure behavior, residual strength, damage and dilatancy reduction, and healing. In a joint project series between 2004 and 2016, fundamental features of the advanced models were investigated and compared in detail with benchmark calculations. The study included procedures for the determination of characteristic salt-type-specific model parameter values and for the performance of numerical calculations of underground structures. Based on the results of this work and on specific laboratory investigations, the rock mechanical modeling is currently developed further in a common research project of experts from Germany and the United States. In this presentation, an overview about the work and results of the project series is given and the current joint research project WEIMOS is introduced.

  3. Review of Studies of Mechanoelectrical Transformations in Rocks in Russia and Abroad

    NASA Astrophysics Data System (ADS)

    Pomishin, E.; Yavorovich, L.

    2016-06-01

    The problem of monitoring and forecast of dynamic manifestations of rock masses becomes immediate in the mining industry because of the growth of mining work intensity and changeover to the mining operations in deeper levels. The article presents a short review of the scientific works of foreign researchers for more complete and in-depth study of geophysical methods of control of the stress-strain state and bump hazard of rock masses.

  4. Automatic pattern identification of rock moisture based on the Staff-RF model

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Tao, Kai; Jiang, Wei

    2018-04-01

    Studies on the moisture and damage state of rocks generally focus on the qualitative description and mechanical information of rocks. This method is not applicable to the real-time safety monitoring of rock mass. In this study, a musical staff computing model is used to quantify the acoustic emission signals of rocks with different moisture patterns. Then, the random forest (RF) method is adopted to form the staff-RF model for the real-time pattern identification of rock moisture. The entire process requires only the computing information of the AE signal and does not require the mechanical conditions of rocks.

  5. The peculiarities of structurizing enclosing rock massif while developing a coal seam

    NASA Astrophysics Data System (ADS)

    Kozyreva, E. N.; Shinkevich, M. V.

    2017-09-01

    Different concepts of the development of geo-mechanical processes during longwall mining of a seam which are fundamentally different from the conventional ones are introduced in the article. Fundamental principles of the model for structurizing enclosing rock mass while longwall mining along the strike are described. The model was developed on the bases of non-linear geomechanical laws. According to the model, rock mass in the area of mining operation is organized as rock geomechanical layers with shifting arches. And the formation period of shifting arches in disintegrated rock mass is divisible by the length of the stope. Undulate characteristic of a massif as a peculiarity of man-made structurization of a massif is defined. It is shown that structuring the broken massif causes the formation of block-structured system and it can be detected while monitoring the ground pressure in powered support props. The results of the research allow decreasing the negative influence of a ground pressure and can be applied to specify parameters for controlling the roof, defining geometrical dimensions of a mining section and positioning of holing chute (face entry).

  6. Shatter cones at the Keurusselkä impact structure and their relation to local jointing

    NASA Astrophysics Data System (ADS)

    Hasch, Maximilian; Reimold, Wolf Uwe; Raschke, Ulli; Zaag, Patrice Tristan

    2016-08-01

    Shatter cones are the only distinct meso- to macroscopic recognition criterion for impact structures, yet not all is known about their formation. The Keurusselkä impact structure, Finland, is interesting in that it presents a multitude of well-exposed shatter cones in medium- to coarse-grained granitoids. The allegedly 27 km wide Keurusselkä impact structure was formed about 1150 Ma ago in rocks of the Central Finland Granitoid Complex. Special attention was paid in this work to possible relationships between shatter cones and local, as well as regionally occurring, fracture or joint systems. A possible shatter cone find outside the previously suggested edge of the structure could mean that the Keurusselkä impact structure is larger than previously thought. The spacing between joints/fractures from regional joint systems was influenced by the impact, but impact-induced fractures strongly follow the regional joint orientation trends. There is a distinct relationship between shatter cones and joints: shatter cones occur on and against joint surfaces of varied orientations and belonging to the regional orientation trends. Planar fractures (PF) and planar deformation features (PDF) were found in three shatter cone samples from the central-most part of the impact structure, whereas other country rock samples from the same level of exposure but further from the assumed center lack shock deformation features. PDF occurrence is enhanced within 5 mm of shatter cone surfaces, which is interpreted to suggest that shock wave reverberation at preimpact joints could be responsible for this local enhancement of shock deformation. Some shatter cone surfaces are coated with a quasi-opaque material which is also found in conspicuous veinlets that branch off from shatter cone surfaces and resemble pseudotachylitic breccia veins. The vein-filling is composed of two mineral phases, one of which could be identified as a montmorillonitic phyllosilicate. The second phase could not be

  7. Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks.

    PubMed

    Sinha, M P; Neidholdt, E L; Hurowitz, J; Sturhahn, W; Beard, B; Hecht, M H

    2011-09-01

    A laser ablation-miniature mass spectrometer (LA-MMS) for the chemical and isotopic measurement of rocks and minerals is described. In the LA-MMS method, neutral atoms ablated by a pulsed laser are led into an electron impact ionization source, where they are ionized by a 70 eV electron beam. This results in a secondary ion pulse typically 10-100 μs wide, compared to the original 5-10 ns laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer (MMS) and measured in parallel by a modified CCD array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LA-MMS offers a more quantitative assessment of elemental composition than techniques that detect ions directly generated by the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the wavelength of the laser beam, and the not well characterized ionization efficiencies of the elements in the process. The above problems attendant to the direct ion analysis has been minimized in the LA-MMS by analyzing the ablated neutral species after their post-ionization by electron impaction. These neutral species are much more abundant than the directly ablated ions in the ablated vapor plume and are, therefore, expected to be characteristic of the chemical composition of the solid. Also, the electron impact ionization of elements is well studied and their ionization cross sections are known and easy to find in databases. Currently, the LA-MMS limit of detection is 0.4 wt.%. Here we describe LA-MMS elemental composition measurements of various minerals including microcline, lepidolite, anorthoclase, and USGS BCR-2G samples. The measurements of high precision isotopic ratios including (41)K

  8. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  9. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  10. Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis

    NASA Astrophysics Data System (ADS)

    He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.

    2018-03-01

    In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.

  11. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    PubMed

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  12. Joint space narrowing, body mass index, and knee pain: the ROAD study (OAC1839R1).

    PubMed

    Muraki, S; Akune, T; En-Yo, Y; Yoshida, M; Suzuki, T; Yoshida, H; Ishibashi, H; Tokimura, F; Yamamoto, S; Tanaka, S; Nakamura, K; Kawaguchi, H; Oka, H; Yoshimura, N

    2015-06-01

    The objective of the present study was to clarify the association of joint space narrowing with knee pain in Japanese men and women using a large-scale population-based cohort of the Research on Osteoarthritis/osteoporosis Against Disability (ROAD) study. This study examined the association between minimum joint space width (mJSW) in the medial compartment and pain at the knee. mJSW was measured in the medial and lateral compartments of the knee using a knee osteoarthritis (OA) computer-aided diagnosis system. From the 3040 participants in the ROAD study, the present study analyzed 2733 participants who completed the radiographic examinations and questionnaires regarding knee pain (975 men and 1758 women; mean age, 69.9 ± 11.2 years). Subjects with lateral knee OA were excluded. After adjustment for age and Body mass index (BMI), medial mJSW, as well as medial mJSW/lateral mJSW, was significantly associated with knee pain. Sex and BMI affected the association of medial mJSW with knee pain. The threshold of medial mJSW was approximately 3 mm in men and 2 mm in women, while that of medial mJSW/lateral mJSW was approximately 60% in both men and women. BMI was found to have a distinct effect on the association of mJSW with pain. The present cross-sectional study using a large-scale population from the ROAD study showed that joint space narrowing had a significant association with knee pain. The thresholds of joint space narrowing for knee pain were also established. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Permeability of three-dimensional rock masses containing geomechanically-grown anisotropic fracture networks

    NASA Astrophysics Data System (ADS)

    Thomas, R. N.; Ebigbo, A.; Paluszny, A.; Zimmerman, R. W.

    2016-12-01

    The macroscopic permeability of 3D anisotropic geomechanically-generated fractured rock masses is investigated. The explicitly computed permeabilities are compared to the predictions of classical inclusion-based effective medium theories, and to the permeability of networks of randomly oriented and stochastically generated fractures. Stochastically generated fracture networks lack features that arise from fracture interaction, such as non-planarity, and termination of fractures upon intersection. Recent discrete fracture network studies include heuristic rules that introduce these features to some extent. In this work, fractures grow and extend under tension from a finite set of initial flaws. The finite element method is used to compute displacements, and modal stress intensity factors are computed around each fracture tip using the interaction integral accumulated over a set of virtual discs. Fracture apertures emerge as a result of simulations that honour the constraints of stress equilibrium and mass conservation. The macroscopic permeabilities are explicitly calculated by solving the local cubic law in the fractures, on an element-by-element basis, coupled to Darcy's law in the matrix. The permeabilities are then compared to the estimates given by the symmetric and asymmetric versions of the self-consistent approximation, which, for randomly fractured volumes, were previously demonstrated to be most accurate of the inclusion-based effective medium methods (Ebigbo et al., Transport in Porous Media, 2016). The permeabilities of several dozen geomechanical networks are computed as a function of density and in situ stresses. For anisotropic networks, we find that the asymmetric and symmetric self-consistent methods overestimate the effective permeability in the direction of the dominant fracture set. Effective permeabilities that are more strongly dependent on the connectivity of two or more fracture sets are more accurately captured by the effective medium models.

  14. Modeling rock specimens through 3D printing: Tentative experiments and prospects

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie

    2016-02-01

    Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

  15. A visual analytical approach to rock art panel condition assessment

    NASA Astrophysics Data System (ADS)

    Vogt, Brandon J.

    Rock art is a term for pecked, scratched, or painted symbols found on rock surfaces, most typically joint faces called rock art panels. Because rock art exists on rock at the atmosphere interface, it is highly susceptible to the destructive processes of weathering. Thus, rock weathering scientists, including those that study both natural and cultural surfaces, play a key role towards understanding rock art longevity. The mapping of weathering forms on rock art panels serves as a basis from which to assess overall panel instability. This work examines fissures, case hardened surfaces, crumbly disintegration, and lichen. Knowledge of instability, as measured through these and other weathering forms, provides integral information to land managers and archaeological conservators required to prioritize panels for remedial action. The work is divided into five chapters, three of which are going to be submitted as a peer-reviewed journal manuscript. The second chapter, written as a manuscript for International Newsletter on Rock Art, describes a specific set of criteria that lead to the development of a mapping tool for weathering forms, called 'mapping weathering forms in three dimensions' (MapWeF). The third chapter, written as a manuscript for Remote Sensing of Environment, presents the methodology used to develop MapWeF. The chapter incorporates terrestrial laser scanning, a geographic information system (GIS), geovisualization, image analysis, and exploratory spatial data analysis (ESDA) to identify, map, and quantify weathering features known to cause instability on rock art panels. The methodology implemented in the third chapter satisfies the criteria described in Chapter Two. In the fourth chapter, prepared as a manuscript for Geomorphology, MapWeF is applied to a site management case study, focusing on a region---southeastern Colorado---with notoriously weak and endangered sandstone rock art panels. The final conclusions chapter describes contributions of the

  16. Hydrology of some deep mines in Precambrian rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yardley, D.H.

    1975-10-01

    A number of underground mines were investigated during the summer of 1975. All of them are in Precambrian rocks of the Lake Superior region. They represent a variety of geologic settings. The purpose of the investigations was to make a preliminary study of the dryness, or lack of dryness of these rocks at depth. In other words, to see if water was entering the deeper workings through the unmined rock by some means such as fracture or fault zones, joints or permeable zones. Water entering through old mine workings extending to, or very near to the surface, or from themore » drilling equipment, was of interest only insofar as it might mask any water whose source was through the hanging or footwall rocks. No evidence of running, seeping or moving water was seen or reported at depths exceeding 3,000 feet. At depths of 3,000 feet or less, water seepages do occur in some of the mines, usually in minor quantities but increased amounts occur as depth becomes less. Others are dry at 2,000 feet of depth. Rock movements associated with extensive mining should increase the local secondary permeability of the rocks adjoining the mined out zones. Also most ore bodies are located where there has been a more than average amount of faulting, fracturing, and folding during the geologic past. They tend to cluster along crustal flows. In general, Precambrian rocks of similar geology, to those seen, well away from zones that have been disturbed by extensive deep mining, and well away from the zones of more intense geologic activity ought to be even less permeable than their equivalents in a mining district.« less

  17. FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Noh, Y. H.; Um, J. G.; Choi, Y.

    2014-12-01

    A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  18. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This

  19. Animal urine as painting materials in African rock art revealed by cluster ToF-SIMS mass spectrometry imaging.

    PubMed

    Mazel, Vincent; Richardin, Pascale; Touboul, David; Brunelle, Alain; Richard, Caroline; Laval, Eric; Walter, Philippe; Laprévote, Olivier

    2010-08-01

    The rock art site at the village of Songo in Mali is a very important Dogon ritual place where, since the end of the nineteenth century until today, takes place the ceremony of circumcision. During these ceremonies, paintings are performed on the walls of the shelter with mainly three colors: red, black and white. Ethnological literature mentions the use of animal urine of different species such as birds, lizards or snakes as a white pigment. Urine of these animals is mainly composed of uric acid or urate salts. In this article, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to compare uric acid, snake urine and a sample of a white pigment of a Dogon painting coming from the rock art site of Songo. ToF-SIMS measurements in both positive and negative ion modes on reference compounds and snake urine proved useful for the study of uric acid and urate salts. This method enables to identify unambiguously these compounds owing to the detection in negative ion mode of the ion corresponding to the deprotonated molecule ([M-H](-) at m/z 167.01) and its fragment ions. Moreover, the mass spectra obtained in positive ion mode permit to differentiate uric acid and urate salts on the basis of specific ions. Applying this method to the Dogon white pigments sample, we show that the sample is entirely composed of uric acid. This proves for the first time, that animal urine was used as a pigment by the Dogon. The presence of uric acid instead of urate salts as normally expected in animal urine could be explained by the preparation of the pigment for its application on the stone. Copyright 2010 John Wiley & Sons, Ltd.

  20. Inclined indentation of smooth wedge in rock mass

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  1. Coseismic and aseismic deformations of the rock mass around deep level mining in South Africa - Joint South African and Japanese study

    NASA Astrophysics Data System (ADS)

    Milev, A. M.; Yabe, Y.; Naoi, M. M.; Nakatani, M.; Durrheim, R. J.; Ogasawara, H.; Scholz, C. H.

    2010-12-01

    Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approx. 40 m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m were analysed. This was the first implementation of high frequency AE events at such a great depth (3300m below the surface). A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase indicated by a rapid change of the tilt during the seismic event. Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as ‘slow’ or aseismic events. During the monitoring period a seismic event with MW 1.9 (2.1) occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock

  2. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80  < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid

  3. Rates of Eolian Rock Abrasion in the Ice-Free Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Hallet, B.; Malin, M. C.; Sletten, R. S.

    2016-12-01

    Eolian abrasion is a principal surface process in dry regions of Earth and Mars and there is evidence for wind processes active on Venus and Titan. Rock abrasion also has practical significance in diverse fields ranging from preservation of cultural material (artifacts, monuments) to damage of solar panels and windshields in arid regions. Despite its scientific and practical importance, and there have ben only few studies that define rates of rock abrasion quantitatively under natural conditions. Herein we report abrasion rates that have been exceptionally well characterized through a unique long-term (30+-year) field experiment in the ice-free McMurdo Dry Valleys, Antarctica. In 1983 and 1984, over 5000 rock targets of several lithologies (25.4 mm-diameter and 5 mm-thick disks of dolerite, basalt, tuff and sandstone) were installed at five heights (7,14, 21, 35, and 70 cm) facing the 4 cardinal directions at 10 locations (one additional site contains fewer targets). Sequential collections of rock targets exposed to abrasion enable definition of mass loss after 1, 5, 10, 30 and 31 years of exposure; the latter were retrieved during the 2014-2015 season. The abrasion rates generally show striking consistency for each lithology at any site; the multiple targets permit definition of intrinsic differences in mass loss. The rates vary considerably from site to site owing to differences in availability of transportable sediment, wind regime, and surface roughness, and at each site, owing to target orientation relative to the dominant winds and, secondarily, to height above the ground. For the hardest targets, basalt and dolerite, mass loss in 30+ years ranged from essentially zero at some sites to 1/3 of the deployed mass (2.59 g; equivalent to a rock thickness >1.8 mm) where abrasion was most active (Site 7, Central Wright Valley). The tuff targets showed the greatest mass loss, and in many cases were entirely abraded away by the end of the experiment.Current work is

  4. Scales of columnar jointing in igneous rocks: field measurements and controlling factors

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.

    2012-03-01

    Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava

  5. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  6. Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin

    2018-04-01

    Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.

