Science.gov

Sample records for jovian plasma torus

  1. Numerical simulation of torus-driven plasma transport in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Wolf, R. A.; Spiro, R. W.; Hill, T. W.; Dessler, A. J.

    1994-01-01

    The Rice convection model has been modified for application to the transport of Io-generated plasma through the Jovian magnetosphere. The new code, called the RCM-J, has been used for several ideal-magnetohydrodynamic (MHD) numerical simulations to study how interchange instability causes an initially assumed torus configuration to break up. In simulations that start from a realistic torus configuration but include no energetic particles, the torus disintegrates too quickly (approximately 50 hours). By adding an impounding distribution of energetic particles to suppress the interchange instability, resonable lifetimes were obtained. For cases in which impoundment is insufficient to produce ideal-MHD stability, the torus breaks up predominantly into long fingers, unless the initial condition strongly favors some other geometrical form. If the initial torus has more mass on one side of the planet than the other, fingers form predominatly on the heavy side (which we associate with the active sector). Coriolis force bends the fingers to lag corotation. The simulation results are consistent with the idea that the fingers are formed with a longitudinal thickness that is roughly equal to the latitudinal distance over which the invariant density declines at the outer edges of the initial torus. Our calculations give an average longitudinal distance between plasma fingers of about 15 deg which corresponds to 20 to 30 minutes of rotation of the torus. We point to some Voyager and Ulysses data that are consistent with this scale of torus longitudinal irregularity.

  2. Plasma in the Jovian magnetosphere: An X-ray and EUV study of the aurora and the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2013-09-01

    We propose 4x40 ks Chandra/HRC-I and 2x40 ks XMM-Newton observations of the Jovian aurora and Io plasma torus in conjunction with the Japanese SPRINT-A satellite. SPRINT-A will continuously observe Jupiter from Dec 2013 to Apr 2014, making sensitive EUV spectroscopic observations of the aurora and IPT. We will correlate variations in the X-ray flux from the aurora and IPT with changes in the EUV flux observed by SPRINT-A and with the properties of the solar wind. We will conclusively resolve the puzzle of the origin of the Jovian X-ray emission and determine if the precipitating particles originate from Io or from the solar wind.

  3. Remote sensing of the Io torus plasma ribbon using natural radio occultation of the Jovian radio emissions

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Sawas, S.; Lammer, H.

    2014-09-01

    We study the Jovian hectometric (HOM) emissions recorded by the RPWS (Radio and Plasma Wave Science) experiment onboard the Cassini spacecraft during its Jupiter flyby. We analyze the attenuation band associated with the intensity extinction of HOM radiation. This phenomenon is interpreted as a refraction effect of the Jovian hectometric emission inside the Io plasma torus. This attenuation band was regularly observed during periods of more than 5 months, from the beginning of October 2000 to the end of March 2001. We estimate for this period the variation of the electron density versus the central meridian longitude (CML). We find a clear local time dependence. Hence the electron density was not higher than 5.0 × 104 cm-3 during 2 months, when the spacecraft approached the planet on the dayside. In the late afternoon and evening sectors, the electron density increases to 1.5 × 105 cm-3 and reach a higher value at some specific occasions. Additionally, we show that ultraviolet and hectometric wavelength observations have common features related to the morphology of the Io plasma torus. The maxima of enhancements/attenuations of UV/HOM observations occur close to the longitudes of the tip of the magnetic dipole in the southern hemisphere (20° CML) and in the northern hemisphere (200° CML), respectively. This is a significant indication about the importance of the Jovian magnetic field as a physical parameter in the coupling process between Jupiter and the Io satellite.

  4. Preliminary Results from a Coordinated Hisaki/Chandra/XMM-Newton Study of the Jovian Aurora and Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Kraft, R.; Kimura, T.; Elsner, R.; Branduardi-Raymont, G.; Gladstone, R.; Badman, S. V.; Ezoe, Y.; Murakami, G.; Murray, S. S.; Roediger, E.; Tsuchiya, F.; Yamazaki, A.; Yoshikawa, I.; Yoshioka, K.

    2014-12-01

    We present preliminary results from a coordinated Hisaki/Chandra/XMM-Newton observational campaign of the Jovian aurora and Io plasma torus. The data were taken over a three week period in April, 2014. Jupiter was observed continuously with Hisaki, six times with the Chandra/HRC instrument for roughly 12 hours per observation, and twice by XMM-Newton. The goal of this observational campaign was to understand how energy and matter are exchanged between the Jovian aurora, the IPT, and the Solar wind. X-ray observations provide key diagnostics on highly stripped ions and keV electrons in the Jovian magnetosphere. We use the temporal, spatial, and spectral capabilities of the three instruments to search for correlated variability between the Solar wind, the EUV-emitting plasma of the IPT and UV aurora, and the ions responsible for the X-ray aurora. Preliminary analysis suggests a strong 45 min periodicity in the EUV emission from the electron aurora. There is some evidence for complex variability of the X-ray auroras on scales of tens of minutes. There is also clear morphological changes in the X-ray aurora that do not appear to be correlated with either variations in the IPT or Solar wind.

  5. Preliminary Results from a Coordinated Hisaki/Chandra/XMM-Newton Study of the Jovian Aurora and Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Kraft, Ralph; Kimura, Tomoki; Elsner, Ronald; Branduardi-Raymont, Graziella; Gladstone, Randy; Badman, Sarah Victoria; Ezoe, Yuichiro; Murakami, Go; Murray, Stephen S.; Roediger, Elke; Tsuchiya, Fuminori; Yamazaki, Atsushi; Yoshikawa, Ichiro; Yoshioka, Kazuo

    2014-01-01

    We present preliminary results from a coordinated Hisaki/Chandra/XMM-Newton observational campaign of the Jovian aurora and Io plasma torus. The data were taken over a three week period in April, 2014. Jupiter was observed continuously with Hisaki, six times with the Chandra/HRC instrument for roughly 12 hours per observation, and twice by XMM-Newton. The goal of this observational campaign was to understand how energy and matter are exchanged between the Jovian aurora, the IPT, and the Solar wind. X-ray observations provide key diagnostics on highly stripped ions and keV electrons in the Jovian magnetosphere. We use the temporal, spatial, and spectral capabilities of the three instruments to search for correlated variability between the Solar wind, the EUV-emitting plasma of the IPT and UV aurora, and the ions responsible for the X-ray aurora. Preliminary analysis suggests a strong 45 min periodicity in the EUV emission from the electron aurora. There is some evidence for complex variability of the X-ray auroras on scales of tens of minutes. There is also clear morphological changes in the X-ray aurora that do not appear to be correlated with either variations in the IPT or Solar wind.

  6. Properties of hot electrons in the Jovian inner magnetosphere deduced from extended observations of the Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ichiro; Yoshioka, Kazuo; Murakami, Go; Suzuki, Fumiharu; Hikida, Reina; Yamazaki, Atsushi; Kimura, Tomoki; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Uemizu, Kazunori; Tao, Chihiro; Nozawa, Hiromasa; Kasaba, Yasumasa; Fujimoto, Masaki

    2016-11-01

    One of the focal points of interest in Jovian magnetospheric physics is the transport of energy and particles into the inner region. While an explosive energy release event in the midmagnetosphere is manifested as an aurora transient, its connection to the inner part has not been investigated due to sparsity of observations. Here we take the advantage of long-term and quasi-continuous simultaneous monitoring of the polar aurora and the Io Plasma Torus (IPT) located in the inner magnetosphere by Extreme Ultraviolet Spectroscope for Exospheric Dynamics/Hisaki. Studies on temporal characteristics over hours enable us to see slow ( 10 h) coupling between the middle and inner magnetosphere as well as to quantify the temperature of hot electrons in the IPT. We derive parameters that characterize the strong particle acceleration process.

  7. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.

    2013-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive

  8. Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.

    2010-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa-moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements, (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy etal.,2007;Shematovichetal.,2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyro radius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions).Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization,electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma:(a) with O(++) ions; (b) with O(++) and S(++) ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidyetal.,2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.

  9. The low-energy plasma in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.

    1983-01-01

    Burke and Franklin (1955) discovered radio emissions from Jupiter at 22.2 MHz. Subsequent observations established the strong control of the decametric emissions by the satellite Io. The Voyager encounters with Jupiter in 1979 have resulted in a dramatic increase in detailed knowledge of the plasma properties of the Jovian magnetosphere. The Io plasma torus is discussed, taking into account the Voyager plasma science experiment, positive-ion temperatures in the torus, electron distribution functions in the torus, elementary-charge concentrations in the torus, positive-ion composition in the torus, and plasma velocities in the torus. The Io flux tube is considered along with the middle magnetosphere and the outer magnetosphere. Attention is given to the sources of plasma, aspects of diffusive transport, questions of inertial loading, and the existence of nonazimuthal flow velocities in the middle magnetosphere.

  10. Features of spherical torus plasmas

    SciTech Connect

    Peng, Y.K.M.; Strickler, D.J.

    1985-12-01

    The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seen at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.

  11. Departure from corotation of the Io plasma torus - Local plasma production

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Hill, T. W.

    1982-01-01

    The departure of the Jovian magnetosphere from rigid corotation is adequately explained by outward plasma transport at distances where L is greater than approximately 10. The departure of 5% observed in the Io plasma torus, however, is too large to be accounted for simply by plasma transport. Local plasma production is proposed as the main factor determining the corotation lag in the torus. The outward pick-up current provided by ionization of neutral atoms is calculated and related to the current produced in the ionosphere by the corotation lag. This leads to an expression giving the corotation lag of the torus as a function of radial distance. Charge transfer is found to be an important process, allowing the majority of the torus mass to be ejected from the magnetosphere in a neutral state. Thus, the mass loading rate is found to be several times that inferred from examination of the corotation lag associated with outward plasma transport.

  12. Physics of Spherical Torus Plasmas

    SciTech Connect

    Peng, Yueng Kay Martin

    2000-01-01

    Broad and important progress in plasma tests, theory, new experiments, and future visions of the spherical torus (ST, or very low aspect ratio tokamaks) have recently emerged. These have substantially improved our understanding of the potential properties of the ST plasmas, since the preliminary calculation of the ST magnetohydrodynamic equilibria more than a decade ago. Exciting data have been obtained from concept exploration level ST experiments of modest capabilities (with major radii up to 35 cm), making important scientific contributions to toroidal confinement in general. The results have helped approval and construction of new and/or more powerful ST experiments, and stimulated an increasing number of theoretical calculations of interest to magnetic fusion energy. Utilizing the broad knowledge base from the successful tokamak and advanced tokamak research, a wide range of new ST physics features has been suggested. These properties of the ST plasma will be tested at the 1 MA level with major radius up to similar to 80 cm in the new proof of principle devices National Spherical Torus Experiment (NSTX, U.S.) [M. Peng , European Conf. Abst. 22C, 451 (1998); S. M. Kaye , Fusion Technol. 36, 16 (1999); M. Ono , "Exploration of Spherical Torus Physics in the NSTX Device," 17th IAEA Fusion Energy Conf., paper IAEA-CN-69/ICP/01 (R), Yokohama, Japan (1998)], Mega Ampere Spherical Tokamak (MAST, U.K.) [A. C. Darke , Fusion Technol. 1, 799 (1995); Q. W. Morris , Proc. Int. Workshop on ST (Ioffe Inst., St. Petersburg, 1997), Vol. 1, p. 290], and Globus-M (R.F.) [V. K. Gusev , European Conf. Abst. 22C, 576 (1998)], which have just started full experimental operation. New concept exploration experiments, such as Pegasus (University of Wisconsin) [R. Fonck and the PEGASUS Team, Bull. Am. Phys. Soc. 44, 267 (1999)], Helicity Injected Tokamak-II (HIT-II, University of Washington) [T. R. Jarboe , Phys. Plasmas 5, 1807 (1998)], and Current Drive Experiment-Upgrade (CDX

  13. Io Plasma Torus Ion Composition: Voyager, Galileo, Cassini

    NASA Astrophysics Data System (ADS)

    Bagenal, Fran; Nerney, Edward; Steffl, Andrew Joseph

    2016-10-01

    With JAXA's Hisaki spacecraft in orbit around Earth gathering information on the Io plasma torus and NASA's Juno mission measuring plasma conditions in the jovian magnetosphere, the time is ripe for a re-evaluation of earlier observations of the plasma torus to assess evidence for temporal variations. In particular, we are interested in exploring the ion composition of the torus and whether there is evidence of the ultimate source - the volcanic gases from Io - have deviated from SO2. We use the latest CHIANTI 8.0 atomic database to analyze UV spectra of the torus from Voyager, Galileo and Cassini as well as with the physical chemistry model of Delamere, Steffl and Bagenal (2005). We find that contrary to earlier analyses of Voyager data (e.g. Shemansky 1987; 1988) that produced a composition requiring a neutral source of O/S~4, we find an ion composition that is consistent with the Cassini UVIS data (Steffl et al. 2004) and a neutral O/S~2, consistent with SO2.

  14. Chandra Observations of Io and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D. C.; Crary, F. J.; Metzger, A. E.; Hurley, K. C.; Ford, P.; Feigelson, E.; Garmire, G.; Whitaker, Ann (Technical Monitor)

    2001-01-01

    Chandra observed the Jovian system for approximately 1 day with ACIS-S in Nov, 1999, and approximately 10 hours with HRC-I in Dec, 2000. Among the many results of great interest to planetary scientists are the detection of x-ray emission from the Io Plasma Torus (IPT) and, very faintly, associated with the Jovian moon Io itself. The IPT is an almost self-generating donut of S and O ions in Io's orbit that ultimately derive from volcanoes on the surface. While EUV and visible emissions from the IPT are relatively well understood to result from low charge state transitions of S and O and from electron impact, the x-ray emissions are too energetic to be explained this way and seem to require the presence of higher charge states of S and O. We present current ideas as to origins of these x-ray emissions.

  15. The Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1983-01-01

    Research on Jovian magnetospheric physics from 1979 through 1982 is surveyed, with a focus on the observations of Voyagers 1 and 2. Jovian fields and plasmas are characterized in the order of their distance from the planet, and special emphasis is given to the Io plasma torus (IPT) in the 4.9-8-Jovian-radius region and to the extended Jovian magnetotail. Topics reviewed include synchrotron radiation, magnetic-field models, Na and S emissions in the IPT, aurora, the magnetic-anomaly model, IPT plasma diffusion-convection, Io-generated Alfven wave, plasma configuration beyond the IPT, low-energy charged particles, cosmic-ray-energy particles, particle acceleration, magnetic configuration, tail current sheet and plasma disc, magnetopause and magnetosheath, interplanetary ions of Jovian origin, and the Jovian magnetosphere at Saturnian distances.

  16. Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.

    2002-01-01

    In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.

  17. Plasma in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1975-01-01

    It is shown that the plasma in Jupiter's ionosphere is collisionless above a certain level. In the outer magnetosphere, where the rotational force dominates the gravitational force, the collisionless plasma has a beam-like distribution and gives rise to a two-stream instability. This leads to trapping of plasma in the centrifugally dominated region of the magnetosphere. Plasma is lost by recombination. Equilibrium-trapped particle densities are calculated by requiring a balance between trapping by wave-particle interaction and loss by recombination. The results are compared with recent observations from Pioneer 10. It is suggested that the observations require an unexplained ion-heating mechanism. Some consequences of the model are discussed.

  18. Jovian plasma modeling for mission design

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin

    2015-01-01

    The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and

  19. Jovian Plasma Modeling for Mission Design

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin

    2015-01-01

    The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and

  20. The Encounter of P/Shoemaker-Levy 9 with the Jovian Plasma and Extended Sodium Cloud

    NASA Technical Reports Server (NTRS)

    Niciejewski, R. J.

    1997-01-01

    The encounter of comet P/Shoemaker-Levy 9 with Jupiter during July, 1994, provided an unprecedented opportunity to observe any potential perturbations in the Jovian plasma torus and extended sodium cloud as the comet entered the planet's atmosphere. Though the most obvious affect of the encounter was the distinctive response of the visible disk to the impact of the cometary fragments, the potential disruptions to the extended Jovian atmosphere and the restoration of the system to equilibrium also provided a test for the current interpretation of the Jovian plasma torus and sodium magneto-nebula. The observations that were performed for this grant were made by a complementary group of researchers and could not have been made if the individuals worked singly. In a sense, the exciting opportunity provided by this astronomical event also provided a mechanism to test the potential of pooling limited resources from several sources to construct a state-of-the-art spectrally resolving instrument, to acquire the necessary time and resources from institutions that maintain world-class optical telescopes, to perform the observations with the assistance of students, and to analyze the data sets.

  1. Io's volcanic influence on the Io plasma torus: HISAKI observation in 2015

    NASA Astrophysics Data System (ADS)

    Tsuchiya, F.; Yoshioka, K.; Kimura, T.; Murakami, G.; Yoneda, M.; Koga, R.; Kagitani, M.; Sakanoi, T.; Kasaba, Y.; Yamazaki, A.; Yoshikawa, I.

    2015-12-01

    The satellite Io which has many active volcanos supplies volcanic gases to the Jovian magnetosphere with typical rate of 1 ton/sec and has been known be a primary source of plasmas in the magnetosphere. Change in the volcanic activity on Io should cause change of the supply rate and could affect structure of the magnetosphere and dynamics occurs in it. However, responses of the magnetosphere to the volcanic activity is still not fully understood; one of the reasons is lack of continuous and long term observations of Io' volcanic gas extended around Io, plasmas in the Io torus, and activity of the magnetosphere. The extreme ultraviolet (EUV) spectroscope, EXCEED, onboard the HISAKI satellite has capability to measure ion and atomic emission lines in EUV range (55-145nm) and is dedicated to observing solar system planets. The satellite has been successfully launched on Sep. 2013 and 2nd campaign of Io plasma torus and Jovian northern EUV aurora observation has been done from the end of Nov. 2014 to middle of May 2015. On middle of Jan. 2015, HISAKI detected gradual increase in intensity of S+ emission lines and decrease of S3+ ones in the plasma torus. The S+ intensity showed a maximum around the end of Feb. and S++ and S3+ intensities also showed maxima subsequently. Simultaneous ground based observation of the sodium nebula showed increase of the emission intensity from the middle of Jan. to the beginning of Mar. These observations suggest that the volcanic activity began at the middle of Jan. and increase neutral atom and ion densities in the Io torus. The intensities of S+ and S2+ ions returned to the pre-increase level by the middle of May 2015. S3+ had still been in the decay phase at the end of the observation. Change in radial structure of the plasma torus was also found during the volcanic event. The intensity of S+ ion began to increase around the orbit of Io (6 Jovian radii). The brightened region propagated outward and reached at 8.5 Jovian radii from

  2. Implications of variable mass loading in the Io torus: The Jovian flywheel

    NASA Astrophysics Data System (ADS)

    Pontius, D. H.

    1995-10-01

    The Io plasma torus exhibits a persistent lag from corotation with Jupiter, a phenomenon associated with mass loading due to local ionization of neutrals ejected from Io. The observed lag is the sum of two effects: slippage of the high-altitude neutral atmosphere relative to the planet and slippage of the torus relative to the neutrals. However, the relative weights of the two effects have not been well constrained. Recent observations show that the lag is very steady and insensitive to the position of Io. Models of torus chemistry suggest that mass loading should be concentrated in the vicinity of Io. If the lag is indeed a consequence of mass loading, then this inhomogeneity should presumably lead to more pronounced spatial and temporal variations than are observed. I show that because the neutral atmosphere has a much larger moment of inertia than the torus, it acts as a massive flywheel that requires several hundred hours to adjust to a changing source. By further implication, the effects of local time variations in the mass loading are also smoothed out, and the observed lag reflects the longitude-averaged source rate. This also confirms earlier predictions that most of the observed lag is accountable to slippage of the neutral atmosphere. Implications for radial transport are also discussed. .

  3. Jovian magnetospheric plasma effects at Europa and Ganymede (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Cassidy, T. A.; Hendrix, A. R.; Paranicas, C.; Cipriani, F.; Leblanc, F.; Cooper, J. F.

    2009-12-01

    Europa and Ganymede are imbedded in the Jovian magnetospheric plasma. This plasma alters their surfaces producing tenuous surface boundary-layer atmospheres (Johnson, 2002). That is, the interactions of the desorbed neutrals with the surface determine the composition and morphology of their atmospheres (Cassidy et al. 2009; Cipriani et al. 2009). Those neutrals that escape the satellite remain gravitationally bound to Jupiter in a toroidal-shaped cloud until they are ionized and contribute to the ambient plasma. Since gas-phase species are readily identified, the gravitationally bound and toroidal components are of interest as extensions of the satellite’s surface. If these atmospheres were only populated by thermal desorption, they would have a small subsolar water component (Shematovich et al. 2005) and the trace volatiles would be rapidly depleted. However, Europa and Ganymede orbit in a region of the Jovian magnetosphere in which the trapped plasma density and temperature are relatively high. This plasma and the solar EUV flux chemically alter and erode their surfaces, processes often lumped together as sputtering. Early laboratory results were used to predict the principal atmospheric component, O2, and its average column density (Johnson et al. 1982). Since loss of H2 accompanies the formation and ejection of O2 from ice (Johnson and Quickenden 1997), and, since H2 escapes more readily than the heavier species, hydrogen is a principal species in the neutral torus (Smyth and Marconi 2006) and a primary source of protons for the Jovian magnetosphere. Atmospheric simulations using models for the surface composition, data on the radiation flux, and laboratory data have been used in to interpret the available observations and to suggest which trace species might be detectable by an orbiting spacecraft. Models for the atmospheres of Europa and Ganymede and their relation to the plasma-weathered surfaces will be described in which redistribution and loss to the

  4. The transmission of Alfven waves through the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Wright, A. N.; Schwartz, S. J.

    1989-04-01

    The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.

  5. Torus-Shaped Dust Clouds in Magnetized Anodic Plasmas

    SciTech Connect

    Pilch, I.; Reichstein, T.; Greiner, F.; Piel, A.

    2008-09-07

    The generation of a torus-shaped dust cloud in an anodic plasma is decribed. The confined dust particles perfom a rotational motion around the torus major axis. The structure of the cloud in dependence of the external parameters are observed and the rotation velocity of the particles was measured and compared with a simple estimate.

  6. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  7. Io: IUE observations of its atmosphere and the plasma torus

    NASA Technical Reports Server (NTRS)

    Ballester, G. E.; Moos, H. W.; Feldman, P. D.; Strobel, D. F.; Skinner, T. E.; Bertaux, J.-L.; Festou, M. C.

    1988-01-01

    Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent.

  8. Ion Temperature Control of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.

    2005-01-01

    We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.

  9. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  10. Numerical simulation of plasma transport driven by the Io torus

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Wolf, R. A.; Spiro, R. W.; Dessler, A. J.

    1992-01-01

    The Rice convection model (RCM) has been modified to a form suitable for Jupiter (RCM-J) to study plasma interchange motion in and near the Io plasma torus. The net result of the interchange is that flux tubes, heavily loaded with torus plasma, are transported outward, to be replaced by tubes containing little low-energy (less than 1 keV) plasma. The process is numerically simulated in terms of time evolution from an initial torus that is longitudinally asymmetric and with gradually decreasing density outward from Io's orbit. In the simulations, the nonlinear stage of the instability characteristically exhibits outreaching fingers of heavily-loaded flux tubes that lengthen at an accelerating rate. The principal finding is that the primary geometrical form of outward transport of torus plasma in Jupiter's magnetosphere is through long, outward-moving fingers of plasma. In the simulations, the fingers mainly form in the active sector of the Io torus (the heavier side of the asymmetric torus), and they are spaced longitudinally roughly 20 deg apart.

  11. The abundance of O(2+) in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Bagenal, F.; Shemansky, D. E.; Mcnutt, R. L., Jr.; Schreier, R.; Eviatar, A.

    1992-01-01

    From a synthesis of data from the Plasma-Science and Ultraviolet-Science instruments on Voyager 1 a radial profile is presented of O(2+) abundance between 4.9 and 42 Jovian radii. A sharp rise is noted in O(2+) mixing ratio near 7.5 Jovian radii, coincident with a sharp rise in effective electron temperature at the outer boundary of the Io plasma torus. Beyond 8.5 Jovian radii the O(2+) mixing ratio is found to be roughly constant which indicates freezing of the ionization prevailing at the outer edge of the hot torus.

  12. On the energy crisis in the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.; Bagenal, Fran; Cheng, Andrew F.; Strobel, Darrell

    1988-01-01

    Recent calculations of the energy balance of the Io plasma torus show that the observed UV and EUV radiation cannot be maintained solely via energy input by the ion pickup mechanism. Current theoretical models of the torus must be modified to include non-local energy input. It is argued that the required energy may be supplied by inward diffusion of energetic heavy ions with energies less than about 20 keV.

  13. Modeling Variability of Plasma Conditions in the Io Torus

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Bagenal, F.

    2003-01-01

    Telescopic observations an in situ measurements of the Io plasma torus show the density, temperature and composition to vary over time, sometimes up to a factor of 2. While previous models of the physical and chemical processes in the Io plasma torus have reasonably modeled the conditions of the Voyager 1 era, their authors have not addressed the observed variability nor explored the sensitivity of torus conditions to input parameters. In this paper we present a homogeneous torus model parameterized by five variables (transport timescale, neutral source strength, ratio of oxygen sulfur to atoms in the source, fraction of superthermal electrons, temperature of these hot electrons). The model incorporates the most recent data for ionization, recombination, charge exchange and radiative energy losses for the major torus species (S, S(sup +), S(sup ++), S(sup +++), O, O(sup +), O(sup ++). We solve equations of conservation of mass and energy to find equilibrium conditions for a set of input parameters. We compare model plasma conditions with those observed by Voyager 1 Voyager 2, and Cassini. Furthermore, we explore the sensitivity of torus conditions to each parameter. We find that (1) torus conditions are distinctly different for the Voyager 1, Voyager 2 and Cassini eras, (2) unique torus input parameters for any given era are poorly constrained given the wide range of solution space that is consistent with the range of observed torus conditions, (3) ion composition is highly sensitive to the specification of a non-thermal electron distribution, (4) neutral O/S source ratio is highly variable with model values ranging between 1.7 for Cassini to 4.0 for Voyager 1 conditions, (5) transport times range between 23 days for Voyager 2 to 50 days for Voyager 1 and Cassini, (6) neutral source strengths range between 7 to 30 x 10(sup -4) cm (sup -3) s(sup -1) which corresponds to a net production of 0.4 to 1.3 tons/s for a torus volume of 1.4 x 10(sup 31) cm(sup 3), or 38 R

  14. Radio occultations of the Io plasma torus by Juno are feasible

    NASA Astrophysics Data System (ADS)

    Phipps, Phillip H.; Withers, Paul

    2017-02-01

    The flow of material from Io's volcanoes into the Io plasma torus, out into the magnetosphere, and along field lines into Jupiter's upper atmosphere is not adequately understood. The lack of observations of spatial and temporal variations in the Io plasma torus impedes attempts to understand the system as a whole. Here we propose that radio occultations of the Io plasma torus by the Juno spacecraft can measure plasma densities in the Io plasma torus. We find that the line-of-sight column density of plasma in each of the three regions of the Io plasma torus (cold torus, ribbon, and warm torus) can be measured with uncertainties of 10%. We also find that scale heights describing the spatial variation in plasma density in each of these three regions can be measured with similar uncertainties. Such observations will be sufficiently accurate to support system-scale studies of the flow of plasma through the magnetosphere of Jupiter.

  15. A Search for Plasma "Fingers" in the Io Torus

    NASA Astrophysics Data System (ADS)

    Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.

    1996-09-01

    We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.

  16. Io's Sodium Clouds and Plasma Torus: Three Quiet Apparitions

    NASA Astrophysics Data System (ADS)

    Wilson, Jody; Mendillo, M.; Baumgardner, J.

    2007-10-01

    Ground-based observations of Io's sodium clouds from February 2005 to June 2007 indicate that Io was in an unusually quiet state of atmospheric escape. Simultaneous observations of the sulfur-ion plasma torus in that same period indicate that the torus has been gradually dimming, which is also consistent with below-average atmospheric escape rates from Io. The S+ torus was essentially undetectable in May 2007. Our goal in this 3-year project was to compare variability in the clouds and torus with observations of Io's volcanic infrared ``hot spots'' (e.g., Marchis et al. 2005) in order to track the flow of mass from Io's volcanoes into Jupiter's magnetosphere. Of particular interest was the 18-month cycle of Io's large volcano Loki (Rathbun et al. 2002, Mendillo et al. 2004), however it seems that Loki has settled into an unusually long-term quiescent state (Rathbun and Spencer, 2006). Thus, although we have been unable to monitor the month-to-month effects of the Loki cycle, we nonetheless have indirect evidence for Loki's long-term effects on Io's atmosphere and Jupiter's magnetosphere by observing their weak states when Loki is not actively contributing. This research is funded in part by NASA's Planetary Astronomy Program. Marchis et al., Keck AO survey of Io global volcanic activity between 2 and 5 microns, Icarus, 176, 96-122, 2005. Mendillo et al., Io's volcanic control of Jupiter's extended neutral clouds, Icarus, 170, 430-442, 2004. Rathbun, J.A. et al., Loki, Io: A periodic volcano, Geophysical Research Letters, 29, Issue 10, pp. 84-1, 2002. Rathbun, J.A. and J.R. Spencer, Loki, Io: New ground-based observations and a model describing the change from periodic overturn, Geophysical Research Letters, 33, Issue 17, 2006.

  17. Io plasma torus ion composition: Voyager, Galileo, and Cassini

    NASA Astrophysics Data System (ADS)

    Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.

    2017-01-01

    The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.

  18. An overview of plasma wave observations obtained during the Galileo A34 pass through the inner region of the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Kurth, W. S.; Menietti, J. D.; Roux, A.; Bolton, S. J.; Alexander, C. J.

    2003-04-01

    On November 5, 2002, the Galileo spacecraft, which is in orbit around Jupiter, made a pass in to a radial distance of 1.98 RJ (Jovian radii) from Jupiter, much closer than on any previous orbit. Data were successfully acquired during the entire inbound pass through the hot and cold plasma torii, and through the region inside the cold torus to a radial distance of 2.32 RJ, at which point the data system went into safing due to the intense radiation in the inner region of the magnetosphere. The purpose of this paper is to give an overview of the results obtained from the plasma wave investigation during this pass, which is designated A34. As on previous passes through the Io plasma torus a narrowband electrostatic emission at the upper hybrid resonance frequency provided a very accurate measurement of the electron density. The peak electron density, 2.6 x 103 cm-3, occurs just before the inner edge of the hot torus, which is at 5.62 RJ. As the spacecraft enters the cold torus the electron density drops to about 6.0 x 102 cm-3 and then gradually increases as the spacecraft approaches Jupiter, reaching a peak of about 2.5 x 103 cm-3 at 4.86 RJ, shortly before the inner edge of the cold torus. At the inner edge of the cold torus, which occurs at 4.76 RJ, the electron density drops dramatically to levels on the order of 1 cm-3. The electron density in this inner region is difficult to interpret because the upper hybrid emission can no longer be clearly identified, and there are numerous narrowband emissions with cutoffs that may or may not be associated with the local electron plasma frequency. As in the hot torus, the low density region inside the cold torus has a persistent level of plasma wave noise below about 103 Hz that is tentatively interpreted as whistler mode noise. The intensity of the whistler mode noise increases noticeably as the spacecraft crosses Thebe's orbit at 3.1 RJ, and increases markedly as the spacecraft crosses Amalthea's orbit at 2.6 RJ. The

  19. High Performance Plasmas on the National Spherical Torus Experiment

    SciTech Connect

    D.A. Gates; M.G. Bell; R.E. Bell; J. Bialek; T. Bigelow; M. Bitter; P. Bonoli; D. Darrow; P. Efthimion; J. Ferron; E. Fredrickson; L. Grisham; J. Hosea; D. Johnson; R. Kaita; S. Kaye; S. Kubota; H. Kugel; B. LeBlanc; R. Maingi; J. Manickam; T.K. Mau; R.J. Maqueda; E. Mazzucato; J. Menard; D. Mueller; B. Nelson; N. Nishino; M. Ono; F. Paoletti; S. Paul; Y-K.M. Peng; C.K. Phillips; R. Raman; P. Ryan; S.A. Sabbagh; M. Schaffer; C.H. Skinner; D. Stutman; D. Swain; E. Synakowski; Y. Takase; J. Wilgen; J.R. Wilson; W. Zhu; S. Zweben; A. Bers; M. Carter; B. Deng; C. Domier; E. Doyle; M. Finkenthal; K. Hill; T. Jarboe; S. Jardin; H. Ji; L. Lao; K.C. Lee; N. Luhmann; R. Majeski; H. Park; T. Peebles; R.I. Pinsker; G. Porter; A. Ram; M. Rensink; T. Rognlien; D. Stotler; B. Stratton; G. Taylor; W. Wampler; G.A. Wurden; X.Q. Xu; L. Zeng; and the NSTX Team

    2001-07-10

    The National Spherical Torus Experiment (NSTX) has produced toroidal plasmas at low aspect ratio (A = R/a = 0.86 m/0.68 m approximately equal to 1.3, where R is the major radius and a is the minor radius of the torus) with plasma currents of 1.4 MA. The rapid development of the machine has led to very exciting physics results during the first full year of physics operation. Pulse lengths in excess of 0.5 sec have been obtained with inductive current drive. Up to 4 MW of High Harmonic Fast Wave (HHFW) heating power has been applied with 6 MW planned. Using only 2 MW of HHFW heating power clear evidence of electron heating is seen with HHFW, as observed by the multi-point Thomson scattering diagnostic. A noninductive current drive concept known as Coaxial Helicity Injection (CHI) has driven 260 kA of toroidal current. Neutral-beam heating power of 5 MW has been injected. Plasmas with beta toroidal (= 2 mu(subscript ''0'')

    /B(superscript ''2'') = a measure of magnetic confinement efficiency ) of 22% have been achieved, as calculated using the EFIT equilibrium reconstruction code. Beta-limiting phenomena have been observed, and the maximum beta toroidal scales with I(subscript ''p'')/aB(subscript ''t''). High frequency (>MHz) magnetic fluctuations have been observed. High-confinement mode plasmas are observed with confinement times of >100 msec. Beam-heated plasmas show energy confinement times in excess of those predicted by empirical scaling expressions. Ion temperatures in excess of 2.0 keV have been measured, and power balance suggests that the power loss from the ions to the electrons may exceed the calculated classical input power to the ions.

  20. Two-Dimensional Transport Studies for the Composition and Structure of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Research efforts in the second quarter have been focused upon a preliminary exploration of the likely impact of Europs's local atmospheres and neutral clouds on the plasma torus and the initiation of an assessment of the basic nature of the radial structure of the electron density in the plasma torus during the JO encounter of the Galileo spacecraft with Jupiter.

  1. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  2. Re-Analysis of Galileo Cassini & Voyager EUV Observations of the Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Nerney, E. G.

    2015-12-01

    We present a survey of conditions observed in the Io plasma torus from the Voyager flyby, throughout the Galileo mission (1995 to 2003), & the Cassini flyby of Jupiter (fall 2000 to spring 2001). On the Cassini spacecraft the UVIS instrument made extensive observations of the spatial and temporal variations of torus emissions (Steffl et al. 2004, 2006). We re-analyze the Voyager, Galileo & Cassini EUV observations of torus emissions with a physical chemistry model based on Delamere et al. (2004) to derive modest spatial and temporal variations in torus model parameters (transport time, neutral source, population of hot electrons, ratio of neutral oxygen to sulfur atoms in the source). Torus plasma conditions (Temperature and mixing ratios of the different model species) derived from these emissions are also compared with in situ measurements by the Voyager PLS instruments and ground-based observations of torus emissions.

  3. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  4. Global ENA Imaging of the Jovian Magnetosphere: A Tool for Global Exploration of the Giant Accelerator of Energetic Particles and Their Interaction with the Torus Region and Moons (Invited)

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Mitchell, D. G.; Mauk, B. H.; Paranicas, C.; Krupp, N.

    2010-12-01

    The Europa-Jupiter System Mision (EJSM) has required a synergistic approach within the JGO-JEO constellation to unravel fundamental and universal magnetospheric processes, by using powerful combinations of in-situ and global imaging measurement. The Japanese Space Agency is also considering a possible Jupiter Magnetospheric Orbiter (JMO), enabling triple point measurements and multi-point imaging to ensure simultaneous and continuous observations - a key requirement for revealing how the magnetosphere couples to the ionosphere as well as to the plasma sources. Energetic Neutral Atom (ENA) imaging is so far the only technique capable of obtaining global images of the magnetospheric energetic ion population in the ~3-300 keV range, which otherwise would have remained invisible. ENA cameras on Cassini and the terrestrial IMAGE mission have revealed global, explosive acceleration processes and their connection to the ionosphere, aurorae and radio emissions. Therefore, the technique is considered to be game-changing and one of the required measurement techniques in the payload definition for both JGO and JMO. In this presentation we discuss how ENA imaging can make use of the synergistic approach of EJSM to explore global acceleration, MI-coupling, relation to aurorae and radio emissions, transport, solar wind control, constrain torus neutral gas evolution and provide global context for moon-magnetosphere interactions in the Jovian magnetosphere. We use past measurements and a data-derived model to simulate ENA images through a realistic camera response function along the JGO orbit and explore the scientific value added by in-situ and imaging measurements from JMO. The presentation is concluded by summarizing the critical technical requirements of ENA cameras, such as energy and mass range, geometrical factor and background/foreground rejection that must be met in order to operate in the harsh Jovian environment while achieving the highest priority science objectives.

  5. Ratio of oxygen to sulfur in the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Shemansky, Donald E.

    1987-01-01

    The relative concentrations of O and S ions in the hot dense region of the Io plasma torus (IPT) are investigated by means of model calculations based on collisional diffusive equilibrium. The spectroscopic constraints and uncertainties encountered in calculating the ion partitioning and the modeling procedures employed are discussed, and the results are presented in tables and graphs and compared with Voyager EUV data and the rocket observations of Skinner and Durrance (1986). It is found that the observed O and S emission from the IPT can be reproduced by models with approximately equal partitioning between O and S species. The assumptions and analyses leading to the conclusion (Moreno et al., 1985) that the IPT is S-dominated (by 3 to 1 or more) are analyzed in detail and rejected.

  6. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    SciTech Connect

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  7. Investigating the energy crisis in Io's plasma torus: plasma energetics in rotating magnetospheres

    NASA Astrophysics Data System (ADS)

    Ramer, K. M.; Kivelson, M.; Vogt, M.; Khurana, K. K.; Walker, R. J.; Strangeway, R. J.

    2015-12-01

    It has long been recognized that there is something lacking in our understanding of the temperature of the Io plasma torus. In situ observations show that the temperature in the torus increases more than can be accounted for by ion pickup; as much as 20% of the needed energy is missing. However, the role of centrifugal acceleration has not been investigated as a potential source of plasma heating. Analysis of the role of centrifugal forces on the plasma population is difficult as the effects are both energy and pitch-angle dependent: adiabatic outward displacement of flux tubes in a rotating frame results in net cooling of equatorially mirroring plasma even when a centrifugal force is acting, but this is not necessarily the case for particles mirroring off the equator. An ion in a rotating, adiabatically stretching system bouncing away from its mirror point will gain parallel energy from the centrifugal force, but will lose it again as it moves back towards its mirror point; the bounce-averaged change in energy is small. Therefore the centrifugal force in an adiabatically expanding system is only able to impart significant energy to a particle if the timescale of the stretching is less than that of a bounce period. As a prelude to a full Large Scale Kinetic (LSK) simulation of particles in a rotating magnetic field, here we check that two prerequisite conditions are met. Firstly, we estimate an upper bound to the thermal energy that could be gained through centrifugal acceleration in order to demonstrate that there is sufficient energy to account for the temperature anomaly observed at Io's plasma torus. Secondly, we calculate the bounce period of ions typical to the torus to establish the range of energies for which the quarter bounce times are is shorter than the ~4 days required for the field in the Io plasma torus to stretch from 6-10 RJ. We will also describe preliminary results from our modeling efforts.

  8. Local electron heating in the Io plasma torus associated with Io: the HISAKI observation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, F.; Yoshioka, K.; Kimura, T.; Murakami, G.; Kagitani, M.; Yamazaki, A.; Kasaba, Y.; Sakanoi, T.; Yoshikawa, I.; Nozawa, H.

    2014-12-01

    Io-correlated brightness change in Io plasma torus (IPT) has been discovered by Voyager and show an evidence of local electron heating around Io. However, the amount of observation data is still limited to investigate its detail properties. In addition, the clear Io-correlated change has not been detected by EUVE and Cassini observations. Cause of the Io-correlated effect is still open issue. The HISAKI satellite was launched on Sep. 14, 2013 and started observation of IPT and Jovian aurora for more than two months since the end of Dec. 2013. EUV spectrograph onboard the HISAKI satellite covers wavelength range from 55 to 145 nm, a wide slit which had a field of view of 400 x 140 arc-second was chosen to measure radial distribution and time variation of IPT. Observation of IPT with HISAKI showed clear Io-correlated brightness change since the Voyager observation. The amplitude of the periodic variation associated with Io's orbital period was found. It also showed long-term variation during the HISAKI's observation period. Through the observation period, the amplitude was larger in the short wavelength than in long wavelength. The wavelength dependence suggests significant electron heating and/or hot electron production. The Io phase dependence shows that bright region is located just downstream of Io. These are evidence of local electron heating around/downstream of Io and consistent with the Voyager result. The brightness also depends on system-III longitude and has local maximum around 120 and 300 degrees. Based on an empirical model of IPT, electron density at Io also shows maxima around the same longitudes. This suggests that the electron heating process is related with plasma density at Io. Candidate mechanisms which are responsible for the electron heating will be discussed.

  9. Modeling physical chemistry of the Io plasma torus in two dimensions

    NASA Astrophysics Data System (ADS)

    Copper, M.; Delamere, P. A.; Overcast-Howe, K.

    2016-07-01

    Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.

  10. High resolution measurements of density structures in the Jovian plasma sheet

    NASA Technical Reports Server (NTRS)

    Ansher, J. A.; Kurth, W. S.; Gurnett, D. A.; Goertz, C. K.

    1991-01-01

    A recent effort to digitize the plasma density by using the low frequency cutoff of trapped continuum radiation in the vicinity of the Jovian plasma sheet has revealed the existence of sharply defined density structures in the plasma sheet. These structures typically have a plasma density which is relatively constant but of order 50 percent greater or less than in the surrounding plasma. At the boundaries of these structures, the transitions from low to high density occur on time scales of about ten seconds, which correspond to spatial dimensions on the order of a few ion Larmor radii. The structures themselves last for intervals from less than a minute to more than five minutes, corresponding to size scales from a fraction of a Jovian radius to more than a Jovian radius, depending of the velocity of the structure relative to the spacecraft. In view of the importance of near corotation plasma flows, these structures are likely to be limited in both the longitudinal and radial dimensions and, therefore, could represent flux tubes with greatly varying plasma content. These observations are presented as among the first to directly address the theoretically proposed interchange instability.

  11. Physics of the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dessler, A. J.

    2002-08-01

    List of tables; Foreword James A. Van Allen; Preface; 1. Jupiter's magnetic field and magnetosphere Mario H. Acuña, Kenneth W. Behannon and J. E. P. Connerney; 2. Ionosphere Darrell F. Strobel and Sushil K. Atreya; 3. The low-energy plasma in the Jovian magnetosphere J. W. Belcher; 4. Low-energy particle population S. M. Krimigis and E. C. Roelof; 5. High-energy particles A. W. Schardt and C. K. Goertz; 6. Spectrophotometric studies of the Io torus Robert A. Brown, Carl B. Pilcher and Darrell F. Strobel; 7. Phenomenology of magnetospheric radio emissions T. D. Carr, M. D. Desch and J. K. Alexander; 8. Plasma waves in the Jovian magnetosphere D. A. Gurnett and F. L. Scarf; 9. Theories of radio emissions and plasma waves Melvyn L. Goldstein and C. K. Goertz; 10. Magnetospheric models T. W. Hill, A. J. Dessler and C. K. Goertz; 11. Plasma distribution and flow Vytenis M. Vasyliunas; 12. Microscopic plasma processes in the Jovian magnetosphere Richard Mansergh Thorne; Appendixes; References; Index.

  12. Modeling of Spherical Torus Plasmas for Liquid Lithium Wall Experiments

    SciTech Connect

    R. Kaita; S. Jardin; B. Jones; C. Kessel; R. Majeski; J. Spaleta; R. Woolley; L. Zakharo; B. Nelson; M. Ulrickson

    2002-01-29

    Liquid metal walls have the potential to solve first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.

  13. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  14. Discovery of Soft X-Ray Emission from Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    The Chandra X-ray Observatory observed the Jovian system for about 24 hours on 25-26 Nov 1999 with the Advanced CCD Imaging Spectrometer (ACIS), in support of the Galileo flyby of Io, and for about 10 hours on 18 Dec 2000 with the imaging array of the High Resolution Camera (HRC-I), in support of the Cassini flyby of Jupiter. Analysis of these data have revealed soft (0.25--2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays is about an order of magnitude too weak even during flares from the active Sun to account for the observed x-ray flux from the IPT. Charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains both fall by orders of magnitude. On the other hand, we calculate that bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range accounts for roughly one third of the observed x-ray flux from the IPT. Extension of the far ultraviolet (FUV) IPT spectrum likely also contributes.

  15. Numerical Simulation of Rotation-Driven Plasma Transport In the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wolf, Richard A.

    1997-01-01

    A Jupiter version of the Rice Convection Model (RCM-J) was developed with support of an earlier NASA SR&T grant. The conversion from Earth to Jupiter included adding currents driven by centrifugal force, reversing the planetary magnetic field, and rescaling various parameters. A series of informative runs was carried out, all of them solving initial value problems. The simulations followed an initial plasma torus configuration as it fell apart by interchange instability. Some conclusions from the simulations were the following: 1. We confirmed that, for conventional values of the torus density and ionospheric conductance, the torus disintegrates by interchange instability on a time scale of approx. one day, which is 1-2 orders of magnitude shorter than the best estimates of the average residence time of plasma in the torus. 2. In the model, the instability could be slowed to an arbitrary degree by the addition of sufficient impounding energetic particles, as suggested earlier by Siscoe et al (1981). However, the observed energetic particles do not seem sufficient to guarantee impoundment (e.g., Mauk et al., 1996). 3. Whether inhibited by impoundment or not, the interchange was found to proceed by the formation of long fingers, which get thinner as they get longer. This picture differed dramatically from the conventional radial-diffusion picture (e.g., Siscoe and Summers (1981)), more superficially with the outward-moving-blob picture (Pontius and Hill, 1989). The obvious limitation of the original RCM-J was that it could not represent a plasma source. We could represent the decay of a pre-existing torus, but we could not represent the way ionization of material from Io continually replenishes the plasma. We consequently were precluded from studying a whole set of fundamental issues of torus theory, including whether the system can come to a steady state.

  16. Momentum Transport in Electron-Dominated Spherical Torus Plasmas

    SciTech Connect

    Kaye, S. M.; Solomon, W.; Bell, R. E.; LeBlanc, B. P.; Levinton, F.; Menard, J.; Rewoldt, G.; Sabbagh, S.; Wang, W.; Yuh, H.

    2009-02-24

    The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km/s and ExB shearing rates up to 1 MHz. This level of ExB shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g., ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n=3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low-k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities up to 40 m/s and perturbative momentum diffusivities of up to 4 m2/s, which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low-k turbulence drives the inward momentum pinch. Thus, in Spherical Tori (STs), while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low-k turbulence that exists.

  17. Source characteristics and locations of hectometric radio emissions from the northern Jovian hemisphere

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Northern Jovian hectometric (HOM) radio emissions, detected from high Jovian latitudes by the Unified Radio and Plasma Wave experiment on the Ulysses spacecraft, were observed at all Jovian longitudes. This emission was observed to be predominantly right-hand circularly polarized, but some left-hand circular polarization was observed implying the presence of O mode emissions from the northern Jovian hemisphere. Intense HOM emissions, with well-defined directions and polarizations, were often confined to similar longitudinal regions where intense HOM emissions were previously observed at low latitudes. The present analysis confirms that these northern HOM sources lie in the Jovian polar regions on magnetic field lines that pass through the Io plasma torus. The observations may be consistent with emission from either a filled cone beam or a longitudinal distribution of thin hollow cones.

  18. Modeling and investigative studies of Jovian low frequency emissions

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Green, J. L.; Six, N. F.; Gulkis, S.

    1986-01-01

    The Voyager data in a newly produced noise-reduced and recalibrated format has been received. New color spectrograms were developed on high resolution color terminals which display this data. The production of these new spectrograms utilizing the new format data is quite important, because it eliminates a serious problem of noise contamination and miscalibration in the old data set. In addition, a new Jovian plasma model was introduced, which includes the Io torus and accounts for 7 ionic species. The new plasma model is important in the ray tracing of hectometric (HOM) and kilometric (KOM) radiation which may be influenced by the Io torus.

  19. Modeling and investigative studies of Jovian low frequency emissions

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Green, J. L.; Six, N. F.; Gulkis, S.

    1986-09-01

    The Voyager data in a newly produced noise-reduced and recalibrated format has been received. New color spectrograms were developed on high resolution color terminals which display this data. The production of these new spectrograms utilizing the new format data is quite important, because it eliminates a serious problem of noise contamination and miscalibration in the old data set. In addition, a new Jovian plasma model was introduced, which includes the Io torus and accounts for 7 ionic species. The new plasma model is important in the ray tracing of hectometric (HOM) and kilometric (KOM) radiation which may be influenced by the Io torus.

  20. Success and failure of the plasma analogy for Laughlin states on a torus

    NASA Astrophysics Data System (ADS)

    Fremling, Mikael

    2017-01-01

    We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at ν =\\frac{1}{q} . We first establish, as expected, that the plasma is screening if there are no short nontrivial paths around the torus. We also find that when one of the handles has a short circumference—i.e. the thin-torus limit—the plasma no longer screens. To quantify this we compute the normalization of the Laughlin state, both numerically and analytically. In the thin torus limit, the analytical form of the normalization simplify and we can reconstruct the normalization and analytically extend it back into the 2D regime. We find that there are geometry dependent corrections to the normalization, and this in turn implies that the plasma in the plasma analogy is not screening when in the thin torus limit. Despite the breaking of the plasma analogy in this limit, the analytical approximation is still a good description of the normalization for all tori, and also allows us to compute hall viscosity at intermediate thickness.

