Josephson junctions with tunable weak links.
Schön, J H; Kloc, C; Hwang, H Y; Batlogg, B
2001-04-13
The electrical properties of organic molecular crystals, such as polyacenes or C60, can be tuned from insulating to superconducting by application of an electric field. By structuring the gate electrode of such a field-effect switch, the charge carrier density, and therefore also the superfluid density, can be modulated. Hence, weak links that behave like Josephson junctions can be fabricated between two superconducting regions. The coupling between the superconducting regions can be tuned and controlled over a wide range by the applied gate bias. Such devices might be used in superconducting circuits, and they are a useful scientific tool to study superconducting material parameters, such as the superconducting gap, as a function of carrier concentration or transition temperature.
Corbino-geometry Josephson weak links in thin superconducting films
Clem, John R.
2010-11-29
I consider a Corbino-geometry superconducting-normal-superconducting Josephson weak link in a thin superconducting film, in which current enters at the origin, flows outward, passes through an annular Josephson weak link, and leaves radially. In contrast to sandwich-type annular Josephson junctions, in which the gauge-invariant phase difference obeys the sine-Gordon equation, here the gauge-invariant phase difference obeys an integral equation. I present exact solutions for the gauge-invariant phase difference across the weak link when it contains an integral number N of Josephson vortices and the current is zero. I then study the dynamics when a current is applied, and I derive the effective resistance and the viscous drag coefficient; I compare these results with those in sandwich-type junctions. I also calculate the critical current when there is no Josephson vortex in the weak link but there is a Pearl vortex nearby.
Mesoscopic lateral S/N/S weak links: Josephson effects and Josephson-like vortex flow
NASA Astrophysics Data System (ADS)
Carapella, G.; Sabatino, P.; Gombos, M.
2017-02-01
We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg-Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current-voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current-phase relation of this kind of lateral weak link in the Josephson regime.
Giant magnetic effects and oscillations in antiferromagnetic Josephson weak links
Gorkov, L.; Kresin, Vladimir
2001-04-01
Josephson junctions with an antiferromagnetic metal as a link are described. The junction can be switched off by a relatively small magnetic field. The amplitude of the current oscillates as a function of the field.
Alternating-current properties of short Josephson weak links
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.
2017-04-01
We calculate the admittance of two types of Josephson weak links—the first is a one-dimensional superconducting wire with a local suppression of the order parameter, and the second is a short S-c-S structure, where S denotes a superconducting reservoir and c is a constriction. The systems of the first type are analyzed on the basis of time-dependent Ginzburg-Landau equations derived by Gor'kov and Eliashberg for gapless superconductors with paramagnetic impurities. It is shown that the impedance Z (Ω ) has a maximum as a function of the frequency Ω , and the electric field EΩ is determined by two gauge-invariant quantities. One of them is the condensate momentum QΩ and another is a potential μ related to charge imbalance. The structures of the second type are studied on the basis of microscopic equations for quasiclassical Green's functions in the Keldysh technique. For short S-c-S contacts (the Thouless energy ETh=D /L2≫Δ ), we present a formula for admittance Y valid frequencies Ω and temperatures T less than the Thouless energy ETh (ℏ Ω ,T ≪ETh ) but arbitrary with respect to the energy gap Δ . It is shown that, at low temperatures, the absorption is absent [Re (Y )=0 ] if the frequency does not exceed the energy gap in the center of the constriction (Ω <Δ cosφ0 , where 2 φ0 is the phase difference between the S reservoirs). The absorption gradually increases with increasing the difference (Ω -Δ cosφ0) if 2 φ0 is less than the phase difference 2 φc corresponding to the critical Josephson current. In the interval 2 φc<2 φ0<π , the absorption has a maximum. This interval of the phase difference is achievable in phase-biased Josephson junctions. Close to Tc the admittance has a maximum at low Ω , which is described by an analytical formula.
Phase modulated thermal conductance of Josephson weak links.
Zhao, Erhai; Löfwander, Tomas; Sauls, J A
2003-08-15
We present a theory for quasiparticle heat transport through superconducting weak links. The thermal conductance depends on the phase difference (phi) of the superconducting leads. Branch-conversion processes, low-energy Andreev bound states near the contact, and the suppression of the local density of states near the gap edge are related to phase-sensitive transport processes. Theoretical results for the influence of junction transparency, temperature, and disorder, on the conductance, are reported. For high-transmission weak links, D-->1, the formation of an Andreev bound state leads to suppression of the density of states for the continuum excitations, and thus, to a reduction in the conductance for phi approximately pi. For low-transmission (D<1) barriers resonant scattering leads to an increase in the thermal conductance as T drops below T(c) (for phase differences near phi=pi).
Thermal transport through ac-driven transparent Josephson weak links
NASA Astrophysics Data System (ADS)
Virtanen, P.; Giazotto, F.
2014-07-01
We discuss how phase coherence manifests in the heat transport through superconducting single and multichannel Josephson junctions in time-dependent situations. We consider the heat current driven through the junction by a temperature difference in dc voltage and ac phase biased situations. At low bias, the electromagnetic driving mainly modifies the form of the coherent resonance that transports a large part of the heat current, rather than simply dissipating energy in the junction. We find a description for the heat current in terms of quasiparticle n-photon absorption and emission rates, and discuss analytical and numerical results concerning them. In addition to the ensemble average heat transport, we describe also its fluctuations.
Static and dynamic properties of Josephson weak links with singlet and triplet coupling
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.
2017-07-01
We theoretically study static and dynamic properties of short Josephson junctions (JJs) with singlet and triplet Josephson coupling. In singlet Josephson weak links, two singlet superconductors S are connected with each other by a normal film (N) or wire. Triplet JJs, which we denote Sm-N(F)-Sm, are formed by two singlet BCS superconductors covered by a thin layer of a weak ferromagnet Fw. These superconductors Sm are separated from the N (or F) layer by spin filters, which pass electrons with only one spin orientation. The triplet Cooper pairs propagating from the left (right) superconductors Sm differ from each other not only in polarizations, but also in chiralities. The latter is determined by the magnetization orientation in weak ferromagnets Fw. We obtain analytical formulas for the critical Josephson current in both types of JJs. If the chiralities of the triplet Cooper pairs penetrating into the N film in Sm-N(F)-Sm JJs from the left and right Sm are different, the Josephson current is not 0 in the absence of the phase difference (spontaneous Josephson current). We also calculate the admittance Y (Ω ) for arbitrary frequencies Ω in the case of singlet JJs and for low frequencies in the case of triplet JJs. At low temperatures T , the real part of the admittance Y'(Ω ) in singlet JJs starts to increase from 0 at ℏ Ω ≥Δsg , but at T ≥Δsg , it has a peak at low frequencies the magnitude of which is determined by inelastic processes. The subgap Δsg depends on the transparencies of the S/N interfaces and on the phase difference 2 χ0 . The low-frequency peak in Y'(Ω ) in triplet JJs disappears.
Theory of a weak-link superconductor-ferromagnet Josephson structure
NASA Astrophysics Data System (ADS)
Gelhausen, J.; Eschrig, M.
2016-09-01
We propose a model for the theoretical description of a weak-link Josephson junction, in which the weak link is spin-polarized due to proximity to a ferromagnetic metal [S-(F |S )-S, where S is a superconductor and F is a ferromagnetic metal]. Employing Usadel transport theory appropriate for diffusive systems, we show that the weak link is described within the framework of Andreev circuit theory by an effective self-energy resulting from the implementation of spin-dependent boundary conditions. This leads to a considerable simplification of the model, and allows for an efficient numerical treatment. As an application of our model, we show numerical calculations of important physical observables such as the local density of states, proximity-induced minigaps, spin-magnetization, and the phase and temperature dependence of Josephson currents of the S-(F |S )-S system. We discuss multivalued current-phase relationships at low temperatures as well as their crossover to sinusoidal form at high temperatures. Additionally, we numerically treat (S-F-S) systems that exhibit a magnetic domain wall in the F region and calculate the temperature-dependence of the critical currents.
Carapella, G; Sabatino, P; Barone, C; Pagano, S; Gombos, M
2016-10-18
Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S'/S weak links with suppressed superconductivity in S'. In such a system the vortex is nucleated and confined in the narrow S' region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links.
Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.
2016-01-01
Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137
Critical-current diffraction patterns of grain-boundary Josephson weak links
Peterson, R.L.; Ekin, J.W. )
1990-11-01
We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.
Conduction channels of an InAs-Al nanowire Josephson weak link
NASA Astrophysics Data System (ADS)
Goffman, M. F.; Urbina, C.; Pothier, H.; Nygård, J.; Marcus, C. M.; Krogstrup, P.
2017-09-01
We present a quantitative characterization of an electrically tunable Josephson junction defined in an InAs nanowire proximitized by an epitaxially-grown superconducting Al shell. The gate-dependence of the number of conduction channels and of the set of transmission coefficients are extracted from the highly nonlinear current–voltage characteristics. Although the transmissions evolve non-monotonically, the number of independent channels can be tuned, and configurations with a single quasi-ballistic channel achieved.
NASA Astrophysics Data System (ADS)
Arjoranta, Juho; Heikkilä, Tero T.
2016-01-01
We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor-nanowire-superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically [The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we show how rotating the field leads to a sequence of transitions between the 0 and π states as a function of the angle between the exchange field and the spin-orbit field. Simultaneously, the triplet pairing leads to a zero-energy peak in the density of states. We proceed by solving the linearized Usadel equations, showing the correspondence to the solutions of the full equations and detail the emergence of the long-range supercurrent components. Our studies are relevant for ongoing investigations of supercurrent in semiconductor nanowires in the limit of several channels and in the presence of disorder.
Kroger, H.
1980-09-23
The disclosed SQUID (Superconducting quantum interference device) comprises two superposed superconductive layers with an insulating layer therebetween. A plurality of holes through the insulating layer filled with superconductive material form weak links between the superconductive layers. One or more control lines superposed with respect to the superconductive layers provide magnetic flux through the area between the weak links to control the zero voltage supercurrent flowing through the weak links from one of the superconductive layers to the other thereby providing the switching function for Josephson superconductive circuits.
Nanoelectromechanics of superconducting weak links (Review Article)
NASA Astrophysics Data System (ADS)
Parafilo, A. V.; Krive, I. V.; Shekhter, R. I.; Jonson, M.
2012-04-01
Nanoelectromechanical effects in superconducting weak links are considered. Three different superconducting devices are studied: (i) a single-Cooper-pair transistor, (ii) a transparent SNS junction, and (iii) a single-level quantum dot coupled to superconducting electrodes. The electromechanical coupling is due to electrostatic or magnetomotive forces acting on a movable part of the device. It is demonstrated that depending on the frequency of mechanical vibrations the electromechanical coupling could either suppress or enhance the Josephson current. Nonequilibrium effects associated with cooling of the vibrational subsystem or pumping energy into it at low bias voltages are discussed.
High Temperature Superconductor Josephson Weak Links
NASA Technical Reports Server (NTRS)
Hunt, B. D.; Barner, J. B.; Foote, M. C.; Vasquez, R. C.
1993-01-01
High T_c edge-geometry SNS microbridges have been fabricated using ion-damaged YBa_2Cu_3O_(7-x) (YBCO) and a nonsuperconducting phase of YBCO (N-YBCO) as normal metals. Optimization of the ion milling process used for YBCO edge formation and cleaning has resulted in ion-damage barrier devices which exhibit I-V characteristics consistent with the Resistively-Shunted-Junction (RSJ) model, with typical current densities (J_c) of approximately 5 x 10^6 A/cm^2 at 4.2 K. Characterization of N-YBCO films suggests that N-YBCO is the orthorhombic YBCO phase with oxygen disorder suppressing T_c...
Detection of Weak Microwave Fields with an Underdamped Josephson Junction
NASA Astrophysics Data System (ADS)
Oelsner, G.; Andersen, C. K.; Rehák, M.; Schmelz, M.; Anders, S.; Grajcar, M.; Hübner, U.; Mølmer, K.; Il'ichev, E.
2017-01-01
We construct a microwave detector based on the voltage switching of an underdamped Josephson junction that is positioned at a current antinode of a λ /4 coplanar waveguide resonator. By measuring the switching current and the transmission through a waveguide capacitively coupled to the resonator at different drive frequencies and temperatures, we are able to fully characterize the system and assess its detection efficiency and sensitivity. Testing the detector by applying a classical microwave field with the strength of a single photon yields a sensitivity parameter of 0.5, in qualitative agreement with theoretical calculations.
Method Producing an SNS Superconducting Junction with Weak Link Barrier
NASA Technical Reports Server (NTRS)
Hunt, Brian D. (Inventor)
1999-01-01
A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.
Weak link nanobridges as single flux quantum elements
NASA Astrophysics Data System (ADS)
Shelly, Connor D.; See, Patrick; Ireland, Jane; Romans, Ed J.; Williams, Jonathan M.
2017-09-01
This paper investigates the feasibility of using weak link nanobridges as Josephson junction elements for the purpose of creating Josephson circuits. We demonstrate the development of a single-step electron beam lithography procedure to fabricate niobium nanobridges with dimensions down to 40 {nm}× 100 {nm}. The single-step process facilitates fabrication that is scalable to complex circuits that require many junctions. We measure the IV-characteristics (IVC) of the nanobridges between temperatures of 4.2 and 9 {{K}} and find agreement with numerical simulations and the analytical resistively shunted junction (RSJ) model. Furthermore, we investigate the behaviour of the nanobridges under rf irradiation and observe the characteristic microwave-induced Shapiro steps. Our simulated IVC under rf irradiation using both the RSJ model and circuit simulator JSIM are in agreement with the experimental data. As a potential use of nanobridges in circuits requiring many junctions, we investigate the theoretical performance of a nanobridge-based Josephson comparator circuit using JSIM.
(abstract) Epitaxial High-T(sub c) SNS Weak Links on Silicon-on-Sapphire Substrates
NASA Technical Reports Server (NTRS)
Hunt, B. D.; Barner, J. B.; Foote, M. C.; Vasquez, R. P.; Schoelkopf, R. J.; Phillips, T. G.; Zmuidzinas, J.
1994-01-01
High-T(sub c) SNS weak links are expected to prove useful as high frequency sources and detectors. Recent studies with low-T(sub c) Josephson mixers using shunted tunnel junctions at 100 GHz show good initial performance, and modeling suggests that these results should extrapolate to higher frequencies if larger I(sub c)R(sub n) products can be achieved. Progress on this work will be reported.
Josephson magnetic rotary valve
Soloviev, I. I.; Klenov, N. V.; Bakurskiy, S. V.; Bol'ginov, V. V.; Ryazanov, V. V.; Kupriyanov, M. Yu.; Golubov, A. A.
2014-12-15
We propose a control element for a Josephson spin valve. It is a complex Josephson device containing ferromagnetic (F) layer in the weak-link area consisting of two regions, representing 0 and π Josephson junctions, respectively. The valve's state is defined by mutual orientations of the F-layer magnetization vector and boundary line between 0 and π sections of the device. We consider possible implementation of the control element by introduction of a thin normal metal layer in a part of the device area. By means of theoretical simulations, we study properties of the valve's structure as well as its operation, revealing such advantages as simplicity of control, high characteristic frequency, and good legibility of the basic states.
Phase slips in superconducting weak links
Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.
2017-01-01
Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.
Fundamental Processes in Superconducting Weak Links
1988-12-31
Report # 27: "Quantum Phenomena in Mesoscopic Superconducting Tunnel Junctions", Marco Iansiti , December 1988. 9 ŕ m. PUBLICATIONS 1. RESEARCH...AT FIR FREQUENCIES: Qing Hu, J.U. Free, M. Iansiti , 0. Liengme, and M. Tinkham, Proc. 1984 Appl. Supercond. Conf., San Diego, IEEE Trans. Mag. MAG-21...590-593 (1985). 6. NOISE AND CHAOS IN A FRACTAL BASIC BOUNDARY REGIME OF A JOSEPHSON JUNCTIONS: M. Iansiti , Qing Hu, R.M. Westervelt, and M. Tinkham
NASA Astrophysics Data System (ADS)
Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.
2016-10-01
We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.
Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions
NASA Astrophysics Data System (ADS)
Deacon, R. S.; Wiedenmann, J.; Bocquillon, E.; Domínguez, F.; Klapwijk, T. M.; Leubner, P.; Brüne, C.; Hankiewicz, E. M.; Tarucha, S.; Ishibashi, K.; Buhmann, H.; Molenkamp, L. W.
2017-04-01
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ. Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the fJ/2 line, much shorter than for the fJ line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.
Gravity's Weak Force Link and other thoughts
NASA Astrophysics Data System (ADS)
Aquilina, Rich
2011-10-01
Gravity is by far the weakest of the known four forces. What if that is because it is the oldest of the forces and the most decayed of them? What if that is what caused the Big Bang? The decay of gravity could no longer hold the singularity (or other forces) in check. We know there is decay, it is known as the ``Weak'' force. The idea of decaying gravity would only serve to unite the ``Weak'' force and ``Gravity.'' What if this is the elusive connection between ``Gravity'' and the ``Other Forces''? What if there have been other forces that are no longer with us because of decay or their own evolutionary process? What if these unknown decayed forces gave rise to newer and ``stronger'' forces or maybe even ``weaker'' ones? What if ``particles'' were actually a threshold of converged points of strings (like on a multi-dimensional graph), and the reason we can't seem to find one for gravity is because the convergence threshold to manifest as a particle hasn't been met, yet the strings and influence are still there.
High-Temperature-Superconducting Weak Link Defined by the Ferroelectric Field Effect
NASA Astrophysics Data System (ADS)
Bégon-Lours, L.; Rouco, V.; Sander, A.; Trastoy, J.; Bernard, R.; Jacquet, E.; Bouzehouane, K.; Fusil, S.; Garcia, V.; Barthélémy, A.; Bibes, M.; Santamaría, J.; Villegas, J. E.
2017-06-01
In all-oxide ferroelectric (F E ) superconductors (S ), due to the low carrier concentration of oxides compared to transition metals, the F E interfacial polarization charges induce an accumulation (or depletion) of charge carriers in the S . This effect leads either to an enhancement or a depression of its critical temperature, depending on the F E polarization direction. Here, we exploit this effect at a local scale to define planar weak links in high-temperature-superconducting wires. These experiments are realized in BiFeO3 (F E ) /YBa2Cu3O7 -x (S ) bilayers in which the remnant F E domain structure is "written" by locally applying voltage pulses with a conductive-tip atomic force microscope. In this fashion, the F E domain pattern defines a spatial modulation of superconductivity. This characteristic allows us to "write" a device whose electrical transport shows different temperature regimes and magnetic-field-matching effects that are characteristic of Josephson coupled weak links. This behavior illustrates the potential of the ferroelectric approach for the realization of high-temperature-superconducting devices.
Axion mass estimates from resonant Josephson junctions
NASA Astrophysics Data System (ADS)
Beck, Christian
2015-03-01
Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.
Wendt, J.R.; Plut, T.A.; Martens, J.S.
1995-05-02
A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.
Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.
1995-01-01
A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.
NASA Astrophysics Data System (ADS)
Bauer, S.; Behr, R.; Hagen, T.; Kieler, O.; Lee, J.; Palafox, L.; Schurr, J.
2017-04-01
In this paper the realization of a two-terminal-pair impedance bridge based on pulse-driven Josephson arrays will be presented. This bridge was used to link a 10 nF capacitance standard to the quantized Hall resistance at 1233 Hz. With pulse-driven Josephson arrays the setup for a quadrature bridge can be reduced dramatically. For the combination of the AC quantum Hall resistance and a 10 nF capacitance standard, most of the uncertainties caused by contact resistances in a two-terminal-pair definition were circumvented by a triple-series connection of the AC quantum Hall resistance. The capacitance value obtained by the new Josephson impedance bridge was compared to the results from a transformer-based ratio bridge and agrees within 1.3 parts in 108. Sources of systematic uncertainties were investigated and the combined relative uncertainty of the bridge was determined to be less than 1× {{10}-8} (k = 1) and 13.9 nF F-1 (k = 1) for the link of the 10 nF capacitance standard.
Stability in Real Food Webs: Weak Links in Long Loops
NASA Astrophysics Data System (ADS)
Neutel, Anje-Margriet; Heesterbeek, Johan A. P.; de Ruiter, Peter C.
2002-05-01
Increasing evidence that the strengths of interactions among populations in biological communities form patterns that are crucial for system stability requires clarification of the precise form of these patterns, how they come about, and why they influence stability. We show that in real food webs, interaction strengths are organized in trophic loops in such a way that long loops contain relatively many weak links. We show and explain mathematically that this patterning enhances stability, because it reduces maximum ``loop weight'' and thus reduces the amount of intraspecific interaction needed for matrix stability. The patterns are brought about by biomass pyramids, a feature common to most ecosystems. Incorporation of biomass pyramids in 104 food-web descriptions reveals that the low weight of the long loops stabilizes complex food webs. Loop-weight analysis could be a useful tool for exploring the structure and organization of complex communities.
Coherent dynamics and decoherence in a superconducting weak link
NASA Astrophysics Data System (ADS)
Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S.; Astafiev, O. V.
2016-11-01
We demonstrate coherent dynamics of quantized magnetic fluxes in a superconducting loop with a weak link, a nanobridge patterned from the same thin NbN film as the loop. The bridge is a short, rounded shape constriction, close to 10 nm long and 20-30 nm wide, having minimal width at its center. It superposes neighboring fluxoid states of the loop. Quantum state control and coherent oscillations in the driven time evolution of the tunnel-junctionless system are achieved. Decoherence and energy relaxation in the system are studied using a combination of microwave spectroscopy and direct time-domain techniques. The effective flux noise behavior suggests inductance fluctuations as a possible cause of the decoherence.
Intrinsically shunted Josephson junctions for electronics applications
NASA Astrophysics Data System (ADS)
Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.
2017-07-01
Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.
NASA Astrophysics Data System (ADS)
Barone, Antonio; Pagano, Sergio
In this chapter we briefly review the main applications of Josephson effect together with the most successful devices realized. We will give an overview of the various devices, providing also some basic concepts of the underlying physical mechanisms involved, and the associated limit performances. Some considerations on the concrete possibilities of successful "market ready" implementation will also be given.
Modulated microwave absorption spectra from Josephson junctions on a scratched niobium wire
Rubins, R.S. |; Hutton, S.L.; Ravindran, K.; Subbaraman, K.; Drumheller, J.E.
1997-05-01
Modulated microwave absorption (MMA) spectra from Josephson junction formations on a scratched Nb wire have been studied at 9.3 GHz and 4 K. The peak-to-peak separation, {delta}H of the Josephson lines was found to vary linearly with P{sup 1/2}, where P is the applied microwave power, in contrast to a recent interpretation of junction formation in pressed lead pieces by Rubins, Drumheller, and Trybula. The interpretation of the MMA data on Nb are given in terms of the theory of Vichery, Beuneu, and Lejay for superconducting loops containing weak links. {copyright} {ital 1997} {ital The American Physical Society}
Gate-tunable superconducting weak link behavior in top-gated LaAlO{sub 3}-SrTiO{sub 3}
Bal, V. V.; Mehta, M. M.; Chandrasekhar, V.; Ryu, S.; Lee, H.; Folkman, C. M.; Eom, C. B.
2015-05-25
We use a combination of global back-gating and local top-gating to define nanoscale devices in the two-dimensional electron gas at the LaAlO{sub 3}-SrTiO{sub 3} interface, demonstrating an efficient way for much finer spatial control over the properties of the interface, as compared to back-gating alone. The devices show indications of an inhomogenous superconducting weak link. The variation of critical current with perpendicular magnetic field shows evidence of oscillations, which hints at Josephson coupling. The variation of the critical current and zero bias resistance with temperature is consistent with short, overdamped weak links. We show that the applied top-gate voltage provides a strong handle on the properties of these weak links. This technique can be an important tool to define a variety of device structures in this system, allowing us to probe the nature of superconductivity in the LaAlO{sub 3}-SrTiO{sub 3} interface system in different ways.
Lack of strength; Muscle weakness ... feel weak but have no real loss of strength. This is called subjective weakness. It may be ... flu. Or, you may have a loss of strength that can be noted on a physical exam. ...
Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions.
Tiira, J; Strambini, E; Amado, M; Roddaro, S; San-Jose, P; Aguado, R; Bergeret, F S; Ercolani, D; Sorba, L; Giazotto, F
2017-04-12
The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.
Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions
Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.
2017-01-01
The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition. PMID:28401951
Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions
NASA Astrophysics Data System (ADS)
Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.
2017-04-01
The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.
4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions
Wiedenmann, J.; Bocquillon, E.; Deacon, R. S.; Hartinger, S.; Herrmann, O.; Klapwijk, T. M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; Oiwa, A.; Ishibashi, K.; Tarucha, S.; Buhmann, H.; Molenkamp, L. W.
2016-01-01
The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator. PMID:26792013
4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions.
Wiedenmann, J; Bocquillon, E; Deacon, R S; Hartinger, S; Herrmann, O; Klapwijk, T M; Maier, L; Ames, C; Brüne, C; Gould, C; Oiwa, A; Ishibashi, K; Tarucha, S; Buhmann, H; Molenkamp, L W
2016-01-21
The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.
0-π phase-controllable thermal Josephson junction
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco
2017-05-01
Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| < π/2 (refs 2-4). The direction of both the Josephson charge and heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.
Digital Selective Calling: The Weak Link of the GMDSS
NASA Astrophysics Data System (ADS)
Patterson, Anthony H.; McCarter, Philip S.
Digital Selective Calling (DSC) is causing serious problems for Search and Rescue (SAR) providers. Administrations must seriously consider the humanitarian and legal implications of continuing the implementation of DSC. They may be in violation of the Safety of Life at Sea Convention, the International Convention on Maritime Search and Rescue, 1979, and the United Nations Convention on the Law of the Sea, 1982, by knowingly implementing communications technology that may jeopardize lives at sea even though the primary intent of DSC is to establish a suitable distress alerting method. States may very well open themselves to legal liability if loss of life or environmental damage can be linked in any way to the known faults of DSC.
Josephson effects in an alternating current biased transition edge sensor
NASA Astrophysics Data System (ADS)
Gottardi, L.; Kozorezov, A.; Akamatsu, H.; van der Kuur, J.; Bruijn, M. P.; den Hartog, R. H.; Hijmering, R.; Khosropanah, P.; Lambert, C.; van der Linden, A. J.; Ridder, M. L.; Suzuki, T.; Gao, J. R.
2014-10-01
We report the experimental evidence of the ac Josephson effect in a transition edge sensor (TES) operating in a frequency domain multiplexer and biased by ac voltage at MHz frequencies. The effect is observed by measuring the non-linear impedance of the sensor. The TES is treated as a weakly linked superconducting system and within the resistively shunted junction model framework. We provide a full theoretical explanation of the results by finding the analytic solution of the non-inertial Langevian equation of the system and calculating the non-linear response of the detector to a large ac bias current in the presence of noise.
Feynman's and Ohta's Models of a Josephson Junction
ERIC Educational Resources Information Center
De Luca, R.
2012-01-01
The Josephson equations are derived by means of the weakly coupled two-level quantum system model given by Feynman. Adopting a simplified version of Ohta's model, starting from Feynman's model, the strict voltage-frequency Josephson relation is derived. The contribution of Ohta's approach to the comprehension of the additional term given by the…
The ω-SQUIPT as a tool to phase-engineer Josephson topological materials.
Strambini, E; D'Ambrosio, S; Vischi, F; Bergeret, F S; Nazarov, Yu V; Giazotto, F
2016-12-01
Multi-terminal superconducting Josephson junctions based on the proximity effect offer the opportunity to tailor non-trivial quantum states in nanoscale weak links. These structures can realize exotic topologies in several dimensions, for example, artificial topological superconductors that are able to support Majorana bound states, and pave the way to emerging quantum technologies and future quantum information schemes. Here we report the realization of a three-terminal Josephson interferometer based on a proximized nanosized weak link. Our tunnelling spectroscopy measurements reveal transitions between gapped (that is, insulating) and gapless (conducting) states that are controlled by the phase configuration of the three superconducting leads connected to the junction. We demonstrate the topological nature of these transitions: a gapless state necessarily occurs between two gapped states of different topological indices, in much the same way that the interface between two insulators of different topologies is necessarily conducting. The topological numbers that characterize such gapped states are given by superconducting phase windings over the two loops that form the Josephson interferometer. As these gapped states cannot be transformed to one another continuously without passing through a gapless condition, they are topologically protected. The same behaviour is found for all of the points of the weak link, confirming that this topology is a non-local property. Our observation of the gapless state is pivotal for enabling phase engineering of different and more sophisticated artificial topological materials.
The ω-SQUIPT as a tool to phase-engineer Josephson topological materials
NASA Astrophysics Data System (ADS)
Strambini, E.; D'Ambrosio, S.; Vischi, F.; Bergeret, F. S.; Nazarov, Yu. V.; Giazotto, F.
2016-12-01
Multi-terminal superconducting Josephson junctions based on the proximity effect offer the opportunity to tailor non-trivial quantum states in nanoscale weak links. These structures can realize exotic topologies in several dimensions, for example, artificial topological superconductors that are able to support Majorana bound states, and pave the way to emerging quantum technologies and future quantum information schemes. Here we report the realization of a three-terminal Josephson interferometer based on a proximized nanosized weak link. Our tunnelling spectroscopy measurements reveal transitions between gapped (that is, insulating) and gapless (conducting) states that are controlled by the phase configuration of the three superconducting leads connected to the junction. We demonstrate the topological nature of these transitions: a gapless state necessarily occurs between two gapped states of different topological indices, in much the same way that the interface between two insulators of different topologies is necessarily conducting. The topological numbers that characterize such gapped states are given by superconducting phase windings over the two loops that form the Josephson interferometer. As these gapped states cannot be transformed to one another continuously without passing through a gapless condition, they are topologically protected. The same behaviour is found for all of the points of the weak link, confirming that this topology is a non-local property. Our observation of the gapless state is pivotal for enabling phase engineering of different and more sophisticated artificial topological materials.
Low-noise THz MgB2 Josephson mixer
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.
2016-09-01
The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.
Playing the role of weak clique property in link prediction: A friend recommendation model
NASA Astrophysics Data System (ADS)
Ma, Chuang; Zhou, Tao; Zhang, Hai-Feng
2016-07-01
An important fact in studying link prediction is that the structural properties of networks have significant impacts on the performance of algorithms. Therefore, how to improve the performance of link prediction with the aid of structural properties of networks is an essential problem. By analyzing many real networks, we find a typical structural property: nodes are preferentially linked to the nodes with the weak clique structure (abbreviated as PWCS to simplify descriptions). Based on this PWCS phenomenon, we propose a local friend recommendation (FR) index to facilitate link prediction. Our experiments show that the performance of FR index is better than some famous local similarity indices, such as Common Neighbor (CN) index, Adamic-Adar (AA) index and Resource Allocation (RA) index. We then explain why PWCS can give rise to the better performance of FR index in link prediction. Finally, a mixed friend recommendation index (labelled MFR) is proposed by utilizing the PWCS phenomenon, which further improves the accuracy of link prediction.
Playing the role of weak clique property in link prediction: A friend recommendation model.
Ma, Chuang; Zhou, Tao; Zhang, Hai-Feng
2016-07-21
An important fact in studying link prediction is that the structural properties of networks have significant impacts on the performance of algorithms. Therefore, how to improve the performance of link prediction with the aid of structural properties of networks is an essential problem. By analyzing many real networks, we find a typical structural property: nodes are preferentially linked to the nodes with the weak clique structure (abbreviated as PWCS to simplify descriptions). Based on this PWCS phenomenon, we propose a local friend recommendation (FR) index to facilitate link prediction. Our experiments show that the performance of FR index is better than some famous local similarity indices, such as Common Neighbor (CN) index, Adamic-Adar (AA) index and Resource Allocation (RA) index. We then explain why PWCS can give rise to the better performance of FR index in link prediction. Finally, a mixed friend recommendation index (labelled MFR) is proposed by utilizing the PWCS phenomenon, which further improves the accuracy of link prediction.
The Weak Link HP-41C hand-held calculator program
Ross A. Phillips; Penn A. Peters; Gary D. Falk
1982-01-01
The Weak Link hand-held calculator program (HP-41C) quickly analyzes a system for logging production and costs. The production equations model conventional chain saw, skidder, loader, and tandemaxle truck operations in eastern mountain areas. Production of each function of the logging system may be determined so that the system may be balanced for minimum cost. The...
Weak Links: Stabilizers of Complex Systems from Proteins to Social Networks
NASA Astrophysics Data System (ADS)
Csermely, Peter
Why do women stabilize our societies? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? Why do omnivorous eating habits aid our survival? Why is Mona Lisa's smile beautiful? -- Is there any answer to these questions? This book shows that the statement: "weak links stabilize complex systems" holds the answers to all of the surprising questions above. The author (recipientof several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast varietyof networks from proteins to ecosystems.
Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices
NASA Astrophysics Data System (ADS)
Fujimori, Toshiaki; Iida, Hideaki; Nitta, Muneto
2016-09-01
Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel N -1 domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The N -1 domain walls behave as insulators separating N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors separated by two insulators, we find for the former case that the interaction between two Josephson vortices on different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls. In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the domain walls. Our predictions should be verified in multilayered Josephson junctions.
Implications of Weak Link Effects on Thermal Characteristics of Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Bailey, Catherine
2011-01-01
Weak link behavior in transition-edge sensor (TES) devices creates the need for a more careful characterization of a device's thermal characteristics through its transition. This is particularly true for small TESs where a small change in the measurement current results in large changes in temperature. A highly current-dependent transition shape makes accurate thermal characterization of the TES parameters through the transition challenging. To accurately interpret measurements, especially complex impedance, it is crucial to know the temperature-dependent thermal conductance, G(T), and heat capacity, C(T), at each point through the transition. We will present data illustrating these effects and discuss how we overcome the challenges that are present in accurately determining G and T from IV curves. We will also show how these weak link effects vary with TES size.
Statistics of accumulated splice-cross talk in weakly coupled few-mode fiber links
NASA Astrophysics Data System (ADS)
Han, Jiawei; Qu, Caifeng
2016-07-01
For uncoupled mode-division-multiplexed systems in weakly coupled (WC) few-mode fibers (FMFs), we numerically investigate the effect of splices on the statistical regularities of WC property preservation along the transmission link. At each splice, the probability density functions of intermodal cross talk (XT) for the transmitted linearly polarized mode(s) are numerically analyzed by using Gaussian fitting. Under the assessment criterion of accumulated intermodal XT affected by discrete splices, we give an empirical evaluation on the uncoupled probability value versus transmission distance, for WC FMF links with different splicing qualities.
Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Abad, M.; Guilleumas, M.; Mayol, R.; Piazza, F.; Jezek, D. M.; Smerzi, A.
2015-02-01
We study the relation between Josephson dynamics and topological excitations in a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips responsible for the self-trapping regime are created by vortex rings entering and annihilating inside the weak-link region or created at the center of the barrier and expanding outside the system. Large amplitude oscillations just before the onset of self-trapping are also strictly connected with the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the “ac” Josephson effect of superconducting and superfluid helium systems.
Nonlinear dynamics of Josephson vortices in a film screen under dc and ac magnetic fields
NASA Astrophysics Data System (ADS)
Sheikhzada, A.; Gurevich, A.
2014-11-01
We present detailed numerical simulations of Josephson vortices in a long Josephson junction perpendicular to a thin film screen under strong dc and ac magnetic fields. By solving the sine-Gordon equation, we calculated the threshold magnetic field for penetration of fluxons as a function of frequency, and the power dissipated by oscillating fluxons as functions of the ac field amplitude and frequency. We considered the effects of superimposed ac and dc fields, and a bi-harmonic magnetic field resulting in a vortex ratchet dynamics. The results were used to evaluate the contribution of weak-linked grain boundaries to the nonlinear surface resistance of polycrystalline superconductors under strong electromagnetic fields, particularly thin film screens and resonator cavities.
Andreev spectrum of a Josephson junction with spin-split superconductors
NASA Astrophysics Data System (ADS)
Bujnowski, B.; Bercioux, D.; Konschelle, F.; Cayssol, J.; Bergeret, F. S.
2016-09-01
The Andreev bound states and charge transport in a Josephson junction between two superconductors with intrinsic exchange fields are studied. We find that for a parallel configuration of the exchange fields in the superconductors the discrete spectrum consists of two pairs of spin-split states. The Josephson current in this case is mainly carried by bound states. In contrast, for the antiparallel configuration we find that there is no spin-splitting of the bound states and that for phase differences smaller than a certain critical value there are no bound states at all. Hence the supercurrent is only carried by states in the continuous part of the spectrum. Our predictions can be tested by performing a tunneling spectroscopy of a weak link between two spin-split superconductors.
2016-03-01
Distribution Unlimited Final Report on "Survey of Quantification and Distance Functions Used for Internet -based Weak-link Sociological Phenomena...journals: Number of Papers published in non peer-reviewed journals: Final Report on "Survey of Quantification and Distance Functions Used for Internet ...improve the efficiency of the computation in hoping to speed up the search. Due to the explosive increase of the webpages and the Internet surfers
Enhancement of Shapiro-like steps in multiterminal Josephson structures
NASA Astrophysics Data System (ADS)
Savinov, D. A.
2016-08-01
The distinctive features of current-voltage characteristics are studied for mesoscopic multiterminal structures effected by external irradiation. Considering a simple model of applied dc+ac voltage, we calculate Shapiro-like steps in Josephson systems with several weakly coupled superconducting electrodes. Owing to the action of an external alternating signal, the dc current is found to be rather increased than it appears in the same multiterminal Josephson node without the radiation. The possible applications of our results for the experimental observation of the Shapiro-like steps in such Josephson structures are discussed.
Playing the role of weak clique property in link prediction: A friend recommendation model
Ma, Chuang; Zhou, Tao; Zhang, Hai-Feng
2016-01-01
An important fact in studying link prediction is that the structural properties of networks have significant impacts on the performance of algorithms. Therefore, how to improve the performance of link prediction with the aid of structural properties of networks is an essential problem. By analyzing many real networks, we find a typical structural property: nodes are preferentially linked to the nodes with the weak clique structure (abbreviated as PWCS to simplify descriptions). Based on this PWCS phenomenon, we propose a local friend recommendation (FR) index to facilitate link prediction. Our experiments show that the performance of FR index is better than some famous local similarity indices, such as Common Neighbor (CN) index, Adamic-Adar (AA) index and Resource Allocation (RA) index. We then explain why PWCS can give rise to the better performance of FR index in link prediction. Finally, a mixed friend recommendation index (labelled MFR) is proposed by utilizing the PWCS phenomenon, which further improves the accuracy of link prediction. PMID:27439697
Josephson-vortex Cherenkov radiation
Mints, R.G.; Snapiro, I.B.
1995-10-01
We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal Josephson electrodynamics. We find the expression for the radiated power and for the radiation friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate the relation between the density of the bias current and the Josephson vortex velocity.
Escape routes, weak links, and desynchronization in fluctuation-driven networks
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Zhang, Xiaozhu; Rohden, Martin; Timme, Marc; Witthaut, Dirk
2017-06-01
Shifting our electricity generation from fossil fuel to renewable energy sources introduces large fluctuations to the power system. Here, we demonstrate how increased fluctuations, reduced damping, and reduced intertia may undermine the dynamical robustness of power grid networks. Focusing on fundamental noise models, we derive analytic insights into which factors limit the dynamic robustness and how fluctuations may induce a system escape from an operating state. Moreover, we identify weak links in the grid that make it particularly vulnerable to fluctuations. These results thereby not only contribute to a theoretical understanding of how fluctuations act on distributed network dynamics, they may also help designing future renewable energy systems to be more robust.