  7. Recovery of surface mass redistribution from a joint inversion of GPS and GRACE data - A methodology and results from the Australian and other continents

    NASA Astrophysics Data System (ADS)

    Han, S. C.; Tangdamrongsub, N.; Razeghi, S. M.

    2017-12-01

    We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and ocean. The identical assumption is made when global geopotential change data from Gravity Recovery And Climate Experiment (GRACE) are used to determine surface mass changes. We developed an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS-only inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and inter-annual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins of Australia than two different GRACE solutions. The sub-monthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, we integrate GPS data from different continents with GRACE in the least-square normal equations and solve for the global surface mass changes by jointly inverting GPS and GRACE data. We present the results of surface mass changes from the GPS-only inversion and from the joint GPS-GRACE inversion.

  8. The state of stress in the limb of the Split Mountain anticline, Utah: constraints placed by transected joints

    NASA Astrophysics Data System (ADS)

    Silliphant, Laura J.; Engelder, Terry; Gross, Michael R.

    2002-01-01

    Transected joints (i.e. systematic joints that strike at an angle to the present fold axis trend) occur on the flanks of Split Mountain, a Laramide anticline near the eastern end of the Uinta Mountains, Utah. The common orientation on both flanks for these WNW-striking joints is inconsistent with joints driven by a syn-folding stretch normal to the direction of highest curvature. A smaller dispersion of the poles to these transected joints occurs when they are rotated with bedding to their 'pre-fold' orientation. This dispersion of poles is inconsistent with a post-fold genesis in a regional stress field but permits the possibility that these WNW joints propagated as a systematic set prior to Laramide folding. A pre-fold interpretation is substantiated by a regional WNW-striking joint set within Cretaceous and older rocks in the surrounding Piceance, Uinta, and southeastern Sand Wash basins. During tilting accompanying the upfolding of Split Mountain, most joints of this WNW-striking regional set remain locked without slipping under a shear stress. Fracture toughness and frictional strength are two rock properties that serve to lock a joint until a critical resolved shear stress is achieved. A gravity load caused down-dip slip on some joints that were tilted to a dip of about 62°. This suggests that a local principal stress remained roughly vertical during bedding rotation. Assuming fracture strength and friction prevented slip on most joints during tilting, the ratio of least horizontal, Sh, to vertical stress, Sv, at the critical tilt angle was approximately 0.55.

  9. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small

  10. Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.

    2015-12-01

    High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can

  11. Joint measurements of black carbon and particle mass for ...

    EPA Pesticide Factsheets

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate total BC emissions from historical PM data; however, theseratios have not been measured using portable emission measurement systems(PEMS) in order to obtain real-world measurements over a wide range ofdriving conditions. In this study, we developed a PEMS platform byintegrating two Aethalometers and an electric low pressure impactor torealize the joint measurement of real-world BC and PM emissions for tenHDDVs in China. Test results showed that the average BC/PM ratio for fiveHDDVs equipped with mechanical fuel injection (MI) engines was 0.43±0.06,significantly lower (P<0.05) than another five HDDVs equipped withelectronically-controlled fuel injection (EI) engines (0.56±0.12).Traffic conditions also affected the BC/PM ratios with higher BC/PMratios on freeway routes than on local roads. Further, higher ratios wereobserved for HDDVs equipped with EI engines than for the MI engines forthe highway and local road routes. With an operating mode binningapproach, we observed that the instantaneous BC/PM ratios of EI enginevehicles were above those of the MI engine vehicles in all operatingmodes except for the braking mode (i.e., Bin 0). Therefore, the compleximpacts from engine technology and

  12. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  13. Imaging the state of the rock mass in the Kiirunavaara iron ore mine, Sweden, using local event tomography

    NASA Astrophysics Data System (ADS)

    Lund, Björn; Berglund, Karin; Tryggvason, Ari; Dineva, Savka; Jonsson, Linda

    2017-04-01

    Induced seismic events in a mining environment are a potential hazard, but they can be used to gain information about the rock mass in the mine which otherwise would be very difficult to obtain. In this study we use approximately 1.2 million mining induced seismic events in the Kiirunavaara iron ore mine in northernmost Sweden to image the rock mass using local event travel-time tomography. In addition, relocation of the events significantly improves the possibility to infer structural information and rock damage. The Kiirunavaara mine is one of the largest underground iron ore mines in the world. The ore body is a magnetite sheet of 4 km length, with an average thickness of 80 m, which dips approximately 55° to the east. Mining production is now at a depth of 785 - 855 m. During 2015 the seismic system in the mine recorded on average approximately 1,000 local seismic events per day. The events are of various origins such as shear slip on fractures, non-shear events and blasts, with magnitudes of up to 2.5. We use manually picked P- and S-waves in the tomography and we require that both phases are present as we found that events from the routine processing need screening for anomalous P- versus S-travel times, indicating occasional erroneous phase associations. For the tomography we use the 3D local earthquake tomography code PStomo_eq (Tryggvason et al., 2002), which we adjusted to the mining scale. The study volume is 1.2 x 1.8 x 1.8 km and the velocity model grid size is 10x10x10 meter. The tomographic images show clearly defined regions of high and low velocities. Low velocity zones are associated with mapped clay zones and areas of mined out ore, and also with the near-ore tunnel infrastructure in the foot-wall. We also see how the low S-velocity anomaly continues to depth below the current mining levels, following the inferred direction of the ore. The tomography shows higher P- and S-velocities in the foot-wall away from the areas of mine infrastructure. We

  14. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-06-01

    This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.

  15. Intensity of joints associated with an extensional fault zone: an estimation by poly3d .

    NASA Astrophysics Data System (ADS)

    Minelli, G.

    2003-04-01

    The presence and frequency of joints in sedimentary rocks strongly affects the mechanical and fluid flow properties of the host layers. Joints intensity is evaluated by spacing, S, the distance between neighbouring fractures, or by density, D = 1/S. Joint spacing in layered rocks is often linearly related to layer thickness T, with typical values of 0.5 T < S < 2.0 T . On the other hand, some field cases display very tight joints with S << T and nonlinear relations between spacing and thickness , most of these cases are related to joint system “genetically” related to a nearby fault zone. The present study by using the code Poly3D (Rock Fracture Project at Stanford), numerically explores the effect of the stress distribution in the neighbour of an extensional fault zone with respect to the mapped intensity of joints both in the hanging wall and in the foot wall of it (WILLEMSE, E. J. M., 1997; MARTEL, S. J, AND BOGER, W. A,; 1998). Poly3D is a C language computer program that calculates the displacements, strains and stresses induced in an elastic whole or half-space by planar, polygonal-shaped elements of displacement discontinuity (WILLEMSE, E. J. M., POLLARD, D. D., 2000) Dislocations of varying shapes may be combined to yield complex three-dimensional surfaces well-suited for modeling fractures, faults, and cavities in the earth's crust. The algebraic expressions for the elastic fields around a polygonal element are derived by superposing the solution for an angular dislocation in an elastic half-space. The field data have been collected in a quarry located close to Noci town (Puglia) by using the scan line methodology. In this quarry a platform limestone with a regular bedding with very few shale or marly intercalations displaced by a normal fault are exposed. The comparison between the mapped joints intensity and the calculated stress around the fault displays a good agreement. Nevertheless the intrinsic limitations (isotropic medium and elastic behaviour

  16. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  17. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  18. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-10-10

    The stable growth of a crack created by the hydraulic pressurizing of a penny-shaped crack in a dry rock mass is investigated. The rock mass is infinitely extended, homogeneous, and isotropic. It is verified on the basis of the equations of fluid dynamics that the fracturing fluid cannot penetrate the entire domain of a crack when the crack is moving. The effects of various terms in the basic equations are also studied. The solution of some typical examples is given, and the significant effect of the stress intensity factor of the rock on the crack propagation is shown. When themore » crack is expanding under a constant flow rate, the classical solution by Sack is found to be approximately valid for very large cracks, and nevertheless the crack is stable.« less

  19. Shear Model Development of Limestone Joints with Incorporating Variations of Basic Friction Coefficient and Roughness Components During Shearing

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2017-04-01

    In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.

  20. Behaviour of Frictional Joints in Steel Arch Yielding Supports

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel

    2014-10-01

    The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.

  1. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  2. An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints [Continuum modeling of elasto-plastic media with multiple embedded nonlinearly-compliant joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.

    Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less

  3. An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints [Continuum modeling of elasto-plastic media with multiple embedded nonlinearly-compliant joints

    DOE PAGES

    Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.

    2017-04-06

    Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less

  4. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  5. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now

  6. Body mass index and the rheumatoid arthritis swollen joint count: an observational study

    PubMed Central

    Caplan, Liron; Davis, Lisa A.; Bright, Christina M.; Kerr, Gail S.; Lazaro, Deana M.; Khan, Nasim A.; Richards, J. Steuart; Johnson, Dannette S.; Cannon, Grant W.; Reimold, Andreas M.; Mikuls, Ted R.

    2012-01-01

    Objective Obesity is a prevalent condition and a serious health concern. The relationship between obesity and RA disease activity and severity has not been adequately examined, and there are concerns that periarticular adipose tissue may reduce the utility of the joint examination. Methods We used a cross-sectional study to compare the performance of swollen joint count (SJC) in subjects with rheumatoid arthritis (RA) across body mass index (BMI) strata. Specifically, regression techniques tested for associations of SJC and seven RA disease activity/severity measures (including high sensitivity c-reactive protein, radiographic changes, and multi-dimensional health assessment questionnaire scores) within BMI quartiles. We also evaluated the association of BMI with radiographic evidence of RA in multivariate analyses and the association of BMI with SJC. Clinical and laboratory data from 980 Veterans Affairs Rheumatoid Arthritis (VARA) registry participants were analyzed using linear and logistic regression. Results Associations were evident between SJC and six of the seven examined RA disease activity/severity measures. SJC predicts RA disease activity/severity at least as well in more obese subjects as in subjects with lower BMIs, and there was a trend towards better performance in higher BMI individuals. Subjects with higher BMIs were marginally less likely to be characterized by radiographic changes (O.R. 0.98, p=0.051). We found no association between BMI and SJC. Conclusions BMI does not obscure the relationship of SJC and objective disease activity measures. There is a borderline association of higher BMI and likelihood of radiographic changes characteristic of RA after controlling for clinical characteristics. PMID:22623288

  7. Water Pressure Effects on Strength and Deformability of Fractured Rocks Under Low Confining Pressures

    NASA Astrophysics Data System (ADS)

    Noorian Bidgoli, Majid; Jing, Lanru

    2015-05-01

    The effect of groundwater on strength and deformation behavior of fractured crystalline rocks is one of the important issues for design, performance and safety assessments of surface and subsurface rock engineering problems. However, practical difficulties make the direct in situ and laboratory measurements of these properties of fractured rocks impossible at present, since effects of complex fracture system hidden inside the rock masses cannot be accurately estimated. Therefore, numerical modeling needs to be applied. The overall objective of this paper is to deepen our understanding on the validity of the effective stress concept, and to evaluate the effects of water pressure on strength and deformation parameters. The approach adopted uses discrete element methods to simulate the coupled stress-deformation-flow processes in a fractured rock mass with model dimensions at a representative elementary volume (REV) size and realistic representation of fracture system geometry. The obtained numerical results demonstrate that water pressure has significant influence on the strength, but with minor effects on elastic deformation parameters, compared with significant influence by the lateral confining pressure. Also, the classical effective stress concept to fractured rock can be quite different with that applied in soil mechanics. Therefore, one should be cautious when applying the classical effective stress concept to fractured rock media.

  8. Effect of hammer mass on upper extremity joint moments.

    PubMed

    Balendra, Nilanthy; Langenderfer, Joseph E

    2017-04-01

    This study used an OpenSim inverse-dynamics musculoskeletal model scaled to subject-specific anthropometrics to calculate three-dimensional intersegmental moments at the shoulder, elbow and wrist while 10 subjects used 1 and 2 lb hammers to drive nails. Motion data were collected via an optoelectronic system and the interaction of the hammer with nails was recorded with a force plate. The larger hammer caused substantial increases (50-150%) in moments, although increases differed by joint, anatomical component, and significance of the effect. Moment increases were greater in cocking and strike/follow-through phases as opposed to swinging and may indicate greater potential for injury. Compared to shoulder, absolute increases in peak moments were smaller for elbow and wrist, but there was a trend toward larger relative increases for distal joints. Shoulder rotation, elbow varus-valgus and pronation-supination, and wrist radial-ulnar deviation and rotation demonstrated large relative moment increases. Trial and phase durations were greater for the larger hammer. Changes in moments and timing indicate greater loads on musculoskeletal tissues for an extended period with the larger hammer. Additionally, greater variability in timing with the larger hammer, particularly for cocking phase, suggests differences in control of the motion. Increased relative moments for distal joints may be particularly important for understanding disorders of the elbow and wrist associated with hammer use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Search for underground openings for in situ test facilities in crystalline rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonicmore » or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.« less

  10. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2014-05-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex

  11. Quantifying the impact of lithology upon the mechanical properties of rock

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion

    2013-04-01

    The physical characteristics of rock, its lithology, undoubtedly influences its deformation under natural or engineering loads. Mineral texture, micro-damage, joints, bedding planes, inclusions, unconformities and faults are all postulated to alter the mechanical response of rock on different scales and under different stressing conditions. Whilst laboratory studies have elucidated some aspects of the relationship between lithology and mechanical properties, these small-scale results are difficult to extrapolate to lithospheric scales. To augment laboratory-derived knowledge, physics-based numerical modelling is a promising avenue [3]. Bonded particle models implemented using the Discrete Element Method (DEM [1]) are a practical numerical laboratory to investigate the interplay between lithology and the mechanical response of rock specimens [4]. Numerical rock specimens are represented as an assembly of indivisible spherical particles connected to nearest neighbours via brittle-elastic beams which impart forces and moments upon one-another as particles move relative to each other. By applying boundary forces and solving Newton's Laws for each particle, elastic deformation and brittle failure may be simulated [2]. Each beam interaction is defined by four model parameters: Young's modulus, Poisson's ratio, cohesive strength and internal friction angle. Beam interactions in different subvolumes of the specimen are assigned different parameters to model different rock types or mineral assemblages. Micro-cracks, joints, unconformities and faults are geometrically incorporated by fitting particles to either side of triangulated surfaces [5]. The utility of this modelling approach is verified by reproducing analytical results from fracture mechanics (Griffith crack propagation and wing-crack formation) and results of controlled laboratory investigations. To quantify the impact of particular lithologic structures on mechanical response, a range of control experiments are

  12. Geotechnical Characteristics and Stability Analysis of Rock-Soil Aggregate Slope at the Gushui Hydropower Station, Southwest China

    PubMed Central

    Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854

  13. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    PubMed

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  14. Mechanical Behavior of Brittle Rock-Like Specimens with Pre-existing Fissures Under Uniaxial Loading: Experimental Studies and Particle Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Cao, Ri-hong; Cao, Ping; Lin, Hang; Pu, Cheng-zhi; Ou, Ke

    2016-03-01

    Joints and fissures with similar orientation or characteristics are common in natural rocks; the inclination and density of the fissures affect the mechanical properties and failure mechanism of the rock mass. However, the strength, crack coalescence pattern, and failure mode of rock specimens containing multi-fissures have not been studied comprehensively. In this paper, combining similar material testing and discrete element numerical method (PFC2D), the peak strength and failure characteristics of rock-like materials with multi-fissures are explored. Rock-like specimens were made of cement and sand and pre-existing fissures created by inserting steel shims into cement mortar paste and removing them during curing. The peak strength of multi-fissure specimens depends on the fissure angle α (which is measured counterclockwise from horizontal) and fissure number ( N f). Under uniaxial compressional loading, the peak strength increased with increasing α. The material strength was lowest for α = 25°, and highest for α = 90°. The influence of N f on the peak strength depended on α. For α = 25° and 45°, N f had a strong effect on the peak strength, while for higher α values, especially for the 90° sample, there were no obvious changes in peak strength with different N f. Under uniaxial compression, the coalescence modes between the fissures can be classified into three categories: S-mode, T-mode, and M-mode. Moreover, the failure mode can be classified into four categories: mixed failure, shear failure, stepped path failure, and intact failure. The failure mode of the specimen depends on α and N f. The peak strength and failure modes in the numerically simulated and experimental results are in good agreement.