  1. Voyager observations of lower hybrid noise in the Io plasma torus and anomalous plasma heating rates

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.; Kurth, W. S.; Scarf, F. L.

    1985-01-01

    A study of Voyager 1 electric field measurements obtained by the plasma wave instrument in the Io plasma torus has been carried out. A survey of the data has revealed the presence of persistent peaks in electric field spectra in the frequency range 100-600 Hz consistent with their identification as lower hybrid noise for a heavy-ion plasma of sulfur and oxygen. Typical wave intensities are 0.1 mV/m, and the spectra also show significant Doppler broadening, Delta omega/omega approximately 1. A theoretical analysis of lower hybrid wave generation by a bump-on-tail ring distribution of ions is given. The model is appropriate for plasmas with a superthermal pickup ion population present. A general methodology is used to demonstrate that the maximum plasma heating rate possible through anomalous wave-particle heat exchange is less than approximately 10 to the -14th ergs per cu cm per s. Although insufficient to meet the power requirement of the EUV-emitting warm torus, the heating rate is large enough to maintain a low-density (0.01-0.1 percent) superthermal electron population of keV electrons, which may lead to a small but significant anomalous ionization effect.

  2. Empirical probability model of cold plasma environment in the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Wang, Xiao-Dong; Barabash, Stas; Roussos, Elias; Truscott, Pete

    2015-04-01

    We analyzed the Galileo PLS dataset to produce a new cold plasma environment model for the Jovian magneto- sphere. Although there exist many sophisticated radiation models, treating energetic plasma (e.g. JOSE, GIRE, or Salammbo), only a limited number of simple models has been utilized for cold plasma environment. By extend- ing the existing cold plasma models toward the probability domain, we can predict the extreme periods of Jovian environment by specifying the percentile of the environmental parameters. The new model was produced in the following procedure. We first referred to the existing cold plasma models of Divine and Garrett, 1983 (DG83) or Bagenal and Delamere 2011 (BD11). These models are scaled to fit the statistical median of the parameters obtained from Galileo PLS data. The scaled model (also called as "mean model") indicates the median environment of Jovian magnetosphere. Then, assuming that the deviations in the Galileo PLS parameters are purely due to variations in the environment, we extended the mean model toward the percentile domain. The input parameter of the model is simply the position of the spacecraft (distance, magnetic longitude and lati- tude) and the specific percentile (e.g. 0.5 for the mean model). All the parameters in the model are described in mathematical forms; therefore the needed computational resources are quite low. The new model can be used for assessing the JUICE mission profile. The spatial extent of the model covers the main phase of the JUICE mission; namely from the Europa orbit to 40 Rj (where Rj is the radius of Jupiter). In addition, theoretical extensions toward the latitudinal direction are also included in the model to support the high latitude orbit of the JUICE spacecraft.

  3. Limit on rotational energy available to excite Jovian aurora

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Siscoe, G. L.

    1980-01-01

    There is a fundamental relationship between the power that is extracted from Jupiter's rotation to drive magnetospheric processes and the rate at which mass is injected into the Io plasma torus. Half of this power is consumed by bulk motion of the plasma and the other half represents an upper limit on the energy from rotation available for dissipation and in particular to excite the Jovian aurora. Since the rotation of the planet is the only plausible source of energy, the power inferred from the observed auroral intensities requires a plasma injection rate of 2.6 x 10 to the 29th AMU/sec or greater. This in turn leads to a residence time of a torus particle of 48 days or less. These results raise doubts about the applicability of equilibrium thermodynamics to the determination of plasma parameters in the Io torus.

  4. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-08-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123 to 140 deg. (north; III 1965 system) and 284 to 305 deg. (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189 to 236 deg.) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  5. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-05-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123°≤λ_III≤140° (north) and 284°≤λ_III≤305° (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189° to 236°) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  6. Two-Dimensional Transport Studies for the Composition and Structure of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2003-01-01

    Research efforts in the second quarterly period have been focused primarily upon reviewing and assessing the neutral-plasma reactions and the plasma-plasma reactions that are important in determining the production and loss rates for the primary heavy ion species S(+), S(++), S(+++), O(+), and O(++) in the plasma torus and in acquiring new and updating old cross sections for the important processes.

  7. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  8. Ion heating and containment in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1974-01-01

    Experimental observations have been made during steady-state operation of the NASA Lewis Bumpy Torus experiment at input powers up to 150 kilowatts in deuterium and helium gas. A steady-state ion heating method utilizes a Modified Penning discharge operated in a bumpy torus confinement geometry. The bumpy torus plasma is acted upon by a combination of strong electric and magnetic fields. In a deuterium plasma, electron temperatures from 14 to 140 electron volts and ion kinetic temperatures from 160 to 1785 electron volts were observed. At least two distinct operating regimes exist, each of which is associated with a characteristic range of background gas pressure and electron temperature. Experimental data show that the average ion residence time (ionization time) in the plasma is virtually independent of the magnetic field strength.

  9. Ion heating and containment in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1974-01-01

    Experimental observations have been made during steady state operation of a torus experiment at input powers up to 150 kilowatts in deuterium and helium gas. The steady state ion heating method utilizes a modified Penning discharge operated in a bumpy torus confinement geometry. The bumpy torus plasma is acted upon by a combination of strong electric and magnetic fields. In a deuterium plasma, electron temperatures from 14 to 140 electron volts and ion kinetic temperatures from 160 to 1785 electron volts were observed. At least two distinct operating regimes exist, each of which is associated with a characteristic range of background gas pressure and electron temperature. Experimental data show that the average ion residence time in the plasma is virtually independent of magnetic field strength.

  10. Examining the interaction of Europa with the Jovian magnetosphere using eruptive and multifluid plasma dynamic simulations

    NASA Astrophysics Data System (ADS)

    Paty, C. S.; Dufek, J.; Payan, A. P.

    2015-12-01

    Jupiter's icy moon Europa provides a unique laboratory for understanding the physics of moon-magnetosphere interactions. Europa possesses a conductive subsurface ocean, the interaction of which with the locally varying Jovian magnetic field is expressed by the observed inductive response. This icy moon also boasts a dynamic exosphere as well as eruptive plumes, which interact with the Jovian plasma as expressed via ultraviolet aurora. We investigate a broad range of parameter space related to the interaction of this icy moon with the rapidly rotating magnetosphere of Jupiter, systematically working through and quantifying various physical effects using a multifluid plasma dynamic modeling framework. Aside from induction and interactions with the exosphere, we will also present preliminary result from incorporating a neutral plume generated by an eruptive simulation. We run conduit simulations to get at neutral gas and particle injection velocities, which are in turn used as a source for the plasma dynamic simulations. We then investigate the distribution of neutrals, ions, and charged grains as a function of altitude.

  11. Spectrophotometric studies of the Io Torus

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Pilcher, C. B.; Strobel, D. F.

    1983-01-01

    A toroidal volume near Io's orbit is made luminous by multiple optical and ultraviolet line emissions excited by resonant scattering of sunlight and by electron collisions. These emitting atoms and ions have been lost from Io. The spectrophotometric measurements of these emissions and their physical interpretation are considered. It is now known that the flow of material from Io dominates the particle and energy budgets of the Jovian magnetosphere. The observed emitting species in the Io torus are examined, and the atomic clouds are discussed, taking into account morphology and kinematics, atomic cloud supply rates, ion-atom collisions, and charge-exchange collisions. Observations and studies concerning the plasma torus are reported, giving attention to the forbidden lines, the extreme ultraviolet lines, and aspects of ion temperature and spatial distribution. Two types of radial transport in the Io torus include the ballistic motion of neutrals escaping from Io and the cross-L transport of ions.

  12. Resonant instability near the two-ion crossover frequency in the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Thorne, R. M.; Moses, J. J.

    1985-07-01

    Thorne and Scarf (1984) have presented evidence for the existence of intense low-frequency fluctuating electric fields in the Io plasma torus. Two distinct mechanisms have been proposed for this phenomenon, namely, ion cyclotron instability which occurs at intermediate latitude, and whistler instability near the equator. The present investigation is concerned with a quantitative appraisal of each of these mechanisms, taking into account an evaluation of the net convective growth rate of waves along ray paths which traverse the Io torus. Aspects of wave propagation near the crossover frequency are considered along with questions regarding the resonant interaction with energetic particles.

  13. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  14. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  15. Discovery of an Io-correlated energy source for Io's hot plasma torus

    NASA Technical Reports Server (NTRS)

    Sandel, B. R.; Broadfoot, A. L.

    1982-01-01

    Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.

  16. Discovery of an Io-correlated energy source for Io's hot plasma torus

    NASA Astrophysics Data System (ADS)

    Sandel, B. R.; Broadfoot, A. L.

    1982-04-01

    Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.

  17. Charging of small grains in a space plasma: Application to Jovian stream particles

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Schmidt, J.; Liu, X.; Spahn, F.

    2016-07-01

    Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams. Aims: We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft. Methods: We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain. Results: For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of

  18. Space and ground-based multi-wavelength observing campaign of Jupiter's aurora and the Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, G.; Yoshikawa, I.; Badman, S.

    2013-09-01

    The EXCEED EUV spectrograph (55 - 145 nm) on-board the Japanese mission Sprint-A, due for launch into low Earth orbit in August 2013, will be dedicated to the study of the tenuous plasma surrounding planets in our solar system. A target of special interest will be Jupiter and its environment, and the emission from the Io Plasma Torus (IPT) in particular. A systematic campaign of observations of Jupiter and the IPT is planned over the period Oct. 2013 - March 2014. This is a unique opportunity to explore the possible links between the IPT emission distribution, the strength and character of Jupiter's auroral emissions and the conditions of the solar wind. Hence, concurrently with the EXCEED observations, a large multi-wavelength campaign has been organised to exploit this unique opportunity of gathering important diagnostic data on the complex array of physical processes taking place in Jupiter's environment. This campaign includes (this is by no means a complete list) approved FUV imaging and spectroscopy of Jupiter's Northern aurora with HSTSTIS (PI: Sarah Badman), Kitt Peak 4m visible spectroscopy of the IPT (PI: Sarah Badman), Gemini observations of Jupiter H3+ (4 µm) aurora (PI: Melin), submitted proposals for HST-STIS FUV observations of Jupiter's Southern aurora, Io and Ganymede's footprints (PI: Bonfond), Chandra and XMM-Newton pointings of Jupiter and the IPT (PI: Kraft), Suzaku observations of diffuse X-rays from the Jovian inner magnetosphere (PI: Ezoe); in addition, ground based observations with IRTF, Subaru and other facilities are planned. This talk will review the motivation for this vaste coordinated observing campaign, and the science that we expect to draw from it: essentially a better understanding of how the Jupiter's system works.

  19. Plasma depletions in the Jovian magnetosphere - Evidence of transport and solar wind interaction

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ralph L., Jr.; Coppi, Paolo S.; Selesnick, Richard S.; Coppi, Bruno

    1987-01-01

    A series of plasma voids ('dropouts') was observed by the Plasma Science (PLS) experiment in Jupiter's magnetosphere during the Voyager 2 encounter with that planet. A reexamination of Voyager 2 data has led to the conclusion that the dropout phenomenon cannot be a manifestation of a plasma wake produced by Ganymede. Rather, the appearance of the dropouts is attributed to changes in the upstream solar wind conditions and the global state of the magnetosphere; the proximity of Voyager 2 to Ganymede at the time is considered to be coincidental. It is suggested that these dropouts are evidence of a state of 'bubbling' of the magnetosphere that alternates with 'laminar' states in which, as in the case of the Voyager 1 encounter with Jupiter, voids are not present and that these states correspond to different processes by which plasma is transported out of the system. The nature of these states is related to changes in the magnitude of the upstream solar wind ram pressure. In the bubbling state, this pressure is higher than in the laminar state and drives an intermittent instability. The analysis presented is one of the first attempts to introduce, in space physics, recently acquired theoretical notions of the physics of the finite-beta plasmas of which the Jovian magnetospheric plasma is an important example.

  20. Cassini UVIS Observations of the Io Plasma Torus. 4; Modeling Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2008-01-01

    In this fourth paper in a series, we present a model of the remarkable temporal and azimuthal variability of the Io plasma torus observed during the Cassini encounter with Jupiter. Over a period of three months, the Cassini Ultraviolet Imaging Spectrograph (UVIS) observed a dramatic variaton in the average torus composition. Superimposed on this long-term variation, is a 10.07-hour periodicity caused by azimuthal variation in plasma composition subcorotating relative to System III longitude. Quite surprisingly, the amplitude of the azimuthal variation appears to be modulated at the beat frequency between the System III period and the observed 10.07-hour period. Previously, we have successfully modeled the months-long compositional change by supposing a factor of three increase in the amount of material supplied to Io's extended neutral clouds. Here, we extend our torus chemistry model to include an azimuthal dimension. We postulate the existence of two azimuthal variations in the number of superthermal electrons in the torus: a primary variation that subcorotates with a period of 10.07 hours and a secondary variation that remains fixed in System III longitude. Using these two hot electron variations, our model can reproduce the observed temporal and azimuthal variations observed by Cassini UVIS.

  1. Two-Dimensional Transport Studies for the Composition and Structure of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2003-01-01

    The overall objective of this project is to investigate the roles of local and spatially extended plasma sources created by Io, plasma torus chemistry, and plasma convective and diffusive transport in producing the long-lived S(+), S(++) and O(+) radial ribbon structures of the plasma torus, their System III longitude and local-time asymmetries, their energy sources and their possible time variability. To accomplish this objective, two-dimensional [radial (L) and System III longitude] plasma transport equations for the flux-tube plasma content and energy content will be solved that include the convective motions for both the east-west electric field and co-rotational velocity-lag profile near Io s orbit, radial diffusion, and the spacetime dependent flux-tube production and loss created by both neutral-plasma and plasma-ion reaction chemistry in the plasma torus. For neutral-plasma chemistry, the project will for the first time undertake the calculation of realistic three-dimensional, spatially-extended, and time-varying contributions to the flux-tube ion-production and loss that are produced by Io's corona and extended neutral clouds. The unknown two-dimensional spatial nature of diffusion in the plasma transport will be isolated and better defined in the investigation by the collective consideration of the foregoing different physical processes. For energy transport, the energy flow from hot pickup ions (and a new electron source) to thermal ions and electrons will be included in investigating the System III longitude and local-time temperature asymmetries in the plasma torus. The research is central to the scope of the NASA Sun-Earth Connection Roadmap in Quest II Campaign 4 "Comparative Planetary Space Environments" by addressing key questions for understanding the magnetosphere of planets with high rotation rates and large internal plasma sources and, in addition, is of considerable importance to the NASA Solar System Exploration Science Theme. In this regard

  2. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increased by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 100 billion per cu cm is estimated for the 3-anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  3. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increase by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 10 to the 11th power cm/3 is estimated for the 3 anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  4. Study of plasma confinement in ELMO Bumpy Torus with a heavy-ion beam probe

    SciTech Connect

    Bieniosek, F. M.

    1981-01-01

    Plasma confinement in ELMO Bumpy Torus (EBT) is generally strongly dependent on an ambipolar electric field. Spatially resolved measurements of the resulting electric space potential phi/sub sp/ have been made in a single plasma cross section by the heavy-ion beam probe. This diagnostic injects a 4-60-keV beam of (usually) Cs/sup +/ ions into the plasma. Measurement of the energy of Cs/sup 2 +/ secondary ions leaving the plasma gives a continuous monitor of the local space potential. In addition, the total detected Cs/sup 2 +/ ion current is proportional to the product of the local electron density and the ionization rate, which, in turn, is a function of the electron temperature. This signal, nf(T/sub e/), is sensitive to all three electron distributions found in EBT - those of the cold surface plasma, the warm core plasma, and the hot electron ring.

  5. The impact of Callisto's atmosphere on its plasma interaction with the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lucas; Feyerabend, Moritz; Simon, Sven; Motschmann, Uwe

    2015-11-01

    The interaction between Callisto's atmosphere and ionosphere with the surrounding magnetospheric environment is analyzed by applying a hybrid simulation code, in which the ions are treated as particles and the electrons are treated as a fluid. Callisto is unique among the Galilean satellites in its interaction with the ambient magnetospheric plasma as the gyroradii of the impinging plasma and pickup ions are large compared to the size of the moon. A kinetic representation of the ions is therefore mandatory to adequately describe the resulting asymmetries in the electromagnetic fields and the deflection of the plasma flow near Callisto. Multiple model runs are performed at various distances of the moon to the center of Jupiter's magnetospheric current sheet, with differing angles between the corotational plasma flow and the ionizing solar radiation. When Callisto is embedded in the Jovian current sheet, magnetic perturbations due to the plasma interaction are more than twice the strength of the background field and may therefore obscure any magnetic signal generated via induction in a subsurface ocean. The magnetic field perturbations generated by Callisto's ionospheric interaction are very similar at different orbital positions of the moon, demonstrating that local time is only of minor importance when disentangling magnetic signals generated by the magnetosphere-ionosphere interaction from those driven by induction. Our simulations also suggest that deflection of the magnetospheric plasma around the moon cannot alone explain the density enhancement of 2 orders of magnitude measured in Callisto's wake during Galileo flybys. However, through inclusion of an ionosphere surrounding Callisto, modeled densities in the wake are consistent with in situ measurements.

  6. System III variations in apparent distance of Io plasma torus from Jupiter

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Sandel, B. R.

    1992-01-01

    System III variations in apparent distance of the Io plasma torus from Jupiter are examined on the basis of data obtained from UVS scans across Jupiter's satellite system. The displacement of the dawn and dusk ansae are found to be unexpectedly complex. The displacements are unequal and both ansae are in motion with the motion of the approaching ansa being the lesser of the two. The radial motions, as measured from either the center of Jupiter or the offset-tilted dipole, are of unequal magnitude and have the System III periodicity. It is concluded that the cross-tail electric field that causes these torus motions is concentrated on the dusk ansa, varied with the System III period, and shows magnetic-anomaly phase control. It is found that the dawn-dust asymmetry in brightness is not explained simply by the cross-tail electric field. It is concluded that there is a heating mechanism that causes the dusk side of the Io plasma torus to be brighter than the dawn side.

  7. High Performance Plasmas on the National Spherical Torus Experiment

    DTIC Science & Technology

    2001-06-01

    time as determined by magnetic analysis using the EFIT code [11] plotted against two conventional tokamak scaling relations, ITER89P and ITER98y2...injected. Plasmas with βt (=2µ0<p>/B 2 = a measure of magnetic confinement efficiency) of 22% have been achieved, as calculated using the EFIT ...efficiency) of 22% have been achieved, as calculated using the EFIT equilibrium reconstruction code. â limiting phenomena have been observed, and the

  8. Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.; Richardson, R. W.

    1976-01-01

    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring.

  9. Investigation of possible lower hybrid emission from the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1977-01-01

    Radio frequency emission detected near the lower hybrid frequency of the NASA Lewis Bumpy Torus plasma is studied, using a simple detection system that consists of a spectrum analyzer and a 50-ohm miniature co-axial antenna concentrically located in a re-entrant quartz tube. The frequency shift of a broad emission peak is monitored as a function of the background pressure, electrode voltage, and the strength of the dc magnetic field. Simultaneous measurements of the average plasma density are made with a polarization diplexing microwave interferometer. Information from the experiment is discussed with particular reference to the role of atomic or molecular species of deuterium in the emissions, the strength of the dc magnetic field in the emitting region, the geometric location of the emitting region of the plasma, the lower hybrid plasma density as compared with the average plasma density, and the relation of the ion spoke geometry to the lower hybrid emission.

  10. Cassini UVIS Observations of the Io Plasma Torus. 3; Observations of Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2006-01-01

    In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.

  11. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  12. Variations in Optical S+ Emission from the Io Plasma Torus: Evidence for Quasi Periodicity

    NASA Astrophysics Data System (ADS)

    Woodward, R. Carey, Jr.; Scherb, Frank; Roesler, Fred L.

    1997-04-01

    As part of its efforts to monitor and characterize periodic variations in the Io plasma torus, the Wisconsin Space Physics group acquired Fabry-Perot spectra of [S II] λλ6716, 6731 for a 5 week period in 1988. Previous analysis showed periodicity, but, surprisingly, not at 10.2 hr--the persistent 3% subcorotational period, often called System IV, reported in other long-term torus data sets. We show here that our 1988 data exhibit a quasi-periodic intensity variation at 10.2 hr, characterized by two distinct intensity enhancements that abruptly changed in relative magnitude during the observational run. We also present perpendicular ion temperature data from the same period, showing a periodic variation anticorrelated with intensity after the aforementioned abrupt change, but no significant periodicity beforehand. This non/anticorrelation appears to eliminate the possibility that a slowly moving magnetic field enhancement is responsible for the subcorotational periodicity. Considering these and other long-term data, we suggest that the various observed subcorotational features are not themselves responsible for the 3% subcorotational period, but rather are independent features modulated or otherwise affected by a permanent, global phenomenon in the torus lagging corotation by 3%.

  13. Modeling Temporal Variability of Plasma Conditions in the Io Torus during the Cassini Era

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Steffl, A.; Bagenal, F.

    2004-01-01

    Observations of ultraviolet (UV) emissions from the major ion species (S(sup +), S(sup ++), S(sup +++), O(sup +), O(sup ++) of the Io Plasma torus made during the Cassini flyby (October 2000 to March 2001) have revealed significant time variability. Using a homogenoeus model for mass and energy flow in the torus parameterized by five input variables (transport timescale, neutral source strength, ratio of oxygen to sulfur atoms in the source, fraction of superthermal electrons, and temperature of the hot electrons), we have investigated the time variability of the torus properties (density, composition, and temperature) during the Cassini era. In order to match the changes in emissions, the model suggests that a significant change in the neutral source occurred near the beginning of the observing period, decreasing from more than 1.8 tons/s to 0.7 tons/s. The changes in the neutral source appear to coincide with the declining phase of a dramatic (i.e., 2-3 order of magnitude) peak in iogenic dust emissions observed by Galileo prior to the Cassini era.

  14. Mass-loading and diffusion-loss rates of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.

    1980-01-01

    Limits to the mass-loading and diffusion-loss rates of ions in the Io plasma torus have been calculated on the assumption that observed optical emissions are controlled by electron-ion collisions. Calculations of the yield of emission from the vicinity of Io limit the mass-loading rate to the order of 10 to the 27th per s for S II or O II, on the grounds that electron-excited emissions associated with the location of Io have not been observed in the optical spectrum. This mass-loading limit is dependent on the assumptions that Io is the source of torus particles and that most of the neutral atoms are converted to ions within 1 R(J) of Io. According to the calculations presented below, the observed partitioning of sulfur ion species in the hot torus at the time of Voyager 1 encounter indicates that the diffusion-loss time of the ions is of the order of 1/D = 100 days. The two results limiting the mass-loading and diffusion-loss rates are compatible and suggest that the energy required to maintain the observed radiated power cannot be supplied by acceleration of ions formed at Io in Jupiter's rotating magnetic field.

  15. Characteristics of the NASA Lewis bumpy torus plasma generated with high positive or negative applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.

    1976-01-01

    The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes.

  16. Ulysses radio occultation observations of the Io plasma torus during the Jupiter encounter

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Asmar, S. W.; Brenkle, J. P.; Edenhofer, P.; Funke, O.; Paetzold, M.; Volland, H.

    1992-01-01

    Radio signals from Ulysses were used to probe the Io plasma torus (IPT) shortly after the spacecraft's closest approach to Jupiter. The frequencies of the two downlinks at S-band (2.3 gigahertz) and X-band (8.4 gigahertz) were recorded, differenced, and integrated in order to derive the columnar electron density of the IPT. The measurements agree qualitatively with contemporary models of the IPT based on Voyager data, but significant differences are apparent as well. The overall level of the IPT electron density is approximately the same as the prediction, implying that the amount of gas (or plasma) injected from Io is similar to that observed during the Voyager era. On the other hand, the IPT seems to be less extended out of the centrifugal equator, implying a smaller plasma temperature than predicted.

  17. Turbulent fluctuations during pellet injection into a dipole confined plasma torus

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.

    2017-01-01

    We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.

  18. Radial Variations in the Io Plasma Torus during the Cassini Era

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Bagenal, F.; Steffl, A.

    2005-01-01

    A radial scan through the midnight sector of the Io plasma torus was made by the Cassini Ultraviolet Imaging Spectrograph on 14 January 2001, shortly after closest approach to Jupiter. From these data, Steffl et al. (2004a) derived electron temperature, plasma composition (ion mixing ratios), and electron column density as a function of radius from L = 6 to 0 as well as the total luminosity. We have advanced our homogeneous model of torus physical chemistry (Delamere and Bagenal, 2003) to include latitudinal and radial variations in a manner similar to the two-dimensional model by Schreier et al. (1998). The model variables include: (1) neutral source rate, (2) radial transport coefficient, (3) the hot electron fraction, (4) hot electron temperature, and (5) the neutral O/S ratio. The radial variation of parameters 1-4 are described by simple power laws, making a total of nine parameters. We have explored the sensitivity of the model results to variations in these parameters and compared the best fit with previous Voyager era models (schreier et al., 1998), galileo data (Crary et al., 1998), and Cassini observations (steffl et al., 2004a). We find that radial variations during the Cassini era are consistent with a neutral source rate of 700-1200 kg/s, an integrated transport time from L = 6 to 9 of 100-200 days, and that the core electron temperature is largely determined by a spatially and temporally varying superthermal electron population.

  19. Initial characterization of electron cyclotron heated plasmas in the Columbia Non-Neutral Torus

    NASA Astrophysics Data System (ADS)

    Hammond, Kenneth; Volpe, Francesco; Lazerson, Samuel

    2014-10-01

    The Columbia Non-Neutral Torus (CNT) is a stellarator at Columbia University recently modified for the study of quasi-neutral plasmas heated by 2.45 GHz electron cyclotron waves. Using a simple configuration of four circular planar coils, it generates magnetic surfaces with the lowest aspect ratios (1.9-2.7) ever attained by a stellarator. The low magnetic field (0.09 T), combined with the possibility of electron Bernstein wave heating above the cutoff density, could make CNT suitable for research of magnetohydrodynamic equilibrium and stability at high beta. Additional plans for future work include novel microwave and magnetic diagnostics, heating with electron cyclotron and helicon waves, and error field studies. Here we present an experimental characterization of the parameters of CNT's first microwave-heated plasmas. We present Langmuir probe measurements of temperature and density profiles, fast camera images, and equilibrium reconstructions computed by the VMEC code.

  20. Plasma Shape Control on the National Spherical Torus Experiment (NSTX) using Real-time Equilibrium Reconstruction

    SciTech Connect

    D.A. Gates; J.R. Ferron; M. Bell; T. Gibney; R. Johnson; R.J. Marsala; D. Mastrovito; J.E. Menard; D. Mueller; B. Penaflor; S.A. Sabbagh; T. Stevenson

    2005-04-15

    Plasma shape control using real-time equilibrium reconstruction has been implemented on the National Spherical Torus Experiment (NSTX). The rtEFIT code originally developed for use on DIII-D was adapted for use on NSTX. The real-time equilibria provide calculations of the flux at points on the plasma boundary, which is used as input to a shape control algorithm known as isoflux control. The flux at the desired boundary location is compared to a reference flux value, and this flux error is used as the basic feedback quantity for the poloidal-field coils on NSTX. The hardware that comprises the control system is described, as well as the software infrastructure. Examples of precise boundary control are also presented.

  1. Rocket FUV Observations of the Io Plasma Torus During the Shoemaker-Levy/9 Impacts

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Slater, D.; Cash, W.; Wilkinson, E.; Green, J.; Gladstone, R.

    1995-01-01

    We observed the Io torus from 820-1140 A on universal time (UT) 20.25 July 1994 from a sounding rocket telescope/spectrograph. These observations serve as only the fourth published spectrum of the torus in this wavelength range, and the only far ultraviolet (FUV) data documenting the state of the torus during the Shoemaker Levy 9 Impacts.

  2. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  3. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  4. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  5. Periodic bursts of Jovian non-Io decametric radio emission

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Rucker, H. O.; Farrell, W. M.

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  6. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    SciTech Connect

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  7. Final Technical Report on DOE Grant for Modeling of Plasma Rotation in the National Spherical Torus Experiment

    SciTech Connect

    Shaing, K. C.

    2009-07-09

    This is the final technical report on the Modeling of Plasma Rotation in National Spherical Torus Experiment (NSTX) DOE Grant No. DE-FG02-02ER54679. The research subjects, technical abstracts, and publications where details of the research results can be found are reported here.

  8. Observation of quasi-coherent edge fluctuations in Ohmic plasmas on National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Banerjee, Santanu; Diallo, A.; Zweben, S. J.

    2016-04-01

    A quasi-coherent edge density mode with frequency fmode ˜ 40 kHz is observed in Ohmic plasmas in National Spherical Torus Experiment using the gas puff imaging diagnostic. This mode is located predominantly just inside the separatrix, with a maximum fluctuation amplitude significantly higher than that of the broadband turbulence in the same frequency range. The quasi-coherent mode has a poloidal wavelength λpol ˜ 16 cm and a poloidal phase velocity of Vpol ˜ 4.9 ± 0.3 km s-1 in the electron diamagnetic direction, which are similar to the characteristics expected from a linear drift-wave-like mode in the edge. This is the first observation of a quasi-coherent edge mode in an Ohmic diverted tokamak, and so may be useful for validating tokamak edge turbulence codes.

  9. Discovery of Soft X-Ray Emission From Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We report the discovery of soft (0.25 - 2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays, even during flares from the active Sun, charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains fall to account for the observed emission. On the other hand, bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range may account for a substantial fraction of the observed x-ray flux from the IPT.

  10. Source characteristics of Jovian hectometric radio emissions

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Direct confirmation that low-frequency Jovian hectometric (HOM) radio emissions centered near 0 deg central meridian longitude consist of distinct, oppositely polarized northern and southern beams has been achieved using data from the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. Distinct northern and southern beams were observed in the frequency range from approximately 300 kHz to 1 MHz for at least eight Jovian rotations during the Ulysses inbound pass at distances from 100 to 40 R(sub j). The radiation from the two magnetic hemispheres was measured from different Jovigraphic longitudes and magnetic (or centrifugal) latitudes. Observed temporal variations in the radio intensities, with time scales on the order of 30 min, may result either from longitudinal variations of the HOM sources or from longitudinal density variations in the Io plasma torus. Using the URAP direction-finding capabilities and assuming a tilted dipole planetary magnetic field model, the three-dimensional HOM source locations, the L shell through these source locations, and the beam opening angles were independently deduced. The HOM sources were found to originate at approximately 3 R(sub j) and on low L shells (L approximately 4 to 6), with beam opening angles ranging from 10 to 50 deg.

  11. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    SciTech Connect

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  12. Decametric modulation lanes as a probe for inner jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Rucker, Helmut O.

    2013-11-01

    We use the specific scintillations of jovian decametric radio sources (modulation lanes), which are produced by plasma inhomogeneities in the vicinity of that planet, to probe the inner magnetosphere of Jupiter. The positions and frequency drift of 1762 lanes have been measured on the DAM spectra from archives. A special 3D algorithm is used for space localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. As a result, the main regions of the lane formation are found: the Io plasma torus; the magnetic shell of the Gossamer Ring at Thebe and Amalthea orbits; and the region above the magnetic anomaly in the northern magnetosphere. It is shown that modulation lanes reveal the depleted magnetic tubes in practically unvisited, innermost regions of the jovian magnetosphere. The local and probably temporal plasma enhancement is found at the magnetic shell of Thebe satellite. Hence, the modulation lanes are a valuable instrument for remote sensing of those parts of jovian magnetosphere, which are not studied yet in situ.

  13. Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment

    SciTech Connect

    Kessel, C.E.; Bell, R.E.; Bell, M.G.; Gates, D.A.; Harvey, R.W.

    2006-01-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  14. Exploring a small sawtooth regime in Joint European Torus plasmas with counterinjected neutral beams

    SciTech Connect

    Nave, M.F.F.; Koslowski, H.R.; Coda, S.; Graves, J.; Brix, M.; Buttery, R.; Challis, C.; Giroud, C.; Stamp, M.; Vries, P. de

    2006-01-15

    During a recent reversed toroidal field (B{sub T}) campaign at the Joint European Torus (JET), experiments were performed to investigate the effect on sawteeth of neutral beam injection (NBI)-driven toroidal plasma rotation counter to the direction of the toroidal plasma current and B{sub T}. A power scan at constant density has permitted analytical continuation, into the reversed B{sub T} domain, of previous experiments with forward field and hence corotation. Earlier JET results were confirmed, indicating that counter-NBI results in sawtooth periods shorter than in the Ohmic regime. This study has demonstrated that, whereas with co-NBI the sawtooth period increases with power, with counter-NBI the sawtooth period initially decreases with power passing through a minimum at 4 MW. Clearly this trend also manifests itself in terms of the toroidal plasma rotation, for which a minimum is observed for counter-rotation frequency {approx}3 kHz. Sawteeth smaller than Ohmic sawteeth are found to be easier to obtain with perpendicular counter-NBI, for which heating penetrates deeper into the core. The sign and magnitude of the toroidal rotation, the penetration of heating to the electrons, and the peaking of the fast-ion pressure profile in the core may all play an important role in modifying the sawtooh period.

  15. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    SciTech Connect

    Gerhardt, S.P., Menard, J.E., and the NSTX Research Team

    2008-12-17

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment [M.Ono, et al Nuclear Fusion 40, 557 (2000)] is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change.

  16. Progress towards high performance plasmas in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kaye, S.; Peng, Yueng Kay Martin

    2005-01-01

    The major objective of the National Spherical Torus Experiment (NSTX) is to understand basic toroidal confinement physics at low aspect ratio and high T in order to advance the spherical torus (ST) concept. In order to do this, NSTX utilizes up to 7.5MW of neutral beam injection, up to 6MW of high harmonic fast waves (HHFWs), and it operates with plasma currents up to 1.5MA and elongations of up to 2.6 at a toroidal field up to 0.45 T. New facility, and diagnostic and modelling capabilities developed over the past two years have enabled the NSTX research team to make significant progress towards establishing this physics basis for future ST devices. Improvements in plasma control have led to more routine operation at high elongation and high T (up to 40%) lasting for many energy confinement times. T can be limited by either internal or external modes. The installation of an active error field (EF) correction coil pair has expanded the operating regime at low density and has allowed for initial resonant EF amplification experiments. The determination of the confinement and transport properties of NSTX plasmas has benefitted greatly from the implementation of higher spatial resolution kinetic diagnostics. The parametric variation of confinement is similar to that at conventional aspect ratio but with values enhanced relative to those determined from conventional aspect ratio scalings and with a BT dependence. The transport is highly dependent on details of both the flow and magnetic shear. Core turbulence was measured for the first time in an ST through correlation reflectometry. Non-inductive start-up has been explored using PF-only and transient co-axial helicity injection techniques, resulting in up to 140 kA of toroidal current generated by the latter technique. Calculated bootstrap and beam-driven currents have sustained up to 60% of the flat-top plasma current in NBI discharges. Studies of HHFW absorption have indicated parametric decay of the wave and

  17. Progress towards high performance plasmas in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kaye, S. M.; Bell, M. G.; Bell, R. E.; Bernabei, S; Bialek, J.; Biewer, T.; Blanchard, W.; Boedo, J.; Bush, C.; Carter, M. D.; Choe, W.; Crocker, N.; Darrow, D. S.; Davis, W.; Delgado-Aparicio, L.; Diem, S.; Ferron, J.; Field, A.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gibney, T.; Harvey, R.; Hatcher, R. E.; Heidbrink, W.; Hill, K.; Hosea, J. C.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kessel, C.; Kubota, S.; Kugel, H. W.; Lawson, J.; LeBlanc, B. P.; Lee, K. C.; Levinton, F.; Maingi, R.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastrovito, D.; Mau, T. K.; Medley, S. S.; Menard, J.; Meyer, H.; Mikkelsen, D. R.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S.; Peebles, T.; Peng, M.; Phillips, C.; Pigarov, A.; Pinsker, R.; Ram, A.; Ramakrishnan, S.; Raman, R.; Rasmussen, D.; Redi, M.; Rensink, M.; Rewoldt, G; Robinson, J.; Roney, P.; Roquemore, A. L.; Ruskov, E; Ryan, P.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B.; Stutman, D.; Swain, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Halle, A. von; Wade, M.; White, R.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Betti, R.; Bigelow, T.; Bitter, M.; Bonoli, P.; Bourdelle, C.; Chang, C. S.; Chrzanowski, J.; Domier, C.; Dudek, L.; Efthimion, P. C.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Greenough, N. L.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Hogan, J.; Houlberg, W.; Humphreys, D.; Jaeger, F.; Kalish, M.; Krasheninnikov, S.; Lao, L. L.; Lawrence, J.; Leuer, J.; Liu, D.; Luhmann, N. C.; Mazzucato, E.; Oliaro, G.; Pacella, D.; Parsells, R.; Schaffer, M.; Semenov, I.; Shaing, K. C.; Shapiro, M. A.; Shinohara, K.; Sichta, P.; Tang, X.; Vero, R.; Walker, D.; Wampler, W.

    2005-10-01

    The major objective of the National Spherical Torus Experiment (NSTX) is to understand basic toroidal confinement physics at low aspect ratio and high βT in order to advance the spherical torus (ST) concept. In order to do this, NSTX utilizes up to 7.5 MW of neutral beam injection, up to 6 MW of high harmonic fast waves (HHFWs), and it operates with plasma currents up to 1.5 MA and elongations of up to 2.6 at a toroidal field up to 0.45 T. New facility, and diagnostic and modeling capabilities developed over the past two years have enabled the NSTX research team to make significant progress towards establishing this physics basis for future ST devices. Improvements in plasma control have led to more routine operation at high elongation and high βT (up to ~40%) lasting for many energy confinement times. βT can be limited by either internal or external modes. The installation of an active error field (EF) correction coil pair has expanded the operating regime at low density and has allowed for initial resonant EF amplification experiments. The determination of the confinement and transport properties of NSTX plasmas has benefited greatly from the implementation of higher spatial resolution kinetic diagnostics. The parametric variation of confinement is similar to that at conventional aspect ratio but with values enhanced relative to those determined from conventional aspect ratio scalings and with a βT dependence. The transport is highly dependent on details of both the flow and magnetic shear. Core turbulence was measured for the first time in an ST through correlation reflectometry. Non-inductive start-up has been explored using PF-only and transient co-axial helicity injection techniques, resulting in up to 140 kA of toroidal current generated by the latter technique. Calculated bootstrap and beam-driven currents have sustained up to 60% of the flat-top plasma current in NBI discharges. Studies of HHFW absorption

  18. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    SciTech Connect

    B. Jones; G. Taylor; P.C. Efthimion; T. Munsat

    2004-01-28

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic.

  19. Effect of plasma shaping on performance in the National Spherical Torus Experiment

    SciTech Connect

    Gates, D. A.; Maingi, R.; Menard, J.; Kaye, S.; Sabbagh, S. A.; Taylor, G.; Wilson, J. R.; Bell, M. G.; Bell, R. E.; Bernabei, S.; Bialek, J.; Biewer, T.; Blanchard, W.; Boedo, J.; Bush, C.; Carter, M. D.; Choe, W.; Crocker, N.; Darrow, D. S.; Davis, W.; Delgado-Aparicio, L.; Diem, S.; Ferron, J.; Field, A.; Foley, J.; Fredrickson, E. D.; Harvey, R.; Hatcher, R. E.; Heidbrink, W.; Hill, K.; Hosea, J. C.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kessel, C.; Kubota, S.; Kugel, H. W.; Lawson, J.; LeBlanc, B. P.; Lee, K. C.; Levinton, F.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastrovito, D.; Mau, T. K.; Medley, S. S.; Meyer, H.; Mikkelsen, D. R.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S.; Peebles, W.; Peng, M.; Phillips, C.; Pigarov, A.; Pinsker, R.; Ram, A.; Ramakrishnan, S.; Raman, R.; Rasmussen, D.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Roquemore, L.; Ruskov, E.; Ryan, P.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B.; Stutman, D.; Swain, D.; Synakowski, E.; Takase, Y.; Tritz, K.; Halle, A. von; Wade, M.; White, R.; Wilgen, J.; Williams, M.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Betti, R.; Bigelow, T.

    2006-01-01

    The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving βt ~ 40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ ~ 2.8 and triangularity delta ~ 0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S equivalent to q95Ip/(aBt), which has been observed at large values of the S ~ 37[MA/(m • T)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping has enabled operation with 1 s pulses with Ip=1 MA, and for 1.6 s for Ip=700 kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion.

  20. Pioneer 10 ultraviolet photometer observations of Jovian UV emission in 1973

    NASA Astrophysics Data System (ADS)

    Wu, F. M.; Gangopadhyay, P.; Judge, D. L.

    1995-03-01

    The Pioneer 10 ultraviolet measurements obtained during the Jupiter encounter in 1973 have been further examined by using improved data handling and analysis techniques. The Pioneer 10 observations of Jupiter and its satellites during the encounter have been carefully reviewed in order to improve our understanding of the morphology of the Io plasma torus and Jupiter's upper atmosphere and to investigate the possible existence of other emission source such as Europa. In addition, the morphology of Io's bimodal torus observed during the Pioneer 10 encounter has been compared with the Voyager observations obtained approximately 6 years after the Pioneer 10 flyby and significant differences in the torus characteristics are found. The Io torus in 1973 was more similar to the 1992 Ulysses observations of a longitudinally asymmetric ring than to the complete ring observed by Voyager. Pioneer 10 observed a significantly dimmer Io torus and Jupiter upper atmosphere in the EUV compared to the Voyager observations. Apart from the torus and Jupiter, Pioneer 10 observed additional emissions which have been attributed to Io itself. Three distinct possibilities have been discussed to explain these additional emissions. The most likely is that Pioneer 10 observed volcanism on Io. There is also evidence of Pioneer 10 observing emissions from Europa. The present analysis clearly shows that the Jovian system in 1973 was significantly different from that observed in 1979.

  1. The variation of Io's auroral footprint brightness with the location of Io in the plasma torus

    NASA Astrophysics Data System (ADS)

    Serio, Andrew W.; Clarke, John T.

    2008-09-01

    -20236], however the data were not of sufficient quality to determine functional relationships. In this paper we report the results from a second, more thorough study, using a series of higher resolution and sensitivity HST STIS observations and a model for the center to limb dependence of the optically thin auroral emission brightness based on measurements of the auroral curtain emission distribution with altitude. A search for correlations between numerous parameters has revealed a strong dependence between Io's position in the plasma torus and the resulting footprint brightness that persists over several years of observations. The local magnetic field strength near Jupiter (i.e. the size of the loss cone) and the expected north/south asymmetry in auroral brightness related to the path of currents generated near Io through the plasma torus en route to Jupiter appear to be less important than the total plasma density near Io. This is consistent with the near-Io interaction being dominated by collisions of corotating plasma and mass pickup, a long-standing view which has been subject to considerable debate. The brightness of the auroral footprint emissions, however, does not appear to be proportional to the incident plasma density or energy, and the interpretation of this result will require detailed modeling of the interaction near Io.

  2. Modeling of Jovian Hectometric Radiation Source Locations: Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Reiner, M. J.

    1996-01-01

    The Unified Radio and Plasma Wave (URAP) experiment on Ulysses has provided unique high latitude measurements of Jovian hectometric radiation (HOM) during its encounter with Jupiter in February 1992. URAP was the first radio instrument in the Jovian environment with radio direction-finding capability, which was previously used to determine the HOM source locations in the Jovian magnetosphere. These initial source location determinations were based on several assumptions, including the neglect of refractive effects, which may be tested. We have, for the first time, combined the measured incident ray-direction at the spacecraft with a model magnetosphere to directly trace the rays back to the HOM source. We concentrate on the observations of HOM from high northern latitudes when Ulysses was at distances less than 15 R(sub j). The three- dimensional ray-tracing calculations presented here indicate that the HOM sources probably lie on L shells in the range 3 less than or approximately equal to L less than 7 (tilted dipole magnetic field model) consistent with previous determinations that ignored the effects of refraction. The ray-tracing results, however, indicate that wave refraction due to the Io torus and the magnetic field can significantly influence the precise source location. We show that constraints on the locations imposed by the gyroemission mechanism suggest that the lo torus density may have experienced temporal and/or spatial fluctuations during the Ulysses observations of HOM. Finally, in the cold plasma approximation we demonstrate that even if the emission were nearly linearly polarized near the source region, almost circular polarization will be observed at Ulysses, in agreement with observations.

  3. Fabry-Perot ground-based observations of comets and the Jupiter plasma torus

    NASA Technical Reports Server (NTRS)

    Scherb, Frank; Roesler, Fred L.

    1988-01-01

    The Wisconsin 150 mm dual etalon Fabry-Perot spectrometer is a powerful instrument for the study of diffuse emission sources such as cometary atmospheres, the Jupiter plasma torus, and various emission nebulae. Since 1985, researchers have concentrated their efforts on extensive observations of Comet Halley and the analysis of the data. Images of Comet Halley in (OI)6300 Angstrom emission were analyzed to obtain the spatial distribution of O(1D) in the cometary atmosphere. The narrow spectral bandpass of the Fabry-Perot (0.2 Angstrom) eliminated contamination from terrestrial airglow (OI)6300 and cometary NH2 lines in the nearby spectrum. The results were modelled to provide photodestruction lifetimes of cometary Water abd OH, the predominant parents of O(1D). The Fabry-Perot was also used in the scanning mode to obtain measurements of (OI)6300 and Balmer alpha emissions which were used to determine the H, O(1D) and water production rates as a function of heliocentric distance, both pre-perihelion and post-perihelion. Researchers also analyzed high resolution spectra of the NH2 (0,8,0) band in the 6300 Angstrom region to obtain preliminary values of the NH2 production rate. Assuming NH3 is the major parent of NH2, researchers found that the abundance ratio NH3/water is about (0.12 plus or minus 0.04 percent), assuming thermal equilibrium for the level populations of NH2.

  4. Magnetic Equilibrium and Stability Simulations of the National Spherical Torus Experiment Plasmas

    NASA Astrophysics Data System (ADS)

    Paoletti, F.; Sabbagh, S.; Garofalo, A.; Kaita, R.; Kaye, S.; Hatcher, R.; Lao, L.; Lazarus, E.; Turnbull, A.

    1997-11-01

    The numerical code EFIT(L. Lao, et al., Nucl. Fusion 25, 1611 (1985).) has been modified to accommodate the geometry of the National Spherical Torus Experiment (NSTX). Equilibrium solutions are calculated for both fixed and free boundary conditions to determine the operational space of NSTX plasmas. The p(ψ) and ff'(ψ) equilibrium profiles are chosen either generically or from time dependent experimentally produced profiles, measured in various operational regimes (L-mode, H-mode, etc.) of the DIII-D tokamak. Results supporting the design of the external magnetic diagnostics are shown. Particular attention is given to assess sufficient coverage of the diagnostic setup, since the main future use of the code will be for equilibrium reconstruction. The stability codes GATO(L. Bernard,Comput. Phys. Commun. 21, 377 (1981).) and PEST(R. Grimm, et al., Comput. Phys. Commun. 16, 253 (1976).) will be used, in conjunction with EFIT, to study the effects of configuration and location of the passive plates on the stability of the various equilibria.

  5. Local Regulation of Interchange Turbulence in a Dipole-Confined Plasma Torus using Current-Collection Feedback

    NASA Astrophysics Data System (ADS)

    Roberts, T. Maximillian

    2014-10-01

    Turbulence in a dipole-confined plasma is dominated by interchange fluctuations with complex dynamics and short coherence. We report the first laboratory demonstration of the regulation of interchange turbulence in a plasma torus confined by an axisymmetric dipole magnet using active feedback. Feedback is performed by varying the bias to an electrode in proportion to the electric potential measured at other locations. The phase and amplitude of the bias to the electrode is adjusted with a linear circuit, forming a relatively broad-band current-collection feedback system. Changing the gain and phase of collection results in modification of turbulent fluctuations, observed as amplification or suppression of turbulent spectrum. Significantly, power can be either extracted from or injected into the turbulence. When the gain and phase are adjusted to suppress turbulence, the external circuit becomes a controlled load extracting power from the plasma. This is analogous to the regulation of magnetospheric convection by ionospheric currents. When the gain and phase of the external circuit is adjusted to amplify turbulence, the direction of power flow from the electrode reverses, enhancing the fluctuations. Although we observe significant changes to the intensity and spectrum of plasma fluctuations, these changes appear only on those magnetic field lines within a region near the current collector equal in size to the turbulent correlation length and shifted in the direction of the electron magnetic drift. We conclude that the effects of this feedback on turbulence in a dipole plasma torus is localized. The clear influence of current-collection feedback on interchange turbulence suggests the possibility of global regulation of turbulent motion using multiple sensor and electrode pairs as well as the ability to perform controlled tests of bounce-averaged gyrokinetic theory of turbulence in the geometry of a dipole plasma torus. Supported by NSF-DOE Partnership for Plasma

  6. Local electron heating in the Io plasma torus associated with Io from HISAKI satellite observation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Fuminori; Kagitani, Masato; Yoshioka, Kazuo; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Nozawa, Hiromasa; Kasaba, Yasumasa; Sakanoi, Takeshi; Uemizu, Kazunori; Yoshikawa, Ichiro

    2015-12-01

    Io-correlated brightness change in the Io plasma torus (IPT) was discovered by the Voyager spacecraft, showing evidence of local electron heating around Io. However, its detailed properties and the cause of electron heating are still open issues. The extreme ultraviolet spectrograph on board the HISAKI satellite continuously observed the IPT from the end of December 2013 to the middle of January 2014. The variation in the IPT brightness showed that clear periodicity associated with Io's orbital period (42 h) and that the bright region was located downstream of Io. The amplitude of the periodic variation was larger at short wavelengths than at long wavelengths. From spectral analyses, we found that Io-correlated brightening is caused by the increase in the hot electron population in the region downstream of Io. We also found that the brightness depends on the system III longitude and found primary and secondary peaks in the longitude ranges of 100-130° and 250-340°, respectively. Io's orbit crosses the center of the IPT around these longitudes. This longitude dependence suggests that the electron heating process is related to the plasma density around Io. The total radiated power from the IPT in January 2014 was estimated to be 1.4 TW in the wavelength range from 60 to 145 nm. The Io-correlated component produced 10% of this total radiated power. The interaction between Io and the IPT continuously produces a large amount of energy around Io, and 140 GW of that energy is immediately converted to hot electron production in the IPT.

