Sample records for jpl student programs

  1. Summer Student Research Presentations

    NASA Technical Reports Server (NTRS)

    Casey, Carol (Editor)

    2005-01-01

    In 2005, over 150 undergraduate students and first-year graduate students participated in a variety of research programs coordinated by the Jet Propulsion Laboratory Education Office in conjunction with the Caltech Student- Faculty Programs Office. The programs give students the opportunity to conduct research under the guidance of an experienced mentor for a 10-week period. Students gain valuable experience while contributing to the ongoing goals of JPL. Students are required to submit progress reports and an abstract, and to give an oral presentation of their projects to an audience of JPL staff and other students. This set of abstracts provides brief descriptions of the projects that were conducted by these students and their mentors. A schedule of student talks is also included.

  2. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    A group of Jet Propulsion Laboratory (JPL) engineers are recognized during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  3. JPL initiative on historically black colleges and universities

    NASA Technical Reports Server (NTRS)

    Allen, Lew; Forte, Paul, Jr.; Leipold, Martin H.

    1989-01-01

    Executive order number 12320 of September 15, 1981, established a program designed to significantly increase the participation of historically black colleges and universities (HBCU's) in Federal programs. Because of its geographical remoteness and position as a contractor operated center, JPL had not participated in grant and training programs with the HBCU's. In recognition of JPL's responsibility to the national commitment on behalf of the historically black colleges and universities, an initiative with effective, achievable guidelines and early progress for a better and more productive interaction between JPL and the HBCU's is described. Numerous areas of interaction with the historically black colleges and universities have been identified and are being inplemented. They have two broad objectives: research interactions and faculty/student interactions. Plans and progress to date for each specific area are summarized.

  4. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  5. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

  6. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and his or her JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for more than 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. The American Society of Engineering Education (ASEE) contracts with NASA and manages program recruitment. Over the past several years, we have made attempts to increase the diversity of the participants in the NFFP Program. A great deal of attention has been given to candidates from minority-serving institutions. There were approximately 100 applicants for the 34 positions in 2002. JPL was the first-choice location for more than half of them. Faculty from 16 minority-serving institutions participated as well as four women. The summer began with an orientation meeting that included introduction of key program personnel, and introduction of the fellows to each other. During this welcome, the fellows were briefed on their obligations to the program and to their JPL colleagues. They were also given a short historical perspective on JPL and its relationship to Caltech and NASA. All fellows received a package, which included information on administrative procedures, roster of fellows, seminar program, housing questionnaire, directions to JPL, maps of the local area, and a copy of the JPL Universe (a JPL newsletter). A calendar of events for the 2002 NFFP Program was designed to expose the fellows to the full range of JPL activities, seminars, tours, and trips to NASA Dryden, Goldstone, and Palomar Observatory. Weekly brown-bag lunches were also scheduled. The lunches provided a time for airing problems that may have arisen during the previous week, soliciting suggestions for program enhancement, announcements, and general socializing. Professor and Mrs. Albee also hosted the annual Summer Faculty Welcome Party at their home. During their ten-week tenure at JPL, the visiting faculty carried out projects in a wide variety of JPL's science, engineering, and technology disciplines, including communication, planetary science, materials research, reliability and quality assurance, astronomy, guidance and control, and micro-sensors. At the end of the NFFP Program, all fellows were required to complete a one-page summary of their summer s work. This was in addition to any documentation required by their host organization. Distribution of the final paycheck was dependent upon submission of this one-page summary and completion of NASA's NFFP evaluation in the EdCATS system. Fellows were also asked to complete a questionnaire for JPL, which enables the program administrators to make any appropriate changes to make the program more beneficial and effective for all involved. The 2002 NFFP Program at JPUCaltech was considered unanimously highly successful by both fellows and JPL colleagues. It provided a significant experience to most faculty members and fresh ideas to JPL researchers. Each year, suggestions for improvement include expansion of the program, longer terms, larger stipends, funds to support graduate students, and funds to continue collaborative research. The NASA Faculty Fellowship Program continues to occupy a significant place in JPL programs and serves to strengthen the ties between NASA, JPL, Caltech, and t academic community. This program is an important part of NASA's commitment to education. No inventions or patents were created during this program.