Characterizing Weak-Link Effects in Mo/Au Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Smith, Stephen
2011-01-01
We are developing Mo/Au bilayer transition-edge sensors (TESs) for applications in X-ray astronomy. Critical current measurements on these TESs show they act as weak superconducting links exhibiting oscillatory, Fraunhofer-like, behavior with applied magnetic field. In this contribution we investigate the implications of this behavior for TES detectors, under operational bias conditions. This includes characterizing the logarithmic resistance sensitivity with temperature, (alpha, and current, beta, as a function of applied magnetic field and bias point within the resistive transition. Results show that these important device parameters exhibit similar oscillatory behavior with applied magnetic field, which in turn affects the signal responsivity, noise and energy resolution.
Nakaoka, H; Gaillard, C; Fujinaka, K; Watanabe, N; Ito, M; Kawada, K; Ibi, T; Sasae, Y; Sasaki, Y
2009-01-01
Data from 3 prefectures and a nationwide farming corporation were used to assess the usefulness of the "link provider data" in providing indirect genetic links for the national genetic evaluation for carcass weight across weakly connected subpopulations of the Japanese Black cattle. The data from the farming corporation provided genetic links to those of all prefectures and was therefore used as the link provider data. Two national genetic evaluation strategies under an animal model were compared, based on the generalized coefficient of determination (CD) of contrasts between mean EBV of sires or maternal grandsires (MGS) from different prefectures: strategy PA-1 was a pooled analysis of the data sets of the 3 prefectures, and strategy PA-2 was a pooled analysis of the data sets of the 3 prefectures and the farming corporation. The CD of the contrasts were greater for PA-2 than for PA-1. Under PA-2, the CD of the contrasts between mean EBV of sires or MGS ranged from 0.67 to 0.78 or from 0.61 to 0.70, respectively. Pooling the data from the 3 prefectures and the farming corporation increased the degree of connectedness through the link provider data rather than the amount of information by adding more data, thus improving the accuracy of prediction. The differences between mean EBV of sires or MGS from different prefectures were smaller for PA-1 than for PA-2. This finding suggests that genetic differences in carcass weight among prefectures are present, but that they would be confused with the environmental differences under PA-1 because of the lack of genetic connectedness among the prefectures. On the other hand, the genetic differences among the prefectures would be predicted precisely under PA-2 because the genetic connectedness among the prefectures was improved by using the link provider data. The results demonstrate that the link provider data could be used to unify within-prefecture evaluation to form a Japanese national genetic evaluation across weakly
Weak links between fast mobility and local structure in molecular and atomic liquids
Bernini, S.; Puosi, F.; Leporini, D.
2015-03-28
We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.
Implications of Weak Link Effects on Thermal Characteristics of Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Bailey, C. N.; Adams, J. S.; Bandler, S. R.; Brekosky, R. P.; Chevenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kally, D. P.; Kilbourne, C. A.;
2012-01-01
Weak link behavior in transition-edge sensor (TES) microcalorimeters creates the need for a more careful characterization of a device's thermal characteristics through its transition. This is particularly true for small TESs where a small change in the bias current results in large changes in effective transition temperature. To correctly interpret measurements, especially complex impedance, it is crucial to know the temperature-dependent thermal conductance, G(T), and heat capacity, C(T), at each point through the transition. We present data illustrating these effects and discuss how we overcome the challenges that are present in accurately determining G and T from I-V curves. We also show how these weak link effects vary wi.th TES size. Additionally, we use this improVed understanding of G(T) to determine that, for these TES microcalorimeters. Kaptiza boundary resistance dominates the G of devices with absorbers while the electron-phonon coupling also needs to be considered when determining G for devices without absorbers
Weak links between fast mobility and local structure in molecular and atomic liquids.
Bernini, S; Puosi, F; Leporini, D
2015-03-28
We investigate by molecular-dynamics simulations, the fast mobility-the rattling amplitude of the particles temporarily trapped by the cage of the neighbors-in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.
Implications of Weak Link Effects on Thermal Characteristics of Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Bailey, C. N.; Adams, J. S.; Bandler, S. R.; Brekosky, R. P.; Chevenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kally, D. P.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.
2012-01-01
Weak link behavior in transition-edge sensor (TES) microcalorimeters creates the need for a more careful characterization of a device's thermal characteristics through its transition. This is particularly true for small TESs where a small change in the bias current results in large changes in effective transition temperature. To correctly interpret measurements, especially complex impedance, it is crucial to know the temperature-dependent thermal conductance, G(T), and heat capacity, C(T), at each point through the transition. We present data illustrating these effects and discuss how we overcome the challenges that are present in accurately determining G and T from I-V curves. We also show how these weak link effects vary wi.th TES size. Additionally, we use this improVed understanding of G(T) to determine that, for these TES microcalorimeters. Kaptiza boundary resistance dominates the G of devices with absorbers while the electron-phonon coupling also needs to be considered when determining G for devices without absorbers
Cooling of a Suspended Nanowire by an ac Josephson Current Flow
NASA Astrophysics Data System (ADS)
Sonne, Gustav; Peña-Aza, Milton E.; Gorelik, Leonid Y.; Shekhter, Robert I.; Jonson, Mats
2010-06-01
We consider a nanoelectromechanical Josephson junction, where a suspended nanowire serves as a superconducting weak link, and show that an applied dc bias voltage can result in suppression of the flexural vibrations of the wire. This cooling effect is achieved through the transfer of vibronic energy quanta first to voltage-driven Andreev states and then to extended quasiparticle electronic states. Our analysis, which is performed for a nanowire in the form of a metallic carbon nanotube and in the framework of the density matrix formalism, shows that such self-cooling is possible down to the ground state of the flexural vibration mode of the nanowire.
Cooling of a suspended nanowire by an ac Josephson current flow.
Sonne, Gustav; Peña-Aza, Milton E; Gorelik, Leonid Y; Shekhter, Robert I; Jonson, Mats
2010-06-04
We consider a nanoelectromechanical Josephson junction, where a suspended nanowire serves as a superconducting weak link, and show that an applied dc bias voltage can result in suppression of the flexural vibrations of the wire. This cooling effect is achieved through the transfer of vibronic energy quanta first to voltage-driven Andreev states and then to extended quasiparticle electronic states. Our analysis, which is performed for a nanowire in the form of a metallic carbon nanotube and in the framework of the density matrix formalism, shows that such self-cooling is possible down to the ground state of the flexural vibration mode of the nanowire.
4He Versus 3He Josephson Effect: Vibration Decoherence
Pereverzev, Sergey V.
2006-09-07
Several on-going experiments searching for the Josephson effect in 4He close to the {lambda}-transition employ experimental cells with a weak link in the form of an array of submicron holes, with the size of the array and the cell dimensions very close to those used for 3He-B. In the same environment, the 4He experiment is more prone to decoherence by mechanical vibrations. The problem is due to the shift of the maximum of the vibration response of the experiment to low frequencies (0.1 Hz or less) and to the increase of the power spectrum density of the seismic velocities with decreasing frequency in this frequency range. To avoid decoherence, one needs to lower the cut-off frequency of the vibration isolation or to use an array with a larger open area. The latter option is briefly discussed.
Self-Oscillating Josephson Quantum Heat Engine
NASA Astrophysics Data System (ADS)
Marchegiani, G.; Virtanen, P.; Giazotto, F.; Campisi, M.
2016-11-01
The design of a mesoscopic self-oscillating heat engine that works thanks to purely quantum effects is presented. The proposed scheme is amenable to experimental implementation with current state-of-the-art nanotechnology and materials. One of the main features of the structure is its versatility: The engine can deliver work to a generic load without galvanic contact. This versatility makes it a promising building block for low-temperature on-chip energy-management applications. The heat engine consists of a circuit featuring a thermoelectric element based on a ferromagnetic insulator-superconductor tunnel junction and a Josephson weak link that realizes a purely quantum dc-ac converter. This makeup enables the contactless transfer of work to the load (a generic RL circuit). The performance of the heat engine is investigated as a function of the thermal gradient applied to the thermoelectric junction. Power up to 1 pW can be delivered to a load RL=10 Ω .
Josephson device for voltage measurement
NASA Astrophysics Data System (ADS)
Régent, A.; Villegier, J. C.; Angénieux, G.; Monllor, C.; Delahaye, F.
This paper describes a new Josephson device with microwave integrated circuit for voltage standard. The circuit is essentially made of a resonator (Nb), the Josephson junction (Nb, NbOx, Pb-In) and a capacitive microstrip section (Pb-In) which ends the rf part; the dc connections are through Cauer Filters (Nb or Pb-In). A niobium film is deposited on the opposite side of the fused quartz substrate as a ground plane. The circuit is enclosed in a special package with outside dc and rf connections. The technology ensures very good cyclability and lifetime with storage at room temperature. In liquid helium (4.2 K) with a very weak rf power less than 0.5 milliwatts at the frequency resonance (11.5 GHz), 100 μ A high current steps were obtained near a polarization of 4.5 mV. These devices allows a precision of 1 × 10 -7 on the volt standard when used with a series-parallel divider of fixed value (ratio 225). The precise adjustment of the voltages is made by a slight drift of the rf frequency of the source, allowed by the high rf coupling factor of the device and the band width of its resonance.
Precise Heater Controller with rf-Biased Josephson Junctions
NASA Technical Reports Server (NTRS)
Green, Colin J.; Sergatskov, Dmitri A.; Duncan, R. V.
2003-01-01
Paramagnetic susceptibility thermometers used in fundamental physics experiments are capable of measuring temperature changes with a precision of a part in 2 x 10(exp 10). However, heater controllers are only able to control open-loop power dissipation to about a part in 10(exp 5). We used an array of rf-biased Josephson junctions to precisely control the electrical power dissipation in a heater resistor mounted on a thermally isolated cryogenic platform. Theoretically, this method is capable of controlling the electrical power dissipation to better than a part in 10(exp 12). However, this level has not yet been demonstrated experimentally. The experiment consists of a liquid helium cell that also functions as a high-resolution PdMn thermometer, with a heater resistor mounted on it. The cell is thermally connected to a temperature-controlled cooling stage via a weak thermal link. The heater resistor is electrically connected to the array of Josephson junctions using superconducting wire. An rf-biased array of capacitively shunted Josephson junctions drives the voltage across the heater. The quantized voltage across the resistor is Vn = nf(h/2e), where h is Planck's constant, f is the array biasing frequency, e is the charge of an electron, and n is the integer quantum state of the Josephson array. This results in an electrical power dissipation on the cell of Pn = (Vn)(sup 2/R), where R is the heater resistance. The change of the quantum state of the array changes the power dissipated in the heater, which in turn, results in the change of the cell temperature. This temperature change is compared to the expected values based on the known thermal standoff resistance of the cell from the cooling stage. We will present our initial experimental results and discuss future improvements. This work has been funded by the Fundamental Physics Discipline of the Microgravity Science Office of NASA, and supported by a no-cost equipment loan from Sandia National Laboratories.
Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations
NASA Astrophysics Data System (ADS)
Huard, B.
2006-07-01
This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.
Shu Deming; Maser, Jorg
2010-06-23
To use x-ray optics with nanometer resolution limit, scanning x-ray nanoprobes with corresponding mechanical positioning capability need to be designed. In particular, positioning stages with both sub-nanometer resolution and a positioning/scanning range of several millimeters are required. Based on our design of precision weak-link stages with interferometric encoders for the Center for Nanoscale Materials (CNM) hard x-ray nanoprobe at the Advanced Photon Source (APS) Sector 26, we have developed a new two-dimensional (2-D) weak-link stage system for nanopositioning of a specimen holder. This system provides sub-nanometer resolution, coupled with sub-nanometer metrology at a travel range of several millimeters. The 2-D weak-link stage system is designed with high structure stiffness using laminar overconstrained weak-link mechanisms [4-6]. In this paper we present the study of a linear precision weak-link stage system with sub-centimeter travel range and sub-nanometer positioning resolution. Design of a rotary weak-link stage system with 10-nrad resolution and 10-degree-level travel range is also discussed in this paper.
Josephson effect in topological superconducting rings coupled to a microwave cavity
NASA Astrophysics Data System (ADS)
Dmytruk, Olesia; Trif, Mircea; Simon, Pascal
2016-09-01
We theoretically study a one-dimensional p -wave superconducting mesoscopic ring interrupted by a weak link and coupled inductively to a microwave cavity. We establish an input-output description for the cavity field in the presence of the ring, and identify the electronic contributions to the cavity response and their dependence on various parameters, such as the magnetic flux, chemical potential, and cavity frequency. We show that the cavity response is 4 π periodic as a function of the magnetic flux in the topological region, stemming from the so-called fractional Josephson current carried by the Majorana fermions, while it is 2 π periodic in the nontopological phase, consistent with the normal Josephson effect. We find a strong dependence of the signal on the cavity frequency, as well as on the parity of the ground state. Our model takes into account fully the interplay between the low-energy Majorana modes and the gapped bulks states, which we show is crucial for visualizing the evolution of the Josephson effect during the transition from the topological to the trivial phase.
Sheikhzada, Ahmad; Gurevich, Alex
2015-01-01
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids. PMID:26639165
Sheikhzada, Ahmad; Gurevich, Alex
2015-12-07
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.
Sheikhzada, Ahmad; Gurevich, Alex
2015-12-07
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result,more » vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.« less
Sheikhzada, Ahmad; Gurevich, Alex
2015-12-07
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.
Vortices in a toroidal Bose-Einstein condensate with a rotating weak link
NASA Astrophysics Data System (ADS)
Yakimenko, A. I.; Bidasyuk, Y. M.; Weyrauch, M.; Kuriatnikov, Y. I.; Vilchinskii, S. I.
2015-03-01
Motivated by a recent experiment [K. C. Wright et al., Phys. Rev. Lett. 110, 025302 (2013), 10.1103/PhysRevLett.110.025302], we investigate deterministic discontinuous jumps between quantized circulation states in a toroidally trapped Bose-Einstein condensate. These phase slips are induced by vortex excitations created by a rotating weak link. We analyze the influence of a localized condensate density depletion and atomic superflows, governed by the rotating barrier, on the energetic and dynamical stability of the vortices in the ring-shaped condensate. We simulate in a three-dimensional dissipative mean-field model the dynamics of the condensate using parameters similar to the experimental conditions. Moreover, we consider the dynamics of the stirred condensate far beyond the experimentally explored region and reveal surprising manifestations of complex vortex dynamics.
Research on characteristics of free-space optical communication link in weak atmospheric turbulence
NASA Astrophysics Data System (ADS)
Cui, Liguo; Hou, Zaihong; Li, Fei
2013-08-01
Research on characteristics of atmospheric communication link becomes a subject of current interest, and often mainly focuses on some fading parameters including the probability of fade, the mean fade number and the mean fade time. The contribution of false alarm to bit error rate has been considered, however, the temporal characteristic is rarely mentioned., To make up the deficiency, parameters integrating the influence of false alarm and fading were defined. On one hand, the laser communication link were modeled for Gamma-Gamma distribution of irradiance fluctuation subjected to weak atmospheric turbulence. Accordingly the mathematical expressions of these parameters were deduced. On the other hand, characteristic of the parameters were obtained by numerical simulation with various channel environment parameters, such as mean signal-to-noise ratio (SNR), zenith angle and detection threshold. Compared with other researches on fade characteristic, some different conclusions can be drawn from simulation results. With the same SNR and zenith angle, there is an optimum value of detection threshold corresponding to the minimum mean error number, which deviates obviously from that obtained according to the minimum error probability. Either increasing SNR or decreasing zenith angle can reduce mean error number and the optimum threshold. Different from mean error number, mean error time is slightly influenced with channel environment parameters and constant at the order of milliseconds.
Quantum Phase Transition in Josephson Junction Arrays
NASA Astrophysics Data System (ADS)
Moon, K.; Girvin, S. M.
1997-03-01
One-dimensional Josephson junction arrays of SQUIDS exhibit a novel superconductor-insulator phase transition. The critical regime can be accessed by tuning the effective Josephson coupling energy using a weak magnetic field applied to the SQUIDS. The role of instantons induced by quantum fluctuations will be discussed. One novel feature of these systems which can be explained in terms of quantum phase slips is that in some regimes, the array resistance decreases with increasing length of the array. We calculate the finite temperature crossover function for the array resistance and compare our theoretical results with the recent experiments by D. Haviland and P. Delsing at Chalmers. This work is supported by DOE grant #DE-FG02-90ER45427 and by NSF DMR-9502555.
Merkle, K.L.; Huang, Y.
1998-01-01
The electric transport of high-temperature superconductors, such as YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T{sub c} materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices.
Low-temperature characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces
Jabdaraghi, R. N.; Peltonen, J. T.; Saira, O.-P.; Pekola, J. P.
2016-01-25
We characterize niobium-based lateral Superconductor (S)–Normal metal (N)–Superconductor (SNS) weak links through low-temperature switching current measurements and tunnel spectroscopy. We fabricate the SNS devices in two separate lithography and deposition steps, combined with strong argon ion cleaning before the normal metal deposition in the last step. Our SNS weak link consists of high-quality sputtered Nb electrodes that have contacted with evaporated Cu. The two-step fabrication flow enables more flexibility in the choice of materials and pattern design. A comparison of the temperature-dependent equilibrium critical supercurrent with theoretical predictions indicates that the quality of the Nb-Cu interface is similar to that of evaporated Al-Cu weak links. We further demonstrate a hybrid magnetic flux sensor based on an Nb-Cu-Nb SNS junction, where the phase-dependent normal metal density of states is probed with an Al tunnel junction.
Low-temperature characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces
NASA Astrophysics Data System (ADS)
Jabdaraghi, R. N.; Peltonen, J. T.; Saira, O.-P.; Pekola, J. P.
2016-01-01
We characterize niobium-based lateral Superconductor (S)-Normal metal (N)-Superconductor (SNS) weak links through low-temperature switching current measurements and tunnel spectroscopy. We fabricate the SNS devices in two separate lithography and deposition steps, combined with strong argon ion cleaning before the normal metal deposition in the last step. Our SNS weak link consists of high-quality sputtered Nb electrodes that have contacted with evaporated Cu. The two-step fabrication flow enables more flexibility in the choice of materials and pattern design. A comparison of the temperature-dependent equilibrium critical supercurrent with theoretical predictions indicates that the quality of the Nb-Cu interface is similar to that of evaporated Al-Cu weak links. We further demonstrate a hybrid magnetic flux sensor based on an Nb-Cu-Nb SNS junction, where the phase-dependent normal metal density of states is probed with an Al tunnel junction.
Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig
2004-12-01
Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) one WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.
Signatures of topological Josephson junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix
2016-08-01
Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.
Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...
2014-11-25
Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less
Krishnan, Kapil; Brown, Andrew; Wayne, Leda; Vo, Johnathan; Opie, Saul; Lim, Harn; Peralta, Pedro; Luo, Sheng-Nian; Byler, Darrin; McClellan, Kenneth J.; Koskelo, Aaron; Dickerson, Robert
2014-11-25
Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumes using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.
NASA Astrophysics Data System (ADS)
Gallagher, Patrick; Lee, Menyoung; Williams, James R.; Goldhaber-Gordon, David
2014-10-01
Two-dimensional electron systems in gallium arsenide and graphene have enabled ground-breaking discoveries in condensed-matter physics, in part because they are easily modulated by voltages on nanopatterned gate electrodes. Electron systems at oxide interfaces hold a similarly large potential for fundamental studies of correlated electrons and novel device technologies, but typically have carrier densities too large to control by conventional gating techniques. Here we present a quantum transport study of a superconducting strontium titanate (STO) interface, enabled by a combination of electrolyte and metal-oxide gating. Our structure consists of two superconducting STO banks flanking a nanoscale STO weak link, which is tunable at low temperatures from insulating to superconducting behaviour by a local metallic gate. At low gate voltages, our device behaves as a quantum point contact that exhibits a minimum conductance plateau of e2/h in zero applied magnetic field, half the expected value for spin-degenerate electrons, but consistent with predictions and experimental signatures of a magnetically ordered ground state. The quantum point contact mediates tunnelling between normal and superconducting regions, enabling lateral tunnelling spectroscopy of the local superconducting state. Our work provides a generic scheme for quantum transport studies of STO and other surface electron liquids.
Sampling: the weak link in the sanitary quality control system of agricultural products.
Blanc, Michel
2006-05-01
To ensure a high level of consumer protection, the European Union has in the past years published several regulations setting very low limits for a given number of food contaminants (pesticides, mycotoxins, heavy metals) in many agricultural products (cereals, oilseeds, dry fruits, coffee, spices, etc). These new regulations regarding the sanitary quality of agricultural products, compel both economic operators and officials of different EU member states to set up sampling plans and rigorous analyses aimed at checking whether a product lot complies with the required standards prior to its release on the market. While the laboratory analysis management today is outstanding thanks to the validated and efficient detection methods and procedures available for quality assurance in laboratories (accreditation), this is not necessarily true of the sampling operation, which seems to be the weak link in the sanitary control system for agricultural products. The sampling operation is often the main source of error when assessing the sanitary quality of a lot of agricultural commodities, with both commercial (downgrading of the product) and sanitary (marketing of a product which poses a health risk for the consumer) consequences. Therefore, it is essential for the operators involved to be aware of the significance and difficulties of the sampling operation, which requires important equipment and human resources. Furthermore, drawing up specific standards and guidelines, as well as setting up quality assurance procedures, at the level in charge of carrying out this delicate and important operation, are necessary.
Tunable φ Josephson junction ratchet
NASA Astrophysics Data System (ADS)
Menditto, R.; Sickinger, H.; Weides, M.; Kohlstedt, H.; Koelle, D.; Kleiner, R.; Goldobin, E.
2016-10-01
We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a φ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also under the action of an additional dc current, which acts as a counterforce trying to stop the ratchet. Under these conditions the ratchet works against the counterforce, thus producing a nonzero output power. Finally, we estimate the efficiency of the φ Josephson junction ratchet.
Disordered graphene Josephson junctions
NASA Astrophysics Data System (ADS)
Muñoz, W. A.; Covaci, L.; Peeters, F. M.
2015-02-01
A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.
Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.
2014-06-09
Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.
NASA Astrophysics Data System (ADS)
Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.
2014-06-01
Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9-11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.
Protected Josephson Rhombus Chains
NASA Astrophysics Data System (ADS)
Bell, Matthew T.; Paramanandam, Joshua; Ioffe, Lev B.; Gershenson, Michael E.
2014-04-01
We have studied the low-energy excitations in a minimalistic protected Josephson circuit which contains two basic elements (rhombi) characterized by the π periodicity of the Josephson energy. Novel design of these elements, which reduces their sensitivity to the offset charge fluctuations, has been employed. We have observed that the lifetime T1 of the first excited state of this quantum circuit in the protected regime is increased up to 70 μs, a factor of ˜100 longer than that in the unprotected state. The quality factor ω01T1 of this qubit exceeds 106. Our results are in agreement with theoretical expectations; they demonstrate the feasibility of symmetry protection in the rhombus-based qubits fabricated with existing technology.
High-T(sub c) Edge-geometry SNS Weak Links on Silicon-on-sapphire Substrates
NASA Technical Reports Server (NTRS)
Hunt, B.; Foote, M.; Pike, W.; Barner, J.; Vasquez, R.
1994-01-01
High-quality superconductor/normal-metal/superconductor(SNS) edge-geometry weak links have been produced on silicon-on-sapphire (SOS) substrates using a new SrTiO(sub 3)/'seed layer'/cubic-zirconia (YS2) buffer system.
Robust Josephson-Kondo screening cloud in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Snyman, Izak; Florens, Serge
2015-08-01
We investigate the entanglement properties of a standard circuit-QED setup that consists of a Cooper pair box coupled to a long chain of Josephson junctions. We calculate the static charge polarization at finite distances along the device. Our calculations reveal a deep connection to the Kondo screening cloud, together with robust correlations that are difficult to measure in a condensed matter context. We also find weak sensitivity of these Kondo signatures to the actual parameters and design of the device, demonstrating the universality of the Josephson entanglement cloud.
Anomalous spin Josephson effect
NASA Astrophysics Data System (ADS)
Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng
2016-10-01
We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.
The structural role of weak and strong links in a financial market network
NASA Astrophysics Data System (ADS)
Garas, A.; Argyrakis, P.; Havlin, S.
2008-05-01
We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.
Simple Electronic Analog of a Josephson Junction.
ERIC Educational Resources Information Center
Henry, R. W.; And Others
1981-01-01
Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)
Spin-asymmetric Josephson plasma oscillations
NASA Astrophysics Data System (ADS)
Kreula, J. M.; Valtolina, G.; Törmä, P.
2017-01-01
The spin-asymmetric Josephson effect is a proposed quantum-coherent tunneling phenomenon where Cooper-paired fermionic spin-1/2 particles, which are subjected to spin-dependent potentials across a Josephson junction, undergo frequency-synchronized alternating-current Josephson oscillations with spin-dependent amplitudes. Here, in line with present-day techniques in ultracold Fermi gas setups, we consider the regime of small Josephson oscillations and show that the Josephson plasma oscillation amplitude becomes spin dependent in the presence of spin-dependent potentials, while the Josephson plasma frequency is the same for both spin components. Detecting these spin-dependent Josephson plasma oscillations provides a possible means to establish the yet-unobserved spin-asymmetric Josephson effect with ultracold Fermi gases using existing experimental tools.
Simple Electronic Analog of a Josephson Junction.
ERIC Educational Resources Information Center
Henry, R. W.; And Others
1981-01-01
Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)
Origin of grain boundary weak links in BaPb1 - xBixO3 superconductor
NASA Astrophysics Data System (ADS)
Takagi, T.; Chiang, Y.-M.; Roshko, A.
1990-12-01
Although BaPb0.75Bi0.25O3 (BPB) has a comparatively large superconducting coherence length of ˜7 nm and no reported anisotropy in its superconducting parameters, polycrystalline BPB exhibits the same rapid decrease in transport critical current density (Jct) with low applied field (<˜50 Oe) that is characteristic of grain boundary weak links in cuprate superconductors (e.g., La2-xSrxCuO4, YBa2Cu3O7-x ). We have studied the effects of processing thermal history on the formation and morphology of grain boundary phases, and on the composition of BPB boundaries with and without second phase, in order to understand the origin of these weak links. Scanning transmission electron microscopy and Auger electron spectroscopy results show the presence of a Pb-Bi-Ba-O phase that is wetting and liquid above ˜570 °C, but which retracts to three-grain junctions upon slow cooling or annealing at lower temperatures. However, weak-link behavior persists in materials with retracted secondary phase, as well as in hot isostatically pressed samples that never exceed the secondary phase melting temperature. It is found that the grain boundaries remain Bi- and Pb-rich even after the retraction of secondary phases; samples that never exceed the melting temperature of the secondary phase show absence of segregation at some but not all grain boundaries. The composition of the grain boundaries as well as Jct vs temperature measurements indicate that the boundaries act as SIS tunnel junctions.
Quantum circuit theory and measurements on Y-Ba-Cu-O grain-boundary weak-link bridges
NASA Astrophysics Data System (ADS)
How, H.; Jiang, H.; Widom, A.; Vittoria, C.
1994-01-01
The quantum system associated with a resistor-shunted weak-link junction circuit may be described in terms of a single Lagrangian. In this representation the degrees of freedom internal to the dissipative energy of the resistor can be systematically separated from the Hamiltonian formulation of the circuit. This allows us to solve the quantum states of the junction while the effects of the resistor on the circuit are included as a Lagrangian multiplier. In this manner the effects of the measuring apparatus or resistor on the quantum state of the junction may be calculable. The calculations are in very good agreement with experiments.
Phase slippage and self-trapping in a self-induced bosonic Josephson junction
Abad, M.; Guilleumas, M.; Mayol, R.; Pi, M.; Jezek, D. M.
2011-09-15
A dipolar condensate confined in a toroidal trap constitutes a self-induced Josephson junction when the dipoles are oriented perpendicularly to the trap symmetry axis and the s-wave scattering length is small enough. The ring-shaped double-well potential coming from the anisotropic character of the mean-field dipolar interaction is robust enough to sustain self-trapping dynamics, which takes place when the initial population imbalance between the two wells is large. We show that, in this system, the self-trapping regime is directly related to a vortex-induced phase-slip dynamics. A vortex and antivortex are spontaneously nucleated in the low-density regions before a minimum of the population imbalance is reached and then cross the toroidal section in opposite directions through the junctions. This vortex dynamics yields a phase slip between the two weakly linked condensates causing an inversion of the particle flux.
Turbulence intermittency linked to the weakly coherent mode in ASDEX Upgrade I-mode plasmas
NASA Astrophysics Data System (ADS)
Happel, T.; Manz, P.; Ryter, F.; Hennequin, P.; Hetzenecker, A.; Conway, G. D.; Guimarais, L.; Honoré, C.; Stroth, U.; Viezzer, E.; The ASDEX Upgrade Team
2016-06-01
This letter shows for the first time a pronounced increase of extremely intermittent edge density turbulence behavior inside the confinement region related to the I-mode confinement regime in the ASDEX Upgrade tokamak. With improving confinement, the perpendicular propagation velocity of density fluctuations in the plasma edge increases together with the intermittency of the observed density bursts. Furthermore, it is shown that the weakly coherent mode, a fluctuation feature generally observed in I-mode plasmas, is connected to the observed bursts. It is suggested that the large amplitude density bursts could be generated by a non-linearity similar to that in the Korteweg-de-Vries equation which includes the radial temperature gradient.
Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links.
Teramae, Jun-nosuke; Tsubo, Yasuhiro; Fukai, Tomoki
2012-01-01
The connectivity of complex networks and functional implications has been attracting much interest in many physical, biological and social systems. However, the significance of the weight distributions of network links remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and numerically, that recurrent neural networks can robustly generate internal noise optimal for spike transmission between neurons with the help of a long-tailed distribution in the weights of recurrent connections. The structure of spontaneous activity in such networks involves weak-dense connections that redistribute excitatory activity over the network as noise sources to optimally enhance the responses of individual neurons to input at sparse-strong connections, thus opening multiple signal transmission pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum supported by the model. Our results identify a simple network mechanism for internal noise generation by highly inhomogeneous connection strengths supporting both stability and optimal communication.
Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links
NASA Astrophysics Data System (ADS)
Teramae, Jun-Nosuke; Tsubo, Yasuhiro; Fukai, Tomoki
2012-07-01
The connectivity of complex networks and functional implications has been attracting much interest in many physical, biological and social systems. However, the significance of the weight distributions of network links remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and numerically, that recurrent neural networks can robustly generate internal noise optimal for spike transmission between neurons with the help of a long-tailed distribution in the weights of recurrent connections. The structure of spontaneous activity in such networks involves weak-dense connections that redistribute excitatory activity over the network as noise sources to optimally enhance the responses of individual neurons to input at sparse-strong connections, thus opening multiple signal transmission pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum supported by the model. Our results identify a simple network mechanism for internal noise generation by highly inhomogeneous connection strengths supporting both stability and optimal communication.
ERIC Educational Resources Information Center
Clarke, John
1970-01-01
Discusses the theory of the Josephson Effect, the derivation of the Josephson voltage-frequency relation, and methods of measuring the fundamental constatn ratio e/h. Various types of Josephson junctions are described. The impact of the measurement of e/h upin the fundamental constants and quantum electro-dynamics is briefly discussed.…
ERIC Educational Resources Information Center
Clarke, John
1970-01-01
Discusses the theory of the Josephson Effect, the derivation of the Josephson voltage-frequency relation, and methods of measuring the fundamental constatn ratio e/h. Various types of Josephson junctions are described. The impact of the measurement of e/h upin the fundamental constants and quantum electro-dynamics is briefly discussed.…
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
NASA Astrophysics Data System (ADS)
Guimarães, Antonio C. C.; Seljak, Uroš; Brandenberger, Robert H.
2001-06-01
The determination of the Large-Scale Structure of the Universe (LSS) is one of the major goals of Cosmology. Images of distant galaxies are tangentially stretched in relation to mass concentrations present in their light path due to weak gravitational lensing. The statistical measurement of this effect defines maps (lensing maps) which contain information about the sources and lenses, and therefore about the LSS. We want to know which and how much information can be extracted from these maps. We construct mock lensing maps from realizations of simulated LSS. N-body simulations provide snapshots of the mass distribution in the universe at several moments of its evolution. A multiple-plane lensing approximation is then used to calculate the convergence field (our weak gravitational lensing map). Because we know the statistical properties of both mock LSS's and their respective mock lensing maps, an "information link" can be established between them. The use of this information link on real lensing maps may constitute a powerful tool for the study of the LSS.
The weak link: do muscle properties determine locomotor performance in frogs?
Roberts, Thomas J.; Abbott, Emily M.; Azizi, Emanuel
2011-01-01
Muscles power movement, yet the conceptual link between muscle performance and locomotor performance is poorly developed. Frog jumping provides an ideal system to probe the relationship between muscle capacity and locomotor performance, because a jump is a single discrete event and mechanical power output is a critical determinant of jump distance. We tested the hypothesis that interspecific variation in jump performance could be explained by variability in available muscle power. We used force plate ergometry to measure power produced during jumping in Cuban tree frogs (Osteopilus septentrionalis), leopard frogs (Rana pipiens) and cane toads (Bufo marinus). We also measured peak isotonic power output in isolated plantaris muscles for each species. As expected, jump performance varied widely. Osteopilus septentrionalis developed peak power outputs of 1047.0 ± 119.7 W kg−1 hindlimb muscle mass, about five times that of B. marinus (198.5 ± 54.5 W kg−1). Values for R. pipiens were intermediate (543.9 ± 96.2 W kg−1). These differences in jump power were not matched by differences in available muscle power, which were 312.7 ± 28.9, 321.8 ± 48.5 and 262.8 ± 23.2 W kg−1 muscle mass for O. septentrionalis, R. pipiens and B. marinus, respectively. The lack of correlation between available muscle power and jump power suggests that non-muscular mechanisms (e.g. elastic energy storage) can obscure the link between muscle mechanical performance and locomotor performance. PMID:21502120
Weak trophic links between a crab-spider and the effective pollinators of a rewardless orchid
NASA Astrophysics Data System (ADS)
Quintero, Carolina; Corley, Juan C.; Aizen, Marcelo A.
2015-01-01
Sit and wait predators hunting on flowers are considered to be exploiters of plant-pollinator mutualisms. Several studies have shown that plant-pollinator interactions can be highly susceptible to the impact of a third trophic level, via consumptive (direct) and non-consumptive (indirect) effects that alter pollinator behavior and, ultimately, plant fitness. However, most flowering plants attract a wide array of flower visitors, from which only a subset will be effective pollinators. Hence, a negative effect of an ambush predator on plant fitness should be expected only when: (i) the effective pollinators are part of the predators' diet and/or (ii) the non-consumptive effects of predator presence (e.g. dead prey) alter the behavior of effective pollinators and pollen movement among individual plants. We analyzed the direct and indirect effects of a crab-spider (Misumenops pallidus), on the pollination and reproductive success of Chloraea alpina, a Patagonian rewardless orchid. Our results indicate that most of the flower visitors do not behave as effective pollinators and most effective pollinators were not observed as prey for the crab-spider. In terms of non-consumptive effects, inflorescences with and without spiders and/or dead-prey did not vary the frequency of flower visitors, nor pollinia removal or deposition. Hence, it is not surprising that M. pallidus has a neutral effect on pollinia removal and deposition as well as on fruit and seed set. Similar to other rewardless orchids, the low reproductive success of C. alpina (∼6% fruit set) was associated with the limited number of visits by effective pollinators. Negative top-down effects of a flower-visitor predator on plant pollination may not be anticipated without studying the direct and indirect effects of this predator on the effective pollinators. In pollination systems where effective pollinators visited flowers erratically, such as in deceptive orchids, we expect weak or no effect of predators on
Weak beacon detection for air-to-ground optical wireless link establishment.
Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong
2010-02-01
In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.
Josephson Traveling-Wave Antennas
NASA Astrophysics Data System (ADS)
Kurin, V. V.; Vdovicheva, N. K.; Shereshevskii, I. A.
2017-04-01
We propose a new approach to the problem of obtaining coherent radiation from systems with a great number of Josephson junctions, which is based on the concept of traveling-wave antennas. The traveling wave in a line ensures identity of the electrodynamic conditions, under which the junctions operate, whereas the energy leakage to radiation in the lateral direction prevents saturation of the nonlinearity of the individual junctions having a small dynamic range. Simple analytical models, which demonstrate feasibility of the traveling-wave regime, are considered. A code for direct numerical simulation of Josephson microchips including microantennas, lumped elements, and power supply circuits have been developed. Using the direct numerical simulation, a version of the Josephson antenna, which is similar to the simplest single-wire antenna, is studied and the possibility to realize the traveling-wave regime is demonstrated.
Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.
1986-03-25
An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.
Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho
1988-01-01
An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.
Josephson instantons and Josephson monopoles in a non-Abelian Josephson junction
NASA Astrophysics Data System (ADS)
Nitta, Muneto
2015-08-01
The non-Abelian Josephson junction is a junction of non-Abelian color superconductors sandwiching an insulator, or a non-Abelian domain wall if flexible, whose low-energy dynamics is described by a U (N ) principal chiral model with the conventional pion mass. A non-Abelian Josephson vortex is a non-Abelian vortex (color magnetic flux tube) residing inside the junction, that is described as a non-Abelian sine-Gordon soliton. In this paper, we propose Josephson instantons and Josephson monopoles, that is, Yang-Mills instantons and monopoles inside a non-Abelian Josephson junction, respectively, and show that they are described as S U (N ) Skyrmions and U (1 )N -1 vortices in the U (N ) principal chiral model without and with a twisted-mass term, respectively. Instantons with a twisted boundary condition are reduced (or T-dual) to monopoles, implying that C PN -1 lumps are T-dual to C PN -1 kinks inside a vortex. Here we find S U (N ) Skyrmions are T-dual to U (1 )N-1 vortices inside a wall. Our configurations suggest a yet another duality between C PN -1 lumps and S U (N ) Skyrmions as well as that between C PN -1 kinks and U (1 )N-1 vortices, viewed from different host solitons. They also suggest a duality between fractional instantons and bions in the C PN -1 model and those in the S U (N ) principal chiral model.
Dynamics of Josephson pancakes in layered superconductors
Mints, R.G.; Snapiro, I.B.
1994-03-01
We consider a pointlike vortex in a layered superconductor with linear defects in the superconducting layers. We treat these defects as Josephson junctions with high critical current density. We consider the electrodynamics of these junctions within the framework of nonlocal Josephson electrodynamics. We show that Josephson current through a linear defect in a superconducting layer results in a pointlike vortex with a superconducting core residing in this layer (Josephson pancake). We find the mobility of a Josephson pancake. We consider a small amplitude wave in a Josephson junction with nonlocal electrodynamics. We treat a bending wave for an infinite stack of Josephson pancakes. We find the dispersion relation for these waves. We show that their velocities tend to a certain finite limit when the wavelength tends to infinity.
Josephson vortex lattice in layered superconductors
Koshelev, A. E.; Dodgson, M. J. W.
2013-09-15
Many superconducting materials are composed of weakly coupled conducting layers. Such a layered structure has a very strong influence on the properties of vortex matter in a magnetic field. This review focuses on the properties of the Josephson vortex lattice generated by the magnetic field applied in the direction of the layers. The theoretical description is based on the Lawrence-Doniach model in the London limit, which takes only the phase degree of freedom of the superconducting order parameter into account. In spite of its simplicity, this model leads to an amazingly rich set of phenomena. We review in detail the structure of an isolated vortex line and various properties of the vortex lattice, in both dilute and dense limits. In particular, we extensively discuss the influence of the layered structure and thermal fluctuations on the selection of lattice configurations at different magnetic fields.