  7. Chandra X-Ray Observatory Observations of the Jovian System

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Bhardwaj, A.; Gladstone, R.; Waite, J. H.; Ford, P.; Branduari-Raymont, G.

    2005-01-01

    Chandra X-ray Observatory (CXO) and XMM-Newton observations of x-rays from the Jovian system have answered questions that arose from early observations with the Einstein and Rosat X-ray Observatories, but in the process of vastly increasing our knowledge of x-ray emission from Jupiter and its environs they have also raised new questions and point to new opportunities for future studies. We will review recent x-ray results on the Jovian system, from the point of view of the CXO, and discuss various questions that have arisen in the course of our studies. We will discuss prospects for more observations in the immediate future, and how they might address open questions. Finally we will briefly describe ways in which an imaging x-ray spectrometer in the vicinity of the Jovian system could provide a wealth of data and results concerning Jupiter's x-ray auroral and disk emission, elemental abundance measurements for the Galilean moons, and detailed studies of x-ray emission from the Io Plasma Torus.

  8. Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment.

    PubMed

    Solomon, W M; Kaye, S M; Bell, R E; Leblanc, B P; Menard, J E; Rewoldt, G; Wang, W; Levinton, F M; Yuh, H; Sabbagh, S A

    2008-08-08

    Experiments have been conducted at the National Sperical Torus Experiment (NSTX) to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with ExB shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after nonresonant magnetic perturbations are applied to brake the plasma.

  9. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  10. A 12-coil superconducting 'bumpy torus' magnet facility for plasma research.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    A retrospective summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm i.d. and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 T) has been reached and exceeded.

  11. On the nature of S II emission from Jupiter's hot plasma torus

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Shemansky, D. E.

    1982-01-01

    An effective electron temperature T(e) of 80,000 K is indicated by the Voyager 1 encounter Jupiter hot torus emission rates in the 6731, 1256, 911 and reclassified 765 A transitions of S II. A set of 53 measurements of the S II red line doublet obtained at 5.9 Jupiter radii shows strong, irregular fluctuations in intensity, but no variation in the line ratio. At this distance from Jupiter, the torus is found to be longitudinally uniform in density; this is consonant with Voyager UVS findings, but contrary to magnetic anomaly model predictions. It is suggested that presently unidentified ion-ion and/or iron-atom reactions are responsible for the S II component irregular variations, in view of the fact that electron properties are regular and variable only over a small range in the hot torus at 5.9 Jupiter radii.

  12. Amalthea's Modulation of Jovian Decametric Radio Emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.

    2006-08-01

    Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, Ukraine Amalthea is the largest body after Galilean satellites near Jupiter. An anomaly in Jovian synchrotron radiation has been found just on the Amalthea magnetic shell (de Pater, Schulz & Brecht 1997). It has been suggested that Amalthea's motion through Jupiter's magnetic field induces Alfvén or whistler wings or electrostatic high-frequency waves which lead to the pitch angle scattering. It is reasonable to search for another effect of these processes: magnetospheric inhomogeneities which could be found via scattering of Jovian decametric radio emission (DAM). Such scattering on field-aligned inhomogeneities in the Io plasma torus is known as "modulation lanes" in DAM dynamic spectra. To search for analogous Amalthea's modulation, the positions and frequency drift of about 600 lanes are measured on the UFRO spectra of DAM. The special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that about 4% of the lanes are clustered near Amalthea's magnetic shell. There are two such clusters near longitudes of 123°≤λ[III]≤140° and 284°≤λ[III]≤305°, which coincide with the regions of maximum compression of fresh plasma due to rotating magnetic field of Jupiter (where ∂(B^2)/∂λ[III]) is maximal). The Amalthea modulation could explain the enigmatic "hf-lanes" (Genova, Aubier & Lecacheux 1981). The found magnetospheric formations are a new argument for the ice nature of Amalthea which has the density less than that of water (Anderson et al. 2005). Anderson J.D. et al. 2005, Science, 308, 5726, pp. 1291-1293. de Pater I., Schulz M., Brecht S.H. 1997, J. Geophys. Res., 102, A10, pp. 22043-22064. Genova F., Aubier M.G., Lecacheux A. 1981, Astron. and Astrophys. 104, 2, pp. 229-239.

  13. A Consistent Ribbon Structure for the Io Plasma Torus at the Voyager 1 and Galileo J0 Epochs

    NASA Astrophysics Data System (ADS)

    Smyth, William H.; Peterson, C. A.; Marconi, M. L.

    2008-09-01

    The peak density structure for the plasma torus electrons and heavy ions occurs radially near and inside of Io's orbit. This structure has been documented remotely by ground-based observations at the dawn and dusk ansae in S+ (6716 Å, 6731 Å) and S++ (9531 Å) emissions and from Voyager 2 UVS observations at the 35 degree pre-dawn and pre-dusk ansae for S++ (685Å) emission. It has also been documented by in situ observations by the Voyager 1 PLS instrument for the O+, S+, S++ ions and electrons at pre-dusk local-times and by the Galileo PWS and PLS instruments for electrons at noon local-time. The focus of this presentation is to compare the radial location of the peak density structure for the S+ ions (so-called ribbon feature) acquired at different local-times from ground-based (Schneider and Trauger, Ap. J. 450, 450, 1995) and Voyager (Bagenal, JGR 99, 11043, 1994) measurements and inferred from Galileo measurements (Gurnett et al., Science, 274, 391, 1996; Frank and Paterson, JGR 99, 11043, 2000). This is accomplished by the application of a newly developed more accurate, four-dimensional (three spatial dimensions and local-time) empirical model for the plasma torus. This model includes System III longitudinal asymmetries and also local-time asymmetries created by a dawn-dusk electric field that is equipotential along the magnetic field lines and has an adjustable magnitude and direction. It is found that all of the measurements can be fit by a set of different magnitudes and directions for the dawn-dusk electric field and that a limited range of such solutions is possible for the three measurements that allow a consistent radial location for the S+ ribbon feature, resolving a long-standing issue for the plasma torus (Bagenal et al., GRL 24, 2119, 1997). Information will be presented to illustrate the nature of these solutions.

  14. Doppler line profiles measurement of the Jovian Lyman Alpha emission with OAO-C

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Cochran, W. D.; Smith, H. J.

    1982-01-01

    Observation of Jupiter made with the high resolution ultraviolet spectrometer of the Orbiting Astronomical Observatory copernicus in April and May, 1980, yield a Jovian Lyman alpha emission intensity of 7 + or 2.5 RR. This indicates a decrease by about a factor of two since the Voyager ultraviolet spectrometer measurements, nearly a year earlier. An unusually high column abundance of hydrogen atoms above the methane homopause at the Voyager epoch is indicated. Since the auroral charged particle bombardment of molecular hydrogen is expected to contribute significantly to the global population of the hydrogen atoms, it is suggested that at the time of the Voyager Jupiter encounter unusually high auroral activity existed, perhaps d to the high concentration of the Io plasma torus. The temporal variation of the Saturn lyman alpha emission, when contrasted with the Jovian data, reveals that the auroral processes are not nearly as important in determining the Saturn Lyman alpha intensity in the nonauroral region.

  15. Spontaneous Formation of Closed-Field Torus Equilibrium via Current Jump Observed in an Electron-Cyclotron-Heated Plasma

    SciTech Connect

    Yoshinaga, T.; Uchida, M.; Tanaka, H.; Maekawa, T.

    2006-03-31

    Spontaneous current jump resulting in the formation of closed field equilibrium has been observed in electron-cyclotron-heated toroidal plasmas under steady external fields composed of a toroidal field and a relatively weak vertical field in the low aspect ratio torus experiment device. This bridges the gap between the open field equilibrium maintained by a pressure-driven current in the external field and the closed field equilibrium at a larger current. Experimental results and theoretical analyses suggest a current jump model that is based on the asymmetric electron confinement along the field line appearing upon simultaneous transitions of field topology and equilibrium.

  16. Confinement time of electron plasma approaching magnetic pumping transport limit in small aspect ratio C-shaped torus

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.

    2016-06-01

    A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.

  17. Dust in the Jovian System: Streams, Clouds and Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Gruen, E.

    2003-04-01

    Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measurements with the dust detectors on board the Ulysses and Galileo spacecraft have for the first time demonstrated the electromagnetic interaction of charged dust grains with the interplanetary magnetic field and with a planetary magnetosphere. Jupiter's magnetosphere acts as a giant mass-velocity spectrometer for charged 10-nanometer dust grains. These grains are released from Jupiter's moon Io with a typical rate of ˜ 1 kg s-1. The seven-year long record of Galileo in-situ dust measurements revealed significant variations of the fluxes of the dust stream particles with Jovian local time which are caused by the dawn-dusk asymmetry of the Io plasma torus. The streams probe the plasma conditions in the torus, and they can be used as a potential monitor of Io's volcanic plume activity. The joint Galileo-Cassini dust measurements at Jupiter imply stream particle speeds up to 400 km s-1. All Galilean satellites are surrounded by tenuous impact-generated clouds of mostly sub-micrometer ejecta grains. Jovian rings not only exist in the well-known region of the main and gossamer rings but also much farther out. Very tenuous rings composed of mostly micron-sized grains have been detected in-situ in the region between the Galilean moons and further beyond out to ˜ 250 R_J from the planet. The dust densities there are much too low to allow detection with imaging techniques. The measurements have demonstrated that impact-ejecta derived from hypervelocity impacts onto satellites are the major constituent of dusty planetary rings. On 5 November 2002 Galileo traversed Jupiter's gossamer rings for the first time and had a close flyby at Amalthea. Several hundred dust impacts have been detected during this passage with the dust detector on

  18. The Bumpy Torus Experiment

    SciTech Connect

    Cobble, James Allen

    2016-06-09

    This document summarizes the Bumpy Torus Experiment as a viable fusion reactor concept. Conclusions reached include the following: In 30 years, order-of-magnitude technological advances have occurred in multiple areas of plasma heating and confinement. The ORNL bumpy torus of the 1970s was technology limited. Now that ITER is technology limited, an alternate concept is needed. A device built on such a concept should be current free, CW, modular, have a gentle shutdown, and demonstrable stability. The bumpy torus meets or has the potential to meet all of these criteria. Earlier, stability was not possible due to power limits; it has not been fully tested. It is time to revisit the bumpy-torus concept with a modest new machine.

  19. Characteristics and performance of a superconducting bumpy-torus magnet facility for plasma research

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1973-01-01

    The NASA Lewis bumpy-torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T on its axis. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m; they are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The design value of the maximum magnetic field on the magnetic axis, 3.0 T, was reached and exceeded. A maximum magnetic field of 3.23 T was held for a period of 60 minutes. When the coils were charged to a maximum magnetic field of 3.35 T, the coil system went normal without apparent damage or degradation of performance.

  20. Fishbones in Joint European Torus plasmas with high ion-cyclotron-resonance-heated fast ions energy content

    SciTech Connect

    Nabais, F.; Borba, D.; Mantsinen, M.; Nave, M.F.F.; Sharapov, S.E.; Joint

    2005-10-01

    In Joint European Torus (JET) [P. J. Lomas, Plasma Phys. Controled Fusion 31, 1481 (1989)], discharges with ion cyclotron resonance heating only, low-density plasmas and high fast ions energy contents provided a scenario where fishbones behavior has been observed to be related with sawtooth activity: Crashes of monster sawteeth abruptly changed the type of observed fishbones from low-frequency fishbones [B. Coppi and F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986)] to high-frequency fishbones [L. Chen, R. White, and M. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984)]. During periods between crashes, the type of observed fishbones gradually changed in the opposite way. Two new fishbones regimes have been observed in intermediate stages: Fishbones bursts covering both high and low frequencies and low amplitude bursts of both types occurring simultaneously. Both sawtooth and fishbones behavior have been explained using a variational formalism.

  1. A 12 coil superconducting bumpy torus magnet facility for plasma research

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    A summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. This pilot rig was operated for 550 experimental runs over a period of 7 years. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm in diameter and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 teslas) was reached and exceeded. A maximum magnetic field of 3.23 teslas was held for a period of 60 minutes, and the coils did not go to normal. When the coils were charged to a maximum magnetic field of 3.35 teslas, the coil system was driven normal without damage to the facility.

  2. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma

    SciTech Connect

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-15

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  3. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma.

    PubMed

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-01

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  4. Plasma IMS Composition Measurements for Europa, Ganymede, and the Jovian Systems

    NASA Technical Reports Server (NTRS)

    Sittler, E.; Cooper, J.; Hartle, R.; Paterson ,W.; Christian, E.; Mahaffy, P.; Paschalidis, N.; Lipatov, A.; Sarantos, M.; Coplan, M.; Cassidy, T.; Wurz, P.

    2011-01-01

    NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter s magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keV, wide field-ofview (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter s magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for Io. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from Io to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We

  5. Plasma IMS Composition Measurements for Europa, Ganymede, and the Jovian System

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Christian, E. R.; Lipatov, A. S.; Mahaffy, P R.; Paschalidis, N.; Sarantos, M.; Coplan, M. A.; Cassidy, T. A.; Wurz, P.

    2011-01-01

    NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter's magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keY, wide field-of-view (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for 10. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from 10 to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We

  6. Neutral cloud theory of the Jovian nebula: Anomalous ionization effect of superthermal electrons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    The standard model of the Jovian nebula postulates that its particle source is the extended cloud of neutral sulfur and oxygen atoms that escape from the satellite Io and become ionized through electron impact from the corotating plasma. Its energy source is the gyroenergy acquired by newly formed pickup ions as they are swept up to corotation velocity by the planetary magnetic field. Elastic collisions between plasma ions and electrons cool the ions and heat the electrons, while inelastic collisions cool the electrons and excite the ions to radiate intense line emission, which is the primary energy-loss mechanism for the plasma. This neutral cloud theory of the Io plasma torus, as it has come to be known, has been the subject of recent critcism which asserts that the theory cannot account for the observed charge state of the plasma which features O(+) and S(2+) as the dominant ions. It is shown in this work that the inclusion of a small population of super-thermal electrons is required to achieve the correct ion partitioning among various charge states. It is also argued that the anomalous ionization effect of the superthermal electrons is responsible for the overall spatial bifurcation of the nebula into a hot multiply charged plasma region outside of 5.7 Jovian radii and a cool singly ionized plasma inside this distance.

  7. Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Yoshioka, Kazuo; Yamazaki, Atsushi; Tsuchiya, Fuminori; Kimura, Tomoki; Tao, Chihiro; Kita, Hajime; Kagitani, Masato; Sakanoi, Takeshi; Uemizu, Kazunori; Kasaba, Yasumasa; Yoshikawa, Ichiro; Fujimoto, Masaki

    2016-12-01

    Because Jupiter's magnetosphere is huge and is rotationally dominated, solar wind influence on its inner part has been thought to be negligible. Meanwhile, dawn-dusk asymmetric features of this region have been reported. Presence of dawn-to-dusk electric field is one of the leading explanations of the asymmetry; however, the physical process of generating such an intense electric field still remains unclear. Here we present long and continuous monitoring of the extreme ultraviolet emissions from the Io plasma torus in Jupiter's inner magnetosphere made by the Hisaki satellite between December 2013 and March 2014. We found five occasions where the dusk/dawn brightness ratio was enhanced above 2.5 in response to rapid increase of the solar wind dynamic pressure. The enhancement is achieved as the dusk region brightens and the dawn region dims. The observation indicates that dawn-to-dusk electric field in the inner magnetosphere is enhanced under compressed conditions.

  8. A coordinated X-ray and EUV study of the Jovian aurora

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph; Kimura, Tomoki; Elsner, Ronald; Branduardi-Raymont, Graziella; Gladstone, Randall; Badman, Sarah; Ezoe, Yuichiro; Murakami, Go; Murray, Stephen; Rodiger, Elke; Tsuchiya, Fuminori; Yamazaki, Atsushi; Yoshikawa, Ichiro; Yoshioka, Kazuo

    2015-04-01

    We present results from a coordinated Hisaki/Chandra/XMM-Newton observational campaign of the Jovian aurora and Io plasma torus taken over a three week period in April, 2014. Jupiter was observed continuously with Hisaki, six times with the Chandra/HRC instrument and twice by XMM-Newton for roughly 12 hours per observation. The goal of this campaign was to understand how energy and matter are exchanged between the Jovian aurora, the IPT, and the Solar wind. X-ray observations provide key diagnostics on highly stripped ions and keV electrons in the Jovian magnetosphere. We use the temporal, spatial, and spectral capabilities of the three instruments to search for correlated variability between the Solar wind, the EUV-emitting plasma of the IPT and UV aurora, and the ions responsible for the X-ray aurora. Preliminary analysis suggests a strong 45 min periodicity in the EUV emission from the electron aurora. There is some evidence for complex variability of the X-ray auroras on scales of tens of minutes. There is also clear morphological changes in the X-ray aurora that do not appear to be correlated with either variations in the IPT or Solar wind.

  9. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    SciTech Connect

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3 orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.

  10. Efficient ECH-assisted plasma start-up using trapped particle configuration in the versatile experiment spherical torus

    NASA Astrophysics Data System (ADS)

    An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.

    2017-01-01

    An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.

  11. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less

  12. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    SciTech Connect

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-15

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow bandpass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3 orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). The diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.

  13. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-01

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow bandpass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3 orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). The diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.

  14. The Io Plasma Torus: Motivation for Abandoning the "Active Sector" Concept in Favor of System IV Modulation

    NASA Astrophysics Data System (ADS)

    Morgenthaler, J. P.; Oliversen, R. J.; Marconi, M.; Woodward, R. C., Jr.

    2014-12-01

    We use an extensive spectroscopic dataset of 1000 observations of Io in [OI] 6300A, presented by Oliversen et al. (2001), narrow-band images of the torus in [SII] 6731A, and HST/STIS EUV observations of Io and its environs to confirm that the Io [OI] flux is an excellent proxy for the electron density in the Io plasma to torus (IPT). Furthermore, we find: (1) A careful statistical analysis of short-term variations in this dataset (20 min to 1 hour), previously suspected to be from flux tube interchange (Oliversen et al. 2001, Morgenthaler et al. 2012) are, in fact, consistent with the expected statistical variation of the parent population of observations. (2) The semi-empirical IPT model developed by W. Smyth (Oliversen et al. 2001; Smyth, Peterson, & Marconi 2011) fits the overall trends in the data reasonably well, with notable exceptions. (3) There may be a link between what was previously known the "active sector" at system III longitudes of 170 ~ 230 degrees and the modulation in IPT plasma density caused by the beating between system III and system IV, predicted by Hess et al. (2011). Conclusion: a simple modification to the W. Smyth semi-empirical torus model to incorporate a system IV-controlled density enhancement, rather than a fixed "active sector" in system III, should enable the model to "lock in" more readily to our extensive set of [OI] 6300A observations recorded between 1990 and 2008. This will provide detailed information about the flow of mass and energy in the IPT during the Galileo, Ulysses, Cassini, and New Horizons missions. Additional observations are planned during NASA's upcoming Juno mission. This work was supported by NASA Planetary Research Program RTOP 344-32-40 to GSFC and grants NAGW-3319 and NAG5-6787 to the University of Wisconsin--Madison, STIS contract NAS5-30131 to the University of Wisconsin--Madison and NASA Outer Planets Research Program grant NNX11AM43G to PSI.

  15. Narrow-band Jovian Kilometric Radiation: a New Radio Component

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.

    1980-01-01

    A new component of Jupiter's radio spectrum is investigated. The component emits in a very narrow bandwidth (less than or equal to 40 kHz) near 100 kHz. Its waveform is a very smooth and gradual rise and subsequent fall in intensity, usually over two hours. The emission is polarized with left hand polarization associated with the Jovian northern magnetic hemisphere and right hand with the south. The emissions deviation from a strict system 3 rotation period repetition rate is examined. The emission source of the narrow band component which rotates 3 to 5 percent slower than all other forms of Jovian radio emission is determined from propagation considerations, coupled with the observed lack of corotation, to a source region near the equatorial plane at the outer edge of the Io plasma torus. The narrow band KOM (nKOM) form is examined using observations from the PRA instrument. The spectrum and occurrence statistics are described and contrasted with the tapered or broadband KOM (bKOM) characteristics.

  16. Solar wind influence on the Jovian inner magnetosphere observed by Hisaki/EXCEED

    NASA Astrophysics Data System (ADS)

    Murakami, G.; Yoshioka, K.; Yamazaki, A.; Tsuchiya, F.; Kimura, T.; Tao, C.; Kagitani, M.; Sakanoi, T.; Uemizu, K.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2015-12-01

    The dawn-dusk asymmetry of the Io plasma torus has been seen by several observations [e.g., Sandel and Broadfoot, 1982; Steffl et al., 2004]. Ip and Goertz [1983] explained this asymmetry can be caused by a dawn-to-dusk electric field in the Jupiter's inner magnetosphere. However, the question what physical process can impose such an electric field deep inside the strong magnetosphere still remains. The long-term monitoring of the Io plasma torus is a key observation to answer this question. The extreme ultraviolet (EUV) spectrometer EXCEED onboard the Hisaki satellite observed the Io plasma torus continuously during the two periods: from December 2013 to March 2014 and from November 2014 to May 2015. We found clear responses of the dawn-dusk asymmetry to rapid increases of the solar wind dynamic pressure. We statistically analyzed the relations between solar wind and IPT response. Furthermore, we investigated the influence of Io's volcanic activity, detected by Hisaki in January 2015, on the solar wind response of Jovian inner magnetosphere. We will report the initial results of this study.

  17. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  18. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  19. Development of a Multi-Grids Approach into a Parallelized Hybrid Model to Describe Ganymede's Interaction with the Jovian Plasma

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S. L.; Andre, N.

    2014-12-01

    Ganymede is the only satellite which has its own magnetosphere, which is embedded in the Jovian magnetosphere (Kivelson et al. 1996). This peculiar interaction has been investigated by means of a 3D parallel multi-species hybrid model based on a CAM-CL algorithm (Mathews et al. 1994). In this formalism, ions have a kinetic description whereas electrons are considered as an inertialess fluid which ensures the neutrality of the plasma and contributes to the total current and electronic pressure. Maxwell's equations are solved to compute the temporal evolution of electromagnetic field. Hybrid simulations are performed on a uniform cartesian grid with a spatial resolution of about 240 km. Our results are globally consistent with other models and Galileo measurements. Nevertheless, our description of the magnetopause and the ionosphere is not satisfying enough due to the low spatial resolution. Indeed, we want to describe scale heights of 125 km in the ionosphere whereas the best spatial resolution that we are allowed to use is about 240 km. Therefore, in order to obtain more efficient and relevant results, it is necessary to improve the size of the grid. In this optic, we are introducing a multi-grids approach in order to refine the spatial resolution by a factor 2 (~120km) near Ganymede. The creation of a finer mesh in the simulation grid leads to make some peculiar computations at the interfaces between the two different grids, whether for the calculation of moments, such as charge density or current, or the computation of electromagnetic fields. Moreover, the parallelization of the code, based on domain decomposition methods, imposes us to take care of boundary conditions. In the hybrid model, macroparticules, which represent a kind of cloud of physical particles, have a volume equal to that of a grid cell. Then, the macroparticules entering into the higher spatial resolution region are splited into smaller macroparticules whose the volume corresponds to the volume

  20. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  1. Processes and properties of edge-localised instabilities in 2T 2MA plasmas in the Joint European Torus

    SciTech Connect

    Webster, A. J. Webster, S. J.

    2014-11-15

    During July 2012, 150 almost identical H-mode plasmas were consecutively created in the Joint European Torus, providing a combined total of approximately 8 minutes of steady-state plasma with 15 000 Edge Localised Modes (ELMs). In principle, each of those 15 000 ELMs are statistically equivalent. Here, the changes in edge density and plasma energy associated with those ELMs are explored, using the spikes in Beryllium II (527 nm) radiation as an indicator for the onset of an ELM. Clearly different timescales are observed during the ELM process. Edge temperature falls over a 2 ms timescale, edge density and pressure fall over a 5 ms timescale, and there is an additional 10 ms timescale that is consistent with a resistive relaxation of the plasma's edge. The statistical properties of the energy and density losses due to the ELMs are explored. For these plasmas the ELM energy (δE) is found to be approximately independent of the time between ELMs, despite the average ELM energy (〈δE〉) and average ELM frequency (f) being consistent with the scaling of 〈δE〉∝1/f. Instead, beyond the first 0.02 s of waiting time between ELMs, the energy losses due to individual ELMs are found to be statistically the same. Surprisingly no correlation is found between the energies of consecutive ELMs either. A weak link is found between the density drop and the ELM waiting time. Consequences of these results for ELM control and modelling are discussed.

  2. Beta-limiting MHD Instabilities in Improved-performance NSTX Spherical Torus Plasmas

    SciTech Connect

    J.E. Menard; M.G. Bell; R.E. Bell; E.D. Fredrickson D.A. Gates: S.M. Kaye; B.P. LeBlanc; R. Maingi; D. Mueller; S.A. Sabbagh; D. Stutman; C.E. Bush; D.W. Johnson; R. Kaita; H.W. Kugel; R.J. Maqueda; F. Paoletti; S.F Paul; M. Ono; Y.-K.M. Peng; C.H. Skinner; E.J. Synakowski; the NSTX Research Team

    2003-05-29

    Global magnetohydrodynamic stability limits in the National Spherical Torus Experiment (NSTX) have increased significantly recently due to a combination of device and operational improvements. First, more routine H-mode operation with broadened pressure profiles allows access to higher normalized beta and lower internal inductance. Second, the correction of a poloidal field coil induced error-field has largely eliminated locked tearing modes during normal operation and increased the maximum achievable beta. As a result of these improvements, peak beta values have reached (not simultaneously) {beta}{sub t} = 35%, {beta}{sub N} = 6.4, <{beta}{sub N}> = 4.5, {beta}{sub N}/l{sub i} = 10, and {beta}{sub P} = 1.4. High {beta}{sub P} operation with reduced tearing activity has allowed a doubling of discharge pulse-length to just over 1 second with sustained periods of {beta}{sub N} {approx} 6 above the ideal no-wall limit and near the with-wall limit. Details of the {beta} limit scalings and {beta}-limiting instabilities in various operating regimes are described.

  3. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    SciTech Connect

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; G. Gettelfinger; T. Gray; D. Hoffman; S. Jardin; H. Kugel; P. Marfuta; T. Munsat; C. Neumeyer; S. Raftopoulos; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; L. Delgado-Aparicio; R.P. Seraydarian; G. Antar; R. Doerner; S. Luckhardt; M. Baldwin; R.W. Conn; R. Maingi; M. Menon; R. Causey; D. Buchenauer; M. Ulrickson; B. Jones; D. Rodgers

    2004-06-07

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  4. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    SciTech Connect

    Kaita, R; Jajeski, R; Boaz, M; Efthimion, P; Gettelfinger, G; Gray, T; Hoffman, D; Jardin, S; Kugel, H; Marfuta, P; Munsat, T; Neumeyer, C; Raftopoulos, S; Soukhanovskii, V; Spaleta, J; Taylor, G; Timberlake, J; Woolley, R; Zakharov, L; Finkenthal, M; Stutman, D; Delgado-Aparicio, L; Seraydarian, R; Antar, G; Doerner, R; Luckhardt, S; Baldwin, M; Conn, R; Maingi, R; Menon, M; Causey, R; Buchenauer, D; Ulrickson, M; Jones, B; Rodgers, D

    2004-06-03

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  5. Progress in Understanding Error-field Physics in NSTX Spherical Torus Plasmas

    SciTech Connect

    E. Menard, R.E. Bell, D.A. Gates, S.P. Gerhardt, J.-K. Park, S.A. Sabbagh, J.W. Berkery, A. Egan, J. Kallman, S.M. Kaye, B. LeBlanc, Y.Q. Liu, A. Sontag, D. Swanson, H. Yuh, W. Zhu and the NSTX Research Team

    2010-05-19

    The low aspect ratio, low magnetic field, and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyze error fields, to measure error field amplification, and to detect resistive wall modes in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field, and a positive scaling with magnetic shear. These results extrapolate to a favorable error field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n=1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n=1 amplified error fields and the correction of recently discovered intrinsic n=3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n=1 RWM, both the rotation threshold and magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E × B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.

  6. Experimental observations and model calculations of impurity radiation in a plasma gun compact torus experiment

    SciTech Connect

    Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Turner, W.C.

    1982-08-10

    Several types of radiation measurements were performed on the Beta II compact forms experiment. Among these are time integrated spectra ranging in wavelength from the vuv to the uv, time resolved bolometer measurements of radiation from the x-ray to the infrared, and time and wavelength resolved measurements of certain spectral lines. It is difficult to relate any one of these measurements to plasma parameters of interest such as temperature, density, or impurity content. In this report we compare the results of these, and other measurements with two simple models of the power balance in the plasma in order to estimate the effect of carbon and oxygen impurities on plasma lifetime.

  7. Electrodynamic-Tether Magnetosphere Interaction From Capture to Low Jovian Orbit of its Spacecraft

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R.; Charro, M.; Lorenzini, E. C.; Bombardelli, C.; Bramanti, C.

    2007-12-01

    An orbiting conductive tether provides a dissipative mechanism in planets that have magnetic field and ionosphere/magnetosphere. The Jovian system is a particularly appropriate place for use of an electrodynamic tether because the magnetic field is intense, the stationary orbit is close to the planet, and moon Io provides a dense plasma torus farther away. The interaction of the tether with the magnetized plasma is analyzed under a variety of conditions, since the spacecraft is captured into an equatorial, highly elliptical orbit with perijove inside the stationary orbit, till the spacecraft reaches a low circular orbit around Jupiter, below the radiation belts. The radiation dose accumulated as the apojove distance is reduced through of sequence of perijove passes, is studied.

  8. Effect of the Interaction of Jovian Magnetosphere with Europa's Exosphere on Pick-up Ion Population and Plasma Environment

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Tenishev, V.; Jia, X.; Gombosi, T. I.

    2014-12-01

    With hypothesized liquid water ocean beneath its crust and observed large amount of oxygen in its exosphere, Europa is one of the potentially habitable locations of Solar system. This made the satellite the object of high scientific interest, the primary goal of Clipper mission drafted by NASA in particular. As of today, certain amount of data is already available (e.g. from Galileo spacecraft), yet more is awaited from Juno spacecraft, which is on its way to Jupiter. Europa's exosphere should be studied with connection with Jovian magnetosphere, as the two form together a complex system. They are tightly coupled through the processes of the magnetospheric ion sputtering, photolytic and electron reactions. Successful investigation of coupled system requires a simultaneous simulation of both its components. Previous approaches studied this system in a piece-wise manner. Our efforts presented here are aimed at developing of a more global approach that would combine the exosphere and magnetosphere into a single model. This approach is more complete as it accounts for mutual influence of Jovian magnetosphere and Europa's exosphere and allows us to study their time dependent interaction. We employed coupled MHD (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) and Monte-Carlo (Adaptive Mesh Particle Simulator) codes. Among the properties studied are distributions of pick-up ions (spatial, energy, pitch angle) and mass-loading of the magnetosphere in the vicinity of the satellite. A brief comparison of these properties with those resulted from previous works on the problem (Lipatov et al., 2010; Ip et al., 1998) and analysis of how introduced interaction of the satellite's atmosphere with Jovian magnitosphere changes the results are provided.

  9. Low Frequency Propagation and Observed Intensity Pattern of Jovian Radio Emissions

    NASA Astrophysics Data System (ADS)

    Lecacheux, A.

    Low frequency radio emissions from Jupiter have been extensively observed by sev- eral spacecraft (Voyager, Ulysses, Galileo and, more recently, Cassini), but some of their basic properties (exact location, radiation pattern) are still in discussion or just inferred. The whole set of observations were carried out within a few degrees from the Jovian equatorial plane (with the only exception of Ulysses in its outbound trajectory). As a consequence, radio sources were usually observed after propagation through the Io plasma torus, whose maximum critical frequency (about 0.5 MHz) is comparable in magnitude to the frequency range of HOM (hectometric) and DAM (decametric) components. One can expect several kinds of propagation effects: at small scales, in- cluding diffractive scintillation linked to turbulence properties of the medium, and at large scales, due to refraction by the Io torus, which optically acts as a diverging lens. The aim of this presentation is to examine the latter kind of effects and, in particu- lar, to quantitatively assess the spatial distribution of intensity from a small radiating source at Jupiter, when observed far from the planet through the Io plasma torus. A specific ray tracing calculation in dispersive inhomogeneous plasma was developped for this purpose, allowing the computation of both ray trace and ray intensity along its path. The method permits the determination of spatial directions from where one can observe intensity reduction (shadow zone) as well as intensity amplification (focusing and caustics) of radiation from a point source. While highly depending on the accu- racy of the used Io torus electron density model, the performed calculations show that substantial intensity drops and rises are to be expected in the lower frequency range up to several MHz. This may provide an alternative explanation for the absorption band recently described in the literature as a permanent feature of the HOM emission.

  10. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    SciTech Connect

    Kaye, S. M. Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.

    2014-08-15

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β{sub e}, ν{sub e}{sup ∗}, the MHD α parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when β{sub e} and ν{sub e}{sup ∗} were relatively low, ballooning parity modes were dominant. As time progressed and both β{sub e} and ν{sub e}{sup ∗} increased, microtearing became the dominant low-k{sub θ} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub θ}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  11. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    SciTech Connect

    Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.

    2014-08-01

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, ν*e, the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and ν*e were relatively low, ballooning parity modes were dominant. As time progressed and both βe and ν*e increased, microtearing became the dominant low-κθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-κθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  12. Influence of plasma diagnostics and constraints on the quality of equilibrium reconstructions on Joint European Torus

    SciTech Connect

    Gelfusa, M.; Gaudio, P.; Peluso, E.; Murari, A.; Baruzzo, M.; Lupelli, I.; Hawkes, N.; Brix, M.; Drozdov, V.; Meigs, A.; Romanelli, M.; Schmuck, S.; Sieglin, B.; Collaboration: JET-EFDA Contributors

    2013-10-15

    One of the main approaches to thermonuclear fusion relies on confining high temperature plasmas with properly shaped magnetic fields. The determination of the magnetic topology is, therefore, essential for controlling the experiments and for achieving the required performance. In Tokamaks, the reconstruction of the fields is typically formulated as a free boundary equilibrium problem, described by the Grad-Shafranov equation in toroidal geometry and axisymmetric configurations. Unfortunately, this results in mathematically very ill posed problems and, therefore, the quality of the equilibrium reconstructions depends sensitively on the measurements used as inputs and on the imposed constraints. In this paper, it is shown how the different diagnostics (Magnetics Measurements, Polarimetry and Motional Stark Effect), together with the edge current density and plasma pressure constraints, can have a significant impact on the quality of the equilibrium on JET. Results show that both the Polarimetry and Motional Stark Effect internal diagnostics are crucial in order to obtain reasonable safety factor profiles. The impact of the edge current density constraint is significant when the plasma is in the H-mode of confinement. In this plasma scenario the strike point positions and the plasma last closed flux surface can change even by centimetres, depending on the edge constraints, with a significant impact on the remapping of the equilibrium-dependent diagnostics and of pedestal physics studies. On the other hand and quite counter intuitively, the pressure constraint can severely affect the quality of the magnetic reconstructions in the core. These trends have been verified with several JET discharges and consistent results have been found. An interpretation of these results, as interplay between degrees of freedom and available measurements, is provided. The systematic analysis described in the paper emphasizes the importance of having sufficient diagnostic inputs and of

  13. Influence of plasma diagnostics and constraints on the quality of equilibrium reconstructions on Joint European Torus

    NASA Astrophysics Data System (ADS)

    Gelfusa, M.; Murari, A.; Lupelli, I.; Hawkes, N.; Gaudio, P.; Baruzzo, M.; Brix, M.; Craciunescu, T.; Drozdov, V.; Meigs, A.; Peluso, E.; Romanelli, M.; Schmuck, S.; Sieglin, B.; JET-EFDA Contributors

    2013-10-01

    One of the main approaches to thermonuclear fusion relies on confining high temperature plasmas with properly shaped magnetic fields. The determination of the magnetic topology is, therefore, essential for controlling the experiments and for achieving the required performance. In Tokamaks, the reconstruction of the fields is typically formulated as a free boundary equilibrium problem, described by the Grad-Shafranov equation in toroidal geometry and axisymmetric configurations. Unfortunately, this results in mathematically very ill posed problems and, therefore, the quality of the equilibrium reconstructions depends sensitively on the measurements used as inputs and on the imposed constraints. In this paper, it is shown how the different diagnostics (Magnetics Measurements, Polarimetry and Motional Stark Effect), together with the edge current density and plasma pressure constraints, can have a significant impact on the quality of the equilibrium on JET. Results show that both the Polarimetry and Motional Stark Effect internal diagnostics are crucial in order to obtain reasonable safety factor profiles. The impact of the edge current density constraint is significant when the plasma is in the H-mode of confinement. In this plasma scenario the strike point positions and the plasma last closed flux surface can change even by centimetres, depending on the edge constraints, with a significant impact on the remapping of the equilibrium-dependent diagnostics and of pedestal physics studies. On the other hand and quite counter intuitively, the pressure constraint can severely affect the quality of the magnetic reconstructions in the core. These trends have been verified with several JET discharges and consistent results have been found. An interpretation of these results, as interplay between degrees of freedom and available measurements, is provided. The systematic analysis described in the paper emphasizes the importance of having sufficient diagnostic inputs and of

  14. Observations of Reduced Electron Gyro-scale Fluctuations in National Spherical Torus Experiment H-mode Plasmas with Large E × B Flow Shear

    SciTech Connect

    Smith, D. R.; Kaye, S. M.; Lee, W.; Mazzucato, E.; Park, H. K.; Bell, R. E.; Domier, C. W.; LeBlanc, B. P.; Levinton, F. M.; Luhmann, Jr., N. C.; Menard, J. E.; Yu, H.

    2009-02-13

    Electron gyro-scale fluctuation measurements in National Spherical Torus Experiment (NSTX) H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temper- ature gradient (ETG) turbulence. Large toroidal rotation in NSTX plasmas with neutral beam injection generates E × B flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the E × B flow shear rate exceeds ETG linear growth rates. The observations indicate E × B flow shear can be an effective suppression mechanism for ETG turbulence.

  15. The Jupiter hot plasma torus - Observed electron temperature and energy flows

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1981-01-01

    The detection of the optical emission /O I/ 6300 A (8 + or - 4 R) and /S III/ 6312 A (48 + or - 5 R) is reported. It is noted that these emissions are indicators of the ion source morphology and the plasma physical state and that the S III emitters have a kinetic temperature of approximately 10 to the 6th K. When combined with observations of UV lines from the same species, the optical measurements separately imply effective electron temperatures for radiative processes that are mutually consistent (approximately 50,000 K).

  16. Ulysses radio and plasma wave observations in the Jupiter environment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  17. Observation of dust torus with poloidal rotation in direct current glow discharge plasma

    SciTech Connect

    Kaur, Manjit Bose, Sayak; Chattopadhyay, P. K. Sharma, Devendra; Ghosh, J.; Saxena, Y. C.

    2015-03-15

    Observation of dust cloud rotation in parallel-plate DC glow discharge plasma is reported here. The experiments are carried out at high pressures (∼130 Pa) with a metallic ring placed on the lower electrode (cathode). The dust cloud rotates poloidally in the vertical plane near the cathode surface. This structure is continuous toroidally. Absence of magnetic field rules out the possibility of E × B induced ion flow as the cause of dust rotation. The dust rotational structures exist even with water cooled cathode. Therefore, temperature gradient driven mechanisms, such as thermophoretic force, thermal creep flow, and free convection cannot be causing the observed dust rotation. Langmuir probe measurement reveals the existence of a sharp density gradient near the location of the rotating dust cloud. The gradient in the density, giving rise to a gradient in the ion drag force, has been identified as the principal cause behind the rotation of dust particles.

  18. The Jovian aurora: Electron or ion precipitation

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Clarke, J. T.; Cravens, T. E.

    1986-01-01

    High signal-to-noise spectra of the Jovian aurora at UV wavelengths obtained using the International Ultraviolet Explorer Observatory (including the brightest Jovian aurora observed to date) set strigent upper limits for sulfur and oxygen emissions, which would be associated with the precipitation of energetic heavy ions in the upper Jovian atmosphere if they were solely responsible for Jovian auroral processes. Model calculations of heavy ion precipitation and corresponding estimates of the associated sulfur and oxygen UV emissions previously carried out suggest emission values for 1304 A OI emission that are at least 30 times larger than the upper limit values set by the IUE observations reported. On the other hand the observed (feature of SII at 1256 A of 2 kR) is quite comparable to the theoretically predicted emission intensity. Taken together these observations and calculations suggest that electron as well as ion precipitation play a role in Jovian auroral processes. In light of earlier X-ray observations and in-situ plasma observations that suggest energetic heavy ion precipitation in the Jovian auroral zone, a scenario is suggested where heavy ion auroral energy deposition is concentrated at altitudes below the homopause. Electrons with energies of 10 to 30 keV are responsible for the bulk of the observable UV and EUV emissions since they deposit their energy above the methane absorbing layer defined by the homopause.

  19. Gaussian beams for a linearized cold plasma confined in a torus

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Dobrokhotov, S. Yu.; Klevin, A.; Tirozzi, B.

    2016-04-01

    We consider a system of linear pde describing a cold plasma in a toroidal region in three-dimensional space. This system simulates the passage of a laser beam through the TOKAMAK, it consists of 9 equations for the electric field and the velocities of electrons and ions in a given magnetic field. Asymptotic solutions describing high-frequency Gaussian beams are constructed using the theory of Maslov complex germ in a fairly effective form. The solutions of the system are localized in the neighborhood of the beam passing through the toroidal domain (the camera). The equations for a ray take into account the density of particles in the camera and don't ``feel'' the presence of the magnetic field because of the high frequency of the Gaussian beam; the dependence on the magnetic field is contained in the amplitude of the electric field. Before the TOKAMAK camera the amplitude of the Gaussian beam is the same as in free space, but after the camera the amplitude vector rotates under the influence of the magnetic field. The formula for the angle of rotation is given explicitly. An analytical-numerical algorithm based on the asymptotic solutions is used to analyze the parameters of the magnetic field in the TOKAMAK.

  20. Radio emission observed by Galileo in the inner Jovian magnetosphere during orbit A-34

    NASA Astrophysics Data System (ADS)

    Menietti, J. Douglas; Gurnett, Donald A.; Groene, Joseph B.

    2005-10-01

    The Galileo spacecraft encountered the inner magnetosphere of Jupiter on its way to a flyby of Amalthea on November 5, 2002. During this encounter, the spacecraft observed distinct spin modulation of plasma wave emissions. The modulations occurred in the frequency range from a few hundred hertz to a few hundred kilohertz and probably include at least two distinct wave modes. Assuming transverse EM radiation, we have used the swept-frequency receivers of the electric dipole antenna to determine the direction to the source of these emissions. Additionally, with knowledge of the magnetic field some constraints are placed on the wave mode of the emission based on a comparative analysis of the wave power versus spin phase of the different emissions. The emission appears in several bands separated by attenuation lanes. The analysis indicates that the lanes are probably due to blockage of the freely propagating emission by high density regions of the Io torus near the magnetic equator. Radio emission at lower frequencies (<40 kHz) appears to emanate from sources at high latitude and is not attenuated. Emission at f>80kHz is consistent with O-mode and Z-mode. Lower frequency emissions could be a mixture of O-mode, Z-mode and whistler mode. Emission for f<5kHz shows bands that are similar to upper hybrid resonance bands observed near the terrestrial plasmapause, and also elsewhere in Jovian magnetosphere. Based on the observations and knowledge of similar terrestrial emissions, we hypothesize that radio emission results from mode conversion near the strong density gradient of the inner radius of the cold plasma torus, similar to the generation of nKOM and continuum emission observed in the outer Jovian magnetosphere and in the terrestrial magnetosphere from source regions near the plasmapause.

  1. Inference of the angular velocity of plasma in the Jovian magnetosphere from the sweepback of magnetic field

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Kivelson, Margaret G.

    1993-01-01

    The averaged angular velocity of plasma from magnetic observations is evaluated using plasma outflow rate as a parameter. New techniques are developed to calculate the normal and azimuthal components of the magnetic field in and near to the plasma sheet in a plasma sheet coordinate system. The revised field components differ substantially from the quantities used in previous analyses. With the revised field values, it appears that during the Voyager 2 flyby for an outflow rate of 2.5 x 10 exp 29 amu/s, the observed magnetic torque may be sufficient to keep the plasma in corotation to radial distances of 50 Rj in the postmidnight quadrant.

  2. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  3. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  4. Efficient Generation of Non-Inductive, Off-axis, Ohkawa Current, Driven by Electron Bernstein Waves in High Beta, Spherical Torus Plasmas

    SciTech Connect

    G. Taylor; P.C. Efthimion; C.E. Kessel; R.W. Harvey; A.P. Smirnov; N.M. Ershov; M.D. Carter; C.B. Forest

    2004-04-26

    Off-axis rf-driven current can play a critical role in sustaining high Beta spherical torus (ST) plasmas without a central solenoid. Numerical modeling of electron Bernstein wave current drive (EBWCD) for a {Beta} {approx} 40% ST plasma predicts efficient, off-axis, Ohkawa EBWCD. Current can be efficiently driven at r/a greater than 0.5 where the large trapped electron fraction precludes conventional Fisch-Boozer current drive and provides near-ideal conditions for Ohkawa EBWCD. Also, Ohkawa EBWCD efficiency increases with r/a. Enhancement over Fisch-Boozer current drive is a factor of two at r/a {approx} 0.2 rising to over an order of magnitude at r/a {approx} 0.5.

  5. Satellite Atmosphere and Io Torus Observations

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas

    2004-01-01

    NASA's Planetary Astronomy Program has supported a vigorous three-year program of groundbased observations and detailed analysis of the Jupiter/Io system. Our work focused on Io's escaping atmosphere and the plasma torus that it creates.

  6. Feasibility study for the Spherical Torus Experiment

    SciTech Connect

    Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.; Borowski, S.K.; Brown, R.L.; Carreras, B.A.; Charlton, L.A.; Chipley, K.K.; Dalton, G.R.; Fowler, R.H.

    1985-10-01

    The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs. (WRF)

  7. Studies of plasma flow past Jupiter's satellite Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon

    1996-01-01

    We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus. The interaction of Io with the plasma surrounding it has been a subject of interest for almost 30 years, dating from the discovery by Bigg (1964) that radio emissions from the Jovian magnetosphere are controlled by Io's position. Since that time, both ground-based and spacecraft observations have shown that Io is a unique satellite that influences the Jovian magnetosphere in important ways. In particular, material from Io is a major source of plasma for the magnetosphere, and the energy that this plasma harnesses from Jupiter's co-rotating magnetic field is an important power source for the magnetosphere. It is apparent that the local interaction of the torus plasma with Io plays a key role in the formation, composition, and energetics of the Io torus; the interaction is also highly nonlinear. We have modeled this interaction using time-dependent three-dimensional magnetohydrodynamic (MHD) simulations. During this past year, we have used NASA support to develop a new MHD code to study the interaction. As part of the Galileo spacecraft's recent successful insertion into orbit around Jupiter, the spacecraft passed within 900 km of Io's surface. Our calculations have focused on using Galileo particles and fields data to examine a question that was not resolved by the Voyager observations: Does Io have an intrinsic magnetic field? In this progress summary, we describe our efforts on this problem to date.

  8. A multi-instrument study of a Jovian magnetospheric disturbance

    NASA Astrophysics Data System (ADS)

    Louarn, P.; Mauk, B. H.; Kivelson, M. G.; Kurth, W. S.; Roux, A.; Zimmer, C.; Gurnett, D. A.; Williams, D. J.

    2001-12-01

    Using observations from different Galileo experiments (plasma wave system, magnetometer and energetic particle detector), we analyze a strong magnetospheric disturbance that occurs on day 311 of 1996 as Galileo was close to Jupiter (less than 15 Jovian radii). This perturbation is characterized by multiple injections of energetic particles in the inner magnetosphere and has been described as a possible analog of the terrestrial magnetic storm by Mauk et al. [1999]. We show here that it also corresponds to a large-scale magnetospheric perturbation similar to the ``energetic events'' described by Louarn et al., [1998, 2000]. It is associated with the development of a particular magnetic activity in the outermost part of the Io torus, over periods of 2-4 hours and in sectors of longitude with a typical 30°-80° longitudinal extension. At distances ranging from 10 to 13Rj, the activity itself is characterized by the generation of low-frequency magnetic oscillations (18 min periodicity in the present case) that correlate with dispersionless energetic electron injections and modulations of the auroral radio flux. When they are observed a few hours after their formation, these injections present a weak energy-time dispersion and are still periodic. They then progressively mix and finally define a region of limited longitudinal extension where the density of energetic particles is particularly large. We show that this region corresponds to the source of the narrowband kilometric radiation (n-KOM). By combining remote sensing radio observations, in situ particle, and magnetic field measurements, we show that the active zone where the large scale disturbance initially develops most probably does not corotate and would even be almost fixed in local time. In the present case, the magnetospheric event is the consequence of two activations separated by a few hours. They occur in two separated longitude sectors and give rise to two different n-KOM sources. During the event, some

  9. Constraining the Europa Neutral Torus

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Mitchell, Donald; mauk, Barry; Johnson, Robert E.; clark, george

    2016-10-01

    "Neutral tori" consist of neutral particles that usually co-orbit along with their source forming a toroidal (or partial toroidal) feature around the planet. The distribution and composition of these features can often provide important, if not unique, insight into magnetospheric particles sources, mechanisms and dynamics. However, these features can often be difficult to directly detect. One innovative method for detecting neutral tori is by observing Energetic Neutral Atoms (ENAs) that are generally considered produced as a result of charge exchange interactions between charged and neutral particles.Mauk et al. (2003) reported the detection of a Europa neutral particle torus using ENA observations. The presence of a Europa torus has extremely large implications for upcoming missions to Jupiter as well as understanding possible activity at this moon and providing critical insight into what lies beneath the surface of this icy ocean world. However, ENAs can also be produced as a result of charge exchange interactions between two ionized particles and in that case cannot be used to infer the presence of neutral particle population. Thus, a detailed examination of all possible source interactions must be considered before one can confirm that likely original source population of these ENA images is actually a Europa neutral particle torus. For this talk, we examine the viability that the Mauk et al. (2003) observations were actually generated from a neutral torus emanating from Europa as opposed to charge particle interactions with plasma originating from Io. These results help constrain such a torus as well as Europa source processes.