  7. Involving Scientists in the NASA / JPL Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Brunsell, E.; Hill, J.

    2001-11-01

    The NASA / JPL Solar System Educators Program (SSEP) is a professional development program with the goal of inspiring America's students, creating learning opportunities, and enlightening inquisitive minds by engaging them in the Solar System exploration efforts conducted by the Jet Propulsion Laboratory (JPL). SSEP is a Jet Propulsion Laboratory program managed by Space Explorers, Inc. (Green Bay, WI) and the Virginia Space Grant Consortium (Hampton, VA). The heart of the program is a large nationwide network of highly motivated educators. These Solar System Educators, representing more than 40 states, lead workshops around the country that show teachers how to successfully incorporate NASA materials into their teaching. During FY2001, more than 9500 educators were impacted through nearly 300 workshops conducted in 43 states. Solar System Educators attend annual training institutes at the Jet Propulsion Laboratory during their first two years in the program. All Solar System Educators receive additional online training, materials and support. The JPL missions and programs involved in SSEP include: Cassini Mission to Saturn, Galileo Mission to Jupiter, STARDUST Comet Sample Return Mission, Deep Impact Mission to a Comet, Mars Exploration Program, Outer Planets Program, Deep Space Network, JPL Space and Earth Science Directorate, and the NASA Office of Space Science Solar System Exploration Education and Public Outreach Forum. Scientists can get involved with this program by cooperatively presenting at workshops conducted in their area, acting as a content resource or by actively mentoring Solar System Educators. Additionally, SSEP will expand this year to include other missions and programs related to the Solar System and the Sun.

  8. Students, Teachers, and Scientists Partner to Explore Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.

    2003-12-01

    The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they gain through the ASIP program and their participation in the empowerment evaluation, ASIP members will help refine the current program and provide a model for student-scientist research partnerships associated with future space missions to Mars and beyond. Arvidson, R.E., et al. \\(2000\\) Students participate in Mars Sample Return Rover field tests. Eos, 81(11). Crisp, J.A., et al. \\(in press\\) The Mars Exploration Rover Mission. J. Geophys. Research-Planets. Fetterman, D. and C.D. Bowman. \\(2002\\) Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example. J. Experiential Education, 25(2).

  9. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Director Dr. Charles Elachi speaks with teachers and middle school students during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  10. Minority University System Engineering: A Small Satellite Design Experience Held at the Jet Propulsion Laboratory During the Summer of 1996

    NASA Technical Reports Server (NTRS)

    Ordaz, Miguel Angel

    1997-01-01

    The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.

  11. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Julie Townsend, JPL Engineer, talks about her experiences to teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  12. The positive effects of the FIRST high school robotics program

    NASA Astrophysics Data System (ADS)

    McIntyre, Nancy

    The essence of the FIRST Robotics Program comes from the explanation of the acronym, which means For Inspiration and Recognition in Science and Technology. Their vision is to inspire young people, their schools, and communities, an appreciation of science and technology and an understanding that mastering these can enrich the lives of all. Last year I began our school's association with this program. I secured funding from NASA/JPL, attended a workshop and kickoff event, encouraged a team of students, parents, community members, and engineers to come together to design and construct a working, competitive robot in a six week time span. This year I expanded our participation to our 6th grade students. They competed in the FIRST Lego League. As part of my 9th grade science curriculum my students designed and built Panda II in class. The after-school team will submit a 30 second animation, an autocad design, and a team website for competition as well. Our AP art students have been charged with painting our travel crate. I couldn't have been successful without the help and support of a very dedicated JPL engineer who volunteers his time to come to our school to teach our team the technical components.

  13. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, left, and Jet Propulsion Laboratory Director Dr. Charles Elachi lead school students to High Bay One at JPL during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  14. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Director Dr. Charles Elachi, center, and NASA Administrator Charles Bolden, right, lead school students to High Bay One at JPL during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  15. JPL Non-NASA Programs

    NASA Technical Reports Server (NTRS)

    Cox, Robert S.

    2006-01-01

    A viewgraph presentation describing JPL's non-NASA Programs is shown. The contents include: 1) JPL/Caltech: National Security Heritage; 2) Organization and Portfolio; 3) Synergistic Areas of Interest; 4) Business Environment; 5) National Space Community; 6) New Business Environment; 7) Technology Transfer Techniques; 8) Innovative Partnership Program (IPP); and 9) JPL's Track Record.

  16. Career Guidance Training.

    ERIC Educational Resources Information Center

    Young, John E.