NASA Astrophysics Data System (ADS)
Aghamalyan, D.; Nguyen, N. T.; Auksztol, F.; Gan, K. S.; Martinez Valado, M.; Condylis, P. C.; Kwek, L.-C.; Dumke, R.; Amico, L.
2016-07-01
We study a physical system consisting of a Bose-Einstein condensate confined to a ring shaped lattice potential interrupted by three weak links. The system is assumed to be driven by an effective flux piercing the ring lattice. By employing path integral techniques, we explore the effective quantum dynamics of the system in a pure quantum phase dynamics regime. Moreover, the effects of the density’s quantum fluctuations are studied through exact diagonalization analysis of the spectroscopy of the Bose-Hubbard model. We demonstrate that a clear two-level system emerges by tuning the magnetic flux at degeneracy. The lattice confinement, platform for the condensate, is realized experimentally employing a spatial light modulator.
A New Class of Josephson-like Devices: Magnetoquenched Superconducting Valve
NASA Astrophysics Data System (ADS)
Clinton, T. W.
1998-03-01
A superconducting switch has been developed in a simple bilayer cross strip geometry using the magnetic fringe field of a ferromagnetic (F) film to control the critical current in an underlying superconducting bridge(T. W. Clinton and Mark Johnson, Appl. Phys. Lett. 70), 1170 (1997).. The magnetization of the ferromagnet is rotated in the plane of the film to vary the magnitude of the fringe field locally applied to the superconductor from negligible to substantial values. In the latter case, the magnetization is oriented such that the magnetic poles are along the edges of the F film directly above the superconductor. The B field is large at these edges of the F film with perpendicular fields of order kGauss localized to within a micron. The perpendicular field exceeds the upper critical field in the superconductor over a short length of the bridge, creating a weak link and a correspondingly lower critical current. The weak link is maintained, with zero quiescent power, by the remanent magnetization of the F film. This effect is demonstrated in low Tc prototypes Pb (T_c=7.3 K) and Sn (T_c=3.9 K) where we observe more than an order of magnitude modulation of the critical current well below T_c, and Shapiro steps in response to rf irradiation of the weak link. Since the switch requires no quiescent power to maintain its state, it is intrinsically a nonvolatile memory element. This leads to a new class of Josephson devices: zero quiescent power controllable weak links. Applications as a high speed switch, amplifier and memory cell are possible, and a device based on high Tc materials has promise.
NASA Astrophysics Data System (ADS)
Popović, Z.; Dobrosavljević-Grujić, L.; Zikic, R.
2012-05-01
We develop a quantitative theory describing the behavior of current-voltage characteristics (CVCs) in superconductor (S)/ferromagnet (F)/superconductor (SFS) weak links with transparent S/F interfaces. The approach of Kümmel, Gunsenheimer, and Nikolsky [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.42.3992 42, 3992 (1990)], developed for S/normal metal (N)/S junctions with an N barrier and based on the solution of time-dependent Bogoliubov-de Gennes equations combined with the time-relaxation model, is generalized to the SFS case. CVCs are calculated as a function of the barrier material parameters: the exchange energy h, the barrier thickness d, and the mean free path l. CVC peculiarities, such as a steep rise in the current and negative differential conductance at a low voltage, as well as the h-dependent position of the peaks, are obtained for a weak exchange energy h lower than or comparable to the superconducting energy gap Δ=Δ(T). They are interpreted to be induced by multiple Andreev reflections, modified in the presence of h in ferromagnets.
NASA Astrophysics Data System (ADS)
Singh, Shiv Jee; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji
2013-10-01
The synthesis of iron-based superconductors with thick perovskite-type blocking layers, (Fe2As2)(Ca4(Mg0.25,Ti0.75)3O8) (22438) and (Fe2As2)(Ca5(Sc0.5Ti0.5)4O11) (225411), has been carried out and their transport properties discussed in comparison with those of fluorine-doped SmFeAsO0.8F0.2 (Sm1111) superconductors. Microstructural observation revealed that superconducting grains have a platelet shape and are strongly coupled with each other, particularly in 22438. The onset transition temperature (Tc) of 22438 reached up to 47.5 K and its very high upper critical field at low temperatures was suggested by a steep slope (dHc2/dT) near Tc as large as -19.8 T K-1. The resistance curves under various magnetic fields showed a basically two-step-like character of the superconducting transitions, where the effect of magnetic field is weaker at the onset part near the normal state in comparison to the tail part. The broadening of the tail part suggests a weak-link connection between superconducting grains. Two distinct scales of current flow corresponding to inter- and intragranular currents were confirmed by the remanent magnetization measurement of bulk samples, and their calculated intergranular current densities are relatively low. The analysis of their superconducting properties suggests evidence of the weak-link intergrain nature and high electromagnetic anisotropy of these iron-based superconductors with thick oxide blocking layers.
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Squeezed States in Josephson Junctions.
NASA Astrophysics Data System (ADS)
Hu, X.; Nori, F.
1996-03-01
We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.
Josephson-CMOS Hybrid Memories
2007-04-25
discussed. These are the non-destructive read-out cell developed by H. Henkels at 24 IBM [25], the variable-threshold cell developed by I. Kurosawa at...1978. [26] I. Kurosawa , A. Yagi, H. Nakagawa, and H. Hayakawa, “Single flux-quantum Josephson memory cell using a new threshold characteristic,” Appl
Dirk, Shawn M.; Johnson, Ross S.; Wheeler, David R.; Bogart, Gregory R.
2013-04-23
A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene)polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.
Dirk, Shawn M.; Johnson, Ross S.; Wheeler, David R.; Bogart, Gregory R.
2011-06-07
A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene) polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.
Artificial neural network circuits with Josephson devices
Harada, Y.; Goto, E. )
1991-03-01
This article describes a new approach of Josephson devices for computer applications. With an artificial neural network scheme Josephson devices is expected to develop a new paradigm for future computer systems. Here the authors discuss circuit configuration for a neuron with Josephson devices. The authors proposed a combination of a variable bias source and Josephson devices for a synapse circuit. The bias source signal is steered by the Josephson device input signal and becomes the synapse output signal. These output signals are summed up at the specific resistor or inductor to produce the weighted sum of Josephson devices input signals. According to the error signal, the bias source value is corrected. This corresponds to the learning procedure.
Quantum dynamics in the bosonic Josephson junction
Chuchem, Maya; Cohen, Doron; Smith-Mannschott, Katrina; Hiller, Moritz; Kottos, Tsampikos; Vardi, Amichay
2010-11-15
We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.
Implications of Weak-Link Behavior on the Performance of Mo/Au Bilayer Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Smith, Stephen J.
2011-01-01
Understanding the physical properties of the superconducting-to-normal transition is fundamental for optimizing the design and performance of transition-edge sensors (TESs). Recent critical current measurements of Mol Au bilayer test structures show that they act as weak superconducting links, exhibiting oscillatory, Fraunhofer-like behavior with applied magnetic field. In this paper we investigate the implications of this behavior for TES X-ray detectors, under operational bias conditions. These devices include normal metal features used for absorber attachment and unexplained noise suppression, which result in modifications to the previously reported critical current behavior. We present measurements of the logarithmic resistance sensitivity with temperature, a, and current, b, as a function of applied magnetic field and bias point within the resistive transition. Results show that these important device parameters exhibit similar oscillatory behavior with applied magnetic field, which in turn affects the signal responsivity and noise, and hence the energy resolution. These results show the significance of the critical current in determining the performance of TESs and hold promise to improve future.
NASA Astrophysics Data System (ADS)
Kurter, C.; Finck, A. D. K.; English, C. D.; Hor, Y. S.; van Harlingen, D. J.
2013-03-01
It is predicted that the presence of Majorana fermions manifests itself with a 4 π periodic current-phase relation (CPR) in planar Josephson junctions formed with topological weak links. To test this proposal, we have fabricated planar junctions by depositing Nb leads on exfoliated Bi2Se3 single crystals. The temperature and magnetic field dependence of the proximity-induced supercurrent have been examined in various doping regimes accessed via top gating. The critical current modulation with magnetic field deviates from the usual Fraunhofer diffraction pattern, suggesting modifications to a sinusoidal CPR consistent with a sin (2 ϕ) component. We are corroborating those results with direct measurements of the CPR using a phase-sensitive SQUID interferometry technique.
Terahertz radiation from Josephson sandwiches
NASA Astrophysics Data System (ADS)
Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.
2010-08-01
Basic results are presented from a study of the Cerenkov emission of electromagnetic waves by solitary vortices and Swihart waves moving in a long Josephson sandwich embedded in a dielectric. The energy fluxes of the electromagnetic field along a long sandwich are examined. The magnitudes of the fluxes are compared over a wide range of frequencies and wave numbers of surface waves in the sandwich.
Josephson junctions with delayed feedback
NASA Astrophysics Data System (ADS)
Grønbech-Jensen, Niels; Blackburn, James A.; Huberman, Bernardo A.; Smith, H. J. T.
1992-12-01
We study a simple model of an overdamped Josephson junction coupled to a transmission line, which is regarded as a delayed feedback to the junction. It is demonstrated analytically how the nonlocal time dependence can give rise to hysteresis and steps in the current-voltage characteristics of the junction and the fundamental difference between positive and negative feedback is discussed. Excellent agreement between the analytical results and the results of numerical simulations is found.
NASA Astrophysics Data System (ADS)
Silaev, M. A.
2017-08-01
We predict the thermal counterpart of the anomalous Josephson effect in superconductor/ferromagnet/superconductor junctions with noncoplanar magnetic texture. The heat current through the junction is shown to have the phase-sensitive interference component proportional to cos(θ -θ0) , where θ is the Josephson phase difference and θ0 is the texture-dependent phase shift. In the generic trilayer magnetic structure with the spin-filtering tunnel barrier θ0 is determined by the spin chirality of magnetic configuration and can be considered as the direct manifestation of the energy transport with participation of spin-triplet Cooper pairs. In case of the ideal spin filter the phase shift is shown to be robust against spin relaxation caused by the spin-orbital scattering. Possible applications of the coupling between heat flow and magnetic precession are discussed. For the nonideal spin filters with practically relevant parameters we show that θ0 is much larger than the phase shift of the equilibrium Josephson current.
Laser-induced modification of transport properties of Y-Ba-Cu-O step-edge weak links
NASA Astrophysics Data System (ADS)
Adam, R.; Kula, W.; Sobolewski, Roman; Murduck, J. M.; Pettiette-Hall, C.
1995-12-01
We report on the laser-induced permanent changes of the critical current (Ic) and normal resistance (Rn) of YBa2Cu3O7-x (YBCO) step-edge Josephson junctions. The 2- to 20-μm-wide junctions were prepared from a 200-nm-thick YBCO film deposited by a pulsed KrF excimer laser onto 300-nm-high steps etched in the LaAlO3 substrate. The laser modification experiments were performed by illuminating the junctions at 50 K with a focused Ar-ion laser beam of various intensities. Depending on the illumination power density, either increase or decrease of the junction Ic has been observed. In particular, after illumination at the 0.6×105 W/cm2 power level, a 75% enhancement of Ic and increase of the IcRn product up to 25% were obtained without a measurable change in the junction critical temperature. The laser-induced modifications were very reproducible and remained unchanged even after a subsequent room-temperature/helium thermal cycling of the sample. Photoassisted, thermally activated oxygen redistribution in the YBCO grain boundary region is proposed to explain the observed behavior.
Operation of NIST Josephson Array Voltage Standards
Hamilton, Clark A.; Burroughs, Charles; Chieh, Kao
1990-01-01
This paper begins with a brief discussion of the physical principles and history of Josephson effect voltage standards. The main body of the paper deals with the practical details of the array design, cryoprobe construction, bias source requirements, adjustment of the system for optimum performance, calibration algorithms, and an assessment of error sources for the NIST-developed Josephson array standard. PMID:28179776
Implications of weak-link behavior on the performance of Mo/Au bilayer transition-edge sensors
NASA Astrophysics Data System (ADS)
Smith, Stephen J.; Adams, Joseph S.; Bailey, Catherine N.; Bandler, Simon R.; Busch, Sarah E.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kilbourne, Caroline A.; Kelley, Richard L.; Lee, Sang-Jun; Porst, Jan-Patrick; Porter, Frederick S.; Sadleir, John E.
2013-08-01
Understanding the physical properties of the superconducting-to-normal transition is fundamental for optimizing the design and performance of transition-edge sensors (TESs). Recent critical current IC measurements of square Mo/Au bilayer structures show that they act as weak superconducting links, exhibiting oscillatory, Fraunhofer-like behavior with applied magnetic field. In this paper, we investigate the implications of this behavior for TES x-ray detectors operated in the resistive transition. These devices include normal metal features used for absorber attachment and suppression of detector noise. We present extensive measurements of IC as a function of temperature T and field B, which show a complex temperature and current evolution when compared with the behavior expected from a simple geometry. We introduce a resistively shunted junction model for describing the TES resistive transition as a function of current I, temperature T, and magnetic field B. From this model, we calculate the R(T,I,B) transition and the logarithmic resistance sensitivity with respect to T and I (α and β, respectively), as a function of applied magnetic field and operating point within the resistive transition. Different examples are presented to illustrate the role of critical current on the transition parameters, and results are qualitatively compared with measurements. Results show that the important device parameters α and β exhibit oscillatory behavior with applied magnetic field due to the modulation of the critical current. This in turn affects the signal responsivity and noise, and the predicted energy resolution. These results show the significance of the critical current in determining the performance of TESs and how externally applied and self-induced magnetic fields can affect the transition and, thus, hold promise for future optimization.
Nonlinear Phase Dynamics in a Driven Bosonic Josephson Junction
Boukobza, Erez; Moore, Michael G.; Cohen, Doron; Vardi, Amichay
2010-06-18
We study the collective dynamics of a driven two-mode Bose-Hubbard model in the Josephson interaction regime. The classical phase space is mixed, with chaotic and regular components, which determine the dynamical nature of the fringe visibility. For a weak off-resonant drive, where the chaotic component is small, the many-body dynamics corresponds to that of a Kapitza pendulum, with the relative phase {phi} between the condensates playing the role of the pendulum angle. Using a master equation approach we show that the modulation of the intersite potential barrier stabilizes the {phi}={pi} 'inverted pendulum' coherent state, and protects the fringe visibility.
Ultimately short ballistic vertical graphene Josephson junctions
Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong
2015-01-01
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386
NASA Astrophysics Data System (ADS)
Wolbang, Daniel; Biernat, Helfried K.; Friedrich, Martin; Schwingenschuh, Konrad; Besser, B. P.; Eichelberger, Hans; Prattes, Gustav; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Boudjada, Mohammed Y.
In this study we analyze low seismicity earthquakes (EQs) with magnitudes M < 5 in South Eastern Europe, time period 2011-2013, via very low frequency (VLF) radio links. The main scientific objective of the statistical and event based investigations are reliable characterization of typical seismic and non-seismic variations in the VLF signal. The focus is on robust results, especially for weak EQs, because non-seismic influences could have a strong effect on the analysis. Various electromagnetic methods have been developed in order to study possible earthquake precursor phenomena generated in the lithosphere and then propagating in the atmosphere / ionosphere [1]. The major challenge of this seismo-electromagnetic (SEM) method is to differentiate parameter variations and disentangle seismic from non-seismic sources. In the course of the European radio receiver network (International Network for Frontier Research on Earthquake Precursors, INFREP) radio signals in the VLF/LF frequency range are continuously recorded by dedicated, distributed transmitters. The major VLF receiving station for this study (10-50 kHz, Graz, Austria) operates continuously throughout the year, the selected network-wide temporal resolution is 20 sec, 12 transmitters, located mainly in Europe, are received (amplitude and phase). The facility has a proven high reliability and availability. The VLF links from the transmitters to the receivers are sometimes more, sometimes less influenced by various disturbances. In case the signal is crossing an EQ preparation zone, we are in principle able to detect seismic activity if the signal to noise ratio is high enough [2]. Generally we distinguish between ionospheric or atmospheric disturbances, influences which depend on the EQ properties, and transmitter variations itself. Ionospheric / Atmospheric variations can be generated, e.g. by geomagnetic storms, solar flares or waves in the troposphere. The properties of the sub-ionospheric VLF waveguide are
The Josephson Microwave Photomultiplier
NASA Astrophysics Data System (ADS)
Osberg, Brendan; Gambetta, Jay; Wilhelm, Frank
2009-03-01
The current lack of single microwave photon counters -as opposed to microwave amplifiers- has become a problematic omission in the toolkit of available circuit QED devices. Hence, we propose a microwave photo-multiplier based on a modified phase qubit. Such a system, trapped in the metastable state, can be activated over its potential energy barrier by an incoming photon, creating an avalanche effect analogous to current photo-diodes. Linear coupling of the junction flux with the radiation field, in the weak damping regime, permits photodetection from an arbitrary quantum source in the GHz range. We model this device theoretically and investigate its sensitivity, bandwidth, efficiency, and dark-count rate using the Langevine stochastic differential equations and a path integral approach.
High Power Josephson Effect Sources
1994-09-01
large spacing was nsed ,along with cooling water, os Iao a d$ to ensure the substrate temperature did not rise durn theCox flow Osiltr.adsaljnto ry~ h m...Here two arra’s. a 400 s.m Josephson effect detector and an SIS mixer are "I integrated on a single silicon substrate . One array func- tions as the...junction’s shunt resistor, on array’s output power and detector’s current- voltage characteristics are also discussed. I. INTRODUCTION - U Phb &z locked
Josephson persistent-current qubit
Mooij; Orlando; Levitov; Tian; van der Wal CH; Lloyd
1999-08-13
A qubit was designed that can be fabricated with conventional electron beam lithography and is suited for integration into a large quantum computer. The qubit consists of a micrometer-sized loop with three or four Josephson junctions; the two qubit states have persistent currents of opposite direction. Quantum superpositions of these states are obtained by pulsed microwave modulation of the enclosed magnetic flux by currents in control lines. A superconducting flux transporter allows for controlled transfer between qubits of the flux that is generated by the persistent currents, leading to entanglement of qubit information.
An 8-b Josephson digital signal processor
NASA Astrophysics Data System (ADS)
Kotani, Seigo; Inoue, Atsuki; Imamura, Takeshi; Hasuo, Shinya
1990-12-01
A 6.3 K-gate Josephson digital signal processor (DSP) that performs 240-psec 8-b multiplication and 410-psec 13-b addition is described. The structure of the DSP, which is based on a three-stage pipeline, and the design of the components used in the DSP are reviewed. The DSP contains 23,000 Josephson junctions on a 5 x 5-mm die and was fabricated using 1.5-micron all-niobium Josephson techniques. Measurements indicate that the DSP can attain a nonparallel processing speed of 1 gigaoperation per second with 12-mW power dissipation.
Polaritonic Rabi and Josephson Oscillations
Rahmani, Amir; Laussy, Fabrice P.
2016-01-01
The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay. PMID:27452872
Phase-diffusion dynamics in weakly coupled bose-einstein condensates.
Boukobza, Erez; Chuchem, Maya; Cohen, Doron; Vardi, Amichay
2009-05-08
We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a pi relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates agree well with the numerical results.
Phase-Diffusion Dynamics in Weakly Coupled Bose-Einstein Condensates
Boukobza, Erez; Vardi, Amichay; Chuchem, Maya; Cohen, Doron
2009-05-08
We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a {pi} relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates agree well with the numerical results.
Microwave integrated circuit for Josephson voltage standards
NASA Technical Reports Server (NTRS)
Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)
1980-01-01
A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.
THz Cherenkov radiation of Josephson vortex
NASA Astrophysics Data System (ADS)
Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.
2008-01-01
It is shown that Josephson vortices travelling in sandwich embedded in dielectric media radiate electromagnetic waves with THz frequencies. This phenomenon is caused by the Cherenkov effect and takes place if vortex velocity exceeds the speed of light in dielectric.
Anomalous Josephson effect in noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Zhang, Huan; Wang, Jun; Liu, Jun-Feng
2016-03-01
We reveal the underlying physics of the anomalous Josephson effect in a magnetic Josephson junction between two noncentrosymmetric superconductors. The key point is that the two effective superconducting gaps provide two sets of Andreev bound states which carry two supercurrents with different amplitudes. When the magnetization direction of the ferromagnet is suitably chosen, the two supercurrents experience opposite phase shifts from the conventional sinusoidal current-phase relation. Then the total Josephson current results in a continuously tunable ground-state phase difference by adjusting the ferromagnet parameters and the triplet-singlet ratio of noncentrosymmetric superconductors. The emergence of anomalous Josephson current can definitely confirm the existence of triplet pairing and the ground-state phase difference serves as a tool to determine the triplet-singlet ratio of noncentrosymmetric superconductors.
Efficient phase-tunable Josephson thermal rectifier
NASA Astrophysics Data System (ADS)
Martínez-Pérez, M. J.; Giazotto, F.
2013-05-01
Josephson tunnel junctions are proposed as efficient phase-tunable thermal rectifiers. The latter exploit the strong temperature dependence of the superconducting density of states and phase-dependence of heat currents flowing through Josephson junctions to operate. Remarkably, large heat rectification coefficients up to ˜800% can potentially be achieved using conventional materials and standard fabrication methods. In addition, these devices allow for the in situ fine tuning of the thermal rectification magnitude and direction.
Josephson A/D Converter Development.
1981-10-01
by Zappe and A Landman [20]. They conclude that the simple model of the Josephson effect is applicable up to frequencies at least as high (a) as 300...GHz. B. Time-Domain Experiments 4ooF so The early high - frequency experiments with Josephson devices I .O suggested their use as very fast logic switches...exactly as for the phenomenological model . The tunneling pacitive current paths dominate the circuit at high frequencies . current is the sum of two
Josephson and persistent spin currents in Bose-Einstein condensates of magnons
NASA Astrophysics Data System (ADS)
Nakata, Kouki; van Hoogdalem, Kevin A.; Simon, Pascal; Loss, Daniel
2014-10-01
Using the Aharonov-Casher (A-C) phase, we present a microscopic theory of the Josephson and persistent spin currents in quasiequilibrium Bose-Einstein condensates (BECs) of magnons in ferromagnetic insulators. Starting from a microscopic spin model that we map onto a Gross-Pitaevskii Hamiltonian, we derive a two-state model for the Josephson junction between the weakly coupled magnon-BECs. We then show how to obtain the alternating-current (ac) Josephson effect with magnons as well as macroscopic quantum self-trapping in a magnon-BEC. We next propose how to control the direct-current (dc) Josephson effect electrically using the A-C phase, which is the geometric phase acquired by magnons moving in an electric field. Finally, we introduce a magnon-BEC ring and show that persistent magnon-BEC currents flow due to the A-C phase. Focusing on the feature that the persistent magnon-BEC current is a steady flow of magnetic dipoles that produces an electric field, we propose a method to directly measure it experimentally.
Josephson junctions and AdS/CFT networks
NASA Astrophysics Data System (ADS)
Kiritsis, Elias; Niarchos, Vasilis
2011-07-01
We propose a new holographic model of Josephson junctions (and networks thereof) based on designer multi-gravity, namely multi-(super)gravity theories on products of distinct asymptotically AdS spacetimes coupled by mixed boundary conditions. We present a simple model of a Josephson junction (JJ) that reproduces trivially the well-known current-phase sine relation of JJs. In one-dimensional chains of holographic superconductors we find that the Cooper-pair condensates are described by a discretized Schrödinger-type equation. Such non-integrable equations, which have been studied extensively in the past in condensed matter and optics applications, are known to exhibit complex behavior that includes periodic and quasiperiodic solutions, chaotic dynamics, soliton and kink solutions. In our setup these solutions translate to holographic configurations of strongly-coupled superconductors in networks with weak site-to-site interactions that exhibit interesting patterns of modulated superconductivity. In a continuum limit our equations reduce to generalizations of the Gross-Pitaevskii equation. We comment on the many possible extensions and applications of this new approach.
Motion of a Josephson vortex in the field of a random potential
Mineev, M.B.; Feigel'man, M.V.; Shmidt, V.V.
1981-07-01
We consider the motion and pinning of a Josephson vortex in a field produced by random inhomogeneities in a long junction. We find the distribution function of the force of vortex pinning on the inhomogeneities. We construct the current-voltage characteristic (CVC) of the junction. For inhomogeneities which are weak compared to the ohmic losses the CVC has a single hysteresis, in the opposite case it has two.
Stability of the kink state in a stack of intrinsic Josephson junctions
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Hu, Xiao
2010-12-01
A new dynamic state characterized by (2ml+1)π static phase kink with integers {ml} is proposed recently in a stack of inductively coupled Josephson junctions. In the present paper, the stability of the phase kink state is investigated against various perturbations and it is shown that the kink state is stable. It is also discussed that the suppression of the amplitude of superconducting order parameter caused by the kink is weak.
Ramos, Irene; Krammer, Florian; Hai, Rong; Aguilera, Domingo; Bernal-Rubio, Dabeiba; Steel, John; García-Sastre, Adolfo; Fernandez-Sesma, Ana
2013-11-01
The recent human outbreak of H7N9 avian influenza A virus has caused worldwide concerns. Receptor binding specificity is critical for viral pathogenicity, and still not thoroughly studied for this emerging virus. Here, we evaluated the receptor specificity of the haemagglutinin (HA) of two human H7N9 isolates (A/Shanghai/1/13 and A/Anhui/1/13) through a solid-phase binding assay and a flow cytometry-based assay. In addition, we compared it with those from several HAs from human and avian influenza viruses. We observed that the HAs from the novel H7 isolates strongly interacted with α2,3-linked sialic acids. Importantly, they also showed low levels of binding to α2,6-linked sialic acids, but significantly higher than other avian H7s.
NASA Astrophysics Data System (ADS)
Berdiyorov, G. R.; Savel'ev, S. E.; Milošević, M. V.; Kusmartsev, F. V.; Peeters, F. M.
2013-05-01
Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative—a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Transient renormalization of the Josephson plasma frequency
NASA Astrophysics Data System (ADS)
Krasniqi, F. S.
2017-03-01
Layered superconductors are emerging as compact sources of intense, continuous and coherent terahertz (THz) waves [Welp et al., Nat. Photonics 7, 702 (2013)]. Apart from that, they also represent nonlinear media that can exhibit a host of nonlinear optical effects such as odd harmonic generation, slowing down of THz waves, self-focusing and self-induced transparency [Savel'ev et al., Nat. Phys. 2, 521 (2006)] that further widen their range of applications. In the linear regime, electromagnetic waves can penetrate them only if their frequency is larger than a gap-frequency, the so-called Josephson plasma frequency, whose signature is characterized by an edge in the THz reflectivity spectrum. In this work, transient renormalization of the Josephson plasma frequency in THz-perturbed La1.84Sr0.16CuO4 has been experimentally observed using the time-resolved THz time-domain spectroscopy. As the perturbing THz field evolves in time, the reflectivity edge measured from the raw-reflectivity data is found to exhibit a red shift, thus implying a reduction in the Josephson plasma frequency. This is a nonlinear effect that renders the layered superconductor transparent over a narrow spectral range close to the Josephson plasma frequency—THz waves with frequencies smaller than the unperturbed Josephson plasma frequency can penetrate the sample. The results presented in this paper should stimulate the development of nonlinear physics in layered superconductors and contribute in developing new concepts for well-controllable THz devices.
Cryocooled Josephson standards for AC voltage metrology
NASA Astrophysics Data System (ADS)
Durandetto, P.; Sosso, A.; Monticone, E.; Trinchera, B.; Fretto, M.; Lacquaniti, V.
2017-05-01
The Josephson effect is worldwide used as a basis for constant reference voltages in national metrological institutes and in calibration laboratories of industry. Research on Josephson voltage standards is aiming at a fundamental change also in the metrology of the volt for AC and arbitrary waveforms: programmable Josephson voltage standards converting a digital code into a quantum-accurate stepwise waveform are already available in primary laboratories and even more advanced standards for converting sub-nanosecond binary coded pulses into any arbitrary signal with quantum accuracy are now actively developed and tested. A new experimental setup based on a two-stage Gifford-McMahon cryocooler has been developed at INRiM for the operation of AC-Josephson voltage standards. Among its distinct features, the possibility of employing both the aforementioned techniques (programmable and pulsed Josephson voltage standards) is particularly interesting. Quantum-based AC voltage sine waves have been synthesized with both programmable and pulse-driven arrays, although their accuracy is still limited by thermal oscillations due to the cryocooler piston motion.
Gyrator Operation Using Josephson Mixers
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Brink, Markus; Chow, Jerry M.
2017-09-01
Nonreciprocal microwave devices, such as circulators, are useful in routing quantum signals in quantum networks and protecting quantum systems against noise coming from the detection chain. However, commercial, cryogenic circulators, now in use, are unsuitable for scalable superconducting quantum architectures due to their appreciable size, loss, and inherent magnetic field. We report on the measurement of a key nonreciprocal element, i.e., the gyrator, which can be used to realize a circulator. Unlike state-of-the-art gyrators, which use a magneto-optic effect to induce a phase shift of π between transmitted signals in opposite directions, our device uses the phase nonreciprocity of a Josephson-based three-wave-mixing device. By coupling two of these mixers and operating them in noiseless frequency-conversion mode, we show that the device acts as a nonreciprocal phase shifter whose phase shift is controlled by the phase difference of the microwave tones driving the mixers. Such a device could be used to realize a lossless, on-chip, superconducting circulator suitable for quantum-information-processing applications.
A Josephson radiation comb generator
Solinas, P.; Gasparinetti, S.; Golubev, D.; Giazotto, F.
2015-01-01
We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation. PMID:26193628
Demonstration of an ac Josephson junction laser
NASA Astrophysics Data System (ADS)
Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.
2017-03-01
Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
Josephson broadband spectroscopy to 1 THz
NASA Astrophysics Data System (ADS)
Edstam, J.; Olsson, H. K.
1994-05-01
We demonstrate the operation of a ``Josephson Broadband Spectrometer'' (JOBS) with a frequency range and bandwidth of 1 THz. The JOBS uses the inherent frequency tuning of the Josephson oscillations (f=2 eV/h) as a probe of the complex impedance environment, ZL(f), of the Josephson junction. Spectra taken of microstrip resonators (YBa2Cu3O7/SiO/Au) display up to nine harmonic resonances corresponding to a bandwidth of 1000 GHz. We find the surface resistance of YBa2Cu3O7 to scale as f2 over this frequency range, whereas the London penetration depth is frequency independent. The upper frequency limit of the measurement is set by the resonator loss whereas the JOBS presumably has an even larger intrinsic bandwidth.
Anomalous Josephson current in superconducting topological insulator
NASA Astrophysics Data System (ADS)
Yamakage, Ai; Sato, Masatoshi; Yada, Keiji; Kashiwaya, Satoshi; Tanaka, Yukio
2013-03-01
We investigate the effect of helical Majorana fermions at the surface of superconducting topological insulators (STIs) on the Josephson current by referring to possible pairing states of Cu-doped Bi2Se3. The surface state in the present STI has a spin helicity because the directions of spin and momentum are locked to each other. The Josephson current-phase relation in an STI/s-wave superconductor junction shows robust sin(2φ) owing to mirror symmetry, where φ denotes the macroscopic phase difference between the two superconductors. In contrast, the maximum Josephson current in an STI/STI junction exhibits a nonmonotonic temperature dependence depending on the relative spin helicity of the two surface states. Detecting these features qualifies as distinct experimental evidence for the identification of the helical Majorana fermion in STIs.
Numerical Investigation of Josephson Junction Structures
Hristov, I.; Dimova, S.; Boyadjiev, T.
2009-10-29
Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.
Josephson current between p-wave superconductors
NASA Astrophysics Data System (ADS)
Yokoyama, Takehito; Tanaka, Yukio; Golubov, Alexander; Asano, Yasuhiro
2006-10-01
Josephson current in p-wave superconductor/diffusive normal metal (DN)/p-wave superconductor junctions is calculated by solving the Usadel equation under the Nazarov's boundary condition extended to unconventional superconductors by changing the heights of the insulating barriers at the interfaces, the magnitudes of the resistance in DN, and the angles between the normal to the interface and the lobe directions of p-wave pair potentials. It is shown that the magnitude of the Josephson current strongly depends on the lobe directions of the p-wave pair potentials and the resulting magnitude of the Josephson current is large compared to that in the s-wave superconducting junctions due to the formation of the resonant states peculiar to p-wave superconductors.
Scanning Josephson spectroscopy on the atomic scale
NASA Astrophysics Data System (ADS)
Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali
2016-04-01
The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.
Plumridge, Andrew; Melin, Petter; Stratford, Malcolm; Novodvorska, Michaela; Shunburne, Lee; Dyer, Paul S; Roubos, Johannes A; Menke, Hildegard; Stark, Jacques; Stam, Hein; Archer, David B
2010-08-01
The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid. Copyright 2010 Elsevier Inc. All rights reserved.
Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3O(x) grain boundary weak-links
NASA Technical Reports Server (NTRS)
Wu, K. H.; Fu, C. M.; Jeng, W. J.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.
1995-01-01
The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa2Cu3O(x) bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealing processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e with x = 7.0 in YBa2Cu3O(x) stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g with x = 6.9 in YBa2Cu3O(x) stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.
Wu, K.H.; Fu, C.M.; Jeng, W.J.
1994-12-31
The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub x} bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.
Bobkov, A A; Reisler, E
2000-01-01
Myosin subfragment 1 (S1) with SH1 (Cys(707)) and SH2 (Cys(697)) groups cross-linked by p-phenylenedimaleimide (pPDM-S1) is thought to be an analog of the weakly bound states of myosin bound to actin. The structural properties of pPDM-S1 were compared in this study to those of S1.ADP.BeF(x) and S1.ADP.AlF(4)(-), i.e., the established structural analogs of the myosin weakly bound states. To distinguish between the conformational effects of SH1-SH2 cross-linking and those due to their monofunctional modification, we used S1 with the SH1 and SH2 groups labeled with N-phenylmaleimide (NPM-S1) as a control in our experiments. The state of the nucleotide pocket was probed using a hydrophobic fluorescent dye, 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]phen ylboronic acid (PPBA). Differential scanning calorimetry (DSC) was used to study the thermal stability of S1. By both methods the conformational state of pPDM-S1 was different from that of unmodified S1 in the S1.ADP.BeF(x) and S1.ADP.AlF(4)(-) complexes and closer to that of nucleotide-free S1. Moreover, BeF(x) and AlF(4)(-) binding failed to induce conformational changes in pPDM-S1 similar to those observed in unmodified S1. Surprisingly, when pPDM cross-linking was performed on S1.ADP.BeF(x) complex, ADP.BeF(x) protected to some extent the nucleotide pocket of S1 from the effects of pPDM modification. NPM-S1 behaved similarly to pPDM-S1 in our experiments. Overall, this work presents new evidence that the conformational state of pPDM-S1 is different from that of the weakly bound state analogs, S1.ADP.BeF(x) and S1.ADP.AlF(4)(-). The similar structural effects of pPDM cross-linking of SH1 and SH2 groups and their monofunctional labeling with NPM are ascribed to the inhibitory effects of these modifications on the flexibility/mobility of the SH1-SH2 helix. PMID:10866971
Phonon-Josephson resonances in atomtronic circuits
NASA Astrophysics Data System (ADS)
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
Fractional Josephson effect in nonuniformly strained graphene
NASA Astrophysics Data System (ADS)
Lee, Shu-Ping; Nandi, Debaleena; Marsiglio, Frank; Maciejko, Joseph
2017-05-01
Nonuniform strain distributions in a graphene lattice can give rise to uniform pseudomagnetic fields and associated pseudo-Landau levels without breaking time-reversal symmetry. We demonstrate that by inducing superconductivity in a nonuniformly strained graphene sheet, the lowest pseudo-Landau levels split by a pairing gap can be inverted by changing the sign of the pairing potential. As a consequence of this inversion, we predict that a Josephson π junction deposited on top of a strained graphene sheet exhibits one-dimensional gapless modes propagating along the junction. These gapless modes mediate single electron tunneling across the junction, giving rise to the 4 π -periodic fractional Josephson effect.
Surface Josephson Plasma Waves in Layered Superconductors
NASA Astrophysics Data System (ADS)
Savel'Ev, Sergey; Yampol'Skii, Valery; Nori, Franco
2005-10-01
We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency ωJ. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood’s anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).
Flux cloning in Josephson transmission lines.
Gulevich, D R; Kusmartsev, F V
2006-07-07
We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The "baby" vortex arises at the moment when a "mother" vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect.
Josephson junctions with alternating critical current density
Mints, R.G.; Kogan, V.G.
1997-04-01
The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}
Flux Cloning in Josephson Transmission Lines
Gulevich, D.R.; Kusmartsev, F.V.
2006-07-07
We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The 'baby' vortex arises at the moment when a 'mother' vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect.
OAM mode of the Hankel-Bessel vortex beam in weak to strong turbulent link of marine-atmosphere
NASA Astrophysics Data System (ADS)
Li, Ye; Zhang, Yixin
2017-04-01
We study the turbulent effects of maritime atmosphere on the propagation of the orbital angular momentum (OAM) modes of a vortex beam. Based on the modified Rytov approximation, we model the effective marine-atmospheric spectrum and the normalized energy weight of the vortex modes of Hankel-Bessel beams in a paraxial marine turbulent channel. Our results show that the intensity of the signal vortex modes of Hankel-Bessel beams in a non-turbulence channel increases with increasing the quantum number of the OAM of vortex modes from one to higher. We can utilize OAM eigenstates of the Hankel-Bessel vortex beam to increase the channel capacity in optical communication of the remote link. The normalized energy weight of signal OAM modes increases and that of crosstalk OAM modes decreases from the worst to the best turbulent maritime climate. The normalized energy weight of signal OAM modes reduces with the increasing of the turbulent outer scale from 0.1 \\text{m} to 0.5 \\text{m} and the receiving diameter, but it increases with increasing the turbulent outer scale when the outer scale is greater than 0.5 \\text{m} . The effects of the inner scale on the normalized energy weight of OAM modes can be ignored. We can mitigate the effects of turbulence by the choice of the longer wavelength and smaller receiver aperture.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Tak
2003-03-01
In an inhomogeneous high-Tc superconductor, band-filling dependence of Josephson current and Josephson product is demonstrated at T=0 K by means of measurement. The observed Josephson current, J_obs, is given by J_obs=ρJ_i, where 0<ρ<=1 is band filling. When ρ=1, J_obs = Ji is the intrinsic supercurrent occurring by Cooper pair. When 0<ρ<1, J_obs is an average of Ji over the measurement region and is the effect of measurement. The observed Josephson product is given by J_obsRn =ρ(π/2)triangle_i, where trianglei is the intrinsic superconducting gap and small, which results in the small Josephson product as observed by the experiments. triangle_i=4 ˜5 meV for Bi_2Sr_2CaCu_2O_8+x is analyzed from the Josephson-product data. In addition, the triple-π-junction experiments, observing the half-flux quantum (Φ_0/2) as evidence of the d-wave symmetry, are discussed by using means of measurement. (References: cond-mat/0110112; J. Phys. Soc. Jpn. 71 (2002) 2106.)