  15. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-10-10

    The stable growth of a crack created by the hydraulic pressurizing of a penny-shaped crack in a dry rock mass is investigated. The rock mass is infinitely extended, homogeneous, and isotropic. It is verified on the basis of the equations of fluid dynamics that the fracturing fluid cannot penetrate the entire domain of a crack when the crack is moving. The effects of various terms in the basic equations also are studied. The solution of some typical examples is given, and the significant effect of the stress intensity factor of the rock on the crack propagation is shown. When themore » crack is expanding under a constant flow rate, the classical solution by Sack is found to be approx. valid for very large cracks, and nevertheless the crack is stable. (11 refs.)« less

  16. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Chateauguay River Basin, a U.S.-Canada transborder aquifer

    USGS Publications Warehouse

    Morin, Roger H.; Godin, Rejean; Nastev, Miroslav; Rouleau, Alain

    2007-01-01

    [1] The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  17. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  18. Calculation of craters resulting from impact rupture of rock mass using pulse hydrodynamic problem formulation

    NASA Astrophysics Data System (ADS)

    Gorodilov, LV; Rasputina, TB

    2018-03-01

    A liquid–solid hydrodynamic model is used to determine shapes and sizes of craters generated by impact rupture of rocks. Near the impact location, rock is modeled by an ideal incompressible liquid, in the distance—by an absolute solid. The calculated data are compared with the experimental results obtained under impact treatment of marble by a wedge-shaped tool.

  19. Crack propagation of brittle rock under high geostress

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  20. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small

  1. Prediction of slope stability based on numerical modeling of stress–strain state of rocks

    NASA Astrophysics Data System (ADS)

    Kozhogulov Nifadyev, KCh, VI; Usmanov, SF

    2018-03-01

    The paper presents the developed technique for the estimation of rock mass stability based on the finite element modeling of stress–strain state of rocks. The modeling results on the pit wall landslide as a flow of particles along a sloped surface are described.

  2. Tourmaline orbicules in peraluminous monzogranites of Argentina: A study case of fluid-rock interaction between leucogranite and country-rock metasediments

    NASA Astrophysics Data System (ADS)

    Lira, Raúl; Poklepovic, María F.

    2017-12-01

    Tourmaline orbicules hosted in peraluminous granites are documented worldwide. Seven occurrences were identified in Argentina. Petrography, mineral chemistry, whole-rock geochemistry mass balance and microthermometric studies were performed in orbicules formed at the cupola of a peraluminous A-type leucogranite (Los Riojanos pluton), as well as complementary investigation was achieved in other orbicules of similar geological setting. Mass balance computations in zoned orbicules consistently confirmed immobility of Si both in core and halo, immobility of K and little loss of Al during halo reactions. Elements gained and lost in the schorl-rich core are Fe, Al, Mg, Ti, Ba, Sr, Y and Zr, and Na, K, Rb and Nb, respectively; in the halo, K, Ba, Sr, Y, Zr and locally CaO, were gained, and Fe, Mg, Na, Al, Rb and Nb were lost. The schorl-rich core is enriched in LREE relative to the leucogranite host. A temperature-salinity plot from fluid inclusion data delineates a magmatic-meteoric mixing trend of diluting salinity with descending temperature. Computed δDH20 values from Los Riojanos orbicule schorl suggest magmatic and magmatic-meteoric mixed origins. In Los Riojanos, mass balance constraints suggest that Fe, Mg, Ba, Sr and metallic traces like Zn and V (±Pb) were most likely derived from country-rock schists and gneisses through fluid-rock exchange reactions. A late magmatic-, volatile-rich- fluid exsolution scenario for the formation of orbicules is envisaged. Schorl crystallization was likely delayed to the latest stages of leucogranite consolidation, not only favored by the high diffusivity of B2O3 preferentially partitioned into the exsolved aqueous-rich fluid, but also likely limited to the low availability of Fe and Mg from the scarce granitic biotite, and to the high F- content of the melt. The spatial confination of orbicules to the contact zone granite-metasediments suggests that orbicules were not formed until exsolved fluids reached the boundary with the

  3. Adaptive control of center of mass (global) motion and its joint (local) origin in gait.

    PubMed

    Yang, Feng; Pai, Yi-Chung

    2014-08-22

    Dynamic gait stability can be quantified by the relationship of the motion state (i.e. the position and velocity) between the body center of mass (COM) and its base of support (BOS). Humans learn how to adaptively control stability by regulating the absolute COM motion state (i.e. its position and velocity) and/or by controlling the BOS (through stepping) in a predictable manner, or by doing both simultaneously following an external perturbation that disrupts their regular relationship. Post repeated-slip perturbation training, for instance, older adults learned to forward shift their COM position while walking with a reduced step length, hence reduced their likelihood of slip-induced falls. How and to what extent each individual joint influences such adaptive alterations is mostly unknown. A three-dimensional individualized human kinematic model was established. Based on the human model, sensitivity analysis was used to systematically quantify the influence of each lower limb joint on the COM position relative to the BOS and the step length during gait. It was found that the leading foot had the greatest effect on regulating the COM position relative to the BOS; and both hips bear the most influence on the step length. These findings could guide cost-effective but efficient fall-reduction training paradigm among older population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Geology and economic potential for chromite in the Zhob Valley ultramafic rock complex, Hindubagh, Quetta division, West Pakistan

    USGS Publications Warehouse

    Rossman, D.L.; Ahmad, Zaki; Rahman, Hamidur

    1971-01-01

    The ultramafic rocks making up the Zhob Valley igneous complex have yielded small amounts of metallurgical-grade chromite since the early part of the century. From 1968-1970 a cooperative study undertaken by the Geological Survey of Pakistan and the U. S. Geological Survey, under the auspices of the Government of Pakistan and the Agency for International Development, evaluated the chromite potential of the Zhob Valley area and provided data for effective exploration. The Jung Tor Ghar ultramafic rock mass, covering an area of about 45 square miles, is a thrust-fault block completely surrounded and underlain (?) by sedimentary rocks as young as Late Cretaceous in age. The igneous rocks were thrust from the northwest along an east-trending, north-dipping fault in Late Cretaceous or Paleocene time and were peneplaned, dissected, and deeply laterized by mid-Eocene time. The ultramafic rocks consist of interlayered harzburgite and dunite and a cross-cutting dunite here called transgressive dunite. Layered structure passes without discernible deviation from the interlayered harzburgite-dunite through the transgressive dunite. The lowest rocks in the mass, composed mainly of transgressive dunite, grade upward into the interlayered rock about 3,000 feet above the fault block base. The upper transgressive dunites tend to form interconnecting linear networks and probably a few pipe-like structures. The transgressive dunite is thought to have formed by action of water derived from the underlying sedimentary rocks; the water heated by the hot ultramafic rock (at the time of emplacement) altered the pyroxene to olivine and talc, and, with lowering temperature, to serpentine. Other interpretations are possible. Virtually all the chromite in the Jung Tor Ghar lies in or immediately above the masses of transgressive dunite. This fact provides a key to chromite exploration: The most favorable zone for prospecting lies in the vicinity of the upper contacts of the transgressive

  5. Correlated microtiming deviations in jazz and rock music.

    PubMed

    Sogorski, Mathias; Geisel, Theo; Priesemann, Viola

    2018-01-01

    Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI) time series revealed evidence for two long-range correlated processes characterized by power laws in the IBI power spectral densities. One process dominates on short timescales (t < 8 beats) and reflects microtiming variability in the generation of single beats. The other dominates on longer timescales and reflects slow tempo variations. Whereas the latter did not show differences between musical genres (jazz vs. rock/pop), the process on short timescales showed higher variability for jazz recordings, indicating that jazz makes stronger use of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles of rhythmic performance and can inspire algorithms for artificial music generation. By studying microtiming fluctuations in original music recordings, we bridge the gap between minimalistic tapping paradigms and expressive rhythmic performances.

  6. Correlated microtiming deviations in jazz and rock music

    PubMed Central

    Sogorski, Mathias; Geisel, Theo

    2018-01-01

    Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI) time series revealed evidence for two long-range correlated processes characterized by power laws in the IBI power spectral densities. One process dominates on short timescales (t < 8 beats) and reflects microtiming variability in the generation of single beats. The other dominates on longer timescales and reflects slow tempo variations. Whereas the latter did not show differences between musical genres (jazz vs. rock/pop), the process on short timescales showed higher variability for jazz recordings, indicating that jazz makes stronger use of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles of rhythmic performance and can inspire algorithms for artificial music generation. By studying microtiming fluctuations in original music recordings, we bridge the gap between minimalistic tapping paradigms and expressive rhythmic performances. PMID:29364920

  7. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  8. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  9. Joint inversion of lake-floor electrical resistivity tomography and boat-towed radio-magnetotelluric data illustrated on synthetic data and an application from the Äspö Hard Rock Laboratory site, Sweden

    NASA Astrophysics Data System (ADS)

    Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser

    2018-04-01

    The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT

  10. A Digital Image-Based Discrete Fracture Network Model and Its Numerical Investigation of Direct Shear Tests

    NASA Astrophysics Data System (ADS)

    Wang, Peitao; Cai, Meifeng; Ren, Fenhua; Li, Changhong; Yang, Tianhong

    2017-07-01

    This paper develops a numerical approach to determine the mechanical behavior of discrete fractures network (DFN) models based on digital image processing technique and particle flow code (PFC2D). A series of direct shear tests of jointed rocks were numerically performed to study the effect of normal stress, friction coefficient and joint bond strength on the mechanical behavior of joint rock and evaluate the influence of micro-parameters on the shear properties of jointed rocks using the proposed approach. The complete shear stress-displacement curve of the DFN model under direct shear tests was presented to evaluate the failure processes of jointed rock. The results show that the peak and residual strength are sensitive to normal stress. A higher normal stress has a greater effect on the initiation and propagation of cracks. Additionally, an increase in the bond strength ratio results in an increase in the number of both shear and normal cracks. The friction coefficient was also found to have a significant influence on the shear strength and shear cracks. Increasing in the friction coefficient resulted in the decreasing in the initiation of normal cracks. The unique contribution of this paper is the proposed modeling technique to simulate the mechanical behavior of jointed rock mass based on particle mechanics approaches.

  11. Real-time noble gas release signaling rock deformation

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under

  12. Damage-Based Time-Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2018-01-01

    Large alpine rock slopes undergo long-term evolution in paraglacial to postglacial environments. Rock mass weakening and increased permeability associated with the progressive failure of deglaciated slopes promote the development of potentially catastrophic rockslides. We captured the entire life cycle of alpine slopes in one damage-based, time-dependent 2-D model of brittle creep, including deglaciation, damage-dependent fluid occurrence, and rock mass property upscaling. We applied the model to the Spriana rock slope (Central Alps), affected by long-term instability after Last Glacial Maximum and representing an active threat. We simulated the evolution of the slope from glaciated conditions to present day and calibrated the model using site investigation data and available temporal constraints. The model tracks the entire progressive failure path of the slope from deglaciation to rockslide development, without a priori assumptions on shear zone geometry and hydraulic conditions. Complete rockslide differentiation occurs through the transition from dilatant damage to a compacting basal shear zone, accounting for observed hydraulic barrier effects and perched aquifer formation. Our model investigates the mechanical role of deglaciation and damage-controlled fluid distribution in the development of alpine rockslides. The absolute simulated timing of rock slope instability development supports a very long "paraglacial" period of subcritical rock mass damage. After initial damage localization during the Lateglacial, rockslide nucleation initiates soon after the onset of Holocene, whereas full mechanical and hydraulic rockslide differentiation occurs during Mid-Holocene, supporting a key role of long-term damage in the reported occurrence of widespread rockslide clusters of these ages.

  13. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  14. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  15. Geometrical properties of a discontinuity network in gneissic rock, a case study in high alpine terrain

    NASA Astrophysics Data System (ADS)

    Koppensteiner, Matthias; Zangerl, Christian

    2017-04-01

    For the purposes of estimating slope stability and investigating landslide formation processes, it is indispensable to obtain information about the discontinuity properties of the rock mass. These properties control failure processes, deformation behaviour and groundwater flow. Scanline measurements represent a systematic surveying method, however they make certain demands in case of natural outcorps in a high alpine terrain. The performance of the scanline method is tested and the thereby obtained and evaluated data is compared to findings from other studies. An area of a well exposed, fractured rock mass composed of granodioritic gneisses in the Oetztal-Stubai crytalline basement of the Alps (Austria) has been chosen to perform the investigations. Eight scanlines have been measured on a single hillside with varying lengths between 8 and 30 meters. The orientations of the scanlines have been varied in order to minimize the sampling bias associated with the angle between the scanlines and the intersected discontinuities. For every intersecting discontinuity at a certain tape length, the orientation, the trace length and the terminations of the trace have been recorded. Primarily, the discontinuity data from all scanlines have been analyzed with the software package Dips (Rocscience, 1989) in order to determine their allocation in sets. For the evaluation of the spacing and trace length properties, two scripts have been developed in the language Matlab (The MathWorks, 1984) to faciliate setwise processing of the entire dataset. Variation of the scanline directions and lengths returned homogeneous sample sizes for the individual discontinuity sets. Both, normal spacings and trace lengths show negative exponential distributions for all sets. A comparison of four different methods to estimate trace lengths show that the result is highly dependent on the chosen method itself. However, when the relation of the results for the respective sets within one of the methods is

  16. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Châteauguay River Basin, a U.S.-Canada transborder aquifer

    NASA Astrophysics Data System (ADS)

    Morin, Roger; Godin, RéJean; Nastev, Miroslav; Rouleau, Alain

    2007-04-01

    The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  17. Some Open Issues on Rockfall Hazard Analysis in Fractured Rock Mass: Problems and Prospects

    NASA Astrophysics Data System (ADS)

    Ferrero, Anna Maria; Migliazza, Maria Rita; Pirulli, Marina; Umili, Gessica

    2016-09-01

    Risk is part of every sector of engineering design. It is a consequence of the uncertainties connected with the cognitive boundaries and with the natural variability of the relevant variables. In soil and rock engineering, in particular, uncertainties are linked to geometrical and mechanical aspects and the model used for the problem schematization. While the uncertainties due to the cognitive gaps could be filled by improving the quality of numerical codes and measuring instruments, nothing can be done to remove the randomness of natural variables, except defining their variability with stochastic approaches. Probabilistic analyses represent a useful tool to run parametric analyses and to identify the more significant aspects of a given phenomenon: They can be used for a rational quantification and mitigation of risk. The connection between the cognitive level and the probability of failure is at the base of the determination of hazard, which is often quantified through the assignment of safety factors. But these factors suffer from conceptual limits, which can be only overcome by adopting mathematical techniques with sound bases, not so used up to now (Einstein et al. in rock mechanics in civil and environmental engineering, CRC Press, London, 3-13, 2010; Brown in J Rock Mech Geotech Eng 4(3):193-204, 2012). The present paper describes the problems and the more reliable techniques used to quantify the uncertainties that characterize the large number of parameters that are involved in rock slope hazard assessment through a real case specifically related to rockfall. Limits of the existing approaches and future developments of the research are also provided.

  18. Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Nemcik, Jan; Ma, Shuqi

    2013-12-01

    Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re > 32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.

  19. Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data: Bingham Canyon Rock Avalanches

    DOE PAGES

    Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; ...

    2017-03-01

    The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. We combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm 3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greatermore » volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~10 4–10 5 m 3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. These results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.« less

  20. Coronoid process and residual ankylotic mass as an autograft in the management of ankylosis of the temporomandibular joint in young adolescent patients: a retrospective clinical investigation.

    PubMed

    Bansal, Vishal; Mowar, Apoorva; Dubey, Prajesh; Bhatnagar, Aditi; Bansal, Avi

    2016-04-01

    The aim of this non-randomised investigation was to assess the feasibility of using autogenous grafts (such as coronoid process and the resected ankylotic mass) in reconstruction of the condyle after gap arthroplasty for ankylosis of the temporomandibular joint (TMJ). Sixteen patients (23 joints) operated on between 2007 and 2009 were studied and postoperative measurements of maximum interincisal opening, bite force, range of movement, and infection were recorded. After a mean (SD) follow up of 55 (2.25) months mouth opening improved from 3 (3.84) mm to 33 (1.66) mm in patients treated with coronoid graft, while in patients treated with an ankylotic mass after a mean (SD) follow up of 58 (1.58) months it increased from 4 (2.64) mm to 26 (8.04) mm. Bite force six months postoperatively ranged from 18.25kg/cm(2) - 27.5kg/cm(2) after reconstruction with the coronoid process and 18.5kg/cm(2) - 23.25kg/cm(2) after reconstruction with the ankylotic mass. One patient developed reankylosis postoperatively and another developed infection, in both of which the ankylotic mass had been used. Both were managed successfully. Both the ankylotic mass and the coronoid process gave satisfactory results and seem to be options for reconstruction. However, the coronoid process graft was better than residual ankylotic mass in terms of masticatory efficiency, bite force, and range of movement. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. GPR monitoring of rock mass stability in selected post-mining region in Poland

    NASA Astrophysics Data System (ADS)

    Golebiowski, T.