    The 1972 Jet Propulsion Laboratory (JPL) Career Training Program was aimed at placing counselors in actual work situations (as new employees) to enable them to experience that which they must describe to students if they are to do an effective job in career counseling. The overall purpose was to give counselors or teachers and administrators an…

  17. Contributions to Educational Structures that Promote Undergraduate Research

    NASA Technical Reports Server (NTRS)

    Sepikas, John; Mijic, Milan; Young, Don; Gillam, Steve

    1997-01-01

    The opportunities for community college and traditionally underrepresented minority students to participate in research experiences are typically rare. Further, what research experiences that are available often underutilizes the students' potential and do not have follow-up programs. The Physics Outreach Program (POP) working in conjunction with the Jet Propulsion Laboratory is designed to reach out to this segment of the student population and encourage them to consider careers in physics and astronomy. The program is special in that it creates a "vertical" consortium or pipeline of schools whereby students graduating from one participating institution will then transfer to another. This helps to insure that participating students will experience continuity and, with the assistance of JPL equipment and staff, a quality of instruction that they would otherwise not be able to afford. Key words. educational outreach, undergraduate research, community college research, underrepresented minority student research

  18. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): A New Model for Promoting Minority Participation in Astronomy Research and Education

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, C. D.; Bieging, J. H.; Phillips, C. B.; Tieu, J.; Prather, E. E.; Povich, M. S.

    2013-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) program represents a new and innovative kind of research program for undergraduates: one that can effectively carry out the goal of recruiting qualified minority and female students to participate in Astronomy and Planetary Science research opportunities, while mentoring them in a way to maximize the chance that these students will persist in obtaining their undergraduate degrees in STEM fields, and potentially go on to obtain their PhDs or pursue careers in those fields. The members of CAMPARE comprise a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and four major research institutions (University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech). Most undergraduate research programs focus on a single research institution. By having multiple institutions, we significantly broaden the opportunities for students, both in terms of breadth of research topics and geographical location. In its first three years, the CAMPARE program has had 20 undergraduates from two CSU campuses, both Hispanic Serving Institutions, take part in research and educational activities at four research institutions, the University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech. Of the 20 participants, 9 are women and 11 are men, a much more even split than is typical in Astronomy research programs; 10 are Hispanic, 2 are African American, and 1 is part Native American, including 2 female Hispanic and 2 female African-American participants, an exceptionally high participation rate (65%) for students from underrepresented minority groups. Of the five participants who have graduated since the program began, two are in graduate programs in Physics or Astronomy, two are pursuing a K-12 teaching credential, and one has enlisted in the Nuclear Propulsion Officer Candidate (NUPOC) program of the U.S. Navy.

  19. Student Participation in Rover Field Trials

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of science, engineering, and technology.

  20. Design of a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Daou, D.; Thaller, M.

    2004-12-01

    Under the sponsorship of the NASA Spitzer Science Center, we have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Science Center Archives, observation planning process, and telescope and instrument capabilities in order to plan observations. They also received fundamental training in infrared astronomy and infrared observational techniques, before they began planning their observing program. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the OSS/NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work with infrared archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. With the goal of leveraging on a well-established teacher professional development, the program serves teachers in the NSF-sponsored Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing Public Affairs and Educational Outreach Department program at the National Optical Astronomy Observatory (NOAO) in Tucson. The program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. There are currently 68 teachers (and their students) participating in TLRBSE with an additional 57 teachers in the still-supported precursor RBSE program. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy, who has been active in both the RBSE and TLRBSE programs. The TLRBSE Project is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation. JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech.

  1. Advanced Technology: It's Available at JPL

    NASA Technical Reports Server (NTRS)

    Edberg, James R.

    1996-01-01

    Non-NASA activities at JPL are the province of the JPL Technology and Applications Programs Directorate, and include working relationships with industry, academia, and other government agencies. Within this Directorate, the JPL Undersea Technology Program endeavors to apply and transfer these capabilities to the area of underwater research and operations. Of particular interest may be a Reversed Electron Attachment Detector (READ). It is a man-portable device capabable of unambiguous detection of unique chemical signatures associated with mines. In addition, there are other JPL technologies which merit investigation for marine applications.