Inelastic effects of Josephson junctions
NASA Astrophysics Data System (ADS)
Ranjan, Samir
We have investigated the effects of the inelastic interaction of electrons with phonons in the barrier region of S-I-S and S-N-S Josephson junctions. We find that under suitable conditions this mechanism can cause substantial modifications of the temperature dependence of the critical current jsb{c} as the inevitable loss of coherence can be more than compensated by the enhancement of the tunneling probability resulting from the phonon absorption. The effect depends strongly on the ratio qsb{TF}a of the junction width a to the screening length in the barrier region. For a S-I-S junction, a monotonic decrease in the critical current with temperature is found for qsb{TF}a ≫ 1 whereas for qsb{TF}a ≪ 1, the appearance of a peak in jsb{c}(T) near Tsb{c} is predicted. This new interesting effect is the consequence of the competition between the decrease of the superconducting gap function and the increase in the number of phonons with temperature. A wide range of parameter values has been explored and contact with relevant experimental results has been made. For an S-N-S junction, there is a large increase in the coherence length in the non-superconducting region leading to a substantial enhancement of the critical current over a wide range of temperature. It turns out that the entire temperature range can be divided broadly into two regimes. At low temperatures, the electron predominantly exchanges energy with just one phonon and it is this process that mainly determines the critical current. At higher temperatures the critical current is determined by processes in which the electrons exchange energy with many phonons during their under barrier motion.
Dressed fluxon in a Josephson window junction
NASA Astrophysics Data System (ADS)
Caputo, Jean Guy; Flytzanis, Nikos; Devoret, Michel
1994-09-01
The static fluxon solutions of a Josephson window junction have been studied numerically. We show that the effect of the idle region surrounding the junction is to ``dress'' the fluxon causing its energy to increase. This effect can be predicted accurately by a simple model.
Fractional Solitons in Excitonic Josephson Junctions
Hsu, Ya-Fen; Su, Jung-Jung
2015-01-01
The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 – until ϕ0 > π – then the alternative group of solitons with Q = ϕ0/2π − 1 takes place and switches the polarity of CPR. PMID:26511770
Fractional Solitons in Excitonic Josephson Junctions
NASA Astrophysics Data System (ADS)
Hsu, Ya-Fen; Su, Jung-Jung
2015-10-01
The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR.
Markovian Dynamics of Josephson Parametric Amplification
NASA Astrophysics Data System (ADS)
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Learning's "Weak" Link to Persistence
ERIC Educational Resources Information Center
Wolniak, Gregory C.; Mayhew, Matthew J.; Engberg, Mark E.
2012-01-01
This study advances the understanding of college persistence by examining five dimensions of student learning in relation to second-year persistence. Two of the five dimensions of learning were found to be significant predictors of persistence, and each was moderated by social integration. (Contains 5 tables and 1 figure.)
Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors
NASA Astrophysics Data System (ADS)
Moll, Philip J. W.; Balicas, Luis; Geshkenbein, Vadim; Blatter, Gianni; Karpinski, Janusz; Zhigadlo, Nikolai D.; Batlogg, Bertram
2013-02-01
Iron pnictides are layered high Tc superconductors with moderate material anisotropy and thus Abrikosov vortices are expected in the mixed state. Yet, we have discovered a distinct change in the nature of the vortices from Abrikosov-like to Josephson-like in the pnictide superconductor SmFeAs(O,F) with Tc~48-50 K on cooling below a temperature T*~41-42 K, despite its moderate electronic anisotropy γ~4-6. This transition is hallmarked by a sharp drop in the critical current and accordingly a jump in the flux-flow voltage in a magnetic field precisely aligned along the FeAs layers, indicative of highly mobile vortices. T* coincides well with the temperature where the coherence length ξc perpendicular to the layers matches half of the FeAs-layer spacing. For fields slightly out-of-plane (> 0.1°- 0.15°) the vortices are completely immobilized as well-pinned Abrikosov segments are introduced when the vortex crosses the FeAs layers. We interpret these findings as a transition from well-pinned, slow moving Abrikosov vortices at high temperatures to weakly pinned, fast flowing Josephson vortices at low temperatures. This vortex dynamics could become technologically relevant as superconducting applications will always operate deep in the Josephson regime.
Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions
NASA Astrophysics Data System (ADS)
Wu, B. H.; Cao, J. C.; Timm, C.
2012-07-01
We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov [Nat. Nanotech. 1748-338710.1038/nnano.2007.2182, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V˜(2/3)Vg. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one vibronic energy quantum ℏωv. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.
Hybrid-free Josephson Parametric Converter
NASA Astrophysics Data System (ADS)
Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.
A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.
3-wave mixing Josephson dipole element
NASA Astrophysics Data System (ADS)
Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.
2017-05-01
Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.
Work fluctuations in bosonic Josephson junctions
NASA Astrophysics Data System (ADS)
Lena, R. G.; Palma, G. M.; De Chiara, G.
2016-05-01
We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.
Modeling Bloch oscillations in nanoscale Josephson junctions
NASA Astrophysics Data System (ADS)
Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.
2017-08-01
Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I =(n /m )2 e f induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m =1 ) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations.
Holographic Josephson junction from massive gravity
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Li, Huai-Fan; Zeng, Hua-Bi; Zhang, Hai-Qing
2016-05-01
We study the holographic superconductor-normal metal-superconductor (SNS) Josephson junction in de Rham-Gabadadze-Tolley massive gravity. If the boundary theory is independent of spatial directions, i.e., if the chemical potential is homogeneous in spatial directions, we find that the graviton mass parameter will make it more difficult for the normal metal-superconductor phase transition to take place. In the holographic model of the Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass parameter. Besides, the coherence length of the junction decreases as well with respect to the graviton mass parameter. If one interprets the graviton mass parameter as the effect of momentum dissipation in the boundary field theory, this indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
NASA Technical Reports Server (NTRS)
Barner, J. B.; Rogers, C. T.; Inam, A.; Ramesh, R.; Bersey, S.
1991-01-01
The controllable, reproducible fabrication of nonhysteretic Josephson devices with excess-current weak-link characteristics at temperatures up to 80 K have been demonstrated. The devices are patterned from in situ deposited a-axis oriented YBa2Cu3O(7-y) - PrBa2Cu3O(7-y) - YBa2Cu3O(7-y) trilayers grown on SrTiO3(001) substrates. Control of the critical current density and resistance is achieved by varying the thickness of the PrBa2Cu3O(7-z) barrier layer. Critical current densities in excess of 10,000 A/sq cm have been reproducibly measured; good uniformity across the wafer is obtained with device parameters scaling with device area. Strong constant-voltage current steps are observed under 11.2 GHz microwave radiation at temperatures up to and above 80 K.
Low-Loss Materials for Josephson Qubits
2014-10-09
number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From- To) 09-10-2014 Final...failing to comply with a collection of information if it does not display a currently valid OMB control number 1. REPORT DATE 2014 2. REPORT TYPE N...loss comes from the capacitor, the inductor (including the Josephson inductance), and radiative loss from the embedded circuit. \\section{capacitor
Accurate Control of Josephson Phase Qubits
2016-04-14
PHYSICAL REVIEW B 68, 224518 ~2003!Accurate control of Josephson phase qubits Matthias Steffen,1,2,* John M. Martinis,3 and Isaac L. Chuang1 1Center...qubits, we believe they could also be fruitful in other systems where one wishes to control a par- ticular subspace of Hilbert space. This work...access the two- state system as a controllable qubit. The ratio DU/\\vp pa- rameterizes the anharmonicity of the cubic potential with regard to the qubit
Josephson junction microwave modulators for qubit control
NASA Astrophysics Data System (ADS)
Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.
2017-02-01
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
Defect formation in long Josephson junctions
Gordeeva, Anna V.; Pankratov, Andrey L.
2010-06-01
We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density.
Edge currents in frustrated Josephson junction ladders
NASA Astrophysics Data System (ADS)
Marques, A. M.; Santos, F. D. R.; Dias, R. G.
2016-09-01
We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.
Solitonic Josephson-based meminductive systems
Guarcello, Claudio; Solinas, Paolo; Di Ventra, Massimiliano; ...
2017-04-24
Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systemsmore » belong to the general class of memelements, few of them combine these important physical features in a single component. Here in this paper, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.« less
Very large thermophase in ferromagnetic Josephson junctions.
Giazotto, F; Heikkilä, T T; Bergeret, F S
2015-02-13
The concept of thermophase refers to the appearance of a phase gradient inside a superconductor originating from the presence of an applied temperature bias across it. The resulting supercurrent flow may, in suitable conditions, fully counterbalance the temperature-bias-induced quasiparticle current therefore preventing the formation of any voltage drop, i.e., a thermovoltage, across the superconductor. Yet, the appearance of a thermophase is expected to occur in Josephson-coupled superconductors as well. Here, we theoretically investigate the thermoelectric response of a thermally biased Josephson junction based on a ferromagnetic insulator. In particular, we predict the occurrence of a very large thermophase that can reach π/2 across the contact for suitable temperatures and structure parameters; i.e., the quasiparticle thermal current can reach the critical current. Such a thermophase can be several orders of magnitude larger than that predicted to occur in conventional Josephson tunnel junctions. In order to assess experimentally the predicted very large thermophase, we propose a realistic setup realizable with state-of-the-art nanofabrication techniques and well-established materials, based on a superconducting quantum interference device. This effect could be of strong relevance in several low-temperature applications, for example, for revealing tiny temperature differences generated by coupling the electromagnetic radiation to one of the superconductors forming the junction.
Radiation comb generation with extended Josephson junctions
Solinas, P.; Bosisio, R.; Giazotto, F.
2015-09-21
We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.
Josephson junction in a thin film
Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.
2001-04-01
The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.
Solitonic Josephson-based meminductive systems
NASA Astrophysics Data System (ADS)
Guarcello, Claudio; Solinas, Paolo; di Ventra, Massimiliano; Giazotto, Francesco
2017-04-01
Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systems belong to the general class of memelements, few of them combine these important physical features in a single component. Here, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.
Fu, C.M.; Chen, C.M.; Lin, H.C.
1994-12-31
We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T{sub c}, has significant enhancement upon microwave irradiation. The microwave enhanced T{sub c} is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45{degrees} tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8{degrees} tilt boundary has displayed a moderate response. In contrast, no enhancement of T{sub c} was observed in the GBWLs of 24{degrees} tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.
NASA Technical Reports Server (NTRS)
Fu, C. M.; Chen, C. M.; Lin, H. C.; Wu, K. H.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.
1995-01-01
We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity (R(I) and the current-voltage (I-V) characteristics of YBa2Gu3O(7 - x) (YBCO) bicrystalline grain boundary weak-links (GBWL's), with grain boundary of three different tilt angles. The superconducting transition temperature, T(sub c), has significant enhancement upon microwave irradiation. The microwave enhanced T(sub c) is increased as a function of incident microwave power, but limited to an optimum power level. The GBWL's of 45 deg tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWL's of 36.8 deg tilt boundary has displayed a moderate response. In contrast, no enhancement of T(sub c) was observed in the GBWL's of 24 deg tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependent is hystertic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.
Fluctuation of heat current in Josephson junctions
Virtanen, P.; Giazotto, F.
2015-02-15
We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.
The Josephson Effect: 50 Years of Science and Technology
ERIC Educational Resources Information Center
Warburton, Paul A.
2011-01-01
The Josephson effect, the 50th anniversary of which will be celebrated in 2012, remains one of the most spectacular manifestations of quantum mechanics in all of experimental science. It was first predicted in 1962 and then experimentally verified in 1963. At its most fundamental level the Josephson effect is nothing more than the electronic…
Target attractor tracking of relative phase in Bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Borisenok, Sergey
2016-06-01
The relative phase of Bosonic Josephson junction in the Josephson regime of Bose-Hubbard model is tracked via the target attractor (`synergetic') feedback algorithm with the inter-well coupling parameter presented as a control function. The efficiency of our approach is demonstrated numerically for Gaussian and harmonic types of target phases.
MAR current of Josephson junctions with topological superconducting nanowires
NASA Astrophysics Data System (ADS)
Aguado, Ramon; San-Jose, Pablo; Prada, Elsa; Cayao, Jorge Luis
2013-03-01
We study Josephson junctions made with topological superconducting nanowires hosting Majorana bound states (MBS). We show that, despite the absence of a fractional Josephson effect in the steady state limit [1], the dissipative multiple Andreev reflection (MAR) current contains nontrivial features owing to the presence of MBS. In particular, the MAR steps appear at voltages eVP = Δ / q
The Josephson Effect: 50 Years of Science and Technology
ERIC Educational Resources Information Center
Warburton, Paul A.
2011-01-01
The Josephson effect, the 50th anniversary of which will be celebrated in 2012, remains one of the most spectacular manifestations of quantum mechanics in all of experimental science. It was first predicted in 1962 and then experimentally verified in 1963. At its most fundamental level the Josephson effect is nothing more than the electronic…
External noise-induced transitions in a current-biased Josephson junction
Huang, Qiongwei; Xue, Changfeng; Tang, Jiashi
2016-01-15
We investigate noise-induced transitions in a current-biased and weakly damped Josephson junction in the presence of multiplicative noise. By using the stochastic averaging procedure, the averaged amplitude equation describing dynamic evolution near a constant phase difference is derived. Numerical results show that a stochastic Hopf bifurcation between an absorbing and an oscillatory state occurs. This means the external controllable noise triggers a transition into the non-zero junction voltage state. With the increase of noise intensity, the stationary probability distribution peak shifts and is characterised by increased width and reduced height. And the different transition rates are shown for large and small bias currents.
Metastable states and macroscopic quantum tunneling in a cold atom josephson ring
Solenov, Dmitry; Mozyrsky, Dmitry
2009-01-01
We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.
Identifying the chiral d-wave superconductivity by Josephson φ0-states
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-01-01
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation. PMID:28266582
Identifying the chiral d-wave superconductivity by Josephson φ0-states.
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-03-07
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation.
Identifying the chiral d-wave superconductivity by Josephson φ0-states
NASA Astrophysics Data System (ADS)
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-03-01
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation.
NASA Astrophysics Data System (ADS)
Koshelev, A. E.; Bulaevskii, L. N.
2008-01-01
Intrinsic Josephson-junction stacks realized in mesas fabricated out of high-temperature superconductors may be used as sources of coherent electromagnetic radiation in the terahertz range. The major challenge is to synchronize Josephson oscillations in all junctions in the stack to get significant radiation out of the crystal edge parallel to the c axis. We suggest a simple way to solve this problem via artificially prepared lateral modulation of the Josephson critical current identical in all junctions. In such a stack, phase oscillations excite the in-phase Fiske mode when the Josephson frequency matches the Fiske-resonance frequency which is set by the stack lateral size. The powerful, almost standing electromagnetic wave is excited inside the crystal in the resonance. This wave is homogeneous across the layers, meaning that the oscillations are synchronized in all junctions in the stack. We evaluate behavior of the I-V characteristics and radiated power near the resonance for arbitrary modulation and find exact solutions for several special cases corresponding to symmetric and asymmetric modulations of the critical current.
Josephson Phase Qubit with a Distributed Reactance
NASA Astrophysics Data System (ADS)
Przybysz, Anthony; Ferguson, David; Naaman, Ofer; Strand, Joel; Medford, James; Pesetski, Aaron
2014-03-01
We present our characterization of a novel phase qubit design in which the capacitance across the Josephson junction and the inductance of the SQUID are provided by a microstrip resonator instead of lumped circuit elements. The spectroscopic data from this device clearly shows a behavior with respect to applied flux that cannot be accurately described by a simple SQUID model. We present measurements of the devices coherence times and anharmonicity, and compare the spectrum to a theoretical model that treats the phase drop across the length of the resonator as a continuous field.
Inverse ac Josephson effect at terahertz frequencies
NASA Astrophysics Data System (ADS)
Danchi, W. C.; Golightly, W. J.; Sutton, E. C.
1989-04-01
Using the Werthamer (1966) theory of superconducting tunnel junctions, it is shown that zero-crossing ac Josephson steps can occur at frequencies much higher than those expected previously, as long as the voltage waveform is nearly sinusoidal. Limits on the amount of permitted rounding of the Riedel (1964) peak were derived from analytical calculations, and numerical frequency-domain and time-domain computations for realistic junctions were carried out, yielding support for these limits. It is shown that previous arguments that zero-crossing steps could never be observed above the value of half the gap voltage are incorrect, due to the neglect of the Riedel peak.
Simplified fabrication of magnetically coupled Josephson circuits
Smith, L.N.; Jillie, D.W.; Kroger, H.
1985-03-01
The authors describe a technique for fabricating magnetically coupled Josephson logic and memory circuits and SQUIDs which uses only two superconducting layers. These two layers perform multiple functions as the base and counterelectrodes of the tunnel junctions, the SQUID inductance and control lines, and the signal lines and groundplane between gates. This technique is illustrated by the specific example of a two junction, resistively damped SQUID designed to be fabricated using an all-refractory process which employs a total of five masking levels.
Nonergodic metallic and insulating phases of Josephson junction chains
Pino, Manuel; Ioffe, Lev B.; Altshuler, Boris L.
2016-01-01
Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath. To describe such systems properly one should revisit the very foundations of statistical mechanics. We examine this general problem for the case of the Josephson junction chain that can be implemented in the laboratory and show that it displays a novel high-temperature nonergodic phase with finite resistance. With further increase of the temperature the system undergoes a transition to the fully localized state characterized by infinite resistance and exponentially long relaxation. PMID:26719416
Isolation of a Josephson qubit from the electromagnetic environment
NASA Astrophysics Data System (ADS)
Shnyrkov, V. I.; Korolev, A. M.; Turutanov, O. G.; Shulga, V. M.; Lyakhno, V. Yu.; Serebrovsky, V. V.
2015-11-01
We consider two aspects of isolation of a Josephson flux (charge-flux) qubit from the external dissipative electromagnetic environment: (i) selecting an optimal topology of the superconducting qubit circuit and (ii) passive filtering of Planck radiation at the input of the qubit-state detection circuit. When reading the state of a macroscopic quantum object ("Schrödinger's cat") with the weak continuous measurement technique, the coupling to the environment, both direct and through the connected circuits, is the cause of the rapid loss of coherence of the superposition states. The coefficients of coupling to the external electromagnetic environment are discussed, as well as the problem of their minimization for flat (2D) and bulk (3D) designs of the qubit quantization loops. The analysis of the characteristics of low-temperature combined broadband filters designed to effectively reduce the electromagnetic noise in the control and measurement circuits is carried out. It is shown experimentally that a cryogenic Cu-CuO powder filter installed directly into the measuring circuit results in a significant suppression of the back action of a cooled HEMT amplifier to the qubit.
Nonergodic metallic and insulating phases of Josephson junction chains.
Pino, Manuel; Ioffe, Lev B; Altshuler, Boris L
2016-01-19
Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath. To describe such systems properly one should revisit the very foundations of statistical mechanics. We examine this general problem for the case of the Josephson junction chain that can be implemented in the laboratory and show that it displays a novel high-temperature nonergodic phase with finite resistance. With further increase of the temperature the system undergoes a transition to the fully localized state characterized by infinite resistance and exponentially long relaxation.
Effect of environment fluctuations on a Josephson current
NASA Astrophysics Data System (ADS)
Galaktionov, A. V.
2017-01-01
An influence of an electromagnetic environment on a Josephson current through a tunnel junction is studied with the aid of Ambegaokar-Eckern-Schön effective action. Two types of environment are investigated: one, characterized by a resonant mode, and an ohmic one. The crossover to a Josephson π-junction is possible for both of them. In addition the resonant-mode environment results in an increase of a Josephson current when the ratio of the doubled superconducting gap to the frequency of the mode is close to an integer number.
Josephson effects in condensates of excitons and exciton polaritons
Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.
2008-07-15
We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the 'tunneling' between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.
Josephson effect in a Weyl SNS junction
NASA Astrophysics Data System (ADS)
Madsen, Kevin A.; Bergholtz, Emil J.; Brouwer, Piet W.
2017-02-01
We calculate the Josephson current density j (ϕ ) for a Weyl superconductor-normal-metal-superconductor junction for which the outer terminals are superconducting Weyl metals and the normal layer is a Weyl (semi)metal. We describe the Weyl (semi)metal using a simple model with two Weyl points. The model has broken time-reversal symmetry, but inversion symmetry is present. We calculate the Josephson current for both zero and finite temperature for the two pairing mechanisms inside the superconductors that have been proposed in the literature, zero-momentum BCS-like pairing and finite-momentum FFLO-like pairing, and assuming the short-junction limit. For both pairing types we find that the current is proportional to the normal-state junction conductivity, with a proportionality coefficient that shows quantitative differences between the two pairing mechanisms. The current for the BCS-like pairing is found to be independent of the chemical potential, whereas the current for the FFLO-like pairing is not.
Josephson effect in multiterminal topological junctions
NASA Astrophysics Data System (ADS)
Zazunov, A.; Egger, R.; Alvarado, M.; Yeyati, A. Levy
2017-07-01
We study the Josephson effect in a trijunction formed by two topological superconductor (TS) wires and a conventional s -wave superconductor. Using a boundary Green's function formalism, analytical results for the current-phase relation are obtained in various limiting cases by modeling the TS wires via the low-energy limit of a Kitaev chain. We show that Josephson transport critically depends on the spin canting angle θ between the boundary spin polarizations of the TS wires, which in turn suggests that the spin structure of Majorana states can be accessed through supercurrent measurements. We also extend the boundary Green's function approach to a more microscopic spinful wire model and thereby compute the dependence of θ on experimentally accessible parameters such as the Zeeman field and/or the chemical potential. Furthermore, we show that the equilibrium current-phase relation between both TS wires exhibits a robust 4 π periodicity since the conventional superconducting lead effectively locks the fermion parity of the trijunction.
Black-Schaffer, Annica M.
2010-04-06
We use a tight-binding Bogoliubov-de Gennes (BdG) formalism to self-consistently calculate the proximity effect, Josephson current, and local density of states in ballistic graphene SNS Josephson junctions. Both short and long junctions, with respect to the superconducting coherence length, are considered, as well as different doping levels of the graphene. We show that self-consistency does not notably change the current-phase relationship derived earlier for short junctions using the non-selfconsistent Dirac-BdG formalism but predict a significantly increased critical current with a stronger junction length dependence. In addition, we show that in junctions with no Fermi level mismatch between the N and S regions superconductivity persists even in the longest junctions we can investigate, indicating a diverging Ginzburg-Landau superconducting coherence length in the normal region.
Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.
1995-01-01
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Coherent diffraction of thermal currents in long Josephson tunnel junctions
NASA Astrophysics Data System (ADS)
Guarcello, Claudio; Giazotto, Francesco; Solinas, Paolo
2016-08-01
We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both the length and the damping of the junction, highlighting deviations from the standard "Fraunhofer" pattern characteristic of short junctions. The heat current diffraction patterns show features strongly related to the formation and penetration of Josephson vortices, i.e., solitons. We show that a dynamical treatment of the system is crucial for the realistic description of the Josephson junction, and it leads to peculiar results. In fact, hysteretic behaviors in the diffraction patterns when the field is swept up and down are observed, corresponding to the trapping of vortices in the junction.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Flux Cloning Anomalities in Josephson Nano-Junctions
NASA Astrophysics Data System (ADS)
Hassan, Hanaa Farhan; Kusmartsev, Feo V.
2010-12-01
The propagation of single flux quanta in T-shaped Josephson junctions gives rise to the flux cloning phenomenon. We have studied numerically the dynamics of flux cloning in cases of extended Josephson junctions. The changing thicknesses of T-junctions lead to new and interesting effects in terms of their dynamics. We have found out that when an additional Josephson transmission line is larger than the main Josephson transmission line, numerical simulations do not show the cloning phenomenon and soliton is reflected when it approaches the T junction. This strange result may be happened because the soliton losses more energy in the sharp edge. Although the vortex is moving very highly and it has huge energy but it still does not give birth to a new vortex. We have investigated conditions at which flux cloning occurs when both widths, W and W0, are changing.
Flux Cloning Anomalities in Josephson Nano-Junctions
NASA Astrophysics Data System (ADS)
Hassan, Hanaa Farhan; Kusmartsev, Feo V.
The propagation of single flux quanta in T-shaped Josephson junctions gives rise to the flux cloning phenomenon. We have studied numerically the dynamics of flux cloning in cases of extended Josephson junctions. The changing thicknesses of T-junctions lead to new and interesting effects in terms of their dynamics. We have found out that when an additional Josephson transmission line is larger than the main Josephson transmission line, numerical simulations do not show the cloning phenomenon and soliton is reflected when it approaches the T junction. This strange result may be happened because the soliton losses more energy in the sharp edge. Although the vortex is moving very highly and it has huge energy but it still does not give birth to a new vortex. We have investigated conditions at which flux cloning occurs when both widths, W and W0, are changing.
High-resolution Josephson spectroscopy with a scanning tunneling microscope
NASA Astrophysics Data System (ADS)
Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali
2015-03-01
Conventional scanning tunneling microscopy (STM) measurements use a normal metal tip to probe local quasi-particle density of states with atomic resolution. Using a superconducting tip to conduct spectroscopy significantly boosts the energy resolution of the measurements, thus expanding the STM capabilities. Moreover, superconducting tips make it possible to probe superconductivity via the Josephson effect, which provides a direct measure of the local superconducting order parameter. Therefore, scanning Josephson spectroscopy measurements have the potential to characterize of a wide variety of superconducting materials on the atomic scale. I will present superconducting Pb tip measurements performed at temperatures below 250mK in a dilution refrigerator STM. By controlling the junction resistance, we are able to explore a wide range of tunneling regimes. Josephson measurements on Pb samples exhibit features including multiple Andreev reflections, and I will discuss the extension of these techniques to study atomic scale variations in Josephson current.
Higher-order nonlinear effects in a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
Josephson effects in a Bose–Einstein condensate of magnons
Troncoso, Roberto E.; Núñez, Álvaro S.
2014-07-15
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.
1D Josephson quantum interference grids: diffraction patterns and dynamics
NASA Astrophysics Data System (ADS)
Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.
2016-02-01
We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.
Submillimeter Quasioptical Josephson Junction Oscillator with Integrated Tuning Elements
1994-04-30
demonstrate a Quasioptical Josephson Oscillator with Integratd Tuning Elements using standard Conductus niobium. technology. T~his device is based on a...Elements Contract #F49620-93-C0037 AE$.R 94 0347 Aleksandar Pance Conductus , Inc. Approved for public release; (408) 524 9820 distribution unlimited...Report Summary The goal of this program was to demonstrate a Quasioptical Josephson Oscillator with Integrated Tuning Elements using standard Conductus
Revealing topological superconductivity in extended quantum spin Hall Josephson junctions.
Lee, Shu-Ping; Michaeli, Karen; Alicea, Jason; Yacoby, Amir
2014-11-07
Quantum spin Hall-superconductor hybrids are promising sources of topological superconductivity and Majorana modes, particularly given recent progress on HgTe and InAs/GaSb. We propose a new method of revealing topological superconductivity in extended quantum spin Hall Josephson junctions supporting "fractional Josephson currents." Specifically, we show that as one threads magnetic flux between the superconductors, the critical current traces an interference pattern featuring sharp fingerprints of topological superconductivity-even when noise spoils parity conservation.
Ballistic transport in InSb Josephson junctions
NASA Astrophysics Data System (ADS)
Damasco, John Jeffrey; Gill, Stephen; Car, Diana; Bakkers, Erik; Mason, Nadya
We present transport measurements on Josephson junctions consisting of InSb nanowires contacted by Al at various junction lengths. Junction behavior as a function of gate voltage, electric field, and magnetic field is discussed. We show that short junctions behave as 1D quantum wires, exhibiting quantized conductance steps. In addition, we show how Josephson behavior changes as transport evolves from ballistic to diffusive as a function of contact spacing.
Josephson vortices as flexible waveguides for terahertz waves
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Savel'ev, Sergey; Yampol'skii, V. A.; Kusmartsev, F. V.; Nori, Franco
2008-09-01
We propose using the Josephson vortices (fluxons) as adjustable and malleable waveguides of electromagnetic radiation. Our theoretical and numerical calculations show that electromagnetic waves can propagate along the Josephson vortices and always follow the vortex lines. By changing external parameters, such as electric currents or magnetic fields, the shape and configuration of the guiding vortex lines can be controlled. We describe the design of a multifunctional three-terminal device that controls the transmission (redirecting or splitting) of a beam of electromagnetic waves.
On the electrodynamics of Josephson effect in anisotropic superconductors
Mints, R.G.
1989-01-01
Specificities of Josephson effect electrodynamics in anisotropic superconductors are of considerable interest for the study of high temperature superconductors with strongly anisotropic layered structure. In this paper the authors give the calculation for the tunnel Josephson contact of an isolated vortex, the law of dispersion of its low-amplitude oscillations, the critical field H/sub cl/ for the penetration of magnetic flux, and the maximum current across a rectangular contact.
Sensitivity of Josephson-effect millimeter-wave radiometer
NASA Technical Reports Server (NTRS)
Ohta, H.; Feldman, M. J.; Parrish, P. T.; Chiao, R. Y.
1974-01-01
The noise temperature and the minimum detectable temperature of a Josephson junction in video detection of microwave and millimeter-wave radiation has been calculated. We use the well-known method based on a Fokker-Planck equation. The noise temperature can be very close to ambient temperature. Because its predetection bandwidth is very wide, a Josephson-effect radio telescope receiver can have a minimum detectable temperature better than that of a traveling-wave maser.
Simplifying the circuit of Josephson parametric converters
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Ferromagnetic resonance with long Josephson junction
NASA Astrophysics Data System (ADS)
Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Emelyanova, O. V.; Golubov, A. A.; Ustinov, A. V.; Ryazanov, V. V.
2017-05-01
In this work we propose a hybrid device based on a long Josephson junction (JJ) coupled inductively to an external ferromagnetic (FM) layer. The long JJ in a zero-field operation mode induces a localized AC magnetic field in the FM layer and enables a synchronized magnetostatic standing wave. The magnetostatic wave induces additional dissipation for soliton propagation in the junction and also enables a phase locking (resonant soliton synchronization) at a frequency of natural ferromagnetic resonance. The later manifests itself as an additional constant voltage step on the current-voltage characteristics at the corresponding voltage. The proposed device allows to study magnetization dynamics of individual micro-scaled FM samples using just DC technique, and also it provides additional phase locking frequency in the junction, determined exclusively by characteristics of the ferromagnet.
Lossless, coherent Josephson three-wave combiner
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Sliwa, Katrina; Schackert, Flavius; Bergeal, Nicolas; Hatridge, Michael; Frunzio, Luigi; Stone, Douglas; Devoret, Michel
2013-03-01
We designed and operated a three-wave beam-splitter/combiner, based on Josephson parametric converters, which performs frequency conversion without introducing losses and thus adding no noise to the processed signal. We in particular show that the unitary signal-idler scattering parameters of the device can be fully modulated in-situ by varying the intensity and phase of the pump tone feeding the system. By operating the device as a 50/50 beam-combiner, we interfere coherently two input coherent microwave beams with different frequencies and demonstrate that the resulting interference fringes generated by the relative phase of the pump is in agreement with theoretical predictions. Potential applications of the device include quantum information transduction and realization of an ultra-sensitive interferometer with controllable feedback. Work supported by: IARPA, ARO, and NSF
AC Josephson effect applications in microwave systems
NASA Astrophysics Data System (ADS)
Larkin, Serguey Y.
1996-12-01
analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.
Lin, Shi-Zeng; Hu, Xiao
2011-04-01
The nano-scale intrinsic Josephson junctions in highly anisotropic cuprate superconductors have potential for generation of terahertz electromagnetic waves. When the thickness of a superconductor sample is much smaller than the wavelength of electromagnetic waves in vacuum, the superconductor renders itself as a cavity. Unlike conventional lasers, the presence of the cavity does not guarantee a coherent emission because of the internal degree of freedom of the superconductivity phase in long junctions. We study the excitation of terahertz wave by solitons in a stack of intrinsic Josephson junctions, especially for relatively short junctions. Coherent emission requires a rectangular configuration of solitons. However such a configuration is unstable against weak fluctuations, contrarily solitons favor a triangular lattice corresponding to an out-phase oscillation of electromagnetic waves. To utilize the cavity, we propose to use an array of stacks of short intrinsic Josephson junctions to generate powerful terahertz electromagnetic waves. The cavity synchronizes the plasma oscillation in different stacks and the emission intensity is predicted to be proportional to the number of stacks squared.
NASA Astrophysics Data System (ADS)
Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastián
2015-09-01
Due to the spin-orbit coupling (SOC) an electric current flowing in a normal metal or semiconductor can induce a bulk magnetic moment. This effect is known as the Edelstein (EE) or magnetoelectric effect. Similarly, in a bulk superconductor a phase gradient may create a finite spin density. The inverse effect, also known as the spin-galvanic effect, corresponds to the creation of a supercurrent by an equilibrium spin polarization. Here, by exploiting the analogy between a linear-in-momentum SOC and a background SU(2) gauge field, we develop a quasiclassical transport theory to deal with magnetoelectric effects in superconducting structures. For bulk superconductors this approach allows us to easily reproduce and generalize a number of previously known results. For Josephson junctions we establish a direct connection between the inverse EE and the appearance of an anomalous phase shift φ0 in the current-phase relation. In particular we show that φ0 is proportional to the equilibrium spin current in the weak link. We also argue that our results are valid generically, beyond the particular case of linear-in-momentum SOC. The magnetoelectric effects discussed in this study may find applications in the emerging field of coherent spintronics with superconductors.
NASA Astrophysics Data System (ADS)
Lee, Yu-Li; Lee, Yu-Wen
2016-05-01
We study the behavior of a topological Josephson junction in which two topological superconductors are coupled through a quantum dot. We focus on the case with the bulk superconducting gap being the largest energy scale. Two parameter regimes are investigated: a weak tunneling between the dot and the superconductors, with the dot near its charge degeneracy point, and a strong-tunneling regime in which the transmission between the dot and the superconductors is nearly perfect. We show that in the former situation, the Andreev spectrum for each sector with fixed fermion parity consists of only two levels, which gives rise to the nontrivial current-phase relation. Moreover, we study the Rabi oscillation between the two levels and indicate that the corresponding frequency is a 4 π -periodic function of the phase difference between the two superconductors, which is immune to the quasiparticle poisoning. In the latter case, we find that the Coulomb charging energy enhances the effect of backscattering at the interfaces between the dot and the superconductors. Both the temperature and the gate-voltage dependence of the critical Josephson current are examined.
Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasyl; Ivanov, Boris A.; Slavin, Andrei
2017-01-01
The development of compact and tunable room temperature sources of coherent THz-frequency signals would open a way for numerous new applications. The existing approaches to THz-frequency generation based on superconductor Josephson junctions (JJ), free electron lasers, and quantum cascades require cryogenic temperatures or/and complex setups, preventing the miniaturization and wide use of these devices. We demonstrate theoretically that a bi-layer of a heavy metal (Pt) and a bi-axial antiferromagnetic (AFM) dielectric (NiO) can be a source of a coherent THz signal. A spin-current flowing from a DC-current-driven Pt layer and polarized along the hard AFM anisotropy axis excites a non-uniform in time precession of magnetizations sublattices in the AFM, due to the presence of a weak easy-plane AFM anisotropy. The frequency of the AFM oscillations varies in the range of 0.1–2.0 THz with the driving current in the Pt layer from 108 A/cm2 to 109 A/cm2. The THz-frequency signal from the AFM with the amplitude exceeding 1 V/cm is picked up by the inverse spin-Hall effect in Pt. The operation of a room-temperature AFM THz-frequency oscillator is similar to that of a cryogenic JJ oscillator, with the energy of the easy-plane magnetic anisotropy playing the role of the Josephson energy. PMID:28262731
Odd spin-triplet superconductivity in a multilayered superconductor-ferromagnet Josephson junction
NASA Astrophysics Data System (ADS)
Volkov, A. F.; Efetov, K. B.
2010-04-01
We study the dc Josephson effect in a diffusive multilayered SF'FF'S structure, where S is a superconductor and F and F' are different ferromagnets. We assume that the exchange energies in the F' and F layers are different ( h and H , respectively) and the middle F layer consists of two layers with parallel or antiparallel magnetization vectors M . The M vectors in the left and right F' layers are generally not collinear to those in the F layer. In the limit of a weak proximity effect we use a linearized Usadel equation. Solving this equation, we calculate the Josephson critical current for arbitrary temperatures, arbitrary thicknesses of the F' and F layers ( Lh and LH ) in the case of parallel and antiparallel M orientations in the F layer. The part of the critical current IcSR formed by the short-range singlet and S=0 triplet condensate components decays on a short length ξH=D/H , whereas the part IcLR due to the long-range triplet |S|=1 component decreases with increasing LH on the length ξN=D/πT . Our results are in a qualitative agreement with the experiment [T. S. Khaire, M. A. Khasawneh, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. Lett. 104, 137002 (2010)].
Josephson critical current of long SNS junctions in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Meier, Hendrik; Fal'Ko, Vladimir I.; Glazman, Leonid I.
We evaluate the Josephson critical current of a long and wide two-dimensional superconductor-normal metal-superconductor (SNS) junction, taking into account the effect of electron reflection off the side edges of the junction. Considering clean junctions, we find that the effect of edges alters the usual Fraunhofer-like dependence of the Josephson critical current Ic on the magnetic flux Φ. At relatively weak fields, B <~Φ0 /W2 , the edge effect lifts zeros of the Ic (Φ) dependence and gradually shifts the maxima of that function by Φ0 / 2 . (Here W is the width of the junction and Φ0 the magnetic flux quantum.) At higher fields, B >~Φ0 /W2 , the edge effect leads to an accelerated decay of the critical current Ic (Φ) with increasing Φ. Our results are robust with respect to the roughness of realistic boundaries. Finally, we discuss the role of mesoscopic fluctuations of Ic (Φ) originating from the scattering off the edges, and compare our findings to recent experiments.
Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current
NASA Astrophysics Data System (ADS)
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasyl; Ivanov, Boris A.; Slavin, Andrei
2017-03-01
The development of compact and tunable room temperature sources of coherent THz-frequency signals would open a way for numerous new applications. The existing approaches to THz-frequency generation based on superconductor Josephson junctions (JJ), free electron lasers, and quantum cascades require cryogenic temperatures or/and complex setups, preventing the miniaturization and wide use of these devices. We demonstrate theoretically that a bi-layer of a heavy metal (Pt) and a bi-axial antiferromagnetic (AFM) dielectric (NiO) can be a source of a coherent THz signal. A spin-current flowing from a DC-current-driven Pt layer and polarized along the hard AFM anisotropy axis excites a non-uniform in time precession of magnetizations sublattices in the AFM, due to the presence of a weak easy-plane AFM anisotropy. The frequency of the AFM oscillations varies in the range of 0.1-2.0 THz with the driving current in the Pt layer from 108 A/cm2 to 109 A/cm2. The THz-frequency signal from the AFM with the amplitude exceeding 1 V/cm is picked up by the inverse spin-Hall effect in Pt. The operation of a room-temperature AFM THz-frequency oscillator is similar to that of a cryogenic JJ oscillator, with the energy of the easy-plane magnetic anisotropy playing the role of the Josephson energy.