  10. Jovian deep magnetotail composition and structure

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Allegrini, F.; Bagenal, F.; Ebert, R. W.; Elliott, H. A.; Nicolaou, G.; Szalay, J. R.; Valek, P.; Weidner, S.

    2017-02-01

    We analyze plasma ion observations from the Solar Wind Around Pluto instrument on New Horizons as it traveled back through the dusk flank of the Jovian magnetotail from 600 to more than 2500 Jovian radii behind the planet. We find that at all distances, light ions (mostly protons) dominate the heavy ions (S++ and O+) that are far more abundant in the near Jupiter plasma disk and that were expected to be the primary ions filling the Jovian magnetotail. This key new observation might indicate that heavy ions are confined closer to the equator than the spacecraft trajectory or a substantial addition of light ions via reconnection and/or mixing along the magnetopause boundary. However, because we find no evidence for acceleration of the tail plasma with distance, a more likely explanation seems to be that the heavy ions are preferentially released down the dawn flank of the magnetotail. Perhaps, this occurs as a part of the process where flux tubes, after expanding as they rotate across the near-tail region, need to pull back inward in order to fit within the dawnside of the magnetopause. A second major finding of this study is that there are two dominant periods of the plasma structures in the Jovian magnetotail: 3.53 (0.18 full width at half maximum (FWHM)) and 5.35 (0.38 FWHM) days. Remarkably, the first of these is identical within the errors to Europa's orbital period (3.55 days). Both of these results should provide important new fodder for Jovian magnetospheric theories and lead to a better understanding of Jupiter's magnetosphere.

  11. S II and S III branching ratios in the 600- to 1200-A interval. [applied to modeling of Io plasma torus

    NASA Technical Reports Server (NTRS)

    Morrison, M. D.; Cunningham, A. J.

    1983-01-01

    Branching ratios are presented of singly and doubly ionized sulfur EUV emissions. They are determined by measuring the relative photon intensities of each of the branching components. For several transitions in S II for which mean lifetimes have been measured with fast-beam spectroscopy, the data presented here are used to determine transition probabilities. The S II transitions originate from the 2P, 4s-prime 2D, and 4s 2P terms and terminate on the metastable states of the ion. The S III transitions originate from the 3d 3D0, 4s 3P0, 3p3 3S0, 4s 1P0, and 3s3p3 1P0 terms and terminate on the metastable and ground ionic states. The results for S III include branching ratios involving intercombination transitions that affect ongoing modeling of the energy budget of the Io plasma torus.

  12. Mechanism of Radial Redistribution of Energetic Trapped Ions Due to m=2/n=1 Internal Reconnection in Joint European Torus Shear Optimized Plasmas

    SciTech Connect

    N.N. Gorelenkov; A. Gondhalekar; A.A. Korotkov; S.E. Sharapov; D. Testa; and Contributors to the EFDA-JET Workprogramme

    2002-01-18

    Internal radial redistribution of MeV energy ICRF-driven hydrogen minority ions was inferred from neutral particle analyzer measurements during large amplitude MHD activity leading to internal reconnection in Shear Optimized plasmas in the Joint European Torus (JET). A theory is developed for energetic ion redistribution during a reconnection driven by an m=2/n=1 internal kink mode. Plasma motion during reconnection generates an electric field which can change the energy and radial position of the energetic ions. The magnitude of ion energy change depends on the value of the safety factor at the plasma core from which the energetic ions are redistributed. A relation is found for corresponding change in canonical momentum. P(subscript phi), which leads to radial displacement of the ions. The model yields distinctive new features of energetic ion redistribution under such conditions. Predicted characteristics of ion redistribution are compared with the NPA measurements, and good correlation is found. Sometimes fast ions were transported to the plasma edge due to interaction with a long-lived magnetic island which developed after the reconnection and had chirping frequency in the laboratory frame. Convection of resonant ions trapped in a radially moving phase-space island is modeled to understand the physics of such events.

  13. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  14. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    SciTech Connect

    C. Neumeyer; G. Barnes; J.H. Chrzanowski; P. Heitzenroeder; et al

    1999-11-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  15. Jovian satellite nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, T.

    1976-01-01

    A brief review of the history of Jovian satellite nomenclature is given to indicate the background for the names proposed for the numbered satellites. The new names are consistent with established tradition and should cause minimal confusion with other named objects in the solar system.

  16. Zebra spectral structures in Jovian decametric radio emissions

    NASA Astrophysics Data System (ADS)

    Rošker, S.; Panchenko, M.; Rucker, H. O.; Brazhenko, A. I.

    2015-10-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radiation in a wide frequency range. This emission is a result of complicated interactions between the dynamic Jovian magnetosphere and energetic particles supplying free energy from planetary rotation and the interaction between Jupiter and the Galilean moon Io. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from a few MHz up to 40 MHz. Depending on the time scales the Jovian DAM exhibits different complex spectral structures. Recent observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN-2 (Poltava, Ukraine) enabled the detection of fine spectral structures, specifically zebra stripe-like patterns, never reported before in the Jovian decametric wavelength regime (Figure 1). In this presentation we describe and analyse these new observations by investigating the characteristics of the Jovian decametric zebra patterns. On basis of these findings the possible mechanism of wave generation is discussed and in particular the value of the determination of local plasma densities within the Jovian magnetosphere by remote radio sensing is emphasized.

  17. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, J.

    2010-05-01

    Flux ropes are now generally accepted to be the magnetic configuration of Coronal Mass Ejections (CMEs), which may be formed prior or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its instability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, the partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches one, the critical index goes to a maximum value that depends on the distribution of the external magnetic field. We demonstrate that the partial torus instability helps us to understand the confinement, growth, and eventual eruption of a flux rope CME.

  18. PARTIAL TORUS INSTABILITY

    SciTech Connect

    Olmedo, Oscar; Zhang Jie

    2010-07-20

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  19. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, Jie

    2010-07-01

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  20. Jovian type III radio bursts

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1989-01-01

    Radio bursts have been observed in the Voyager plasma wave data from Jupiter that bear a striking resemblance to solar type III radio bursts. The emissions lie in the frequency range near 10 kHz, have durations of a minute or so, and occur in a set of periodically spaced bursts. The spacing between primary bursts is typically 15 min, but the bursts may have additional components which recur on time scales of about 3 min. The similarity with solar type III radio bursts suggests a source mechanism involving the movement of energetic electrons through a density gradient in the plasma surrounding Jupiter. The periodicity of bursts suggests Io may be involved in the generation of waves, since the timing is similar to the Alfven wave travel time from one hemisphere to the other through the Io torus.

  1. Influence of vacuum toroidal field on two-fluid flowing equilibria of helicity-driven spherical torus plasmas

    SciTech Connect

    Kanki, T.; Nagata, M.

    2006-07-15

    Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) in the realistic confinement region, including a flux conserver and a coaxial helicity source, are numerically determined by means of the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluid near the central conductor is tied to a vacuum toroidal field and ion fluid is not. The magnetic configurations change from the high-q HD-ST (safety factor, q>1) with a paramagnetic toroidal field and low-{beta} (volume average {beta} value, <{beta}>{approx_equal}2%) through the helicity-driven spheromak and reversed-field pinch to the ultra-low-q HD-ST (0{approx_equal}18%) as the vacuum toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift has the same direction as the ExB one.

  2. Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S. (Editor); West, Robert A. (Editor); Rahe, Jurgen (Editor); Pereyda, Margarita

    1989-01-01

    The current state of knowledge of dynamic processes in the Jovian system is assessed and summaries are provided of both theoretical and observational foundations upon which future research might be based. There are three sections: satellite phenomena and rings; magnetospheric phenomena, Io's torus, and aurorae; and atmospheric phenomena. Each chapter discusses time dependent theoretical framework for understanding and interpreting what is observed; others describe the evidence and nature of observed changes or their absence. A few chapters provide historical perspective and attempt to present a comprehensive synthesis of the current state of knowledge.

  3. Factors affecting ion kinetic temperature, number density, and containment time in the NASA Lewis bumpy-torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The degree of toroidal symmetry of the plasma, the number of midplane electrode rings, the configuration of electrode rings, and the location of the diagnostic instruments with respect to the electrode rings used to generate the plasma are discussed. Impurities were deliberately introduced into the plasma, and the effects of the impurity fraction on ion kinetic temperature and electron number density were observed. It is concluded that, if necessary precautions are taken, the plasma communicates extremely well along the magnetic field lines and displays a high degree of symmetry from sector to sector for a wide range of electrode ring configurations and operating conditions. Finally, some characteristic data taken under nonoptimized conditions are presented, which include the highest electron number density and the longest particle containment time (1.9 msec) observed. Also, evidence from a paired comparison test is presented which shows that the electric field acting along the minor radius of the toroidal plasma improves the plasma density and the calculated containment time more than an order of magnitude if the electric field points inward, relative to the values observed when it points (and pushes ions) radially outward.

  4. High confinement and high density with stationary plasma energy and strong edge radiation cooling in the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94)

    SciTech Connect

    Messiaen, A.M.; Ongena, J.; Unterberg, B.; Boedo, J.; Fuchs, G.; Jaspers, R.; Konen, L.; Koslowski, H.R.; Mank, G.; Rapp, J.; Samm, U.; Vandenplas, P.E.; Van Oost, G.; Van Wassenhove, G.; Waidmann, G.; Weynants, R.R.; Wolf, G.H.; Bertschinger, G.; Bonheure, G.; Brix, M.; Dumortier, P.; Durodie, F.; Finken, K.H.; Giesen, B.; Hillis, D.; Hutteman, P.; Koch, R.; Kramer-Flecken, A.; Lyssoivan, A.; Mertens, P.; Pospieszczyk, A.; Post-Zwicker, A.; Sauer, M.; Schweer, B.; Schwelberger, J.; Telesca, G.; Tokar, M.Z.; Uhlemann, R.; Vervier, M.; Winter, J. ||||

    1997-05-01

    An overview of the results obtained so far for the radiative I-mode regime on the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94) [{ital Proceedings of the 16th IEEE Symposium on Fusion Engineering} (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, p. 470] is given. This regime is obtained under quasistationary conditions with edge neon seeding in a pumped limiter tokamak with circular cross section. It combines high confinement and high {beta} (up to a normalized beta, {beta}{sub n}=2) with low edge q values (down to q{sub a}=2.8) and high density even above the Greenwald limit together with dominant edge radiative heat exhaust, and therefore shows promise for the future of fusion research. Bulk and edge properties of these discharges are described, and a detailed account is given of the energy and particle confinement and their scaling. Energy confinement scales linearly with density as for the nonsaturated Ohmic Neo-Alcator scaling, but the usual degradation with total power remains. No deleterious effects of the neon seeding on fusion reactivity and plasma stability have been observed. {copyright} {ital 1997 American Institute of Physics.}

  5. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    SciTech Connect

    Dana M. Mastrovito

    2002-03-14

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics.

  6. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas.

    PubMed

    Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  7. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect

    Cazzaniga, C. Gorini, G.; Nocente, M.; Sundén, E. Andersson; Binda, F.; Ericsson, G.; Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M.; Giacomelli, L.; Rebai, M.; Griesmayer, E.; Kaveney, G.; Syme, B.; Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  8. Development of a tunable Fabry-Perot etalon-based near-infrared interference spectrometer for measurement of the HeI 2{sup 3}S-2{sup 3}P spectral line shape in magnetically confined torus plasmas

    SciTech Connect

    Ogane, S.; Shikama, T. Hasuo, M.; Zushi, H.

    2015-10-15

    In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.

  9. Development of a tunable Fabry-Perot etalon-based near-infrared interference spectrometer for measurement of the HeI 23S-23P spectral line shape in magnetically confined torus plasmas

    NASA Astrophysics Data System (ADS)

    Ogane, S.; Shikama, T.; Zushi, H.; Hasuo, M.

    2015-10-01

    In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 23S-23P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.

  10. Real-time Equilibrium Reconstruction and Isoflux Control of Plasma Shape and Position in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    D. Mueller; D.A. Gates; J.E. Menard; J.R. Ferron; S.A. Sabbagh

    2004-08-11

    The implementation of the rtEFIT-isoflux algorithm in the digital control system for NSTX has led to improved ability to control the plasma shape. In particular, it has been essential for good gap control for radio-frequency experiments, for control of drsep in H-mode studies, and for X-point height control and {kappa} control in a variety of experiments.

  11. Low-frequency fluctuation spectra and associated particle transport in the NASA Lewis bumpy-torus plasma

    NASA Technical Reports Server (NTRS)

    Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Kim, Y. C.; Powers, E. J.

    1978-01-01

    The strong radial electric field associated with the Penning discharge and the strong toroidal magnetic field give rise to a diversity of E/B phenomena, such as rotating waves and spokes, which in turn manifest themselves as space-time fluctuations of the plasma density and potential. Work is done to further understand the nature and origin of the fluctuations and their connection with fluctuation-induced transport. The approach is to monitor the density and potential fluctuations; to digitize the data; and to generate, with the aid of a computer, various spectral properties by means of the fast fourier transform. Of particular interest is the computer-generated transport spectrum that indicates in a quantitative way which fluctuation spectral components contribute to transport and which do not. All experimental measurements of the spectral characteristics of the plasma are given in absolute units rather than as relative values. Preliminary measurements of the transport spectrum of the ion population are given, and it is shown that the fluctuation-induced transport is in order-of-magnitude agreement with that inferred from the steady state current flowing to the electrodes that generate the plasma.

  12. Flow and shear behavior in the edge and scrape-off layer of L-mode plasmas in National Spherical Torus Experiment

    DOE PAGES

    Sechrest, Y.; Munsat, T.; D’Ippolito, D. A.; ...

    2011-01-01

    Fluctuations in the edge and scrape-off layer (SOL) of L-mode plasmas in the National Spherical Torus Experiment (NSTX) as observed by the gas puff imaging (GPI) diagnostic are studied. Calculation of local, time resolved velocity maps using the Hybrid Optical Flow and Pattern Matching Velocimetry (HOP-V) code enables analysis of turbulent flow and shear behavior. Periodic reversals in the direction of the poloidal flow near the separatrix are observed. Also, poloidal velocities and their radial shearing rate are found to be well correlated with the fraction of Dα light contained in the SOL, which acts as a measure of turbulentmore » bursts. The spectra of GPI intensity and poloidal velocity both have a strong feature near 3 kHz, which appears to correspond with turbulent bursts. This mode exhibits a poloidal structure with poloidal wavenumber of 7.7 m-1 for GPI intensity and 3.4 m-1 for poloidal velocity, and the poloidal velocity fluctuations near 3 kHz remain coherent over length scales in excess of the turbulent scales. Furthermore, recent SOL Turbulence (SOLT) simulations find a parameter regime that exhibits periodic bursty transport and shares many qualitative similarities with the experimental data. Strong correlations between the shearing rate and the turbulent bursts are observed for time periods of ~ 2 ms, but the relationship is complicated by several factors. Finally, measurements of the radial profiles of the Reynolds shear stresses are reported. These radial profiles exhibit many similarities for several shots, and a region with positive radial gradient is seen to be coincident with local flow shear.« less

  13. A theory of the Io phase asymmetry of the Jovian decametric radiation

    NASA Technical Reports Server (NTRS)

    Hashimoto, K.; Goldstein, M. L.

    1982-01-01

    An explanation of an asymmetry in the occurrence probability of the Io-dependent Jovian decametric radiation is proposed. Io generates stronger Alfven waves toward the south when it is in the northern part of the torus. This wave then generates decametric radiation in the northern ionosphere after it reflects in the southern ionosphere. The asymmetry then results from computing the propagation time of the alfven wave along this trajectory. The ray paths of the decameter radiation are calculated using a three dimensional ray tracing program in the Jovian ionosphere. Variations in the expected probability plots are computer for two models of the Jovian ionosphere and global magnetic field, as well as for several choices of the ratio of the radiated frequency to the X-mode cutoff frequency.

  14. Resistive Drift Waves in a Bumpy Torus

    SciTech Connect

    J.L.V. Lewandowski

    2004-01-12

    A computational study of resistive drift waves in the edge plasma of a bumpy torus is presented. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  15. Night Side Jovian Aurora

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jovian aurora on the night side of the planet. The upper bright arc is auroral emission seen 'edge on' above the planetary limb with the darkness of space as a background. The lower bright arc is seen against the dark clouds of Jupiter. The aurora is easier to see on the night side of Jupiter because it is fainter than the clouds when they are illuminated by sunlight. Jupiter's north pole is out of view to the upper right. The images were taken in the clear filter (visible light) and are displayed in shades of blue.

    As on Earth, the auroral emission is caused by electrically charged particles striking the upper atmosphere from above. The particles travel along the magnetic field lines of the planet, but their origin is not fully understood. The field lines where the aurora is most intense cross the Jovian equator at large distances (many Jovian radii) from the planet. The faint background throughout the image is scattered light in the camera. This stray light comes from the sunlit portion of Jupiter, which is out of the image to the right. In multispectral observations the aurora appears red, consistent with glow from atomic hydrogen in Jupiter's atmosphere. Galileo's unique perspective allows it to view the night side of the planet at short range, revealing details that cannot be seen from Earth. These detailed features are time dependent, and can be followed in sequences of Galileo images.

    North is at the top of the picture. A grid of planetocentric latitude and west longitude is overlain on the images. The images were taken on November 5, 1997 at a range of 1.3 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the

  16. Titan's hydrogen torus

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1981-01-01

    A model of Titan's hydrogen torus, capable of describing its time evolution under the influence of the gravitational fields of both the satellite and the planet, is presented. Estimated lifetimes for hydrogen atoms near Titan's orbit of the order of 10 to the 7th s, based on recent Pioneer 11 measurements, suggest that the torus completely encircles Saturn and is angularly unsymmetric, having an enhanced gas density near the satellite. New model calculations confirm this and provide an explanation for the torus detected by the Copernicus satellite and the UV instrument of Pioneer 11. Agreement between calculated and observed Lyman alpha intensities suggests a hydrogen escape flux between 1 x 10 to the 9th/sq cm-s and 3 x 10 to the 9th/sq cm-s should be operative at Titan. This produces a torus containing some 10 to the 34th hydrogen atoms.

  17. The Jovian meteoroid environment

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1976-01-01

    Meteoroid fluxes in interplanetary space at 5 AU and near Jupiter have been measured with the penetration detectors on Pioneer 10 and Pioneer 11. The data suggest that the size distribution of meteoroids at 5 AU is the same as that at 1 AU. Furthermore, the high flux observed near Jupiter appears due to meteoroids in orbit about the sun being gravitationally focused toward the planet. There is no indication of a large population of particles in orbit around Jupiter. Calculations show that the mass influx of meteoroids on Jupiter is 170 times that on the earth, but this does not have a significant effect on the energy balance of Jupiter. The high speed with which meteoroids enter the Jovian atmosphere causes them to be brighter than those on earth so that the number of visible meteors is 5800 times the number in the earth's atmosphere.

  18. Studies of Plasma Flow Past Jupiters Satellite Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, and the interaction of Ganymede with the corotating Jovian plasma. With the successful insertion of the Galileo spacecraft into orbit around Jupiter, many new observations have been made of the Jovian magnetosphere. Some of the most exciting results thus far have been in regards to Jupiter's satellites, Io and Ganymede. In both cases the large perturbations to the background (Jovian) magnetic field have been consistent with the satellites' possession of an intrinsic magnetic field. The gravity measurements implying a differentiated core at both Io and Ganymede makes internal generation of a magnetic field by dynamo action in these satellites plausible, and, in the case of Ganymede, the identification of an intrinsic field is apparently unambiguous. For Io the situation is less clear, and further analysis is necessary to answer this important question. During the past year, we have used time-dependent three-dimensional magnetohydrodynamic (MHD) simulations to study these plasma-moon interactions. The results from these simulations have been used directly in the analysis of the Galileo magnetometer data. Our primary emphasis has been on the Io interaction, but we recently presented results on the Ganymede interaction as well. In this progress summary we describe our efforts on these problems to date.

  19. Investigation of Jovian satellites and the origin of Jovian system by LAPLACE

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; Okada, Tatsuaki; Yamaji, Atsushi; Fujimoto, Masaki; Kasaba, Yasumasa; Kimura, Jun; Ikoma, Masahiro; Hussmann, Hauke; Kuramoto, Kiyoshi

    LAPLACE (ESA-JAXA joint mission for the Jovian system) was selected as one of future ESA scientific missions Cosmic Vision in October 2007. LAPLACE is a mission with three spacecrafts aiming at coordinated observations of Jovian satellites and the magnetosphere, atmosphere and interior of Jupiter. An orbiter around Europa or Ganymede is involved. There is a possibility that JAXA (Japan Aerospace Exploration Agency) will take a role on the magnetosphere spinner. Japanese scientists working on the origin and evolution of Jupiter, satellite evolution, and astrobiology have been participating in the LAPLACE working group in Japan. Detailed observation of Jovian satellites Europa, Ganymede, Callisto and Io as well as smaller satellites such as Amalthea would be important also for the study of the origin of Jovian system. Resurfacing processes on Europa and Ganymede should be studied to know the properties of the internal oceans. The processes can be investigated by infrared observation for salt minerals and amorphous/crystal ices. Not only the thickness of icy crust of Europa but also thickness of the ocean and its bottom topography should be important targets, which would be investigated by gravity and magnetism measurements. For both Europa and Ganymede, the surface layering and structure of icy crust should be an interesting geological target, which will be clarified by subsurface radar. In Japan, KAGUYA is observing the Moon, and Venus remote sensing mission (PLANET-C) and Mercury mission Bepi Colombo will be launched in 2011 and 2013, respectively. Several instruments such as cameras, spectrometers, a laser altimeter, a radar, a magnetometer, plasma instruments, and a dust detector should come from the heritage of instruments on board KAGUYA, PLANET-C, and BepiColombo.

  20. MPI Multicore Torus Communication Benchmark

    SciTech Connect

    Schulz, M.

    2008-02-05

    The MPI Multicore Torus Communications Benchmark (TorusTest) measues the aggegate bandwidth across all six links from/to any multicore node in a logical torus. It can run in wo modi: using a static or a random mapping of tasks to torus locations. The former can be used to achieve optimal mappings and aggregate bandwidths that can be achieved with varying node mappings.

  1. Pioneer 10/11 data analysis of the plasma analyzer experiment

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1982-01-01

    The Pioneer 10 plasma analyzer detected the 10 plasma torus. Evidence was found of corotating ions which appear to be primarily S (++) and O (++) in the Pioneer 10 plasma data as the spacecraft moved inward from 6.9 to 5.4 R sub J. The Pioneer plasma analyzer was effective in obtaining information on the heavy ion populations in the Jovian magnetosphere. Interplanetary solar wind plasma shocks can trap energetic particles (cosmic rays) for weeks and out to distances of 17 AU. Energetic particles (o.5 MeV to 20 MeV) were confined between two plasma shocks from solar flares as the shocks propagated outward in the solar system.

  2. Galileo Direction Finding of Jovian Radio Emissions

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1998-01-01

    The Galileo spacecraft, in orbit about Jupiter, has observed distinct spin modulation of plasma wave emissions near the Ganymede (G1 and G2) encounters in the frequency range from about 100 kHz to approximately 6 MHz. Assuming circularly polarized, transverse electromagnetic radiation, we have used the spin modulation of the sweep-frequency receivers of the electric dipole antenna over many spins to estimate the source location in the spin plane of the spacecraft. Hectometric (HOM) and decametric (DAM) emission is observed by Galileo as a general and continuous background with frequent bursts that last tens of minutes and can be separated by minutes or hours. We have analyzed HOM and DAM emissions observed near Jupiter just after the GI and G2 encounters, including two HOM/DAM "arc" signatures observed after the G2 encounter. These latter appear to be low-frequency extensions of DAM arcs, with source regions along either the Io or the Ganymede flux tube. While the uncertainties associated with the data analysis do not allow a precise source location, the HOM/DAM emission observed near the G1 and G2 encounters is consistent with a gyroresonant source region, but it is necessary to require refraction due to the Io torus to understand the results. To explain emission from apparent source regions above a gyroresonant source region, wave refraction from asymmetries in the Io plasma torus that extend along magnetic field lines is postulated. Alternatively, if such torus density asymmetries do not exist, emission with sources above a gyroresonant source region would require another free-energy source such as energetic plasma beams in the presence of density gradients or temperature anisotropies.

  3. An Asymmetric Noncommutative Torus

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Ludwik; Sitarz, Andrzej

    2015-09-01

    We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).

  4. Turbulent equipartition pinch of toroidal momentum in spherical torus

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Lee, J.; Wang, W. X.; Diamond, P. H.; Choi, G. J.; Na, D. H.; Na, Y. S.; Chung, K. J.; Hwang, Y. S.

    2014-12-01

    We present a new analytic expression for turbulent equipartition (TEP) pinch of toroidal angular momentum originating from magnetic field inhomogeneity of spherical torus (ST) plasmas. Starting from a conservative modern nonlinear gyrokinetic equation (Hahm et al 1988 Phys. Fluids 31 2670), we derive an expression for pinch to momentum diffusivity ratio without using a usual tokamak approximation of B ∝ 1/R which has been previously employed for TEP momentum pinch derivation in tokamaks (Hahm et al 2007 Phys. Plasmas 14 072302). Our new formula is evaluated for model equilibria of National Spherical Torus eXperiment (NSTX) (Ono et al 2001 Nucl. Fusion 41 1435) and Versatile Experiment Spherical Torus (VEST) (Chung et al 2013 Plasma Sci. Technol. 15 244) plasmas. Our result predicts stronger inward pinch for both cases, as compared to the prediction based on the tokamak formula.

  5. Low-Energy Energetic Neutral Atom Imaging of Io Plasma and Neutral Tori

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Barabash, Stas; Wang, Xiao-Dong; Wieser, Martin; Wieser, Gabriella S.; Wurz, Peter; Krupp, Norbert; Brandt, Pontus C.

    2014-05-01

    Io's plasma neutral tori play significant roles in the Jovian magnetosphere. We present a feasibility study of measuring low-energy energetic neutral atoms (LENAs) generated from the tori. We calculate the LENA flux between 10 eV and 3 keV, which covers the energy range of the corotational plasma flow. The differential flux is typically 103-105cm-2sr-1s-1eV -1 near the energy of the corotation measured from the Ganymede orbit. It is above the detection level of the planned LENA sensor that is to be flown to the Jupiter system with a time integral of 0.01-1 seconds. The flux is typically observed from the dawn side of Jupiter. The observed flux will exhibit periodicities though the assumed ENA generation is time independent, which can be attributed to the Jovian magnetosphere rotation and the rotation of Io around Jupiter. The energy spectra will exhibit dispersion signatures, because of the non-negligible flight time of the LENAs from Io to the satellite. In 2030, the Jupiter exploration mission JUICE will conduct a LENA measurement with a LENA instrument, the Jovian Neutrals Analyzer (JNA). From the LENA observations collected by JNA, we will be able to derive characteristic quantities, such as the density, velocity, velocity distribution function, and composition of plasma-torus particles. We also discuss the possible physics to be explored by JNA in addition to the constraints for operating the sensor and analyzing the obtained dataset.

  6. Low-energy energetic neutral atom imaging of Io plasma and neutral tori

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Barabash, Stas; Wang, Xiao-Dong; Wieser, Martin; Wieser, Gabriella S.; Wurz, Peter; Krupp, Norbert; Brandt, Pontus C.:son

    2015-04-01

    Io's plasma and neutral tori play significant roles in the Jovian magnetosphere. We present feasibility studies of measuring low-energy energetic neutral atoms (LENAs) generated from the Io tori. We calculate the LENA flux between 10 eV and 3 keV. The energy range includes the corotational plasma flow energy. The expected differential flux at Ganymede distance is typically 103-105 cm-2 s-1 sr-1 eV-1 near the energy of the corotation. It is above the detection level of the planned LENA sensor that is to be flown to the Jupiter system with integration times of 0.01-1 s. The flux has strong asymmetry with respective to the Io phase. The observations will exhibit periodicities, which can be attributed to the Jovian magnetosphere rotation and the rotation of Io around Jupiter. The energy spectra will exhibit dispersion signatures, because of the non-negligible flight time of the LENAs from Io to the satellite. In 2030, the Jupiter exploration mission JUICE will conduct a LENA measurement with a LENA instrument, the Jovian Neutrals Analyzer (JNA). From the LENA observations collected by JNA, we will be able to derive characteristic quantities, such as the density, velocity, velocity distribution function, and composition of plasma-torus particles. We also discuss the possible physics to be explored by JNA in addition to the constraints for operating the sensor and analyzing the obtained dataset.

  7. Jovian Dark Spot

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A recently discovered black spot in Jupiter's clouds is darker than any feature ever before observed on the giant planet. The spot may be the result of a downward spiraling wind that blows away high clouds and reveals deeper, very dark cloud layers. These three panels depict the same area of Jupiter's atmosphere. A map of Jovian temperatures near 250 millibar pressure (top) panel is derived from the photopolarimeter-radiometer instrument on NASA's Galileo Jupiter orbiter. This map is compared with maps derived from images of the same area in visible light (middle panel)and thermal radiation sensitive to cloud-top temperatures (bottom panel).

    The single downward-pointing arrow in the top panel indicates the location of a warm area that corresponds to the position of a so-called 'black spot'(shown in the middle panel), a feature that is about a year old. Features this dark are rare on Jupiter. The bottom panel, sensitive to temperatures at Jupiter's cloud tops, shows this feature as a bright object, meaning that upper-level cold clouds are missing - allowing us to see deeper into Jupiter's warmer interior. The dark visible appearance of the feature than most likely represents the color of very deep clouds. The warm temperatures and cloud-free conditions imply that this feature is a region where dry upper-atmospheric gas is being forced to converge, is warmed up and then forced to descend, clearing out clouds. It is the opposite of wet, upwelling gas in areas such as Jupiter's Great Red Spot or white ovals. On the other hand, it is unlike the dry and relatively cloudless feature into which the Galileo probe descended in 1995, because that region had the same temperatures as its surroundings and did not appear nearly as dark as this new spot.

    The temperatures sampled by the photopolarimeter radiometer are near the top of Jupiter's troposphere, where wind motions control the atmosphere. The top row of arrows shows the location of temperature waves in a warm region

  8. Periodic amplitude variations in Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  9. Charge exchange in the Io torus and exosphere

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Strobel, D. F.

    1982-01-01

    Charge-exchange cross sections and their velocity dependence have been estimated for the most important reactions in the Io torus and exosphere. The methods used for calculating the cross sections are given and discussed in some detail. For symmetric-resonant single and double charge exchange, the cross sections are slowly varying functions of velocity. For inelastic charge-exchange collisions, the transition probabilities into a given final state can depend critically on velocity. Models are described which can be used to estimate both the most rapid charge-exchange processes and those states which play an important role. Calculated cross sections are used to obtain reaction rates as a function of radial position, demonstrating the importance of charge exchange in the inner torus. Charge-exchange reactions of torus ions with molecular species in Io's exosphere may yield a net supply of neutrals and plasma to the torus.

  10. Long-term study of longitudinal dependence in primary particle precipitation in the north Jovian aurora

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Strobel, D. F.; Moos, H. W.

    1990-07-01

    The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.

  11. The Phobos neutral and ionized torus

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Curry, S. M.; Fatemi, S.

    2016-05-01

    Charged particle sputtering, micrometeoroid impact vaporization, and photon-stimulated desorption are fundamental processes operating at airless surfaces throughout the solar system. At larger bodies, such as Earth's Moon and several of the outer planet moons, these processes generate tenuous surface-bound exospheres that have been observed by a variety of methods. Phobos and Deimos, in contrast, are too gravitationally weak to keep ejected neutrals bound and, thus, are suspected to generate neutral tori in orbit around Mars. While these tori have not yet been detected, the distribution and density of both the neutral and ionized components are of fundamental interest. We combine a neutral Monte Carlo model and a hybrid plasma model to investigate both the neutral and ionized components of the Phobos torus. We show that the spatial distribution of the neutral torus is highly dependent on each individual species (due to ionization rates that span nearly 4 orders of magnitude) and on the location of Phobos with respect to Mars. Additionally, we present the flux distribution of torus pickup ions throughout the Martian system and estimate typical pickup ion fluxes. We find that the predicted pickup ion fluxes are too low to perturb the ambient plasma, consistent with previous null detections by spacecraft around Mars.

  12. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim

    2016-10-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by

  13. Modeling and investigative studies of Jovian low frequency emissions

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Green, James L.; Six, N. Frank; Gulkis, S.

    1986-01-01

    Jovian decametric (DAM) and hectometric (HOM) emissions were first observed over the entire spectrum by the Voyager 1 and 2 flybys of the planet. They display unusual arc-like structures on frequency-versus-time spectrograms. Software for the modeling of the Jovian plasma and magnetic field environment was performed. In addition, an extensive library of programs was developed for the retrieval of Voyager Planetary Radio Astronomy (PRA) data in both the high and low frequency bands from new noise-free, recalibrated data tapes. This software allows the option of retrieving data sorted with respect to particular sub-Io longitudes. This has proven to be invaluable in the analyses of the data. Graphics routines were also developed to display the data on color spectrograms.

  14. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    PubMed

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  15. Lower hybrid emission diagnostics on the NASA Lewis bumpy torus

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.

    1977-01-01

    The feasibility of using RF emission near the lower hybrid frequency of the NASA Lewis Bumpy Torus plasma for diagnostic purposes is examined. The emission is detected using a spectrum analyzer and a 50 omega miniature coaxial antenna that is sensitive to the polarization of the incoming signal. The frequency shift of the lower hybrid emission peak is monitored as a function of the background pressure, electrode voltage, electrode ring configuration and the strength of the toroidal dc magnetic field. Simultaneous measurements of the average plasma density are made with a polarization diplexing microwave interferometer. Data derived from the experiment are discussed with reference to the following: (1) the strength of the dc magnetic field in the emitting region; (2) comparison of the lower hybrid plasma density with the average plasma density; and (3) validity of the cold plasma lower hybrid resonance formula in the high density operating regime of the bumpy torus plasma.

  16. Observations of Jovian electrons at 1 AU throughout the 13 month Jovian synodic year

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Conlon, T. F.; Pyle, K. R.; Simpson, J. A.

    1977-01-01

    A study of Jovian electron-flux increases observed aboard the IMP-8 earth-orbiting satellite reveals that, contrary to previous reports of a 4-8-month Jovian electron 'season', Jovian electron-intensity increases were observed almost continuously from late 1973 into 1976, with peak intensities occurring at times of best connection between earth and Jupiter along the average direction of the interplanetary magnetic field about every 13 months. These observations are consistent with Jovian electron propagation both along and across the direction of the average interplanetary magnetic field. A convection-diffusion model for Jovian electron propagation, which assumes that Jupiter is a continuously emitting point source of electrons, originally developed to explain the distribution of Jovian electrons observed on the Pioneer 10 and 11 spacecraft, can account also for the distribution of Jovian electrons observed at the orbit of earth.

  17. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  18. Simultaneous Analysis of Recurrent Jovian Electron Increases and Galactic Cosmic Ray Decreases

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Dresing, N.; Dunzlaff, P.; Fichtner, H.; Gieseler, J.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Kleimann, J.; Kopp, A.; Potgieter, M. S.; Scherer, K.; Strauss, D. R.

    2012-12-01

    Since the early 1970's the magnetosphere of Jupiter is known to be a strong source of relativistic electrons. These Jovian electrons are released quasi-continuously from the magnetosphere. Due to Jupiter's favorable orbit, they offer a unique opportunity for studies of the transport of energetic particles in the heliosphere, in which the Jovian magnetosphere acts as a source of "quit time" electron increase. Of central importance for the propagation of Jovian electrons is the solar wind flow and the structure of the embedded heliospheric magnetic field. The solar wind defines the transport environment for the particles as soon as they have left the Jovian magnetosphere. They enter the solar wind flow close to the ecliptic plane and are immediately subject to the processes of spatial diffusion, convection, and adiabatic deceleration in the expanding solar wind plasma. On the time-scale of a solar rotation, especially during the rising and declining phases of the solar cycle the variability is caused mainly by corotating interaction regions. Due to the changing propagation conditions in the intermediate heliosphere, corotating interaction regions, however, can cause recurrent galactic cosmic ray modulation. A detailed analysis of recurrent Jovian electron events and galactic cosmic ray decreases measured by SOHO EPHIN is presented here, clearly showing a change of phase between both phenomena during a year. This phase shift has been analyzed by calculating the correlation coefficient between the galactic component and the Jovian electrons. Furthermore, the data can be ordered such that the 27-day Jovian electron variation vanishes in the sector which does not connect the Earth with Jupiter using observed solar wind speeds.; Electron intensity dependent on the longitudinal angle between SOHO and Jupiter. Jovian electron increases can only be observed in regions, which are magnetically connected to Jupiter via observed solar wind speeds.

  19. Convective contributions to local power loss in a Bumpy Torus

    SciTech Connect

    Hiroe, S.; Haste, G.R. Jr.; Tolliver, J.S.; Quon, B.H.; Goyer, J.R.; Solensten, L.; Conner, K.A.

    1986-12-01

    Power flow in the ELMO Bumpy Torus (Plasma Physics and Controlled Nuclear Fusion Research (Tokyo, 1974) (IAEA, Vienna, 1975) Vol. 2, p. 141; Plasma Phys. 25, 597 (1983)) was investigated by measuring the power received by a limiter. Selective removal of heating power from various cavities, including the cavity with the limiter, has demonstrated that the majority of the power is lost locally. Observations of the potential structure demonstrate that asymmetric potential contours are present which can lead to enhanced plasma loss.

  20. Radiation chemistry in the Jovian stratosphere: laboratory simulations.

    PubMed

    McDonald, G D; Thompson, W R; Sagan, C

    1992-09-01

    Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.

  1. Time frequency analysis of Jovian and Saturnian radio spectral patterns

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Al-Haddad, Emad; Lammer, Helmut

    2016-04-01

    Prominent radio spectral patterns were observed by the Cassini Radio and Plasma Wave Science experiment (RPWS) principally at Jupiter and Saturn. The spectral shapes are displayed in the usual dynamic spectra showing the flux density versus the time and the frequency. Those patterns exhibit well-organized shapes in the time-frequency plane connected with the rotation of the planet. We consider in this analysis the auroral emissions which occurred in the frequency range between 10 kHz and approximately 3 MHz. It concerns the Jovian hectometric emission (HOM) and the Saturnian kilometric radiation (SKR). We show in the case of Jupiter's HOM that the spectral patterns are well-arranged arc structures with curvatures depending on the Jovian rotation. Regarding the SKR emission, the spectral shapes exhibit generally complex patterns, and only sometimes arc structures are observed. We emphasize the curve alterations from vertex-early to vertex-late arcs (and vice versa) and we study their dependences, or not, on the planetary rotations. We also discuss the common physical process at the origin of the HOM and SKR emissions, specifically the spectral patterns created by the interaction between planetary satellites (e.g. Io or Dione) and the Jovian and Saturnian magnetospheres.

  2. Simultaneous Observation of Jovian Radio Emissions by Cassini and Wind

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.

    1999-01-01

    During the Cassini instrument checkout interval in January 1999 as the spacecraft was making a distant (0.6 AU) swing by Earth, the radio and plasma wave receiver (RPWS) detected radio emission from the sun, Earth, and Jupiter, the latter including both the hectometric (HOM) and decametric (DAM) components. The WAVES experiment on the Wind spacecraft in orbit near Earth was also making observations of Jupiter at this same time. By combining the RPWS and WAVES data sets, we are able to provide some insight into the instantaneous beaming of Jovian radio emissions. As seen by Jupiter, Cassini and Wind were a few degrees apart during this period, yet the correlation between Jovian DAM arcs observed by the two spacecraft suggests that the beam width is even narrower and does not simultaneously illuminate both. The only earlier spacecraft capable, in principle, of making these observations were Voyager-1 and 2, but their sensitivity to DAM emissions was too limited to reliably measure the instantaneous beaming. The beam width implied by the RPWS-WAVES measurements is approximately the same as the angle through which Jupiter rotates while an arc (at a fixed frequency) is visible. The HOM Jovian emissions, on the other hand, seem similar as observed by RPWS and WAVES, consistent with earlier Wind-Ulysses measurements indicating a somewhat broader beam width.

  3. Recent Progress on Spherical Torus Research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  4. Energetic oxygen and sulfur ions in the Jovian magnetosphere. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1981-01-01

    Observations of 1 to 20 MeV/nuc oxygen, sodium, and sulfur ions in the Jovian magnetosphere are reported. Measurements made by the cosmic ray subsystem on Voyager 1 and 2 were used to calculate abundances and energy spectra in the region from 5 to 20 Jovian radii. The phase space density of the oxygen ions calculated from the spectra has a positive radial gradient between 6 and 17 Jovian radii, indicating an inward diffusive flow. The diffusion coefficient upper limit at 9 Jovian radii is approximately 10 to the -5 power/s. This limit, combined with the analysis of Voyager plasma observations by Siscoe et al.1981, implies an upper limit to the mass loading rate near Io of approximately 10 to the 28th power ions/s. The energetic oxygen lifetime is within an order of magnitude of the strong pitch-angle diffusion lifetime in this region, with the largest total number of particles lost between 7.5 and 12.5 Jovian radii. It is shown that the losses are not due to geometric absorption by Io, absorption by dust grains, or energy loss in the plasma of the inner magnetosphere, and it is therefore postulated that the primary loss mechanism is pitch-angle scattering into the loss cone.

  5. Autophoretic flow on a torus

    NASA Astrophysics Data System (ADS)

    Schmieding, Lasse C.; Lauga, Eric; Montenegro-Johnson, Thomas D.

    2017-03-01

    Phoretic swimmers provide new avenues to study nonequilibrium statistical physics and are also hailed as a promising technology for bioengineering at the cellular scale. Exact solutions for the locomotion of such swimmers have been restricted so far to spheroidal shapes. In this paper we solve for the flow induced by the canonical nonsimply connected shape, namely an axisymmetric phoretic torus. The analytical solution takes the form of an infinite series solution, which we validate against boundary element computations. For a torus of uniform chemical activity, confinement effects in the hole allow the torus to act as a pump, which we optimize subject to fixed particle surface area. Under the same constraint, we next characterize the fastest swimming Janus torus for a variety of assumptions on the surface chemistry. Perhaps surprisingly, none of the optimal tori occur in the limit where the central hole vanishes.

  6. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak.

    PubMed

    Mitarai, O; Xiao, C; McColl, D; Dreval, M; Hirose, A; Peng, M

    2015-03-01

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. This result suggests a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. The effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments in the STOR-M tokamak.

  7. Jovian cloud structure and velocity fields

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.; Terrile, R. J.; Collins, S. A.; Smith, B. A.; Muller, J.-P.; Hunt, G. E.; Ingersoll, A. P.; Beebe, R. F.

    1979-01-01

    A global view of Jovian small-scale morphologies and zonal velocity profiles has been discussed previously. In the present paper, a regional comparison is made of the structures and velocity fields (meridional and zonal velocities) in the Jovian atmosphere as observed by Voyager I imaging system. The cloud structures discussed are fairly independent of the visual wavelength. The analysis shows that although both Jovian hemispheres exhibit similar patterns of diminishing and alternating eastward and westward jets as one progresses polewards, there is a pronounced asymmetry in the structural appearance of the two hemispheres.

  8. Observing Solar and Jovian Radio Bursts

    NASA Astrophysics Data System (ADS)

    Grippaldi, Joseph

    2011-05-01

    A recently constructed low frequency radio telescope has been constructed on the campus of the The College of New Jersey (TCNJ) has recently begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of Jovian radio emission including strong prompt radio emission associated with the Jovian moon Io. We will discuss Jovian observations conducted with this instrument as an effort to conduct coincident observation with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  9. Jovian Lightning and Moonlit Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jovian lightning and moonlit clouds. These two images, taken 75 minutes apart, show lightning storms on the night side of Jupiter along with clouds dimly lit by moonlight from Io, Jupiter's closest moon. The images were taken in visible light and are displayed in shades of red. The images used an exposure time of about one minute, and were taken when the spacecraft was on the opposite side of Jupiter from the Earth and Sun. Bright storms are present at two latitudes in the left image, and at three latitudes in the right image. Each storm was made visible by multiple lightning strikes during the exposure. Other Galileo images were deliberately scanned from east to west in order to separate individual flashes. The images show that Jovian and terrestrial lightning storms have similar flash rates, but that Jovian lightning strikes are a few orders of magnitude brighter in visible light.

    The moonlight from Io allows the lightning storms to be correlated with visible cloud features. The latitude bands where the storms are seen seem to coincide with the 'disturbed regions' in daylight images, where short-lived chaotic motions push clouds to high altitudes, much like thunderstorms on Earth. The storms in these images are roughly one to two thousand kilometers across, while individual flashes appear hundreds of kilometer across. The lightning probably originates from the deep water cloud layer and illuminates a large region of the visible ammonia cloud layer from 100 kilometers below it.

    There are several small light and dark patches that are artifacts of data compression. North is at the top of the picture. The images span approximately 50 degrees in latitude and longitude. The lower edges of the images are aligned with the equator. The images were taken on October 5th and 6th, 1997 at a range of 6.6 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for

  10. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  11. Cassini ENA Observations of an Asymmetric Europa Torus with Indications of Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Westlake, Joseph; Mauk, Barry; Mitchell, Donald

    2014-05-01

    From about December 2000 to January 2001 the Ion Neutral Camera (INCA) on board the Cassini spacecraft imaged Jupiter in Energetic Neutral Atoms (ENA) that are created when singly charged ions charge exchange with neutral gas atoms or molecules. The INCA observations were obtained from a distance of about 137-250 Jovian planetary radii (RJ) over an energy range from about 10 to 300 keV. These observations have been demonstrated to be consistent with a neutral gas torus encircling Jupiter at Europa's orbit (Mauk et al., 2004). Here, we present a new, detailed analysis of the ENA images implying an asymmetric Europa neutral gas torus with indications of magnetospheric dynamics. The analysis uses images with a minimum integration time and background. A forward model using a parametric energetic ion model and a neutral gas model simulates ENA images through the instrument response function of INCA in order to determine the spatial distribution of the neutral gas.

  12. Cassini ENA Observations of an Asymmetric Europa Torus with Indications of Dynamics

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Westlake, J. H.; Mitchell, D. G.; Mauk, B.; Smith, H. T.

    2014-12-01

    From about December 2000 to January 2001 the Ion Neutral Camera (INCA) on board the Cassini spacecraft imaged Jupiter in Energetic Neutral Atoms (ENA) that are created when singly charged ions charge exchange with neutral gas atoms or molecules. The INCA observations were obtained from a distance of about 137-250 Jovian planetary radii (RJ) over an energy range from about 10 to 300 keV. These observations have been demonstrated to be consistent with a neutral gas torus encircling Jupiter at Europa's orbit (Mauk et al., 2004). Here, we present a new, detailed analysis of the ENA images implying an asymmetric Europa neutral gas torus with indications of magnetospheric dynamics. The analysis uses images with a minimum integration time and background. A forward model using a parametric energetic ion model and a neutral gas model simulates ENA images through the instrument response function of INCA in order to determine the spatial distribution of the neutral gas.

  13. A Jovian Trojan-Satellite Population Exchange

    NASA Astrophysics Data System (ADS)

    Stenborg, T. N.

    2003-07-01

    In Special Session 1, Recent Progress in Planetary Exploration, Monash University's Andrew Prentice discusses the possible origin of Jovian satellite Amalthea as a captured Trojan asteroid. Galileo spacecraft data gives a low bulk density (~1 g/cc) for Amalthea, more consistent with a captured minor body, rather than one formed in-situ. Its 83 km radius is within the size range of the known Jovian Trojans, less than that of Trojan 624 Hektor, for example.

  14. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    SciTech Connect

    M. Ono; M. Peng; C. Kessel; C. Neumeyer; J. Schmidt; J. Chrzanowski; D. Darrow; L. Grisham; P. Heitzenroeder; T. Jarboe; C. Jun; S. Kaye; J. Menard; R. Raman; T. Stevenson; M. Viola; J. Wilson; R. Woolley; I. Zatz

    2003-10-27

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction.

  15. Satellite Atmosphere and Io Torus Observations

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas M.

    2000-01-01

    Io is the most volcanically active body in the solar system, and it is embedded deep within the strongest magnetosphere of any planet. This combination of circumstances leads to a host of scientifically compelling phenomena, including (1) an atmosphere out of proportion with such a small object, (2) a correspondingly large atmospheric escape rate, (3) a ring of dense plasma locked in a feedback loop with the atmosphere, and (4) a host of Io-induced emissions from radio bursts to UV auroral spots on Jupiter. This proposal seeks to continue our investigation into the physics connecting these phenomena, with emphasis on Io's atmosphere and plasma torus. The physical processes are clearly of interest for Io, and also other places in the solar system where they are important but not readily observable.

  16. Magnetic surfaces in an axisymmetric torus

    SciTech Connect

    Skovoroda, A. A.

    2013-04-15

    A method is developed for specifying the boundary equilibrium magnetic surface in an axially symmetric torus by using the absolute values of the magnetic field B = B{sub s}({theta}) and the gradient of the poloidal flux vertical bar vertical bar {nabla}{Psi} vertical bar = vertical bar {nabla}{Psi} vertical bar {sub s}({theta}) in a special flux coordinate system. By setting two surface constants (e.g., the safety factor q and dp/d{Psi}) and matching the absolute values of the magnetic field and the flux gradient on a closed magnetic surface, it is possible to find all equilibrium magnetic functions (including n {center_dot} {nabla} ln B and the local shear s) and all constants (including the toroidal current J and the shear d{mu}/d{Psi}) on this surface. Such a non-traditional formulation of the boundary conditions in solving the stability problem in an axisymmetric torus allows one to impose intentional conditions on plasma confinement and MHD stability at the periphery of the system.