  2. Cost Validation Using PRICE H

    NASA Technical Reports Server (NTRS)

    Jack, John; Kwan, Eric; Wood, Milana

    2011-01-01

    PRICE H was introduced into the JPL cost estimation tool set circa 2003. It became more available at JPL when IPAO funded the NASA-wide site license for all NASA centers. PRICE H was mainly used as one of the cost tools to validate proposal grassroots cost estimates. Program offices at JPL view PRICE H as an additional crosscheck to Team X (JPL Concurrent Engineering Design Center) estimates. PRICE H became widely accepted ca, 2007 at JPL when the program offices moved away from grassroots cost estimation for Step 1 proposals. PRICE H is now one of the key cost tools used for cost validation, cost trades, and independent cost estimates.

  3. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn how to design a mission and build a spacecraft in a collaborative and fast-pace environment.

  4. An Internship Model for Culturally Relevant Success for Native American High School Students

    NASA Astrophysics Data System (ADS)

    Nall, J.; Graham, E. M.

    2004-12-01

    Culturally relevant educational practices can be challenging to implement in the workplace. In an effort to support equity in access to undergraduate internship opportunities for Native American students, NASA Jet Propulsion Laboratory's (JPL) Education Office, Minority Education Initiatives offers a unique approach to supporting students from Native American reservation high schools in Washington State to participate in eight-week technical (Science, Technology, Engineering and Mathematics related) summer internships. This talk will address the Alliance for Learning and Vision for Americans (ALVA) program's twelve years of success based on four programmatic principals, annual review and the critical support of scientists and engineers.

  5. A spaceborne optical interferometer: The JPL CSI mission focus

    NASA Astrophysics Data System (ADS)

    Laskin, R. A.

    1989-08-01

    The JPL Control Structure Interaction (CSI) program is part of the larger NASA-wide CSI program. Within this larger context, the JPL CSI program will emphasize technology for systems that demand micron or sub-micron level control, so-called Micro-Precision Controlled Structures (u-PCS). The development of such technology will make it practical to fly missions with large optical or large precision antenna systems. In keeping with the focused nature of the desired technology, the JPL approach is to identify a focus mission, develop the focus mission CSI system design to a preliminary level, and then use this design to drive out requirements for CSI technology development in the design and analysis, ground test bed, and flight experiment areas.

  6. The MPD thruster program at JPL

    NASA Technical Reports Server (NTRS)

    Barnett, John; Goodfellow, Keith; Polk, James; Pivirotto, Thomas

    1991-01-01

    The main topics covered include: (1) the Space Exploration Initiative (SEI) context; (2) critical issues of MPD Thruster design; and (3) the Magnetoplasmadynamic (MPD) Thruster Program at JPL. Under the section on the SEI context the nuclear electric propulsion system and some electric thruster options are addressed. The critical issues of MPD Thruster development deal with the requirements, status, and approach taken. The following areas are covered with respect to the MPD Thruster Program at JPL: (1) the radiation-cooled MPD thruster; (2) the High-Current Cathode Test Facility; (3) thruster component thermal modeling; and (4) alkali metal propellant studies.

  7. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena Convention Center in Pasadena, California. Although our goals and objectives remain the same, we continue to improve the event, which now includes student staff and student exhibitors. Our poster will give an overview and highlights of the November 16, 2012 event.

  8. JPL-20170915-CASSINf-0002-Cassini End of Mission Post Event Press ConferenceAVAIL

    NASA Image and Video Library

    2017-09-15

    This press briefing summarizes the end of NASA-ESA's Cassini-Huygens mission to Saturn and presents the final images made by the spacecraft before its planned disintegration in Saturn's atmosphere on September 15, 2017. Featured: Earl Maize, Cassini Program Manager, JPL; Linda Spilker, Cassini Project Scientist, JPL; Julie Webster, Cassini Spacecraft operations Manager, JPL; and Thomas Zurbuchen, Associate Administrator, Science Mission Directorate, NASA HQ.

  9. JPL preferred parts list: Reliable electronic components

    NASA Technical Reports Server (NTRS)

    Covey, R. E.; Scott, W. R.; Hess, L. M.; Steffy, T. G.; Stott, F. R.

    1982-01-01

    The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory.

  10. KSC-2011-2275

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – Robotics Engineer Michael Garrett from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., talks about the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. JPL unveiled an inflatable, full-size model of the rover at the competition. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  11. Cassini Scientist for a Day: Encouraging Science Research and Writing for Students on National and International Scales

    NASA Astrophysics Data System (ADS)

    Zimmerman Brachman, R.; Wessen, A.; Piazza, E.