Quantum computing with Josephson junction circuits
NASA Astrophysics Data System (ADS)
Xu, Huizhong
This work concerns the study of Josephson junction circuits in the context of their usability for quantum computing. The zero-voltage state of a current-biased Josephson junction has a set of metastable quantum energy levels. If a junction is well isolated from its environment, it will be possible to use the two lowest states as a qubit in a quantum computer. I first examine the meaning of isolation theoretically. Using a master equation, I analyzed the effect of dissipation on escape rates and suggested a simple method, population depletion technique, to measure the relaxation time (T1). Using a stochastic Bloch equation to analyze the dependence of microwave resonance peak width on current noise, I found decoherence due to current noise depends on the noise spectrum. For high frequency noise with a cutoff frequency fc much larger than 1/T1, I found decoherence due to noise can be described by a dephasing rate that is proportional to the noise spectral density. However, for low frequency noise such that its cutoff frequency fc is much smaller than 1/T 1, decoherence due to noise depends on the total rms current noise. I then analyze and test a few qubit isolation schemes, including resistive isolation, inductor-capacitor (LC) isolation, half-wavelength resonant isolation and inductor-junction (LJ) isolation. I found the resistive isolation scheme has a severe heating problem. Macroscopic quantum tunneling and energy level quantization were observed in the LC isolated Nb/AlOx/Nb and AL/ALOx/Al junction qubits at 25 mK. Relaxation times of 4--12 ns and spectroscopic coherence times of 1--3 ns were obtained for these LC isolated qubits. I found the half-wavelength isolated junction qubit has a relaxation time of about 20 ns measured by the population-depletion techniques, but no energy levels were observed in this qubit. Experimental results suggest the LJ isolated qubit has a longer relaxation and coherence times than all my previously examined samples. Using a
Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions
NASA Astrophysics Data System (ADS)
Golovchanskiy, I. A.; Bol'ginov, V. V.; Stolyarov, V. S.; Abramov, N. N.; Ben Hamida, A.; Emelyanova, O. V.; Stolyarov, B. S.; Kupriyanov, M. Yu.; Golubov, A. A.; Ryazanov, V. V.
2016-12-01
In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal process in the ferromagnetic layer with introduced internal magnetic stiffness and subsequent reconstruction of the critical current value using total flux or reconstructed actual phase difference distribution. The approach is flexible and shows good agreement with experimental data obtained on Josephson junctions with ferromagnetic barriers. Based on this approach we have obtained a critical current dependence on applied magnetic field for rectangular magnetic Josephson junctions with high size aspect ratio. We have shown that the rectangular magnetic Josephson junctions can be considered for application as an effective Josephson magnetic memory element with the value of critical current defined by the orientation of magnetic moment at zero magnetic field. An impact of shape magnetic anisotropy on critical current is revealed and discussed. Finally, we have considered a curling magnetic state in the ferromagnetic layer and demonstrated its impact on critical current.
Instability of Driven Josephson Vortices in Long Underdamped Junctions
NASA Astrophysics Data System (ADS)
Sheikhzada, Ahmad; Gurevich, Alex
We show that a Josephson vortex driven by a dc current can become unstable due to strong Cherenkov radiation resulting from intrinsic nonlocal electrodynamics of long underdamped Josephson junctions. This instability is not captured by the conventional sine-Gordon equation but is described by a more general integro-differential equation for the phase difference, θ (x , t) . Our numerical simulations of this nonlinear dynamic equation for different junction geometries have shown that, as the vortex reaches a critical velocity, it triggers a cascade of expanding vortex-antivortex pairs. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our results suggest that a rapidly moving Josephson vortex can destroy the superconducting long-range order in a way that is similar to the crack propagation in solids. This work was supported by DOE under Grant No. DE-SC0010081.
Chen, C.D.; Delsing, P.; Haviland, D.B.; Harada, Y.; Claeson, T.
1995-06-01
We have studied the superconductor-insulator (SI) phase transition for two-dimensional (2D) arrays of small Josephson junctions in a weak magnetic field. The data were analyzed within the context of the theory of the magnetic-field-tuned SI transition in 2D superconductors. We show resistance scaling curves over several orders of magnitude for the 2D arrays. The critical exponent {ital z}{sub {ital B}} is determined to be 1.05, in good agreement with the theory. Moreover, the transverse (Hall) resistance at the critical field is found to be very small in comparison to the longitudinal resistance.
In-phase motion of Josephson vortices in stacked SNS Josephson junctions: effect of ordered pinning
NASA Astrophysics Data System (ADS)
Berdiyorov, G. R.; Savel'ev, S. E.; Kusmartsev, F. V.; Peeters, F. M.
2013-12-01
The dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions is investigated using the anisotropic time-dependent Ginzburg-Landau theory in the presence of a square/rectangular array of pinning centers (holes). For small values of the applied drive, fluxons in different junctions move out of phase, forming a periodic triangular lattice. A rectangular lattice of moving fluxons is observed at larger currents, which is in agreement with previous theoretical predictions (Koshelev and Aranson 2000 Phys. Rev. Lett. 85 3938). This ‘superradiant’ flux-flow state is found to be stable in a wide region of applied current. The stability range of this ordered state is considerably larger than the one obtained for the pinning-free sample. Clear commensurability features are observed in the current-voltage characteristics of the system with pronounced peaks in the critical current at (fractional) matching fields. The effect of density and strength of the pinning centers on the stability of the rectangular fluxon lattice is discussed. Predicted synchronized motion of fluxons in the presence of ordered pinning can be detected experimentally using the rf response of the system, where enhancement of the Shapiro-like steps is expected due to the synchronization.
Qubit readout with the Josephson Photomultiplier
NASA Astrophysics Data System (ADS)
Ribeill, Guilhem
Recent demonstrations of error correction in many qubit circuits, as well as efforts to build a logical qubit, have shown the need for a simple and scalable superconducting quantum bit (qubit) readout. Current solutions based on heterodyne detection and cryogenic amplification of microwave readout tones may prove difficult to scale, while photon counting presents an attractive alternative. However, the development of counters operating at these frequencies has proved technically challenging. In this thesis, we describe the development of the Josephson Photomultiplier (JPM), a microwave photon counting circuit. We discuss the JPM theoretically, and describe the fabrication of the JPM using standard thin film lithography techniques. We measure its properties as a microwave photon counter using a qubit as an in-situ calibrated source of photons. We measure a JPM quantum efficiency at the few percent level. We then use the JPM to perform readout of a transmon qubit in both the dispersive and bright regimes. We observe raw measurement fidelities of 35% and 62% respectively. We discuss how the JPM and measurement protocol could be further optimized to achieve fidelities in excess of 90%.
Directional Amplification with a Josephson Circuit
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Sliwa, Katrina; Frunzio, Luigi; Devoret, Michel
2013-07-01
Nonreciprocal devices perform crucial functions in many low-noise quantum measurements, usually by exploiting magnetic effects. In the proof-of-principle device presented here, on the other hand, two on-chip coupled Josephson parametric converters (JPCs) achieve directionality by exploiting the nonreciprocal phase response of the JPC in the transmission-gain mode. The nonreciprocity of the device is controlled in situ by varying the amplitude and phase difference of two independent microwave pump tones feeding the system. At the desired working point and for a signal frequency of 8.453 GHz, the device achieves a forward power gain of 15 dB within a dynamical bandwidth of 9 MHz, a reverse gain of -6dB, and suppression of the reflected signal by 8 dB. We also find that the amplifier adds a noise equivalent to less than 1.5 photons at the signal frequency (referred back to the input). It can process up to 3 photons at the signal frequency per inverse dynamical bandwidth. With a directional amplifier operating along the principles of this device, qubit and readout preamplifier could be integrated on the same chip.
Superconducting qubits with semiconductor nanowire Josephson junctions
NASA Astrophysics Data System (ADS)
Petersson, K. D.; Larsen, T. W.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M.
2015-03-01
Superconducting transmon qubits are a promising basis for a scalable quantum information processor. The recent development of semiconducting InAs nanowires with in situ molecular beam epitaxy-grown Al contacts presents new possibilities for building hybrid superconductor/semiconductor devices using precise bottom up fabrication techniques. Here, we take advantage of these high quality materials to develop superconducting qubits with superconductor-normal-superconductor Josephson junctions (JJs) where the normal element is an InAs semiconductor nanowire. We have fabricated transmon qubits in which the conventional Al-Al2O3-Al JJs are replaced by a single gate-tunable nanowire JJ. Using spectroscopy to probe the qubit we observe fluctuations in its level splitting with gate voltage that are consistent with universal conductance fluctuations in the nanowire's normal state conductance. Our gate-tunable nanowire transmons may enable new means of control for large scale qubit architectures and hybrid topological quantum computing schemes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation and the European Commission.
Dynamical Casimir effect in a Josephson metamaterial
Lähteenmäki, Pasi; Paraoanu, G. S.; Hassel, Juha; Hakonen, Pertti J.
2013-01-01
The zero-point energy stored in the modes of an electromagnetic cavity has experimentally detectable effects, giving rise to an attractive interaction between the opposite walls, the static Casimir effect. A dynamical version of this effect was predicted to occur when the vacuum energy is changed either by moving the walls of the cavity or by changing the index of refraction, resulting in the conversion of vacuum fluctuations into real photons. Here, we demonstrate the dynamical Casimir effect using a Josephson metamaterial embedded in a microwave cavity at 5.4 GHz. We modulate the effective length of the cavity by flux-biasing the metamaterial based on superconducting quantum interference devices (SQUIDs), which results in variation of a few percentage points in the speed of light. We extract the full 4 × 4 covariance matrix of the emitted microwave radiation, demonstrating that photons at frequencies symmetrical with respect to half of the modulation frequency are generated in pairs. At large detunings of the cavity from half of the modulation frequency, we find power spectra that clearly show the theoretically predicted hallmark of the Casimir effect: a bimodal, “sparrow-tail” structure. The observed substantial photon flux cannot be assigned to parametric amplification of thermal fluctuations; its creation is a direct consequence of the noncommutativity structure of quantum field theory.
Topological Superconductivity in a Planar Josephson Junction
NASA Astrophysics Data System (ADS)
Pientka, Falko; Keselman, Anna; Berg, Erez; Yacoby, Amir; Stern, Ady; Halperin, Bertrand I.
2017-04-01
We consider a two-dimensional electron gas with strong spin-orbit coupling contacted by two superconducting leads, forming a Josephson junction. We show that in the presence of an in-plane Zeeman field, the quasi-one-dimensional region between the two superconductors can support a topological superconducting phase hosting Majorana bound states at its ends. We study the phase diagram of the system as a function of the Zeeman field and the phase difference between the two superconductors (treated as an externally controlled parameter). Remarkably, at a phase difference of π , the topological phase is obtained for almost any value of the Zeeman field and chemical potential. In a setup where the phase is not controlled externally, we find that the system undergoes a first-order topological phase transition when the Zeeman field is varied. At the transition, the phase difference in the ground state changes abruptly from a value close to zero, at which the system is trivial, to a value close to π , at which the system is topological. The critical current through the junction exhibits a sharp minimum at the critical Zeeman field and is therefore a natural diagnostic of the transition. We point out that in the presence of a symmetry under a mirror reflection followed by time reversal, the system belongs to a higher symmetry class, and the phase diagram as a function of the phase difference and the Zeeman field becomes richer.
Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics
NASA Astrophysics Data System (ADS)
Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert
2010-03-01
Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.
Terahertz Josephson spectral analysis and its applications
NASA Astrophysics Data System (ADS)
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7‑x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
Quantum interference in topological insulator Josephson junctions
NASA Astrophysics Data System (ADS)
Song, Juntao; Liu, Haiwen; Liu, Jie; Li, Yu-Xian; Joynt, Robert; Sun, Qing-feng; Xie, X. C.
2016-05-01
Using nonequilibrium Green's functions, we studied numerically the transport properties of a Josephson junction, superconductor-topological insulator-superconductor hybrid system. Our numerical calculation shows first that proximity-induced superconductivity is indeed observed in the edge states of a topological insulator adjoining two superconducting leads and second that the special characteristics of topological insulators endow the edge states with an enhanced proximity effect with a superconductor but do not forbid the bulk states to do the same. In a size-dependent analysis of the local current, it was found that a few residual bulk states can lead to measurable resistance, whereas because these bulk states spread over the whole sample, their contribution to the interference pattern is insignificant when the sample size is in the micrometer range. Based on these numerical results, it is concluded that the apparent disappearance of residual bulk states in the superconducting interference process as described by Hart et al. [Nat. Phys. 10, 638 (2014), 10.1038/nphys3036] is just due to the effects of size: the contribution of the topological edge states outweighs that of the residual bulk states.
Magnetoelectrics in disordered topological insulator Josephson junctions
NASA Astrophysics Data System (ADS)
Bobkova, I. V.; Bobkov, A. M.; Zyuzin, Alexander A.; Alidoust, Mohammad
2016-10-01
We study theoretically the coupling of electric charge and spin polarization in an equilibrium and nonequilibrium electric transport across a two-dimensional Josephson configuration comprised of disordered surface channels of a three-dimensional topological insulator. In the equilibrium state of the system, we predict the Edelstein effect, which is much more pronounced than its counterpart in conventional spin-orbit coupled materials. Employing a quasiclassical Keldysh technique, we demonstrate that the ground state of the system can be shifted experimentally into arbitrary macroscopic superconducting phase differences other than the standard "0" or "π ," constituting a ϕ0 junction, solely by modulating a quasiparticle flow injection into the junction. We propose a feasible experiment in which the quasiparticles are injected into the topological insulator surface by means of a normal electrode and voltage gradient so that oppositely oriented stationary spin densities can be developed along the interfaces and allow for direct use of the spin-momentum locking nature of Dirac fermions in the surface channels. The ϕ0 state is proportional to the voltage difference applied between the injector electrode and superconducting terminals that calibrates the injection rate of particles and, therefore, the ϕ0 shift.
Synchronization in Disordered Josephson Junction Arrays
NASA Astrophysics Data System (ADS)
Trees, B. R.; Dissanayake, S. T. M.
2002-03-01
We have studied the dynamics of a ladder array of overdamped Josephson junctions with periodic boundary conditions. The junctions have critical current and resistive disorder, are current biased above the critical current, and their voltages oscillate with nonidentical bare frequencies. We have been interested in the onset of synchronization in the rung junctions of the ladder, in which nearest neighbor interactions of strength α renormalize the bare frequencies to a common value. The degree of synchronization of the array is measured by an order parameter, r (0<= r<= 1), as a function of α and the spread of bare frequencies. For a given frequency spread, a synchronization phase transition is clearly visible with an increase in α. We have also determined that a time-averaged version of the resistively-shunted junction equations can be used as an accurate description of the dynamics of the junctions. The solutions to the averaged equations exhibit phase slips between pairs of junctions for certain ranges of values of α and also demonstrate that the relationship between the array size, N, and the critical coupling strength for the onset of synchronization scales as N^2. This research was partially funded by a grant to Ohio Wesleyan University from the McGregor Foundation to support student research.
Synchronization in Disordered Josephson Junction Arrays
NASA Astrophysics Data System (ADS)
Dissanayake, S. T. M.; Trees, B. R.
2001-10-01
There is considerable scientific and technological interest in the time-dependent behavior of arrays of non-identical Josephson junctions, whose voltages oscillate with individual bare frequencies that can be made, through interactions, to renormalize their frequencies to a common value. We have studied the degree of synchronization of a subset of overdamped junctions in a ladder geometry, in which the voltages across the ``rung'' junctions of the ladder oscillate with the same, renormalized frequency and a fixed phase difference. We measure the degree of synchronization of the junctions with an order parameter, r (0<= r<= 1), as a function of the nearest-neighbor junction coupling strength. We also determined that a time-averaged version of the resistively-shunted junction (RSJ) equations could be used as an accurate description of the dynamics of the junctions. The solutions to the averaged equations exhibit phase slips between pairs of junctions for certain ranges of the junction coupling strength and also demonstrated that the relationship between the array size N and the critical coupling strength for all junctions to oscillate with the same frequency scales as N^2. This research was partially funded by a grant to Ohio Wesleyan University from the McGregor Foundation to support student research.
Memory cell operation based on small Josephson junctions arrays
NASA Astrophysics Data System (ADS)
Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.
2016-12-01
In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.
Cooper pair splitting in parallel quantum dot Josephson junctions
Deacon, R. S.; Oiwa, A.; Sailer, J.; Baba, S.; Kanai, Y.; Shibata, K.; Hirakawa, K.; Tarucha, S.
2015-01-01
Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair. PMID:26130172
Quantum Phase Slips in Topological Josephson Junction Rings
NASA Astrophysics Data System (ADS)
Rodriguez Mota, Rosa; Vishveshwara, Smitha; Pereg-Barnea, Tami
We study quantum phase slip processes (QPS) in a ring of N topological superconducting islands joined by Josephson junctions and threaded by magnetic flux. In this array, neighboring islands interact through the usual charge 2e Josephson tunneling and the Majorana assisted charge e tunneling. When the charging energy associated with the island's capacitance is zero, the energy vs. flux relation of the system is characterized by parabolas centered around even or odd multiples of the superconducting flux quantum, depending on the parity of the system. For small but non-zero charging energy, quantum fluctuations can lead to tunneling between these classical states. In this work, we calculate the amplitude of these tunneling processes, commonly known as quantum phase slips. We also add gate voltages to our system and study how the amplitude of QPS in these topological Josephson array is modified by Aharanov-Casher interference effects.
Internal Josephson effects in spinor dipolar Bose-Einstein condensates
Yasunaga, Masashi; Tsubota, Makoto
2010-02-15
We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose-Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross-Pitaevskii equations and derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0-{pi}, 0-running, running-running, 2n{pi} and running-2{pi}, single nonrigid pendulum, and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.
Cooper pair splitting in parallel quantum dot Josephson junctions.
Deacon, R S; Oiwa, A; Sailer, J; Baba, S; Kanai, Y; Shibata, K; Hirakawa, K; Tarucha, S
2015-07-01
Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair.
Strong-coupling BCS models of Josephson qubits.
Alicki, R; Miklaszewski, W
2013-01-23
The strong-coupling version of the BCS theory for superconductors is used to derive microscopic models for all types of small Josephson junctions--charge qubit, flux qubit and phase qubit. Applied to Josephson qubits it yields a more complicated structure of the lowest-lying energy levels than that obtained from phenomenological models based on quantization of the Kirchhoff equations. In particular, highly degenerate levels emerge, which act as probability sinks for the qubit. The alternative formulae concerning spectra of superconducting qubits are presented and compared with the experimental data. In contrast to the existing theories those formulae contain microscopic parameters of the model. In particular, for the first time, the density of Cooper pairs at zero temperature is estimated for an Al-based flux qubit. Finally, the question whether small Josephson junctions can be treated as macroscopic quantum systems is briefly discussed.
Supercurrents in InSb nanowire Josephson junctions
NASA Astrophysics Data System (ADS)
Chen, Jun; Yu, Peng; Plissard, Sébastien; Car, Diana; Mourik, Vincent; Zuo, Kun; van Woerkom, David; Szombati, Daniel; Kouwenhoven, Leo; Bakkers, Erik; Frolov, Sergey
2014-03-01
Majorana fermions have been predicted in one-dimensional semiconductor nanowires with strong spin-orbit interactions coupled to superconductors. Effects such as odd number Shapiro steps disappearing and critical currents oscillating in magnetic field have been proposed as signatures of Majorana fermions in Josephson junctions. Here we investigate supercurrents in NbTiN-InSb nanowire-NbTiN Josephson junctions as a function of back gate and magnetic field. When an external magnetic field was applied along the nanowire, we observe gate-tunable oscillations in the critical current. To clarify the origin of this oscillating critical current, we are studying the spectra of Shapiro steps, which may give us a better understanding of such Josephson junctions and guide the search for additional signatures of Majorana fermions.
Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions
Massarotti, D.; Pal, A.; Rotoli, G.; Longobardi, L.; Blamire, M. G.; Tafuri, F.
2015-01-01
The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits. PMID:26054495
HTS step-edge Josephson junction terahertz harmonic mixer
NASA Astrophysics Data System (ADS)
Du, Jia; Weily, Andrew R.; Gao, Xiang; Zhang, Ting; Foley, Cathy P.; Guo, Yingjie Jay
2017-02-01
A high-temperature superconducting (HTS) terahertz (THz) frequency down-converter or mixer based on a thin-film ring-slot antenna coupled YBa2Cu3O7-x (YBCO)/MgO step-edge Josephson junction is reported. The frequency down-conversion was achieved using higher order harmonics of an applied lower frequency (19-40 GHz) local oscillator signal in the Josephson junction mixing with a THz signal of over 600 GHz, producing a 1-3 GHz intermediate frequency signal. Up to 31st order of harmonic mixing was obtained and the mixer operated stably at temperatures up to 77 K. The design details of the antenna, HTS Josephson junction mixer, the matching and isolation circuits, and the DC and RF performance evaluation are described in this paper.
Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.
Massarotti, D; Pal, A; Rotoli, G; Longobardi, L; Blamire, M G; Tafuri, F
2015-06-09
The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits.
Novel all-high Tc epitaxial Josephson junction
NASA Astrophysics Data System (ADS)
Chin, D. K.; van Duzer, T.
1991-02-01
Josephson junctions are essential components in high-temperature superconductive integrated circuits. YBaCuO/Nb-doped SrTiO3/YBaCuO epitaxial Josephson junctions have been designed, fabricated, and tested. The YBaCuO and Nb-doped SrTiO3 films were deposited by off-axis sputtering. Both dc and ac Josephson effects have been observed and the supercurrent persists up to 80 K. The critical current density is an exponential function of the barrier layer thickness. The product of critical current and normal resistance is between one and three millivolts. A superconducting quantum interference device made of the junctions displays magnetic field modulation of critical current.
A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy
Jäck, Berthold Eltschka, Matthias; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R.; Hardock, Andreas; Kern, Klaus
2015-01-05
Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10{sup 20 }cm{sup −2} s{sup −1} is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.
Detection of noise-corrupted sinusoidal signals with Josephson junctions
NASA Astrophysics Data System (ADS)
Filatrella, Giovanni; Pierro, Vincenzo
2010-10-01
We investigate the possibility of exploiting the speed and low noise features of Josephson junctions for detecting sinusoidal signals masked by Gaussian noise. We show that the escape time from the static locked state of a Josephson junction is very sensitive to a small periodic signal embedded in the noise, and therefore the analysis of the escape times can be employed to reveal the presence of the sinusoidal component. We propose and characterize two detection strategies: in the first, the initial phase is supposedly unknown (incoherent strategy), while in the second, the signal phase remains unknown but is fixed (coherent strategy). Our proposals are both suboptimal, with the linear filter being the optimal detection strategy, but they present some remarkable features, such as resonant activation, that make detection through Josephson junctions appealing in some special cases.
Statistics of voltage fluctuations in resistively shunted Josephson junctions
NASA Astrophysics Data System (ADS)
Marthaler, Michael; Golubev, Dmitry; Utsumi, Yasuhiro; Schön, Gerd
2011-03-01
The intrinsic nonlinearity of Josephson junctions converts Gaussian current noise in the input into non-Gaussian voltage noise in the output. For a resistively shunted Josephson junction with white input noise we determine numerically exactly the properties of the few lowest cumulants of the voltage fluctuations, and we derive analytical expressions for these cumulants in several important limits. The statistics of the voltage fluctuations is found to be Gaussian at bias currents well above the Josephson critical current, but Poissonian at currents below the critical value. In the transition region close to the critical current the higher-order cumulants oscillate and the voltage noise is strongly non-Gaussian. For coloured input noise we determine the third cumulant of the voltage.
Statistics of voltage fluctuations in resistively shunted Josephson junctions
NASA Astrophysics Data System (ADS)
Golubev, D. S.; Marthaler, M.; Utsumi, Y.; Schön, Gerd
2010-05-01
The intrinsic nonlinearity of Josephson junctions converts Gaussian current noise in the input into non-Gaussian voltage noise in the output. For a resistively shunted Josephson junction with white input noise we determine numerically exactly the properties of the few lowest cumulants of the voltage fluctuations, and we derive analytical expressions for these cumulants in several important limits. The statistics of the voltage fluctuations is found to be Gaussian at bias currents well above the Josephson critical current but Poissonian at currents below the critical value. In the transition region close to the critical current the higher-order cumulants oscillate and the voltage noise is strongly non-Gaussian. For colored input noise we determine the third cumulant of the voltage.
Observation of spin-triplet superconductivity in Co-based Josephson junctions.
Khaire, Trupti S; Khasawneh, Mazin A; Pratt, W P; Birge, Norman O
2010-04-02
We have measured a long-range supercurrent in Josephson junctions containing Co (a strong ferromagnetic material) when we insert thin layers of either PdNi or CuNi weakly ferromagnetic alloys between the Co and the two superconducting Nb electrodes. The critical current in such junctions hardly decays for Co thicknesses in the range of 12-28 nm, whereas it decays very steeply in similar junctions without the alloy layers. The long-range supercurrent is controllable by the thickness of the alloy layer, reaching a maximum for a thickness of a few nm. These experimental observations provide strong evidence for induced spin-triplet pair correlations, which have been predicted to occur in superconducting-ferromagnetic hybrid systems in the presence of certain types of magnetic inhomogeneity.
NASA Astrophysics Data System (ADS)
Park, Sunghun; Recher, Patrik
2015-12-01
A phase from an adiabatic exchange of Majorana bound states (MBS) reveals their exotic anyonic nature. For detecting this exchange phase, we propose an experimental setup consisting of a Corbino geometry Josephson junction on the surface of a topological insulator, in which two MBS at zero energy can be created and rotated. We find that if a metallic tip is weakly coupled to a point on the junction, the time-averaged differential conductance of the tip-Majorana coupling shows peaks at the tip voltages e V =±(α -2 π l )ℏ/TJ, where α =π /2 is the exchange phase of the two circulating MBS, TJ is the half rotation time of MBS, and l an integer. This result constitutes a clear experimental signature of Majorana fermion exchange.
Macroscopic quantum effects in the zero voltage state of the current biased Josephson junction
Clarke, J.; Devoret, M.H.; Martinis, J.; Esteve, D.
1985-05-01
When a weak microwave current is applied to a current-biased Josephson tunnel junction in the thermal limit the escape rate from the zero voltage state is enhanced when the microwave frequency is near the plasma frequency of the junction. The resonance curve is markedly asymmetric because of the anharmonic properties of the potential well: this behavior is well explained by a computer simulation using a resistively shunted junction model. This phenomenon of resonant activation enables one to make in situ measurements of the capacitance and resistance shunting the junction, including contributions from the complex impedance presented by the current leads. For the relatively large area junctions studied in these experiments, the external capacitive loading was relatively unimportant, but the damping was entirely dominated by the external resistance.
Spontaneous symmetry breaking and collapse in bosonic Josephson junctions
Mazzarella, Giovanni; Salasnich, Luca
2010-09-15
We investigate an attractive atomic Bose-Einstein condensate (BEC) trapped by a double-well potential in the axial direction and by a harmonic potential in the transverse directions. We obtain numerically a quantum phase diagram which includes all the three relevant phases of the system: Josephson, spontaneous symmetry breaking (SSB), and collapse. We consider also the coherent dynamics of the BEC and calculate the frequency of population-imbalance mode in the Josephson phase and in the SSB phase up to the collapse. We show that these phases can be observed by using ultracold vapors of {sup 7}Li atoms in a magneto-optical trap.
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers
2014-10-06
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers Kevin O’Brien,1 Chris Macklin,2 Irfan Siddiqi,2 and Xiang Zhang1,3...overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using “resonant...achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of −98 dBm. Such an amplifier is well suited to cryogenic
Radiation due to Josephson oscillations in layered superconductors.
Bulaevskii, L. N.; Koshelev, A. E.; Materials Science Division; LANL
2007-01-01
We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic Josephson junctions of layered superconductors. We consider the superradiation regime for a crystal cut in the form of a thin slice parallel to the c axis. We find that the radiation correction to the current-voltage characteristic in this regime depends only on crystal shape. We show that at a large number of junctions oscillations are synchronized providing high radiation power and efficiency in the terahertz frequency range. We discuss the crystal parameters and bias current optimal for radiation power and crystal cooling.
Radiation due to Josephson oscillations in layered superconductors.
Bulaevskii, L N; Koshelev, A E
2007-08-03
We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic Josephson junctions of layered superconductors. We consider the superradiation regime for a crystal cut in the form of a thin slice parallel to the c axis. We find that the radiation correction to the current-voltage characteristic in this regime depends only on crystal shape. We show that at a large number of junctions oscillations are synchronized providing high radiation power and efficiency in the terahertz frequency range. We discuss the crystal parameters and bias current optimal for radiation power and crystal cooling.
Anomalous Josephson effect in p-wave dirty junctions.
Asano, Yasuhiro; Tanaka, Yukio; Kashiwaya, Satoshi
2006-03-10
The Josephson effect in p-wave superconductor/diffusive normal metal/p-wave superconductor junctions is studied theoretically. Amplitudes of Josephson currents are several orders of magnitude larger than those in s-wave junctions. Current-phase (J-phi) relations in low temperatures are close to those in ballistic junctions such as J proportional to sin(phi/2) and J proportional to phi even in the presence of random impurity potentials. A cooperative effect between the midgap Andreev resonant states and the proximity effect causes such anomalous properties and is a character of the spin-triplet superconductor junctions.
Precision sampling measurements using ac programmable Josephson voltage standards.
Rüfenacht, A; Burroughs, C J; Benz, S P
2008-04-01
We have performed a variety of precision measurements by comparing ac and dc waveforms generated by two independent ac programmable Josephson voltage standard (ACPJVS) systems. The objective of these experiments was to demonstrate the effectiveness of using a sampling digital voltmeter to measure small differences between Josephson waveforms for frequencies up to 3.6 kHz. The low uncertainties that we obtained confirm the feasibility of using this differential sampling method for high accuracy comparisons between ACPJVS waveforms and signals from other sources.
Effect of current injection into thin-film Josephson junctions
Kogan, V. G.; Mints, R. G.
2014-11-11
New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.
Effect of current injection into thin-film Josephson junctions
Kogan, V. G.; Mints, R. G.
2014-11-11
New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ^{2}/d;λ is the bulk London penetration depth of the film material and d is the film thickness.
Delayed pulses from high-transparency Josephson junctions
NASA Astrophysics Data System (ADS)
Xu, Songtao; Mancini, C. A.; Feldman, M. J.
2001-05-01
Calculations of the shape and the timing of single-magnetic-flux quanta (SFQs) generated by high-current-density "self-shunted" Josephson junctions are presented. The junction current is assumed to be due in part to multiple Andreev reflections within the high-transparency barrier. The SFQ pulses from these junctions show several differences when compared to those from lower-current-density resistively shunted Josephson junctions, the most important being that the pulses are significantly delayed in the self-shunted junctions, by as much as many times the pulse width.
Josephson tunnel junctions with chemically vapor deposited polycrystalline germanium barriers
Kroger, H.; Jillie, D.W.; Smith, L.N.; Phaneuf, L.E.; Potter, C.N.; Shaw, D.M.; Cukauskas, E.J.; Nisenoff, M.
1984-03-01
High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V/sub m/ (the product of the critical current and the subgap resistance measured at 2 mV and 4.2 K) ranging between 35--48 mV, ideal threshold curves, a steep current rise at the gap voltage, and Josephson current densities from 100 to 1100 A/cm/sup 2/.
DOE R&D Accomplishments Database
Lee, T. D.
1957-06-01
Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)
NASA Astrophysics Data System (ADS)
Volkoff, Tyler James
In this dissertation, I analyze certain problems in the following areas: 1) quantum dynamical phenomena in macroscopic systems of interacting, degenerate bosons (Parts II, III, and V), and 2) measures of macroscopicity for a large class of two-branch superposition states in separable Hilbert space (Part IV). Part I serves as an introduction to important concepts recurring in the later Parts. In Part II, a microscopic derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3 + 1)D microscopic model with local U(1) gauge symmetry is presented. The effective theory is applied to the transition from linear to sinusoidal current vs. phase behavior observed in recent experiments on liquid 4He driven through nanoaperture arrays. Part III discusses path-integral Monte Carlo (PIMC) numerical simulations of quantum hydrodynamic properties of reservoirs of He II communicating through simple nanoaperture arrays. In addition to calculating the local superfluid density in these systems, new estimators for hydrodynamic observables and novel methods for extracting the length scale characterizing the decay of superfluidity at the system boundary from PIMC data are introduced with the aim of exploring the mechanism of superfluid weak-link formation in nanoscale containers. Part IV consists of an analysis of macroscopicity measures for a large class of Schrodinger cat states of N-mode photonic systems. For cat states of this class, it is shown that a well-known measure of superposition size based on the optimal distinguishability of the branches and another based on metrological usefulness of the superposition relative to its branches agree (i.e., designate the same superpositions as macroscopic) when the inner product of the branches of the superposition is sufficiently small. For certain superpositions in this class, a technique is presented for deriving a state-specific metrological
Collapse in ultracold Bose Josephson junctions
NASA Astrophysics Data System (ADS)
Bilardello, M.; Trombettoni, A.; Bassi, A.
2017-03-01
We investigate how ultracold atoms in double-well potentials can be used to study and put bounds on models describing wave-function collapse. We refer in particular to the continuous spontaneous localization (CSL) model, which is the most well studied among dynamical reduction models. It modifies the Schrödinger equation in order to include the collapse of the wave function in its dynamics. We consider Bose Josephson junctions, where ultracold bosons are trapped in a double-well potential, since they can be experimentally controlled with high accuracy and are suited and used to study macroscopic quantum phenomena on a scale of microns, with a number of particles typically ranging from ˜102-103 to ˜105-106 . We study the CSL dynamics of three atomic states showing macroscopic quantum coherence: the atomic coherent state, the superposition of two atomic coherent states, and the NOON state. We show that for the last two states, the suppression of quantum coherence induced by the CSL model increases exponentially with the number of atoms. We observe that in the case of optically trapped atoms, the spontaneous photon emission of the atoms induces a dynamics similar to the CSL one, and we conclude that magnetically trapped atoms may be more convenient to experimentally test the CSL model. Finally, we discuss decoherence effects in order to provide reasonable estimates on the bounds that it is (or will be) possible to obtain for the parameters of the CSL model in such class of experiments. As an example, we show that a NOON state with N ˜103 with a coherence time of ˜1 s can constrain the CSL parameters in a region where the other systems presently cannot.
Fluctuating pancake vortices revealed by dissipation of Josephson vortex lattice.
Koshelev, A. E.; Buzdin, A. I.; Kakeya, I.; Yamamoto, T.; Kadowaki, K.
2011-06-01
In strongly anisotropic layered superconductors in tilted magnetic fields, the Josephson vortex lattice coexists with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson vortex lattice is very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller than the corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the fluctuational regime either near the surface in large-size samples or in the central region for small-size mesas. We calculate the contribution of such fluctuating pancake vortices to the c-axis conductivity of the Josephson vortex lattice and compare the theoretical results with measurements on small mesas fabricated out of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} crystals. A fingerprint of fluctuating pancakes is a characteristic exponential dependence of the c-axis conductivity observed experimentally. Our results provide strong evidence of the existence of the fluctuating pancakes and their influence on the Josephson vortex lattice dissipation.
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
NASA Technical Reports Server (NTRS)
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
Dayem bridge Josephson junctions. [for millimeter wave mixer
NASA Technical Reports Server (NTRS)
Barr, D. W.; Mattauch, R. J.
1977-01-01
The Josephson junction shows great promise as a millimeter wave mixer element. This paper discusses the physical mixing process from a first-order mathematical approach. Design and fabrication of such structures tailored for use in a 80-120 GHz mixer application is presented. Testing of the structures and a discussion of their interpretation is presented.
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
NASA Technical Reports Server (NTRS)
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
Cherenkov radiation by Josephson vortex travelling in the long sandwich
NASA Astrophysics Data System (ADS)
Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.
2009-03-01
Vortex motion in the long Josephson sandwich embedded in dielectric media is described. It is shown that vortices traveling with velocities greater than the speed of light in the dielectric generate electromagnetic waves. Appearance of radiation is due to Cherenkov phenomenon. Radiation appearing at rather high vortex velocities has high enough frequencies. For typical sandwiches radiation frequencies fall on THz domain.
Josephson flux-flow oscillator: The microscopic tunneling approach
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.
2017-07-01
We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.
Detecting fractional Josephson effect through 4π phase slip
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Tao; Xue, Zheng-Yuan; Yu, Yang
2017-06-01
Fractional Josephson effect is a unique character of Majorana Fermions in topological superconductor system. This effect is very difficult to detect experimentally because of the disturbance of quasiparticle poisoning and unwanted couplings in the superconductor. Here, we propose a scheme to probe the fractional DC Josephson effect of a semiconductor nanowire-based topological Josephson junction through 4π phase slip. By exploiting a topological RF SQUID system we find that the dominant contribution for Josephson coupling comes from the interaction of Majorana Fermions, resulting in a resonant tunneling with 4π phase slip. Our calculations with experimentally reachable parameters show that the time scale for detecting the phase slip is two orders of magnitude shorter than the poisoning time of nonequilibrium quasiparticles. Additionally, with a reasonable nanowire length the 4π phase slip could overwhelm the topological trivial 2π phase slip. Our work is meaningful for exploring the effect of modest quantum fluctuations of the phase of the superconductor on the topological system, and provide a new method for quantum information processing.
Josephson junctions in high-T/sub c/ superconductors
Falco, C.M.; Lee, T.W.
1981-01-14
The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.
Conditions for synchronization in Josephson-junction arrays
Chernikov, A.A.; Schmidt, G.
1995-12-31
An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.
Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2017-01-01
Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640
High-frequency dynamics of hybrid oxide Josephson heterostructures
NASA Astrophysics Data System (ADS)
Komissinskiy, P.; Ovsyannikov, G. A.; Constantinian, K. Y.; Kislinski, Y. V.; Borisenko, I. V.; Soloviev, I. I.; Kornev, V. K.; Goldobin, E.; Winkler, D.
2008-07-01
We summarize our results on Josephson heterostructures Nb/Au/YBa2Cu3Ox that combine conventional (S) and oxide high- Tc superconductors with a dominant d -wave symmetry of the superconducting order parameter (D). The heterostructures were fabricated on (001) and (1 1 20) YBa2Cu3Ox films grown by pulsed laser deposition. The structural and surface studies of the (1 1 20) YBa2Cu3Ox thin films reveal nanofaceted surface structure with two facet domain orientations, which are attributed as (001) and (110)-oriented surfaces of YBa2Cu3Ox and result in S/D(001) and S/D(110) nanojunctions formed on the facets. Electrophysical properties of the Nb/Au/YBa2Cu3Ox heterostructures are investigated by the electrical and magnetic measurements at low temperatures and analyzed within the faceting scenario. The superconducting current-phase relation (CPR) of the heterostructures with finite first and second harmonics is derived from the Shapiro steps, which appear in the I-V curves of the heterostructures irradiated at frequencies up to 100 GHz. The experimental positions and amplitudes of the Shapiro steps are explained within the modified resistive Josephson junction model, where the second harmonic of the CPR and capacitance of the Josephson junctions are taken into account. We experimentally observe a crossover from a lumped to a distributed Josephson junction limit for the size of the heterostructures smaller than Josephson penetration depth. The effect is attributed to the variations of the harmonics of the superconducting CPR across the heterojunction, which may give rise to splintered vortices of magnetic flux quantum. Our investigations of parameters and phenomena that are specific for superconductors having d -wave symmetry of the superconducting order parameter may be of importance for applications such as high-frequency detectors and novel elements of a possible quantum computer.