  17. Ultraviolet Spectroscopy in the Jovian System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Esposito, L. W.; Pryor, W. R.; Stewart, I.; McClintock, W. E.; Hansen, C. J.

    2003-12-01

    Ultraviolet spectroscopy is an important tool for further understanding of the icy galilean satellites, in addition to Jupiter, Io and the Io torus. In this presen-tation, we explore the past accomplishments using UV spectroscopy in the jovian system, and future meas-urements to be made to increase our knowledge of this exciting environment. The icy Galilean satellites are known to have tenu-ous atmospheres of H, O, O2 and CO2, among other species. A hydrogen corona (121.6 nm) has been de-tected around Ganymede and Callisto. An O2 atmos-phere has been inferred at Europa as a result of HST measurements of oxygen emission features. Observa-tions using an orbiter need to be performed to map out these atmospheric species spatially and temporally to better understand their sources. A very sensitive UV instrument is needed to do limb measurements to de-tect outgassing (particularly at Europa). It is not clear whether the primary source of the tenuous atmospheres is sputtering of the surface ice, sputtering of subli-mated gases, or photolysis. A UV spectrograph on JIMO will be able to map out the atmosphere and cor-relations can be made between abundances of atmos-pheric species and the varying types of sputtering of the surface by charged particles. How thick are the atmospheres, and do they vary across the surface? Is Ganymede's atmosphere relatively thin due to magne-tospheric shielding? Auroral activity has been detected on Ganymede using HST, where the polar regions appear to glow with oxygen emission lines at 130.4 and 135.6 nm. Longitudinal asymmetries appear, however, in the HST data, as do latitudinal and temporal variations that are not understood. The icy satellites of Jupiter are embedded within the magnetosphere and as such, are constantly bom-barded by the charged particles that populate it. The bombardment results in the formation of species that are detectable exclusively at NUV wavelengths (e.g., O3, H2O2, SO2). As such, by imaging these bombard

  18. Cross-field potential hill arisen eccentrically in toroidal electron cyclotron resonance plasmas in the Low Aspect ratio Torus Experiment device to regulate electron and ion flows from source to boundary

    NASA Astrophysics Data System (ADS)

    Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi

    2015-07-01

    We have investigated the electron and ion flows in toroidal electron cyclotron resonance (ECR) plasmas maintained by a 2.45 GHz microwave power around 1 kW under a simple toroidal field in the low aspect ratio torus experiment (LATE) device. We have found that a vertically uniform ridge of electron pressure that also constitutes the source belt of electron impact ionization is formed along just lower field side of the ECR layer and a cross-field potential hill ({{V}S}\\cong 30 V while {{T}e}\\cong 10 eV), eccentrically shifted toward the corner formed by the top panel and the ECR layer, arises. Combination of the hill-driven E× B drift and the vertical drift due to the field gradient and curvature, being referred to as vacuum toroidal field (VTF) drift, realizes steady flows of electrons and ions from the source to the boundary. In particular, the ions, of which VTF drift velocity is much slower than the electron VTF drift velocity near the source belt, are carried by the E× B drift around the hill to the vicinity of the top panel, where the ion VTF drift is enhanced on the steep down slope of potential toward the top panel. On the other hand the electron temperature strongly decreases in this area. Thus the carrier of VTF drift current is replaced from the electrons to the ions before the top panel, enabling the current circulation through the top and bottom panels and the vessel (electrons mainly to the bottom and ions mainly to the top) that keeps the charge neutrality very high. A few percent of electrons from the source turn around the hill by 360 degree and reentry the source belt from the high field side as seed electrons for the impact ionization, keeping the discharge stable.

  19. Recent progress on spherical torus research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; Kaita, Robert

    2015-04-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ˜ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ˜ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  20. Recent progress on spherical torus research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2015-04-15

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R{sub 0}/a) reduced to A ∼ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ∼ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  1. The Jovian ionospheric E region

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Fox, J. L.

    1991-02-01

    A model of the Jovian ionosphere was constructed, that includes direct photoionization of hydrocarbon molecules. A high-resolution solar spectrum was synthesized from Hinteregger's solar maximum spectrum (F79050N), and high-resolution cross sections for photoabsorption by H2 bands in the range 842 to 1116 A were constructed. Two strong solar lines and about 30 percent of the continuum flux between 912 and 1116 A penetrate below the methane homopause despite strong absorption by CH4 and H2. It is found that hydrocarbons (mainly C2H2 are ionized at a maximum rate of 55/cu cm per sec at 320 km above the ammonia cloud tops. The hydrocarbon ions produced are quickly converted to more complex hydrocarbon ions through reactions with CH4, C2H2, C2H6, and C2H4. It is found that a hydrocarbon ion layer is formed near 320 km that is about 50 km wide with a peak density in excess of 10,000/cu cm.

  2. RADIATION FROM ELECTRON PHASE SPACE HOLES AS A POSSIBLE SOURCE OF JOVIAN S-BURSTS

    SciTech Connect

    Goodrich, K. A.; Ergun, R. E.

    2015-08-10

    Radio-frequency short burst emissions (10–40 MHz), known as Jovian S-bursts, have been observed from the Jovian aurora for over fifty years. These emissions, associated with Io’s motion, have a rapidly declining frequency and an exceptionally narrow bandwidth. While it is widely believed that S-bursts are generated by the electron cyclotron maser instability, the mechanism responsible for the rapidly declining frequency and narrow bandwidth currently is not well established. We explore a hypothesis that electron phase space holes radiate or stimulate radiation in the Jovian aurora plasma environment as a possible source of S-burst emissions. Electron phase-space holes (EHs) are ubiquitous in an auroral environment and travel at the implied speeds (∼20,000 km s{sup −1}) of the structures creating the Jovian S-bursts. Furthermore, EHs have the proper physical size to create the observed bandwidth, have sufficient energy content, and can create an environment whereby X mode emissions can be excited. If verified, these findings imply that EHs may be an important source of radiation from strongly magnetized or relativistic astrophysical plasmas.

  3. Thomson scattering on ELMO Bumpy Torus

    SciTech Connect

    Cobble, J.A.

    1985-04-01

    Below 10/sup 12/ cm/sup -3/ density, a Thomson scattering experiment is an exacting task. Aside from the low signal level, the core plasma in this instance is bathed in high-energy x rays, surrounded by a glowing molecular surface plasma, and heated steady state by microwaves. This means that the noise level from radiation is high and the environment is extremely harsh-so harsh that much effort is required to overcome system damage. In spite of this, the ELMO Bumpy Torus (EBT) system has proven itself capable of providing reliable n/sub e/ and T/sub e/ measurements at densities as low as 2 x 10/sup 11/ cm/sup -3/. Radial scans across 20 cm of the plasma diameter have been obtained on a routine basis, and the resulting information has been a great help in understanding confinement in the EBT plasma. The bulk electron properties are revealed as flat profiles of n/sub e/ and T/sub e/, with density ranging from 0.5 to 2.0 x 10/sup 12/ cm/sup -3/ and temperature decreasing from 100 to 20 eV as pressure in the discharge is increased at constant power. Evidence is presented for a suprathermal tail, which amounts to about 10% of the electron distribution at low pressures. The validity of this conclusion is supported by two independent sensitivity calibrations.

  4. Intrinsic luminosities of the Jovian planets

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.

    1980-02-01

    Available data and theories on the size and nature of interior power sources in the four Jovian planets are reviewed. These four planets are Jupiter, Saturn, Uranus and Neptune. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. The evidence and interpretations presented in the discussion seem to indicate that (1) all four Jovian planets were once more luminous and are presently cooling to a state of equilibrium with sunlight; and (2) the thermal evolution of the Jovian planets is predominantly controlled by their photospheres and does not depend on interior conductivity. Both conclusions are consistent with either the simple adiabatic cooling model or with more complicated gravitational unmixing models of the type discussed by Stevenson and Salpeter (1977).

  5. Transport with reversed shear in the National Spherical Torus Experiment

    SciTech Connect

    Levinton, F. M.; Yuh, H.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Mikkelsen, D.; Mueller, D.; Rewoldt, G.; Wang, W.; Delgado-Aparicio, L.; Finkenthal, M.; Stutman, D.; Tritz, K.; Maingi, R.; Raman, R.; Sabbagh, S. A.

    2007-05-15

    In the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)], plasmas with strongly reversed magnetic shear, s{identical_to}(r/q)(dq/dr)<0, in the plasma core exhibit a marked improvement in electron confinement compared to otherwise similar plasmas with positive or only weakly reversed magnetic shear. The q profile itself is determined by the early evolution of the plasma current, the plasma cross section, and the neutral-beam heating power. In the region of shear reversal, the electron thermal diffusivity can be significantly reduced. Detailed experimental investigation of this phenomenon has been made possible by the successful development of a motional Stark effect (MSE) polarimetry diagnostic suitable for the low magnetic field in NSTX, typically 0.35-0.55 T. Measurements of the electron and ion temperature, density, and plasma toroidal rotation profiles are also available with high spatial and temporal resolution for analysis of the plasma transport properties.

  6. Recent results in the Los Alamos compact torus program

    SciTech Connect

    Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.

    1983-01-01

    A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only.

  7. Current status of Jovian magnetosphere observation by EXCEED onboard HISAKI

    NASA Astrophysics Data System (ADS)

    Yoshikawa, I.

    2015-12-01

    EXCEED is an existing Earth-orbiting spectrometer working in the EUV spectral range from 50 nm up to 150nm, still observing solar planets.Hisaki with EXCEED was successfully launched by epsilon rocket from Uchinoura in 2013 September and has competeled approximately 2-year investigations of solar planets.The inner magnetosphere of Jupiter is one of the most important targets for EXCEED. Especially, coupling between Io-Plasma-Torus (IPT) and aurora is an interesting topic, and indeed EXCEED spent much time of observations.Internal-driven aurora, IPT responses to the auroras, periodicity of IPT brightness, and SW dependence of IPT activity will be presented.

  8. International workshop on Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; West, R. A.

    1988-01-01

    Many of the scientifically interesting phenomena that occur in the Jovian system are strongly time variable. Some are episodic (e.g., Io volcanism); some are periodic (wave transport in Jupiters atmosphere); and some are exceedingly complex (magnetosphere - Io - Torus-Auroral interactions) and possibly unstable. To investigate this class of phenomena utilizing Voyager data and, in the future, Galileo results, a coherent program of ground based and earth-orbital observations, and of theory that spans the time between the missions, is required. To stimulate and help define the basis of such a scientific program researchers organized an International Workshop on the subject with the intent of publishing the proceedings which would represent the state of knowledge in 1987.

  9. Radiation characteristics of quasi-periodic radio bursts in the Jovian high-latitude region

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Tsuchiya, Fuminori; Misawa, Hiroaki; Morioka, Akira; Nozawa, Hiromasa

    2008-12-01

    Ulysses had a "distant encounter" with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses' first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region ( L>30).

  10. Physics results from the National Spherical Torus Experiment

    SciTech Connect

    M.G. Bell

    2000-06-13

    The National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory is designed for studying toroidal plasma confinement at very low aspect-ratio, A=R/a = 0.85m/0.68m {approximately} 1.25, with cross-section elongation up to 2.2 and triangularity up to 0.5, for plasma currents up to 1 MA and vacuum toroidal magnetic fields up to 0.6 T on axis. Conducting plates are installed close to the plasma on the outboard side to stabilize kink modes. This should permit operation with toroidal-{beta} approaching 40%. The plasmas will be heated by up to 6 MW High-Harmonic Fast Waves (HHFW) at a frequency 30 MHz and by 5 MW of 80 keV deuterium Neutral Beam Injection. Inductive plasma startup can be supplemented by the process of Coaxial Helicity Injection (CHI).

  11. Studying the Jovian System with small telescopes

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; del Rio Gaztelurrutia, T.; Hueso, R.

    2013-10-01

    We describe a learning activity performed at the Aula Espazio Gela UPV/EHU in which students of the Master of Space Science and Technology study the Jovian System (Jupiter and satellites) and deduce some of its parameters using their own images obtained with telescopes ranging from 11 to 20 inch in diameter by means of the lucky-imaging technique.

  12. REVISITING JOVIAN-RESONANCE INDUCED CHONDRULE FORMATION

    SciTech Connect

    Nagasawa, M.; Tanaka, K. K.; Tanaka, H.; Nakamoto, T.; Miura, H.; Yamamoto, T.

    2014-10-10

    It is proposed that planetesimals perturbed by Jovian mean-motion resonances are the source of shock waves that form chondrules. It is considered that this shock-induced chondrule formation requires the velocity of the planetesimal relative to the gas disk to be on the order of ≳ 7 km s{sup –1} at 1 AU. In previous studies on planetesimal excitation, the effects of Jovian mean-motion resonance together with the gas drag were investigated, but the velocities obtained were at most 8 km s{sup –1} in the asteroid belt, which is insufficient to account for the ubiquitous existence of chondrules. In this paper, we reexamine the effect of Jovian resonances and take into account the secular resonance in the asteroid belt caused by the gravity of the gas disk. We find that the velocities relative to the gas disk of planetesimals a few hundred kilometers in size exceed 12 km s{sup –1}, and that this is achieved around the 3:1 mean-motion resonance. The heating region is restricted to a relatively narrowband between 1.5 AU and 3.5 AU. Our results suggest that chondrules were produced effectively in the asteroid region after Jovian formation. We also find that many planetesimals are scattered far beyond Neptune. Our findings can explain the presence of crystalline silicate in comets if the scattered planetesimals include silicate dust processed by shock heating.

  13. Spectra of the Jovian ring and Amalthea

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Becklin, E. E.; Jewitt, D. C.; Danielson, G. E.; Terrile, R. J.

    1981-01-01

    Measurements made between 0.887 and 2.4 microns demonstrate that the Jovian ring and Amalthea have similar reflection spectra. The spectra, in particular the ratio of the 0.9- to 2.2-micron reflectivities, are inconsistent with those expected from water, ammonia, or methane frosts, but are consistent with reflection from large rock bodies.

  14. PAMELA observational capabilities of Jovian electrons

    NASA Astrophysics Data System (ADS)

    di Felice, V.; Casolino, M.; de Simone, N.; Picozza, P.

    PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every ˜13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field. PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux.

  15. Raman scattering in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Cochran, W. D.; Trafton, L.; Macy, W., Jr.; Woodman, J. H.

    1981-01-01

    On December 8 and 9, 1976, the 1024 channel Reticon silicon photodiode array detector in the coude spectrograph of a 2.7 m telescope was used to obtain spectra of Jupiter and the moon. Three separate data sets were obtained, including one of the Jovian equatorial region, one of the Jovian north polar cap, and one of Mare Serenetatis on the moon. A correlation analysis was conducted. The autocorrelation function of the Jovian spectrum was calculated and the autocorrelation function of the lunar spectrum was subtracted from it. The analysis made it possible to detect Raman scattering by H2 in the atmosphere of Jupiter. The pure rotational H2 S(0) and S(1) lines were detected. The ratio of the relative number of Raman scattered photons in the S(0) and S(1) features indicate that the H2 in the Jovian atmosphere is in the equilibrium, rather than the normal state. Therefore some sort of nonradiative process is responsible for transitions between the ortho and para states of H2.

  16. Tether radiation in Juno-type and circular-equatorial Jovian orbits

    NASA Astrophysics Data System (ADS)

    Sanchez-Torres, A.; Sanmartin, J. R.

    2011-12-01

    Wave radiation by a conductor carrying a steady current in both a polar, highly eccentric, low perijove orbit, as in NASA's planned Juno mission, and an equatorial low Jovian orbit (LJO) mission below the intense radiation belts, is considered. Both missions will need electric power generation for scientific instruments and communication systems. Tethers generate power more efficiently than solar panels or radioisotope power systems (RPS). The radiation impedance is required to determine the current in the overall tether circuit. In a cold plasma model, radiation occurs mainly in the Alfvén and fast magnetosonic modes, exhibiting a large refraction index. The radiation impedance of insulated tethers is determined for both modes and either mission. Unlike the Earth ionospheric case, the low-density, highly magnetized Jovian plasma makes the electron gyrofrequency much larger than the plasma frequency; this substantially modifies the power spectrum for either mode by increasing the Alfvén velocity. Finally, an estimation of the radiation impedance of bare tethers is considered. In LJO, a spacecraft orbiting in a slow downward spiral under the radiation belts would allow determining magnetic field structure and atmospheric composition for understanding the formation, evolution, and structure of Jupiter. Additionally, if the cathodic contactor is switched off, a tether floats electrically, allowing e-beam emission that generate auroras. On/off switching produces bias/current pulses and signal emission, which might be used for Jovian plasma diagnostics.

  17. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Sharber, James (Technical Monitor)

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a

  18. On the Origin of System III Asymmetries in the Io Torus

    NASA Technical Reports Server (NTRS)

    Schneider, N. M.; Delamere, P. A.

    2006-01-01

    The Io plasma torus exhibits several intriguing asymmetries which offer insights to the processes that transport mass and energy through the system. While these asymmetries are increasingly well described observationally, most still lack physical explanations. One important asymmetry is fixed in the coordinate system corotating with Jupiter's magnetic field. Space-based and ground-based observations have shown that torus ions are hotter and more highly ionized around System III 20 deg. Our simulations show that this type of torus asymmetry can be caused by enhanced pickup of fresh ions from Io's neutral clouds near these longitudes. The enhancement is caused primarily by the tilt and offset of the torus relative to the neutral clouds. We will report on the model parameters required to match the observed asymmetries, and offer predictions which will allow a test of this hypothesis.

  19. Pamela observational capabilities of Jovian electrons component

    NASA Astrophysics Data System (ADS)

    di Felice, V.; PAMELA Collaboration

    PAMELA is a satellite-borne experiment that will be launched in the first half of 2006 It will make long duration measurements of cosmic radiation over an extended energy range 80Mev to 200 GeV Specifically PAMELA will measure the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved 80MeV -- 190 GeV and will search for antinuclei with unprecedented sensitivity Furthermore it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics The apparatus consists of a time of flight system a magnetic spectrometer an electromagnetic imaging calorimeter a shower tail catcher scintillator a neutron detector and an anticoincidence system In this work a study of the PAMELA capabilities to detect Jovian electrons is presented The Jovian magnetosphere is a powerful accelerator of electrons to several tens of MeV as observed at first by Pioneer 10 spacecraft 1973 The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions CIR Their flux at Earth is moreover modulated because every sim 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 MeV up to 130 MeV Moreover it will be possible to extract the Jovian component reaccelated at the solar wind termination shock above 130 MeV up to 2 GeV from the galactic flux

  20. Interpretation of the zebra pattern in the Jovian kilometric radiation

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Ya.; Shaposhnikov, V. E.; Zaitsev, V. V.

    2016-06-01

    The origin of a fine structure as quasi-harmonic parallel drifting stripes of enhanced brightness (zebra pattern) in the dynamic spectrum of Jovian kilometric radiation is discussed. A possible interpretation of the observed structure based on the effect of double plasma resonance (DPR) in the Jupiter magnetosphere is analyzed. It is shown that the observed features of the zebra pattern cannot be attributed to the DPR effect at electron cyclotron harmonics. The proposed scheme consists of excitation of ion cyclotron waves at the low hybrid frequency in the ion DPR regions and succeeding coalescence of these waves with a longitudinal wave at the upper hybrid frequency. The source parameters necessary for matching the expected and observed properties of the Jupiter zebra pattern are discussed.

  1. Performance of a 12-coil superconducting 'bumpy torus' magnet facility.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The NASA-Lewis 'bumpy torus' facility consists of 12 superconducting coils, each 19 cm ID and capable of 3.0 tesla on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas has been held for a period of more than sixty minutes without a coil normalcy.

  2. ULF waves in the Io torus: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Lin, Naiguo; Kellogg, P. J.; Macdowell, R. J.; Mei, Y.; Cornilleau-Wehrlin, N.; Canu, P.; De Villedary, C.; Rezeau, L.; Balogh, L.; Forsyth, R. J.

    1993-01-01

    Throughout the Io torus, Ulysses has observed intense ultralow frequency (ULF) wave activity in both electric and magnetic components. Such ULF waves have been previously suggested as the source of ion precipitation leading to Jovian aurorae. The peaks of the wave spectra are closely related to the ion cyclotron frequencies, which is evidence of the waves being ion cyclotron waves (ICWs). Analysis of the dispersion relation using a multicomponent density model shows that at high latitudes (approximately 30 deg), peak frequencies of the waves fall into L mode branches of guided or unguided ICWs. Near the equator, in addition to the ICWs below f(sub cO(2+)), there are strong signals at approximately 10 Hz which require an unexpectedly large energetic ion temperature anistropy to be explained by the excitation of either convective or nonconvective ion cyclotron instabilities. Their generation mechanism remains open for the future study. Evaluation of the Poynting vector and the dispersion relation analysis suggest that the waves near the equator had a small wave angle relative to the magnetic field, while those observed at high latitudes were more oblique. The polarization of the waves below f(sub cH(+)) is more random than that of the whistler mode waves, but left-hand-polarized components of the waves can still be seen. The intensity of the ICWs both near the equator and at high latitudes are strong enough to meet the requirement for producing strong pitch angle scattering of energetic ions.

  3. The Influence of The Galilean Satellites on Radio Emissions From The Jovian System

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Menietti, J. D.

    2000-01-01

    The Galilean satellites influence radio emissions from the Jovian system in a variety of ways. The best and most familiar example of these is the Io control of decametric radiation discovered in 1964 by Bigg. Voyager observations of broadband kilometric radiation revealed a low-latitude shadow zone cast by the Io torus at frequencies between a few tens of kHz and about 1 MHz. Voyager also discovered narrowband kilometric radio emissions emanating from the outer edge of the torus. In this paper we will discuss expansions in the suite of satellite influences based on new observations by Galileo. These include the discovery of Ganymede's magnetosphere and evidence of radio emissions generated via mode conversion from upper hybrid waves in the frequency range of about 20 - 100 kHz. There is evidence that Ganymede may control some of the hectometric or low-frequency decametric radio emissions based on occultation measurements and statistical studies of radio emission occurrence as a function of Ganymede phase. Direction-finding measurements in the vicinity of Io suggest that a portion of the hectometric emissions may be generated near the lo L-shell. A rotationally modulated attenuation band in the hectometric emission appears to be the result of scattering at or near the Io L-shell where the waves propagate nearly parallel to the magnetic field. There is even a tantalizing hint of a Europa connection to the source of narrowband kilometric radiation.

  4. Exploration of Jovian Magnetosphere and Trojan Asteroids by a Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Fujimoto, M.; Kasaba, Y.; Kawaguchi, J.; Kawakatsu, Y.; Mori, O.; Takashima, T.; Tsuda, Y.; Yano, H.; Jupiter Exploration Working Group

    2009-04-01

    Europa Jupiter System Mission (EJSM) is a proposed international mission to explore Jupiter, Jovian satellites and environment. EJSM consists of (1) The Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA. (4) The Europa lander is also studied by Roscosmos. Together with plasma instruments on board JEO and JGO, JMO will investigate the fast and huge rotating magnetosphere to clarify the energy procurement from Jovian rotation to the magnetosphere, to clarify the interaction between the solar wind the magnetosphere. JMO will clarify the characteristics of the strongest accelerator in the solar system. JMO will investigate the role of Io as a source of heavy ions in the magnetosphere. Proposed instruments on board JMO are magnetometers, low-energy plasma spectrometers, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, a dust detector, an ENA imager, and EUV spectrometer. JAXA is studying solar power sail for deep space explorations following the successful ion engine mission Hayabusa. This is not only solar sail (photon propulsion) but also include very efficient ion engines where electric power is produced solar panels within the sail. Currently we are studying a mission to Jupiter and one (or two) of Trojan asteroids, which are primitive bodies with information of the early solar system as well as raw solid materials of Jovian system. As the main spacecraft flies by Jupiter heading for an asteroid, it will deploy JMO spinner around Jupiter.

  5. A dawn to dusk electric field in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Ip, W. I.

    1983-01-01

    It is shown that if Io-injected plasma is lost via a planetary wind-fixed Birkeland current system may result. This is due to the fact that the azimuthal centrifugal current flows across a density gradient produced by the loss of plasma through the planetary wind in the tail. The divergent centrifugal current is connected to field-aligned Birkeland currents which flow into the ionosphere at dawn and out of it at dusk. The closure currents in the ionosphere require a dawn to dusk electric field which at the orbit of Io is estimated to have a strength of 0.2 mV/m. However, the values of crucial parameters are not well known and the field at Io's orbit may well be significantly larger. Independent estimates derived from the local time asymmetry of the torus UV emission indicate a field of 1.5 mV/m.

  6. Evidence for global electron transportation into the jovian inner magnetosphere.

    PubMed

    Yoshioka, K; Murakami, G; Yamazaki, A; Tsuchiya, F; Kimura, T; Kagitani, M; Sakanoi, T; Uemizu, K; Kasaba, Y; Yoshikawa, I; Fujimoto, M

    2014-09-26

    Jupiter's magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves.

  7. Dispersive Doppler measurement of the electron content of the torus of Io

    NASA Technical Reports Server (NTRS)

    Levy, G. S.; Green, D. W.; Royden, H. N.; Wood, G. E.; Tyler, G. L.

    1981-01-01

    As Voyager 1 made its swing-by of Io, it passed through and behind the satellite's plasma torus. The phase paths of the coherent 13 cm and 3.6-cm wavelength signals transmitted from the spacecraft were shortened differentially by the plasma, resulting in the observation of a dispersive Doppler signature in the signals received at the NASA/Jet Propulsion Laboratory (deep space network) stations. Ray path integration through three different models of the electron distribution of the torus of Io (Warwick et al. 1979; Birmingham et al. 1981; Bagenal et al., 1981) have been performed. The results of the integrations are compared with the dispersive Doppler data.

  8. Torus elements used in effective shock absorber

    NASA Technical Reports Server (NTRS)

    Cunningham, P.; Platus, D. L.

    1966-01-01

    Energy absorbing device forces torus elements to revolve annularly between two concentric tubes when a load is applied to one tube. Interference forces can be varied by using torus elements of different thicknesses. The device operates repeatedly in compression or tension, and under problems of large onset rate tolerance or structural overload.

  9. On dust emissions from the jovian system

    NASA Technical Reports Server (NTRS)

    Zook, H. A.; Gruen, E.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.

    1993-01-01

    As described by Gruen et al., the dust impact detector on the Ulysses spacecraft detected a totally unexpected series of dust streams in the outer solar system near the orbit of Jupiter. Five considerations lead us to believe that the dust streams emanate from the jovian system itself: the dust streams only occur within about 1 AU of the jovian system, with the strongest stream being the one closest to Jupiter (about 550 R(sub J) away); the direction from which they arrive is never far from the line-of-sight direction to Jupiter; the time period between streams is about 28 (+/- 3) days; the impact velocities are very high--mostly around 40 km/s; and we can think of no cometary, asteroidal, or interstellar source that could give rise to the above four phenomena (such streams have never before been detected).

  10. Polarisation ellipse orientation of Jovian decametric radiation

    NASA Astrophysics Data System (ADS)

    Lecacheux, Alain; Imai, Masafumi; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Konovalenko, Alexander; Brazhenko, Anatolii I.

    2016-04-01

    Unambiguous measurement of the orientation of the linearly polarized component of Jovian decametric radio emission is a long lasting question, still not solved. Indeed, the uncertainty on the (Faraday) rotation measure through the terrestrial ionosphere is of the same order of magnitude as the position angle to be measured. Simultaneous observations of Jupiter from distant ground based radio telescopes, - as those which are scheduled in 2015-2016 by using LWA1 (USA), URAN2 (Ukraine) and Nançay Decameter Array (France) -, may solve this ambiguity, since the local ionosphere effects can, in principle, be disentangled from common Jovian radiation properties. The measurement method, some first results and their theoretical implications are discussed in this talk.

  11. Forward and inverse modeling for jovian seismology

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason; Nettelmann, Nadine; Marley, Mark; Fortney, Jonathan

    2012-08-01

    Jupiter is expected to pulsate in a spectrum of acoustic modes and recent re-analysis of a spectroscopic time series has identified a regular pattern in the spacing of the frequencies (Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., Jacob, C. [2011]. Astron. Astrophys. 531, A104). This exciting result can provide constraints on gross jovian properties and warrants a more in-depth theoretical study of the seismic structure of Jupiter. With current instrumentation, such as the SYMPA instrument (Schmider, F.X. [2007]. Astron. Astrophys. 474, 1073-1080) used for the Gaulme et al. (Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., Jacob, C. [2011]. Astron. Astrophys. 531, A104) analysis, we assume that, at minimum, a set of global frequencies extending up to angular degree ℓ=25 could be observed. In order to identify which modes would best constraining models of Jupiter's interior and thus help motivate the next generation of observations, we explore the sensitivity of derived parameters to this mode set. Three different models of the jovian interior are computed and the theoretical pulsation spectrum from these models for ℓ⩽25 is obtained. We compute sensitivity kernels and perform linear inversions to infer details of the expected discontinuities in the profiles in the jovian interior. We find that the amplitude of the sound-speed jump of a few percent in the inner/outer envelope boundary seen in two of the applied models should be reasonably inferred with these particular modes. Near the core boundary where models predict large density discontinuities, the location of such features can be accurately measured, while their amplitudes have more uncertainty. These results suggest that this mode set would be sufficient to infer the radial location and strength of expected discontinuities in Jupiter's interior, and place strong constraints on the core size and mass. We encourage new observations to detect these jovian oscillations.

  12. Jovian Magnetospheric Interactions with Io, Amalthea, and the Planetary Rings: Current and Expected Results from the Galileo Orbiter Heavy Ion Counter

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    2002-05-01

    The energetic (keV to MeV) heavy ion population in the inner jovian magnetosphere, out to Io's orbit, originates mostly from acceleration of Io plasma torus ions and contributes to erosion of satellite surfaces and ring particles by sputtering. Photo- and plasma-ionization of iogenic neutrals, magnetospheric pickup of the resultant ions, and magnetospheric acceleration processes produce high fluxes of oxygen and sulfur ions at total energies above 40 MeV which are measured by the Heavy Ion Counter (HIC) instrument on the Galileo Orbiter. Directional measurements during the spacecraft's 20-second spin period allow determination of local anisotropy distributions with respect to magnetic pitch angles of magnetospheric ions and to absorption by satellite surfaces approached during close flybys. Numerical modeling of anisotropy data from these flybys allows limits to be set on the ion charge states and on models for the magnetic environments including possible presence of internal field sources. The Io phase of the Galileo satellite tour has concluded with successful HIC and magnetometer data return from five of seven flybys, including two passes (I31 and I32) over Io's poles. The absorption signatures from the polar passes are very different from the more equatorial ones (J0, I24, I27) and modeling is in progress to determine best-fit configurations of Io's global magnetic environment. Due to high electronic thresholds for the heavy ion measurements, HIC has been insensitive to magnetospheric electron and proton backgrounds during these flybys and is expected to return good data for the upcoming Amalthea flyby on Nov. 5, 2002. This assumes that spacecraft systems will survive the return to perijove (2.0 Rj) just outside Jupiter's main ring (1.8 Rj), first traversed by Pioneer 11 in Dec. 1974 and again by the Galileo Probe twenty-one years later. Detectors on both of these latter spacecraft resolved the cutoff of magnetospheric ion flux by interaction with the jovian

  13. Plasmadynamic hypervelocity dust injector for the National Spherical Torus Experiment

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui; Dorf, Leonid A.; Wurden, Glen A.

    2006-10-15

    The design and construction of a plasmadynamic device to accelerate dust to hypervelocities is presented. High speed dust will be used to measure magnetic field lines in the National Spherical Torus Experiment. The plasma gun produces a high density (n{sub e}{approx_equal}10{sup 18} cm{sup -3}) and low temperature (a few eV) deuterium plasma, ejected by JxB forces which provide drag on the dust particles in its path. The dust will be entrained by the plasma to velocities of 1-30 km/s, depending on the dust mass. Carbon dust particles will be used, with diameters from 1 to 50 {mu}m. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV (with an estimated discharge current of 200 kA), a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems.

  14. Alfvén modes in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Li, M.; Breizman, B. N.; Zheng, L. J.; Lin, L.; Ding, W. X.; Brower, D. L.

    2014-08-01

    This work presents a theoretical and computational analysis of core-localized energetic particle driven modes observed near the magnetic axis in the Madison Symmetric Torus [L. Lin, W. X. Ding, D. L. Brower et al., Phys. Plasmas 20, 030701 (2013)]. Using measured safety factor and plasma pressure profiles as input, the linear ideal MHD code Adaptive EiGenfunction Independent Solution (AEGIS) [L. J. Zheng and M. Kotschenreuther, J. Comput. Phys. 211, 748 (2006)] reveals Alfvénic modes close to the measured frequencies. The AEGIS results together with a reduced analytical model demonstrate that the modes are essentially "cylindrical" and dominated by a single poloidal component (m = 1). The modes are localized at the plasma core where the magnetic shear is weak and continuum damping is minimal. Detailed analysis establishes constraints on the safety factor and plasma pressure, under which two modes can exist simultaneously.

  15. Physics Basis for a Spherical Torus Power Plant

    SciTech Connect

    C.E. Kessel; J. Menard; S.C. Jardin; T.K. Mau; et al

    1999-11-01

    The spherical torus, or low-aspect-ratio tokamak, is considered as the basis for a fusion power plant. A special class of wall-stabilized high-beta high-bootstrap fraction low-aspect-ratio tokamak equilibrium are analyzed with respect to MHD stability, bootstrap current and external current drive, poloidal field system requirements, power and particle exhaust and plasma operating regime. Overall systems optimization leads to a choice of aspect ratio A = 1:6, plasma elongation kappa = 3:4, and triangularity delta = 0:64. The design value for the plasma toroidal beta is 50%, corresponding to beta N = 7:4, which is 10% below the ideal stability limit. The bootstrap fraction of 99% greatly alleviates the current drive requirements, which are met by tangential neutral beam injection. The design is such that 45% of the thermal power is radiated in the plasma by Bremsstrahlung and trace Krypton, with Neon in the scrapeoff layer radiating the remainder.

  16. Superradiance in a torus magnetosphere around a black hole

    PubMed

    van Putten MH

    1999-04-02

    The coalescence of a neutron star and a black hole in a binary system is believed to form a torus around a Kerr black hole. A similarly shaped magnetosphere then results from the remnant magnetic field of the neutron star. In the strong-field case, it contains a cavity for plasma waves located between the barrier of the gravitational potential and the surrounding torus. This cavity may be unstable to superradiance of electromagnetic waves. Superradiant amplification of such waves, initially excited by turbulence in the torus, should inflate into a bubble in a time as short as approximately 0.75 (1 percent/&cjs3539;epsilon&cjs3539;2)(M/7M middle dot in circle) seconds approximately 0.15 to 1.5 seconds, assuming an efficiency &cjs3539;epsilon&cjs3539;2 = 0.5 to 5 percent and a mass M = 7M middle dot in circle. These bubbles may burst and repeat, of possible relevance to intermittency in cosmological gamma-ray bursts. The model predicts gamma-ray bursts to be anticorrelated with their gravitational wave emissions.

  17. Two-dimensional MHD model of the Jovian magnetodisk

    NASA Astrophysics Data System (ADS)

    Kislov, R. A.; Malova, H. V.; Vasko, I. Y.

    2015-09-01

    A self-consistent stationary axially symmetric MHD model of the Jovian magnetodisk is constructed. This model is a generalization of the models of plane current sheets that have been proposed earlier in order to describe the structure of the current sheet in the magnetotail of the Earth [1, 2]. The model takes centrifugal force, which is induced by the corotation electric field, and the azimuthal magnetic field into account. The configurations of the magnetic field lines for the isothermic (plasma temperature assumed to be constant) and the isentropic (plasma entropy assumed to be constant) models of the magnetodisk are determined. The dependence of the thickness of the magnetodisk on the distance to Jupiter is obtained. The thickness of the magnetodisk and the magnetic field distribution in the isothermic and isentropic models are similar. The inclusion of a low background plasma pressure results in a considerable reduction in the thickness of the magnetodisk. This effect may be attributed to the fact that centrifugal force prevails over the pressure gradient at large distances from the planet. The mechanism of unipolar induction and the related large-scale current system are analyzed. The direct and return Birkeland currents are determined in the approximation of a weak azimuthal magnetic field. The modeling results agree with theoretical estimates from other studies and experimental data.

  18. Wormholes in chemical space connecting torus knot and torus link pi-electron density topologies.

    PubMed

    Rzepa, Henry S

    2009-03-07

    Möbius aromaticities can be considered as deriving from cyclic delocalized pi-electron densities rho(r)(pi) which have the topological form of either a two-component torus link or a single-component torus knot. These two topological forms are distinguished by their (non-zero) linking number L(k), which describes how many times the two components of a torus link cross each other or the single component of a torus knot crosses with itself. The special case of Hückel or benzenoid aromaticity is associated with a pi-electron density that takes the form of a two-component torus link for which the linking number is zero. A class of molecule has been identified which here is termed a Janus aromatic, and which bears the characteristics of both a two-component torus link and a single-component torus knot in the topology of the pi-electron density. This is achieved by the formation of one (or more) wormholes or throats in the pi-electron density connecting the two torus forms, which can impart a Janus-like dual personality to the aromaticity of the system. The impact of such wormholes on the overall pi-delocalized aromaticity of such molecules is approximately estimated using a NICS(rcp) index, and subdivides into two types; those where the forms of aromaticity associated with a torus link and a torus knot cooperate and those where they oppose.

  19. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Shaposhnikov, V. E.; Konovalenko, A. A.; Zakharenko, V. V.; Panchenko, M.; Dorovsky, V. V.; Brazhenko, A. I.; Rucker, H. O.; Vinogradov, V. V.; Melnik, V. N.

    2016-07-01

    We investigate the dynamic spectra of the Sun and jovian decametric radiation obtained by the authors with the radio telescopes UTR-2 and URAN-2 (Kharkov, Poltava, Ukraine). We focus on the similar structures that appear on the dynamic spectra of those objects: S-bursts, drifting pairs, absorption bursts and zebra patterns. Similarity in structures allows us to assume that the plasma processes in the solar corona and in the jovian magnetosphere might have similar properties. We analyze and compare the main parameters of those structures and describe briefly some mechanisms of their generation that have already discussed in publications. We selected the mechanisms which, in our opinion, most completely and consistently explain the properties of the structures under consideration.

  20. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2013-05-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δm˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  1. Fast Waves and Electron Current Drive in the Irvine Torus.

    NASA Astrophysics Data System (ADS)

    Platt, Robert Croft

    This work reports the results of experimental studies of the fast wave with frequencies near the mean gyro-frequency (omega ~ ~ (omega _{rm ci}omega_{ rm ce})^{1/2}) in magnetized, toroidal plasmas with comparison to theory. Experiments investigating fast wave dispersion and damping, and the use of unidirectional fast waves to drive steady-state electron currents were performed on the Irvine Torus. The wave was excited in the plasmas by a phased array antenna which allowed launching of uni - or bi-directional fast waves around the torus. Probe measurements of the angle of propagation of wave energy, radial wavelengths, and the direction and magnitude of radial wave phase velocities were found to be in good agreement with predictions from cold plasma theory. Measurements of fast wave damping showed the observed damping lengths to be anomalously short when compared to predictions for electron Landau damping, transit-time magnetic pumping, and collisional damping, but may be explained by effects due to fast wave scattering from drift wave density fluctuations. Steady-state electron currents were driven by uni-directional fast waves. Low power experiments (< 25W) generated up to 1.3 A of electron current with a peak efficiency of eta = INR _{rm o}/P ~eq 6 times 10^{-2}A/W (10 ^{13}cm^{-3 }) m. Up to 14% of the wave energy was converted to poloidal magnetic field energy. The maximum current observed was found to be in rough agreement with a prediction from quasi-linear theory. Electron currents generated by application of radio-frequency power applied to a loop coupler antenna designed to excite the fast wave were observed in the Princeton Large Torus.

  2. Physical Analysis of the Jovian Synchrotron Radio Emission

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  3. Cassini ENA Observations of an Asymmetric Europa Torus and Implications for JUICE

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Westlake, Joseph H.; Smith, Howard T.; mauk, Barry; Mitchell, Don

    2016-10-01

    From about December 2000 to January 2001 the Ion Neutral Camera (INCA) on board the Cassini spacecraft imaged Jupiter in Energetic Neutral Atoms (ENA) that are created when singly charged ions charge exchange with neutral gas atoms or molecules. The INCA observations were obtained from a distance of about 137-250 Jovian planetary radii (RJ) over an energy range from about 10 to 300 keV. Here, we present an analysis of the ENA images implying an asymmetric Europa neutral gas torus with indications of magnetospheric dynamics. The analysis uses images with a minimum integration time and background. A forward model using a parametric energetic ion model and a neutral gas model simulates ENA images through the instrument response function of INCA in order to determine the spatial distribution of the neutral gas. Implications for the ENA observations from the ESA JUICE Mission obtained by the Jovian Energetic Neutrals and Ions (JENI) Camera on the Particle Environment Package (PEP) suite will be discussed.

  4. Jovian chromophore characteristics from multispectral HST images

    NASA Astrophysics Data System (ADS)

    Strycker, Paul D.; Chanover, Nancy J.; Simon-Miller, Amy A.; Banfield, Don; Gierasch, Peter J.

    2011-10-01

    The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter's vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by ϖ0( λ), and we remotely observe the culmination of the radiative transfer as I/ F( λ). In this study, we employed a radiative transfer code to retrieve ϖ0( λ) for particles in Jupiter's tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All ϖ0( λ) curves were absorbing in the blue, and ϖ0( λ) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all ϖ0( λ) curves using an empirically derived functional form: ϖ0( λ) = 1 - A exp(- Bλ). The best-fit parameters for the mean ϖ0( λ) curve were A = 25.4 and B = 0.0149 for λ in units of nm. We performed a principal component analysis (PCA) on our ϖ0( λ) results and found that one or two independent chromophores were sufficient to produce the variations in ϖ0( λ). A PCA of I/ F( λ) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the ϖ0( λ) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the ϖ0( λ) PCA and I/ F( λ) PCA. We suggest that statistical analyses performed on I/ F( λ) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of I/ F( λ) to horizontal variations in the vertical aerosol distribution.

  5. Numerical simulation of baroclinic Jovian vortices

    NASA Technical Reports Server (NTRS)

    Achterberg, Richard K.; Ingersoll, Andrew P.

    1994-01-01

    We examine the evolution of baroclinic vortices in a time-dependent, nonlinear numerical model of a Jovian atmosphere. The model uses a normal-mode expansion in the vertical, using the barotropic and first two baroclinic modes. Results for the stability of baroclinic vortices on an f plane in the absence of a mean zonal flow are similar to results of Earth vortex models, although the presence of a fluid interior on the Jovian planets shifts the stability boundaries to smaller length scales. The presence of a barotropic mean zonal flow in the interior stabilizes vortices against instability and significantly modifies the finite amplitude form of baroclinic instabilities. The effect of a zonal flow on a form of barotropic instability produces periodic oscillations in the latitude and longitude of the vortex as observed at the level of the cloud tops. This instability may explain some, but not all, observations of longitudinal oscillations of vortices on the outer planets. Oscillations in aspect ratio and orientation of stable vortices in a zonal shear flow are observed in this baroclinic model, as in simpler two-dimensional models. Such oscillations are also observed in the atmospheres of Jupiter and Neptune. The meridional propagation and decay of vortices on a beta plane is inhibited by the presence of a mean zonal flow. The direction of propagation of a vortex relative to the mean zonal flow depends upon the sign of the meridional potential vorticity gradient; combined with observations of vortex drift rates, this may provide a constraint on model assumption for the flow in the deep interior of the Jovian planets.

  6. Millimeter-wave spectra of the Jovian planets

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.

  7. Physics Results from the National Spherical Torus Experiment

    SciTech Connect

    M.G. Bell for the NSTX Research Team

    2004-07-08

    The National Spherical Torus Experiment (NSTX) produces plasmas with aspect ratio A {triple_bond} R/a = 0.85m/0.68m {approx} 1.25, at plasma currents up to 1.5 MA with vacuum toroidal magnetic field up to 0.6 T on axis. The plasmas are heated by up to 6 MW of High-Harmonic Fast Waves (HHFW) at a frequency 30 MHz and by 7 MW of deuterium Neutral Beam Injection (NBI) at an energy up to 100 keV. Since January 2004, NSTX has been operating, routinely at toroidal fields up to 0.45 T, with a new central conductor bundle in the toroidal field coil.

  8. Electron temperatures in the Jovian ionosphere

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.; Chameides, W. L.; Chen, R. H.; Atreya, S. K.

    1976-01-01

    The daytime electron temperature profile of the Jovian ionosphere was calculated, taking into account the effects of thermal conduction and heat inflow from the plasmasphere. The photoelectron fluxes and electron heating rates were determined by using the two-stream approach of Banks and Nagy (1970) and Nagy and Banks (1970). The calculated electron temperatures were found to follow the neutral temperature up to an altitude slightly above the electron density peak, while at higher altitudes they were significantly enhanced above the assumed neutral temperature value.

  9. The origin of chondrules at jovian resonances

    PubMed

    Weidenschilling; Marzari; Hood

    1998-01-30

    Isotopic dating indicates that chondrules were produced a few million years after the solar nebula formed. This timing is incompatible with dynamical lifetimes of small particles in the nebula and short time scales for the formation of planetesimals. Temporal and dynamical constraints can be reconciled if chondrules were produced by heating of debris from disrupted first-generation planetesimals. Jovian resonances can excite planetesimal eccentricities enough to cause collisional disruption and melting of dust by bow shocks in the nebular gas. The ages of chondrules may indicate the times of Jupiter's formation and dissipation of gas from the asteroidal region.

  10. Acoustic propagation in a rigid torus

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    The acoustic propagation in a rigid torus is analyzed using a Green's function method. Three types of surface elements are developed; a flat quadrilateral element used in modeling polygonal cavities, a curved conical element appropriate for surfaces with one curvature, and a toroidal element developed for such doubly curved surfaces as the torus. Curved elements are necessary since the acoustic pressure is sensitive to slope discontinuities between consecutive surface elements especially near cavity resonances. The acoustic characteristics of the torus are compared to those of a bend of square cross section for a frequency range that includes the transverse acoustic resonance. Two equivalences between the different sections are tested; the first conserves curvature and cross-sectional dimension while the second matches transverse resonance and duct volume. The second equivalence accurately matches the acoustic characteristics of the torus up to the cutoff frequency corresponding to a mode with two circumferential waves.

  11. Multifolded torus chaotic attractors: Design and implementation

    NASA Astrophysics Data System (ADS)

    Yu, Simin; Lu, Jinhu; Chen, Guanrong

    2007-03-01

    This paper proposes a systematic methodology for creating multifolded torus chaotic attractors from a simple three-dimensional piecewise-linear system. Theoretical analysis shows that the multifolded torus chaotic attractors can be generated via alternative switchings between two basic linear systems. The theoretical design principle and the underlying dynamic mechanism are then further investigated by analyzing the emerging bifurcation and the stable and unstable subspaces of the two basic linear systems. A novel block circuit diagram is also designed for hardware implementation of 3-, 5-, 7-, 9-folded torus chaotic attractors via switching the corresponding switches. This is the first time a 9-folded torus chaotic attractor generated by an analog circuit has been verified experimentally. Furthermore, some recursive formulas of system parameters are rigorously derived, which is useful for improving hardware implementation.

  12. Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    DOE PAGES

    Nose, Masahito; Oimatsu, S.; Keika, K.; ...

    2015-02-19

    Here we study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ~ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L =more » 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L~3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ~1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.« less

  13. Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    SciTech Connect

    Nose, Masahito; Oimatsu, S.; Keika, K.; Kletzing, C. A.; Kurth, W. S.; De Pascuale, S.; Smith, C. W.; MacDowall, R. J.; Reeves, Geoffrey D.; Nakano, S.; Spence, H. E.; Larsen, Brian Arthur

    2015-02-19

    Here we study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ~ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L~3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ~1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.

  14. A theory of Jovian decameter radiation

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Sharma, R. R.; Papadopoulos, K.; Ben-Ari, M.; Eviatar, A.

    1983-01-01

    A theory of the Jovian decameter radiation is presented based on the assumed existence of beams of energetic electrons in the inner Jovian magnetosphere. Beam-like electron distributions are shown to be unstable to the growth of both upper hybrid and lower hybrid electrostatic waves. The upconversion of these waves to fast extraordinary mode electromagnetic radiation is calculated by using a fluid model. Two possibilities are considered. First, a random phase approximation is made which leads to a very conservative estimate of intensity that can be expected in decameter radiation. The alternative possibility is also considered, viz, that the upconversion process is coherent. A comparison of both processes suggests that an incoherent interaction may be adequate to account for the observed intensity of decametric radiation, except perhaps near the peak of the spectrum (8 MHz). The coherent process is intrinsically more efficient and can easily produce the observed intensity near 8 MHz if only 0.01% of the energy in the beam is converted to electrostatic energy.

  15. A theory of Jovian decameter radiation

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Sharma, R. R.; Ben-Ari, M.; Eviatar, A.; Papadopoulos, K.

    1983-02-01

    A theory of the Jovian decameter radiation is presented based on the assumed existence of beams of energetic electrons in the inner Jovian magnetosphere. Beam-like electron distributions are shown to be unstable to the growth of both upper hybrid and lower hybrid electrostatic waves. The upconversion of these waves to fast extraordinary mode electromagnetic radiation is calculated by using a fluid model. Two possibilities are considered. First, a random phase approximation is made which leads to a very conservative estimate of intensity that can be expected in decameter radiation. The alternative possibility is also considered, viz, that the upconversion process is coherent. A comparison of both processes suggests that an incoherent interaction may be adequate to account for the observed intensity of decametric radiation, except perhaps near the peak of the spectrum (8 MHz). The coherent process is intrinsically more efficient and can easily produce the observed intensity near 8 MHz if only 0.01% of the energy in the beam is converted to electrostatic energy.

  16. Paris to Hektor: A Concept for a Mission to the Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Gold, Robert E.; McNutt, Ralph L.; Napolillo, David H.; Schaefer, Edward D.; Tanzman, Jennifer R.; Fiehler, Douglas I.; Hartka, Theodore J.; Mehoke, Douglas S.; Ostdiek, Paul H.; Persons, David F.; Prockter, Louise M.; Vernon, Steven R.