    2011-10-01

    The outreach team for the Cassini mission to Saturn at NASA's Jet Propulsion Laboratory (JPL) runs an international essay contest called "Cassini Scientist for a Day." Students write essays about Saturn and its rings and moons. The program has been run nine times, increasing in scope with each contest. Students in grades 5 to 12 (ages 10 to 18) gain skills in critical thinking, decision-making, researching, asking good questions, and communicating their ideas to scientists. Winners and their classes participate in teleconferencing question-and-answer sessions with Cassini scientists so students can ask questions to professional scientists. Videos of young Cassini scientists are included in the contest reference materials to provide role models for the students. Thousands of students in 50 countries on 6 continents have participated in the essay contest. Volunteers run the international contests outside of the United States, with their own rules, languages, and prizes.

  12. NASA/JPL Solar System Educators Program: Twelve Years of Success and Looking Forward

    NASA Astrophysics Data System (ADS)

    Ferrari, K.; NASA/JPL Solar System Educators Program

    2011-12-01

    Since 1999, the NASA/JPL Solar System Educators Program (SSEP) has been the model of a successful master teacher volunteer program. Integrating nationwide volunteers in this professional development program helped optimize agency funding set aside for education. Through the efforts of these volunteers, teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials, schools added these products to their curriculum and students benefitted. The years since 1999 have brought about many changes. There have been advancements in technology that allow more opportunities for telecon and web based learning methods. Along with those advancements have also come significant challenges. With NASA budgets for education shrinking, this already frugal program has become more spartan. Teachers face their own hardships with school budget cuts, limited classroom time and little support for professional development. In order for SSEP to remain viable in the face of these challenges, the program management, mission funders and volunteers themselves are working together to find ways of maintaining the quality that made the program a success and at the same time incorporate new, cost-effective methods of delivery. The group will also seek new partnerships to provide enhancements that will aid educators in advancing their careers at the same time as they receive professional development. By working together and utilizing the talent and experience of these master teachers, the Solar System Educators Program can enjoy a revitalization that will meet the needs of today's educators at the same time as renewing the enthusiasm of the volunteers.

  13. Interstellar Molecules in K-12 Education

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B. H.; Hofstadter, M. D.; Levin, S. M.; MacLaren, D.

    2006-12-01

    The Lewis Center for Educational Research (LCER) and the Jet Propulsion Laboratory (JPL) collaborate in a K-12 educational project in which students conduct observations for several research programs led by radio astronomers. The Goldstone-Apple Valley Radio Telescope (GAVRT) program provides participating teachers with curriculum elements, based on the students' observing experiences, which support national and state academic standards. The current program is based on 2.2-GHz and 8.4-GHz radiometric observations of variable sources. The research programs monitor Jupiter, Uranus, and a selected set of quasars. The telescope is a decommissioned NASA Deep Space Network antenna at Goldstone, California. In the next three years, a second telescope will be added. This telescope will at least operate at the above frequencies as well as 6 GHz and 12 GHz. Possibly, it will operate in a continuous band from 1.2 GHz to 14 GHz. In either case, the telescope will be able to observe at least the 6.6-GHz and 12.2-GHz methanol maser lines. The success of the GAVRT program depends critically on the participation of scientists committed to the research who have the ability and enthusiasm for interacting with K-12 students, typically through teleconferences. The scientists will initially work with the LCER staff to create curriculum elements around their observing program.

  14. Activities of the Jet Propulsion Laboratory, 1 January - 31 December 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    There are many facets to the Jet Propulsion Laboratory, for JPL is an organization of multiple responsibilities and broad scope, of diverse talents and great enterprise. The Laboratory's philosophy, mission, and goals have been shaped by its ties to the California Institute of Technology (JPL's parent organization) and the National Aeronautics and Space Administration (JPL's principal sponsor). JPL's activities for NASA in planetary, Earth, and space sciences currently account for almost 75 percent of the Laboratory's overall effort. JPL Research activities in the following areas are discussed: (1) deep space exploration; (2) telecommunications systems; (3) Earth observations; (4) advanced technology; (5) defense programs; and (6) energy and technology applications.