Topological strings linking with quasiparticle exchange in superconducting Dirac semimetals
NASA Astrophysics Data System (ADS)
Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei
2017-06-01
We demonstrate a topological classification of vortices in three-dimensional time-reversal invariant topological superconductors based on superconducting Dirac semimetals with an s -wave superconducting order parameter by means of a pair of numbers (NΦ,N ) , accounting how many units NΦ of magnetic fluxes h c /4 e and how many N chiral Majorana modes the vortex carries. From these quantities, we introduce a topological invariant, which further classifies the properties of such vortices under linking processes. While such processes are known to be related to instanton processes in a field theoretic description, we demonstrate here that they are, in fact, also equivalent to the fractional Josephson effect on junctions based at the edges of quantum spin Hall systems. This allows one to consider microscopically the effects of interactions in the linking problem. We therefore demonstrate that associated to links between vortices, one has the exchange of quasiparticles, either Majorana zero modes, or e /2 quasiparticles, which allows for a topological classification of vortices in these systems, seen to be Z8 classified. While NΦ and N are shown to be both even or odd in the weakly interacting limit, in the strongly interacting scenario one loosens this constraint. In this case, one may have further fractionalization possibilities for the vortices, whose excitations are described by SO(3) 3 -like conformal field theories with quasiparticle exchanges of more exotic types.
Effects of the environment on the switching current in graphene-based Josephson Junctions
NASA Astrophysics Data System (ADS)
Borzenets, Ivan; Ke, Chung-Ting; Amet, Francois; Tso Wei, Ming; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb
The nature of the switching current and hysteresis (difference between switching and retrapping currents) in graphene-based Josephson junctions depends greatly on the interaction with the environment. Conventional devices result in underdamped Josephson junctions making the true critical current inaccessible. On the other hand, heavily isolating the Josephson junctions places them in the microscopic quantum tunneling regime even at high temperatures, also masking the critical current. We study the critical current, and the switching statistics in graphene Josephson junctions while varying the effects of the environment. Proper isolation of graphene Josephson junctions is necessary to measure the true critical current, especially so for the cases of small currents around the Dirac point. This is true for the case of conventional diffusive as well as the novel ballistic Josephson junctions.
Frequency combs with weakly lasing exciton-polariton condensates.
Rayanov, K; Altshuler, B L; Rubo, Y G; Flach, S
2015-05-15
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak distributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomogeneous line broadening.
High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array
NASA Astrophysics Data System (ADS)
Zhou, X.; Schmitt, V.; Bertet, P.; Vion, D.; Wustmann, W.; Shumeiko, V.; Esteve, D.
2014-06-01
We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of eight superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude gain × bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the nondegenerate mode of operation. Phase-sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.
NASA Astrophysics Data System (ADS)
Itonaga, K.; Motoba, T.
The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.
Mesoscopic Josephson junctions with switchable current-phase relation
NASA Astrophysics Data System (ADS)
Strambini, E.; Bergeret, F. S.; Giazotto, F.
2015-10-01
We propose and analyze a mesoscopic Josephson junction consisting of two ferromagnetic insulator-superconductors (FI-Ss) coupled through a normal metal (N) layer. The Josephson current of the junction is non-trivially affected by the spin-splitting field induced by the FIs in the two superconductors. In particular, it shows sizeable enhancement by increasing the amplitude of the exchange field (hex) and displays a switchable current-phase relation which depends on the relative orientation of h ex in the FIs. In a realistic EuS/Al-based setup this junction can be exploited as a high-resolution threshold sensor for the magnetic field as well as an on-demand tunable kinetic inductor.
Josephson radiation and shot noise of a semiconductor nanowire junction
NASA Astrophysics Data System (ADS)
van Woerkom, David J.; Proutski, Alex; van Gulik, Ruben J. J.; Kriváchy, Tamás; Car, Diana; Plissard, Sébastian R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.; Geresdi, Attila
2017-09-01
We measured the Josephson radiation emitted by an InSb semiconductor nanowire junction utilizing photon-assisted quasiparticle tunneling in an ac-coupled superconducting tunnel junction. We quantify the action of the local microwave environment by evaluating the frequency dependence of the inelastic Cooper-pair tunneling of the nanowire junction and find the zero-frequency impedance Z (0 )=492 Ω with a cutoff frequency of f0=33.1 GHz . We extract a circuit coupling efficiency of η ≈0.1 and a detector quantum efficiency approaching unity in the high-frequency limit. In addition to the Josephson radiation, we identify a shot noise contribution with a Fano factor F ≈1 , consistently with the presence of single electron states in the nanowire channel.
Evidence for nonlocal electrodynamics in planar Josephson junctions.
Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M
2013-09-13
We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.
Dissipation in microwave quantum circuits with hybrid nanowire Josephson elements
NASA Astrophysics Data System (ADS)
Mugnai, D.; Ranfagni, A.; Agresti, A.
2017-04-01
Recent experiments on hybrid Josephson junctions have made the argument a topical subject. However, a quantity which remains still unknown is the tunneling (or response) time, which is strictly connected to the role that dissipation plays in the dynamics of the complete system. A simple way for evaluating dissipation in microwave circuits, previously developed for describing the dynamics of conventional Josephson junctions, is now presented as suitable for application even to non-conventional junctions. The method is based on a stochastic model, as derived from the telegrapher's equation, and is particularly devoted to the case of junctions loaded by real transmission lines. When the load is constituted by lumped-constant circuits, a connection with the stochastic model is also maintained. The theoretical model demonstrated its ability to analyze both classically-allowed and forbidden processes, and has found a wide field of applicability, namely in all cases in which dissipative effects cannot be ignored.
Fractional Josephson effect in number-conserving systems
NASA Astrophysics Data System (ADS)
Cheng, Meng; Lutchyn, Roman
2015-10-01
We study the fractional Josephson effect in a particle-number-conserving system consisting of a quasi-one-dimensional superconductor coupled to a nanowire or an edge carrying e /m fractional charge excitations with m being an odd integer. We show that, due to the topological ground-state degeneracy in the system, the periodicity of the supercurrent on magnetic flux through the superconducting loop is nontrivial, which provides a possibility to detect topological phases of matter by the dc supercurrent measurement. Using a microscopic model for the nanowire and quasi-one-dimensional superconductor, we derived an effective low-energy theory for the system which takes into account effects of quantum phase fluctuations. We discuss the stability of the fractional Josephson effect with respect to the quantum phase slips in a mesoscopic superconducting ring with a finite charging energy.
Josephson ϕ0-junction in nanowire quantum dots
NASA Astrophysics Data System (ADS)
Szombati, D. B.; Nadj-Perge, S.; Car, D.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.
2016-06-01
The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference ϕ between the leads. In the presence of chiral and time-reversal symmetry of the Cooper pair tunnelling process, the current is strictly zero when ϕ vanishes. Only if these underlying symmetries are broken can the supercurrent for ϕ = 0 be finite. This corresponds to a ground state of the junction being offset by a phase ϕ0, different from 0 or π. Here, we report such a Josephson ϕ0-junction based on a nanowire quantum dot. We use a quantum interferometer device to investigate phase offsets and demonstrate that ϕ0 can be controlled by electrostatic gating. Our results may have far-reaching implications for superconducting flux- and phase-defined quantum bits as well as for exploring topological superconductivity in quantum dot systems.
Photonic Josephson effect, phase transitions, and chaos in optomechanical systems
NASA Astrophysics Data System (ADS)
Larson, Jonas; Horsdal, Mats
2011-08-01
A photonic analog of the Josephson effect is analyzed for a system formed by a partly transparent mechanical membrane dividing an optical cavity into two halves. Photons tunneling between the two subcavities constitute the coherent Jospehson current. The force acting upon the membrane due to the light pressure induces a nonlinearity, which results in a rich dynamical structure. For example, contrary to standard bosonic Josephson systems, we encounter chaos. By means of a mean-field approach, we identify the various regimes and corresponding phase diagram. At the short time scale, chaos is demonstrated to prevent regular self-trapping, while for longer times a dissipation-induced self-trapping effect is possible.
Advanced lift-off planarization process for Josephson integrated circuits
Ishida, I.; Tahara, S.; Wada, Y.
1988-07-25
An advanced lift-off planarization process utilizing an undercut technique of a photoresist etching mask has been developed to achieve planarization of thin-sputtered and fine-patterned films that are necessary for high-performance Josephson integrated circuits (IC's). A stack of the same kind of photoresist layers, including the modified layer between them, has been utilized as an etching mask providing fine-patterned film profiles with minimized resist degradation by the top photoresist protection layer. This advanced planarization process brings about smooth surfaces having no residues and no grooves along pattern edges. 30 nm deviation from planarity has been demonstrated on a 200-nm-thick planarized Nb superconducting layer. A four-level interconnection of Josephson IC's was successfully fabricated by this process.
Josephson photonics with a two-mode superconducting circuit
NASA Astrophysics Data System (ADS)
Armour, A. D.; Kubala, B.; Ankerhold, J.
2015-05-01
We analyze the quantum dynamics of two electromagnetic oscillators coupled in series to a voltage-biased Josephson junction. When the applied voltage leads to a Josephson frequency across the junction which matches the sum of the two mode frequencies, tunneling Cooper pairs excite photons in both modes simultaneously leading to far-from-equilibrium states. These states display highly nonclassical features including strong antibunching, violation of Cauchy-Schwartz inequalities, and number squeezing. We obtain approximate analytic results for both the regimes of low and high photon occupancies which are supported by a full numerical treatment. The impact of asymmetries between the two modes is explored, revealing a pronounced enhancement of number squeezing when the modes are damped at different rates.
Josephson effect and nonequilibrium superconductivity in superconducting tunnel structures
NASA Astrophysics Data System (ADS)
Rudenko, E. M.
2012-04-01
Nonequilibrium superconductivity induced by tunnel current injection of quasiparticles is studied. It is found that an instability in the form of a negative voltage jump in the oscillator current-voltage characteristic (CVC), which leads to an inhomogeneous state, as well as the spatial structure of the inhomogeneous state are very sensitive to low magnetic fields. The shape of the CVC of low-resistance tunnel junctions for bias voltages V ≈ 2Δ/e depends strongly on the junction dimensions and barrier transparency. These results are interpreted in terms of Josephson vortices (fluxons) in a tunnel oscillator. Studies of the nonequilibrium phenomena, with the Josephson properties of low-resistance tunnel structures taken into account, reveal a number of new effects, such as nonequilibrium suppression of the energy gap at bias voltages V < 2Δ/e, the possible existence of an entire series of instabilities of the nonequilibrium superconducting state during tunnel injection, and inhomogeneity in the tunnel injector effect.
6 π Josephson Effect in Majorana Box Devices
NASA Astrophysics Data System (ADS)
Zazunov, A.; Buccheri, F.; Sodano, P.; Egger, R.
2017-02-01
We study Majorana devices featuring a competition between superconductivity and multichannel Kondo physics. Our proposal extends previous work on single-channel Kondo systems to a topologically nontrivial setting of a non-Fermi liquid type, where topological superconductor wires (with gap Δ ) represent leads tunnel coupled to a Coulomb-blockaded Majorana box. On the box, a spin degree of freedom with Kondo temperature TK is nonlocally defined in terms of Majorana states. For Δ ≫TK, the destruction of Kondo screening by superconductivity implies a 4 π -periodic Josephson current-phase relation. Using a strong-coupling analysis in the opposite regime Δ ≪TK, we find a 6 π -periodic Josephson relation for three leads, with critical current Ic≈e Δ2/ℏTK, corresponding to the transfer of fractionalized charges e*=2 e /3 .
Dissipation in a simple model of a topological Josephson junction.
Matthews, Paul; Ribeiro, Pedro; García-García, Antonio M
2014-06-20
The topological features of low-dimensional superconductors have created a lot of excitement recently because of their broad range of applications in quantum information and their potential to reveal novel phases of quantum matter. A potential problem for practical applications is the presence of phase slips that break phase coherence. Dissipation in nontopological superconductors suppresses phase slips and can restore long-range order. Here, we investigate the role of dissipation in a topological Josephson junction. We show that the combined effects of topology and dissipation keep phase and antiphase slips strongly correlated so that the device is superconducting even under conditions where a nontopological device would be resistive. The resistive transition occurs at a critical value of the dissipation that is 4 times smaller than that expected for a conventional Josephson junction. We propose that this difference could be employed as a robust experimental signature of topological superconductivity.
Low-Tc Josephson junctions with tailored barrier
NASA Astrophysics Data System (ADS)
Weides, M.; Schindler, C.; Kohlstedt, H.
2007-03-01
Nb/Al2O3/Ni0.6Cu0.4/Nb based superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions with a thickness step in the metallic ferromagnetic Ni0.6Cu0.4 interlayer were fabricated. The step was defined by optical lithography and controlled etching. The step height is on the scale of a few angstroms. Experimentally determined junction parameters by current-voltage characteristics and Fraunhofer pattern indicate uniform ferromagnetic layer thicknesses and the same interface transparencies for etched and nonetched F layers. This technique could be used to tailor low-Tc Josephson junctions having controlled critical current densities at defined parts of the junction area, as needed for tunable resonators, magnetic-field driven electronics, or phase modulated devices.
Exciton-polariton Josephson junctions at finite temperatures.
Lebedev, M E; Dolinina, D A; Hong, Kuo-Bin; Lu, Tien-Chang; Kavokin, A V; Alodjants, A P
2017-08-25
We consider finite temperature effects in a non-standard Bose-Hubbard model for an exciton- polariton Josephson junction (JJ) that is characterised by complicated potential energy landscapes (PEL) consisting of sets of barriers and wells. We show that the transition between thermal activation (classical) and tunneling (quantum) regimes exhibits universal features of the first and second order phase transition (PT) depending on the PEL for two polariton condensates that might be described as transition from the thermal to the quantum annealing regime. In the presence of dissipation the relative phase of two condensates exhibits non-equilibrium PT from the quantum regime characterized by efficient tunneling of polaritons to the regime of permanent Josephson or Rabi oscillations, where the tunneling is suppressed, respectively. This analysis paves the way for the application of coupled polariton condensates for the realisation of a quantum annealing algorithm in presently experimentally accessible semiconductor microcavities possessing high (10(5) and more) Q-factors.
Coexistence of tunneling magnetoresistance and Josephson effects in SFIFS junctions
NASA Astrophysics Data System (ADS)
Vávra, O.; Soni, R.; Petraru, A.; Himmel, N.; Vávra, I.; Fabian, J.; Kohlstedt, H.; Strunk, Ch.
2017-02-01
We demonstrate an integration of tunneling magnetoresistance and the Josephson effects within one tunneling junction. Several sets of Nb-Fe-Al-Al2O3-Fe-Nb wafers with varying Al and Fe layers thickness were prepared to systematically explore the competition of TMR and Josephson effects. A coexistence of the critical current IC(dFe) and the tunneling magnetoresistance ratio T M R(dFe) is observed for iron layer dFe thickness range 1.9 and 2.9 nm. Further optimization such as thinner Al2O3 layer leads to an enhancement of the critical current and thus to an extension of the coexistence regime up to dFe≃3.9 nm Fe.
Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques
NASA Astrophysics Data System (ADS)
Chasse, Dominique
L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous
Electron Transport Through Josephson Junction Containing a Dimeric Structure
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Aksenov, S. V.
2016-12-01
The dc Josephson effect in a superconductor/dimeric molecule/superconductor junction has been investigated by means of the nonequilibrium Green's function method and the Keldysh diagram technique. The application of the atomic representation has allowed to simplify considerably the computation of the supercurrent and occupation numbers and receive the general expressions which take into account all processes of the Andreev reflection in the loopless approach. It is significant that the expressions for the current and occupation numbers are valid for different multilevel structures in the Josephson junction. The sf-exchange interaction between the electron spin and the spins of the dimer leads to the suppression of the critical current due to a new set of Andreev bound states.
Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions
NASA Astrophysics Data System (ADS)
Konschelle, François; Bergeret, F. Sebastián; Tokatly, Ilya V.
2016-06-01
A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials.
Josephson Junction Arrays with Positional Disorder: Experiments and Simulations
1988-02-01
Caislinuo an loe*@*. old* it no.ee.q Aid taoncitI y IOcA flMwb~wJ Josephson junctions Positional disorder Monta Carlo simulations 20. AUSTRACT (Conoidiie an...both experiments and Monte Carlo siimulations. We have fabricated 50 x 50 arrays of Pb/Cu proximity-effect junctions, with controlled positional...However, our experiments show no evidence for the predicted reentrant phase transition. Our Monte Carlo simulations of XY spin systems with positional
Evidence for a minigap in YBCO grain boundary Josephson junctions.
Lucignano, P; Stornaiuolo, D; Tafuri, F; Altshuler, B L; Tagliacozzo, A
2010-10-01
Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.
Identification of the periodic processes in Josephson junctions p
Zagrodzinski, J.
1984-02-01
It is shown that different forms of the same quasiperiodic solution of the sine-Gordon equation can be obtained by applying to the Riemann-theta function a transformation determined by a matrix belonging to a certain subgroup of the symplectic group Sp(g,Z). A few examples important for classification of the processes occurring in the Josephson junction illustrate the essential statement.
Probing phase transitions of vortex matter by Josephson plasma resonance
NASA Astrophysics Data System (ADS)
Matsuda, Yuji
2001-03-01
The vortex matter in high-Tc superconductors exhibits a fascinatingly rich phase diagram with a variety of phase transitions. Recent investigations have revealed that the vortex phase is comprised of three distinct phases; vortex liquid, vortex glass, and Bragg glass. The most direct way to clarify the nature of these vortex phases and the phase transitions among them is to measure the interlayer phase coherence, because the CuO2 layers are connected by the Josephson effect. A most powerful probe for the interlayer phase coherence is the Josephson plasma resonance (JPR) which provides a direct measurement of the Josephson coupling energy U_J. Josephson plasma is a collective oscillation of Cooper pairs through the insulating layers. In Bi_2Sr_2CaCu_2O_8+d with large anisotropy, a very precise determination of UJ is possible because the plasma frequency ω_pl falls within the microwave window. Here we report the detailed and quantitative study of UJ in the vortex liquid, Bragg glass and vortex glass phases of Bi_2Sr_2CaCu_2O_8+d by the JPR. The measurements revealed distinct features in the T- and H-dependencies of ω_pl for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, ω_pl shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.
Quantum Dynamics of a d-wave Josephson Junction
NASA Astrophysics Data System (ADS)
Bauch, Thilo
2007-03-01
Thilo Bauch ^1, Floriana Lombardi ^1, Tobias Lindstr"om ^2, Francesco Tafuri ^3, Giacomo Rotoli ^4, Per Delsing ^1, Tord Claeson ^1 1 Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-412 96 G"oteborg, Sweden. 2 National Physical Laboratory, Queens Road, Teddington, Middlesex TW11 0LW, UK. 3 Istituto Nazionale per la Fisica della Materia-Dipartimento Ingegneria dell'Informazione, Seconda Universita di Napoli, Aversa (CE), Italy. 4 Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Universita of L'Aquila, Localita Monteluco, L'Aquila, Italy. We present direct observation of macroscopic quantum properties in an all high critical temperature superconductor d-wave Josephson junction. Although dissipation caused by low energy excitations is expected to strongly suppress quantum effects we demonstrate macroscopic quantum tunneling [1] and energy level quantization [2] in our d-wave Josephson junction. The results clearly indicate that the role of dissipation mechanisms in high temperature superconductors has to be revised, and may also have consequences for a new class of solid state ``quiet'' quantum bit with superior coherence time. We show that the dynamics of the YBCO grain boundary Josephson junctions fabricated on a STO substrate are strongly affected by their environment. As a first approximation we model the environment by the stray capacitance and stray inductance of the junction electrodes. The total system consisting of the junction and stray elements has two degrees of freedom resulting in two characteristic resonance frequencies. Both frequencies have to be considered to describe the quantum mechanical behavior of the Josephson circuit. [1] T. Bauch et al, Phys. Rev. Lett. 94, 087003 (2005). [2] T. Bauch et al, Science 311, 57 (2006).
Josephson effect without superconductivity: realization in quantum Hall bilayers.
Fogler, M M; Wilczek, F
2001-02-26
We show that a quantum Hall bilayer with the total filling nu = 1 should exhibit a dynamical regime similar to the flux flow in large Josephson junctions. This analogy may explain a conspicuous peak in the interlayer tunneling conductance [Phys. Rev. Lett. 84, 5808 (2000)]. The flux flow is likely to be spatiotemporally chaotic at low-bias voltage, which will manifest itself through broadband noise. The peak position can be controlled by an in-plane magnetic field.
Josephson inplane and tunneling currents in bilayer quantum Hall system
Ezawa, Z. F.; Tsitsishvili, G.; Sawada, A.
2013-12-04
A Bose-Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (–e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν = 1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless in tunneling experiments with various geometries.
Interfaces - Weak Links, Yet Great Opportunities
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.
2011-01-01
Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.
Information display: the weak link for NCW
NASA Astrophysics Data System (ADS)
Gilger, Mike
2006-05-01
The Global Information Grid (GIG) enables the dissemination of real-time data from any sensor/source as well as the distribution of that data immediately to recipients across the globe, resulting in better, faster, and more accurate decisions, reduced operational risk, and a more competitive war-fighting advantage. As a major component of Network Centric Warfare (NCW), the GIG seeks to provide the integrated information infrastructure necessary to connect the robust data streams from ConstellationNet, FORCENet, and LandWarNet to allow Joint Forces to move beyond Situational Awareness and into Situational Understanding. NCW will provide the Joint Forces a common situational understanding, a common operating picture, and any and all information necessary for rapid decision-making. However, with the exception of the 1994 introduction of the Military Standard 2525 "Common Warfighting Symbology," there has been no notable improvement in our ability to display information for accurate and rapid understanding. In fact, one of the notable problems associated with NCW is how to process the massive amount of newly integrated data being thrown at the warfighter: a significant human-machine interface challenge. The solution; a graphical language called GIFIC (Graphical Interface for Information Cognition) that can display thousands of data points simultaneously. Coupled with the new generation COP displays, GIFIC provides for the tremendous amounts of information-display required for effective NCW battlespace awareness requirements, offering instant insight into joint operations, tactical situations, and targeting necessities. GIFIC provides the next level of information-display necessary for a successful NCW, resulting in agile, high-performance, and highly competitive warfighters.
Phenomena in Coupled Superconducting Weak Links.
NASA Astrophysics Data System (ADS)
Neumann, Lawrence George
Interactions between two independently biasable coupled superconducting microbridges were studied. Some bridges were fabricated within 2 (mu)m of each other. Quasiparticles from one bridge affect the other. In a second type of sample, the microbridges were separated by 10 (mu)m and coupled via a resistive shunt. The interaction results from the current flowing through the shunt. Similar effects are seen in both types of samples. In opposed biased bridges, the effective critical current is decreased because of the interaction. For series biased bridges, the effective critical current of one bridge is decreased or increased, depending on the voltage across the other bridge. These interactions lead to voltage steps in the I-V curves where, for opposed biased bridges, both voltages increase; for series bias, one voltage increases, the other decreases. Experimental results are in reasonable agreement with a second-order perturbation calculation and with an analog simulation. Voltage locking is found for both biasing configurations in both types of samples. Locking can occur simultaneously with a voltage step, resulting in nascent voltage locking which can also occur in conjunction with hysteresis. The effect of a voltage in the pad between the two proximity coupled bridges is to vary the voltage at which locking occurs, which in turn alters the shape of the locking curve. Locking range is calculated in two models for comparison with the two types of samples. The first explicitly considers the time delay for propagation of the charge -imbalance wave from one bridge to the other. The second model considers the current flowing in the resistive/inductive coupling shunt. A deviation of the critical current of planar microbridges from a linear temperature dependence can be explained as an effective length effect. Variable thickness bridges show a linear temperature dependence except very near T(,c), where fluctuations are important. The critical current of the one-dimensional indium strips shows a (1 - t('2))('3/2) temperature dependence. A negative resistance region was found in the I-V curve of one strip. It is hypothesized that this is due to increased conductivity at the gap voltage made noticeable by an extremely uniform film.
Supercurrent reversal in Josephson junctions based on bilayer graphene flakes
NASA Astrophysics Data System (ADS)
Rameshti, Babak Zare; Zareyan, Malek; Moghaddam, Ali G.
2015-08-01
We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheets deposited by superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer, the Josephson current is in a π state, if the bilayer region is undoped and there is no vertical bias. Applying doping or bias to the junction reveals π -0 transitions which can be controlled by varying the temperature and the junction length. The supercurrent reversal here is very different from the ferromagnetic Josephson junctions where the spin degree of freedom plays the key role. We argue that the scattering processes accompanied by layer and sublattice index change give rise to the scattering phases, the effect of which varies with doping and bias. Such scattering phases are responsible for the π -0 transitions. On the other hand, if both of the electrodes are coupled to the same layer of the flake or the flake has AA stacking instead of common AB, the junction will be always in 0 state since the layer or sublattice index is not changed.
Thin-film Josephson junctions with alternating critical current density
NASA Astrophysics Data System (ADS)
Moshe, Maayan; Kogan, V. G.; Mints, R. G.
2009-01-01
We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.
Generalized parafermions and nonlocal Josephson effect in multilayer systems
NASA Astrophysics Data System (ADS)
Ebisu, Hiromi; Sagi, Eran; Tanaka, Yukio; Oreg, Yuval
2017-02-01
We theoretically investigate the effects of backscattering and superconducting proximity terms between the edges of two multilayer fractional quantum Hall (FQH) systems. While the different layers are strongly interacting, we assume that tunneling between them is absent. Studying the boundaries between regions gapped by the two mechanisms in an N -layer system, we find N localized zero-mode operators, realizing a generalized parafermionic algebra. We further propose an experiment capable of probing imprints of the generalized parafermionic bound states. This is done by coupling different superconducting contacts to different layers and examining the periodicity of the Josephson effect as a function of the various relative superconducting phases. Remarkably, even if we apply a phase difference between the superconductors in one layer, we induce a Josephson current at the other layers due to interlayer interactions. Furthermore, while the Josephson effect is commonly used to probe only charged degrees of freedom, the possibility of independently controlling the superconducting phase differences between the layers allows us to find imprints of the neutral modes of the underlying multilayer system. In particular, we propose two configurations, one of which is capable of isolating the signal associated with the charge modes while the other probes the neutral modes.
Josephson radiation from InSb-nanowire junction
NASA Astrophysics Data System (ADS)
van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila
Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.
Measurement of Quantum Phase-Slips in Josephson Junction Chains
NASA Astrophysics Data System (ADS)
Guichard, Wiebke
2011-03-01
Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.
Detecting topological superconductivity with φ0 Josephson junctions
NASA Astrophysics Data System (ADS)
Schrade, Constantin; Hoffman, Silas; Loss, Daniel
2017-05-01
The recent experimental discovery of φ0 Josephson junctions by Szombati et al. [Nat. Phys. 12, 568 (2016), 10.1038/nphys3742], characterized by a finite phase offset in the supercurrent, requires the same ingredients as topological superconductors, which suggests a profound connection between these two distinct phenomena. Here, we show that a quantum dot φ0 Josephson junction can serve as a qualitative indicator for topological superconductivity: microscopically, we find that the phase shift in a junction of s -wave superconductors is due to the spin-orbit induced mixing of singly occupied states on the quantum dot, while for a topological superconductor junction it is due to singlet-triplet mixing. Because of this important difference, when the spin-orbit vector of the quantum dot and the external Zeeman field are orthogonal, the s -wave superconductors form a π Josephson junction, while the topological superconductors have a finite offset φ0 by which topological superconductivity can be distinguished from conventional superconductivity. Our prediction can be immediately tested in nanowire systems currently used for Majorana fermion experiments and thus offers a realistic approach for detecting topological bound states.
Fractional Josephson current through a Luttinger liquid with topological excitations
Wang, Rui; Wang, Baigeng Xing, D.Y.
2015-07-15
Recently, the Majorana fermion has received great attentions due to its promising application in the fault-tolerant quantum computation. This application requires more accessible methods to detect the motion and braiding of the Majorana fermions. We use a Luttinger liquid ring to achieve this goal, where the ring geometry is nontrivial in the sense that it leads to fermion-parity-dependent topological excitations. First, we briefly review the essential physics of the Luttinger liquid and the Majorana fermion, in order to give an introduction of the general framework used in the following main work. Then, we theoretically investigated the DC Josephson effect between two topological superconductors via a Luttinger liquid ring. A low-energy effective Hamiltonian is derived to show the existence of the fractional Josephson current. Also, we find that the amplitude of the Josephson current, which is determined by the correlation function of Luttinger liquid, exhibits different behaviors in terms of the parity of Luttinger liquid due to the topological excitations. Our results suggest a possible method to detect the Majorana fermions and their tunneling process.
Josephson Coupling in Nb/SmB6/Nb Junctions
NASA Astrophysics Data System (ADS)
Zhang, Xiaohang; Lee, Seunghun; Drisko, Jasper; Cumings, John; Greene, Richard; Takeuchi, Ichiro
Josephson coupling of superconductors through a topological surface has attracted considerable attention because it may provide device applications of topological insulators with implications for Majorana fermions. However, the results of previous Josephson junction studies on topological insulators have not been fully understood due to complications arising from the conducting bulk and the non-pristine nature of the surfaces/interfaces of the topological insulator materials used. In this work, SmB6 thin films with a highly insulating bulk were adopted to minimize the influence of the bulk carriers while in-situ deposition of Nb film on SmB6 surface was used to ensure the interface quality. The bilayer structure was then patterned into Nb/SmB6/Nb lateral junctions by e-beam lithography and ion milling. The Nb electrodes in our junctions had a typical width of ~1 μm and the gap between the two Nb electrodes was varied from 50 nm to 200 nm. A critical current up to 40 μA has been observed in junctions with a gap around 50 nm at 2.0 K. In this talk, I will discuss the implication of our results to the desired Josephson coupling through topological surface states. This work was supported by NSF under Grant No. DMR-1410665 and conducted at CNAM and at the Maryland NanoCenter.
Graphene-Based Josephson-Junction Single-Photon Detector
NASA Astrophysics Data System (ADS)
Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung
2017-08-01
We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.
Phase transition of dissipative Josephson arrays in a magnetic field
Kampf, A.; Schoen, G.
1988-04-01
The phase diagram of an array of Josephson junctions in a transverse magnetic field is investigated. The capacitive interactions of charges on the superconducting islands and the associated quantum-mechanical effects, as well as the dissipation due to the flow of normal Ohmic currents, are taken into account. The mean-field approximation of this system can be mapped onto the tight-binding Schroedinger equation for Bloch electrons in a magnetic field, which had been analyzed by Hofstadter. We show how the transition temperature depends on the dissipation and the charging energy.
Fabrication and measurement of multi-terminal mesoscopic Josephson junctions
NASA Astrophysics Data System (ADS)
Solovyeva, Natalya; Tetsuya, Mishima; Santos, Michael; Shabani, Javad; Manucharyan, Vladimir
We present fabrication and characterization of 3- and 4-terminal mesoscopic Josephson junctions involving InAs quantum well heterostructures and superconducting Al contacts. A cross-shaped nanowire junction region with dimensions of order a few 100 nm is dry-etched in the 2DEG, followed by deposition of superconducting contacts and gating electrodes. These novel 0D devices have been recently predicted to have topological features in their Andreev spectra and finite-bias transport; they may also be useful in efforts towards observation and braiding of Majorana fermions in the solid state. // This material is based upon work supported by the NSF under Grant No. DMR-1207537.
Current phase relation in nanowire based Josephson junctions
NASA Astrophysics Data System (ADS)
Szombati, Daniel; Nadj-Perge, Stevan; Geresdi, Attila; Mourik, Vincent; Zuo, Kun; Woerkom, David; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo
2015-03-01
Junctions based on small band-gap nanowires are convenient platform for studying Josephson effect in the presence of strong spin-orbit coupling. As predicted by theory, due to the interplay between strong Zeeman interaction and large spin orbing coupling in these nanowires, the critical current and in particular current phase relation exhibits rich set of features in the presence of external magnetic field and electrostatic gating. We study supercurrent transport through Indium Antimonide nanowires contacted using Niobium-Titanium-Nitride leads using both current and phase bias measurements. Our results provide useful insights into superconductor/semiconductor hybrid systems capable of hosting Majorana fermions, potential building blocks for topological quantum computing.
Classical Bifurcation at the Transition from Rabi to Josephson Dynamics
Zibold, Tilman; Nicklas, Eike; Gross, Christian; Oberthaler, Markus K.
2010-11-12
We report on the experimental demonstration of the internal bosonic Josephson effect in a rubidium spinor Bose-Einstein condensate. The measurement of the full time dynamics in phase space allows the characterization of the theoretically predicted {pi}-phase modes and quantitatively confirms analytical predictions, revealing a classical bifurcation. Our results suggest that this system is a model system which can be tuned from classical to the quantum regime and thus is an important step towards the experimental investigation of entanglement generation close to critical points.
Model for large arrays of Josephson junctions with unconventional superconductors
NASA Astrophysics Data System (ADS)
Khveshchenko, D. V.; Crooks, R.
2011-10-01
We study large arrays of mesoscopic junctions made out of gapless unconventional superconductors where the tunneling processes of both particle-hole and Cooper pairs give rise to a strongly retarded effective action which, contrary to the standard case, cannot be readily characterized in terms of a local Josephson energy. This action can be relevant, for example, to grain boundary and c-axis junctions in layered high-Tc superconductors. By using a particular functional representation, we describe emergent collective phenomena in this system, ascertain its phase diagram, and compute electrical conductivity.
Strong environmental coupling in a Josephson parametric amplifier
Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.
2014-06-30
We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.
New fluxon resonant mechanism in annular Josephson tunnel structures.
Nappi, C; Lisitskiy, M P; Rotoli, G; Cristiano, R; Barone, A
2004-10-29
A novel dynamical state has been observed in the dynamics of a perturbed sine-Gordon system. This resonant state has been experimentally observed as a singularity in the dc current-voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. In this respect it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps. This occurs because the size of nonlinear excitations is comparable with that of the system.
Coherent Josephson phase qubit with a single crystal silicon capacitor
NASA Astrophysics Data System (ADS)
Patel, U.; Gao, Y.; Hover, D.; Ribeill, G. J.; Sendelbach, S.; McDermott, R.
2013-01-01
We have incorporated a single crystal silicon shunt capacitor into a Josephson phase qubit. The capacitor is derived from a commercial silicon-on-insulator wafer. Bosch reactive ion etching is used to create a suspended silicon membrane; subsequent metallization on both sides is used to form the capacitor. The superior dielectric loss of the crystalline silicon leads to a significant increase in qubit energy relaxation times. T1 times up to 1.6 μs were measured, more than a factor of two greater than those seen in amorphous phase qubits. The design is readily scalable to larger integrated circuits incorporating multiple qubits and resonators.
Observation of Soliton Fusion in a Josephson Array
Pfeiffer, J.; Schuster, M.; Abdumalikov, A.A. Jr.; Ustinov, A.V.
2006-01-27
The behavior of topological solitons in a parallel array of a Josephson junction is studied experimentally. We observe the fusion of two relativistic 2{pi} solitons of the same polarity into a single 4{pi} soliton. The 4{pi} soliton carries two quanta of magnetic flux and, most strikingly, travels 18% faster than an ordinary 2{pi} soliton under the same driving force. We also find a variety of bunched states composed of 2{pi} solitons of the same polarity, moving with fixed separation.
Microwave quantum refrigeration based on the Josephson effect
NASA Astrophysics Data System (ADS)
Solinas, Paolo; Bosisio, Riccardo; Giazotto, Francesco
2016-06-01
We present a microwave quantum refrigeration principle based on the Josephson effect. When a superconducting quantum interference device (SQUID) is pierced by a time-dependent magnetic flux, it induces changes in the macroscopic quantum phase and an effective finite bias voltage appears across the SQUID. This voltage can be used to actively cool, well below the lattice temperature, one of the superconducting electrodes forming the interferometer. The achievable cooling performance combined with the simplicity and scalability intrinsic to the structure pave the way to a number of applications in quantum technology.
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers
NASA Astrophysics Data System (ADS)
O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang
2014-10-01
We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nanomechanical elements, as well as traditional astronomical detectors.
Soft nanostructuring of YBCO Josephson junctions by phase separation.
Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F
2010-12-08
We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries.
Strong environmental coupling in a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Sundqvist, K. M.; Cleland, A. N.; Martinis, John M.
2014-06-01
We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the "pumpistor" model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.
Selective niobium anodization process for fabricating Josephson tunnel junctions
Kroger, H.; Smith, L.N.; Jillie, D.W.
1981-08-01
A novel process for fabricating refractory sperconducting tunnel junctions is described, which is useful with both deposited and native oxide barriers. The distinguishing feature of the method is that the entire superconductor-barrier-superconductor sandwich is formed before the patterning of any layer. Isolated Josephson junctions are then formed by anodizing through the upper electrode, while the devices themselves are protected by a photoresist mask. Using this process, Nb-Si:H-Nb junctions have been fabricated, whose product of critical current and subgap resistance exceeds 10 mV and whose critical current density varies by about 50% over a 2-in. diameter wafer.
Single-quasiparticle trapping in aluminum nanobridge Josephson junctions.
Levenson-Falk, E M; Kos, F; Vijay, R; Glazman, L; Siddiqi, I
2014-01-31
We present microwave measurements of a high quality factor superconducting resonator incorporating two aluminum nanobridge Josephson junctions in a loop shunted by an on-chip capacitor. Trapped quasiparticles (QPs) shift the resonant frequency, allowing us to probe the trapped QP number and energy distribution and to quantify their lifetimes. We find that the trapped QP population obeys a Gibbs distribution above 75 mK, with non-Poissonian trapping statistics. Our results are in quantitative agreement with the Andreev bound state model of transport, and demonstrate a practical means to quantify on-chip QP populations and validate mitigation strategies in a cryogenic environment.
Adjustable Josephson Coupler for Transmon Qubit Measurement
NASA Astrophysics Data System (ADS)
Jeffrey, Evan
2015-03-01
Transmon qubits are measured via a dispersive interaction with a linear resonator. In order to be scalable this measurement must be fast, accurate, and not disrupt the state of the qubit. Speed is of particular importance in a scalable architecture with error correction as the measurement accounts for substantial portion of the cycle time and waiting time associated with measurement is a major source of decoherence. We have found that measurement speed and accuracy can be improved by driving the qubit beyond the critical photon number ncrit = Δ/4g by a factor of 2-3 without compromising the QND nature of the measurement. While it is expected that such strong drive will cause qubit state transitions, we find that as long as the readout is sufficiently fast, those transitions are negligible, however they grow rapidly with time, and are not described by a simple rate. Measuring in this regime requires parametric amplifiers with very high saturation power, on the order of -105 dBm in order to avoid losing SNR when increasing the power. It also requires a Purcell filter to allow fast ring-up and ring-down. Adjustable couplers can be used to further increase the measurement performance, by switching the dispersive interaction on and off much faster than the cavity ring-down time. This technique can also be used to investigate the dynamics of the qubit cavity interaction beyond the weak dispersive limit ncavity >=ncrit not easily accessible to standard dispersive measurement due to the cavity time constant.
Signatures of time-reversal-invariant topological superconductivity in the Josephson effect
NASA Astrophysics Data System (ADS)
Mellars, Ehren; Béri, Benjamin
2016-11-01
For Josephson junctions based on s -wave superconductors, time-reversal symmetry is known to allow for powerful relations between the normal-state junction properties, the excitation spectrum, and the Josephson current. Here we provide analogous relations for Josephson junctions involving one-dimensional time-reversal-invariant topological superconductors supporting Majorana-Kramers pairs, considering both topological-topological and s -wave-topological junctions. Working in the regime where the junction is much shorter than the superconducting coherence length, we obtain a number of analytical and numerical results that hold for arbitrary normal-state conductance and the most general forms of spin-orbit coupling. The signatures of topological superconductivity we find include the fractional ac Josephson effect, which arises in topological-topological junctions provided that the energy relaxation is sufficiently slow. We also show, for both junction types, that robust signatures of topological superconductivity arise in the dc Josephson effect in the form of switches in the Josephson current due to zero-energy crossings of Andreev levels. The junction spin-orbit coupling enters the Josephson current only in the topological-topological case and in a manner determined by the switch locations, thereby allowing quantitative predictions for experiments with the normal-state conductance, the induced gaps, and the switch locations as inputs.