    2007-01-01

    This paper presents an example of a new class of planetary exploration missions that is been enabled by the combination of the three technologies of advanced radioisotope power systems, electric propulsion, and expendable launch vehicles. These PARIS (Planetary Access with Radioisotope Ion-drive System) missions are optimized for rendezvous with outer solar system bodies in shallow gravity wells. They are low-thrust missions that are launched to a high C3 and use their electric propulsion systems to slow them to enable orbit insertion or landing on the target body. The PARIS spacecraft can be powered by traditional Radioisotope Thermoelectric Generators (RTGs), but will benefit greatly from the improved power-to-mass ratio of Stirling radioisotope generators (SRGs) that results from their high conversion efficiency. These New-Frontiers class missions can carry a significant science payload to the Jovian Trojan asteroids. The Trojans are very primitive bodies located near the Jovian L4 and L5 Lagrange points. The PARIS to Hektor mission can reach the asteroids in less than 5 years, orbit 624 Hektor, the largest of the Jovian Trojans, and go on to orbit at least one other nearby object. There are estimated to be more than 105 Jovian Trojans greater than 1 km in diameter. The PARIS to Hektor spacecraft has a candidate payload that includes wide-field and narrow-field cameras, a UV-Vis-IR spectrograph, gamma-ray and neutron spectrometers, and plasma and energetic particle spectrometers. The power system generates about 900 W and the launch mass is slightly less than 1000 kg. The trip time is 5 years if ``classic'' GPHS RTGs are used for power. Next generation Stirling radioisotope generators (SRGs), with a demonstrated thermal conversion efficiency of > 30% and an estimated specific power of > 8W/kg would reduce the travel time to about 4 years.

  17. Europa Jupiter System Mission (EJSM): Exploration Of The Jovian System And Its Icy Satellites

    NASA Astrophysics Data System (ADS)

    Grasset, Olivier; Pappalardo, R.; Greeley, R.; Blanc, M.; Dougherty, M.; Bunce, E.; Lebreton, J.; Prockter, L.; Senske, D.; EJSM Joint Science Definition Team

    2009-09-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) Determine whether the Jupiter system harbors habitable worlds and (2) Characterize the processes that are operating within the Jupiter system. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with orbiters developed by NASA and ESA (future contributions by JAXA and Russia are also possible). The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most important, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and "stand-alone” measurements.

  18. Engineering Overview of the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Neumeyer, C. Author

    1997-01-01

    The National Spherical Torus Experiment (NSTX) Project will provide a national facility for the study of plasma confinement, heating, and current drive in a low-aspect-ratio, spherical torus (ST) configuration. The ST configuration is an alternate confinement concept which is characterized by high beta, high elongation, high bootstrap fraction, and low toroidal magnetic field compared to conventional tokamaks. The NSTX is the next-step ST experiment following smaller experiments such as the Princeton Plasma Physics Laboratory CDX-U (Current Drive Experiment-Upgrade), the START (Small Tight Aspect Ratio Tokamak) at Culham Laboratory, UK, and the HIT (Helicity Injected Tokamak) at the University of Washington, and it is smaller in scale to the MAST (Meg-Amp Spherical Tokamak) machine now under construction at Culham.This paper provides a description of the NSTX mission and gives an overview of the main engineering features of the design of the machine and facility and discusses some of the key design solutions.

  19. Initial Physics Results From the National Spherical Torus Experiment

    SciTech Connect

    Kaye, S.M.; Bell, M.G.; Bell, R.E.; Bialek, J.

    2001-01-03

    The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a approximately equal to 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-bt and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA and with a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and bt =21% were produced.

  20. Physics results from the National Spherical Torus Experiment

    SciTech Connect

    Kaye, S.; Bell, M.

    2000-11-01

    The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a {approx} 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI), and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-{beta}{sub t} and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA, stored energies up to 55 kJ, {beta}{sub t} {approx} 10%, and a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and {beta}{sub t}=21% were produced.

  1. JUICE: a European mission to the Jovian system

    NASA Astrophysics Data System (ADS)

    Titov, Dmitrij; Dougherty, Michele K.; Wahlund, Jan-Erik; Barabash, Stas; Palumbo, Pasquale; Iess, Luciano; Piccioni, Giuseppe; Hussmann, Hauke; Langevin, Yves; Jaumann, Ralf; Altobelli, Nicolas; Fletcher, Leigh; Gurvits, Leonid; Gladstone, Randy; Erd, Christian; Hartogh, Paul; Bruzz, Lorenzo

    ) and a radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a particle package (PEP) including plasma and energetic particle sensors, neutral gas mass spectrometer, and two ENA imagers, a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The launch of the JUICE spacecraft is foreseen in June 2022. After the Jupiter orbit insertion in January 2030, the spacecraft will perform a 2.5 years tour in the Jovian system investigating the atmosphere and magnetosphere of the giant. Gravity assists at Callisto will shape the trajectory to perform two targeted Europa flybys aiming at raising the orbit inclination up to 30 degrees. More than 10 Callisto flybys will enable unique remote observations of the moon and in situ measurements in its vicinity. The mission will culminate in a dedicated 8 months orbital tour around Ganymede. The presentation will give a status of the JUICE mission in the end of the definition phase, its science scenario, observation strategy, and the payload.

  2. PINCHED PLASMA REACTOR

    DOEpatents

    Phillips, J.A.; Suydam, R.; Tuck, J.L.

    1961-07-01

    BS>A plasma confining and heating reactor is described which has the form of a torus with a B/sub 2/ producing winding on the outside of the torus and a helical winding of insulated overlapping tunns on the inside of the torus. The inner helical winding performs the double function of shielding the plasma from the vitreous container and generating a second B/sub z/ field in the opposite direction to the first B/sub z/ field after the pinch is established.

  3. Jovian magnetic models and the polarization angle of Jovian decimetric radiation

    NASA Astrophysics Data System (ADS)

    Birmingham, T. J.

    1981-04-01

    A comparative study of the direction of linear polarization of Jovian decimetric (synchrotron) radiation as measured astronomically and as determined from a model of the inner Jovian magnetosphere is discussed. It is noted that the model depicts the radiation as coming from rings of relativistic electrons in the Jovimagnetic equator at varying radial distances from the center of the planet. The equator is determined through each of two magnetic representations - the O4 model of Acuna and Ness (1976) and the P10-11 model of Smith et al. (1976) - derived from in situ Pioneer magnetometer measurements. Deviations from a (planar) dipole equator are found to occur at nearly all longitudes in both models; no evidence is found for a longitudinally localized magnetic anomaly.

  4. The Orbits of the Regular Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, R.

    2014-04-01

    At the conclusion of the Galileo Mission we produced ephemerides for the Galilean and four inner Jovian satellites, Amalthea, Thebe, Adrastea, and Metis [1]. The satellite orbits were determined by fitting a data set that included Earthbased astrometry through 2001 and data acquired by the Pioneer, Voyager, Ulysses, Cassini, and Galileo spacecraft. The spacecraft tracking data provided additional information on the Jovian system gravity parameters. In preparation for the Juno mission currently enroute to Jupiter, we have been developing new ephemerides from updated satellite orbits. As before, the orbits are determined through a comprehensive data fit which also redetermines the gravity parameters and spacecraft trajectories to be consistent with the revised satellite orbits. Our standard model for the orbits, both satellite and spacecraft, is a numerical integration of their equations of motion. We include the gravitational effects of the point mass mutual interactions of Jupiter, the Galilean satellites, and Amalthea (Thebe, Adrastea, and Metis are assumed to be massless), the effects of an oblate Jupiter, and perturbations from the Sun and planets. For our new orbits we also take into account the effects of tides raised on Jupiter by the satellites. Lainey et al. [4] have pointed out the importance of the tidal accelerations. The spacecraft are also affected by nongravitational forces, e.g., solar radiation pressure, trajectory correction maneuvers. These forces are discussed by several authors [2, 3, 5]. Our current data set is an expansion of that used previously. We have extended the Galilean satellite Earthbased astrometry back to 1891 and forward to 2013 and the inner satellite astrometry back to 1892 and forward to 2002. We added the Galilean satellite mutual events from 2003 and 2009, the Galilean satellite eclipse timings from 1878 to 2013, and the Earthbased radar ranges to Ganymede and Callisto measured in 1992. We also augmented our spacecraft data

  5. Jovian Chromophore Characteristics from Multispectral HST Images

    NASA Technical Reports Server (NTRS)

    Strycker, Paul D.; Chanover, Nancy J.; Simon-Miller, Amy A.; Banfield, Don; Gierasch, Peter J.

    2011-01-01

    The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter's vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by omega-bar (sub 0)(lambda), and we remotely observe the culmination of the radiative transfer as I/F(lambda). In this study, we employed a radiative transfer code to retrieve omega-bar (sub 0)(lambda) for particles in Jupiter's tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All omega-bar (sub 0)(lambda) curves were absorbing in the blue, and omega-bar (sub 0)(lambda) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all omega-bar (sub 0)(lambda) curves using an empirically derived functional form: omega-bar (sub 0)(lambda) = 1 A exp(-B lambda). The best-fit parameters for the mean omega-bar (sub 0)(lambda) curve were A = 25.4 and B = 0.0149 for lambda in units of nm. We performed a principal component analysis (PCA) on our omega-bar (sub 0)(lambda) results and found that one or two independent chromophores were sufficient to produce the variations in omega-bar (sub 0)(lambda). A PCA of I/F(lambda) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the omega-bar (sub 0)(lambda) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the omega-bar (sub 0)(lambda) PCA and I/F(lambda) PCA. We suggest that statistical analyses performed on I/ F(lambda) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of 1/ F

  6. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  7. Local Time Dependence of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.

    1999-01-01

    Galileo has been in orbit around Jupiter since December 1995. All the orbits are equatorial and elliptical, with apogees between 60 R(sub J) - 142 R(sub J) and perigees from 8 - 12 R(sub J). Since orbit injection, the plasma wave instrument (PWS) has been collecting data over specific intervals of each of the orbits at all local times and a range of different radial distances. We present the results of a survey of the data for the frequency range 300 kHz to 5.6 MHz, which includes the hectometric (HOM) and low-frequency decametric (DAM) emissions. The results indicate that both the HOM and DAM emission are more intense and occur more frequently in the midnight sector of Jupiter. This is in analogy to Earth and consistent with a magnetic substorm source for a portion of the radio emissions in this frequency range. Another peak in the power levels is observed on the Jovian dayside in the local time range 11 hrs < LT < 12 hrs. This peak does not have a terrestrial counterpart. We speculate that this dayside peak may be a result of sampling near perigee, but we cannot rule out the possibility that this is not the case.

  8. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  9. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  10. Jovian magnetospheric weathering of Europa's nonice surface material

    NASA Astrophysics Data System (ADS)

    Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank

    2016-10-01

    Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242

  11. Jovian Chromophore Characteristics from Multispectral HST Images

    NASA Astrophysics Data System (ADS)

    Strycker, Paul D.; Chanover, N. J.; Simon-Miller, A. A.; Banfield, D.; Gierasch, P. J.

    2010-10-01

    Characterizing the chromophores responsible for coloring the Jovian atmosphere remains a challenging problem. In this study, we used radiative transfer models to derive spectral shapes of chromophore particles at seven wavelengths in the visible regime from HST WFPC2 data. The observations we selected are from 15 May, 28 June, and 08 July 2008, covering a passage of Oval BA and the Great Red Spot, and include nine filters: F255W, F343N, F375N, F390N, F410M, F437N, F469N, F502N, and F673N. We employed a forward-modeling approach using an adding-doubling radiative transfer code developed to analyze Galileo SSI data (Simon-Miller et al. 2001, Icarus 154, 459). We adopted a model atmosphere with three aerosol layers: a stratospheric haze, upper tropospheric haze, and tropospheric cloud. We parametrized each aerosol layer by a base pressure, optical depth, particle radius, and particle color (a single scattering albedo at each wavelength). For filters F375N-F673N, we assumed the chromophore (non-white) component resides solely in the upper tropospheric haze. We present derived particle colors for Jovian locations with a large variation in observed color and a discussion of the number of independent chromophores necessary to produce the variations in derived particle color. This work was supported by NASA's Planetary Atmospheres Program through grant number NNX08AF53A. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #GO/DD11498.

  12. Current drive experiments in the Helicity Injected Torus - II

    NASA Astrophysics Data System (ADS)

    Hamp, W. T.; Redd, A. J.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.; Mueller, D.

    2006-10-01

    The HIT-II spherical torus (ST) device has demonstrated four toroidal plasma current drive configurations to form and sustain a tokamak: 1) inductive (ohmic) current drive, 2) coaxial helicity injection (CHI) current drive, 3) CHI initiated plasmas with ohmic sustainment (CHI+OH), and 4) ohmically initiated plasmas with CHI edge current drive (OH+ECD). CHI discharges with a sufficiently high ratio of injector current to toroidal field current form a closed flux core, and amplify the injector poloidal flux through magnetic reconnection. CHI+OH plasmas are more robust than unassisted ohmic discharges, with a wider operating space and more efficient use of the transformer Volt-seconds. Finally, edge CHI can enhance the plasma current of an ohmic discharge without significantly degrading the quality of the discharge. Results will be presented for each HIT-II operating regime, including empirical performance scalings, applicable parametric operating spaces, and requirements to produce these discharges. Thomson scattering measurements and EFIT simulations are used to evaluate confinement in several representative plasmas. Finally, we outline extensions to the HIT-II CHI studies that could be performed with NSTX, SUNIST, or other ST devices.

  13. A Collective Scattering System for Measuring Electron Gyroscale Fluctuations on the National Spherical Torus Experiment

    SciTech Connect

    Smith, D. R.; Mazzucato, E.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, Jr., N. C.

    2009-02-13

    A collective scattering system has been installed on the National Spherical Torus Experiment (NSTX) to measure electron gyroscale fluctuations in NSTX plasmas. Up to five distinct wavenumbers are measured simultaneously, and the large toroidal curvature of NSTX plasmas provides enhanced spatial localization. Steerable optics can position the scattering volume throughout the plasma from the magnetic axis to the outboard edge. Initial measurements indicate rich turbulent dynamics on the electron gyroscale. The system will be a valuable tool for investigating the connection between electron temperature gradient turbulence and electron thermal transport in NSTX plasmas.

  14. Divine-garrett model and Jovian synchrotron emission

    NASA Technical Reports Server (NTRS)

    Bolton, S.; Levin, S.; Gulkis, S.; Klein, M.; Sault, R.; Bhattacharya, B.; Thorne, R.; Dulk, G.; Leblanc, Y.

    2001-01-01

    Simulations of synchrotron emission from relativistic electrons trapped in Jupiter's magnetic field are used to evaluate the energetic electron distribution of the Divine-Garrett Jupiter radiation belt model at radial distances less than 4 Jovian radii.

  15. A magnetohydrodynamic model of the interaction of the solar wind with the Jovian magnetosphere and a magnetohydrodynamic simulation of the interaction of the solar wind with the out flowing plasma from a comet

    NASA Technical Reports Server (NTRS)

    Walker, R. J.

    1987-01-01

    A three-dimensional code for a rapidly rotating magnetosphere in which the MHD equations and the Maxwell equations were solved by using the two step Lax Endroff scheme, was developed. Preliminary results were presented at the Fall AGU meeting in San Francisco. The basic simulation model to study the solar wind interactions was adapted to other bodies in addition to Jupiter. Because of the recent comet flybys, a comet was chosen as the first model. The aim was to model the formation of the contact surface and the plasma tail. Later, work was begun on a three-dimensional model which would include the effects of mass loading. This model was designed to study the weak cometary bow shocks observed by the probes to comets Halley and Giacobini-Zinner. The model was successful in reproducing the position and shape of the bow shock which was determined by using observations from the Suisei spacecraft.

  16. Reactor assessments of advanced bumpy torus configurations

    SciTech Connect

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  17. Current sheet interaction and particle acceleration in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1990-01-01

    The thin, rapidly rotating current sheet in Jupiter's magnetodisk can energize heavy ions by hundreds of keV. If the magnetic field lines are azimuthally swept back, energetic ions undergoing nonadiabatic current sheet interactions will step radially outward and be centrifugally energized. Estimated energization times can be comparable to the Jovian rotation period. Nonadiabatic interactions with the rotating Jovian current sheet may be an important energization mechanism for heavy ions, but are not effective for energizing electrons or light ions like protons.

  18. Engineering design of the National Spherical Torus Experiment

    SciTech Connect

    C. Neumeyer; P. Heitzenroeder; J. Spitzer, J. Chrzanowski; et al

    2000-05-11

    NSTX is a proof-of-principle experiment aimed at exploring the physics of the ``spherical torus'' (ST) configuration, which is predicted to exhibit more efficient magnetic confinement than conventional large aspect ratio tokamaks, amongst other advantages. The low aspect ratio (R/a, typically 1.2--2 in ST designs compared to 4--5 in conventional tokamaks) decreases the available cross sectional area through the center of the torus for toroidal and poloidal field coil conductors, vacuum vessel wall, plasma facing components, etc., thus increasing the need to deploy all components within the so-called ``center stack'' in the most efficient manner possible. Several unique design features have been developed for the NSTX center stack, and careful engineering of this region of the machine, utilizing materials up to their engineering allowables, has been key to meeting the desired objectives. The design and construction of the machine has been accomplished in a rapid and cost effective manner thanks to the availability of extensive facilities, a strong experience base from the TFTR era, and good cooperation between institutions.

  19. Performance of a 12-coil superconducting bumpy torus magnet facility

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The bumpy torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 teslas on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas was held for a period of more than sixty minutes without a coil normalcy. The design field was 3.00 teslas. The steady-state liquid helium boil-off rate was 87 liters per hour of liquid helium without the coils charged. The coil array was stable when subjected to an impulsive loading, even with the magnets fully charged. When the coils were charged to a maximum magnetic field of 3.35 teslas, the system was driven normal without damage.

  20. Hopkins Ultraviolet Telescope determination of the Io torus electron temperature

    NASA Technical Reports Server (NTRS)

    Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.

    1994-01-01

    Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.

  1. Thermal Ion Flow Velocities: Signatures of the Enceladus Torus?

    NASA Astrophysics Data System (ADS)

    Wilson, R. J.; Tokar, R. L.; Henderson, M. G.

    2008-12-01

    For the middle/outer (> 5.5 RS) magnetosphere of Saturn, Cassini Plasma Spectrometer (CAPS) ion counting data provides thermal ion moments obtained assuming Maxwellian distributions for each ion species [Wilson et al., 2008]. However, in the inner magnetosphere (< 5.5 RS) within Saturn's extended neutral cloud and proposed Enceladus torus [Johnson et al., 2006], there is fresh ion production via charge exchange [Tokar et al., 2008], yielding a complex ion velocity distribution. In this study, a new technique is investigated to analyze the CAPS data in the inner region. The technique concentrates on finding the ion flow velocity using only the assumption that the ions are gryotropic. The available ion velocity space viewed by CAPS in a slice perpendicular to the magnetic field is translated within that plane to find the optimum flow velocity that yields gyrotropic ions. Near-equatorial trajectories of Cassini in the inner region are surveyed to determine both azimuthal and radial ion flow velocity. The azimuthal flow velocity profile with radial distance, a proxy for fresh ion production, is compared with models for both the Enceladus torus and extended neutral cloud. References: Wilson, R.J. et al., J. Geophys. Res. in press, doi:10.1029/2008ja013486 Johnson, R.E. et al., The Astrophysical Journal, pg L137, 20 June 2006. Tokar, R.L. et al, Geophys. Res. Letts., vol. 35, L14202, doi:10.1029/2008GL034749

  2. Studies for the Europagenic Plasma Source in Jupiter's Inner Magnetosphere during the Galileo Europa Mission

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.

  3. National Spherical Torus Experiment (NSTX) and Planned Research

    SciTech Connect

    Kaye, S.; Neumeyer, C.; Ono, M.; Peng, M.

    1999-11-13

    The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX [1,2] is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated inboard solenoid magnet. These properties of the ST plasma, if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in Fig.1. The device is designed to study plasmas with major radius up to 85 cm, minor radius up to 68 cm, elongation up to 2, with flexibility in forming double-null, single-null, and inboard limited plasmas. The nominal operation calls for a toroidal field of 0.3 T for 5 s at the major radius, and a plasma current at 1 MA with q {approximately} 10 at edge. It features a compact center stack containing the inner legs of the toroidal field coils, a full size solenoid capable of delivering 0.6 Wb induction, inboard vacuum vessel, and composite carbon tiles. The center stack can be replaced without disturbing the main device, diagnostics, and auxiliary systems. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall conditioning techniques are also planned.

  4. Magnetic surface topology in decaying plasma knots

    NASA Astrophysics Data System (ADS)

    Smiet, C. B.; Thompson, A.; Bouwmeester, P.; Bouwmeester, D.

    2017-02-01

    Torus-knot solitons have recently been formulated as solutions to the ideal incompressible magnetohydrodynamics (MHD) equations. We investigate numerically how these fields evolve in resistive, compressible, and viscous MHD. We find that certain decaying plasma torus knots exhibit magnetic surfaces that are topologically distinct from a torus. The evolution is predominantly determined by a persistent zero line in the field present when the poloidal winding number {n}{{p}}\

  5. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    SciTech Connect

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  6. Rotation lightcurves of small jovian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Coley, Daniel; Wasserman, Lawrence H.; Sieben, Jennifer

    2015-07-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We present new lightcurve information for 19 Trojans ≲ 30 km in diameter, more than doubling the number of objects in this size range for which some rotation information is known. The minimum densities for objects with complete lightcurves are estimated and are found to be comparable to those measured for cometary nuclei. A significant fraction (∼40%) of this observed small Trojan population rotates slowly (P > 24 h), with measured periods as long as 375 h (Warner, B.D., Stephens, R.D. [2011]. Minor Planet Bull. 38, 110-111). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size. Concerted observations of a large number of Trojans could establish the spin barrier (Warner, B.D., Harris, A.W., Pravec, P. [2009]. Icarus 202, 134-146), making it possible to estimate densities for objects near the critical period.

  7. Rotation Properties of Small Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David; Coley, Daniel R.; Warner, Brian D.; Rohl, Derrick

    2016-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right (we have no spectral analogs among meteorite samples) and as possible relics of Solar System formation. Asteroid lightcurves can give information about processes that have affected a group of asteroids; they can also give information about the density of the objects when enough lightcurves have been collected. We have been carrying out a survey of Trojan lightcurve properties for comparison with small asteroids and with comets. In a recent paper (French et al. 2015) we presented evidence that a significant number of Trojans have rotation periods greater than 24 hours. We will report our latest results and compare them with results of sparsely-sampled lightcurves from the Palomar Transient Factory (Waszczak et al. 2015). LF, RS, and DR were visiting astronomers at Cerro Tololo Interamerican Observatory, operated by AURA under contract with the NSF, and with the SMARTS Consortium at CTIO. This research was sponsored by NSF Planetary Astronomy grant 1212115.ReferencesFrench, L.M. et al. 2015. Icarus 254, pp. 1-17.Waszczak, A. et al. 2015. A.J. 150, Issue 3, I.D. 35.

  8. Albedos of Centaurs, Jovian Trojans and Hildas

    NASA Astrophysics Data System (ADS)

    Romanishin, William

    2017-01-01

    I present optical V band albedo distributions for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. I compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) the median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of statistical significance and (2) the median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups.

  9. Superfine Structure of Jovian Millisecond Radio Bursts

    NASA Astrophysics Data System (ADS)

    Rucker, H. O.; Litvinenko, G.; Taubenschuss, U.; Leitner, M.; Lecacheux, A.; Konovalenko, A.

    2004-05-01

    Jupiter decameter (DAM) radio emission mainly consists of wide-band radio storms with time scales in seconds (L-bursts) and milliseconds (S-bursts), the latter comprising a series of short pulses with duration of a few to tens of milliseconds, and strongly controlled by the satellite Io. First in-depth analysis of the subpulse structure was made by Carr and Reyes (1999) with the discovery of successive deep envelope modulations, with time resolution better than 30 microseconds, and during these subpulse periods the discovery of phase coherence. Recent observations by means of the newly developed waveform receiver (at present unsurpassed in spectral resolution) and connected to the decameter world-largest radio telescope UTR-2 (Kharkov) yielded waveform measurements of Jovian S-bursts which have been analyzed by the wavelet analysis method. Main outcome of the present investigation is the detection of clear signatures of microsecond modulations, providing evidence of a superfine burst structure with the following parameters: a) instantaneous frequency band of one separated microsecond pulse of 100 to 300 kHz, b) time duration of one separated micropulse of 6 to 15 microseconds, and c) time interval between closest subsequent microsecond pulses of 5 to 25 microseconds. The apparent frequency drift of a millisecond burst evidently results from sequentially decreasing frequencies of subsequent subpulses, each representing an island of phase coherent gyrating electron bunches.

  10. Chemistry and spectroscopy of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Owen, T.

    1976-01-01

    A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.

  11. Exploring Chemical Equilibrium in Hot Jovians

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan

    2016-01-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Yung 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime 0.1 to 1 bar. These results are compared to a variety of exoplanets(Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an up-dated thermodynamic library) is compared with the thermochemical model presented in Venotet al. (2012) for HD 209458b and HD 189733b. This same analysis is then applied to the cooler planet HD 97658b. Spectra are generated and we compare both models' outputs using the open source codetransit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. Thiswork was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  12. Design Features and Commissioning of the Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    J. Chung, K.; H. An, Y.; K. Jung, B.; Y. Lee, H.; C., Sung; S. Na, Y.; S. Hahm, T.; S. Hwang, Y.

    2013-03-01

    A new spherical torus called VEST (Versatile Experiment Spherical Torus) is designed, constructed and successfully commissioned at Seoul National University. A unique design feature of the VEST is two partial solenoid coils installed at both vertical ends of a center stack, which can provide sufficient magnetic fluxes to initiate tokamak plasmas while keeping a low aspect ratio configuration in the central region. According to initial double null merging start-up scenario using the partial solenoid coils, appropriate power supplies for driving a toroidal field coil, outer poloidal field coils, and the partial solenoid coils are fabricated and successfully commissioned. For reliable start-up, a pre-ionization system with two cost-effective homemade magnetron power supplies is also prepared. In addition, magnetic and spectroscopic diagnostics with appropriate data acquisition and control systems are well prepared for initial operation of the device. The VEST is ready for tokamak plasma operation by completing and commissioning most of the designed components.

  13. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    SciTech Connect

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S.; Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M.

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  14. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  15. First Observation Of ELM Pacing With Vertical Jogs In A Spherical Torus

    SciTech Connect

    Gerhardt, S P; Canik, J M; Maingi, R; Bell, R; Gates, d; Goldston, R; Hawryluk, R; Le Blanc, B P; Menard, J; Sontag, A C; Sabbagh, S

    2010-07-15

    Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies. __________________________________________________

  16. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus.

    PubMed

    Yang, J; Lee, J W; Jung, B K; Chung, K J; Hwang, Y S

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  17. Transient Transport Experiments in the CDX-U Spherical Torus

    SciTech Connect

    T. Munsat; P.C. Efthimion; B. Jones; R. Kaita; R. Majeski; D. Stutman; and G. Taylor

    2001-06-12

    Electron transport has been measured in the Current Drive Experiment-Upgrade (CDX-U) using two separate perturbative techniques. Gas modulation at the plasma edge was used to introduce cold-pulses which propagate towards the plasma center, providing time-of-flight information leading to a determination of chi(subscript e) as a function of radius. Sawteeth at the q=1 radius (r/a {approx} 0.15) induced heat-pulses which propagated outward towards the plasma edge, providing a complementary time-of-flight based chi(subscript e) profile measurement. This work represents the first localized measurement of chi(subscript e) in a spherical torus. It is found that chi(subscript e) = 1-2 meters squared per second in the plasma core (r/a < 1/3), increasing by an order of magnitude or more outside of this region. Furthermore, the chi(subscript e) profile exhibits a sharp transition near r/a = 1/3. Spectral and profile analyses of the soft X-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high chi(subscript e) region.

  18. Astronomical studies of the major planets, natural satellites and asteroids using the 2.24 m telescope

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1982-01-01

    Ground based detection of east-west asymmetries in the Jovian torus, three dimensional models of the plasma conditions in the Jovian torus, rotational variations in methane band images of Neptune, Io's rapid flickering, thermophysical models, the diameters and albedos of the satellites of Uranus from radiometric observations, the diameters of Pluto and Triton, standard stars are discussed.

  19. Revisiting the Inner Magnetospheric Oxygen Torus with DE 1 RIMS

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Goldstein, J.; Craven, P. D.; Comfort, R. H.

    2016-01-01

    Nearly 35 years ago direct observations of cold plasmaspheric ions found enhanced O(+), O(++), and even N(+) densities in the outer plasmasphere, in particular during storm recovery conditions. Enhancements were seen inside or just outside of the plasmapause at all magnetic local times. Whereas nominal O(+) concentrations were found to be 1% or less inside the plasmasphere, enhanced O(+) in the vicinity of the plasmapause was found to reach densities comparable to H(+). Enhanced ion outflow (including oxygen) from high latitudes has also become part of our picture of storm-time phenomena. More recently it has become apparent that high latitude outflow is a source of inner magnetospheric warm ions that convect into morning and afternoon local times, to form what we now call the warm plasma cloak. Low to middle latitude ionospheric outflow and high latitude outflow are thought to result from very different processes and can be expected to contribute differently as a function of conditions and locations to the dynamic processes of energy and particle transport in the inner magnetosphere. Given the apparent proximity of their delivery to the vicinity of the plasmapause during plasmaspheric refilling conditions it becomes worthwhile to question the origin of the oxygen torus and its role in this region. While the observations do not yet exist to settle this question, there are measurements that contribute to the discussion in the new emerging context of cold plasma in the inner magnetosphere. In this paper we present and discuss DE 1 RIMS derived ion densities and temperatures that contribute to answering these outstanding questions about the origin and dynamics of the oxygen torus.

  20. Role of Magnetic Field Gradient on the Beaming Cone Flattening of Io-Controlled Jovian Decameter Radiation

    NASA Astrophysics Data System (ADS)

    Galopeau, P. H. M.

    2015-12-01

    A recent study of the angular distribution of the Jovian decameter radiation occurrence probability, relatively to the local magnetic field B and its gradient Grad B in the source region, revealed that the radio emission is beamed in a hollow cone presenting a flattening in a certain direction. In the present work, we investigate some physical reasons for the existence of such a flattening in the beam geometry. The Jovian decameter radiation, like the other auroral radio emissions emanating from the magnetized planets in the solar system, is known to be produced by the cyclotron maser instability (CMI). This mechanism allows the direct amplification of the waves through a resonant coupling between the electron population of the plasma and the electromagnetic waves with right circular polarization of the X mode. In a medium with axial symmetry, i.e., where B and Grad B are parallel, the maximum amplification is obtained for a particular value of the emergence angle relatively to the local magnetic field B. We suppose that the plasma is constituted of a cold component which supports the wave propagation and an energetic component which takes part in the growth of the waves by supplying the CMI with free energy. The angle corresponding to the maximum amplification is not constant anymore when B and Grad B are not parallel, so that the emission cone does not have any axial symmetry and then presents a flattening in a privileged direction. The topology of the magnetic field models (O6, VIP4, VIT4, VIPAL) developed for describing the Jovian magnetospheric environment seems to indicate that such a geometry exists in the case of the Io-controlled Jovian decameter radiation.

  1. The Composition and Physical Structure of the Io Torus and Atmosphere

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa

    2004-01-01

    Generally speaking the goal of the research was to provide detailed spectral analysis of a Hopkins Ultraviolet Telescope EUV/FUV spectrum of the Io plasma torus. The specific research tasks outlined to achieve this goal were: Line identifications and brightnesses. Verify line identifications with independent data sets. Simple physical modeling to derive ne, ni, Te. Determine neutral source rates. Determine implications of minor species abundances for Io processes. Determine spatial structure from HUT data.

  2. Analogies between Jovian magnetodisk and heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Kislov, Roman; Khabarova, Olga; Malova, Helmi

    Recently due to the development of spatial missions the famous model by E. Parker [1] faced with some problems, such as the effect of magnetic flux excess and the existence of latitude component of magnetic field [2]. Thus the incomplete knowledge about large scale current system of heliospheric current sheet (HCS) motivated us to construct and investigate the self-consistent axisymmetric stationary MHD model of HCS and to compare it with earlier presented model of Jupiterian magnetodisk [3]. Both HCS and magnetodisk have inner plasma sources (i.e. the Sun in case of HCS and satellite Io in case of Jupiter); also they depend on the centrifugal force at small distances and on corotation processes. They both have strong radial component of current density, thin elongated structure etc. Thus in the frame of the MHD model we have calculated for HCS the parallel currents (analogous to Jovian Birkeland currents) and we obtained the latitude component of the magnetic field. The results of the model allowed us to explain the magnetic flux excess by the existence of the self-consistent HCS magnetic field. The decrease of radial magnetic field from the distance from the Sun as the power -5/3 obtained by numerical calculations is in good agreement with experimental data. Generally this model can be applied for the quiet period of the low solar activity when the perturbation of HCS structure named “ballerina skirt” does not play any role. References: 1. Parker E. N., Astrophys. J., V. 128, 664, pp. 664-676, 1958. 2. Khabarova O. V., Астрономический журнал, V. 90, №11, pp. 919-935, 2013. 3. Kislov R.A. et al., Bull. MSU, Physics and Astron., 2013

  3. The Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Rebut, Paul-Henri

    2017-02-01

    This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.

  4. Cassini and Wind Stereoscopic Observations of Jovian Non-Thermal Radio Emissions

    NASA Technical Reports Server (NTRS)

    Kaiser, Michael L.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Zarka, P.

    1999-01-01

    During two intervals in 1999, simultaneous observations of Jupiter's decametric and hectometric radio emissions were made with the Cassini radio and plasma wave instrument (RPWS) and the radio and plasma wave instrument (WAVES) on the Wind spacecraft in Earth orbit. During January, the Jovian longitude difference between the two spacecraft was about 5 deg, whereas for the August-September Earth flyby of Cassini, the angle ranged from 0 deg to about 2.5 deg. With these separations, the instantaneous widths of the walls of the hollow conical radiation beams of some of the decametric arcs were measured suggesting that the typical width is approximately 2 deg. The conical beams seem to move at Io's revolution rate rather than with Jupiter's rotation rate. Additionally, some of the non-arc emissions have very narrow and quite peculiar beamwidths.

  5. Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1984-01-01

    Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.

  6. Brown dwarfs and Jovian planets: A comparison

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Hubbard, W. B.; Marley, M.

    1986-01-01

    The recent detection of a subluminous companion to the M dwarf star VB8 has renewed interest in the characteristics of objects spanning the mass range from Jupiter to hydrogen burning stars. Atmospheric and interior models were constructed for objects in this mass regime, up to 30 Jupiter masses, with emphasis on understanding the relationship of brown dwarfs such as the VB8 companion to the better-studied Jovian planets. The atmospheric model solves the equation of radiative transfer assuming frequency dependent molecular opacity sources H2, He, H2O, CO, and CH4 which are important by virtue of the high cosmic abundance of their constituent atoms. Condensation of cosmochemically important materials, iron and silicates, in the atmosphere is possible, and the effect of such grains as opacity sources is assessed. The luminosity of the object is presumed due to degenerate cooling following a collapse phase and possibly deuterium burning and an interior model is constructed using as an outer boundary condition the temperature and pressure level at which the atmosphere becomes convective. The interior model is analogous to Jupiter, with a large liquid metallic-hydrogen core and a thinner molecular-hydrogen envelope. The oxidation state of carbon in the outer envelope of a brown dwarf of similar age to Jupiter is a function of the object's mass. This makes the wavelength dependence of the atmospheric opacity sensitive to the carbon to oxygen ratio, since the abundance of the primary source of molecular opacity, H2O, decreases as more oxygen is tied up as CO.

  7. TORUS: Radiation transport and hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Harries, Tim

    2014-04-01

    TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.

  8. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  9. Lieb-Thirring inequalities on the torus

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Laptev, A. A.

    2016-10-01

    We consider the Lieb-Thirring inequalities on the d-dimensional torus with arbitrary periods. In the space of functions with zero average with respect to the shortest coordinate we prove the Lieb-Thirring inequalities for the γ-moments of the negative eigenvalues with constants independent of ratio of the periods. Applications to the attractors of the damped Navier-Stokes system are given. Bibliography: 33 titles.

  10. Electron Bernstein Wave Experiment on the Madison Symmetric Torus

    SciTech Connect

    Anderson, J. K.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Seltzman, A. H.

    2009-11-26

    A system to heat electrons and possibly drive off-axis field-aligned current is under development on the Madison Symmetric Torus RFP. Staged experiments have reached an input power of 150 kW at 3.6G Hz and have produced a localized increase in SXR emission during rf injection. This measured emission is consistent with modeling in its location, energy spectrum and dependence on radial diffusion within the plasma. The emission is strongest in the region where ray tracing predicts deposition of the injected power. The multi-chord SXR camera used is sensitive to 4-7 keV photons. Enhanced emission in this energy range is consistent with Fokker-Plank modeling of EBW injection. The enhanced SXR emission vanishes quickly when radial diffusion in the plasma is high (as indicated by m = 0 magnetic activity); this is also consistent with Fokker-Plank modeling. An increase of boron emission (and presumably boron within the plasma) is also observed during EBW injection. This presents an alternative explanation to the enhanced SXR emission. Subsequent experiments with a different antenna at 100 kW input showed a small increase in SXR emission near 3 keV. A higher frequency experiment (5.5 GHz) with more input power available is currently under construction. Initial tests are centered on a circular waveguide launcher which requires only a 5 cm circular port in the vacuum vessel and has a target launch power of 400 kW.

  11. Reversed-field pinch studies in the Madison Symmetric Torus

    SciTech Connect

    Hokin, S.; Almagri, A.; Cekic, M.; Chapman, B.; Crocker, N.; Den Hartog, D.J.; Fiksel, G.; Henry, J.; Ji, H.; Prager, S.; Sarff, J.; Scime, E.; Shen, W.; Stoneking, M.; Watts, C.

    1993-04-03

    Studies of large-size (R = 1.5 m, a = 0.5 m), moderate current (I < 750 kA) reversed-field pinch (RFP) plasmas are carried out in the Madison Symmetric Torus in order to evaluate and improve RFP confinement, study general toroidal plasma MHD issues, determine the mechanism of the RFP dynamo, and measure fluctuation-induced transport and anomalous ion heating. MST confinement has been improved by reduction of magnetic field errors with correction coils in the primary circuit and reduction of impurities using boronization; high densities have been achieved with hydrogen pellet injection. MHD tearing modes with poloidal mode number m = 1 and toroidal mode numbers n = 5--7 are prevalent and nonlinearly couple to produce sudden relaxations akin to tokamak sawteeth. Edge fluctuation-induced transport has been measured with a variety of insertable probes. Ions exhibit anomalous heating, with increases of ion temperature occuring during strong MHD relaxation. The RFP dynamo has been studied with attention to various possible mechanisms, including motion-EMF drive, the Hall effect, and superthermal electrons. Initial profile control experiments have begun using insertable biased probes and plasma guns. The toroidal field capacity of MST will be upgraded during Summer, 1993 to allow low-current tokamak operation as well as improved RFP operation.

  12. On the proposed triggering of Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1985-01-01

    Calvert (1985) has proposed that a solar type III radio bursts can trigger the onset of certain Jovian hectometer wavelength emissions. It is shown, using the data obtained by the Voyager Planetary Radio Astronomy experiment, that this triggering hypothesis is not supported statistically. Furthermore, the causality of this proposed triggering is questioned because much of the Jovian hectometer emission is due to a quasi-continuous radio source rotating, in lighthouse fashion, with Jupiter. Thus, an observed 'onset' of emission is simply a function of the observer's position in local time around Jupiter.

  13. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  14. Outer satellite atmospheres: Their extended nature and planetary interactions. [sodium cloud of Io, hydrogen torus of Titan, and comet atmospheres

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1980-01-01

    Highly developed numerical models are applied to interpret extended-atmosphere data for the sodium cloud of Io and the hydrogen torus of Titan. Solar radiation pressure was identified and verified by model calculations as the mechanism to explain two different east-west asymmetries observed in the sodium cloud. Analysis of sodium line profile data, suggesting that a Jupiter magnetospheric wind may be responsible for high speed sodium atoms emitted from Io, and preliminary modeling of the interaction of the Io plasma torus and Io's sodium cloud are also reported. Models presented for Titan's hydrogen torus are consistent both with the recent Pioneer 11 measurements and earlier Earth-orbiting observations by the Copernicus satellite. Progress is reported on developing models for extended gas and dust atmospheres of comets.

  15. Modeling the Interaction of Europa with the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Combi, M. R.; Daldorff, L.; Gombosi, T. I.; Hansen, K. C.; Jia, X.; Kivelson, M. G.; Tenishev, V.

    2011-12-01

    The interaction of Jupiter's corotating magnetosphere with Europa's subsurface water ocean is responsible for the observed induced dipolar magnetic field. Furthermore the pick-up process of newly ionized particles from Europa's neutral atmosphere alters the magnetic and electric field topology around the moon. We use the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) of the Space Weather Modeling Framework (SWMF) to model the interaction of Europa with the Jovian magnetosphere. The BATS-R-US code solves the governing equations of magnetohydrodynamics (MHD) in a fully 3D adaptive mesh. In our approach we solve the equations for one single ion species, starting from the work by Kabin et al. (J. Geophys. Res., 104, A9, 19983-19992, 1999) accounting for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination. We continue by separately solving the electron pressure equation and furthermore extend the magnetic induction equation by the resistive and Hall terms. The resistive term accounts for the finite electron diffusivity and thus allows a more adequate description of the effect of magnetic diffusion due to collisions [Ledvina et al., Sp. Sci. Rev., 139:143-189, 2008]. For this purpose we use ion-electron and electron-neutral collision rates presented by Schunk and Nagy (Ionospheres, Cambridge University Press, 2000). The Hall term allows ions and electrons to move at different velocities while the magnetic field remains frozen to the electrons. The assumed charge neutrality of the ion-electron plasma is maintained everywhere at all times. The model is run at different phases of Jupiter's rotation reflecting the different locations of Europa with respect to the center of the plasma sheet and is compared to measurements obtained by the Galileo magnetometer [Kivelson et al., J. Geophys. Res., 104:4609-4626, 1999]. The resulting influence on the induced magnetic dipolar field is studied and compared to the results from the

  16. Indirect evidences for a gas/dust torus along the Phobos orbit

    SciTech Connect

    Dubinin, E.M.; Lundin, R.; Pissarenko, N.F.; Barabash, S.V.; Zakharov, A.V.; Koskinen, H.; Schwingenshuh, K.; Yeroshenko, Ye.G. Swedish Institute of Space Physics, Kiruna Finnish Meteorological Institute, Helsink Austrian Space Research Institute, Graz Institute of Terrestrial Magnetizm, ionosphere and Radio Wave Propagation, Moscow )

    1990-05-01

    Observations from the PHOBOS-2 space-craft of plasma and magnetic field effects in the solar wind near Mars suggest that a neutral gas (dust )torus/ring resides along the orbit of the Martian satellite Phobos. Magnetic cavities (strong decreases of the magnetic field strength) coincident with strong plasma density increases (up to a factor of ten) are observed during the first elliptic transition orbits when the spacecraft approached the Phobos orbits. The characteristic transverse dimension of the structures along the spacecraft orbit is in the range 100-1,000 km. Torus effects also have characteristics similar to the formation of a bow shock with increases of plasma density and ion temperature, and a characteristic deflection of the ion flow. This suggests a rather strong interaction between the solar wind plasma and plasma near Phobos orbit. The interaction appears quite similar to that of the solar wind with a comet. The outgassing of matter from Phobos (and Deimos) is also suggested by plasma observations in the wake/tail of the Martian satellites. Altogether, the authors observations imply that a neutral gas cloud - possibly also associated with a faint dust ring - exists along the Phobos orbit.

  17. The Ultraviolet Spectrum of the Jovian Dayglow

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Dalgarno, A.

    1995-01-01

    The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.

  18. The Advanced Jovian Asteroid Explorer (AJAX)

    NASA Astrophysics Data System (ADS)

    Murchie, S. L.; Adams, E. Y.; Mustard, J. F.; Rivkin, A.; Peplowski, P. N.

    2015-12-01

    The Advanced Jovian Asteroid eXplorer (AJAX) is the first mission to characterize the geology, morphology, geophysical properties, and chemistry of a Trojan asteroid. The Decadal Survey outlined a notional New Frontiers class Trojan asteroid rendezvous mission to conduct geological, elemental composition, mineralogical, and geophysical investigations. AJAX, our Discovery mission proposal, addresses the Decadal Survey science goals by using a focused payload and an innovative mission design. By responding to the most important questions about the Trojan asteroids, AJAX advances our understanding of all of the Solar System. Are these objects a remnant population of the local primordial material from which the outer planets and their satellites formed, or did they originate in the Kuiper Belt? Landed measurements of major and minor elements test hypotheses for the Trojan asteroid origin, revealing the outer Solar System dynamical history. How and when were prebiotic materials delivered to the terrestrial planets? AJAX's landed measurements include C and H concentrations, necessary to determine their inventories of volatiles and organic compounds, material delivered to the inner Solar System during the Late Heavy Bombardment. What chemical and geological processes shaped the small bodies that merged to form the planets in our Solar System? AJAX investigates the asteroid internal structure, geology, and regolith by using global high-resolution stereo and multispectral imaging, determining density and estimating interior porosity by measuring gravity, and measuring regolith mechanical properties by landing. AJAX's science phase starts with search for natural satellites and dust lifted by possible cometary activity and shape and pole position determination. AJAX descends to lower altitudes for global mapping, and conducts a low flyover for high-resolution surface characterization and measurement of hydrogen abundance. Finally, it deploys a small landed package, which

  19. Symmetry groups associated with tilings on a flat torus.

    PubMed

    Loyola, Mark L; De Las Peñas, Ma Louise Antonette N; Estrada, Grace M; Santoso, Eko Budi

    2015-01-01

    This work investigates symmetry and color symmetry properties of Kepler, Heesch and Laves tilings embedded on a flat torus and their geometric realizations as tilings on a round torus in Euclidean 3-space. The symmetry group of the tiling on the round torus is determined by analyzing relevant symmetries of the planar tiling that are transformed to axial symmetries of the three-dimensional tiling. The focus on studying tilings on a round torus is motivated by applications in the geometric modeling of nanotori and the determination of their symmetry groups.

  20. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  1. Jovian Proton and Heavy Ion Models for Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Garrett, H. B.; Evans, R. W.; Jun, I.; Kim, W.

    2015-12-01

    This presentation will review the results of the latest modeling at the Jet Propulsion Laboratory of the high energy proton and ion environments at Jupiter. The existing models of the proton and ion environments at Jupiter have been revised and extended from the original 12 jovian radii out to 50 jovian radii using the latest Galileo data. In addition to the physical significance of these particle populations, the new models will be important in the evaluation and design of solar arrays at Jupiter as they can affect the radiation damage to the solar array cells and cover glass. The new models represent an important update to the tools currently being used to study the effects of the jovian environment on spacecraft. These models (part of the GIRE family of electron and proton models) are currently used worldwide to describe that jovian environment and are the main tools used by NASA to determine the effects of this environment on spacecraft systems and instruments. The update to be presented is the first significant revision (extending the proton and ion models from 12 Rj to 50 Rj) to the GIRE proton environment since 1983 and fills an important gap in our understanding.

  2. Analysis of Jovian decamteric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Arias, T. A.; Garnavich, P. N.; Hammerschlag, R.

    1986-01-01

    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA).

  3. Near-Infrared Spectroscopy of Himalia An Irregular Jovian Satellite

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Baines, K.; Bellucci, G.; Bibring, J.-P.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.; Cruikshank, D.

    2002-01-01

    Spectra of the irregular Jovian satellite Himalia were obtained with the Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini during the Jupiter Flyby on December 18-19, 2000. These are the first spectral data of an irregular satellite beyond 2.5 microns. Additional information is contained in the original extended abstract.

  4. Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.

    2001-01-01

    The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.

  5. Transport theory for potato orbits in an axisymmetric torus with finite toroidal flow speed

    SciTech Connect

    Shaing, K. C.; Peng, Yueng Kay Martin

    2004-01-01

    Transport theory for potato orbits in the region near the magnetic axis in an axisymmetric torus such as tokamaks and spherical tori is extended to the situation where the toroidal flow speed is of the order of the sonic speed as observed in National Spherical Torus Experiment [E. J. Synakowski, M. G. Bell, R. E. Bell et al., Nucl. Fusion 43, 1653 (2003)]. It is found that transport fluxes such as ion radial heat flux, and bootstrap current density are modified by a factor of the order of the square of the toroidal Mach number. The consequences of the orbit squeezing are also presented. The theory is developed for parabolic (in radius r) plasma profiles. A method to apply the results of the theory for the transport modeling is discussed.

  6. Ion heating during magnetic relaxation in the helicity injected torus-II experiment

    SciTech Connect

    O'Neill, R.G.; Redd, A.J.; Hamp, W.T.; Smith, R.J.; Jarboe, T.R.

    2005-12-15

    Ion doppler spectroscopy (IDS) is applied to the helicity injected torus (HIT-II) spherical torus to measure impurity ion temperature and flows. [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] The IDS instrument employs a 16-channel photomultiplier and can track temperature and velocity continuously through a discharge. Data for the coaxial helicity injection (CHI), transformer, and combined current drive configurations are presented. Ion temperatures for transformer-driven discharges are typically equal to or somewhat lower than electron temperatures measured by Thomson scattering. Internal reconnection events in transformer-driven discharges cause rapid ion heating. The CHI discharges exhibit anomalously high ion temperatures >250 eV, which are an order of magnitude higher than Thomson measurements, indicating ion heating through magnetic relaxation. The CHI discharges that exhibit current and poloidal flux buildup after bubble burst show sustained ion heating during current drive.

  7. Numerical study of the Columbia high-beta device: Torus-II

    SciTech Connect

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  8. Relationship between Jovian Hectometric Attenuation Lanes And Io Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Spencer, J. R.; Stansberry, J. A.