  15. Climate Variability Program

    NASA Technical Reports Server (NTRS)

    Halpern, David (Editor)

    2002-01-01

    The Annual Report of the Climate Variability Program briefly describes research activities of Principal Investigators who are funded by NASA's Earth Science Enterprise Research Division. The report is focused on the year 2001. Utilization of satellite observations is a singularity of research on climate science and technology at JPL (Jet Propulsion Laboratory). Research at JPL has two foci: generate new knowledge and develop new technology.

  16. An Undergraduate Summer Research Program Through A University-Community College Partnership: Design and Results

    NASA Astrophysics Data System (ADS)

    Hood, Carol E.; Hood, Michael; Woodney, Laura

    2016-06-01

    We present a model for an undergraduate summer research program in astronomy targeted at 2-year and 4-year students and the short-term success of student participants. California State University San Bernardino (CSUSB) is Hispanic Serving Institution (HSI) serving 16,000 students, with no dominant ethnic or racial majority. Most (80%) CSUSB students are first-generation college students, and many of the students - both minority and “majority” - are economically disadvantaged and cannot afford to take on research projects without compensation. Approximately 60 percent of our students transfer from two year colleges, and all of the local community colleges are also officially designated as minority serving institutions. Mt. San Antonio College (Mt. SAC) is the largest single-campus community college in the state of California. It serves a student population of approximately 60,000 students (~35,000 full-time equivalent), also with no dominant ethnic or racial majority. Mt. SAC is currently 5th in the state in transfer ranking into the CSU system.In an effort to involve students in research as early as possible, we selected 2 students from each campus to participate in a summer research program. This program taught students observational techniques, data reduction and analysis skills, and then allowed them to work on more complex faculty astronomical research projects. These students were not selected based on their grades, or specific courses completed, simply based on their essays expressing their interests in astronomy. Students were only required to have already completed at least 1 physics or astronomy class and typically would be classified as freshman or sophomores. This program ran for 2 summers, before funding ran out. By the end of each summer, students were able to run the state-of-the-art campus observatory, and many chose to continue working on their research projects into the school year. To date, 3 students were selected for further summer research programs at SETI, CIERA, UC-Irvine, and NASA centers JPL and Armstrong. An additional 3 students have obtained employment directly or indirectly related to the skills they developed in the program and 2 of the Mt. SAC students have transferred to 4-year institutions.

  17. The NASA research and technology program on batteries

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The NASA research and technology program on batteries is being carried out within the Propulsion, Power and Energy Division (Code RP) of NASA's Office of Aeronautics, Exploration and Technology (OAET). The program includes development of high-performance, long-life, cost-effective primary and secondary (rechargeable) batteries. The NASA OAET battery program is being carried out at Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). LeRC is focusing primarily on nickel-hydrogen batteries (both individual pressure vessel or IPV and bipolar). LeRC is also involved in a planned flight experiment to test a sodium-sulfur battery design. JPL is focusing primarily on lithium rechargeable batteries, having successfully transferred its lithium primary battery technology to the U.S. Air Force for use on the Centaur upper stage. Both LeRC and JPL are studying advanced battery concepts that offer even higher specific energies. The long-term goal is to achieve 100 Wh/kg.

  18. Telephone-Directory Program

    NASA Technical Reports Server (NTRS)

    Vlahos, William

    2005-01-01

    eDirectory is a computer program that makes it possible to view entries in the Jet Propulsion Laboratory (JPL) telephone directory by use of PalmPilot(TradeMark) (or equivalent) personal digital assistants. When one uses eDirectory, a single click causes the downloading of a current copy of the directory (which is updated nightly) from a server. The downloaded directory data can be sorted and searched. The program can append a "JPL" category and save directory information in a file that can be imported into the Palm Desktop(TradeMark) software.

  19. JPL future missions and energy storage technology implications

    NASA Technical Reports Server (NTRS)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  20. Reading, Writing & Rings: Science Literacy for K-4 Students

    NASA Astrophysics Data System (ADS)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  1. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    NASA Astrophysics Data System (ADS)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  2. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation Institute (engine testing), Thermacore (electrode development), as well as at MIT (plume modeling), and USC (diagnostics). Also, the mission performance of a nuclear-electric propulsion (NEP) Li-LFA Mars cargo vehicle is being modeled by JPL (mission analysis; thruster and power processor modeling) and the Rocketdyne Energy Technology and Engineering Center (ETEC) (power system modeling). Finally, the fusion propulsion research activities that JPL is supporting at Pennsylvania State University (PSU) and at Lawrenceville Plasma Physics (LPP) are aimed at far-term fast (less than 100 day round trip) piloted Mars missions and, in the very far term, interstellar missions.