    2012-04-01

    Mining activity conducted over a period of many years may cause significant changes in the geological medium and in effect leads to strong degradation of the surface in mining and post-mining regions. One of the most dangerous effects of mining activity is appearance of sinkholes on the ground surface. These phenomena are related to the changes of initial stress-strain state of the rock mass as a result of mining works and the creation of fractures which migrate from excavations to the ground surface. The paper presents the results of selected GPR surveys carried out in the area of the coal mine "Siersza" in two sites, i.e. in the town of Siersza and in the village of Mloszowa (Upper Silesia, South Poland). The aim of the GPR research was 3D visualisation of fractured zones distribution generated by the mining activity and an attempt to make prediction where sinkholes would appear. In order to realize this aim the measurements were conducted in 4D mode (i.e. time-space analysis), which allowed to observe the fractured zones migration towards the ground surface. In order to obtain 4D information (x-y-z-t) GPR surveys were conducted for several years, along the same parallel profiles, separated by a constant distance equals 2.5m. The terrain measurements were carried out with RAMAC and PROEX GPR systems using 250, 200, 100 and 50 MHz antennae. Because of the limited length of this paper, only selected results from the 200-250 MHz antennae are presented. The results were presented in the form of the distribution of GPR signals energies calculated from Hilbert transform, applying the technique of energy inversion. In the site of Siersza, on the basis of 4D GPR visualisation, regions threatened with the formation of sinkholes were distinguished. A few years after the research, 2 cavities appeared in this site which proved that the interpretation was correct. Another fractured zone in this site was confirmed by a borehole. In the site of Mloszowa the GPR measurements

  2. Study of borehole probing methods to improve the ground characterization

    NASA Astrophysics Data System (ADS)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  3. Allan Hills 76005 Polymict Eucrite Pairing Group: Curatorial and Scientific Update on a Jointly Curated Meteorite

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2011-01-01

    Allan Hills 76005 (or 765) was collected by the joint US-Japan field search for meteorites in 1976-77. It was described in detail as "pale gray in color and consists of finely divided macrocrystalline pyroxene-rich matrix that contains abundant clastic fragments: (1) Clasts of white, plagioclase-rich rocks. (2) Medium-gray, partly devitrified, cryptocrystalline. (3) Monomineralic fragments and grains of pyroxene, plagioclases, oxide minerals, sulfides, and metal. In overall appearance it is very similar to some lunar breccias." Subsequent studies found a great diversity of basaltic clast textures and compositions, and therefore it is best classified as a polymict eucrite. Samples from the 1976-77, 77-78, and 78-79 field seasons (76, 77, and 78 prefixes) were split between US and Japan (NIPR). The US specimens are currently at NASA-JSC, Smithsonian Institution, or the Field Museum in Chicago. After this initial finding of ALH 76005, the next year s team recovered one additional mass ALH 77302, and then four additional masses were found during the third season ALH 78040 and ALH 78132, 78158 and 78165. The joint US-Japan collection effort ended after three years and the US began collecting in the Trans-Antarctic Mountains with the 1979-80 and subsequent field seasons. ALH 79017 and ALH 80102 were recovered in these first two years, and then in 1981-82 field season, 6 additional masses were recovered from the Allan Hills. Of course it took some time to establish pairing of all of these specimens, but altogether the samples comprise 4292.4 g of material. Here will be summarized the scientific findings as well as some curatorial details of how specimens have been subdivided and allocated for study. A detailed summary is also presented on the NASA-JSC curation webpage for the HED meteorite compendium.

  4. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  5. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. Rock-forming metals and Pb in modern Alaskan snow

    USGS Publications Warehouse

    Hinkley, Todd K.

    1993-01-01

    Metal concentrations in annual and subannual increments of snowpack from the accumulation zone of a south central Alaska glacier indicate that the deposition of Pb with and upon snow is decoupled from that of rock dusts. Rock dusts accumulate, apparently as dry deposition, on the topmost, exposed surfaces of snowpacks in spring and summer, whereas Pb does not. Pb concentration is elevated throughout the latest one third of an annual snowpack, whereas that of rock dusts is not. For whole-year snowpacks, there is a generally sympathetic relationship among concentration of Pb, concentration of rock dust, degree of dominance of rock dusts over ocean solutes, and ferromagnesian character of the rock dusts; however, the fractional abundance of Pb in whole year samples may decrease when rock dust masses become large and/or when rock dusts dominate most strongly over salts. The metal suite chosen to characterize rock dusts and to distinguish them from ocean solutes gives detailed information about rock type of dust source areas and about the nature of the degraded rock products that are taken up, transported, and deposited by the atmosphere. Rock dusts are present at concentrations of only about 300 nanograms (ng) of dust per gram of snow in the Alaskan snowpacks. Concentrations of Pb in the Alaska snow samples are moderate, ranging from 0.1 to 0.3 ng Pb/g snow. This contrasts with larger Pb concentrations of 0.4 to 0.9 ng Pb/g snow in whole-year snowpack samples from the Sierra Nevada, California; with similar to smaller concentrations from north and south Greenland of about 0.04 ng Pb/g snow or less, and about 0.2 ng Pb/g snow or less, respectively, and with much smaller concentrations from Antarctica, now believed to range from a minimum of about 0.001 to a maximum of 0.005 (or 0.01) ng Pb/g snow.

  7. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  8. Columnar jointing - the mechanics of thermal contraction in cooling lavas

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.

    2014-12-01

    Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio

  9. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to

  10. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  11. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  12. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  13. "Rock Garden"

    NASA Image and Video Library

    1997-10-14

    This false color composite image of the Rock Garden shows the rocks "Shark" and "Half Dome" at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989). http://photojournal.jpl.nasa.gov/catalog/PIA00987

  14. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    NASA Astrophysics Data System (ADS)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  15. Sampling and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry in railway environment

    NASA Astrophysics Data System (ADS)

    Assali, P.; Grussenmeyer, P.; Pollet, N.; Viguier, F.; Villemin, T.

    2012-04-01

    In order to increase its knowledge of rock slope stability along the French national rail network, the SNCF Engineering Management is developing a new approach for sampling and modeling rock discontinuities. The rock face diagnosis is a follow-up and check operation of the field works. This operation allowed to optimize the rock risk treatment at the best price in respect with safety requirements. These operations require the measurement of orientation and location of rock discontinuities at the surface of the rock mass and is followed by a structural modeling in order to extrapolate the data collected at the surface to the inner part of the massif. At present, this work is completed manually with a compass-clinometer, in a simplified way mainly based on the specialist's experience. The analysis remains empirical, and most of the time restricted to the most fractured zone, whereas safety requirements ask for an exhaustive study on the whole of the site. Filling these gaps, the combined use of dense three-dimensional measurement techniques, associating both terrestrial laser scanning and optical imaging, makes it possible to obtain a more complete structural statement. The data acquisition and processing need protocols adapted to the railway environment for obtaining suitable 3D models. Then the exploitation of these models requires the development of semi-automatic process, with an aim of, to support the geologist's on-site expertise with a digital model exploitation. The geometrical characterization of the rock mass is undertaken thanks to a classification of the model in several subsets corresponding to the main directional families. The data on these planar discontinuities, traditionally acquired manually in certain points necessarily accessible of the rock face, result now from dense 3D models covering the whole of the work. Therefore, statistical sampling is stronger, while the time of the on-site survey is reduced. By these means, the diagnosis should be made

  16. Rock burst governance of working face under igneous rock

    NASA Astrophysics Data System (ADS)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  17. Evaluation of rock classifications at B. C. Rail tumbler ridge tunnels

    NASA Astrophysics Data System (ADS)

    Kaiser, Peter K.; Mackay, C.; Gale, A. D.

    1986-10-01

    Construction of four single track railway tunnels through sedimentary rocks in central British Columbia, Canada, provided an excellent opportunity to compare various rock mass classification systems and to evaluate their applicability to the local geology. The tunnels were excavated by conventional drilling and blasting techniques and supported primarily with rock bolts and shotcrete, and with steel sets in some sections. After a brief project description including tunnel construction techniques, local geology and groundwater conditions, the data collection and filed mapping procedure is reviewed. Four rock mass classification systems ( RQD, RSR, RMR, Q) for empirical tunnel design are reviewed and relevant factors for the data interpretation are discussed. In comparing and evaluating the performance of these classification systems three aspects received special attention. The tunnel support predicted by the various systems was compared to the support installed, a unique correlation between the two most useful and most frequently applied classifications, the RMR and Q systems, was established and assessed, and finally, the non-support limit and size effect were evaluated. It is concluded that the Q-system best predicted the required tunnel support and that the RMR was only adequate after adjustment for the influence of opening size. Correction equations for opening size effects are presented for the RMR system. The RSR and RQD systems are not recommended for empirical tunnel design.

  18. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    NASA Astrophysics Data System (ADS)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  19. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  20. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico

    USGS Publications Warehouse

    Delaney, Paul T.; Pollard, David D.

    1981-01-01

    We have studied a small group of minette dikes and plugs that crop out within a flat-lying sequence of siltstone and shale near Ship Rock, a prominent volcanic throat of tuff breccia in northwestern New Mexico. Seven dikes form a radial pattern about Ship Rock we describe in detail the northeastern dike, which has an outcrop length of about 2,900 m, an average thickness of 2.3 m, and a maximum thickness of 7.2 m. The dike is composed of 35 discrete segments arranged in echelon; orientation. of dike segments ranges systematically from N. 52? E. to N. 66? E. A prominent joint set strikes parallel to the segments and is localized within several tens of meters of the dike. Regional joint patterns display no obvious relation to dike orientation. Small offsets of segment contacts, as well as wedge-shaped bodies of crumpled host rock within segments mark the sites of coalescence of smaller segments during dike growth. Bulges in the dike contact, which represent a nondilational component of growth, indicate that wall rocks were brecciated and eroded during the flow of magma. Breccias make up about 9 percent of the 7,176-m 2 area of the dike, are concentrated in its southwest half, and are commonly associated with its thickest parts. We also describe three subcircular plugs; each plug is smaller than 30 m in diameter, is laterally associated with a dike, and contains abundant breccias. Field evidence indicates that these plugs grew from the dikes by brecciation and erosion of wallrocks and that the bulges in the contact of the northeastern dike represent an initial stage of this process. From continuum-mechanical models of host-rock deformation, we conclude that dike propagation was the dominant mechanism for creating conduits for magma ascent where the host rock was brittle and elastic. At a given driving pressure, dikes dilate to accept greater volumes of magma than plugs, and for a given dilation, less work is done on the host rocks. In addition, the pressure required

  1. A quantitative analysis of rock cliff erosion environments

    NASA Astrophysics Data System (ADS)

    Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.

    2009-12-01

    acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.

  2. Complex mammary carcinoma with metastases to lymph nodes, subcutaneous tissue, and multiple joints in a dog.

    PubMed

    McCourt, Maggie R; Dieterly, Alexandra M; Mackey, Paige E; Lyon, Shane D; Rizzi, Theresa E; Ritchey, Jerry W

    2018-05-07

    An 8-year-old, intact female, mixed-breed dog presented to the Oklahoma State University Boren Veterinary Medical Teaching Hospital for evaluation of progressive lameness and joint effusion of multiple joints. Physical examination revealed joint effusion of the elbow, hock, and stifle joints bilaterally, enlarged left axillary and right popliteal lymph nodes, a subcutaneous mass over the left elbow, and a subcutaneous mass involving the left second and third mammary glands. Cytologic examination of the mammary mass, enlarged lymph nodes, and joint fluid from most affected joints revealed a monomorphic population of loosely cohesive neoplastic epithelial cells. The patient was humanely euthanized, and subsequent necropsy with histopathologic examination revealed a complex mammary carcinoma with metastases to enlarged lymph nodes, subcutaneous tissue over the left elbow, and the synovium of multiple joints. Immunohistochemical stains were performed and showed diffusely positive pan cytokeratin, CK8/18, and CK19 staining in the neoplastic luminal epithelial cells of the mammary carcinoma, synovium, and lymph nodes, and showed diffusely positive vimentin staining of the myoepithelial cells. Myoepithelial calponin positivity was diffuse in the mammary mass and lymph nodes but minimal in the synovium. Only the mammary mass showed p63 positivity. Metastatic mammary neoplasia is relatively common in dogs; however, metastasis to the synovium has only been reported once previously in the literature. This is the first case utilizing immunohistochemistry for confirmation and characterization of metastases. © 2018 American Society for Veterinary Clinical Pathology.

  3. Is There a Relationship Between Body Mass Index and Fluoroscopy Time During Sacroiliac Joint Injection? A Multicenter Cohort Study.

    PubMed

    McCormick, Zachary L; Cushman, Daniel; Lee, David T; Scholten, Paul; Chu, Samuel K; Babu, Ashwin N; Caldwell, Mary; Ziegler, Craig; Ashraf, Humaira; Sundar, Bindu; Clark, Ryan; Gross, Claire; Cara, Jeffrey; McCormick, Kristen; Ross, Brendon; Smith, Clark C; Press, Joel; Smuck, Matthew; Walega, David R

    2016-07-01

    To determine the relationship between BMI and fluoroscopy time during intra-articular sacroiliac joint (SIJ) injections performed for a pain indication. Multicenter retrospective cohort study. Three academic, outpatient pain treatment centers. Patients who underwent fluoroscopy guided SIJ injection with encounter data regarding fluoroscopy time during the procedure and body mass index (BMI). Median and 25-75% Interquartile Range (IQR) fluoroscopy time. 459 SIJ injections (350 patients) were included in this study. Patients had a median age of 57 (IQR 44, 70) years, and 72% were female. The median BMI in the normal weight, overweight, and obese groups were 23 (IQR 21, 24), 27 (IQR 26, 29), and 35 (IQR 32, 40), respectively. There was no significant difference in the median fluoroscopy time recorded between these BMI classes (p = 0.45). First-time SIJ injection (p = 0.53), bilateral injection (p = 0.30), trainee involvement (p = 0.47), and new trainee involvement (trainee participation during the first 2 months of the academic year) (p = 0.85) were not associated with increased fluoroscopy time for any of the three BMI categories. Fluoroscopy time during sacroiliac joint injection is not increased in patients who are overweight or obese, regardless of whether a first-time sacroiliac joint injection was performed, bilateral injections were performed, a trainee was involved, or a new trainee was involved. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Obaid, Shamsan S.; Sayyed, M. I.; Gaikwad, D. K.; Pawar, Pravina. P.

    2018-07-01

    In the present work, the mass attenuation coefficient μ/ρ is investigated experimentally and theoretically for seven rocks (olivine basalt, green marble, jet black granite, telphone black granite, cuddapah limestone, white marble and pink marble). The rock samples were collected from different places of India. The mass attenuation coefficients of the samples were measured experimentally at photon energies of radioisotopes Co57 (122 keV), Ba133 (356 keV), 22Na (511 and 1275 keV), Cs137 (662 keV), Mn54 (840 keV), and Co60 (1330 keV). Theoretically, the simulation results of μ/ρ using both XCOM and MCNP5 codes were compared with experimental results and a satisfactory agreement was observed. Total atomic cross sections (σt,a) electronic cross sections (σt,e), effective atomic number (Zeff), electron density (Ne) and half value layer (HVL) were evaluated using the obtained μ/ρ values for investigated rocks. The HVL values for the selected rocks were compared with some common shielding concretes. Moreover, by Geometric Progression method (G-P) exposure buildup factor (EBF) and energy absorption buildup factor (EABF) values were calculated for incident photon energy 0.015-15 MeV up to penetration depths of 40 mean free paths. The results show that among the studied rocks pink marble possesses superior shielding properties for γ-ray. This work was carried out to explore the advantage of utilizing the selected rocks in engineering structures and building construction to shield gamma-rays.

  5. Strontium and neodymium isotope systematics of target rocks and impactites from the El'gygytgyn impact structure: Linking impactites and target rocks

    NASA Astrophysics Data System (ADS)

    Wegner, Wencke; Koeberl, Christian

    2016-12-01

    The 3.6 Ma El'gygytgyn structure, located in northeastern Russia on the Chukotka Peninsula, is an 18 km diameter complex impact structure. The bedrock is formed by mostly high-silica volcanic rocks of the 87 Ma old Okhotsk-Chukotka Volcanic Belt (OCVB). Volcanic target rocks and impact glasses collected on the surface, as well as drill core samples of bedrock and impact breccias have been investigated by thermal ionization mass spectrometry (TIMS) to obtain new insights into the relationships between these lithologies in terms of Nd and Sr isotope systematics. Major and trace element data for impact glasses are added to compare with the composition of target rocks and drill core samples. Sr isotope data are useful tracers of alteration processes and Nd isotopes reveal characteristics of the magmatic sources of the target rocks, impact breccias, and impact glasses. There are three types of target rocks mapped on the surface: mafic volcanics, dacitic tuff and lava of the Koekvun' Formation, and dacitic to rhyolitic ignimbrite of the Pykarvaam Formation. The latter represents the main contributor to the impact rocks. The drill core is divided into a suevite and a bedrock section by the Sr isotope data, for which different postimpact alteration regimes have been detected. Impact glasses from the present-day surface did not suffer postimpact hydrothermal alteration and their data indicate a coherent alteration trend in terms of Sr isotopes with the target rocks from the surface. Surprisingly, the target rocks do not show isotopic coherence with the Central Chukotka segment of the OCVB or with the Berlozhya magmatic assemblage (BMA), a late Jurassic felsic volcanic suite that crops out in the eastern part of the central Chukotka segment of the OCVB. However, concordance for these rocks exists with the Okhotsk segment of the OCVB. This finding argues for variable source magmas having contributed to the build-up of the OCVB.