    2001-01-01

    Within the Galileo plasma wave instrument data a narrow (in frequency) attenuation band is seen in the hectometric (HOM) emission that varies in frequency with system III longitude. This attenuation lane is believed to be the result of near-grazing incidence or coherent scattering of radio emission near the outer edge of the Io torus, i.e., when the ray path is nearly tangent to an L shell containing the Io flux tube. Such a process should, therefore, be enhanced when the Io volcanic activity is increased and the Io flux tube has enhanced density. We have performed a systematic study of the existing Galileo radio emission data in an effort to determine the phenomenology and frequency of occurrence of the attenuation lanes and the association, if any, with published volcanic activity of Io. Our results indicate that the attenuation lanes are present almost all of the time but are enhanced on occasion. The best examples of attenuation lanes occur when Galileo is within approximately 65 R(sub J) of Jupiter and thus are probably more apparent because of the increased signal-to-noise ratio of the radio receivers. The lack of continuous monitoring of Io activity and the lack of known activity on the anti-Earthward side of Io are problematic and make detailed correlation with radio emission very difficult at this time. Nevertheless, if the data are displayed for periods when the spacecraft is within 65 R(sub J) (i.e., for each perijove pass), then the highest-contrast lanes occur on most passes when the Io volcanic activity is also high for that pass. These results support our current understanding of attenuation lane formation and suggest that future efforts can be made to better understand the interaction of HOM emission with the Io flux tube.

  9. WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY

    SciTech Connect

    Grav, T.; Mainzer, A. K.; Bauer, J. M.; Masiero, J. R.; Nugent, C. R.

    2012-11-01

    We present updated/new thermal model fits for 478 Jovian Trojan asteroids observed with the Wide-field Infrared Survey Explorer (WISE). Using the fact that the two shortest bands used by WISE, centered on 3.4 and 4.6 {mu}m, are dominated by reflected light, we derive albedos of a significant fraction of these objects in these bands. While the visible albedos of both the C-, P-, and D-type asteroids are strikingly similar, the WISE data reveal that the albedo at 3.4 {mu}m is different between C-/P- and D-types. The albedo at 3.4 {mu}m can thus be used to classify the objects, with C-/P-types having values less than 10% and D-types have values larger than 10%. Classifying all objects larger than 50 km shows that the D-type objects dominate both the leading cloud (L {sub 4}), with a fraction of 84%, and trailing cloud (L {sub 5}), with a fraction of 71%-80%. The two clouds thus have very similar taxonomic distribution for these large objects, but the leading cloud has a larger number of these large objects, L {sub 4}/L {sub 5} = 1.34. The taxonomic distribution of the Jovian Trojans is found to be different from that of the large Hildas, which is dominated by C- and P-type objects. At smaller sizes, the fraction of D-type Hildas starts increasing, showing more similarities with the Jovian Trojans. If this similarity is confirmed through deeper surveys, it could hold important clues to the formation and evolution of the two populations. The Jovian Trojans does have similar taxonomic distribution to that of the Jovian irregular satellites, but lacks the ultra red surfaces found among the Saturnian irregular satellites and Centaur population.

  10. Strike Point Control for the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kolemen, E.; Gates, D. A.; Rowley, C. W.; Kasdin, N. J.; Kallman, J.; Gerhardt, S.; Soukhanovskii, V.; Mueller, D.

    2010-07-09

    This paper presents the first control algorithm for the inner and outer strike point position for a Spherical Torus (ST) fusion experiment and the performance analysis of the controller. A liquid lithium divertor (LLD) will be installed on NSTX which is believed to provide better pumping than lithium coatings on carbon PFCs. The shape of the plasma dictates the pumping rate of the lithium by channeling the plasma to LLD, where strike point location is the most important shape parameter. Simulations show that the density reduction depends on the proximity of strike point to LLD. Experiments were performed to study the dynamics of the strike point, design a new controller to change the location of the strike point to desired location and stabilize it. The most effective PF coils in changing inner and outer strike points were identified using equilibrium code. The PF coil inputs were changed in a step fashion between various set points and the step response of the strike point position was obtained. From the analysis of the step responses, PID controllers for the strike points were obtained and the controller was tuned experimentally for better performance. The strike controller was extended to include the outer-strike point on the inner plate to accommodate the desired low outer-strike points for the experiment with the aim of achieving "snowflake" divertor configuration in NSTX.

  11. Design of the new magnetic sensors for Joint European Torus

    SciTech Connect

    Coccorese, V.; Albanese, R.; Altmann, H.; Cramp, S.; Edlington, T.; Fullard, K.; Gerasimov, S.; Huntley, S.; Lam, N.; Loving, A.; Riccardo, V.; Sartori, F.; Marren, C.; McCarron, E.; Sowden, C.; Tidmarsh, J.; Basso, F.; Cenedese, A.; Chitarin, G.; DegliAgostini, F.

    2004-10-01

    A new magnetic diagnostics system has been designed for the 2005 Joint European Torus (JET) experimental campaigns onward. The new system, which adds to the existing sensors, aims to improve the JET safety, reliability, and performance, with respect to: (i) equilibrium reconstruction; (ii) plasma shape control; (iii) coil failures; (iv) VDEs; (v) iron modeling; and (vi) magnetohydrodynamics poloidal mode analysis. The system consists of in-vessel and ex-vessel sensors. The former are a set of 38 coil pairs (normal and tangential), located as near as possible to the plasma. Coils are generally grouped in rails, in order to ease remote handling in-vessel installation. The system includes: (i) two outer poloidal limiter arrays (2x7 coil pairs); (ii) two divertor region arrays (2x7 coil pairs); and (iii) two top coil arrays (2x5 coil pairs). Ex-vessel sensors, including discrete coils, Hall probes, and flux loops (26 in total) will be installed on the iron limbs, in order to provide experimental data for the treatment of iron in equilibrium codes. The design is accompanied by a software analysis, aiming to predict the expected improvement.

  12. Electron Bernstein Wave Research on the National Spherical Torus Experiment

    SciTech Connect

    G. Taylor; A. Bers; T.S. Bigelow; M.D. Carter; J.B. Caughman; J. Decker; S. Diem; P.C. Efthimion; N.M. Ershov; E. Fredd; R.W. Harvey; J. Hosea; F. Jaeger; J. Preinhaelter; A.K. Ram; D.A. Rasmussen; A.P. Smirnov; J.B. Wilgen; J.R. Wilson

    2005-04-21

    Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining noninductive high-beta National Spherical Torus Experiment (NSTX) plasmas. Numerical modeling results predict that the {approx}100 kA of off-axis current needed to stabilize a solenoid-free high-beta NSTX plasma could be generated via Ohkawa current drive with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in current-drive efficiency with 4 MW of EBW power. Recent dual-polarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and current-drive physics at high radio-frequency power densities.

  13. Nonlocal neoclassical transport in tokamak and spherical torus experiments

    SciTech Connect

    Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.

    2006-08-15

    Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global {delta}f particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge.

  14. Laser induced breakdown spectroscopy application in joint European torus

    NASA Astrophysics Data System (ADS)

    Semerok, A.; L'Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C.

    2016-09-01

    The results on the first successful application of Laser Induced Breakdown Spectroscopy (LIBS) for remote in situ diagnostics of plasma facing components (a deposited layer on a divertor tile) in Joint European Torus (JET) are presented. The studies were performed with an available JET EDGE LIDAR laser system. For in-depth analysis of deposited layers on JET divertor tiles, a number of laser shots were applied onto the same divertor place without laser beam displacement. The spectral lines of D, CII and impurity elements (CrI, BeII, …) were identified in a wide spectral range (400-670 nm). With the increase in a number of laser shots applied onto the same divertor place, we observed consecutive changes in spectral line intensities of deuterium, carbon, and impurities with the appearance of spectral lines of tungsten substrate (WI). In-depth analysis of deposited layers on JET divertor tiles was made on the basis of the spectral line behaviour in reference to the applied laser shots. The possibility of surface cartography with laser beam displacement on the tile surface was demonstrated as well. Based on the results obtained, we may conclude that LIBS method is applicable for in situ remote analysis of deposited layers of JET plasma facing components.

  15. Design of the new magnetic sensors for Joint European Torus

    NASA Astrophysics Data System (ADS)

    Coccorese, V.; Albanese, R.; Altmann, H.; Cramp, S.; Edlington, T.; Fullard, K.; Gerasimov, S.; Huntley, S.; Lam, N.; Loving, A.; Riccardo, V.; Sartori, F.; Marren, C.; McCarron, E.; Sowden, C.; Tidmarsh, J.; Basso, F.; Cenedese, A.; Chitarin, G.; DegliAgostini, F.; Grando, L.; Marcuzzi, D.; Peruzzo, S.; Pomaro, N.; Solano, E. R.

    2004-10-01

    A new magnetic diagnostics system has been designed for the 2005 Joint European Torus (JET) experimental campaigns onward. The new system, which adds to the existing sensors, aims to improve the JET safety, reliability, and performance, with respect to: (i) equilibrium reconstruction; (ii) plasma shape control; (iii) coil failures; (iv) VDEs; (v) iron modeling; and (vi) magnetohydrodynamics poloidal mode analysis. The system consists of in-vessel and ex-vessel sensors. The former are a set of 38 coil pairs (normal and tangential), located as near as possible to the plasma. Coils are generally grouped in rails, in order to ease remote handling in-vessel installation. The system includes: (i) two outer poloidal limiter arrays (2×7 coil pairs); (ii) two divertor region arrays (2×7 coil pairs); and (iii) two top coil arrays (2×5 coil pairs). Ex-vessel sensors, including discrete coils, Hall probes, and flux loops (26 in total) will be installed on the iron limbs, in order to provide experimental data for the treatment of iron in equilibrium codes. The design is accompanied by a software analysis, aiming to predict the expected improvement.

  16. Er:YAG Laser: A New Technical Approach to Remove Torus Palatinus and Torus Mandibularis

    PubMed Central

    Rocca, J. P.; Raybaud, H.; Merigo, E.; Vescovi, P.; Fornaini, C.

    2012-01-01

    Objective. The aim of this study was to assess the ability of Er:YAG laser to remove by excision torus mandibularis and to smooth torus palatinus exostosis. Materials and Methods. Torus mandibularis (TM) and torus palatinus (TP) were surgically eliminated via the Er:YAG laser using the following parameters: TM: output power ranging from 500 to 1000 mJ, frequency from 20 to 30 Hz, sapphire tips (diameter 0.8 mm), air-water spray (ratio 5/5), pulse duration 150 μsec, fluence ranging from 99592 J/cm2 to 199044,586 J/cm2. TP: a peeling technique was used to eliminate TP, as excision by slicing being impossible here. Results. TM: excision was obtained after 12730 pulses. TP: smoothing technique took more time compared with excision. Once peeling was considered to be accomplished, the use of a surgical rasp was necessary to eliminate bone spicules that could delay the wound to heal in good conditions. Conclusion. Er:YAG excision (TM) or Er:YAG peeling (TP) are safe clinical techniques easy to practice even if the time required for excision or surface smoothing is more than the time required with bony burs and high speed instruments. PMID:22792500

  17. Near-infrared brightness of the Galilean satellites eclipsed in Jovian shadow: A new technique to investigate Jovian upper atmosphere

    SciTech Connect

    Tsumura, K.; Arimatsu, K.; Matsuura, S.; Shirahata, M.; Wada, T.; Egami, E.; Hayano, Y.; Minowa, Y.; Honda, C.; Kimura, J.; Kuramoto, K.; Takahashi, Y.; Nakajima, K.; Nakamoto, T.; Surace, J.

    2014-07-10

    Based on observations from the Hubble Space Telescope and the Subaru Telescope, we have discovered that Europa, Ganymede, and Callisto are bright around 1.5 μm even when not directly lit by sunlight. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was 10{sup –6}-10{sup –7} of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 μm, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 μm by the Spitzer Space Telescope, but it was not detected, suggesting a significant wavelength dependence. It is still unknown why they are luminous even when in the Jovian shadow, but forward-scattered sunlight by hazes in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us with a new technique to investigate the Jovian atmospheric composition. Investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.

  18. Three-dimensional ray tracing of the Jovian magnetosphere in the low-frequency range

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Green, J. L.; Gulkis, S.; Six, F.

    1984-03-01

    Three-dimensional ray tracing of the Jovian DAM emission has been performed utilizing the O-4 magnetic field model (Acuna and Ness, 1979) and a realistic plasma model. Minimal assumptions about the emission mechanism have been made that include radiation in the right-hand extraordinary mode, propagating nearly perpendicular to the field line at source points located just above the RX cutoff frequency along Io flux tubes. Ray tracing has been performed in the frequency range from 2-35 MHz from successive Io flux tubes separated by ten degrees of central meridian longitude for a full circumference of northern hemisphere sources. The results show unusual complexity in model arc spectra that is displayed in a constant Io phase format with many similarities to the Voyager PRA data. The results suggest much of the variation in observed DAM spectral features is a result of propagation effects rather than emission process differences.

  19. Three-dimensional ray tracing of the Jovian magnetosphere in the low-frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Green, J. L.; Gulkis, S.; Six, F.

    1984-01-01

    Three-dimensional ray tracing of the Jovian DAM emission has been performed utilizing the O-4 magnetic field model (Acuna and Ness, 1979) and a realistic plasma model. Minimal assumptions about the emission mechanism have been made that include radiation in the right-hand extraordinary mode, propagating nearly perpendicular to the field line at source points located just above the RX cutoff frequency along Io flux tubes. Ray tracing has been performed in the frequency range from 2-35 MHz from successive Io flux tubes separated by ten degrees of central meridian longitude for a full circumference of northern hemisphere sources. The results show unusual complexity in model arc spectra that is displayed in a constant Io phase format with many similarities to the Voyager PRA data. The results suggest much of the variation in observed DAM spectral features is a result of propagation effects rather than emission process differences.

  20. Torus hyperplasia of the pyloric antrum.

    PubMed

    Kim, Chi-Hun; Han, Hye Seung; Lee, Sun-Young; Kim, Byung Kook; Sung, In-Kyung; Seong, Moo Kyung; Lee, Kyung Yung

    2010-01-01

    Primary or idiopathic hypertrophy of the pyloric muscle in adult, so called torus hyperplasia, is an infrequent but an established entity. It is caused by a circular muscle hypertrophy affecting the lesser curvature near the pylorus. Since most of the lesions are difficult to differentiate from tumor, distal gastrectomy is usually preformed to rule out most causes of pyloric lesions including neoplastic ones through a pathological study. A 56-yr-old man with a family history of gastric cancer presented with abdominal discomfort of 1 month duration. Upper gastrointestinal endoscopy showed a 1.0 cm sized irregular submucosal lesion proximal to the pylorus to the distal antrum on the lesser curvature. On colonoscopy examination, a 1.5 cm sized protruding mass was noticed on the appendiceal orifice. Gastrectomy and cecectomy were done, and histological section revealed marked hypertrophy of the distal circular pyloric musculature and an appendiceal mucocele. To the best of our knowledge, this is the first case of torus hyperplasia with appendiceal mucocele which is found incidentally.

  1. Arithmetic functions in torus and tree networks

    DOEpatents

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2007-12-25

    Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.

  2. Overview of Results from the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Gates, D; Ahn, J; Allain, J; Andre, R; Bastasz, R; Bell, M; Bell, R; Belova, E; Berkery, J; Betti, R; Bialek, J; Biewer, T; Bigelow, T; Bitter, M; Boedo, J; Bonoli, P; Bozzer, A; Brennan, D; Breslau, J; Brower, D; Bush, C; Canik, J; Caravelli, G; Carter, M; Caughman, J; Chang, C; Choe, W; Crocker, N; Darrow, D; Delgado-Aparicio, L; Diem, S; D'Ippolito, D; Domier, C; Dorland, W; Efthimion, P; Ejiri, A; Ershov, N; Evans, T; Feibush, E; Fenstermacher, M; Ferron, J; Finkenthal, M; Foley, J; Frazin, R; Fredrickson, E; Fu, G; Funaba, H; Gerhardt, S; Glasser, A; Gorelenkov, N; Grisham, L; Hahm, T; Harvey, R; Hassanein, A; Heidbrink, W; Hill, K; Hillesheim, J; Hillis, D; Hirooka, Y; Hosea, J; Hu, B; Humphreys, D; Idehara, T; Indireshkumar, K; Ishida, A; Jaeger, F; Jarboe, T; Jardin, S; Jaworski, M; Ji, H; Jung, H; Kaita, R; Kallman, J; Katsuro-Hopkins, O; Kawahata, K; Kawamori, E; Kaye, S; Kessel, C; Kim, J; Kimura, H; Kolemen, E; Krasheninnikov, S; Krstic, P; Ku, S; Kubota, S; Kugel, H; La Haye, R; Lao, L; LeBlanc, B; Lee, W; Lee, K; Leuer, J; Levinton, F; Liang, Y; Liu, D; Luhmann, N; Maingi, R; Majeski, R; Manickam, J; Mansfield, D; Maqueda, R; Mazzucato, E; McCune, D; McGeehan, B; McKee, G; Medley, S; Menard, J; Menon, M; Meyer, H; Mikkelsen, D; Miloshevsky, G; Mitarai, O; Mueller, D; Mueller, S; Munsat, T; Myra, J; Nagayama, Y; Nelson, B; Nguyen, X; Nishino, N; Nishiura, M; Nygren, R; Ono, M; Osborne, T; Pacella, D; Park, H; Park, J; Paul, S; Peebles, W; Penaflor, B; Peng, M; Phillips, C; Pigarov, A; Podesta, M; Preinhaelter, J; Ram, A; Raman, R; Rasmussen, D; Redd, A; Reimerdes, H; Rewoldt, G; Ross, P; Rowley, C; Ruskov, E; Russell, D; Ruzic, D; Ryan, P; Sabbagh, S; Schaffer, M; Schuster, E; Scott, S; Shaing, K; Sharpe, P; Shevchenko, V; Shinohara, K; Sizyuk, V; Skinner, C; Smirnov, A; Smith, D; Smith, S; Snyder, P; Soloman, W; Sontag, A; Soukhanovskii, V; Stoltzfus-Dueck, T; Stotler, D; Strait, T; Stratton, B; Stutman, D; Takahashi, R; Takase, Y; Tamura, N; Tang, X; Taylor, G; Taylor, C; Ticos, C; Tritz, K; Tsarouhas, D; Turrnbull, A; Tynan, G; Ulrickson, M; Umansky, M; Urban, J; Utergberg, E; Walker, M; Wampler, W; Wang, J; Wang, W; Weland, A

    2009-01-05

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high {beta} operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies confirm the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l{sub i} {approx} 0.4 with strong shaping ({kappa} {approx} 2.7, {delta} {approx} 0.8) with {beta}{sub N} approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f{sub NI} {approx} 71%. Instabilities driven by super-Alfvenic ions are an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. RWM/RFA feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with {beta} above the no-wall limit. The impact of n > 1 error fields on stability is a important result for ITER. Other highlights are

  3. Overview of Results from the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Gates, D. A.; Ahn, J.; Allain, J.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Biewer, T.; Bigelow, T.; Bitter, M.; Choe, W.; Crocker, N.; Darrow, D.; Delgado-Aparicio, L.; Diem, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Efthimion, P.; Ejiri, A.; Ershov, N.; Evans, T.; Feibush, E.; Fenstermacher, M.; Ferron, J.; Finkenthal, M.; Foley, J.; Frazin, R.; Fredrickson, E.; Fu, G.; Funaba, H.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Grisham, L.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hillesheim, J.; Hillis, D.; Hirooka, Y.; Hu, B.; Humphreys, D.; Idehara, T.; Indireshkumar, K.; Ishida, A.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Ji, H.; Jung, H.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kawahata, K.; Kawamori, E.; Kaye, S.; Kessel, C.; Kim, J.; Kimura, H.; Kolemen, E.; Krasheninnikov, S.; Krstic, P.; Ku, S.; Kubota, S.; Kugel, H.; La Haye, R.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann, Jr., N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mitarai, O.; Mueller, D.; Mueller, S.; Munsat, T.; Myra, J.; Nagayama, Y.; Nelson, B.; Nguyen, X.; Nishino, N.; Nishiura, M.; Nygren, R.; Ono, M.; Osborne, T.; Pacella, D.; Park, H.; Park, J.; Paul, S.; Peebles, W.; Penaflor, B.; Peng, M.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Ram, A.; Raman, R.; Rasmussen, D.; Redd, A.; Reimerdes, H.; Rewo, G.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S.; Schaffer, M.; Schuster, E.; Scott, S.; Shaing, K.; Sharpe, P.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.; Smirnov, A.; Smith, D.; Smith, S.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Strait, T.; Stratton, B.; Stutman, D.; Takahashi, R.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Ticos, C.; Tritz, K.; Tsarouhas, D.; Turrnbull, A.; Tynan, G.; Ulrickson, M.; Umansky, M.; Urban, J.; Utergberg, E.; Walker, M.; Wampler, W.; Wang, J.; Wang, W.; Welander, A.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.; Wright, J.; Xia, Z.; Xu, X.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zweben, S.

    2009-03-24

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance li ~0.4 with strong shaping (κ ~ 2.7, δ ~ 0.8) with βN approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction fNI ~71%. Instabilities driven by super-Alfv´enic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfv´enic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. The impact of n > 1 error fields on stability is a important result for ITER. RWM/RFA feedback combined with n=3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are: results

  4. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  5. Particles, environments, and possible ecologies in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Salpeter, E. E.

    1976-01-01

    The possible existence of indigenous Jovian organisms is investigated by characterizing the relevant physical environment of Jupiter, discussing the chromophores responsible for the observed coloration of the planet, and analyzing some permissible ecological niches of hypothetical organisms. Values of the eddy diffusion coefficent are estimated separately for the convective troposphere and the more stable mesosphere, and equilibrium condensation is studied for compounds containing Na, Cl, or both. The photoproduction of chromophores and nonequilibrium organic molecules is analyzed, and the motion of hypothetical organisms is examined along with the diffusion of metabolites and the consequent growth of organisms. Four kinds of organisms are considered: primary photosynthetic autotrophs ('sinkers'), larger autotrophs or heterotrophs that actively maintain their pressure level ('floaters'), organisms that seek out others ('hunters'), and organisms that live at almost pyrolytic depths ('scavengers'). It is concluded that ecological niches for sinkers, floaters, and hunters appear to exist in the Jovian atmosphere.

  6. Numerical model of long-lived Jovian vortices

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Cuong, P. G.

    1981-01-01

    The extension of the measured zonal velocity profile into the adiabatic interior of Jupiter, while eddies and large oval structures are confined to a shallow stably-stratified upper layer, are assumed in a nonlinear numerical model of long-lived Jovian vortices. In agreement of the observed flows of Jupiter, each vortex is stationary with respect to the shear flow at a critical latitude that is close to the latitude of the vortex center. The solutions obtained are strongly nonlinear, in contrast to the solitary wave solutions that are the weakly nonlinear extensions of ultralong linear waves. The merging of two stable vortices upon collision, rather than the non-interaction predicted by solitary wave theory, is in keeping with Jovian vortex observations. It is suggested that long-lived vortices maintain themselves against dissipation by absorbing smaller vortices produced by convection.

  7. Theoretical predictions of deuterium abundances in the Jovian planets

    SciTech Connect

    Hubbard, W.B.; MacFarlane, J.J.

    1980-01-01

    Current concepts for the origin of the Jovian planets and current constraints on their interior structure are used to support the argument that the presence of large amounts of 'ice' (H2O, CH4, and NH3) in Uranus and Neptune indicates temperature low enough to condense these species at the time Uranus and Neptune formed. Such low temperatures, however, imply orders-of-magnitude fractionation effects for deuterium into the 'ice' component if isotopic equilibration can occur. The present models thus imply that Uranus and Neptune should have D/H ratio at least four times primordial, contrary to observation for Uranus. It is found that the Jovian and Saturnian D/H should be close to primordial regardless of formation scenario.

  8. On the injection of fine dust from the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Maravilla, D.; Flammer, K. R.; Mendis, D. A.

    1995-01-01

    Using a simple aligned dipole model of the Jovian magnetic field, and exploiting integrals of the gravito-electrodynamic equation of motion of charged dust, we obtain an analytic result which characterizes the nature of the orbits of grains of different (fixed) charge-to-mass ratios launched at different velocities from different radial distances from Jupiter. This enables us to consider various possible sources of the dust-streams emanating from Jupiter which have been observed by the Ulysses spacecraft. We conclude that Jupiter's volcanically active satellite Io is the likely source, in agreement with the earlier calculations and simulations of Horanyi et al. using a detailed three-dimensional model of the Jovian magnetosphere. Our estimates of the size range and the velocity range of these dust grains are also in good agreement with those of the above authors and are within the error bars of the observations.

  9. A CCD comparison of outer Jovian satellites and Trojan asteroids

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1991-01-01

    The eight small outer Jovian satellites are not as well known as the brighter, more illustrious Galilean satellites. They are divided into two groups, each containing four satellites; the inner group travels in prograde orbits while the outer group travels in retrograde orbits. From the distinct orbital characteristics of the two groups, most of the theories of their origin involve the capture and breakup of two planetesimals upon entry into the atmosphere of proto-Jupiter. Their proximity to the Trojans asteroids has led to conjectures of a link between them and the Trojans. However, Tholen and Zellner (1984) found no red spectrum among six of the satellites and postulated that they were all C-type objects; therefore, they were unlikely to be derivatives of the Trojan population. Charge-coupled device (CCD) photometry and spectroscopy of the eight outer Jovian satellites obtained from 1987 to 1989 and a comparison between these eight satellites and the Trojan asteroids are presented.

  10. High-Energy Charged Particles in the Innermost Jovian Magnetosphere

    PubMed

    Fischer; Pehlke; Wibberenz; Lanzerotti; Mihalov

    1996-05-10

    The energetic particles investigation carried by the Galileo probe measured the energy and angular distributions of the high-energy particles from near the orbit of Io to probe entry into the jovian atmosphere. Jupiter's inner radiation region had extremely large fluxes of energetic electrons and protons; intensities peaked at approximately2.2RJ (where RJ is the radius of Jupiter). Absorption of the measured particles was found near the outer edge of the bright dust ring. The instrument measured intense fluxes of high-energy helium ions (approximately62 megaelectron volts per nucleon) that peaked at approximately1.5RJ inside the bright dust ring. The abundances of all particle species decreased sharply at approximately1.35RJ; this decrease defines the innermost edge of the equatorial jovian radiation.

  11. Beta-limiting instabilities and global mode stabilization in the National Spherical Torus Experiment

    SciTech Connect

    Sabbagh, S. A.; Peng, Yueng Kay Martin

    2003-01-01

    Research on the stability of spherical torus plasmas at and above the no-wall beta limit is being addressed on the National Spherical Torus Experiment @M. Ono et al., Nucl. Fusion 40, 557 ~2000!#, that has produced low aspect ratio plasmas, R/a;1.27 at plasma current exceeding 1.4 MA with high energy confinement (TauE/TauE ITER89P.2). Toroidal and normalized beta have exceeded 25% and 4.3, respectively, in q;7 plasmas. The beta limit is observed to increase and then saturate with increasing li . The stability factor bN /li has reached 6, limited by sudden beta collapses. Increased pressure peaking leads to a decrease in bN . Ideal stability analysis of equilibria reconstructed with EFIT @L. L. Lao et al., Nucl. Fusion 25, 1611 ~1985!# shows that the plasmas are at the no-wall beta limit for the n51 kink/ballooning mode. Low aspect ratio and high edge q theoretically alter the plasma stability and mode structure compared to standard tokamak configurations. Below the no-wall limit, stability calculations show the perturbed radial field is maximized near the center column and mode stability is not highly effected by a nearby conducting wall due to the short poloidal wavelength in this region. In contrast, as beta reaches and exceeds the no-wall limit, the mode becomes strongly ballooning with long poloidal wavelength at large major radius and is highly wall stabilized. In this way, wall stabilization is more effective at higher beta in low aspect ratio geometry. The resistive wall mode has been observed in plasmas exceeding the ideal no-wall beta limit and leads to rapid toroidal rotation damping across the plasma core.

  12. Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment

    NASA Technical Reports Server (NTRS)

    Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard

    2004-01-01

    Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of

  13. The dynamics of a high-speed Jovian jet

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.

    1984-01-01

    New measurements of the velocity field in the neighborhood of the high-speed jet located at approximately 24 deg N latitude in the Jovian atmosphere are presented. The maximum zonal velocity is found to be 182 + or - 10 m/s, located at 23.7 + or - 0.2 deg N and representing the largest velocity measured on the planet. The distinctive cloud markings found close to this latitude are discussed and possible dynamical consequences presented.

  14. A Jovian Mass Object in the Oort Cloud?

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack J.; Matese, J. J.; Whitmire, D. P.

    2011-05-01

    We discuss an updated dynamical and statistical analysis of cometary evidence suggesting that the Sun may have a Jovian mass companion orbiting in the outer regions of the Oort comet cloud. Such a companion could also have produced the detached Kuiper Belt object Sedna. If the object exists, evidence for it likely resides in the data collected by the recently completed Wide-field Infrared Survey Explorer (WISE) mission.

  15. A Nuclear Ramjet Flyer for Exploration of Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Maise, G.; Powell, J.; Paniagua, J.; Lecat, R.

    2001-01-01

    We investigated the design, operation, and data gathering possibilities of a nuclear-powered ramjet flyer in the Jovian atmosphere. The MITEE nuclear rocket engine can be modified to operate as a ramjet in planetary atmospheres. (Note: MITEE is a compact, ultra-light-weight thermal nuclear rocket which uses hydrogen as the propellant.) To operate as a ramjet, MITEE requires a suitable inlet and diffuser to substitute for the propellant that is pumped from the supply tanks in a nuclear rocket engine. Such a ramjet would fly in the upper Jovian atmosphere, mapping in detail temperatures, pressures, compositions, lightning activity, and wind speeds in the highly turbulent equatorial zone and the Great Red Spot. The nuclear ramjet could operate for months because: (1) the Jovian atmosphere has unlimited propellant, (2) the MITEE nuclear reactor is a (nearly) unlimited power source, and (3) with few moving parts, mechanical wear should be minimal. This paper presents a conceptual design of a ramjet flyer and its nuclear engine. The flyer incorporates a swept-wing design with instruments located in the twin wing-tip pods (away from the radiation source and readily shielded, if necessary). The vehicle is 2 m long with a 2 m wingspan. Its mass is 220 kg, and its nominal flight Mach number is 1.5. Based on combined neutronic and thermal/hydraulic analyses, we calculated that the ambient pressure range over which the flyer can operate to be from about 0.04 to 4 (terrestrial) atmospheres. This altitude range encompasses the three uppermost cloud layers in the Jovian atmosphere: (1) the entire uppermost visible NH3 ice cloud layer (where lightning has been observed), (2) the entire NH4HS ice cloud layer, and (3) the upper portion of the H2O ice cloud layer.

  16. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  17. Dynamics of Charged Nano-Dust in the Jovian Rings

    NASA Astrophysics Data System (ADS)

    Ip, W.; Liu, C.; Liu, Y.

    2012-12-01

    The main ring of Jupiter with an outer edge at 1.806 RJ is maintained by the small satellite, Adrastea. After passing the orbit of Metis at 1,798 RJ a ring halo begins to take shape characterizied by extended vertical structure. According to Burns, Schaffer, Greenberg and Showalter (1985), this feature is related to the motion of the charged sub-micron dust grains under the influence of the Lorentz force. For charge-to-mass (q/m) ratio exceeds a certain value, the small dust grains could be injected into the Jovian atmosphere after following trajectories alighned with the magnetic field. This is likely the cause of the cutoff of the inner Jovian rings at the orbital position which coincident with the 2:1 Lorentz resonance. Because the JUNO spacecraft will move through the gap between the Jovian upper atmosphere and the 2:1 LR location, it is interesting to investigate to what extent would the charged nano-dust be able to from a three-dimensional cocoon/envelope surrounding Jupiter just providing an important opportunity to study the ring material by in-situ measurements. The same consideration can be applied to the nano-dust in the D-ring of Saturn which will be investigated intensively by the Cassini spacecraft in its Proximal Orbits Phase in 2017 before the end of the Cassini-Huygens mission.

  18. Particles, environments and possible ecologies in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Salpeter, E. E.

    1976-01-01

    The eddy diffusion coefficient is estimated as a function of altitude, separately for the Jovian troposphere and mesosphere. Complex organic molecules produced by the Ly alpha photolysis of methane may possibly be the absorbers in the lower mesosphere which account for the low reflectivity of Jupiter in the near ultraviolet. The optical frequency chromophores are localized at or just below the Jovian tropopause. Candidate chromophore molecules must satisfy the condition that they are produced sufficiently rapidly that convective pyrolysis maintains the observed chromophore optical depth. The condition is satisfied if complex organic chromophores are produced with high quantum yield by NH3 photolysis at less than 2,300 A. Jovian photoautotrophs in the upper troposphere satisfy this condition well, even with fast circulation, assuming only biochemical properties of comparable terrestrial organisms. An organism in the form of a thin, gas filled balloon can grow fast enough to replicate if (1) it can survive at the low mesospheric temperatures, or if (2) photosynthesis occurs in the troposphere.

  19. Temperature structure and emergent flux of the Jovian planets

    NASA Technical Reports Server (NTRS)

    Silvaggio, P.; Sagan, C.

    1978-01-01

    Long path, low temperature, moderate resolution spectra of methane and ammonia, broadened by hydrogen and helium, are used to calculate non-gray model atmospheres for the four Jovian planets. The fundamental and first overtone of hydrogen contributes enough absorption to create a thermal inversion for each of the planets. The suite of emergent spectral fluxes and representative limb darkenings and brightenings are calculated for comparison with the Voyager infrared spectra. The temperature differences between Jovian belts and zones corresponds to a difference in the ammonia cirrus particle radii (1 to 3 micron in zones; 10 micron in belts). The Jovian tropopause is approximately at the 0.1 bar level. A thin ammonia cirrus haze should be distributed throughout the Saturnian troposphere; and NH3 gas must be slightly supersaturated or ammonia ice particles are carried upwards convectively in the upper troposphere of Saturn. Substantial methane clouds exist on both Uranus and Neptune. There is some evidence for almost isothermal structures in the deep atmospheres of these two planets.

  20. Pioneer 11 observations of energetic particles in the jovian magnetosphere.

    PubMed

    Van Allen, J A; Randall, B A; Baker, D N; Goertz, C K; Sentman, D D; Thomsen, M F; Flindt, H R

    1975-05-02

    Knowledge of the positional distributions, absolute intensities, energy spectra, and angular distributions of energetic electrons and protons in the Jovian magnetosphere has been considerably advanced by the planetary flyby of Pioneer 11 in November-December 1974 along a quite different trajectory from that of Pioneer 10 a year earlier. (i) The previously reported magnetodisc is shown to be blunted and much more extended in latitude on the sunward side than on the dawn side. (ii) Rigid corotation of the population of protons E(p) approximately 1 million electron volts in the magnetodisc is confirmed. (iii) Angular distributions of energetic electrons E(e) > 21 million electron volts in the inner magnetosphere are shown to be compatible with the Kennel-Petschek whistler-mode instability. (iv) A diverse body of magnetospheric effects by the Jovian satellites is found. (v) Observations of energetic electrons in to a radial distance of 1.59 Jovian radii provide a fresh basis for the interpretation of decimetric radio noise emission.

  1. High resolution Thomson scattering for Joint European Torus (JET)

    SciTech Connect

    Pasqualotto, R.; Nielsen, P.; Gowers, C.; Beurskens, M.; Kempenaars, M.; Carlstrom, T.; Johnson, D.

    2004-10-01

    A Thomson scattering system is being developed for Joint European Torus with 15 mm spatial resolution and a foreseen accuracy for temperature better than 15% at a density of 10{sup 19} m{sup -3}. This resolution is required at the internal transport barrier and edge pedestal and it can not be fully achieved with the present light detection and ranging systems. The laser for this system is Nd:YAG, 5 Joule, 20 Hz. Scattering volumes from R=2.9 m to R=3.9 m are imaged onto 1 mm diameter fibers, with F/25 collection aperture. Two fibers are used per scattering volume. Using optical delay lines, three scattering volumes are combined in each of the 21 filter polychromators. The signals are recorded with transient digitizers, which allow the combined time delayed signals to be resolved. Knowledge of the time delay between signals allows the use of correlation techniques in determining signal levels. The ac output of the amplifier is used, which tolerates a higher level of background signal without affecting dynamic range. The noise resulting from plasma light is determined directly.

  2. A torus bifurcation theorem with symmetry

    NASA Technical Reports Server (NTRS)

    Vangils, S. A.; Golubitsky, M.

    1989-01-01

    Hopf bifurcation in the presence of symmetry, in situations where the normal form equations decouple into phase/amplitude equations is described. A theorem showing that in general such degeneracies are expected to lead to secondary torus bifurcations is proved. By applying this theorem to the case of degenerate Hopf bifurcation with triangular symmetry it is proved that in codimension two there exist regions of parameter space where two branches of asymptotically stable two-tori coexist but where no stable periodic solutions are present. Although a theory was not derived for degenerate Hopf bifurcations in the presence of symmetry, examples are presented that would have to be accounted for by any such general theory.

  3. Torus CLAS12-Superconducting Magnet Quench Analysis

    SciTech Connect

    Kashikhin, V. S.; Elouadhiri, L.; Ghoshal, P. K.; Kashy, D.; Makarov, A.; Pastor, O.; Quettier, L.; Velev, G.; Wiseman, M.

    2014-01-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  4. Torus CLAS12-Superconducting Magnet Quench Analysis

    SciTech Connect

    Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M

    2014-06-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  5. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    NASA Astrophysics Data System (ADS)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  6. Progress Towards High-Performance, Steady-State Spherical Torus

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-01-04

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fastwave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX

  7. Updating the Jovian Proton Radiation Environment - 2015

    NASA Technical Reports Server (NTRS)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    Since publication in 1983 by N. Divine and H. Garrett, the Jet Propulsion Laboratory's plasma and radiation models have been the design standard for NASA's missions to Jupiter. These models consist of representations of the cold plasma and electrons, the warm and auroral electrons and protons, and the radiation environment (electron, proton, and heavy ions). To date, however, the high-energy proton model has been limited to an L-shell of 12. With the requirement to compute the effects of the high energy protons and other heavy ions on the proposed Europa mission, the extension of the high energy proton model from approximately 12 L-shell to approximately 50 L-shell has become necessary. In particular, a model of the proton environment over that range is required to estimate radiation effects on the solar arrays for the mission. This study describes both the steps taken to extend the original Divine proton model out to an approximately 50 L-shell and the resulting model developed to accomplish that goal. In addition to hydrogen, the oxygen, sulfur, and helium heavy ion environments have also been added between approximately 6 L-shell and approximately 50 L-shell. Finally, selected examples of the model's predictions are presented to illustrate the uses of the tool.

  8. The Jovian magnetotail and its current sheet

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Burlaga, L. F.; Ness, N. F.

    1980-01-01

    Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen.

  9. Exploring the intriguing differences between Saturnian and Jovian magnetospheric neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Johnson, R. E.; Richardson, J. D.

    2015-12-01

    The Jovian and Saturnian systems are similar in that they are relatively rapidly rotating gas giants with internal magnetic fields. They also possess ring systems and a large number of satellites (67 and 62, respectively) with a single moon in each system serving as the primary magnetospheric heavy particle source (Io and Enceladus, respectively) but with Jupiter's primary particle source orbiting further from the planet. Jupiter's magnetic field is over an order of magnitude stronger than the Saturnian field and is tilted by almost 10 degrees while Saturn's magnetic field has no detectable tilt from its rotational axis. Additionally, Saturn is about twice as far from the Sun as Jupiter. Even considering these differences, however, it is very interesting that Jupiter's magnetosphere is dominated by plasma while Saturn's magnetosphere contains much more neutral than charged particles. Such a difference has extremely significant impacts on magnetospheric generation and dynamics. The wealth of information provided by Cassini over the last 10 years has provided unprecedented insight in to Saturn's magnetosphere and has well positioned us to conduct studies comparing Saturn's and Jupiter's magnetospheres. A better understanding of neutral tori not only sheds valuable insight into past observations but also provides critical preparation for the upcoming ESA and NASA missions to the Jovian system. For this work, we combine all available data for these two systems as well as neutral tori modeling to quantify the differences between these two magnetospheres. From the analysis, we illustrate how various neutral tori are generated and evolve. The results provide insight into the critical factors that determine how large gas giant magnetospheres can evolve into such significantly different configurations.

  10. Imaging x-ray crystal spectrometers for the National Spherical Torus Experiment

    SciTech Connect

    Bitter, M.; Hill, K.W.; Roquemore, A.L.; Beiersdorfer, P.; Kahn, S.M.; Elliott, S.R.; Fraenkel, B.

    1999-01-01

    A new type of high-resolution x-ray imaging crystal spectrometers is described for implementation on the National Spherical Torus Experiment (NSTX) to provide spatially and temporally resolved data on the ion temperature, toroidal and poloidal plasma rotation, electron temperature, impurity ion-charge state distributions, and impurity transport. These data are derived from observations of the satellite spectra of heliumlike argon, ArthinspXVII, which is the dominant charge state for electron temperatures in the range from 0.4 to 3.0 keV and which is accessible to NSTX. Experiments at the Torus Experiment for Technology Oriented Research (TEXTOR) demonstrate that a throughput of 2{times}10{sup 5}thinspphotons/s (corresponding to the count-rate limit of the present detectors) can easily be obtained with small, nonperturbing argon gas puffs of less than 1{times}10{sup {minus}3}thinspTorrthinspscr(l)/s, so that it is possible to record spectra with a small statistical error and a good time resolution (typically 50 and 1 ms in some cases). Employing a novel design, which is based on the imaging properties of spherically bent crystals, the spectrometers will provide spectrally and spatially resolved images of the plasma for all experimental conditions, which include ohmically heated discharges as well as plasmas with rf and neutral-beam heating. The conceptual design, experimental results on the focusing properties, and relevant spectral data from TEXTOR are presented. {copyright} {ital 1999 American Institute of Physics.}

  11. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Smith, D. R.; Bell, R. E.; Kaye, S.; Davis, W.; Hosea, J.; LeBlanc, B; Wilson, J. R.; Ryan, Philip Michael; Domier, C. W.; Luhmann, N. C.; Yuh, H.; Lee, W.; Park, H.

    2008-01-01

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k?e 0:1 0:4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  12. Comparative study on dynamics associated with terrestrial and Jovian substorms

    NASA Astrophysics Data System (ADS)

    Ge, Yasong

    Terrestrial substorms have been studied for over four decades and our understanding about this phenomenon has improved through those studies. However, many issues regarding substorms are still controversial, especially the initiation mechanism of substorm onset. To understand the initiation mechanism, we have to first answer some important questions. What is the substorm expansion onset? What is the physics behind its phenomenological definition? Where does the initiation start? What is the relation of tail reconnection with near-Earth onsets? Where does tail reconnection occur? While one way to understand better the physics of substorms is to increase the number of spacecraft and the resolution of ground observations, another way is to compare substorm phenomena between different planets. In this study, we investigate the different phases of substorms both on the Earth and Jupiter. For Jovian dynamic event, we need to know if they are substorms? How are they driven? How can we better understand terrestrial substorms through studying Jovian substorms? We used Polar, GOES, Cluster and ground-station observations to study terrestrial substorms and used the Galileo observations to study Jovian dynamic events. A 3-day growth phase of Jovian substorm is discovered, which is also found driven by the internal processes including mass-loading at Io instead of the solar wind. This discovery establishes the substorm nature of those dynamics events which have counterparts of key elements of terrestrial substorms, including the connection of those events with the Jupiter's polar auroral activity. Near-planet dipolarization caused by the mid-tail reconnection is also investigated. In the near-Earth tail region, dipolarizations appear to be associated with mid-tail reconnections, near-tail flow braking and formation of substorm current wedge. In both magnetospheres, major onsets of substorms are found to be due to the major tail reconnection which can globally release the loaded

  13. Resonant-like behaviour during edge-localised mode cycles in the Joint European Torus

    SciTech Connect

    Webster, A. J.; Morris, J.; Todd, T. N.; Coad, P.; Brezinsek, S.; Likonen, J.; Rubel, M.; Collaboration: JET-EFDA Contributors

    2015-08-15

    A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data to produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.

  14. Instrumentation for the joint European torus motional Stark effect diagnostic

    SciTech Connect

    Stratton, B.C.; Long, D.; Palladino, R.; Hawkes, N.C.

    1999-01-01

    A motional Stark effect magnetic field pitch angle diagnostic has been implemented on the joint European torus (JET) tokamak. The instrumentation designed following the study by Hawkes {ital et al.} (these proceedings) is described. D{sub {alpha}} emission from the Octant 4 neutral beams is collected by optics which transport the plasma image outside the vacuum vessel and through a pair of photoelastic modulators (PEMs) and a linear polarizer. The light is fiber-optically coupled to interference filter spectrometers, which incorporate a remotely controlled filter tilting mechanism. This allows the center wavelength of the filter bandpass to be tuned over a range sufficient for observation of the {sigma} and {pi} lines of the Stark spectrum emitted by the full- and half-energy components of the beam, providing flexibility to make measurements with a variety of beam configurations. The detectors are low-noise avalanche photodiode modules. Fast digital signal processing techniques are used to extract the Fourier components of the signal at the PEM first and second harmonic frequencies. Analysis of these signals will yield the magnetic field pitch angle, which will be used as a constraint on EFIT equilibrium reconstruction modeling to obtain the q(r) profile. The system has 25 spatial channels covering the outer-half of a JET plasma with spatial resolution of 0.03{endash}0.07 m per channel with {approximately}0.05 m channel-to-channel separation. Time resolution is expected to be 1{endash}10 ms. {copyright} {ital 1999 American Institute of Physics.}

  15. Jovian S emission: Model of radiation source

    NASA Astrophysics Data System (ADS)

    Ryabov, B. P.

    1994-04-01

    A physical model of the radiation source and an excitation mechanism have been suggested for the S component in Jupiter's sporadic radio emission. The model provides a unique explanation for most of the interrelated phenomena observed, allowing a consistent interpretation of the emission cone structure, behavior of the integrated radio spectrum, occurrence probability of S bursts, location and size of the radiation source, and fine structure of the dynamic spectra. The mechanism responsible for the S bursts is also discussed in connection with the L type emission. Relations are traced between parameters of the radio emission and geometry of the Io flux tube. Fluctuations in the current amplitude through the tube are estimated, along with the refractive index value and mass density of the plasma near the radiation source.

  16. First Results from the Neutral Particle Analyzer at the Madison Symmetric Torus RFP

    NASA Astrophysics Data System (ADS)

    Mezonlin, Ephrem; Titus, James; Johnson, Joseph, III; Chernyshev, F. V.

    2010-11-01

    A neutral particle analyzer has been used at the Madison Symmetric Torus to (MST) to study Ti with Neutral Beam Injection (NBI). The Compact Neutral Particle Analyzer (CNPA), formerly on the Sustained Spheromak Physics Experiment (SSPX) with Hydrogen plasmas, has been modified and calibrated for MST's deuterium plasmas. The new calibration has measured the flux of D^0 atoms emitted by the plasma which strip the neutrals in a stripping cell with Helium gas (10-2 Torr). The ions are focused by two permanent magnets into 25 channels with an energy range from .34 -- 5.2 keV. From the channels in the keV range, Teff (Ti) has been measured to be around 600 eV during sawtooth events and 200 eV in between events. Further Ti studies will compare on and off neutral beam shots.

  17. Dirac operator zero-modes on a torus

    SciTech Connect

    Tenjinbayashi, Yasushi; Igarashi, Hiroshi; Fujiwara, Takanori . E-mail: fujiwara@mx.ibaraki.ac.jp

    2007-02-15

    We study Dirac operator zero-modes on a torus for gauge background with uniform field strengths. Under the basic translations of the torus coordinates the wave functions are subject to twisted periodic conditions. In suitable torus coordinates the zero-mode wave functions can be related to holomorphic functions of the complex torus coordinates. Half of the twisted boundary conditions for the holomorphic part of the zero-mode wave function can be made periodic or anti-periodic. The remaining half is until coordinate dependent but diagonal. We completely solve the twisted boundary conditions and construct the zero-mode wave functions. The chirality and the degeneracy of the zero-modes are uniquely determined by the gauge background and are consistent with the index theorem.

  18. Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Menard, J. E.; Bell, M. G.; Bell, R. E.; Bernabei, S.; Bialek, J.; Biewer, T.; Blanchard, W.; Boedo, J.; Bush, C. E.; Carter, M. D.; Choe, W.; Crocker, N. A.; Darrow, D. S.; Davis, W.; Delgado-Aparicio, L.; Diem, S.; Domier, C. W.; D'Ippolito, D. A.; Ferron, J.; Field, A.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gibney, T.; Harvey, R.; Hatcher, R. E.; Heidbrink, W.; Hill, K. W.; Hosea, J. C.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kessel, C. E.; Kubota, S.; Kugel, H. W.; Lawson, J.; LeBlanc, B. P.; Lee, K. C.; Levinton, F. M.; Luhmann, N. C.; Maingi, R.; Majeski, R. P.; Manickam, J.; Mansfield, D. K.; Maqueda, R.; Marsala, R.; Mastrovito, D.; Mau, T. K.; Mazzucato, E.; Medley, S. S.; Meyer, H.; Mikkelsen, D. R.; Mueller, D.; Munsat, T.; Myra, J. R.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ono, M.; Park, H. K.; Park, W.; Paul, S. F.; Peebles, T.; Peng, M.; Phillips, C.; Pigarov, A.; Pinsker, R.; Ram, A.; Ramakrishnan, S.; Raman, R.; Rasmussen, D.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Roquemore, A. L.; Ruskov, E.; Ryan, P.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B. C.; Stutman, D.; Swain, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; von Halle, A.; Wade, M.; White, R.; Wilgen, J.; Williams, M.; Wilson, J. R.; Yuh, H.; Zakharov, L. E.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Betti, R.; Bigelow, T.; Bitter, M.; Bonoli, P.; Bourdelle, C.; Chang, C. S.; Chrzanowski, J.; Dudek, L.; Efthimion, P. C.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Greenough, N. L.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Hogan, J.; Houlberg, W.; Humphreys, D.; Jaeger, F.; Kalish, M.; Krasheninnikov, S.; Lao, L. L.; Lawrence, J.; Leuer, J.; Liu, D.; Oliaro, G.; Pacella, D.; Parsells, R.; Schaffer, M.; Semenov, I.; Shaing, K. C.; Shapiro, M. A.; Shinohara, K.; Sichta, P.; Tang, X.; Vero, R.; Walker, M.; Wampler, W.