  3. Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Sander, Michael J.

    2006-01-01

    As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments

  4. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  5. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  6. Capability Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.

  7. JPL's role in the SETI program

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1986-01-01

    The goal of the JPL SETI Team is to develop the strategies and the instrumentation required to carry out an effective, yet affordable, SETI Microwave Observing Program. The primary responsibility for JPL is the development and implementation of the Sky Survey component of the bimodal search program recommended by the SETI Science Working Group (NASA Technical Paper 2244, 1983). JPL is also responsible for the design and implementation of microwave analog instrumentation (including antenna feed systems, low noise RF amplifiers, antenna monitor and control interfaces, etc.) to cover the microwave window for the Sky Survey and the Target Search observations. The primary site for the current SETI Field Test activity is the Venus Station of the Goldstone Deep Space Communication Complex. A SETI controller was constructed and installed so that pre-programmed and real time SETI monitor and control data can be sent to and from the station controller. This unit will be interfaced with the MCSA. A SETI Hardware Handbook was prepared to describe the various systems that will be used by the project at the Venus Station; the handbook is frequently being expanded and updated. The 65,000 channel FFT Spectrum analyzer in the RFI Surveillance System was modified to permit operation with variable resolutions (300 Hz to less than 1 Hz) and with real-time accumulation, which will enhance the capability of the system for testing Sky Survey search strategies and signal detection algorithms.

  8. New reflective symmetry design capability in the JPL-IDEAS Structure Optimization Program

    NASA Technical Reports Server (NTRS)

    Strain, D.; Levy, R.

    1986-01-01

    The JPL-IDEAS antenna structure analysis and design optimization computer program was modified to process half structure models of symmetric structures subjected to arbitrary external static loads, synthesize the performance, and optimize the design of the full structure. Significant savings in computation time and cost (more than 50%) were achieved compared to the cost of full model computer runs. The addition of the new reflective symmetry analysis design capabilities to the IDEAS program allows processing of structure models whose size would otherwise prevent automated design optimization. The new program produced synthesized full model iterative design results identical to those of actual full model program executions at substantially reduced cost, time, and computer storage.

  9. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  10. Emerging Array Antenna Technologies at JPL

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1998-01-01

    JPL/NASA's Earth remote sensing and deep-space exploration programs have been placing emphasis on their spacecraft's high-gain and large-aperture antennas. At the same time, however, low mass and small storage volume are demanded in order to reduce payload weight and reduce shroud size and thus reduce launch cost.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). The TDA Office also performs work funded by other NASA program offices through and with the cooperation of OSC. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve the TDA Office are included.

  12. Temporal Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

  13. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Accomplishments in the DOE program include: continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbine diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 4200 hours; construction of four diode module completed; favorable results obtained from TAM combustor-gas turbine system analyses; and obtained a FERP work function of 2.3 eV with the W(100)-O-Zr-C electrode. JPL program accomplishments include: the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 20 eV (WHK).

  14. Engaging diverse community college students in the geosciences through a year-round career mentoring and research workforce program

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Barge, L. M.; Smith, M.

    2017-12-01

    Student attrition from STEM majors most often occurs in the first or second year of college. To retain underrepresented minority students who are largely enrolled in community colleges in STEM pathways, it is critical to provide hands-on experiences and exposure to STEM occupations in a supportive community, before the students transfer to four-year colleges. The goal of the Bridge to the Geosciences is to provide community college students with year-round career mentoring, exposure to different fields and organizations in the geosciences through small field or research experiences, and community-building within the cohort and in connection with a broader community of scientists. Each year, 20 students from Citrus College in Glendora, California participate in research "geomodules" organized around the planetary, atmospheric, ocean, and environmental science subfields of the geosciences at: (1) the Oak Crest Institute of Science, a chemistry research and diversity-oriented education organization in Monrovia, CA; (2) the NASA Jet Propulsion Laboratory (JPL), a NASA center in Pasadena, CA; (3) the University of Southern California's (USC) Wrigley Institute for Environmental Studies, a research center on Catalina Island; and (4) the University Corporation for Atmospheric Research (UCAR) in Boulder, CO. A peak experience of the program is a ten-day mini-internship at UCAR in Colorado where the students are immersed in atmospheric research, training, fieldwork, and presenting at a premier facility. Professional development, mentoring, science communication and cohort-development are woven across all four geomodules and throughout the year. This program is funded by the National Science Foundation's Improving Undergraduate STEM Education or IUSE program. Preliminary results indicate that the students' interest in the geosciences, confidence in their skills and identify as a scientist, and their sense of belonging to a cohort are increased by participation in this program.