  6. Radiating columnar joints in Gyeongju, Korea as a educational site

    NASA Astrophysics Data System (ADS)

    Woo, H.; Kim, J. H.; Jang, Y. D.

    2015-12-01

    Gyeongju is located in the central eastern part of South Korea. There are various directional columnar joint sets in Tertiary trachytic basalt formation along the shore. In particular, rare radiating columnar joints occur in this area. Columnar joints are parallel, prismatic columns that are formed as a result of contraction during the rapid cooling of lava flow, forming a three dimensional fracture network. In general, the radius and direction of the rock column represent the cooling rate and surface respectively. Radiating direction of columns here indicates that dome- or lobe-shaped lava was cooled from its surface to the core during the viscous lava flow. The fact that the trachytic textures of plagioclase laths are indistinct suggests that the radiating columnar joints are equivalent to the frontal end of the lava lobes. This area is currently has a shore trail course, which is being developed into a picturesque educational park. There are corresponding information boards on the trail near each type of columnar joints to explain not only the forming process and geological mechanisms but the importance of nature conservation to visitors, especially students. A variety of educational materials and educational programs linked to regular school curriculum are also being developed.

  7. Anomalous concentrations of seismically triggered rock falls in Pacoima Canyon: Are they caused by highly susceptible slopes or local amplification of seismic shaking?

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.

    2002-01-01

    Anomalously high concentrations of rock falls were triggered in Pacoima Canyon (Los Angeles, California) during the 1994 Northridge earthquake. Similar concentrations were also documented from the 1971 San Fernando earthquake. Using an engineering rock-mass classification that evaluates the susceptibility of rock slopes to seismic failure based on the fracture properties of a rock mass (in terms of a numerical "Q-value" that describes rock quality), the rock slopes in Pacoima Canyon were compared with rock slopes in sorrounding areas where topography and lithology are similar, but rock-fall concentrations from the earthquakes were much lower. A statistical comparison of Q-values from five sites surrounding Pacoima Canyon indicates that seismic susceptibilities are similar to those within Pacoima Canyon; differences in the characteristics of rock slopes between these sites are not sufficient to account for the relatively high concentrations of rock falls within Pacoima Canyon as compared to low concentrations elsewhere. By eliminating susceptibility differences as a cause, the most likely explanations for the differences in rock-fall concentrations is anomalously high shaking levels in Pacoima Canyon, possibly resulting from topographic amplification within the canyon.

  8. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts andmore » the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.« less

  10. Control of strong ground motion of mining-induced earthquakes by the strength of the seismogenic rock mass

    USGS Publications Warehouse

    McGarr, A.

    2002-01-01

    The shear stress ?? that can be sustained by the rock mass in the environs of a mining-induced earthquake controls the near-fault peak ground velocity v of that event according to v???0.25(??/G) ??, where ?? is the shear wave speed and G is the modulus of rigidity. To estimate ?? at mining depths, I review the results of four studies involving Witwatersrand tremors that relate to the bulk shear strength. The first and most general analysis uses the common assumptions that the seismogenic crust is pervasively faulted, has hydrostatic pore pressure before mining, and an extensional stress state that is close to failure. Mining operations reduce the pore pressure to zero within the mine and redistribute the stresses such that, in localized regions, the state of stress is again at the point of failure. Laboratory friction experiments can be used to estimate ?? in the zero-pore-pressure regime. Second, model calculations of states of stress in the vicinity of milling at about 3 km depth indicated the shear stress available to cause faulting near the centre of a distribution of induced earthquakes. Third, laboratory experiments combined with microscopic analyses of fault gouge from the rupture zone of a mining-induced event provided an estimate of the average shear stress acting on the fault to cause this earthquake at a depth of 2 km. Fourth, moment tensors determined for mining- induced earthquakes usually show substantial implosive components, from which it is straightforward to estimate ??. These four different analyses yield estimates of ?? that fall in the range 30 to 61 MPa which implies that near-fault particle velocities could he as high as about 1.5 m/s. To the extent that the causative fault ruptures previously intact rock, both ?? and v, in localized regions, could be several times higher than 61 MPa and 1.5 m/s.

  11. 2007 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition - Combating Weapons of Mass Destruction

    DTIC Science & Technology

    2007-06-27

    Selected CB Defense Systems SHAPESENSE Joint Warning and Reporting Network JSLIST CB Protected Shelter Joint Vaccine Acquisition Program Joint Effects...military can operate in any environment, unconstrained by chemical or biological weapons. 21 SHIELD SUSTAIN Selected CB Defense Systems SHAPESENSE Joint...28070625_JCBRN_Conference_Reeves UNCLASSIFIED Decontamination Vision Strippable Barriers Self-Decontaminating Fabrics/Coatings Reduce Logistics Burden

  12. Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2016-01-01

    Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined.

  13. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  14. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  15. The correlation between movement of the center of mass and the kinematics of the spine, pelvis, and hip joints during body rotation.

    PubMed

    Wada, Osamu; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2014-01-01

    Body rotation is associated with many activities. The concomitant movement of the center of mass (COM) is essential for effective body rotation. This movement is considered to be influenced by kinematic changes in the spine, pelvis, and hip joints. However, there is no research on the association between COM movement and kinematic changes during body rotation. We aimed to investigate the association between COM movement and the kinematics of the spine, pelvis, and hip joints during body rotation in standing. Twenty-four healthy men were included in the study. COM movement during active body rotation in a standing position was measured. We evaluated pelvic shift and changes in the angles of the spine, pelvis, and hip joints. We calculated the Pearson correlation coefficients to analyze the relationship between COM movement and kinematic changes in the spine, pelvis, and hip joints. There were significant correlations between lateral COM movement to the rotational side and pelvic shift to the rotational side, and between posterior COM movement and pelvic shift to the posterior side. In addition, lateral COM movement to the rotational side showed significant and negative correlation with spinal flexion and was significantly and positively correlated with the change in anterior pelvic tilt. Clinicians need to take particular note of both spinal and pelvic motion in the sagittal plane, as well as the pelvic shift, to speculate COM movement during body rotation in standing. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The origin and evolution of terrestrial and Martian rock labyrinths

    NASA Technical Reports Server (NTRS)

    Brook, G. A.

    1984-01-01

    The morphological characteristics and evolutionary development of rock labyrinths on Earth (in sandstone, volcanics, and carbonates) are compared with those on Mars. On Earth rock labyrinths originate as parallel, an echelon, or intersecting narrow grabens, or develop where fault and joint networks are selectively eroded. Labyrinths frequently contain both downfaulted and erosional elements. Closed labyrinths contain depressions; open labyrinths do not, they are simple part of a fluvial network generally of low order. As closed labyrinths made up of intersecting grabens or made up of connected erosional depressions are extremely common on Mars, the research focussed on an understanding of these labyrinth types. Field investigations were carried out in Canyonlands National Park, Utah, and in the Chirachahua Mountains of Arizona. Martian labyrinths were investigated using Viking orbiter images. In addition, research was undertaken on apparent thermokarst features in Lunae Planum and Chryse Planitia where closed depressions are numerous and resemble atlas topography.

  17. Mechanics of debris flows and rock avalanches: Chapter 43

    USGS Publications Warehouse

    Iverson, Richard M.; Fernando, Harindra Joseph

    2012-01-01

    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  18. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    PubMed

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past. © 2012 Blackwell Publishing Ltd.

  19. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  20. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  1. Rock Games.

    ERIC Educational Resources Information Center

    Topal, Cathy Weisman

    1985-01-01

    Elementary school children are given cards containing specific criteria for doing one or two tasks: sorting or arranging rocks. Sorting tasks involve children in picking out rocks with particular characteristics, such as color or shape. In the arranging tasks children are asked to arrange rocks according to size or value. (RM)

  2. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  3. Volatile transfer and recycling at convergent margins: Mass-balance and insights from high-P/T metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.

    The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.

  4. Fluid and mass transfer at subduction interfaces-The field metamorphic record

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.; Penniston-Dorland, Sarah C.

    2016-01-01

    The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical

  5. Comparison of structural performance of one- and two-bay rotary joints for truss applications

    NASA Technical Reports Server (NTRS)

    Vail, J. Douglas; Lake, Mark S.

    1991-01-01

    The structural performance of one- and two-bay large-diameter discrete-bearing rotary joints was addressed for application to truss-beam structures such as the Space Station Freedom. Finite element analyses are performed to determine values for rotary joint parameters that give the same bending vibration frequency as the parent truss beam. The structural masses and maximum internal loads of these joints are compared to determine their relative structural efficiency. Results indicate that no significant difference exists in the masse of one- and two-bay rotary joints. This conclusion is reinforced with closed-form calculations of rotary joint structural efficiency in extension. Also, transition truss-member loads are higher in the one-bay rotary joint. However, because of the increased buckling strength of these members, the external load-carrying capability of the one-bay concept is higher than that of the two-bay concept.

  6. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  7. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  8. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    NASA Astrophysics Data System (ADS)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  9. Rock Quality Designation (RQD) after Twenty Years.

    DTIC Science & Technology

    1989-02-01

    strength, and seismic refraction velocity for prediction of single-tooth rippability with a D-8 dozer, all correlated by field rippability tests...Smith (1986) utilizes the RMR System to estimate rippability . Kirsten (1988) characterizes excavatability for trenching, digging, dozing, and...Lisbon, Portugal, Vol. 1, pp. II. 33 - II. 42. Smith, H.J., (1986), "Estimating Rippability by Rock Mass Classification," Proc. 27th U.S. Symposium on

  10. Heritage stones and their deterioration in rock-cut monuments in India

    NASA Astrophysics Data System (ADS)

    Sharma, Vinod K.

    2017-04-01

    India is dotted with thousands of rock- cut monuments of considerable antiquity having artwork of global importance. It is evident from the location of many of these monuments that knowledge of viable selection of site, geotechnical considerations and amenability to sculptures' chisel was vital for construction of rock-cut monuments and sculptures. These rock-cut structures also represent significant achievements of geotechnical and structural engineering and craftsmanship of contemporary period. The paper deals with some of the sites where natural rock-mass exposures were used to hew the monuments and highlight the deterioration owing to geological and climatic conditions. The Kailash temple in Ellora and Ajanta rock-cut caves are among the greatest architectural feats which owe their grandeur to amenability and consistency of basalt of Deccan Volcanic Province from which it is hewn. The Kailash Temple was created through a single, huge top-down excavation 100 feet deep down into the volcanic basaltic cliff rock. These ancient rock cut structures are amazing achievements of structural engineering and craftsmanship. The lava flows are nearly horizontal, competent rock medium facilitated the chiseling for the sculptures. The deterioration of these basalts are seen where the amygdule, vesicles and opening in rock discontinuity had the medium of construction or excavation. The monolithic rock- cut monuments of Mahabalipuram temples are constructed in the form of rathas or chriot and adjoining caves by excavating solid charnockite/granites. The large rock exposures are excavated and cut to perfection with wall decorations and sculptured art. The charnockites are the strongest and the most durable rock, yet quite amenable to fine dressing. These monolithic monuments in charnockite and are cut out of the hillock. The 7th Century monuments now exhibit somewhat rough surface probably due to weathering effect of salt laden winds from the sea side and alteration of feldspars

  11. Constraining the age of Aboriginal rock art using cosmogenic Be-10 and Al-26 dating of rock shelter collapse in the Kimberley region, Australia.

    NASA Astrophysics Data System (ADS)

    Cazes, Gaël; Fink, David; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.

    2017-04-01

    The Kimberley region, northwest Australia, possesses an extensive and diverse collection of aboriginal rock art that potentially dates to more than 40,000 years ago. However, dating of such art using conventional techniques remains problematic. Here, we develop a new approach which makes use of the difference in production rates of in-situ 10Be and 26Al between intact rock walls and exposed surfaces of detached slabs from rock art shelters to constrain the age of Aboriginal rock-art. In the prevailing sandstone lithology of the Kimberley region, open cave-like rock shelters with cantilevered overhangs evolve by the collapse of unstable, partially rectangular, blocks weakened typically along joint-lines and fractures. On release, those slabs which extend outside the rock face perimeter will experience a higher production rate of cosmogenic 10Be and 26Al than the adjacent rock which remains intact within the shelter. The dating of these freshly exposed slabs can help reconstruct rock-shelter formation and provide either maximum or minimum ages for the rock art within the shelter. At each site, both the upper-face of the newly exposed fallen slab and the counterpart intact rock surface on the ceiling need to be sampled at their exact matching-point to ensure that the initial pre-release cosmogenic nuclide concentration on slab and ceiling are identical. The calculation of the timing of the event of slab release is strongly dependent on the local production rate, the new shielding of the slab surface and the post-production that continues on the ceiling sample at the matching point. The horizon, ceiling and slab shielding are estimated by modelling the distribution of neutron and muon trajectories in the irregular shaped rock-shelter and slab using 3D photogrammetric reconstruction from drone flights and a MATLAB code (modified from G. Balco, 2014) to estimate attenuation distances and model the production rate at each sample. Five rock-art sites have been dated and

  12. Fractal Analysis of Permeability of Unsaturated Fractured Rocks

    PubMed Central

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746

  13. Fractal analysis of permeability of unsaturated fractured rocks.

    PubMed

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.

  14. Inclusion of inhomogeneous deformation and strength characteristics in the problem on zonal disintegration of rocks

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Belousova, OE

    2018-03-01

    The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.

  15. Ion microprobe mass analysis of lunar samples. Lunar sample program

    NASA Technical Reports Server (NTRS)

    Anderson, C. A.; Hinthorne, J. R.

    1971-01-01

    Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.

  16. Rocking and rolling: A can that appears to rock might actually roll

    NASA Astrophysics Data System (ADS)

    Srinivasan, Manoj; Ruina, Andy

    2008-12-01

    A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over π and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.

  17. A Reconsideration of the Extension Strain Criterion for Fracture and Failure of Rock

    NASA Astrophysics Data System (ADS)

    Wesseloo, J.; Stacey, T. R.

    2016-12-01

    The complex behaviours of rocks and rock masses have presented paradoxes to the rock engineer, including the fracturing of seemingly strong rock under low stress conditions, which often occurs near excavation boundaries. The extension strain criterion was presented as a fracture initiation criterion under these conditions (Stacey in Int J Rock Mech Min Sci 18:469-474, 1981). This criterion has been used successfully by some and criticised by others. In this paper, we review the literature on the extension strain criterion and present a case for the correct interpretation of the criterion and the conditions suitable for its use. We argue that the extension strain criterion can also be used to provide an indication of damage level under conditions of relatively low confining stress. We also present an augmentation of the criterion, the ultimate extension strain, which is applicable under extensional loading conditions when σ 2 is similar in magnitude to σ 1.

  18. Morphological features of Miocene submarine coherent lavas from the ``Green Tuff'' basins: examples from basaltic and andesitic rocks from the Shimokita Peninsula, northern Japan

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hiromitsu

    1991-04-01

    Basaltic and andesitic volcanic rocks of Miocene age exposed in the Shimokita Peninsula, northern Japan, illustrate morphological features of typical submarine coherent lavas of the “Green Tuff” basins in Japan. They are pillow lobes with surface structures, such as ropey wrinkles, corrugations, spreading cracks and tensional cracks, and lava lobes composed of a lithic core and glassy border zone or rim with an in-situ breccia zone grading outward into surrounding hyaloclastite. In addition they include massive lavas with columnar joints, and jointed dykes. The submarine coherent lavas and dykes are commonly associated with hyaloclastic breccias, such as pillow fragment breccia and angular fragment breccia. The descriptions of the Miocene volcanic rocks in the Shimokita Peninsula provide good criteria for recognition of submarine coherent lavas of basalt and andesite.

  19. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  20. Rock geochemistry related to mineralization processes in geothermal areas

    NASA Astrophysics Data System (ADS)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  1. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  2. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    PubMed

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  3. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    NASA Astrophysics Data System (ADS)

    Rutter, Ernest; Hackston, Abigail

    2017-08-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  4. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    PubMed Central

    Hackston, Abigail

    2017-01-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’. PMID:28827423

  5. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  6. Inexpensive Device for Demonstrating Rock Slope Failure and Other Collapse Phenomena.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1980-01-01

    Describes an inexpensive modeling technique for demonstrating large-scale displacement phenomena in rock masses, such as slope collapse and failure of underground openings. Excavation of the model material occurs through openings made in the polyurethane foam in the correct excavation sequence. (Author/SA)

  7. The Effect of Increasing Mass upon Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Hagan, Donald

    2007-01-01

    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.