    2007-10-01

    The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for future spherical torus (ST) devices and ITER. Plasma durations up to 1.6 s (five current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while simultaneously achieving βTand βN values of 17% and 5.7 (%m T MA -1), respectively. A newly available motional Stark effect diagnostic has enabled validation of current-drive sources and improved the understanding of NSTX 'hybrid'-like scenarios. In MHD research, ex-vessel radial field coils have been utilized to infer and correct intrinsic EFs, provide rotation control and actively stabilize the n = 1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence research, the low aspect ratio and a wide range of achievable β in the NSTX provide unique data for confinement scaling studies, and a new microwave scattering diagnostic is being used to investigate turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large toroidal Alfven eigenmodes (TAEs) analogous to the 'sea-of-TAE' modes predicted for ITER, and three-wave coupling processes have been observed for the first time. In boundary physics research, advanced shape control has enabled studies of the role of magnetic balance in H-mode access and edge localized mode stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode-compatible radiative divertor, and lithium conditioning has demonstrated particle pumping and results in improved thermal confinement. Finally, non-solenoidal plasma start-up experiments have achieved plasma currents of 160 kA on closed magnetic flux surfaces utilizing

  19. Jovian-like aurorae on Saturn.

    PubMed

    Stallard, Tom; Miller, Steve; Melin, Henrik; Lystrup, Makenzie; Cowley, Stan W H; Bunce, Emma J; Achilleos, Nicholas; Dougherty, Michele

    2008-06-19

    Planetary aurorae are formed by energetic charged particles streaming along the planet's magnetic field lines into the upper atmosphere from the surrounding space environment. Earth's main auroral oval is formed through interactions with the solar wind, whereas that at Jupiter is formed through interactions with plasma from the moon Io inside its magnetic field (although other processes form aurorae at both planets). At Saturn, only the main auroral oval has previously been observed and there remains much debate over its origin. Here we report the discovery of a secondary oval at Saturn that is approximately 25 per cent as bright as the main oval, and we show this to be caused by interaction with the middle magnetosphere around the planet. This is a weak equivalent of Jupiter's main oval, its relative dimness being due to the lack of as large a source of ions as Jupiter's volcanic moon Io. This result suggests that differences seen in the auroral emissions from Saturn and Jupiter are due to scaling differences in the conditions at each of these two planets, whereas the underlying formation processes are the same.

  20. Electrodynamic interaction of Ganymede with the Jovian magnetosphere and the radial spread of wake-associated disturbances

    NASA Technical Reports Server (NTRS)

    Tariq, G. F.; Armstrong, T. P.; Lowry, J. W.

    1985-01-01

    An investigation is conducted of the electrostatics of the interaction of Jupiter's satellite Ganymede with the Jovian plasma and the MHD stability of the resulting downstream cavity, taking into account an evaluation of the effect of distorted magnetic field models on the radial extent of the disturbances. The objective of the investigation is an understanding of the data which have been provided by Voyager 2 during its approach to Jupiter, giving attention to the Voyager 2 magnetometer experiment. It is concluded that the magnetic field distortion by itself is insufficient to explain the large radial extent of the observed wake encounters. Linear treatment of MHD equations showed that the Kelvin-Helmholtz instability is initiated at the plasma-cavity interface.

  1. Electrodynamic interaction of Ganymede with the Jovian magnetosphere and the radial spread of wake-associated disturbances

    SciTech Connect

    Tariq, G.F.; Armstrong, T.P.; Lowry, J.W.

    1985-05-01

    An investigation is conducted of the electrostatics of the interaction of Jupiter's satellite Ganymede with the Jovian plasma and the MHD stability of the resulting downstream cavity, taking into account an evaluation of the effect of distorted magnetic field models on the radial extent of the disturbances. The objective of the investigation is an understanding of the data which have been provided by Voyager 2 during its approach to Jupiter, giving attention to the Voyager 2 magnetometer experiment. It is concluded that the magnetic field distortion by itself is insufficient to explain the large radial extent of the observed wake encounters. Linear treatment of MHD equations showed that the Kelvin-Helmholtz instability is initiated at the plasma-cavity interface. 29 references.

  2. Modeling Jovian hectometric attenuation lanes during the Cassini flyby of Jupiter

    NASA Astrophysics Data System (ADS)

    Imai, Masafumi; Lecacheux, Alain; Moncuquet, Michel; Bagenal, Fran; Higgins, Charles A.; Imai, Kazumasa; Thieman, James R.

    2015-03-01

    The Jupiter encounter by the Cassini spacecraft in late 2000 and early 2001 unveiled persistent properties of Jupiter's hectometric (HOM) radiation originating along auroral magnetic field lines in the polar regions. One of the unique properties of the HOM dynamic spectrum, known as attenuation lanes, appears as rotationally modulated, well-defined regions of lowered intensity, flanked by regions of enhancement. These lanes seem to be the result of refraction of radio waves in a high-density medium-either caused by Case (i) enhanced density in the magnetic L-shell connected to Io's orbit or Case (ii) in the Io plasma torus itself or both. In this paper, we investigate the HOM ray paths of 0.5-3.0 MHz emissions with various cone half-angles in the continuous radio longitudes generating at the magnetic L-value equal to 30. We use bi-kappa particle distributions to derive diffusive equilibrium distributions of density in the Io plasma torus. The enhanced density irregularities along the Io flux shell "ribbon" region can be described with a Gaussian density distribution of a maximum density n0 and breadth (half-width of the distribution across the flux shell) σ. As a result, we found that the interpretation of Case (i) can be accounted for by the attenuation lanes which appear for all cone half-angles, and the reasonable flux shell density n0 is, on top of specific latitude-dependent density from the diffusive equilibrium model, estimated as 100 cm-3 with the half-width σ = 5.0 Io radii.

  3. Methane Absorption Coefficients for the Jovian Planets and Titan

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich; Tomasko, M. G.

    2009-09-01

    We combined 11 data sets of methane transmission measurements within 0.4-5.5 micrometer wavelength in order to better understand the variation of methane absorption with temperature and pressure for conditions in the atmospheres of the Jovian planets and Titan. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere (Tomasko et al. 2008, PSS 56, 624). We present the data with a refined analysis. The last data set consists of Hubble Space Telescope images of Jupiter taken in 2005 and 2007 as Ganymede started to be occulted by Jupiter. Using Ganymede as a light source, we probed Jupiter's stratosphere with large methane pathlengths. Below 1000 nm wavelength, we find methane absorption coefficients generally similar to those by Karkoschka (1998, Icarus 133, 134). We added descriptions of temperature and pressure dependence, which are typically small in this wavelength range. Data in this wavelength range are consistent with each other, except between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the Jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data are consistent with Irwin's model of the pressure dependence of methane absorption. However, when large extrapolations were needed, such as from laboratory data above 200 K to Titan's temperatures near 80 K, Irwin's model of temperature dependence predicts absorption coefficients up to 100 times lower than measured by Huygens. We combined Irwin's and Huygens' data to obtain more reliable methane absorption coefficients for the temperatures in the atmospheres of the Jovian planets and Titan. This research was supported by NASA grants NAG5-12014 and NNX08AE74G.

  4. Jovian Equatorial H Lyman-alpha and the Ionosphere

    NASA Astrophysics Data System (ADS)

    Ballester, Gilda E.

    An excess of H Ly alpha emission has been a persistent feature in Jupiter's equatorial upper atmosphere since its discovery in 1978. This Ly alpha 'bulge' was found by high-resolution IUE observations to be due to broadening of the Jovian line increasing the resonant scattering of the solar Ly alpha, rather than from a local enhancement in the H density. The line broadening implies that the H column at the bulge is disturbed by a localized, non-thermal process, and two mechanisms have been proposed to explain this: one by the generation of turbulence from strong thermospheric winds or jets meeting at the bulge region and originating in the active Jovian auroral zones, the other involving a superthermal population of H atoms produced by a process analogous to the equatorial anomaly and tropical arcs on the Earth. Some line broadening was also observed in the off-bulge region while modelling of the usual bulge profile does not predict this behavior, but these observations may have been performed at a time of an unusually large extension of the bulge. We propose to make a series of high-dispersion observations (of improved S/N) for a detailed longitudinal study of the line profile which would be of benefit independently of the particular bulge conditions (to be determined with low-dispersion exposures). In addition, new insight will be gained with simultaneous ground-based observations of the newly discovered global ionospheric H3+ emissions. These emissions are diagnostic of the ionospheric temperature and ion density, and have already shown very particular characteristics in the H Ly alpha bulge region. Coordinated observations of the whole longitudinal range should therefore set new constraints on the mechanisms operating in the Jovian equatorial upper atmosphere.

  5. Long-term changes in Jovian synchrotron radio emission - Intrinsic variations or effects of viewing geometry?

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    1993-04-01

    Possible causes of the observed long-term variation of Jovian synchrotron radio emission, including both intrinsic changes in the Jovian radiation belts and apparent changes due to variations in the Jovigraphic declination of the earth, DE, are investigated. An increase in diffusion rate with other parameters held constant results in an inward displacement of the peak emission radial distance that is not observed. Effects of viewing geometry changes are examined. The possible importance of such effects is suggested by a correlation between the total decimetric radio flux and DE, which varies between -3.3 and +3.3 deg during one Jovian orbital period. Because the Jovian central meridian longitudes where the magnetic latitude passes through zero during a given Jovian rotation change substantially with DE and since significant longitudinal asymmetries exist in both the volume emissivity and the latitudinal profile of the beam, the total intensity should be at least a partial function of D sub E.

  6. Coupling of acoustic waves to clouds in the jovian troposphere

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Mosser, Benoît

    2005-11-01

    Seismology is the best tool for investigating the interior structure of stars and giant planets. This paper deals with a photometric study of jovian global oscillations. The propagation of acoustic waves in the jovian troposphere is revisited in order to estimate their effects on the planetary albedo. According to the standard model of the jovian cloud structure there are three major ice cloud layers (e.g., [Atreya et al., 1999. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet Space Sci. 47, 1243-1262]). We consider only the highest layers, composed of ammonia ice, in the region where acoustic waves are trapped in Jupiter's atmosphere. For a vertical wave propagating in a plane parallel atmosphere with an ammonia ice cloud layer, we calculate first the relative variations of the reflected solar flux due to the smooth oscillations at about the ppm level. We then determine the phase transitions induced by the seismic waves in the clouds. These phase changes, linked to ice particle growth, are limited by kinetics. A Mie model [Mishchenko et al., 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge Univ. Press, Cambridge, pp. 158-190] coupled with a simple radiation transfer model allows us to estimate that the albedo fluctuations of the cloud perturbed by a seismic wave reach relative variations of 70 ppm for a 3-mHz wave. This albedo fluctuation is amplified by a factor of ˜70 relative to the previously published estimates that exclude the effect of the wave on cloud properties. Our computed amplifications imply that jovian oscillations can be detected with very precise photometry, as proposed by the microsatellite JOVIS project, which is dedicated to photometric seismology [Mosser et al., 2004. JOVIS: A microsatellite dedicated to the seismic analysis of Jupiter. In: Combes, F., Barret, D., Contini, T., Meynadier, F., Pagani, L. (Eds.), SF2A-2004

  7. Clouds, aerosols, and photochemistry in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    West, R. A.; Strobel, D. F.; Tomasko, M. G.

    1986-01-01

    An assessment is made of the development status of concepts for cloud and aerosol compositions, vertical and horizontal distributions, and microphysical properties, in the Jovian upper troposphere and stratosphere. Attention is given to several key photochemical species' relationships to aerosol formation as well as their transport process implications, treating photochemistry in the context of comparative planetology and noting differences and similarities among the outer planet atmospheres; since this approach emphasizes observational data, a variegated assortment of ground-based and spacecraft observations is assembled. Current views on the tropospheric distribution of clouds are challenged, and a rationale is presented for alternative accounts.

  8. Clouds, aerosols, and photochemistry in the Jovian atmosphere

    NASA Astrophysics Data System (ADS)

    West, R. A.; Strobel, D. F.; Tomasko, M. G.

    1986-03-01

    An assessment is made of the development status of concepts for cloud and aerosol compositions, vertical and horizontal distributions, and microphysical properties, in the Jovian upper troposphere and stratosphere. Attention is given to several key photochemical species' relationships to aerosol formation as well as their transport process implications, treating photochemistry in the context of comparative planetology and noting differences and similarities among the outer planet atmospheres; since this approach emphasizes observational data, a variegated assortment of ground-based and spacecraft observations is assembled. Current views on the tropospheric distribution of clouds are challenged, and a rationale is presented for alternative accounts.

  9. Limb-darkening and the structure of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    By observing the transit of various cloud features across the Jovian disk, limb-darkening curves were constructed for three regions in the 4.6 to 5.1 mu cm band. Several models currently employed in describing the radiative or dynamical properties of planetary atmospheres are here examined to understand their implications for limb-darkening. The statistical problem of fitting these models to the observed data is reviewed and methods for applying multiple regression analysis are discussed. Analysis of variance techniques are introduced to test the viability of a given physical process as a cause of the observed limb-darkening.

  10. 1979J2 - Discovery of a previously unknown Jovian satellite

    NASA Technical Reports Server (NTRS)

    Synnott, S. P.

    1980-01-01

    Detailed examination of imaging data of Jupiter taken by Voyager 1 reveals a previously unknown satellite 1979J2. Analysis of the image on the Jovian disk indicates that it is not an atmospheric feature or the shadow of any known satellite. The orbital period is calculated at 16 hours 11 minutes 21.25 seconds + or - 0.5 second and the semimajor axis is 3.1054 Jupiter radii. The observed profile is roughly circular with a diameter of 80 kilometers. An albedo of approximately 0.05 is reported, which is similar to Amalthea's. The geometry of the observational situation is illustrated.

  11. Pioneer 11 observations of energetic particles in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Van Allen, J. A.; Randall, B. A.; Baker, D. N.; Goertz, C. K.; Sentman, D. D.; Thomsen, M. F.; Flindt, H. R.

    1975-01-01

    A preliminary report is presented of energetic electrons and protons observed with the University of Iowa instrument on Pioneer 11. A graph shows absolute, spin-averaged unidirectional intensities of electrons and protons as a function of time during traversal of the central magnetosphere. Another graph shows the effects of the Jovian satellites Io and Amalthea on particle intensities. It is pointed out that a full analysis of satellite effects is the most promising technique for understanding the physical dynamics of the magnetosphere of Jupiter.

  12. Capture of interplanetary and interstellar dust by the jovian magnetosphere.

    PubMed

    Colwell, J E; Horányi, M; Grün, E

    1998-04-03

    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 < a < 20 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations.

  13. Jovian bremsstrahlung X-rays - A Ulysses prediction

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Boice, D. C.; Hurley, K. C.; Stern, S. A.; Sommer, M.

    1992-01-01

    Modeling results reported here show that precipitating auroral electrons with sufficient energy to be consistent with the Voyager UVS observations produce bremsstrahlung X-rays with sufficient energy and intensity to be detected by the Solar Flare X-ray and Cosmic-Ray-Burst Instrument on board the Ulysses spacecraft. The detection of such bremsstrahlung X-rays at Jupiter would provide strong evidence for the electron-precipitation mechanism, although it does not rule out the possibility of some heavy ion involvement, and thus makes a significant contribution toward solving the mystery of the Jovian aurora.

  14. Evidence for a distant ( 8700 R sub J) Jovian magnetotail: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Burlaga, L. F.; Desch, M. D.; Klein, L. W.

    1982-01-01

    A correlative survey of magnetometer (MAG) and Planetary Radio Astronomy (PRA) 1.2 kHz continuum radiation measurements from Voyager 2 provide evidence for at least eight distant Jovian magnetotail sightings occurring about once a month over the first 2/3 of 1981 at distances of approximately 5,000 to 9,000 R sub J. The occurrences of these events are in good agreement with prior Plasma Wave Science and Plasma Science identifications. Observations of these distant magnetotail, or tail filament, encounters appear most prevalent in both MAC and PRA data sets when the spacecraft was closest to the Jupiter-Sun axis at approximately 6,500 R sub J from the planet; the PRA events are also most intense during those times. A specific tail encounter occurring in mid-February 1981 is analyzed and shown to possess a remarkably symmetric magnetic field signature and to have a bipolar field structure in the central region. The bipolarity is characteristic of most of the eight events.

  15. Development of a repetitive compact torus injector

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  16. Sputtering of the Europa surface by thermal ions from the torus and pickup ions in a diverted flow

    NASA Astrophysics Data System (ADS)

    Dols, Vincent J.; Cassidy, Timothy A.; Bagenal, Fran; Crary, Frank; Delamere, Peter A.

    2016-10-01

    Europa's atmosphere is very tenuous and is mainly composed of O2. It is thought to be produced by ion bombardment of its icy surface. Several ion populations may contribute to this sputtering:1) The thermal plasma of the torus (~ 1keV including ram velocity), which may be partially diverted around the moon by the ionospheric currents2) The energetic sulfur and hydrogen ions (~10 keV-MeV), which diffuse inward toward Europa's orbit3) and possibly the newly ionized O2 molecules that are picked up by the torus flow and hit the surface.The relative contribution of each sputtering ion population has been debated for more than three decades with estimated O2 sputtering rates varying by ~2 order of magnitude. Modelers have historically focused on a single piece of the puzzle: plasma modelers assume a static atmosphere and tend not to check that their sources and losses are consistent with their prescribed atmosphere; while atmospheric modelers neglect the electro-dynamic interaction that diverts torus plasma around the moon, and limits the ion flux to the surface.In this work, we present a first step to compute self-consistently the atmospheric production by the bombardment of the thermal plasma and pickup O2+ ions.1) We calculate the plasma flow around Europa with a MHD model2) We use this flow in a multi-species physical chemistry model of the plasma-atmosphere interaction to compute the ion fluxes into Europa's surface.3) We compute the production rate of O2 resulting from the ice sputtering by thermal and pickup ions and compare the resulting atmospheric source rate to previously published results.

  17. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    SciTech Connect

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  18. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  19. Comparison of Jovian and Terrestrial Lightning as Observed from Space

    NASA Technical Reports Server (NTRS)

    Dyudina, Ulyana A.; Ingersoll, A. P.; Boccippio, Dennis; Arnold, James E. (Technical Monitor)

    2001-01-01

    We compare the images of Jovian lightning taken by Galileo spacecraft with the images of terrestrial lightning observed by Lightning Imaging Spectrometer (LIS) onboard the TERRA spacecraft. Both data sets have good spatial resolution: Galileo's pixel is 25 km, or about half the atmospheric scale height, LIS pixel is 3-6 km, also about half of the scale height. This good resolution allows us to see that both Jovian and terrestrial lightning spots look diffuse because of the scattering in the clouds above. Previously we used the appearance of the diffuse spots on Jupiter to model lightning depths and the opacity and shape of the overlying clouds (Dyudina and Ingersoll, 2000). The comparison with LIS data allowed us to verify that the model is valid for terrestrial lightning. The irregular shapes of large terrestrial lightning suggests 30-km scale horizontal bolts. On Jupiter the spots, projected onto the horizontal plane, are nearly circular suggesting that the large size of the spots is mostly due to the horizontal diffusion of the photons scattered in the clouds. Unlike the Galileo observations, LIS has fine temporal resolution of 2 ms, or about 250 frames per single lightning flash. We will discuss the temporal evolution of terrestrial flashes and its implications for Jupiter.

  20. Infrared observations of the jovian system from voyager 2.

    PubMed

    Hanel, R; Conrath, B; Flasar, M; Herath, L; Kunde, V; Lowman, P; Maguire, W; Pearl, J; Pirraglia, J; Samuelson, R; Gautier, D; Gierasch, P; Horn, L; Kumar, S; Ponnamperuma, C

    1979-11-23

    Infrared spectra obtainedfrom Voyager 2 have provided additional data on the Jovian system, complementing those obtained from Voyager 1. The abundance ratio of ethane to acetylene in Jupiter's atmosphere appears to be about three times larger in the polar regions than at lower latitudes. A decidedly hemispherical asymmetry exists, with somewhat higher ratios prevailing in northern latitudes. An overall increase in the abundance ratio by a factor of about 1.7 appears to have occurred between the Voyager 1 and 2 encounters. Global brightness temperature maps of Jupiter at 226 and 602 cm(-1) exhibit a large amount of local- and planetary-scale structure, as well as temporal variability. Although heterogeneous cloud structure and ammonia concentration in the lower troposphere may contribute to the appearance of the 226-cm(-1) map, the detail in the 602-cm(-1) maps probably represents the actual horizontal thermal structure near the tropopause and suggests that dynamical heating and cooling processes are important. Low-latitude surface temperatures on the Galilean satellites rangefrom approximately 80 K on the dark sides to 155 K at the subsolar point on Callisto. Below a thin insulating layer, the thermal inertia of Callisto is somewhat greater than that of Earth's moon. Upper limits on the infrared optical depth of the Jovian ring rangingfrom approximately 3 x 10(-4) at 250 cm(-1) to 3 x 10(-3) at 600 cm(-1) have been found.

  1. Discovery of Two Jovian Planet Candidates Around AU Mic

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Gao, Peter; Gagne, Jonathan; Tanner, Angelle M.; Furlan, Elise; Brinkworth, Carolyn; von Braun, Kaspar; Ciardi, David R.; Kane, Stephen R.; White, Russel; Johnson, John A.; Hall, Ryan; Giddens, Frank; Zilberman, Perri; Huber, Joe; Nishimoto, America; Cancino, Andrew; Weigand, Denise; Klenke, Christopher

    2017-01-01

    We present a pair of candidate Jovian exoplanets discovered with the radial velocity (RV) technique in the near-infrared (NIR) orbiting the young M dwarf star AU Mic (a ~ 0.3 and 3.5 AU; M_p ~ 1.5 and 6 M_J). Data were obtained at 2.3 microns from 2010-2016 with the R=46,000 CSHELL spectrograph at the NASA Infrared Telescope Facility, and from 2005-2007 with the R=25,000 NIRSPEC spectrograph at the Keck Observatory. AU Mic possesses long-lived BY Draconis type polar starspots with a known rotation period of 4.865 days. No signal in the NIR RVs is identified that is consistent with the rotation period of the star, but stellar activity remains a possible explanation for the observed NIR RV variability. The outer Jovian planet candidate offers a plausible dynamical explanation for the observed debris disk dynamics of moving "clumps" on several year time-scales. It may be possible to directly image the outer planet candidate with the current generation of high contrast imaging instruments. If confirmed, this discovery would demonstrate the utility of RV precursor observations for informing direct imaging surveys and the utility of NIR RV searches for planets around young and/or active stars. These results also point to the promise of future NIR precise RVs, including iSHELL, SPIRou, HPF and CARMENES, which will operate at higher precision and with larger spectral grasp than CSHELL.

  2. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    SciTech Connect

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  3. Zero-{beta} modeling of coaxial helicity injection in the HIT-II spherical torus

    SciTech Connect

    Bayliss, R. A.; Sovinec, C. R.; Redd, A. J.

    2011-09-15

    Coaxial helicity injection in the HIT-II [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] spherical torus is modeled with time-dependent resistive magnetohydrodynamics computations run to steady state for conditions without strong relaxation. Laboratory and computed results on injector current and plasma current agree reasonably well as toroidal magnetic field and injector flux are scaled. The scalings are consistent with a dimensional estimate from the Grad-Shafranov equation that provides a new perspective on a previously published model based on a current-sheet equilibrium and the magnetic pressure required for the ''bubble-burst'' criterion. Numerical solutions of the Grad-Shafranov equation with an assumed current profile also indicate large qualitative changes as the predicted criterion is crossed.

  4. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  5. A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus

    NASA Astrophysics Data System (ADS)

    VanMeter, P. D.; Franz, P.; Reusch, L. M.; Sarff, J. S.; Den Hartog, D. J.

    2016-11-01

    The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phase difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.

  6. Efficient Subtorus Processor Allocation in a Multi-Dimensional Torus

    SciTech Connect

    Weizhen Mao; Jie Chen; William Watson

    2005-11-30

    Processor allocation in a mesh or torus connected multicomputer system with up to three dimensions is a hard problem that has received some research attention in the past decade. With the recent deployment of multicomputer systems with a torus topology of dimensions higher than three, which are used to solve complex problems arising in scientific computing, it becomes imminent to study the problem of allocating processors of the configuration of a torus in a multi-dimensional torus connected system. In this paper, we first define the concept of a semitorus. We present two partition schemes, the Equal Partition (EP) and the Non-Equal Partition (NEP), that partition a multi-dimensional semitorus into a set of sub-semitori. We then propose two processor allocation algorithms based on these partition schemes. We evaluate our algorithms by incorporating them in commonly used FCFS and backfilling scheduling policies and conducting simulation using workload traces from the Parallel Workloads Archive. Specifically, our simulation experiments compare four algorithm combinations, FCFS/EP, FCFS/NEP, backfilling/EP, and backfilling/NEP, for two existing multi-dimensional torus connected systems. The simulation results show that our algorithms (especially the backfilling/NEP combination) are capable of producing schedules with system utilization and mean job bounded slowdowns comparable to those in a fully connected multicomputer.

  7. Surgical resection and prosthetic treatment of an extensive mandibular torus.

    PubMed

    Goncalves, Thais Marques Simek Vega; de Oliveira, Jonas Alves; Sanchez-Ayala, Alfonso; Rodrigues Garcia, Renata Cunha Matheus

    2013-01-01

    The aim of this case report was to describe the surgical removal of an extensive mandibular torus and the conventional prosthetic treatment that was performed. During surgery, the torus was exposed by a intrasulcular lingual incision from molar to contralateral molar side and displacement of the mucoperiosteal flap. The bone volume was carefully removed in three separate blocks by sculpting a groove in the superior lesion area and chiseling. After a 30-day postoperative period, a prosthetic treatment was performed using a conventional distal extension removable partial denture. The patient's esthetic and functional expectations were achieved. The surgical procedure and prosthetic treatment performed in the treatment of the mandibular torus in this clinical case is a viable treatment that produces few complications and re-establishes normal masticatory function.

  8. AGN Survey to characterize the clumpy torus using FORCAST

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, Enrique

    2015-10-01

    A geometrically and optically thick torus of gas and dust obscures the black hole and accretion disk in active galactic nuclei (AGN) in some lines of sight. One of the most important question that still remain uncertain is: How do the properties, such as torus geometry and distribution of clumps, of the torus depend on the AGN luminosity and/or activity class? Infrared (IR) observations are essential to these investigations as the torus intercepts and re-radiates (peaking within 30-40 um) a substantial amount of flux from the central engine. Near-IR (NIR) and mid-IR (MIR) observations from the ground have been key to advance our knowledge in this field. However, the atmosphere is opaque to the 30-40 um range and observations are impossible from ground-based telescopes. FORCAST presents a unique opportunity to explore AGN, providing the best angular resolution observations within the 30-40 um range for the current suite of instruments. From our analysis using Cycle 2 observations, we found that FORCAST provides the largest constraining power of the clumpy torus models in the suggested wavelength range. We therefore request an AGN Survey using FORCAST of snapshot imaging observations of a flux-limited (>500 mJy at 37.1 um) sample of 23 Seyfert galaxies with existing high-angular resolution MIR spectra observed on 8-m class telescopes. Using the FORCAST data requested here in combination with already acquired NIR and MIR data, we will have an unprecedentedly homogeneous AGN sample of IR (1-40 um) SED at the largest spatial-resolution, which yield to a better knowledge of the torus structure in the AGN unified model.

  9. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    SciTech Connect

    Luongo, Cesar; Ballard, Joshua; Biallas, George; Elouadrhiri, Latifa; Fair, Ruben; Ghoshal, Probir; Kashy, Dave; Legg, Robert; Pastor, Orlando; Rajput-Ghoshal, Renuka; Rode, Claus; Wiseman, Mark; Young, Glenn; Elementi, Luciano; Krave, Steven; Makarov, Alexander; Nobrega, Fred; Velev, George

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  10. The CLAS12 torus detector magnet at Jefferson Laboratory

    DOE PAGES

    Luongo, Cesar; Wiseman, Mark A.; Kashy, David H.; ...

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, part of the detector for the 12GeV accelerator upgrade at Jefferson Lab. The coils were wound/fabricated by Fermi Lab, with Jlab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. The study provides an overview of the CLAS12 Torus magnet features, and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  11. Maass Cusp Forms on Singly Punctured Two-Torus

    SciTech Connect

    Siddig, Abubaker Ahmed Mohamed; Shah, Nurisya Mohd; Zainuddin, Hishamuddin

    2009-07-07

    Quantum mechanical systems on punctured surfaces modeled by hyperbolic spaces can play an interesting role in exploring quantum chaos and in studying behaviour of future quantum nano-devices. The case of singly-punctured two-torus, for example, has been well-studied in the literature particularly for its scattering states. However, the bound states on the punctured torus given by Maass cusp forms are lesser known. In this note, we report on the algorithm of numerically computing these functions and we present ten lower-lying eigenvalues for each odd and even Maass cusp forms.

  12. Further observational support for the limited-latitude magnetodisc model of the outer Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Goertz, C. K.

    1981-01-01

    A distinction is made between the solar-wind-influenced limited-latitude magnetodisk and magnetic anomaly models of the outer Jovian magnetosphere, and an observational comparison of the two models is presented based on Pioneer and Voyager measurements. Predictions of the two models concerning the location of the current sheet as a function of Jovigraphic latitude, System III longitude and radial distance are contrasted, and it is shown that both models can satisfactorily explain the merging of the current sheep crossings by Voyager 1 and 2. Variations in the energetic particle intensities observed on the outbound pass of Voyager 1 and 2 are observed to correspond to scale heights for energetic particle latitudinal confinement consistent with MHD calculations and Pioneer 10 and Voyager magnetic observations only when the scale heights are calculated on the basis of the limited-latitude magnetodisk model. It is thus suggested that the solar wind must have a greater influence on magnetosphere structure than internal longitudinal plasma asymmetry.

  13. Dynamics and distribution of Jovian dust ejected from the Galilean satellites

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Sachse, Manuel; Spahn, Frank; Schmidt, Jürgen

    2016-07-01

    In this paper, the dynamical analysis of the Jovian dust originating from the four Galilean moons is presented. High-accuracy orbital integrations of dust particles are used to determine their dynamical evolution. A variety of forces are taken into account, including the Lorentz force, solar radiation pressure, Poynting-Robertson drag, solar gravity, the satellites' gravity, plasma drag, and gravitational effects due to nonsphericity of Jupiter. More than 20,000 dust particles from each source moon in the size range from 0.05 μm to 1 cm are simulated over 8000 (Earth) years until each dust grain hits a sink (moons, Jupiter, or escape from the system). Configurations of dust number density in the Jovicentric equatorial inertial frame are calculated and shown. In a Jovicentric frame rotating with the Sun the dust distributions are found to be asymmetric. For certain small particle sizes, the dust population is displaced towards the Sun, while for certain larger sizes, the dust population is displaced away from the Sun. The average lifetime as a function of particle size for ejecta from each source moon is derived, and two sharp jumps in the average lifetime are analyzed. Transport of dust between the Galilean moons and to Jupiter is investigated. Most of the orbits for dust particles from Galilean moons are prograde, while, surprisingly, a small fraction of orbits are found to become retrograde mainly due to solar radiation pressure and Lorentz force. The distribution of orbital elements is also analyzed.

  14. Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok

    2011-10-01

    A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.

  15. Multilayer mirror and foil filter AXUV diode arrays on CDX-U spherical torus

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Stutman, D.; Iovea, M.; Finkenthal, M.; Moos, H. W.; Munsat, T.; Jones, B.; Hoffman, D.; Kaita, R.; Majeski, R.

    2001-01-01

    Recent upgrades to CDX-U spherical torus diagnostics include two 10-channel AXUV diode arrays. The multilayer mirror (MLM) array measures the λ150 O VI brightness profile in the poloidal plane using the Mo/B4C synthetic multilayer structures as dispersive elements. The foil filter array has a tangential view and is equipped with interchangeable clear aperture, beryllium and titanium filters. This allows measurements of radiated power, O VI or C V radial distributions, respectively. The O VI and C V emissivity and the radiated power profiles are highly peaked. A Neoclassical impurity accumulation mechanism is considered as an explanation. For radiated power measurements in the Te⩽100 eV plasmas, photon energy dependent corrections must be used in order to account for nonlinear AXUV sensitivity in the range Ephot⩽20 eV. The arrays are also used for characterization of resistive MHD phenomena, such as the low m modes, saw-tooth oscillations and internal reconnection events. Based on the successful operation of the diagnostics, a new ultra soft x-ray multilayer mirror diode AXUV diode array monitoring the 34 Å emissivity distribution of C VI will be built and installed on the National Spherical Torus Experiment.

  16. Nonequilibrium viscous flow over Jovian entry probes at high altitudes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Szema, K. Y.; Tiwari, S. N.

    1979-01-01

    The viscous chemical nonequilibrium flow around a Jovian entry body is investigated at high altitudes using two different methods. First method is only for the stagnation region and integrates the full Navier-Stokes equations from the body surface to the freestream. The second method uses viscous shock layer equations between the body surface and the shock. Due to low Reynolds numbers, both methods use surface slip boundary conditions and the second method also uses shock slip boundary conditions. The results of the two methods are compared at the stagnation point. It is found that the entire shock layer is under chemical nonequilibrium at higher altitudes and that the slip boundary conditions are important at these altitudes.

  17. Dynamics and Controls of a Conceptual Jovian Moon Tour Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Mettler, Edward; Langmaier, Jerry K.

    2004-01-01

    The dynamics and control challenges presented by a conceptual Jovian Moon Tour spacecraft are summarized in this paper. Attitude and orbital dynamics interactions are present due to the designed low-thrust trajectory, and controls structure interactions are also present due to the non-collocated sensor-actuator pairs on board the flexible spacecraft. A finite-element based simulation model is described which is capable of handling the complex orbital and attitude dynamics arising during the low-thrust spiraling maneuvers of the spacecraft. A few numerical simulations demonstrate that some of the challenges hitherto identified can be faced via integrated dynamics and control analysis, and that reasonable assessments of the pointing performance can be made.

  18. Astrometry of the inner Jovian moons Thebe, Amalthea, and Metis

    NASA Astrophysics Data System (ADS)

    Kulyk, I.

    2008-11-01

    The paper presents the results of the astrometric observations of the inner Jovian satellites Thebe, Amalthea, and Metis obtained with 2-m Zeiss RCC Telescope located at Peak Terskol Observatory. The 268 inter-satellite positions were gathered during the five-year period between 1998 and 2002. Comparison of the observed positions with those of JPL JUP203 ephemerides demonstrates high quality of the collected observations. The RMS errors of the differences between the observed and the theoretical positions are about 0.10, 0.15, and 0.30 arcsec for Amalthea, Thebe, and Metis, respectively. Thebe and Amalthea's mean residuals are about zero. The dispertion of the mean residuals derived from the data sets obtained in the different years does not exceed 0.04 arcsec. The brief description of the technique for the scattered light subtraction may be useful as an experience of the image processing of a faint object near the bright planet.

  19. Characterizing the Energetic Heavy Ion Environment Inside 4 Jovian Radii

    NASA Astrophysics Data System (ADS)

    Cohen, C. M.; Stone, E. C.

    2004-05-01

    On 21 September 2003 Galileo impacted Jupiter to end its 8-year tour of the Jovian magentosphere. During this last phase data was collected in the very inner part of the magnetosphere at distances < 4 Rj. The region from 2 to 4 Rj was previously explored by Galileo during its 34th orbit around Jupiter. We present the combined data from these two passes obtained by the Heavy Ion Counter (HIC) for heavy ions at energies above 2 MeV/nucleon. In particular we discuss the significant ion absorption near the moons Thebe and Amalthea, the anisotropic pitch angle distribution and the dramatic increase in heavy ion intensity with decreasing radius seen in this region

  20. Jovian satellite Callisto - Possibility and consequences of its explosion

    NASA Astrophysics Data System (ADS)

    Drobyshevski, E. M.

    1989-01-01

    The consequences of an explosion of the envelope of the Jovian satellite Callisto due to the saturation of its ices by electrolysis products are considered. Such an explosion, producing some 10 to the 9th ice fragments with phi of not less than 0.3 km, would provide daily explosions equivalent to greater than 1 Mton of TNT, yearly explosions of greater than 1000 Mton, and centennial explosions of greater than 10 to the 5th Mton as a result of the impact of bodies on the earth. Apart from the heating of the atmosphere and the poisoning of the air by such compounds as HCN and CO, impacts of greater than 10 to the 5th Mton could produce a nuclear winter. Possible sources for impacts that may have been responsible, through such catastrophes, for changes of geological epochs on earth in the past are explored.

  1. Dynamical Evolution of Pedestal Parameters in ELMy H-mode in the National Spherical Torus Experiment

    SciTech Connect

    Diallo, A.; Maingi, Rajesh; Kubota, S.; Sontag, Aaron C; Osborne, T.; Podesta, M.; Bell, R. E.; LeBlanc, B. P.; Menard, J.; Sabbagh, S. A.

    2011-01-01

    Characterizations of the pedestal parameter dynamics throughout the edge localized mode (ELM) cycles are performed on the National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)). A clear buildup of the pedestal height between ELMs is observed for three different plasma currents. This buildup tends to saturate at low and medium plasma currents. Similarly, the pedestal width increases with no clear evidence of saturation during an ELM cycle. The maximum pedestal gradient increases as a function of plasma current, reaches a nominal value after the ELM crash, and remains constant until the end of the ELM cycle. The pedestal height just prior to the onset of ELM is shown to increase quadratically with plasma current. The pedestal width (Delta) scales as Delta = 0.17 root beta(ped)(theta). with the poloidal beta at the top of the pedestal. Coherent density fluctuations strongly increasing at the plasma edge are observed to be maximum after the ELM crash and to decay during the rest of the ELM cycle. Finally, the evolution of the pedestal height and width during the ELM cycle as well as the scaling with I(p) of the pedestal pressure prior to the onset ELM are found to be qualitatively consistent with the peeling-ballooning theory.

  2. Dynamical Evolution of Pedestal Parameters in ELMy H-mode in the National Spherical Torus Experiment

    SciTech Connect

    Diallo, A; Kubota, S; Sontag, A; Osborne, T; Podesta, M; Bell, R E; LeBlanc, B P; Menard, J

    2011-07-27

    Characterizations of the pedestal parameter dynamics throughout the edge localized modes(ELM) cycles are performed on the National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]). A clear buildup of the pedestal height is observed between ELMs for three di erent plasma currents, which tends to saturate prior to the onset of ELM at low and medium plasma current. Similarly, the pedestal width increases with no clear evidence of saturation during an ELM cycle. The maximum pedestal gradient increases as a function of plasma current, reaches a nominal value after the ELM crash, and remains constant until the end of the ELM cycle. The pedestal height just prior to the onset of ELM is shown to increase quadratically with plasma current. The pedestal width Δ is proportional to the square-root of the poloidal Β at the top of the pedestal. Coherent density uctuations strongly increasing at the plasma edge are observed to be maximum after the ELM crash and to decay during the rest of the ELM cycle. Finally, the pedestal parameters evolution during the ELM cycle as well as the scaling with Ip of the pedestal pressure prior to the onset ELM are found to be qualitatively consistent with the peeling ballooning theory.

  3. Fluctuation Measurements on the Madison Symmetric Torus with a Heavy Ion Beam Probe

    NASA Astrophysics Data System (ADS)

    Lei, J.; Schoch, P. M.; Demers, D. R.; Shah, U.; Connor, K. A.; Crowley, T. P.

    2000-10-01

    Measurements of electron density fluctuations (tilden_e) and electrostatic potential fluctuations (tildeφ) on the Madison Symmetric Torus (MST) reversed field pinch (RFP) are undertaken with a newly installed 200keV Heavy Ion beam Probe (HIBP) system. Initial fluctuation signals observed are closely coupled to low frequency MHD activity. tilde φ induced particle transport can be addressed by simultaneous measurements of tildene and tilde φ. Langmuir probes have been used on MST to measure this kind of transport at low plasma current level and at the edge of the plasma. By changing the beam energy and beam injection conditions, the MST-HIBP can provide localized fluctuation measurements at almost all radii for a broad range of plasma parameters, and thus enrich our understanding of turbulent transport in reversed field pinch plasmas. Current working issues include isolating electrostatic fluctuation signals from those caused by magnetic fluctuations, increasing the ion beam intensity to increase signal-to-noise ratios, and looking for the best operational regime (sample volume locations, plasma parameters, etc.) for this diagnostic. *WORK SUPPORTED BY USDOE

  4. Jovian electron propagation in three dimensions of the heliosphere: The Ulysses investigations

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Smith, D. A.; Zhang, M.

    1993-01-01

    We report investigations of Jovian relativistic electrons in the interplanetary medium that provide new insights into both the physical processes by which the Jovian magnetosphere releases its trapped, relativistic electrons into the interplanetary medium, and the modes of their interplanetary propagation. These studies were dependent on the unique postencounter trajectory for Ulysses. The spacecraft remained close to the radial distance of Jupiter (approximately 5.2 AU) and moved southward on the duskside by only approximately 12 deg in heliographic latitude and less than 8 deg in the heliographic azimuth relative to Jupiter for the period of approximately 100 deg days of this study. During this period the nominal Parker spiral interplanetary magnetic field with its alternating polarities sector structure established direct magnetic field line connections frequently between Jupiter and the spacecraft. These unique conditions made it possible to investigate in detail, for approximately four solar rotations, both the Jovian electron burst phenomenon and the continuous, diffusive interplanetary propagation of Jovian electrons.

  5. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    NASA Technical Reports Server (NTRS)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  6. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.; Medley, S. S.; Andre, R.; Phillips, C. K.; Darrow, D. S.; LeBlanc, B. P.; Redi, M. H.; Fisch, N. J.; NSTX Team, Harvey, R. W.; Mau, T. K.; Jaeger, E. F.; Ryan, P. M.; Swain, D. W.; Sabbagh, S. A.; Egedal, J.

    2004-05-01

    Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on

  7. KAM Torus Orbit Prediction from Two Line Element Sets

    DTIC Science & Technology

    2014-03-01

    xi I. Introduction ...Second Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 xi KAM TORUS ORBIT PREDICTION FROM TWO LINE ELEMENT SETS I. Introduction ...motion under the influence of the zonal harmonics J2, J3, J4, and J5 [9, 38]. Modern orbit prediction methods used in the U.S. Space Surveillance

  8. Preliminary Design of JLAB Clas12 Large Superconducting Torus Magnet

    SciTech Connect

    Wang, B; Taylor, C; Zbasnik, J; Dell'Orco, D; Ross, J; Chen, J; Xu, L; Chen, H; Wagner, B; McMullin, J; Pong, R; Juang, T; Wang, M; Carter, C; Quettier, L; Burkert, V; Elouadrhiri, L; Kashy, D; Leung, E; Schneider, W

    2011-06-01

    Hall B at Jefferson Laboratory (JLAB) will need a 6-coil Torus producing a required integral of B-dl for an upgrade 12 GeV beam. In Sept. 2009, Wang NMR was awarded a contract to design, fabricate, assemble, deliver, and test at JLAB this ex citing magnet. The preliminary design review was completed by Dec. 2009 and intermediate design review will be completed by July 2010. Proto type coil construction, production of soldered conductor with SSC cable and final design review will be completed in 2010. We shall describe preliminary design and intermediate design for coil/cryostat, Torus central cylinder (hub), 48 cold mass suspensions, two intercoil support rings, cryocontrol tower, and adapter to Torus coil, magnet quench protection, and charge/ discharge con trol, and the two parallel path cooling design using supercritical helium. Because of coil in-plane and out-of-plane EM forces over these huge thin coils in addition to vacuum load, gravity load, and cool down thermal stress, we shall present the finite element analyses (FEA) on coil structure, 48 cold mass supports, intercoil cold rings, coil/ cryostat vacuum vessel, cryotower cryostat, and Torus hub. Finally, we shall shows that all pressure/ vacuum vessels and its weldment has satisfied ASME code.

  9. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption

    SciTech Connect

    Zuccarello, F. P.; Poedts, S.; Seaton, D. B.; Mierla, M.; Rachmeler, L. A.; Romano, P.; Zuccarello, F. E-mail: Stefaan.Poedts@wis.kuleuven.be E-mail: marilena@oma.be E-mail: Paolo.Romano@oact.inaf.it

    2014-04-20

    Solar filaments are magnetic structures often observed in the solar atmosphere and consist of plasma that is cooler and denser than their surroundings. They are visible for days—even weeks—which suggests that they are often in equilibrium with their environment before disappearing or erupting. Several eruption models have been proposed that aim to reveal what mechanism causes (or triggers) these solar eruptions. Validating these models through observations represents a fundamental step in our understanding of solar eruptions. We present an analysis of the observation of a filament eruption that agrees with the torus instability model. This model predicts that a magnetic flux rope embedded in an ambient field undergoes an eruption when the axis of the flux rope reaches a critical height that depends on the topology of the ambient field. We use the two vantage points of the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory to reconstruct the three-dimensional shape of the filament, to follow its morphological evolution, and to determine its height just before eruption. The magnetograms acquired by SDO/Helioseismic and Magnetic Imager are used to infer the topology of the ambient field and to derive the critical height for the onset of the torus instability. Our analysis shows that the torus instability is the trigger of the eruption. We also find that some pre-eruptive processes, such as magnetic reconnection during the observed flares and flux cancellation at the neutral line, facilitated the eruption by bringing the filament to a region where the magnetic field was more vulnerable to the torus instability.

  10. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  11. Ohmic Flux Consumption During Initial Operation of the NSTX Spherical Torus

    SciTech Connect

    J. Menard; B. LeBlanc; S.A. Sabbagh; M. Bell; R. Bell; E. Fredrickson; D. Gates; S. Jardin; S. Kaye; H. Kugel; R. Maingi; R. Maqueda; D. Mueller; M. Ono; S.Paul; C.H. Skinner; D. Stutman; and the NSTX Research Team.

    2000-10-05

    The spherical tokamak (ST), because of its slender central column, has very limited volt-second capability relative to a standard aspect ratio tokamak of similar plasma cross-section. Recent experiments on the National Spherical Torus Experiment (NSTX) have begun to quantify and optimize the ohmic current drive efficiency in a MA-class ST device. Sustainable ramp-rates in excess of 5MA/sec during the current rise phase have been achieved on NSTX, while faster ramps generate significant MHD activity. Discharges with Ip exceeding 1MA have been achieved in NSTX with nominal parameters: aspect ratio A=1.3--1.4, elongation k=2--2.2, triangularity d=0.4, internal inductance li=0.6, and Ejima coefficient CE=0.35. Flux consumption efficiency results, performance improvements associated with first boronization, and comparisons to neoclassical resistivity are described.

  12. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Kim, YooSung; Shi, Yue-Jiang; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Oh, Soo-Ghee; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of Hα and Hβ radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  13. Design of a dual sensor probe array for internal field measurement in Versatile Experiment Spherical Torus.

    PubMed

    Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y S

    2012-10-01

    A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.

  14. Electron cyclotron emission radiometer upgrade on the Joint European Torus (JET) tokamak

    SciTech Connect

    Luna, E. de la; Sanchez, J.; Tribaldos, V.; Conway, G.; Suttrop, W.; Fessey, J.; Prentice, R.; Gowers, C.; Chareau, J. M.

    2004-10-01

    The capabilities of the Joint European Torus (JET) electron cyclotron emission (ECE) diagnostics have recently been extended with an upgrading of the heterodyne radiometer. The number of channels has been doubled to 96 channels, with a frequency separation corresponding to <1 cm for JET magnetic field gradient, and with a frequency response of 1 MHz. This enhancement has increased the radial coverage of the ECE electron temperature measurements in JET to approximately the full plasma column (limited at R>2.6 m for the X-mode due to harmonic overlap) at almost all magnetic field values used at JET (1.7 T

  15. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  16. Prompt Loss of Energetic Ions during Early Neutral Beam Injection in the National Spherical Torus Experiment

    SciTech Connect

    S.S. Medley; D.S. Darrow; D. Liu; A.L. Roquemore

    2005-03-25

    Early neutral-beam injection is used in the National Spherical Torus Experiment (NSTX) to heat the electrons and slow current penetration which keeps q(0) elevated to avoid deleterious MHD activity and at the same time reduces Ohmic flux consumption, all of which aids long-pulse operation. However, the low plasma current (I{sub p} {approx} 0.5 MA) and electron density (n{sub e} {approx} 1 x 10{sup 13} cm{sup -3}) attending early injection lead to elevated orbit and shine through losses. The inherent orbit losses are aggravated by large excursions in the outer gap width during current ramp-up. An investigation of this behavior using various energetic particle diagnostics on NSTX and TRANSP code analysis is presented.

  17. Diagnostic performance of the beam emission spectroscopy system on the National Spherical Torus Experiment

    SciTech Connect

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S.

    2012-10-15

    The beam emission spectroscopy system on the National Spherical Torus Experiment measures localized density fluctuations on the ion gyroscale. Optical sightlines provide core to edge radial coverage, and the sightlines are aligned to typical pitch angles to maximize cross-field spatial resolution. Sightline images are 2-3 cm, and point spread function calculations indicate image distortion from pitch angle misalignment and atomic state finite lifetimes is minor with a 15% increase in the image size. New generation photodetectors achieve photon noise limited measurements at frequencies up to 400 kHz with refrigerant cooling at -20 Degree-Sign C. Measurements near the pedestal show broadband turbulence up to 100 kHz, and poloidal correlation lengths are about 10 cm. Plasma turbulence signals can be 2-3 orders of magnitude above photon noise and amplifier thermal noise.

  18. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  19. National Spherical Torus Experiment (NSTX) Engineering Overview and Research Results 1999 - 2000

    SciTech Connect

    C. Neumeyer

    2000-10-06

    The NSTX is a new US facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. NSTX achieved first plasma in February 1999, and since that time has completed and commissioned all components and systems within the machine proper. Routine operation with inductively driven plasma current less than or equal to 1MA and flat top less than or equal to 0.3 seconds has been established, and the ohmic characterization phase of the research program is und