Theory of coherent c-axis Josephson tunneling between layered superconductors
Arnold, G. B.; Klemm, R. A.
2000-07-01
We calculate exactly the Josephson current for c-axis coherent tunneling between two layered superconductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling Hamiltonian. Our results are also correct for strong tunneling. However, the c-axis tunneling expressions of Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we consider the c-axis coherent critical current between two identical layered superconductors twisted an angle {phi}{sub 0} about the c axis with respect to each other. Regardless of the order-parameter symmetry, our coherent tunneling results using a tight-binding intralayer quasiparticle dispersion are inconsistent with the recent c-axis twist bicrystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} twist junction experiments of Li et al. [Li et al., Phys. Rev. Lett. 83, 4160 (1999)]. (c) 2000 The American Physical Society.
Lin, Z R; Inomata, K; Koshino, K; Oliver, W D; Nakamura, Y; Tsai, J S; Yamamoto, T
2014-07-25
The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.
Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio; Matsumoto, Hideki
2009-06-12
Using the functional integral method, we construct a theory of heterotic superconductor-insulator-superconductor Josephson junctions between one- and two-gap superconductors. The theory predicts the presence of in-phase and out-of-phase collective oscillation modes of superconducting phases. The former corresponds to the Josephson plasma mode whose frequency is drastically reduced for +/- s-wave symmetry, and the latter is a counterpart of Leggett's mode in Josephson junctions. We also reveal that the critical current and the Fraunhofer pattern strongly depend on the symmetry type of the two-gap superconductor.
Theory of operation of high temperature Josephson fluxon-antifluxon transistor
Terzioglu, E.; Beasley, M.R.; Zhang, Y.M.; Berkowitz, S.J.
1996-11-01
We provide two qualitative models for the operation of Josephson fluxon{endash}antifluxon transistor based on the pendulum model and image currents induced in the junction. This device, which is a variant of a Josephson vortex flow transistor, utilizes high temperature superconductor long Josephson junctions with a control line on top of the junction. Our models are consistent with the experimental observation that the coupling efficiency increases with this geometry. We also provide a quantitative model using numerical simulations to confirm the static and dynamic characteristics predicted by the intuitive models. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
de Lange, G.; van Heck, B.; Bruno, A.; van Woerkom, D. J.; Geresdi, A.; Plissard, S. R.; Bakkers, E. P. A. M.; Akhmerov, A. R.; DiCarlo, L.
2015-09-01
We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively shunted single elements behave as transmon circuits with electrically tunable transition frequencies. Two-element circuits also exhibit transmonlike behavior near zero applied flux but behave as flux qubits at half the flux quantum, where nonsinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in a magnetic field.
Two-channel Kondo physics in a Majorana island coupled to a Josephson junction
NASA Astrophysics Data System (ADS)
Landau, L. A.; Sela, E.
2017-01-01
We study a Majorana island coupled to a bulk superconductor via a Josephson junction and to multiple external normal leads. In the absence of the Josephson coupling, the system displays a topological Kondo state, which had been largely studied recently. However, we find that this state is unstable even to small Josephson coupling, which instead leads at low temperature T to a new fixed point. Most interesting is the case of three external leads, forming a minimal electronic realization of the long sought two-channel Kondo effect. While the T =0 conductance corresponds to simple resonant Andreev reflection, the leading T dependence forms an experimental fingerprint for non-Fermi-liquid properties.
Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers.
Flowers-Jacobs, Nathan E; Fox, Anna E; Dresselhaus, Paul D; Schwall, Robert E; Benz, Samuel P
2016-09-01
The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.
Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers
Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.
2016-01-01
The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676
What happens in Josephson junctions at high critical current densities
NASA Astrophysics Data System (ADS)
Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.
2017-07-01
The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.
A codimension-two point associated with coupled Josephson junctions
NASA Astrophysics Data System (ADS)
Aronson, D. G.; Doedel, E. J.; Terman, D. H.
1997-09-01
The dynamics of a pair of identical Josephson junctions coupled through a shared purely capacitive load are governed by a two-parameter system of two second-order nonlinear ordinary differential equations. Numerical simulations have shown that this system possesses many different running and periodic solutions. Continuation studies using AUTO indicate that many of these solution branches are generated by a codimension-2 connection which occurs at a particular parameter point. In this paper, we first describe these calculations in detail. We then study a general two-parameter system whose properties reflect some of those found in our numerical studies of the Josephson junction system. In particular, our model system is assumed to possess an appropriate codimension-2 connection, and we prove that its unfolding generates a large variety of codimension-1 connection curves. These results, combined with the particular symmetry and periodicity properties of the junction equations, account for all of the numerically observed solution branches. Indeed, the theoretical analysis predicted the existence of branches which were not initially observed, but which were subsequently found.
Vortex noise and fluctuation conductivity in Josephson-junction arrays
NASA Astrophysics Data System (ADS)
Hwang, Ing-Jye; Stroud, D.
1998-03-01
We study the vortex number noise Sv(ω) and fluctuation conductivity σ1(ω) in two-dimensional Josephson-junction arrays at three different applied magnetic fields, corresponding to zero, one-half, and 124 of a flux quantum per plaquette (f=0, 12 and 124). Sv and σ1 are obtained by numerically solving the equations for the coupled overdamped resistively-shunted-junction model with Langevin noise to simulate the effects of temperature. In all three cases, we find that Sv(ω)~ω-3/2 at high frequencies ω and flattens out to become frequency independent at low ω, indicative of vortex diffusion, while σ1~ω-2 at sufficiently high ω and ~ω0 at low frequencies. Both quantities show clear evidence of critical slowing down and a simplified scaling behavior near the normal-to-superconducting transitions at f=0 and f=12, indicating that the vortex diffusion coefficient is approaching zero and the charge-carrier relaxation time is diverging at these temperatures. At f=124, there is no clear phase transition; instead, the vortex diffusion coefficient diminishes continuously as the temperature is lowered towards zero. The critical slowing down of Sv(ω), but not its frequency dependence, is in agreement with recent experiments on the flux noise SΦ(ω) in Josephson-junction arrays, which show a 1/ω frequency dependence. We speculate about some possible reasons for the absence of a 1/ω frequency regime.
Two Superconducting Charge Qubits Coupled by a Josephson Inductance
NASA Astrophysics Data System (ADS)
Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen
2007-03-01
When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.
Novel 0-π transitions in Josephson junctions between noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Liu, Jun-Feng; Zhang, Huan; Wang, Jun
2016-09-01
We study the Josephson effect between two noncentrosymmetric superconductors (NCSs) with opposite polarization vectors of Rashba spin-orbit coupling (RSOC). We find a 0-π transition driven by the triplet-singlet ratio of NCSs. Different from conventional 0-π transitions, the Andreev bound states change their energy range instead of phase shift in the 0-π transition found here. This novel property results in a feature that the critical current becomes almost zero at the transition point, not only a minimum. Furthermore, when the directions of RSOC polarization vectors are the same in two NCSs, the similar effect can also be found in the presence of a perpendicular exchange field or a Dresselhause spin-orbit coupling in the interlayer. We find novel oscillations of critical current without 0-π transition. These novel 0-π transitions or oscillations of critical current present new understanding of the Josephson effect and can also serve as a tool to determine the unknown triplet-singlet ratio of NCSs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204187 and 11274059).
Tunable ground states in helical p-wave Josephson junctions
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao
2016-07-01
We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg-Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.
Voltage tunable differential heterodyne spectroscopy in the far-infrared with Josephson junctions
NASA Technical Reports Server (NTRS)
Ulrich, B. T.
1978-01-01
The basic methods of differential heterodyne spectroscopy with Josephson junctions are described. A technique is outlined for bridging the gap between a local oscillator frequency and a signal frequency through the use of a voltage-tunable internal oscillation frequency in a Josephson junction structure. It is shown that an intermediate frequency can be converted to a conveniently low frequency by double frequency conversion carried out directly in a Josephson junction. The expected conversion efficiency is estimated qualitatively. Experiments are discussed in which the differential heterodyne frequency-conversion technique was demonstrated at a wavelength of 0.4 mm and a voltage-tunable oscillation in a double Josephson junction structure was observed, with oscillation line widths as narrow as 0.5 Hz, for a resistance of 3.3 nanohms and an estimated inductance of the order of 1 nH.
Shape Waves in 2D Josephson Junctions: Exact Solutions and Time Dilation
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Kusmartsev, F. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco
2008-09-01
We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal analytical expression for the energy of arbitrary shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically moving Josephson vortex and suggest an experiment to measure a time dilation effect analogous to that in special relativity.
Shape waves in 2D Josephson junctions: exact solutions and time dilation.
Gulevich, D R; Kusmartsev, F V; Savel'ev, Sergey; Yampol'skii, V A; Nori, Franco
2008-09-19
We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal analytical expression for the energy of arbitrary shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically moving Josephson vortex and suggest an experiment to measure a time dilation effect analogous to that in special relativity.
Dicke-Josephson effect in a cross-typed triple-quantum-dot junction
NASA Astrophysics Data System (ADS)
Wang, Xiao-Qi; Yi, Guang-Yu; Gong, Wei-Jiang
2016-12-01
We investigate the Dicke-Josephson effect in a superconductor/triple-quantum-dot/superconductor junction in which the central dot is coupled to the superconductors. It is found that the Dicke effect can modulate the Josephson effect in a nontrivial way. In the noninteracting case, the Dicke effect induces a subpeak in the supercurrent spectrum around the energy zero point. When intradot interactions are taken into account, the role of the Dicke effect changes completely. Namely, it tends to suppress the π-phase current near the position of electron-hole symmetry. With the increase of the Coulomb strength, it has an opportunity to reverse the current direction. We thus conclude that the Dicke-Josephson effect is also an important part in describing the Josephson effect in coupled-dot junctions.
NASA Astrophysics Data System (ADS)
Malishevskiĭ, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskiĭ, S. G.
2007-06-01
It is demonstrated that when the velocity of vortices in a Josephson junction magnetically coupled to a waveguide approaches the limits of the allowed ranges, the relative contribution of the Cherenkov losses to the transport current density increases drastically.
Optimised conversion efficiency of a HTS MMIC Josephson down-converter
NASA Astrophysics Data System (ADS)
Du, J.; Bai, D. D.; Zhang, T.; Guo, Y. Jay; He, Y. S.; Pegrum, C. M.
2014-10-01
A high-Tc superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson down-converter that approaches zero conversion loss is reported. The all-HTS YBa2Cu3O7-x thin-film circuit consists of a step-edge Josephson junction mixer, a 10-12 GHz bandpass filter for the RF input, a lowpass filter for the IF output and a resonant strip line for local oscillator isolation; all are integrated on a single 10 mm × 20 mm MgO substrate. The DC characteristics of the junction and its mixing properties have been experimentally studied and compared to the results of (a) a single Josephson mixer without the on-chip HTS filters, and (b) our previously reported MMIC down-converter which had very different junction characteristics. The Josephson junction parameters are analysed to give insight into their effect on the mixer performance.
Josephson effect in low-capacitance superconductor--normal-metal--superconductor systems
Bauernschmitt, R.; Siewert, J.; Nazarov, Y.V.; Odintsov, A.A. )
1994-02-01
The transport properties of a small superconductor--normal-metal--superconducting tunnel junction can be controlled by a gate electrode coupled capacitively to the central island. We evaluate the critical Josephson current [ital I][sub [ital c
NASA Astrophysics Data System (ADS)
Hikino, S.; Yunoki, S.
2015-07-01
We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization
NASA Astrophysics Data System (ADS)
Grabon, Nicholas; Solovyeva, Natalya; Nguyen, Long; Lin, Yen-Hsiang; Manucharyan, Vladimir
Linear chains of tightly packed Josephson junctions can realize a very high kinetic inductance circuit element, superinductance, with minimal losses. Superinductance is used in a conventional fluxonium qubit, but it has also been put forward as a key element of a fault-tolerant quantum circuits toolbox. We report fabrication and microwave characterization of linear Al/AlOx/Al Josephson tunnel junction chains and discuss their advantages and limitations as superinductors
Controlled dynamics of sine-Gordon breather in long Josephson junctions
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Gaifullin, M. B.; Kusmartsev, F. V.
2012-01-01
We describe a method of controlled creation and detection of breathers in long Josephson Junctions. We show how a breather can be detected and investigated by measuring switching of the current biased Josephson junction to a resistive state. The complete theoretical description of the switching events associated with the decay of a breather into a fluxon-antifluxon pair is developed. Eventually, we propose several designs of the systems where breathers can be observed.
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Gaifullin, M.; Kusmartseva, O. E.; Kusmartsev, F. V.; Hirata, K.
2008-09-01
We propose a device able to generate trains of Josephson fluxons without application of external magnetic field - fluxon pump. The pulses of individual fluxons are generated by cloning single fluxons trapped inside a reservoir. When an electric current is applied, a flow of fluxons is generated in the long attachment connected to the reservoir of fluxons. The role of a reservoir is played by Josephson junctions in the form of a loop where one or several fluxons are permanently trapped.
2016-11-17
ar X iv :1 60 9. 01 33 0v 1 [ co nd -m at .s up r- co n] 5 S ep 2 01 6 Critical Current Oscillations of Josephson Junctions Containing PdFe...shaped Josephson junctions containing Pd97Fe3 layers of varying thickness. By applying an external magnetic field, the critical current of the junctions...are found to follow characteristic Fraunhofer patterns. The maximum value of the critical current , extracted from the Fraunhofer patterns, oscillates
Role of phonons in Josephson oscillations of excitonic and polaritonic condensates
Magnusson, E. B.; Flayac, H.; Malpuech, G.; Shelykh, I. A.
2010-11-15
We analyze theoretically the role of the exciton-phonon interactions in phenomena related to the Josephson effect between two spatially separated exciton and exciton-polariton condensates. We consider the role of the dephasing introduced by phonons in such phenomena as Josephson tunneling, self-trapping and spontaneous polarization separation. In the regime of cw pumping we find a remarkable bistability effect arising from exciton-exciton interactions as well as regimes of self-sustained regular and chaotic oscillations.
Simulations of chaos generation from Josephson junctions with various junction parameters
NASA Astrophysics Data System (ADS)
Hiwatashi, R.; Tamura, Y.; Shimakage, H.
2017-07-01
It is well known that voltage waveforms between electrodes of Josephson junctions under irradiation of a microwave behave chaos characteristics under appropriate conditions. In order to apply the chaos to a random number generator, we have been studying Josephson chaos by simulations. In the simulation, the Josephson junction is assumed to fabricate with YBCO materials. We used a RCSJ model in order to present an equivalent circuit of the Josephson junction, and derived a derivative equation. Lyapunov exponents, which determined if the state of the Josephson junction was chaotic or not, were calculated from time evolutions of voltages obtained from the equation. In the simulation, junction parameters were assigned feasible values for an actual YBCO Josephson junctions. As a result, we found that chaos can be generated by adjusting element parameters. Moreover, we found that there were lower limits in the resistance values for generation of chaos. In addition, we found that frequency margins, at which the chaos was obtained, were broadened by decrease of the resistance and increase of capacitance.
Microwave response and photon emission of a voltage baised Josephson junction
NASA Astrophysics Data System (ADS)
Jebari, Salha; Grimm, Alexander; Hazra, Dibyendu; Hofheinz, Max
The readout of superconducting qubits requires amplifiers combining noise close to the quantum limit, high gain, large bandwidth, and sufficient dynamic range. Josephson parametric amplifiers using Josephson junctions in the 0-voltage state, driven by a large microwave signals, begin to perform sufficiently well in all 4 of these aspects to be of practical use, but remain difficult to optimize and use. Recent experiments with superconducting circuits consisting of a DC voltage-biased Josephson junction in series with a resonator, showed that a tunneling Cooper pair can emit one or several photons with a total energy of 2e times the applied voltage. We present microwave reflection measurements on this device indicating that amplification is possible with a simple DC voltage-biased Josephson junction. We compare these measurements with the noise power emitted by the junction and show that, for low Josephson energy, transmission and noise emission can be explained within the framework of P(E) theory of inelastic Cooper pair tunneling. Combined with a theoretical model, our results indicate that voltage-biased Josephson junctions might be useful for amplification near the quantum limit, offering simpler design and a different trade-off between gain, bandwidth and dynamic range.
Light-modulated 0-π transition in a silicene-based Josephson junction
NASA Astrophysics Data System (ADS)
Zhou, Xingfei; Jin, Guojun
2016-10-01
We investigate the Andreev bound states (ABSs) and Josephson current in a silicene-based superconductor-normal-superconductor junction modulated by a perpendicular electric field and an off-resonant circularly polarized light. Based on the Dirac-Bogoliubov-de Gennes equation, we analytically derive the ABS levels and show they have different phase-difference dependences, which will remarkably influence the velocity of Cooper pairs and then the Josephson current. In the pristine or gated silicene, the ABS levels always show negative slope, which means that the Josephson current is irreversible because of the time-reversal symmetry. When an off-resonant circularly polarized light is applied, whether or not there is a perpendicular electric field, the ABS levels will have positive slope, leading to the emergence of reversed Josephson current due to the nonzero center-of-mass wave vector of Cooper pairs. In this light-modulated silicene-based Josephson junction, valley polarization provides an alternative mechanism for 0-π transition, very different from that for the conventional ferromagnetic Josephson junctions where the spin polarization is essential.
Hall, L.J. California Univ., Berkeley, CA . Dept. of Physics)
1990-11-12
An introduction to the ideas and current state of weak scale supersymmetry is given. It is shown that LEP data on Z decays has already excluded two of the most elegant models of weak scale supersymmetry. 14 refs.
NASA Astrophysics Data System (ADS)
Hui, Hoi-Yin; Sau, Jay D.
2017-01-01
Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative Josephson effect must necessarily be 8 π periodic.
Characteristics of strong ferromagnetic Josephson junctions with epitaxial barriers
NASA Astrophysics Data System (ADS)
Bell, C.; Loloee, R.; Burnell, G.; Blamire, M. G.
2005-05-01
We present the measurement of superconductor/ferromagnetic Josephson junctions, based on an epitaxial Nb bottom electrode and epitaxial Fe20Ni80 barrier. Uniform junctions have been fabricated with a barrier thicknesses in the range 2-12nm . The maximum critical current density ˜2.4±0.2×109Am-2 was found for a device with a 3-nm -thick barrier at 4.2K , corresponding to an average characteristic voltage ICRN˜16μV . The ICRN showed a nonmonotonic behavior with Fe20Ni80 thickness. The variation of the resistance of a unit area ARN , of the junctions with barrier thickness gave a Nb/Py specific interface resistance of 6.0±0.5fΩm2 and Fe20Ni80 resistivity of 174±50nΩm , consistent with other studies in polycrystalline samples.
Observing Majorana bound states of Josephson vortices in topological superconductors
Grosfeld, Eytan; Stern, Ady
2011-01-01
In recent years there has been an intensive search for Majorana fermion states in condensed matter systems. Predicted to be localized on cores of vortices in certain nonconventional superconductors, their presence is known to render the exchange statistics of bulk vortices non-Abelian. Here we study the equations governing the dynamics of phase solitons (fluxons) in a Josephson junction in a topological superconductor. We show that the fluxon will bind a localized zero energy Majorana mode and will consequently behave as a non-Abelian anyon. The low mass of the fluxon, as well as its experimentally observed quantum mechanical wave-like nature, will make it a suitable candidate for vortex interferometry experiments demonstrating non-Abelian statistics. We suggest two experiments that may reveal the presence of the zero mode carried by the fluxon. Specific experimental realizations will be discussed as well. PMID:21730165
Suspended metal mask techniques in Josephson junction fabrication
Ono, R.H.; Sauvageau, J.E.; Jain, A.K.; Schwartz, D.B.; Springer, K.T.; Lukens, J.E.
1985-01-01
We report here two processes for in-situ, self-aligned fabrication of niobium based Josephson tunnel junctions and SNS microbridges in which multiple evaporations at varying angles are made through a suspended metal stencil fabricated by electron beam lithography (EBL). Both techniques have proved superior to earlier all-polymer suspended masks, particularly with e-gun evaporated refractory metals such as niobium. The first process uses a trilevel resist and ion milling to pattern a gold stencil suspended on PMMA. In the second process, an aluminum stencil suspended on polyimide (PI) is patterned by lift-off with an EBL mask written in a PMMA layer on top of the PI. The PI is then undercut using an oxygen plasma etch through the aluminum mask. Reproducible ( +- 20 nm) submicrometer dimensions and good junction characteristics have been achieved using these techniques without the need for difficult-to-control surface cleaning procedures.
High-efficiency thermal switch based on topological Josephson junctions
NASA Astrophysics Data System (ADS)
Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.
2017-02-01
We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.
High-performance passive microwave survey on Josephson junctions
Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M.
1994-12-31
The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.
Majorana dc Josephson current mediated by a quantum dot.
Xu, Luting; Li, Xin-Qi; Sun, Qing-Feng
2017-05-17
The Josephson supercurrent through a hybrid Majorana-quantum dot-Majorana junction is investigated. We particularly analyze the effect of spin-selective coupling between the Majorana and quantum dot states, which only emerges in the topological phase and will influence the current through bent junctions and/or in the presence of magnetic fields in the quantum dot. We find that the characteristic behavior of the supercurrent through this system is quite counterintuitive, differing remarkably from the resonant tunneling, e.g. through the similar (normal phase) superconductor-quantum dot-superconductor junction. Our analysis is carried out under the influence of the full set-up parameters and for both the [Formula: see text] and [Formula: see text] periodic currents. The present study is expected to be relevant to the future exploration of applications of Majorana-nanowire circuits.
Josephson phase diffusion in the superconducting quantum interference device ratchet
NASA Astrophysics Data System (ADS)
Spiechowicz, Jakub; Łuczka, Jerzy
2015-05-01
We study diffusion of the Josephson phase in the asymmetric superconducting quantum interference device (SQUID) subjected to a time-periodic current and pierced by an external magnetic flux. We analyze a relation between phase diffusion and quality of transport characterized by the dc voltage across the SQUID and efficiency of the device. In doing so, we concentrate on the previously reported regime [J. Spiechowicz and J. Łuczka, New J. Phys. 17, 023054 (2015)] for which efficiency of the SQUID attains a global maximum. For long times, the mean-square displacement of the phase is a linear function of time, meaning that diffusion is normal. Its coefficient is small indicating rather regular phase evolution. However, it can be magnified several times by tailoring experimentally accessible parameters like amplitudes of the ac current or external magnetic flux. Finally, we prove that in the deterministic limit this regime is essentially non-chaotic and possesses an unexpected simplicity of attractors.
Thermal depinning of fluxons in discrete Josephson rings
Mazo, J. J.; Naranjo, F.; Segall, K.
2008-11-01
We study the thermal depinning of single fluxons in rings made of Josephson junctions. Due to thermal fluctuations a fluxon can be excited from its energy minima and move through the array, causing a voltage across each junction. We find that for the initial depinning, the fluxon behaves as a single particle and follows a Kramers-type escape law. However, under some conditions this single-particle description breaks down. At low values of the discreteness parameter and low values of the damping, the depinning rate is larger than what the single-particle result would suggest. In addition, for some values of the parameters the fluxon can undergo low-voltage diffusion before switching to the high-voltage whirling mode. This type of diffusion is similar to phase diffusion in a single junction but occurs without frequency-dependent damping. We study the switching to the whirling state as well.
Vortex dynamics in an annular Josephson ratchet ladder
NASA Astrophysics Data System (ADS)
Lee, Ki Ho
2016-11-01
We present numerically the motion of vortices placed in an annular Josephson ladder which has a periodic ratchet potential along the annular direction. The ratchet characteristics are provided by assigning both alternate critical currents and alternate plaquette areas. The vortices are subject to an external current applied uniformly from each superconducting grain in the inner ring to each grain in the outer ring. The current-voltage (I-V) curves show asymmetric features because of the spatially broken symmetry of the potential. When an alternating current is added to the external current, Shapiro steps appear in the I-V curves, showing asymmetric values of the step widths and on-set currents. For a certain range of the alternating currents, vortices rotate to the easy direction, even at zero driving current, that corresponds to the direction away from the steep slope and toward the gentle slope of the ratchet potential.
Observation of the Bloch oscillations in an ultrasmall Josephson junction
Kuzmin, L.S.; Haviland, D.B. Laboratory of Cryoelectronics, Physics Department, Moscow State University, Moscow 119 899 GSP )
1991-11-11
We have studied the low-temperature behavior of lead-alloy Josephson tunnel junctions with area {ital S}{approx}0.01 {mu}m{sup 2}, isolated from their electromagnetic environment by high-resistance metallic resistors inserted into the current and voltage leads. Under irradiation with microwaves frequencies, {ital f}=3.5--10 GHz, the dc differential resistance {ital dV}/{ital dI}, as a function of the dc current {ital I}, showed peaks at {ital I}={plus minus}2{ital ef}. This effect, and other observations, arises due to the periodic electrical recharging of the junction by discrete Cooper pairs, and can be explained by the orthodox'' theory of Bloch oscillations.
Optimization of spin-triplet supercurrent in ferromagnetic Josephson junctions.
Klose, Carolin; Khaire, Trupti S; Wang, Yixing; Pratt, W P; Birge, Norman O; McMorran, B J; Ginley, T P; Borchers, J A; Kirby, B J; Maranville, B B; Unguris, J
2012-03-23
We have observed long-range spin-triplet supercurrents in Josephson junctions containing ferromagnetic (F) materials, which are generated by noncollinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet and two outer thin F layers. Here we show that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane field. This occurs because the synthetic antiferromagnet undergoes a "spin-flop" transition, whereby the two Co layer magnetizations end up nearly perpendicular to the magnetizations of the two thin F layers. We report direct experimental evidence for the spin-flop transition from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry. These results represent a first step toward experimental control of spin-triplet supercurrents.
Josephson phase diffusion in the superconducting quantum interference device ratchet
Spiechowicz, Jakub; Łuczka, Jerzy
2015-05-15
We study diffusion of the Josephson phase in the asymmetric superconducting quantum interference device (SQUID) subjected to a time-periodic current and pierced by an external magnetic flux. We analyze a relation between phase diffusion and quality of transport characterized by the dc voltage across the SQUID and efficiency of the device. In doing so, we concentrate on the previously reported regime [J. Spiechowicz and J. Łuczka, New J. Phys. 17, 023054 (2015)] for which efficiency of the SQUID attains a global maximum. For long times, the mean-square displacement of the phase is a linear function of time, meaning that diffusion is normal. Its coefficient is small indicating rather regular phase evolution. However, it can be magnified several times by tailoring experimentally accessible parameters like amplitudes of the ac current or external magnetic flux. Finally, we prove that in the deterministic limit this regime is essentially non-chaotic and possesses an unexpected simplicity of attractors.
The current-phase relation in HTS Josephson junctions
NASA Astrophysics Data System (ADS)
Il'ichev, E.; Zakosarenko, V.; Ijsselsteijn, R. P. J.; Schultze, V.; Meyer, H.-G.; Hoenig, H. E.
The current-phase relation of YBa2Cu3O7-x step-edge as well as 24° and 45° grain boundary Josephson junctions has been investigated experimentally. The junctions were incorporated into a washer-shaped superconducting ring with inductance L≈80-300 pH. The ring was inductively coupled to a tank circuit with a resonance frequency 9…40 MHz. The current-phase relation was obtained from the measurement of the impedance of the phase-biased junction. It is shown, that experimentally observed deviations from harmonic behavior of the apparent current-phase relation for step-edge and 24° grain boundary junctions can be explained by the influence of thermal noise. The current-phase relation of 45° grain boundary junctions was found to be extremely non-harmonic. The reasons of this unusual behavior are discussed.
Spatial variation of the current in grain boundary Josephson junctions
Carmody, M.; Moeckly, B. H.; Merkle, K. L.; Marks, L. D.
2000-03-01
The spatial variation of the current across the boundary in several YBa{sub 2}Cu{sub 3}O{sub 7-x} grain boundary Josephson junctions was determined using direct methods. A phase retrieval algorithm was used to calculate the positional critical current density J(x) from critical current versus applied magnetic field, I{sub c}(B), measurements. The current distributions were highly nonuniform along the length of the junctions. These measurements are consistent with existing filamentary grain boundary models, low temperature scanning microscopy studies, and laser scanning microscopy studies of high T{sub c} grain boundaries. The very large scatter in the critical currents reported in the literature for grain boundaries of the same macroscopic geometry appear to be due to the underlying variations in local critical currents. (c) 2000 American Institute of Physics.
Quasi-optical Josephson-junction oscillator arrays
NASA Technical Reports Server (NTRS)
Stern, J. A.; Leduc, H. G.; Zmuidzinas, J.
1993-01-01
Josephson junctions are natural voltage-controlled oscillators capable of generating submillimeter-wavelength radiation, but a single junction usually can produce only 100 nW of power and often has a broad spectral linewidth. The authors are investigating 2D quasi-optical power combining arrays of 103 and 104 NbN/MgO/NbN and Nb/Al-AlO(x)/Nb junctions to overcome these limitations. The junctions are dc-biased in parallel and are distributed along interdigitated lines. The arrays couple to a resonant mode of a Fabry-Perot cavity to achieve mutual phase-locking. The array configuration has a relatively low impedance, which should allow the capacitance of the junctions to be tuned out at the oscillation frequency.
Manipulating Josephson junctions in thin-films by nearby vortices
Kogan, V G; Mints, R G
2014-07-01
It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.
Dispersive Thermometry with a Josephson Junction Coupled to a Resonator
NASA Astrophysics Data System (ADS)
Saira, O.-P.; Zgirski, M.; Viisanen, K. L.; Golubev, D. S.; Pekola, J. P.
2016-08-01
We embed a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range of 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 μ K /√{Hz } . At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.
Devil's staircases and continued fractions in Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Medvedeva, S. Yu.; Botha, A. E.; Kolahchi, M. R.; Irie, A.
2013-12-01
Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic radiation show the devil's staircase within different bias current intervals. We have found that the observed steps form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil's staircase to higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by Dayem and Wiegand [Phys. Rev. 155, 419 (1967), 10.1103/PhysRev.155.419] and Clarke [Phys. Rev. B 4, 2963 (1971), 10.1103/PhysRevB.4.2963] also form continued fractions.
All-MgB2 Josephson tunnel junctions
NASA Astrophysics Data System (ADS)
Ueda, K.; Saito, S.; Semba, K.; Makimoto, T.; Naito, M.
2005-04-01
Sandwich-type all-MgB2 Josephson tunnel junctions (MgB2/AlOx/MgB2) have been fabricated with as-grown MgB2 films formed by molecular-beam epitaxy. The junctions exhibit substantial superconducting current (IcRN product ˜0.8mV at 4.2 K), a well-defined superconducting gap (Δ=2.2-2.3mV), and clear Fraunhofer patterns. The superconducting gap voltage of Δ agrees well with the smaller gap in the multigap scenario. The results demonstrate that MgB2 has great promise for superconducting electronics that can be operated at T ˜20K.
Squeezing and quantum state engineering with Josephson travelling wave amplifiers
NASA Astrophysics Data System (ADS)
Grimsmo, Arne L.; Blais, Alexandre
2017-06-01
We develop a quantum theory describing the input-output properties of Josephson traveling wave parametric amplifiers. This allows us to show how such a device can be used as a source of nonclassical radiation, and how dispersion engineering can be used to tailor gain profiles and squeezing spectra with attractive properties, ranging from genuinely broadband spectra to "squeezing combs" consisting of a number of discrete entangled quasimodes. The device's output field can furthermore be used to generate a multi-mode squeezed bath-a powerful resource for dissipative quantum state preparation. In particular, we show how it can be used to generate continuous variable cluster states that are universal for measurement based quantum computing. The favorable scaling properties of the preparation scheme makes this a promising path towards continuous variable quantum computing in the microwave regime.
The a.c. Josephson effect without superconductivity
Gaury, Benoit; Weston, Joseph; Waintal, Xavier
2015-01-01
Superconductivity derives its most salient features from the coherence of the associated macroscopic wave function. The related physical phenomena have now moved from exotic subjects to fundamental building blocks for quantum circuits such as qubits or single photonic modes. Here we predict that the a.c. Josephson effect—which transforms a d.c. voltage Vb into an oscillating signal cos (2eVbt/ħ)—has a mesoscopic counterpart in normal conductors. We show that when a d.c. voltage Vb is applied to an electronic interferometer, there exists a universal transient regime where the current oscillates at frequency eVb/h. This effect is not limited by a superconducting gap and could, in principle, be used to produce tunable a.c. signals in the elusive 0.1–10-THz ‘terahertz gap’. PMID:25765929
High-performance passive microwave survey on Josephson Junctions
NASA Technical Reports Server (NTRS)
Denisov, A. G.; Radzikhovsky, V. N.; Kudeliya, A. M.
1995-01-01
The quasi-optical generations of images of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However, at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted so that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET (field effect transistors) or SQUIDS for signal amplifications after JJ is of particular interest in this case.
Multi-terminal Josephson junctions as topological matter
NASA Astrophysics Data System (ADS)
Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S.; Nazarov, Yuli V.
Topological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to <= 3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide novel realizations of topology in n - 1 dimensions, which have similarities, but also marked differences with existing 2D or 3D topological materials. For n >= 4 , the Andreev subgap spectrum of the junction can accommodate Weyl singularities in the space of the n - 1 independent superconducting phases, which play the role of bandstructure quasimomenta. The presence of these Weyl singularities enables topological transitions that are manifested experimentally as changes of the quantized transconductance between two voltage-biased leads, the quantization unit being 4e2 / h .
Multi-terminal Josephson junctions as topological matter
NASA Astrophysics Data System (ADS)
Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S.; Nazarov, Yuli V.
2016-04-01
Topological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to <=3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide novel realizations of topology in n-1 dimensions, which have similarities, but also marked differences with existing 2D or 3D topological materials. For n>=4, the Andreev subgap spectrum of the junction can accommodate Weyl singularities in the space of the n-1 independent superconducting phases, which play the role of bandstructure quasimomenta. The presence of these Weyl singularities enables topological transitions that are manifested experimentally as changes of the quantized transconductance between two voltage-biased leads, the quantization unit being 4e2/h, where e is the electric charge and h is the Planck constant.
Optimal control of quantum superpositions in a bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Lapert, M.; Ferrini, G.; Sugny, D.
2012-02-01
We show how to optimally control the creation of quantum superpositions in a bosonic Josephson junction within the two-site Bose-Hubbard-model framework. Both geometric and purely numerical optimal-control approaches are used, the former providing a generalization of the proposal of Micheli [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.67.013607 67, 013607 (2003)]. While this method is shown not to lead to significant improvements in terms of time of formation and fidelity of the superposition, a numerical optimal-control approach appears more promising, as it allows creation of an almost perfect superposition, within a time short compared to other existing protocols. We analyze the robustness of the optimal solution against atom-number variations. Finally, we discuss the extent to which these optimal solutions could be implemented with state-of-the-art technology.
Parallel arrays of Josephson junctions for submillimeter local oscillators
NASA Technical Reports Server (NTRS)
Pance, Aleksandar; Wengler, Michael J.
1992-01-01
In this paper we discuss the influence of the DC biasing circuit on operation of parallel biased quasioptical Josephson junction oscillator arrays. Because of nonuniform distribution of the DC biasing current along the length of the bias lines, there is a nonuniform distribution of magnetic flux in superconducting loops connecting every two junctions of the array. These DC self-field effects determine the state of the array. We present analysis and time-domain numerical simulations of these states for four biasing configurations. We find conditions for the in-phase states with maximum power output. We compare arrays with small and large inductances and determine the low inductance limit for nearly-in-phase array operation. We show how arrays can be steered in H-plane using the externally applied DC magnetic field.
Multi-terminal Josephson junctions as topological matter.
Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S; Nazarov, Yuli V
2016-04-04
Topological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to ≤3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide novel realizations of topology in n-1 dimensions, which have similarities, but also marked differences with existing 2D or 3D topological materials. For n≥4, the Andreev subgap spectrum of the junction can accommodate Weyl singularities in the space of the n-1 independent superconducting phases, which play the role of bandstructure quasimomenta. The presence of these Weyl singularities enables topological transitions that are manifested experimentally as changes of the quantized transconductance between two voltage-biased leads, the quantization unit being 4e(2)/h, where e is the electric charge and h is the Planck constant.
Multi-terminal Josephson junctions as topological matter
Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S.; Nazarov, Yuli V.
2016-01-01
Topological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to ≤3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide novel realizations of topology in n−1 dimensions, which have similarities, but also marked differences with existing 2D or 3D topological materials. For n≥4, the Andreev subgap spectrum of the junction can accommodate Weyl singularities in the space of the n−1 independent superconducting phases, which play the role of bandstructure quasimomenta. The presence of these Weyl singularities enables topological transitions that are manifested experimentally as changes of the quantized transconductance between two voltage-biased leads, the quantization unit being 4e2/h, where e is the electric charge and h is the Planck constant. PMID:27040917
Anisotropic Andreev reflection and Josephson effect in ballistic phosphorene
NASA Astrophysics Data System (ADS)
Linder, Jacob; Yokoyama, Takehito
2017-04-01
We study Andreev reflection and the Josephson effect in a ballistic monolayer of black phosphorous, known as phosphorene. Due to the anisotropic band structure of this system, the supercurrent changes with an order of magnitude when comparing tunneling along two perpendicular directions in the monolayer. We show that the main reason for this effect is a large difference in the number of transverse modes in Andreev bound states. The oscillatory behavior of the supercurrent as a function of the length and chemical potential of the junction also differs substantially depending on the orientation of the superconducting electrodes deposited on the phosphorene sheet. For Andreev reflection, we show that gate voltaging controls the probability of this process and that the anisotropic behavior found in the supercurrent case is also present for conductance spectra.
Topological transconductance quantization in a four-terminal Josephson junction
NASA Astrophysics Data System (ADS)
Eriksson, Erik; Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S.; Nazarov, Yuli V.
2017-02-01
Recently we predicted that the Andreev bound-state spectrum of four-terminal Josephson junctions may possess topologically protected zero-energy Weyl singularities, which manifest themselves in a quantized transconductance in units of 4 e2/h when two of the terminals are voltage biased [R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov, Nature Commun. 7, 11167 (2016), 10.1038/ncomms11167]. Here, using the Landauer-Büttiker scattering theory, we compute numerically the currents flowing through such a structure in order to assess the conditions for observing this effect. We show that the voltage below which the transconductance becomes quantized is determined by the interplay of nonadiabatic transitions between Andreev bound states and inelastic relaxation processes. We demonstrate that the topological quantization of the transconductance can be observed at voltages of the order of 10-2Δ /e ,Δ being the the superconducting gap in the leads.