  8. Verifying the new luminescence surface-exposure dating technique--rock falls in Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Sohbati, R.; Murray, A. S.; Jain, M.

    2015-12-01

    Recent studies have helped develop the optically stimulated luminescence (OSL) dating of rock surfaces, as applied to the age of the famous Great Gallery rock art panel in Canyonlands National Park. Chapot et al. (2012) dated a key rock fall to ~900 yrs ago by applying OSL to the outer 1-mm buried surface of a sandstone talus boulder, an age confirmed by independent radiocarbon dating. Later, in a novel approach and with the use of a local known-age calibration sample, Sohbati et al. (2012) modelled the millimeter-scale OSL-depth profile to determine a pre-burial exposure duration of ~700 years for the same rock fall. This combination of rock-fall dating and exposure dating--an approach with broad potential to date Holocene mass movements--constrains the creation of the Great Gallery rock art to a time window of 900 to ~1600 years ago (Pederson et al., 2014), a result met with some controversy. Here we report on a new phase of research to verify these results and further refine OSL-profile exposure dating for mass movements. New analyses from within and near the Great Gallery alcove include: i) exposure dating of the same alcove surface upon which the rock art is painted with a predicted exposure age of ~1600 years; ii) exposure dating of the top (light-exposed) side of the same rock-fall boulder whose buried side was previously dated to test for reproduction of the known age; and iii) an improved calibration sample from a nearby trail/road-cut for verification. The residual OSL signal is measured with depth in millimeter-thick increments of all samples. We first determine the site-specific luminescence reduction rate at the rock surface by fitting the OSL surface-exposure dating model to the calibration profile from the trail/road-cut. This parameterized model then provides exposure ages for the bleaching profiles observed in the other samples. Results have implications for the application of OSL rock-surface and exposure-profile dating in other settings where

  9. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  10. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  11. U.S.A. National Surface Rock Density Map - Part 2

    NASA Astrophysics Data System (ADS)

    Winester, D.

    2016-12-01

    A map of surface rock densities over the USA has been developed by the NOAA-National Geodetic Survey (NGS) as part of its Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Program. GRAV-D is part of an international effort to generate a North American gravimetric geoid for use as the vertical datum reference surface. As a part of modeling process, it is necessary to eliminate from the observed gravity data the topographic and density effects of all masses above the geoid. However, the long-standing tradition in geoid modeling, which is to use an average rock density (e.g. 2.67 g/cm3), does not adequately represent the variety of lithologies in the USA. The U.S. Geological Survey has assembled a downloadable set of surface geologic formation maps (typically 1:100,000 to 1:500, 000 scale in NAD27) in GIS format. The lithologies were assigned densities typical of their rock type (Part 1) and these variety of densities were then rasterized and averaged over one arc-minute areas. All were then transformed into WGS84 datum. Thin layers of alluvium and some water bodies (interpreted to be less than 40 m thick) have been ignored in deference to underlying rocks. Deep alluvial basins have not been removed, since they represent significant fraction of local mass. The initial assumption for modeling densities will be that the surface rock densities extend down to the geoid. If this results in poor modeling, variable lithologies with depth can be attempted. Initial modeling will use elevations from the SRTM DEM. A map of CONUS densities is presented (denser lithologies are shown brighter). While a visual map at this scale does show detailed features, digital versions are available upon request. Also presented are some pitfalls of using source GIS maps digitized from variable reference sources, including the infamous `state line faults.'

  12. The major mass movements of the Western Dolomites (Italy)

    NASA Astrophysics Data System (ADS)

    Ostermann, Marc; Gruber, Alfred

    2014-05-01

    Major gravitational slope deformations are widely disseminated in the Dolomite Mountains (NE-Italy), one of the world's most conspicuous landscapes and part of the UNESCO world heritage list. Because of their unique geological composition the Dolomites provide a natural laboratory where nearly all kind of mass wasting processes, in all dimensions, can be investigated. Simplified there are thick, rigid carbonatic successions (Triassic-Jurassic) resting on and interfingering with relatively weak successions of shallow marine clastic and of pelagic sediments. In some areas even volcanic successions and crystalline basement rocks are outcropped. Hugh rockslides and long run-out rock avalanches are limited to the carbonates and volcanic rocks. The superposition of Middle and Upper Triassic reefs, showing brittle deformation behaviour, above weak successions of evaporites, clays and marls, characterised by ductile deformation behaviour, leads to a classical "hard on soft" situation. The observable results are rockslides and rock avalanches of several hundred millions of m³ in volume, large scale rock toppling and rock flows and deep-seated gravitational slope deformations (DSGSD). Within the weak successions slow moving rotational landslides and large dimensional earthflows are very common. We focused our research on an area of about 40*40km within the Western and Northern Dolomites, where an inventory of the major gravitational mass movements has been compiled. We combined detailed geological maps with high resolution DEMs and extensive fieldwork data within a GIS-system. The different processes have been characterised and classified based on kinematic criteria, dimension and involved material. Altogether the database consists of 186 entries. Most frequently are landslides and earthflows (146) followed by catastrophic rockslides and rock avalanches (26) and DSGSDs (14). The spatial distribution of the mapped processes has been analysed in terms of the main

  13. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  14. Heterogeneous alternation of fractured rock driven by preferential carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Wen, H.; Zhi, W.; Li, L.

    2016-12-01

    Understanding the alternation of fractured rock induced by geochemical reactions is critical for predicting the flow, solute transport and energy production in geosystems. Most existing studies on fracture alterations focus on rocks with single minerals where reactions occur at the fracture wall resulting in fracture aperture alteration while ignoring rock matrix properties (e.g. the formation and development of altered zones). In this work, we aimed to mechanistically understand the role of preferential calcite dissolution in the long-term evolution of fracture and rock matrix. We use direct simulation of physics-based reactive transport processes in an image of fractured rock at the resolution of tens of micrometers. Three numerical experiments were carried out with the same initial physical properties however different calcite content. Simulation results show that the formation and development of altered zones in the rock matrix is highly related to the abundance of fast-dissolving calcite. Abundant calcite (50% (v/v), calcite50) leads to a localized, thick zone of large porosity increase while low calcite content (10% (v/v), calcite10) creates an extended and narrow zone of small porosity increase resulting in surprisingly larger change in effective transport property. After 300 days of dissolution, although with relatively similar dissolved calcite mass and matrix porosity increase, effective matrix diffusion coefficients increase by 9.9 and 19.6 times in calcite50 and calcite10, respectively. In turn, calcite dissolution rates are directly limited by diffusive transport in the altered matrix and the shape of the altered zone. This work sheds light on the unique characteristics of reactive transport in fractured, mineralogically complex rocks that are different from those with single minerals (Wen et al., 2016). Reference: Wen, H., Li, L., Crandall, D. and Hakala, J.A. (2016) Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix

  15. [Diagnostic test scale SI5: Assessment of sacroiliac joint dysfunction].

    PubMed

    Acevedo González, Juan C; Quintero Oliveros, Silvia

    2015-01-01

    Sacroiliac joint dysfunction is a known cause of low back pain. We think that a diagnostic score scale (SI5) may be performed to assess diagnostic utility of clinical signs of sacroiliac joint dysfunction. The primary aim of the present study was to conduct the pilot study of our new diagnostic score scale, the SI5, for sacroiliac joint syndrome. We reviewed the literature on clinical characteristics, diagnostic tests and imaging most commonly used in diagnosing sacroiliac joint dysfunction. Our group evaluated the diagnostic utility of these aspects and we used those considered most representative to develop the SI5 diagnostic scale. The SI5 scale was applied to 22 patients with low back pain; afterwards, the standard test for diagnosing this pathology (selective blockage of the SI joint) was also performed on these patients. The sensitivity and specificity for each sign were also assessed and the diagnostic scale called SI5 was then proposed, based on these data. The most sensitive clinical tests for diagnosing SI joint dysfunction were 2 patient-reported clinical characteristics, the Laguerre Test, sacroiliac rocking test and Yeomans test (greater than 80% sensitivity). The tests with greatest diagnostic specificity (>80%) were the Lewitt test, Piedallu test and Gillet test. The proposed SI5 test score scale showed sensitivity of 73% and specificity of 71%. Sacroiliac joint syndrome has been shown to produce low back pain frequently; however, the diagnostic value of examination tests for sacroiliac joint pain has been questioned by other authors. The pilot study on the SI5 diagnostic score scale showed good sensitivity and specificity. However, the process of statistical validation of the SI5 needs to be continued. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  16. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    DOE PAGES

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less

  17. Body as Echoes: Cyber Archiving of Dazu Rock Carvings

    NASA Astrophysics Data System (ADS)

    Chen, W.-W.

    2017-08-01

    "Body As Echoes: Cyber Archiving of Dazu Rock Carvings (BAE project in short)" strives to explore the tangible/intangible aspects of digital heritage conservation. Aiming at Dazu Rock Carvings - World Heritage Site of Sichuan Province, BAE project utilizes photogrammetry and digital sculpting technique to investigate digital narrative of cultural heritage conservation. It further provides collaborative opportunities to conduct the high-resolution site survey for scholars and institutions at local authorities. For preserving and making sustainable of the tangible cultural heritage at Dazu Rock Carvings, BAE project cyber-archives the selected niches and the caves at Dazu, and transform them into high-resolution, three-dimensional models. For extending the established results and making the digital resources available to broader audiences, BAE project will further develop interactive info-motion interface and apply the knowledge of digital heritage from BAE project to STEM education. BAE project expects to bridge the platform for archeology, computer graphics, and interactive info-motion design. Digital sculpting, projection mapping, interactive info-motion and VR will be the core techniques to explore the narrative of digital heritage conservation. For further protecting, educating and consolidating "building dwelling thinking" through digital heritage preservation, BAE project helps to preserve the digital humanity, and reach out to museum staffs and academia. By the joint effort of global institutions and local authorities, BAE project will also help to foster and enhance the mutual understanding through intercultural collaborations.

  18. Conarticular congruence of the hominoid subtalar joint complex with implications for joint function in Plio-Pleistocene hominins.

    PubMed

    Prang, Thomas C

    2016-07-01

    The purpose of this study is to test the hypothesis that conarticular surfaces areas and curvatures are correlates of mobility at the hominoid talocalcaneal and talonavicular joints. Articular surface areas and curvatures of the talonavicular, anterior talocalcaneal, and posterior talocalcaneal joints were quantified using a total of 425 three-dimensional surface models of extant hominoid and fossil hominin tali, calcanei, and naviculars. Quadric surface fitting was used to calculate curvatures, pairwise comparisons were used to evaluate statistical differences between taxa, and regression was used to test for the effects of allometry. Pairwise comparisons show that the distributions of values for joint curvature indices follow the predicted arboreal-terrestrial morphocline in hominoid primates with no effect of body mass (PGLS p > 0.05). OH 8 (Homo habilis) and LB 1 (Homo floresiensis) can be accommodated within the range of human variation for the talonavicular joint, whereas MH2 (Australopithecus sediba) falls within the ranges of variation for Pan troglodytes and Gorilla gorilla in measures of posterior talocalcaneal joint congruity. Joint curvature indices are better discriminators than joint surface area indices, which may reflect a greater contribution of rotation, rather than translation, to joint movement in plantigrade taxa due to discrepancies in conarticular congruence and the "convex-concave" rule. The pattern of joint congruence in Au. sediba contributes to other data on the foot and ankle suggesting that the lateral side of the foot was more mobile than the medial side, which is consistent with suggestions of increased medial weight transfer associated with hyperpronation. Am J Phys Anthropol 160:446-457, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Rock Levitation by Water and Ice; an Explanation for Trails in Racetrack Playa, California

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Ryan, A.; McKinney, E.; Fercana, G.; Schwebler, K. P.; McIntire, L.; Miller, D.; Fox, V. K.; Marbourg, J. M.; Naquin, C. A.; Krzykowski, M.; Wilde, J. R.; Kopp, E. S.; Romine, G.; Yawn, K.; Schoch, I.; McAdam, M.; Burger, D.; Rilee, K.; Jackson, B. K.; Parsons, A. M.; Cheung, C. Y.; Lunar; Planetary Science Academy

    2010-12-01

    Through a process that is nearly a century-old mystery, rock fragments race over a desiccated layer of sediment in the California desert, forming the infamous rock trails of the Racetrack playa, found in Death Valley, California. Rocks, randomly distributed over the playa, have indented grooves or trails next to them, appearing as if someone had dragged them over the playa surface when wet. Interestingly, no one has ever witnessed the movement of these rocks. Furthermore, the mechanism responsible for these trails behind the rocks has not yet been explained. Rocks have masses ranging from 0.5 kg to 300 kg, and the trails have a chaotic character, with some trails as long as 1/2 km. Each rock has a mound of raised clay on one side and a mud trail on the other; no other unusual marks are visible. A number of trails have no rocks at the end, with only a mound of solid clay where a rock once appeared to be, as if something was pushing the clay forwards to make the trail but disappeared after the trail was made. Measurements of the humidity and temperature of the sediment pointed towards a unique mechanism of how the trails could form on their own and how simple environmental changes could result in the aforementioned trails in the sediment.

  20. Isotope analysis of crystalline impact melt rocks from Apollo 16 stations 11 and 13, North Ray Crater

    NASA Technical Reports Server (NTRS)

    Reimold, W. U.; Nyquist, L. E.; Bansal, B. M.; Shih, C.-Y.; Weismann, H.; Wooden, J. L.; Mackinnon, I. D. R.

    1985-01-01

    The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.

  1. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  2. Rocks Can Wow? Yes, Rocks Can Wow!

    ERIC Educational Resources Information Center

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  3. Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Donelick, R. A.; Donelick, M. B.

    2016-12-01

    We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as

  4. Shale characterization in mass transport complex as a potential source rock: An example from onshore West Java Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Nugraha, A. M. S.; Widiarti, R.; Kusumah, E. P.

    2017-12-01

    This study describes a deep-water slump facies shale of the Early Miocene Jatiluhur/Cibulakan Formation to understand its potential as a source rock in an active tectonic region, the onshore West Java. The formation is equivalent with the Gumai Formation, which has been well-known as another prolific source rock besides the Oligocene Talang Akar Formation in North West Java Basin, Indonesia. The equivalent shale formation is expected to have same potential source rock towards the onshore of Central Java. The shale samples were taken onshore, 150 km away from the basin. The shale must be rich of organic matter, have good quality of kerogen, and thermally matured to be categorized as a potential source rock. Investigations from petrography, X-Ray diffractions (XRD), and backscattered electron show heterogeneous mineralogy in the shales. The mineralogy consists of clay minerals, minor quartz, muscovite, calcite, chlorite, clinopyroxene, and other weathered minerals. This composition makes the shale more brittle. Scanning Electron Microscope (SEM) analysis indicate secondary porosities and microstructures. Total Organic Carbon (TOC) shows 0.8-1.1 wt%, compared to the basinal shale 1.5-8 wt%. The shale properties from this outcropped formation indicate a good potential source rock that can be found in the subsurface area with better quality and maturity.

  5. Ankle rehabilitation device with two degrees of freedom and compliant joint

    NASA Astrophysics Data System (ADS)

    Racu (Cazacu, C.-M.; Doroftei, I.

    2015-11-01

    We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.

  6. The stabilization of the rock mass of the wieliczka salt mine through the backfilling of the witos chamber with the use of injection methods / Stabilizacji górotworu kopalni soli "wieliczka" poprzez likwidację komór "witos" z zastosowaniem metod iniekcji

    NASA Astrophysics Data System (ADS)

    D'Obyrn, Kajetan

    2012-10-01

    The Wieliczka Salt Mine is the most famous and the most visited mining industry monument in the world and it requires modern methods to ensure rock mass stability and tourists' security. Both for conservation and tourism organization reasons, the group of Warszawa-Wisla-Budryk-Lebzeltern-Upper Witos Chambers (Photo. 1, 2. 3) located the Kazanów mid-level at a depth of 117 m underground is extremely important. Discontinuous deformation occurring in this Chamber complex was eliminated by comprehensive securing work with anchor housing, but their final securing and stability is conditioned by further backfilling and sealing the Witos Chambers situated directly beneath. In the 1940s and 1950s, the Witos Chamber was backfilled with slag from the mine boilerhouse. However, slags with 80% compressibility are not backfilling material which would ensure the stability of the rock mass. The chambers were exploited in the early nineteenth century in the Spizit salts of the central part of the layered deposit. The condition of the Upper Witos, Wisla, Warszawa, Budryk, and Lebzeltern Chambers is generally good. The western part if the Lebzeltern Chamber (Fig. 1), which was threatened with collapse, was backfilled with sand. In all the chambers of the Witos complex, local deformation of ceiling rock of varying intensity is observed as well as significant destruction of the side walls of pillars between chambers. No hydrogeological phenomena are observed in the chambers. It has been attempted to solve the problem of stability of the rock mass in this region of the mine by extracting the slag and backfilling with sand, erecting concrete supporting pillars, backfilling the voids with sand, anchoring the ceiling and the side walls, the use of the pillar housing. The methods have either not been applied or have been proved insufficient to properly protect the excavation situated above. In order to select the optimal securing method, a geomechanical analysis was conducted in order to

  7. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  8. Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints

    PubMed Central

    Ingram, K R; Wann, A K T; Angel, C K; Coleman, P J; Levick, J R

    2008-01-01

    The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 ± 0.7 μg h−1, mean ± s.e.m., n = 90) correlated with the variable endogenous HA mass (mean 367 ± 8 μg), with a normalized value of 3.4 ± 0.2 μg h−1 (100 μg)−1 . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 ± 1.2 μg h−1 (n = 77) and raised the normalized percentage to 5.9 ± 0.3 μg h−1 (100 μg)−1. Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17–30 h (static) to 8–15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement–secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis. PMID:18202097

  9. Measurements of I-129 in meteorites and lunar rock by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Nizhiizumi, K.; Arnold, J. R.; Elmore, D.; Gove, H. E.; Honda, M.

    1983-01-01

    Precise measurements of the half-life of I-129 in three different meteorites and one lunar surface rock are reported. The meteorite source of I-129 was produced by cosmic ray secondary neutron reactions on Te, while the source in lunar materials in spallation on barium and rare earth elements. The Abee, Allende, and Dhajala meteorites were examined, together with the lunar rock 14310. Details of the process used to extract the iodine are provided. The Abee and Allende samples exhibited a production of 0.5 atom/min per gm of Te from the (n,2n) reaction and 0.05 atom/min/gm for the (n,gamma) reaction. The I-129 is concluded to be a viable tool for long-lived cosmogenic nuclide studies. Further work to extend the data to include the constancy of the cosmic ray flux, the meteorite bombardment history, and the cosmic exposure age dating by means of the I-129 and Xe-129 method is indicated.

  10. Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.

    PubMed

    Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul

    2014-09-01

    Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P < 0.0001), patellofemoral forces (P < 0.006), and knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P < 0.001), and patellofemoral forces (P = 0.01) and knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.

  11. Modelisation numerique de tunnels de metro dans les massifs rocheux sedimentaires de la region de Montreal

    NASA Astrophysics Data System (ADS)

    Lavergne, Catherine

    Geological formations of the Montreal area are mostly made of limestones. The usual approach for design is based on rock mass classification systems considering the rock mass as an equivalent continuous and isotropic material. However, for shallow excavations, stability is generally controlled by geological structures, that in Montreal, are bedding plans that give to the rock mass a strong strain and stress anisotropy. Objects of the research are to realize a numerical modeling that considers sedimentary rocks anisotropy and to determine the influence of the design parameters on displacements, stresses and failure around metro unsupported underground excavations. Geotechnical data used for this study comes from a metro extension project and has been made available to the author. The excavation geometries analyzed are the tunnel, the station and a garage consisting of three (3) parallel tunnels for rock covered between 4 and 16 m. The numerical modeling has been done with FLAC software that represents continuous environment, and ubiquitous joint behavior model to simulate strength anisotropy of sedimentary rock masses. The model considers gravity constraints for an anisotropic material and pore pressures. In total, eleven (11) design parameters have been analyzed. Results show that unconfined compressive strength of intact rock, fault zones and pore pressures in soils have an important influence on the stability of the numerical model. The geometry of excavation, the thickness of rock covered, the RQD, Poisson's ratio and the horizontal tectonic stresses have a moderate influence. Finally, ubiquitous joint parameters, pore pressures in rock mass, width of the pillars of the garage and the damage linked to the excavation method have a low impact. FLAC results have been compared with those of UDEC, a software that uses the distinct element method. Similar conclusions were obtained on displacements, stress state and failure modes. However, UDEC model give slightly less

  12. Using Local Event Tomography to Image Changes in the Rock Mass in the Kiirunavaara Iron Ore Mine, Northern Sweden

    NASA Astrophysics Data System (ADS)

    Lund, B.; Berglund, K.; Tryggvason, A.; Dineva, S.; Jonsson, L.

    2017-12-01

    Although induced seismic events in a mining environment are a potential hazard, they can be used to gain information about the rock mass in the mine which otherwise would be very difficult to obtain. In this study we use approximately 1.2 million mining induced seismic events in the Kiirunavaara iron ore mine in northernmost Sweden to image the rock mass using local event travel-time tomography. The Kiirunavaara mine is the largest underground iron ore mine in the world. The ore body is a magnetite sheet of 4 km length, with an average thickness of 80 m, which dips approximately 55° to the east. The events are of various origins such as shear slip on fractures, non-shear events and blasts, with magnitudes of up to 2.5. We use manually picked P- and S-wave arrival times from the routine processing in the tomography and we require that both phases are present at at least five geophones. For the tomography we use the 3D local earthquake tomography code PStomo_eq (Tryggvason et al., 2002), which we adjusted to the mining scale. The tomographic images show clearly defined regions of high and low velocities. Prominent low S-velocity zones are associated with mapped clay zones. Regions of ore where mining is ongoing and the near-ore tunnel infrastructure in the foot-wall also show generally low P- and S-velocities. The ore at depths below the current mining levels is imaged both as a low S-velocity zone but even more pronounced as a high Vp/Vs ratio zone. The tomography shows higher P- and S-velocities in the foot-wall away from the areas of mine infrastructure. We relocate all 1.2 million events in the new 3D velocity model. The relocation significantly enhances the clarity of the event distribution in space and we can much more easily identify seismically active structures, such as e.g. the deformation of the ore passes. The large number of events makes it possible to do detailed studies of the temporal evolution of stability in the mine. We present preliminary results

  13. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Release of radiogenic noble gases as a new signal of rock deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  15. Release of radiogenic noble gases as a new signal of rock deformation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    2016-10-09

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  16. Integrated database for rapid mass movements in Norway

    NASA Astrophysics Data System (ADS)

    Jaedicke, C.; Lied, K.; Kronholm, K.

    2009-03-01

    Rapid gravitational slope mass movements include all kinds of short term relocation of geological material, snow or ice. Traditionally, information about such events is collected separately in different databases covering selected geographical regions and types of movement. In Norway the terrain is susceptible to all types of rapid gravitational slope mass movements ranging from single rocks hitting roads and houses to large snow avalanches and rock slides where entire mountainsides collapse into fjords creating flood waves and endangering large areas. In addition, quick clay slides occur in desalinated marine sediments in South Eastern and Mid Norway. For the authorities and inhabitants of endangered areas, the type of threat is of minor importance and mitigation measures have to consider several types of rapid mass movements simultaneously. An integrated national database for all types of rapid mass movements built around individual events has been established. Only three data entries are mandatory: time, location and type of movement. The remaining optional parameters enable recording of detailed information about the terrain, materials involved and damages caused. Pictures, movies and other documentation can be uploaded into the database. A web-based graphical user interface has been developed allowing new events to be entered, as well as editing and querying for all events. An integration of the database into a GIS system is currently under development. Datasets from various national sources like the road authorities and the Geological Survey of Norway were imported into the database. Today, the database contains 33 000 rapid mass movement events from the last five hundred years covering the entire country. A first analysis of the data shows that the most frequent type of recorded rapid mass movement is rock slides and snow avalanches followed by debris slides in third place. Most events are recorded in the steep fjord terrain of the Norwegian west coast, but

  17. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Geotechnical Aspects of Rock Erosion in Emergency Spillway Channels

    DTIC Science & Technology

    1986-08-01

    8217 flooring unlined spillway channels. 115. Rippability was proposed by Weaver (1975) as a rock mass classifi- cation system that enables the assessment...geological. features which govern the as- sessment of rippability are rock type, haidness, weathering, stcucture, and fabric. Saismic P-wave velocity...channel. Rippability should be combined with a factor 84 that describes lithostratigraphic continuity in order to derive the erosion potential of the

  18. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.

    PubMed

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.

  19. Effect of vibro-impact exposure on intensity of geodynamic events in rock mass

    NASA Astrophysics Data System (ADS)

    Eremenko, AA; Timonin, VV; Bespalko, AA; Karpov, VN; Shtirts, VA

    2018-03-01

    Effect of vibrational impacts on rockburst-hazardous iron ore body and enclosing rocks is experimentally studied using the microseismic, electromagnetic, acoustic and electrometric methods. The nature of the change in the intensity of electrical resistance, and in electromagnetic and acoustic signals in a series of impacts is determined. The variation in the amplitude dispersion of spectral components of signals at different frequencies is described.

  20. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE PAGES

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...

    2017-08-23

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  1. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  2. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  3. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  4. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  5. An analytical investigation of a conceptual design for the station transverse boom rotary joint structure

    NASA Technical Reports Server (NTRS)

    Lake, M. S.; Bush, H. G.

    1986-01-01

    A study was conducted to define an annular ring, discrete roller assembly concept for the space station transverse boom rotary joint. The concept was analyzed using closed-form and finite element techniques, to size structural members for a range of joint diameters and to determine necessary equivalent stiffnesses for the roller assemblies. Also, a mass study of the system was conducted to determine its practicality, and maximum loads in the joint were identified. To obtain the optimum balance between high stiffness and low structural mass in the design of the rotary joint, it is necessary to maximize the diameter of the annular ring within operational constraints (i.e., shuttle cargo bay size). Further, a rotary joint designed with the largest possible ring diameter will result in minimum operational loads in both the roller assemblies and the transition truss members while also allowing minimum design stiffnesses for the roller assemblies.

  6. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals

    USGS Publications Warehouse

    Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.

    1970-01-01

    On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.

  8. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, Krzysztof

    2018-01-01

    The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  9. Aquifer characteristics near cuestas and their relation to rock tensile strength

    USGS Publications Warehouse

    Morin, Roger H.; Schulz, William; LoCoco, James

    2010-01-01

    Along the northeast coast of North America, extensional tectonic processes have generated lithologic and topographic features that are common to several rift basins. A cap of igneous rock overlies sedimentary rock to form a cuesta with both rock types exposed along a steep ridge flank. Field studies investigating the near‐surface hydrogeologic properties of the caprocks at several of these sites have reported a narrow range of results; some fractured rocks form modest aquifers whereas others do not. To examine this behavior in terms of geomechanical responses to gravitational stresses imposed near ridges, a finite‐element model is presented that incorporates the geometry of a ridge‐valley configuration and its major structural elements. Model simulations reflect the effects of a lack of buttressing along free faces and a contrast in Poisson's ratios between the superposed igneous and sedimentary rocks. Three‐dimensional Mohr's circles are constructed from principal stress magnitudes and directions to evaluate the response of individual fracture planes to this stress state. Results depict a predominantly tensional stress environment where numerous pre‐existing fractures may be favorably aligned for opening and enhanced caprock permeability. However, the lack of conclusive field evidence to support this hypothesis suggests that the in situ tensile strength of the fractured rock mass is substantial enough to resist failure by shear or dilation, and that critically‐stressed fracture planes do not convey large volumes of groundwater in ridge‐valley settings.

  10. Loss of iron to gold capsules in rock-melting experiments

    USGS Publications Warehouse

    Ratajeski, K.; Sisson, T.W.

    1999-01-01

    Gold is used widely for capsules in high-temperature rock-melting studies because it is generally thought to absorb negligible Fe from silicate samples. However, we observed significant losses of Fe from fluid-absent melting experiments on hornblende gabbros at 800-975 ??C and 8 kbar, using standard piston-cylinder techniques. The extent of Fe loss from the sample is dependent on the relative masses of the sample and the capsule. Low sample to capsule mass ratios (~0.04) lead to the highest Fe losses (32-49% relative). Concentrations of Fe in silicate melt and used gold capsules define an apparent equilibrium constant (K') that follows a linear 1n K' vs. 1/T relation (at an estimated log f(O)(2) of QFM-1). The apparent equilibrium constant is used to make limiting upper estimates on the amount of Fe that could be lost during rock-melting experiments for a range of f(O)(2) and sample to capsule mass ratios. At high f(O)(2) (NNO + 2), loss of Fe to gold is negligible (<2% relative) for a wide range of sample to capsule mass ratios. At an f(O)(2) of NNO, Fe loss can be kept to <10% relative by using a sample to capsule mass ratio of 0.2 or greater. At low f(O)(2) (QFM-1), presaturating the Au with Fe would be necessary to ensure that Fe losses remained <10% relative. Fe loss can compromise experimental results for small samples run at low f(O)(2) conditions, be they buffered, imposed by the pressure media, or produced by intrinsically reduced (graphitic) starting materials.

  11. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  12. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  13. Qualitative and quantitative analysis of Dibenzofuran, Alkyldibenzofurans, and Benzo[b]naphthofurans in crude oils and source rock extracts

    USGS Publications Warehouse

    Meijun Li,; Ellis, Geoffrey S.

    2015-01-01

    Dibenzofuran (DBF), its alkylated homologues, and benzo[b]naphthofurans (BNFs) are common oxygen-heterocyclic aromatic compounds in crude oils and source rock extracts. A series of positional isomers of alkyldibenzofuran and benzo[b]naphthofuran were identified in mass chromatograms by comparison with internal standards and standard retention indices. The response factors of dibenzofuran in relation to internal standards were obtained by gas chromatography-mass spectrometry analyses of a set of mixed solutions with different concentration ratios. Perdeuterated dibenzofuran and dibenzothiophene are optimal internal standards for quantitative analyses of furan compounds in crude oils and source rock extracts. The average concentration of the total DBFs in oils derived from siliciclastic lacustrine rock extracts from the Beibuwan Basin, South China Sea, was 518 μg/g, which is about 5 times that observed in the oils from carbonate source rocks in the Tarim Basin, Northwest China. The BNFs occur ubiquitously in source rock extracts and related oils of various origins. The results of this work suggest that the relative abundance of benzo[b]naphthofuran isomers, that is, the benzo[b]naphtho[2,1-d]furan/{benzo[b]naphtho[2,1-d]furan + benzo[b]naphtho[1,2-d]furan} ratio, may be a potential molecular geochemical parameter to indicate oil migration pathways and distances.

  14. Gravimetric surveys for assessing rock mass condition around a mine shaft

    NASA Astrophysics Data System (ADS)

    Madej, Janusz

    2017-06-01

    The fundamentals of use of vertical gravimetric surveying method in mine shafts are presented in the paper. The methods of gravimetric measurements and calculation of interval and complex density are discussed in detail. The density calculations are based on an original method accounting for the gravity influence of the mine shaft thus guaranteeing closeness of calculated and real values of density of rocks beyond the shaft lining. The results of many gravimetric surveys performed in shafts are presented and interpreted. As a result, information about the location of heterogeneous zones of work beyond the shaft lining is obtained. In many cases, these zones used to threaten the safe operation of machines and utilities in the shaft.

  15. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  16. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  17. Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan

    2015-06-01

    The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.

  18. Modeling Rock Alteration at the Water-Rock Interface of Icy Moons

    NASA Astrophysics Data System (ADS)

    Semprich, J.; Treiman, A. H.; Schwenzer, S. P.

    2018-05-01

    Alteration phases of a CM rock core are modeled with variations in fluid composition at the water-rock interface of icy moons. In the presence of H2O, CO2, CH4, and H2 serpentinization of the rock core is very likely at low pressures and 200–400 °C.

  19. Hard-rock jetting. Part 2. Rock type decides jetting economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pols, A.C.