Resonant tunneling in small current-biased Josephson Junctions
Schmidt, John Mark
1994-05-01
Effects of resonant tunneling between bound quantum states of a current-biased Josephson tunnel junction is studied both theoretically and experimentally. Several effects are predicted to arise from resonant tunneling, including a series of voltage peaks along the supercurrent branch of the current-voltage characteristic, and enhanced rate of escape from zero voltage state to voltage state at particular values of bias current. A model is developed to estimate magnitude and duration of voltage peaks, and to estimate enhancement of the escape rate, which appears as peaks in the rate as a function of bias current. An experimental investigation was carried out in an attempt to observe these predicted peaks in the escape rate distribution in a current-biased DC SQUID, which is shown to be dynamically equivalent to a Josephson junction with adjustable critical current. Electrical contact to each SQUID (fabricated from aluminium) was made through high resistance thin film leads located on the substrate. These resistors provided a high impedance at the plasma frequency which is for the isolation of the SQUID from its electromagnetic environment. Measurements were carried out on a dilution refrigerator at temperatures as low as 19 mK. No evidence was found for resonant tunneling; this is attributed to effective temperatures of hundreds of millikelvin. The behavior is well explained by a heating model where the high effective temperatures are generated by ohmic heating of the electron gas of the isolation resistors, which decouples from the phonon system (hot electron effect). The prospects for further theoretical and experimental research are discussed.
High-performance DC SQUIDs with submicrometer niobium Josephson junctions
de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.
1983-11-01
We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.
Chaos and related nonlinear noise phenomena in Josephson tunnel junctions
Miracky, R.F.
1984-07-01
The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10/sup 6/ K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10/sup 3/ K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ..omega../sub p/ and a mode at the half harmonic ..omega../sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references.
Simultaneous quasiparticle and Josephson tunneling in BSCCO-2212 break junctions.
Ozyuzer, L.
1998-10-27
Tunneling measurements are reported for superconductor-insulator-superconductor (SIS) break junctions on underdoped, optimally-doped, and overdoped single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212). The junction I-V characteristics exhibit well-defined quasiparticle current jumps at eV = 2A as well as hysteretic Josephson currents. The quasiparticle branch has been analyzed in the framework of d{sub x{sup 2}-y{sup 2}} (d-wave) superconductivity and indicates that there is preferential tunneling along the lobe directions of the d-wave gap. For overdoped Bi-2212 with T{sub c} = 62 K, the Josephson current is measured as a function of junction resistance, R{sub n}, which varied by two orders of magnitude (1 k{Omega} to 100 k{Omega}). I{sub c}R{sub n} product is proportional to the 0.47 power of I{sub c} and displays a maximum of 7.0 mV. When the hole doping is decreased from overdoped (T{sub c} = 62 K) to the underdoped regime (T{sub c} = 70 K), the average I{sub c}R{sub n} product increases as does the quasiparticle gap. The maximum I{sub c}R{sub n} is {approximately} 40% of the {Delta}/e at each doping level, with a value as high as 25 mV in underdoped Bi-2212.
Postselected weak measurement beyond the weak value
Geszti, Tamas
2010-04-15
Closed expressions are derived for the quantum measurement statistics of pre- and postselected Gaussian particle beams. The weakness of the preselection step is shown to compete with the nonorthogonality of postselection in a transparent way. The approach is shown to be useful in analyzing postselection-based signal amplification, allowing measurements to be extended far beyond the range of validity of the well-known Aharonov-Albert-Vaidman limit. Additionally, the present treatment connects postselected weak measurement to the topic of phase-contrast microscopy.
NASA Astrophysics Data System (ADS)
Ming, Bin
Josephson junctions are at the heart of any superconductor device applications. A SQUID (Superconducting Quantum Interference Device), which consists of two Josephson junctions, is by far the most important example. Unfortunately, in the case of high-Tc superconductors (HTS), the quest for a robust, flexible, and high performance junction technology is yet far from the end. Currently, the only proven method to make HTS junctions is the SrTiO3(STO)-based bicrystal technology. In this thesis we concentrate on the fabrication of YBCO step-edge junctions and SQUIDs on sapphire. The step-edge method provides complete control of device locations and facilitates sophisticated, high-density layout. We select CeO2 as the buffer layer, as the key step to make device quality YBCO thin films on sapphire. With an "overhang" shadow mask produced by a novel photolithography technique, a steep step edge was fabricated on the CeO2 buffer layer by Ar+ ion milling with optimized parameters for minimum ion beam divergence. The step angle was determined to be in excess of 80° by atomic force microscopy (AFM). Josephson junctions patterned from those step edges exhibited resistively shunted junction (RSJ) like current-voltage characteristics. IcR n values in the 200--500 mV range were measured at 77K. Shapiro steps were observed under microwave irradiation, reflecting the true Josephson nature of those junctions. The magnetic field dependence of the junction Ic indicates a uniform current distribution. These results suggest that all fabrication processes are well controlled and the step edge is relatively straight and free of microstructural defects. The SQUIDs made from the same process exhibit large voltage modulation in a varying magnetic field. At 77K, our sapphire-based step-edge SQUID has a low white noise level at 3muphi0/ Hz , as compared to typically >10muphi0/ Hz from the best bicrystal STO SQUIDS. Our effort at device fabrication is chiefly motivated by the scanning SQUID
Shunted Josephson tunnel junctions: High-frequency, self-pumped low noise amplifiers
NASA Astrophysics Data System (ADS)
Calander, N.; Claeson, T.; Rudner, S.
1982-07-01
The high-frequency amplification properties of transformer coupled, resistively shunted Josephson tunnel junctions have been investigated. The importance of the shunt loop inductance is stressed. It allows a high cutoff frequency, of significance for good high-frequency performance. The self-pumped parametric amplifier showed none of the excessive noise rise, which has hitherto plagued the development of externally pumped Josephson junction amplifiers. Around 10 GHz, we estimated a noise temperature less than 30 K for an amplifier pumped by a Josephson oscillation with a frequency well above twice the signal frequency. The corresponding gain of 5 dB may be increased in a better impedance matched circuit. The gain was very stable against variations in the bias conditions. A gain-bandwidth product as high as 0.3 was registered. The experimental results agreed well with the established theory for self-pumped parametric Josephson amplifiers. It should be possible to extend the low noise amplification by this device to mm wave frequencies. A relaxation oscillation occurred at a subharmonic of the Josephson frequency when the shunt loop inductance became large. The amplification in this mode followed closely the predictions of a simple model, where the signal modulated the switching of the sawtooth-like (relatively low frequency) relaxation current. Gains of about 15 dB were measured around 10 GHz, but the amplification was sensitive to bias conditions and noisy in this case where the relaxation frequency fell well below the signal frequency. Much improved properties were registered when the inductance was decreased so that the relaxation frequency approached the Josephson frequency and exceeded twice the signal frequency. The behavior then resembled that of a Josephson mode parametric amplifier, but the high content of harmonics of a relaxation oscillation meant that the amplifier became noisier due to converted noise from the many idler frequencies.
Aperiodic Weak Topological Superconductors.
Fulga, I C; Pikulin, D I; Loring, T A
2016-06-24
Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.
0-π Transition Driven by Magnetic Proximity Effect in a Josephson Junction
NASA Astrophysics Data System (ADS)
Hikino, Shin-ichi; Yunoki, Seiji
2015-02-01
We theoretically study the Josephson effect in a superconductor/normal metal/superconductor (S/N/S) Josephson junction composed of s-wave Ss with N which is sandwiched by two ferromagnetic insulators (Fs), forming a spin valve, in the vertical direction of the junction. We show that the 0-π transition of the Josephson critical current occurs with increasing the thickness of N along the junction. This transition is due to the magnetic proximity effect (MPE) which induces ferromagnetic magnetization in the N. Moreover, we find that, even for fixed thickness of N, the proposed Josephson junction with the spin valve can be switched from π to 0 states and vice versa by varying the magnetization configuration (parallel or antiparallel) of two Fs. We also examine the effect of spin-orbit scattering on the Josephson critical current and argue that the 0-π transition found here can be experimentally observed within the current nanofabrication techniques, thus indicating a promising potential of this junction as a 0-π switching device operated reversibly with varying the magnetic configuration in the spin valve by, e.g., applying an external magnetic field. Our results not only provide possible applications in superconducting electronics but also suggest the importance of a fundamental concept of MPE in nanostructures of multilayer N/F systems.
Josephson current in Fe-based superconducting junctions: Theory and experiment
NASA Astrophysics Data System (ADS)
Burmistrova, A. V.; Devyatov, I. A.; Golubov, Alexander A.; Yada, Keiji; Tanaka, Yukio; Tortello, M.; Gonnelli, R. S.; Stepanov, V. A.; Ding, Xiaxin; Wen, Hai-Hu; Greene, L. H.
2015-06-01
We present a theory of the dc Josephson effect in contacts between Fe-based and spin-singlet s -wave superconductors. The method is based on the calculation of temperature Green's function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba 1 -xKx (FeAs) 2 point-contact Josephson junctions are consistent with theoretical predictions for s± symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as Sr2RuO4 and the superconducting topological insulator CuxBi2Se3 .
Phase diagram of Josephson junction between s and s± superconductors in the dirty limit
NASA Astrophysics Data System (ADS)
Koshelev, A. E.
2012-12-01
The s± state in which the order parameter has different signs in different bands is a leading candidate for the superconducting state in the iron-based superconductors. We investigate a Josephson junction between s and s± superconductors within microscopic theory. Frustration, caused by interaction of the s-wave gap parameter with the opposite-sign gaps of the s± superconductor, leads to nontrivial phase diagram. When the partial Josephson coupling energy between the s-wave superconductor and one of the s± bands dominates, s-wave gap parameter aligns with the order parameter in this band. In this case, the partial Josephson energies have different signs corresponding to signs of the gap parameters. In the case of strong frustration, corresponding to almost complete compensation of the total Josephson energy, a nontrivial time-reversal-symmetry breaking (TRSB) state realizes. In this state, all gap parameters become essentially complex. As a consequence, this state provides realization for so-called ϕ-junction with finite phase difference in the ground state. The width of the TRSB state region is determined by the second harmonic in Josephson current, ∝sin(2ϕ), which appears in the second order with respect to the boundary transparency. Using the microscopic theory, we establish a range of parameters where different states are realized. Our analysis shows insufficiency of the simple phenomenological approach for treatment of this problem.
Intrinsic Josephson Junctions in the Superconducting Compound Fe (Se_{1-x }Tex )y
NASA Astrophysics Data System (ADS)
Ionov, Aleksander N.; Melekh, Bernard A.-T.
2016-12-01
Transport of Cooper pairs in the direction perpendicular to the layers of an Fe (Se_{0.3 }Te_{0.7})_{0.9} superconductor proceeds through the weak link via the proximity effect. We observed radiation from the chalcogen Fe (Se_{0.3 }Te_{0.7})_{0.9} superconductor in its resistive state.
NASA Astrophysics Data System (ADS)
Tollaksen, Jeff; Aharonov, Yakir
2006-03-01
We introduce a new type of weak measurement which yields a quantum average of weak values that is robust, outside the range of eigenvalues, extends the valid regime for weak measurements, and for which the probability of obtaining the pre- and post-selected ensemble is not exponentially rare. This result extends the applicability of weak values, shifts the statistical interpretation previously attributed to weak values and suggests that the weak value is a property of every pre- and post-selected ensemble. We then apply this new weak measurement to Hardy's paradox. Usually the paradox is dismissed on grounds of counterfactuality, i.e., because the paradoxical effects appear only when one considers results of experiments which do not actually take place. We suggest a new set of measurements in connection with Hardy's scheme, and show that when they are actually performed, they yield strange and surprising outcomes. More generally, we claim that counterfactual paradoxes point to a deeper structure inherent to quantum mechanics characterized by weak values (Aharonov Y, Botero A, Popescu S, Reznik B, Tollaksen J, Physics Letters A, 301 (3-4): 130-138, 2002).
NASA Astrophysics Data System (ADS)
Martínez Torres, David; Miranda, Eva
2017-05-01
In this paper we generalize constructions of non-commutative integrable systems to the context of weakly Hamiltonian actions on Poisson manifolds. In particular we prove that abelian weakly Hamiltonian actions on symplectic manifolds split into Hamiltonian and non-Hamiltonian factors, and explore generalizations in the Poisson setting.
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Kusmartsev, F. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco
2009-09-01
We predict a class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line of an arbitrary profile. We derive a universal analytical expression for the energy of arbitrary-shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically-moving Josephson vortex and suggest an experiment to measure a time-dilation effect analogous to that in special relativity. The position of the shape excitation on a Josephson vortex acts like a “minute hand” showing the time in the rest frame associated with the vortex. Remarkably, at some conditions, the shape wave can carry negative energy: a vortex with the shape excitation can have less energy than the same vortex without it.
Gulevich, D. R.; Savel'ev, Sergey; Kusmartsev, F. V.; Yampol'skii, V. A.; Nori, Franco
2009-09-01
We predict a class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line of an arbitrary profile. We derive a universal analytical expression for the energy of arbitrary-shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically-moving Josephson vortex and suggest an experiment to measure a time-dilation effect analogous to that in special relativity. The position of the shape excitation on a Josephson vortex acts like a 'minute hand' showing the time in the rest frame associated with the vortex. Remarkably, at some conditions, the shape wave can carry negative energy: a vortex with the shape excitation can have less energy than the same vortex without it.
NASA Astrophysics Data System (ADS)
Gallemí, A.; Guilleumas, M.; Mayol, R.; Mateo, A. Muñoz
2016-03-01
We analyze the dynamics of Josephson vortex states in two-component Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling by using the Gross-Pitaevskii equation. In one dimension, both in homogeneous and harmonically trapped systems, we report on stationary states containing doubly charged, static Josephson vortices. In multidimensional systems, we find stable Josephson vortices in a regime of parameters typical of current experiments with 87Rb atoms. In addition, we discuss the instability regime of Josephson vortices in disk-shaped condensates, where the snake instability operates and vortex dipoles emerge. We study the rich dynamics that they exhibit in different regimes of the spin-orbit-coupled condensate depending on the orientation of the Josephson vortices.
Idiopathic isolated orbicularis weakness
MacVie, O P; Majid, M A; Husssin, H M; Ung, T; Manners, R M; Ormerod, I; Pawade, J; Harrad, R A
2012-01-01
Purpose Orbicularis weakness is commonly associated with seventh nerve palsy or neuromuscular and myopathic conditions such as myotonic dystrophy and myasethenia gravis. We report four cases of idiopathic isolated orbicularis weakness. Methods All four cases were female and the presenting symptoms of ocular irritation and epiphora had been present for over 7 years in three patients. All patients had lagophthalmos and three had ectropion. Three patients underwent full investigations which excluded known causes of orbicularis weakness. Two patients underwent oribularis oculi muscle biopsy and histological confirmation of orbicularis atrophy. Results All patients underwent surgery to specifically address the orbicularis weakness with satisfactory outcomes and alleviation of symptoms in all cases. Isolated orbicularis weakness may be a relatively common entity that is frequently overlooked. Conclusion Early recognition of this condition may lead to better management and prevent patients undergoing unnecessary surgical procedures. PMID:22322997
Determination of the dissipation in superconducting Josephson junctions
Mugnai, D. Ranfagni, A.; Cacciari, I.
2015-02-07
The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation, the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.
Josephson frequency meter for millimeter and submillimeter wavelengths
Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.
1994-12-31
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.
Violation of Bell's inequality in Josephson phase qubits.
Ansmann, Markus; Wang, H; Bialczak, Radoslaw C; Hofheinz, Max; Lucero, Erik; Neeley, M; O'Connell, A D; Sank, D; Weides, M; Wenner, J; Cleland, A N; Martinis, John M
2009-09-24
The measurement process plays an awkward role in quantum mechanics, because measurement forces a system to 'choose' between possible outcomes in a fundamentally unpredictable manner. Therefore, hidden classical processes have been considered as possibly predetermining measurement outcomes while preserving their statistical distributions. However, a quantitative measure that can distinguish classically determined correlations from stronger quantum correlations exists in the form of the Bell inequalities, measurements of which provide strong experimental evidence that quantum mechanics provides a complete description. Here we demonstrate the violation of a Bell inequality in a solid-state system. We use a pair of Josephson phase qubits acting as spin-1/2 particles, and show that the qubits can be entangled and measured so as to violate the Clauser-Horne-Shimony-Holt (CHSH) version of the Bell inequality. We measure a Bell signal of 2.0732 +/- 0.0003, exceeding the maximum amplitude of 2 for a classical system by 244 standard deviations. In the experiment, we deterministically generate the entangled state, and measure both qubits in a single-shot manner, closing the detection loophole. Because the Bell inequality was designed to test for non-classical behaviour without assuming the applicability of quantum mechanics to the system in question, this experiment provides further strong evidence that a macroscopic electrical circuit is really a quantum system.
Structured chaos in a devil's staircase of the Josephson junction
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Botha, A. E.; Medvedeva, S. Yu.; Kolahchi, M. R.; Irie, A.
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Superconductor-insulator transition in disordered Josephson-junction chains
NASA Astrophysics Data System (ADS)
Bard, M.; Protopopov, I. V.; Gornyi, I. V.; Shnirman, A.; Mirlin, A. D.
2017-08-01
We study the superconductor-insulator quantum phase transition in disordered Josephson-junction chains. To this end, we derive the field theory from the lattice model that describes a chain of superconducting islands with a capacitive coupling to the ground (C0) as well as between the islands (C1). We analyze the theory in the short-range (C1≪C0 ) and in the long-range (C1≫C0 ) limits. The transition to the insulating state is driven by the proliferation of quantum phase slips. The most important source of disorder originates from trapped charges in the substrate that suppress the coherence of phase slips, thus favoring superconducting correlations. Using the renormalization-group approach, we determine the phase diagram and evaluate the temperature dependence of the dc conductivity and system-size dependence of the resistance around the superconductor-insulator transition. These dependences have in general strongly nonmonotonic character, with several distinct regimes reflecting an intricate interplay of superconductivity and disorder.
Squeezing with a flux-driven Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Menzel, E. P.; Zhong, L.; Eder, P.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Deppe, F.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.
2014-03-01
Josephson parametric amplifiers (JPA) are promising devices for the implementation of continuous-variable quantum communication protocols. Operated in the phase-sensitive mode, they allow for amplifying a single quadrature of the electromagnetic field without adding any noise. While in practice internal losses introduce a finite amount of noise, our device still adds less noise than an ideal phase-insensitive amplifier. This property is a prerequisite for the generation of squeezed states. In this work, we reconstruct the Wigner function of squeezed vacuum, squeezed thermal and squeezed coherent states with our dual-path method [L. Zhong et al. arXiv:1307.7285 (2013); E. P. Menzel et al. Phys. Rev. Lett. 105 100401 (2010)]. In addition, we illuminate the physics of squeezed coherent microwave fields. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED, PROMISCE and SCALEQIT, MEXT Kakenhi ``Quantum Cybernetics,'' JSPS FIRST Program, the NICT Commissioned Research, Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, and UPV/EHU UFI 11/55.
Diffusion current in a system of coupled Josephson junctions
Shukrinov, Yu. M. Rahmonov, I. R.
2012-08-15
The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.
Diffusion current in a system of coupled Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Rahmonov, I. R.
2012-08-01
The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.
Multi-qubit measurements with a Josephson Photomultiplier
NASA Astrophysics Data System (ADS)
Howington, Caleb; Hutchings, M.; Ribeill, Guilhem; Pechenezhskiy, Ivan; Vavilov, Maxim G.; Wilhelm, Frank K.; McDermott, R.; Plourde, Blt
The ability to measure multi-qubit parity is critical for the realization of a fault-tolerant quantum information processor. For a system of transmon qubits coupled to a superconducting cavity, a threshold photon detector can provide an efficient path towards the digital readout of qubit parity after the parity information is mapped onto the cavity photon occupation. We will describe progress towards the implementation of such a scheme for measuring the parity of two transmon qubits. On-chip flux bias lines allow us to tune the dispersive cavity shifts related to the state of the two qubits and an appropriately shaped pulse driven to the cavity results in a bright state for one parity but not the other. A Josephson Photomultiplier then serves as a phase-insensitive digital detector of the microwave photons that leak out of the cavity. Future improvements and various technical difficulties will be discussed. We acknowledge support from ARO under Contract W911NF-14-1-0080.
Phase dynamics of low critical current density YBCO Josephson junctions
NASA Astrophysics Data System (ADS)
Massarotti, D.; Stornaiuolo, D.; Rotoli, G.; Carillo, F.; Galletti, L.; Longobardi, L.; Beltram, F.; Tafuri, F.
2014-08-01
High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current-voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.
Resonant subgap current transport in Josephson field effect transistor
NASA Astrophysics Data System (ADS)
Bezuglyi, E. V.; Bratus', E. N.; Shumeiko, V. S.
2017-01-01
We study theoretically the current-voltage characteristics (IVCs) of the Josephson field effect transistor—a ballistic SNINS junction with superconducting (S) electrodes confining a planar normal-metal region (N), which is controlled by the gate-induced potential barrier (I). Using the computation technique developed earlier for long single-channel junctions in the coherent multiple Andreev reflection (MAR) regime, we find a significant difference of the subgap current structure compared to the subharmonic gap structure in tunnel junctions and atomic-size point contacts. For long junctions, whose lengths significantly exceed the coherence length, the IVC exhibits current peaks at multiples (harmonics) of the distance δm between the static Andreev levels e Vn=n δm . Moreover, the averaged IVC follows the powerlike behavior rather than the exponential one and has a universal scaling with the junction transparency. This result is qualitatively understood using an analytical approach based on the concept of resonant MAR trajectories. In shorter junctions having lengths comparable to the coherence length, the IVC has an exponential form common for point contacts, however the current structures appear at the subharmonics of the interlevel distance e Vn=δm/n rather than the gap subharmonics 2 Δ /n .
Dynamics in classical Josephson junction arrays: models and numerical simulations
NASA Astrophysics Data System (ADS)
Ciria, José C.; Giovannella, C.
1998-05-01
These lecture notes are divided in three main sections. In the first one we give a detailed derivation of the equation of motion of an array of resistively and capacitively shunted Josephson Junctions (JJA). The derivation starts from a Lagrangian written for the gauge invariant phase, φij, and its conjugate variable, φij, and it is done in the full inductance-matrix approximation. The ohmic dissipation due to the shunting resistances is taken in account through the introduction in the Euler-Lagrangian equation of a convenient Rayleigh's function. The JJA formalism, then, is extended to the much more complex case of a granular superconductor. In order to make clear the relationship between the JJA formalism and those developed in the framework of other discrete models, like the discrete sine-Gordon and the Frenkel-Kontorova ones, a paragraph is devoted to their comparative analysis. The relationship between phase and `particle' dynamics is also briefly discussed. In the second section we provide the `beginners' with some basic ideas on how to perform numerical simulations based on the JJA formalism. Finally, in the third section we give a flavour of the physical problems that one can solve by `running' numerical codes like the ones we have developed. The dynamical properties of single massless and massive vortices and those of a JJA subjected to an external ac driving force are briefly discussed.
Current-Phase Relation of Ballistic Graphene Josephson Junctions
NASA Astrophysics Data System (ADS)
Nanda, G.; Aguilera-Servin, J. L.; Rakyta, P.; Kormányos, A.; Kleiner, R.; Koelle, D.; Watanabe, K.; Taniguchi, T.; Vandersypen, L. M. K.; Goswami, S.
2017-06-01
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultra-clean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in anti-phase with Fabry-P\\'{e}rot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations which include realistic graphene-superconductor interfaces and find a good qualitative agreement.
Structured chaos in a devil's staircase of the Josephson junction
Shukrinov, Yu. M.; Botha, A. E.; Medvedeva, S. Yu.; Kolahchi, M. R.; Irie, A.
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Josephson junction detectors for Majorana modes and Dirac fermions
NASA Astrophysics Data System (ADS)
Maiti, M.; Kulikov, K. M.; Sengupta, K.; Shukrinov, Yu. M.
2015-12-01
We demonstrate that the current-voltage (I -V ) characteristics of resistively and capacitively shunted Josephson junctions (RCSJs) hosting localized subgap Majorana states provide a phase-sensitive method for their detection. The I -V characteristics of such RCSJs, in contrast to their resistively shunted counterparts, exhibit subharmonic odd Shapiro steps. These steps, owing to their subharmonic nature, exhibit qualitatively different properties compared to harmonic odd steps of conventional junctions. In addition, the RCSJs hosting Majorana bound states also display an additional sequence of steps in the devil's staircase structure seen in their I -V characteristics; such a sequence of steps makes their I -V characteristics qualitatively distinct from that of their conventional counterparts. A similar study for RCSJs with graphene superconducting junctions hosting Dirac-like quasiparticles reveals that the Shapiro step width in their I -V curves bears a signature of the transmission resonance phenomenon of their underlying Dirac quasiparticles; consequently, these step widths exhibit a π periodic oscillatory behavior with variation of the junction barrier potential. We discuss experiments which can test our theory.
Generating entangled quantum microwaves in a Josephson-photonics device
NASA Astrophysics Data System (ADS)
Dambach, Simon; Kubala, Björn; Ankerhold, Joachim
2017-02-01
When connecting a voltage-biased Josephson junction in series to several microwave cavities, a Cooper-pair current across the junction gives rise to a continuous emission of strongly correlated photons into the cavity modes. Tuning the bias voltage to the resonance where a single Cooper pair provides the energy to create an additional photon in each of the cavities, we demonstrate the entangling nature of these creation processes by simple witnesses in terms of experimentally accessible observables. To characterize the entanglement properties of the such created quantum states of light to the fullest possible extent, we then proceed to more elaborate entanglement criteria based on the knowledge of the full density matrix and provide a detailed study of bi- and multipartite entanglement. In particular, we illustrate how due to the relatively simple design of these circuits changes of experimental parameters allow one to access a wide variety of entangled states differing, e.g., in the number of entangled parties or the dimension of state space. Such devices, besides their promising potential to act as a highly versatile source of entangled quantum microwaves, may thus represent an excellent natural testbed for classification and quantification schemes developed in quantum information theory.
Correlating quantum decoherence and material defects in a Josephson qubit
NASA Astrophysics Data System (ADS)
Hite, D. A.; McDermott, R.; Simmonds, R. W.; Cooper, K. B.; Steffen, M.; Nam, S.; Pappas, D. P.; Martinis, J. M.
2004-03-01
Superconducting tunnel junction devices are promising candidates for constructing quantum bits (qubits) for quantum computation because of their inherently low dissipation and ease of scalability by microfabrication. Recently, the Josephson phase qubit has been characterized spectroscopically as having spurious microwave resonators that couple to the qubit and act as a dominant source of decoherence. While the origin of these spurious resonances remains unknown, experimental evidence points to the material system of the tunnel barrier. Here, we focus on our materials research aimed at elucidating and eliminating these spurious resonators. In particular, we have studied the use of high quality Al films epitaxially grown on Si(111) as the base electrode of the tunnel junction. During each step in the Al/AlOx/Al trilayer growth, we have investigated the structure in situ by AES, AED and LEED. While tunnel junctions fabricated with these epitaxial base electrodes prove to be of non-uniform oxide thickness and too thin, I-V characteristics have shown a lowering of subgap currents by a factor of two. Transport measurements will be correlated with morphological structure for a number of devices fabricated with various degrees of crystalline quality.
Invariant submanifold for series arrays of Josephson junctions.
Marvel, Seth A; Strogatz, Steven H
2009-03-01
We study the nonlinear dynamics of series arrays of Josephson junctions in the large-N limit, where N is the number of junctions in the array. The junctions are assumed to be identical, overdamped, driven by a constant bias current, and globally coupled through a common load. Previous simulations of such arrays revealed that their dynamics are remarkably simple, hinting at the presence of some hidden symmetry or other structure. These observations were later explained by the discovery of N-3 constants of motion, the choice of which confines the resulting flow in phase space to a low-dimensional invariant manifold. Here we show that the dimensionality can be reduced further by restricting attention to a special family of states recently identified by Ott and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an invariant submanifold of dimension one less than that found earlier. We derive and analyze the flow on this submanifold for two special cases: an array with purely resistive loading and another with resistive-inductive-capacitive loading. Our results recover (and in some instances improve) earlier findings based on linearization arguments.
Josephson-Vortex-Glass Transition in Strong Fields
NASA Astrophysics Data System (ADS)
Ikeda, Ryusuke; Adachi, Hiroto
2000-09-01
A vortex-glass transition due to point disorder in layered superconductors is studied for the case with an applied field parallel to the layers. Our calculation of tilt responses indicates that, irrespective of the magnitude of the field, the resulting glass phase, Josephson-vortex-glass (JG), should have a transverse Meissner effect, as in a planar splayed glass phase, only for a tilt perpendicular to the layers. Further, focusing on the high field (and/or high anisotropy) region B \\sqrt{{\\mitΓ}} > φ0/d2, where Γ is the mass anisotropy in the Lawrence-Doniach model, the JG transition line TJG(B) is shown to have a similar form to a B-T line following from the disorder-free Lindemann criterion and to decrease withincreasing B \\sqrt{{\\mitΓ}}, in marked contrast to the disorder-free melting line insensitive to B \\sqrt{{\\mitΓ}} in such the high field region. This TJG(B) line seems to have been recently observed in a.c. susceptibility and in-plane resistivitymeasurements in BSCCO and qualitatively explains a field dependence at lower temperatures of previous BSCCO resistivity data showing the so-called in-plane Lorentz force-free behavior.
Hydrogenated amorphous silicon barriers for niobium-niobium Josephson junctions
Kroger, H.; Aucoin, R.; Currier, L.W.; Jillie, D.W.; Potter, C.N.; Shaw, D.W.; Smith, L.N.; Thaxter, J.B.; Willis, P.H.
1985-03-01
The authors report on further studies of the effects of hydrogenation of sputtered amorphous silicon barriers upon the current-voltage (I-V) characteristics of Nb-Nb Josephson tunnel junctions. For composite trilayer barriers (a-Si/a-Si:H/a-Si) which are deposited using 8 mT of Ar, we find that there is an abrupt improvement in device characteristics when the central hydrogenated layer is deposited using a hydrogen partial pressure which exceeds about 0.5 mT. They attribute this to the reduction in the density of localized states in the a-Si:H layer. We have observed excellent I-V characteristics with trilayer barrier devices whose central hydrogenated layer is only about 1/7 of the thickness of the entire barrier. This observation suggests that localized states near the geometric center of the barrier are the most significant in degrading device characteristics. Annealing experiments and published data on the diffusion of deuterium in a-Si suggest that the composite barriers will be extremely stable during processing and storage. Zero bias anomalies in device I-V characteristics and spin density in the a-Si and a-Si:H layers have been measured.
Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing
Brevik, Justus A.; Flowers-Jacobs, Nathan E.; Fox, Anna E.; Golden, Evan B.; Dresselhaus, Paul D.; Benz, Samuel P.
2017-01-01
We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin. PMID:28736494
Josephson frequency meter for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Anischenko, S. E.; Larkin, S. Y.; Chaikovsky, V. I.; Kabayev, P. V.; Kamyshin, V. V.
1995-01-01
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoffs for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decrease with the increase of wavelength due to diffraction losses. That requires a priori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is one based on frequency conversion, resonance and interferometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain a panoramic display of the results as well as full automation of the measuring process.
High-quality planar high-T{sub c} Josephson junctions
Bergeal, N.; Grison, X.; Lesueur, J.; Faini, G.; Aprili, M.; Contour, J.P.
2005-09-05
Reproducible high-T{sub c} Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 {mu}m wide) is firstly designed by ion irradiating a c-axis-oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} film through a gold mask such as the nonprotected part becomes insulating. A lower T{sub c} part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits.
Statistics of avalanches in the self-organized criticality state of a Josephson junction
Matizen, E. V.; Martynets, V. G. Bezverkhii, P. P.
2010-08-15
Magnetic flux avalanches in Josephson junctions that include superconductor-insulator-superconductor (SIS) tunnel junctions and are magnetized at temperatures lower than approximately 5 K have been studied in detail. Avalanches are of stochastic character and appear when the magnetic field penetration depth {lambda} into a junction becomes equal to the length a of the Josephson junction with a decrease in the temperature. The statistical properties of such avalanches are presented. The size distribution of the avalanches is a power law with a negative noninteger exponent about unity, indicating the self-organized criticality state. The self-organized criticality state is not observed in Josephson junctions with a superconductor-normal metal-superconductor (SNS) junction.
Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors
NASA Astrophysics Data System (ADS)
Camjayi, Alberto; Arrachea, Liliana; Aligia, Armando; von Oppen, Felix
2017-07-01
Time-reversal-invariant topological superconducting (TRITOPS) wires are known to host a fractional spin ℏ/4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model that can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum-dot spin and the fractional spins associated with the two adjacent topological superconductors.
ac Josephson Effect in Finite-Length Nanowire Junctions with Majorana Modes
NASA Astrophysics Data System (ADS)
San-Jose, Pablo; Prada, Elsa; Aguado, Ramón
2012-06-01
It has been predicted that superconducting junctions made with topological nanowires hosting Majorana bound states (MBS) exhibit an anomalous 4π-periodic Josephson effect. Finding an experimental setup with these unconventional properties poses, however, a serious challenge: for finite-length wires, the equilibrium supercurrents are always 2π periodic as anticrossings of states with the same fermionic parity are possible. We show, however, that the anomaly survives in the transient regime of the ac Josephson effect. Transients are, moreover, protected against decay by quasiparticle poisoning as a consequence of the quantum Zeno effect, which fixes the parity of Majorana qubits. The resulting long-lived ac Josephson transients may be effectively used to detect MBS.
Josephson effect in CeCoIn{sub 5} microbridges as seen via quantum interferometry
Foyevtsov, Oleksandr; Porrati, Fabrizio; Huth, Michael
2011-07-15
A superconducting quantum interference device (SQUID) was prepared on a micron-sized single crystal using a selected growth domain of a thin film of CeCoIn{sub 5} grown by molecular beam epitaxy. SQUID voltage oscillations of good quality were obtained as well as interference effects stemming from the individual Josephson microbridges. The transport characteristics in the superconducting state exhibited several peculiarities which we ascribe to the periodic motion of vortices in the microbridges. The temperature dependence of the Josephson critical current shows good correspondence to the Ambegaokar-Baratoff relation, expected for the ideal Josephson junction. The results indicate a promising pathway to identify the type of order parameter in CeCoIn{sub 5} by means of phase-sensitive measurements on microbridges.
Non-equilibrium 8π Josephson effect in atomic Kitaev wires
Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.
2016-01-01
The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses. PMID:27481540
Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons
NASA Astrophysics Data System (ADS)
Segall, K.; LeGro, M.; Kaplan, S.; Svitelskiy, O.; Khadka, S.; Crotty, P.; Schult, D.
2017-03-01
Conventional digital computation is rapidly approaching physical limits for speed and energy dissipation. Here we fabricate and test a simple neuromorphic circuit that models neuronal somas, axons, and synapses with superconducting Josephson junctions. The circuit models two mutually coupled excitatory neurons. In some regions of parameter space the neurons are desynchronized. In others, the Josephson neurons synchronize in one of two states, in-phase or antiphase. An experimental alteration of the delay and strength of the connecting synapses can toggle the system back and forth in a phase-flip bifurcation. Firing synchronization states are calculated >70 000 times faster than conventional digital approaches. With their speed and low energy dissipation (10-17J /spike ), this set of proof-of-concept experiments establishes Josephson junction neurons as a viable approach for improvements in neuronal computation as well as applications in neuromorphic computing.
Spatially resolved gap closing in single Josephson junctions constructed on Bi2Te3 surface
NASA Astrophysics Data System (ADS)
Pang, Yuan; Wang, Junhua; Lyu, Zhaozheng; Yang, Guang; Fan, Jie; Liu, Guangtong; Ji, Zhongqing; Jing, Xiunian; Yang, Changli; Lu, Li
2016-11-01
Full gap closing is a prerequisite for hosting Majorana zero modes in Josephson junctions on the surface of topological insulators. Previously, we have observed direct experimental evidence of gap closing in Josephson junctions constructed on Bi2Te3 surface. In this paper we report further investigations on the position dependence of gap closing as a function of magnetic flux in single Josephson junctions constructed on Bi2Te3 surface. Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929101 and 2011CB921702), the National Natural Science Foundation of China (Grant Nos. 91221203, 11174340, 11174357, 91421303, and 11527806), and the Strategic Priority Research Program B of the Chinese Academy of Sciences (Grant No. XDB07010100).
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2016-03-01
On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.
NASA Astrophysics Data System (ADS)
Probst, B.; Domínguez, F.; Schroer, A.; Yeyati, A. Levy; Recher, P.
2016-10-01
We study the critical Josephson current flowing through a double quantum dot weakly coupled to two superconducting leads. We use analytical as well as numerical methods to investigate this setup in the limit of small and large bandwidth leads in all possible charging states, where we account for on-site interactions exactly. Our results provide clear signatures of nonlocal spin-entangled pairs, which support interpretations of recent experiments [R. S. Deacon, A. Oiwa, J. Sailer, S. Baba, Y. Kanai, K. Shibata, K. Hirakawa, and S. Tarucha, Nat. Commun. 6, 7446 (2015), 10.1038/ncomms8446]. In addition, we find that the ground state with one electron on each quantum dot can undergo a tunable singlet-triplet phase transition in the regime where the superconducting gap in the leads is not too large, which gives rise to an additional new signature of nonlocal Cooper-pair transport.
Measurement of Aharonov-Casher effect in a Josephson junction chain
NASA Astrophysics Data System (ADS)
Pop, Ioan Mihai; Lecocq, Florent; Pannetier, Bernard; Buisson, Olivier; Guichard, Wiebke
2011-03-01
We have recently measured the effect of superconducting phase-slips on the ground state of a Josephson junction chain and a rhombi chain. Here we report clear evidence of Aharonov-Casher effect in a chain of Josephson junctions. This phenomenon is the dual of the well known Aharonov-Bohm interference. Using a capacitively coupled gate to the islands of the chain, we induce oscillations of the supercurrent by tuning the polarization charges on the islands. We observe complex interference patterns for different quantum phase slip amplitudes, that we understand quantitatively as Aharonov-Casher vortex interferences. European STREP MIDAS.
NASA Astrophysics Data System (ADS)
Jelks, E. C.; Kerber, G. L.
1981-06-01
The technique of ''shadow evaporation'' has been used to fabricate superconducting-normal-superconducting Josephson microbridges and SQUID's with bridge widths of about 0.2 μm and lengths of 0.1 μm or less. The devices consist of vanadium banks and gold bridges and have static current-voltage characteristics that are consistent with the resistively shunted junction model down to at least 0.4 TC. Refined versions of this technique may be useful for batch fabrication of single and multibridge Josephson devices.
Defect motion and lattice pinning barriers in Josephson-junction ladders
Kang, H.; Lim, Jong Soo; Fortin, J.-Y.; Choi, J.; Choi, M. Y.
2006-01-01
We study the motion of domain wall defects in a fully frustrated Josephson-junction ladder system, driven by small applied currents. For small system sizes, the energy barrier E{sub B} to the defect motion is computed analytically via symmetry and topological considerations. More generally, we perform numerical simulations directly on the equations of motion, based on the resistively-shunted junction model, to study the dynamics of defects, varying the system size. Coherent motion of domain walls is observed for large system sizes. In the thermodynamical limit, we find E{sub B}=0.1827 in units of the Josephson coupling energy.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix
2016-12-01
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.
Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application
Hawkins, G.A.; Clarke, J.
1975-10-31
A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.
Voltage-less alternating current (AC) Josephson effect in two-band superconductors
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.
2017-07-01
The sliding motions of inter-band phase difference solitons (i-solitons) cause time-dependent superconducting phase variations in two-band superconductors. Two different voltages cannot exist at the same spatial location, although the conventional AC Josephson effect demands the presence of a voltage difference between the two bands at the same location, if the time-variation of the phase generates the voltage, for which a physical interpretation is not possible. Instead of the conventional AC Josephson effect, a non-linear Klein-Gordon equation (sine-Gordon equation) can enable the dissipationless movement of i-solitons, without voltage generation.