    1977-02-07

    In Part 2, Koninklijke Shell Exploratie en Produktie Laboratorium presents the results of jet-drilling laminated formations. Shell concludes that (1) hard, laminated rock cannot be jet-drilled satisfactorily without additional mechanical cutting aids, (2) the increase in penetration rate with bit-pressure drop is much lower for impermeable rock than it is for permeable rock, (3) drilling mud can have either a positive or a negative effect on penetration rate in comparison with water, depending on the material drilled, and (4) hard, isotropic, sedimentary, impermeable rock can be drilled using jets at higher rates than with conventional means. However, jetting becomes profitablemore » only in the case of expensive rigs.« less

  20. Ultrasonically Actuated Tools for Abrading Rock Surfaces

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin; Sherrit, Stewart; Bar-Cohen, Yoseph; Rainen, Richard; Askin, Steve; Bickler, Donald; Lewis, Donald; Carson, John; Dawson, Stephen; Bao, Xiaoqi; hide

    2006-01-01

    An ultrasonic rock-abrasion tool (URAT) was developed using the same principle of ultrasonic/sonic actuation as that of the tools described in two prior NASA Tech Briefs articles: Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. Hence, like those tools, the URAT offers the same advantages of low power demand, mechanical simplicity, compactness, and ability to function with very small axial loading (very small contact force between tool and rock). Like a tool described in the second of the cited previous articles, a URAT includes (1) a drive mechanism that comprises a piezoelectric ultrasonic actuator, an amplification horn, and a mass that is free to move axially over a limited range and (2) an abrasion tool bit. A URAT tool bit is a disk that has been machined or otherwise formed to have a large number of teeth and an overall shape chosen to impart the desired shape (which could be flat or curved) to the rock surface to be abraded. In operation, the disk and thus the teeth are vibrated in contact with the rock surface. The concentrated stresses at the tips of the impinging teeth repeatedly induce microfractures and thereby abrade the rock. The motion of the tool induces an ultrasonic transport effect that displaces the cuttings from the abraded area. The figure shows a prototype URAT. A piezoelectric-stack/horn actuator is housed in a cylindrical container. The movement of the actuator and bit with respect to the housing is aided by use of mechanical sliders. A set of springs accommodates the motion of the actuator and bit into or out of the housing through an axial range between 5 and 7 mm. The springs impose an approximately constant force of contact between the tool bit and the rock to be abraded. A dust shield surrounds the bit, serving as a barrier to reduce the migration of rock debris to

  1. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    PubMed

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients

  2. Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance, porosity and lithofacies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com; Grana, Dario; Santos, Marcio

    We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well datamore » multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.« less

  3. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which

  4. Rock avalanches clusters along the northern Chile coastal scarp

    NASA Astrophysics Data System (ADS)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.

    2017-07-01

    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  5. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    NASA Astrophysics Data System (ADS)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  6. Characterization and utilization potential of basalt rock from East-Lampung district

    NASA Astrophysics Data System (ADS)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of <0.2 mm, whereas pyroxene present among the blades of plagioclase, with a greenish tint looked and a size of <0.006 mm. Mineral opaque has a rectangular shape to irregular, with a size of <0.16 mm. The chemical composition of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  7. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    PubMed

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.

  8. Exercise Desert Rock, Staff Memorandums. Army, Camp Desert Rock, Nevada.

    DTIC Science & Technology

    1957-01-01

    I AD-AGAG 257 EXERCISE DESERT ROCK LAS VEGAS NV F/6 IS/ 3 EXERCISE DESERT ROCK, STAFF MEMORANDUMS. ARMY. CAMP DESERT ROCK-ETClUlCASIFE mm95i mm... Exercise Safety Progra - . 1. PUrose: To establish ane’ffective safety progr.Rm toreduce, and keep to a minimum, accident,1 manpower and monetary losses. at...agencies will be- followed. Supervispry personnel will: become familiar with those that Pre applicable to thei£r... operations. The Exercise Safety

  9. Adaptive Postural Control for Joint Immobilization during Multitask Performance

    PubMed Central

    Hsu, Wei-Li

    2014-01-01

    Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477

  10. [Rock music and hearing disorders].

    PubMed

    Størmer, Carl Christian Lein; Stenklev, Niels Christian

    2007-03-29

    Continued exposition to loud noise is a well-known risk factor for development of various hearing disorders; rock musicians are especially vulnerable. The aim of this paper was to get an overview of hearing loss, tinnitus and hyperacusis among rock musicians. Medline was systematically searched, using combinations of the terms "hearing", "rock music", "tinnitus" and "hyperacusis". Seven publications concerning hearing of rock musicians were identified. Permanent hearing loss occurred in 20% (mean) of the rock musicians; the prevalence varied from 5 to 41%. Tinnitus and hyperacusis appear significantly more often in rock musicians than in non-musicians. Rock musicians have increased resistance against loud music and exposure over time is protective towards hearing loss. Further research is needed to assess rock music's impact on musicians' hearing.

  11. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  12. Rock ramp design guidelines

    USGS Publications Warehouse

    Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan

    2007-01-01

    Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.

  13. Impact of Stress on Anomalous Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2016-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed

  14. Geology, Geochemistry and Geophysics of Sedimentary Rock-Hosted Au Deposits in P.R. China

    USGS Publications Warehouse

    Peters, Stephen G.

    2002-01-01

    This is the second report concerning results of a joint project between the U.S. Geological Survey and the Tianjin Geological Academy to study sedimentary rock-hosted Au deposits in P.R. China. Since the 1980s, Chinese geologists have devoted a large-scale exploration and research effort to the deposits. As a result, there are more than 20 million oz of proven Au reserves in sedimentary rock-hosted Au deposits in P.R. China. Additional estimated and inferred resources are present in over 160 deposits and occurrences, which are undergoing exploration. This makes China second to Nevada in contained ounces of Au in Carlin-type deposits. It is likely that many of the Carlin-type Au ore districts in China, when fully developed, could have resource potential comparable to the multi-1,000-tonne Au resource in northern Nevada. The six chapters of this report describe sedimentary rock-hosted Au deposits that were visited during the project. Chapters 1 and 2 provide an overview of sedimentary rock-hosted Au deposits and Carlin-type Au deposits and also provide a working classification for the sedimentary rock-hosted Au deposits. Chapters 3, 4, and 5 provide descriptions that were compiled from the literature in China in three main areas: the Dian-Qian-Gui, the Qinling fold belt, and Middle-Lower Yangtze River areas. Chapter 6 contains a weights-of-evidence (WofE), GIS-based mineral assessment of sedimentary rock-hosted Au deposits in the Qinling fold belt and Dian-Qian-Gui areas. Appendices contain scanned aeromagnetic (Appendix I) and gravity (Appendix II) geophysical maps of south and central China. Data tables of the deposits (Appendix III) also are available in the first report as an interactive database at http://geopubs.wr.usgs.gov/open-file/of98-466/. Geochemical analysis of ore samples from the deposits visited are contained in Appendix IV.

  15. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1994-01-01

    This paper presents a novel method to design decentralized controllers for large complex flexible structures by using the idea of joint decoupling. Decoupling of joint degrees of freedom from the interior degrees of freedom is achieved by setting the joint actuator commands to cancel the internal forces exerting on the joint degrees of freedom. By doing so, the interactions between substructures are eliminated. The global structure control design problem is then decomposed into several substructure control design problems. Control commands for interior actuators are set to be localized state feedback using decentralized observers for state estimation. The proposed decentralized controllers can operate successfully at the individual substructure level as well as at the global structure level. Not only control design but also control implementation is decentralized. A two-component mass-spring-damper system is used as an example to demonstrate the proposed method.

  16. Geomorphology of the Southwest Coast of County Cork, Ireland: A Look into the Rocks, Folds, and Glacial Scours

    NASA Astrophysics Data System (ADS)

    Bowden, S.; Wireman, R.; Sautter, L.; Beutel, E. K.

    2015-12-01

    Bathymetric data were collected off the southwest coast of County Cork, Ireland by the joint INFOMAR project between the Marine Institute of Ireland and the Geologic Survey of Ireland. Data were collected using a Kongsberg EM2040 multibeam sonar on the R/V Celtic Voyager, in August and September 2014, and were post-processed with CARIS HIPS and SIPS 8.1 and 9.0 software to create 2D and 3D bathymetric surfaces. From the computer generated images, some of the lithologic formations were relatively aged and observed. The studied regions range in depth from 20 to 118 m, with shallower areas to the northeast. Several large rock outcrops occur, the larger of which shows a vertical rise of nearly 20 m. These outcrops are oriented in a northeast-southwest direction, and exhibit significant bed folding, regional folding, tilted beds, and cross joints. The folds studied are plunging chevron folds. These folds have a northeast-southwest fold axis orthogonal to the cross joints and are older relative to the jointing systems. The NE-SW joints are older than the NW-SE joints due to their correlation with drainage and erosion patterns. Regional folding is the youngest feature due to its superposition on the chevron folding and jointing systems. The interaction of cross jointing and folding is consistent with the geologic history of the area, and creates a unique bathymetry worthy of further study.

  17. Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.

    PubMed

    Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim

    2017-12-15

    The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT

    PubMed Central

    Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996

  19. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  20. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain

    2017-04-01

    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical

  1. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge

    USGS Publications Warehouse

    Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.

    2006-01-01

    Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high

  2. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    PubMed

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  3. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    ERIC Educational Resources Information Center

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  4. Articular scaling and body mass estimation in platyrrhines and catarrhines: Modern variation and application to fossil anthropoids.

    PubMed

    Perry, Jonathan M G; Cooke, Siobhán B; Runestad Connour, Jacqueline A; Burgess, M Loring; Ruff, Christopher B

    2018-02-01

    Body mass is an important component of any paleobiological reconstruction. Reliable skeletal dimensions for making estimates are desirable but extant primate reference samples with known body masses are rare. We estimated body mass in a sample of extinct platyrrhines and Fayum anthropoids based on four measurements of the articular surfaces of the humerus and femur. Estimates were based on a large extant reference sample of wild-collected individuals with associated body masses, including previously published and new data from extant platyrrhines, cercopithecoids, and hominoids. In general, scaling of joint dimensions is positively allometric relative to expectations of geometric isometry, but negatively allometric relative to expectations of maintaining equivalent joint surface areas. Body mass prediction equations based on articular breadths are reasonably precise, with %SEEs of 17-25%. The breadth of the distal femoral articulation yields the most reliable estimates of body mass because it scales similarly in all major anthropoid taxa. Other joints scale differently in different taxa; therefore, locomotor style and phylogenetic affinity must be considered when calculating body mass estimates from the proximal femur, proximal humerus, and distal humerus. The body mass prediction equations were applied to 36 Old World and New World fossil anthropoid specimens representing 11 taxa, plus two Haitian specimens of uncertain taxonomic affinity. Among the extinct platyrrhines studied, only Cebupithecia is similar to large, extant platyrrhines in having large humeral (especially distal) joints. Our body mass estimates differ from each other and from published estimates based on teeth in ways that reflect known differences in relative sizes of the joints and teeth. We prefer body mass estimators that are biomechanically linked to weight-bearing, and especially those that are relatively insensitive to differences in locomotor style and phylogenetic history. Whenever

  5. Behavior of stress generated in semiconductor chips with high-temperature joints: Influence of mechanical properties of joint materials

    NASA Astrophysics Data System (ADS)

    Ito, H.; Kuwahara, M.; Ohta, R.; Usui, M.

    2018-04-01

    High-temperature joint materials are indispensable to realizing next-generation power modules with high-output performance. However, crack initiation resulting from stress concentration in semiconductor chips joined with high-temperature joint materials remains a critical problem in high-temperature operation. Therefore, clarifying the quantitative influence of joint materials on the stress generated in chips is essential. This study investigates the stress behavior of chips joined by Ni-Sn solid-liquid interdiffusion (SLID), which results in a high-temperature joint material likely to generate cracks after joining or when under thermal cycling. The results are compared with those fabricated using three types of solders, Pb-10%Sn, Sn-0.7%Cu, and Sn-10%Sb (mass %), which are conventional joint materials with different melting points and mechanical properties. Using Ni-Sn SLID results in the generation of high compressive stress (500 MPa) without stress relaxation after the joining process in contrast to the case of solders in which the compressive stresses are low (<300 MPa) and decrease to still lower levels (<250 MPa). In addition, no stress relaxation occurs during thermal cycling when using Ni-Sn SLID, whereas stress relaxation is clearly observed during heating to 200 °C using solders. Different stress behaviors between Ni-Sn SLID and other joint materials are illustrated by their mechanical strength and resistance against plastic and creep deformation. These results suggest that stress relaxation in a chip is key in suppressing crack initiation in highly reliable modules during high-temperature operation.

  6. The role of disseminated calcite in the chemical weathering of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W.

    1999-01-01

    Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport

  7. Fault and joint geometry at Raft River Geothermal Area, Idaho

    NASA Astrophysics Data System (ADS)

    Guth, L. R.; Bruhn, R. L.; Beck, S. L.

    1981-07-01

    Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene salt lake formation. The fracturing is most intense at the base of the salt lake formation, along a decollement that dips eastward at less than 50 on top of metamorphosed precambrian and lower paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 700. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. Surface joints form two suborthogonal sets that dip vertically. East-northeast-striking joints are most frequent on the limbs of the Jim Sage anticline, a large fold that is associated with the geothermal field.

  8. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  9. The Effect of Manipulating Subject Mass on Lower Extremity Torque Patterns During Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Cromwell, Ronita L.; Hagan, R. Donald

    2007-01-01

    During locomotion, humans adapt their motor patterns to maintain coordination despite changing conditions (Reisman et al., 2005). Bernstein (1967) proposed that in addition to the present state of a given joint, other factors, including limb inertia and velocity, must be taken into account to allow proper motion to occur. During locomotion with added mass counterbalanced using vertical suspension to maintain body weight, vertical ground reaction forces (GRF's) increase during walking but decrease during running, suggesting that adaptation may be velocity-specific (De Witt et al., 2006). It is not known, however, how lower extremity joint torques adapt to changes in inertial forces. The purpose of this investigation was to examine the effects of increasing body mass while maintaining body weight upon lower-limb joint torque during walking and running. We hypothesized that adaptations in joint torque patterns would occur with the addition of body mass.

  10. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  11. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  12. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  13. Unusual July 10, 1996, rock fall at Happy Isles, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, G.F.; Snyder, J.B.; Waitt, R.B.; Morrissey, M.M.; Uhrhammer, R.A.; Harp, E.L.; Norris, R.D.; Bursik, M.I.; Finewood, L.G.

    2000-01-01

    Effects of the July 10, 1996, rock fall at Happy Isles in Yosemite National Park, California, were unusual compared to most rock falls. Two main rock masses fell about 14 s apart from a 665-m-high cliff southeast of Glacier Point onto a talus slope above Happy Isles in the eastern part of Yosemite Valley. The two impacts were recorded by seismographs as much as 200 km away. Although the impact area of the rock falls was not particularly large, the falls generated an airblast and an abrasive dense sandy cloud that devastated a larger area downslope of the impact sites toward the Happy Isles Nature Center. Immediately downslope of the impacts, the airblast had velocities exceeding 110 m/s and toppled or snapped about 1000 trees. Even at distances of 0.5 km from impact, wind velocities snapped or toppled large trees, causing one fatality and several serious injuries beyond the Happy Isles Nature Center. A dense sandy cloud trailed the airblast and abraded fallen trunks and trees left standing. The Happy Isles rock fall is one of the few known worldwide to have generated an airblast and abrasive dense sandy cloud. The relatively high velocity of the rock fall at impact, estimated to be 110-120 m/s, influenced the severity and areal extent of the airblast at Happy Isles. Specific geologic and topographic conditions, typical of steep glaciated valleys and mountainous terrain, contributed to the rock-fall release and determined its travel path, resulting in a high velocity at impact that generated the devastating airblast and sandy cloud. The unusual effects of this rock fall emphasize the importance of considering collateral geologic hazards, such as airblasts from rock falls, in hazard assessment and planning development of mountainous areas.

  14. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    deep hard rock masses.

  15. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  16. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  17. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    USGS Publications Warehouse

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  18. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans.

    PubMed

    Ushida, Kazunari; Segawa, Takahiro; Tsuchida, Sayaka; Murata, Koichi

    2016-02-01

    Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan.

  19. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    NASA Astrophysics Data System (ADS)

    Chambers, John

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  20. Relationship of oil seep in Kudat Peninsula with surrounding rocks based on geochemical analysis

    NASA Astrophysics Data System (ADS)

    Izzati Azman, Nurul; Nur Fathiyah Jamaludin, Siti

    2017-10-01

    This study aims to investigate the relation of oil seepage at Sikuati area with the structural and petroleum system of Kudat Peninsula. The abundance of highly carbonaceous rocks with presence of lamination in the Sikuati Member outcrop at Kudat Peninsula may give an idea on the presence of oil seepage in this area. A detailed geochemical analysis of source rock sample and oil seepage from Sikuati area was carried out for their characterization and correlation. Hydrocarbon propectivity of Sikuati Member source rock is poor to good with Total Organic Carbon (TOC) value of 0.11% to 1.48%. and also categorized as immature to early mature oil window with Vitrinite Reflectance (VRo) value of 0.43% to 0.50 %Ro. Based on biomarker distribution, from Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis, source rock sample shows Pr/Ph, CPI and WI of 2.22 to 2.68, 2.17 to 2.19 and 2.46 to 2.74 respectively indicates the source rock is immature and coming from terrestrial environment. The source rock might be rich in carbonaceous material organic matter resulting from planktonic/bacterial activity which occurs at fluvial to fluvio-deltaic environment. Overall, the source rock from outcrop level of Kudat Peninsula is moderately prolific in term of prospectivity and maturity. However, as go far deeper beneath the surface, we can expect more activity of mature source rock that generate and expulse hydrocarbon from the subsurface then migrating through deep-seated fault beneath the Sikuati area.