  15. Payload test philosophy. [JPL views on qualification/acceptance testing

    NASA Technical Reports Server (NTRS)

    Gindorf, T.

    1979-01-01

    The general philosophy of how JPL views payload qualification/acceptance testing for programs that are done either in-house or by contractors is described. Particular attention is given to mission risk classifications, preliminary critical design reviews, environmental design requirements, the thermal and dynamics development tests, and the flight spacecraft system test.

  16. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  17. Test Waveform Applications for JPL STRS Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.

    2013-01-01

    This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.

  18. KidSat: Image User's Manual

    NASA Technical Reports Server (NTRS)

    Way, JoBea; Andres, Paul; Baker, John; Goodson, Greg; Marshall, William; McGuire, John; Rackley, Kathleen; Stork, Elizabeth Jones; Yiu, Lisa

    1999-01-01

    The goal of KidSat was to provide young students with the opportunity to participate directly in the NASA space program and to enhance learning in the process. The KidSat pilot project was focused on using a color digital camera, mounted on the space shuttle, to take pictures of the Earth. These could be used to enhance middle school curricula. The project not only benefited middle school students, who were essentially the Science Team, responsible for deciding where to take pictures, but it also benefited high school students and undergraduates, who were essentially the Project Team, responsible for the development and implementation of the project. KidSat flew on three missions as part of the pilot project: STS-76, STS-81, and STS-86. This document describes the goals, project elements, results, and data for the three KidSat missions that made up the pilot program. It serves as a record for this pilot project and may be used as a reference for similar projects. It can also be a too] in using the data to its fullest extent. The KidSat Web page remains on-line at http://kidsat.jpl.nasa.gov/kidsat, and the images may be downloaded in their full resolution.

  19. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  20. Mars Navigator: An Interactive Multimedia Program about Mars, Aerospace Engineering, Astronomy, and the JPL Mars Missions. [CD-ROM

    ERIC Educational Resources Information Center

    Gramoll, Kurt

    This CD-ROM introduces basic astronomy and aerospace engineering by examining the Jet Propulsion Laboratory's (JPL) Mars Pathfinder and Mars Global Surveyor missions to Mars. It contains numerous animations and narrations in addition to detailed graphics and text. Six interactive laboratories are included to help understand topics such as the…

  1. JPL Innovation Foundry

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; McCleese, Daniel J.

    2012-01-01

    NASA supports the community of mission principal investigators by helping them ideate, mature, and propose concepts for new missions. As NASA's Federally Funded Research and Development Center (FFRDC), JPL is a primary resource for providing this service. The environmental context for the formulation lifecycle evolves continuously. Contemporary trends include: more competitors; more-complex mission ideas; scarcer formulation resources; and higher standards for technical evaluation. Derived requirements for formulation support include: stable, clear, reliable methods tailored for each stage of the formulation lifecycle; on-demand access to standout technical and programmatic subject-matter experts; optimized, outfitted facilities; smart access to learning embodied in a vast oeuvre of prior formulation work; hands-on method coaching. JPL has retooled its provision of integrated formulation lifecycle support to PIs, teams, and program offices in response to this need. This mission formulation enterprise is the JPL Innovation Foundry.

  2. Centralized database for interconnection system design. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1989-01-01

    A database application called DFACS (Database, Forms and Applications for Cabling and Systems) is described. The objective of DFACS is to improve the speed and accuracy of interconnection system information flow during the design and fabrication stages of a project, while simultaneously supporting both the horizontal (end-to-end wiring) and the vertical (wiring by connector) design stratagems used by the Jet Propulsion Laboratory (JPL) project engineering community. The DFACS architecture is centered around a centralized database and program methodology which emulates the manual design process hitherto used at JPL. DFACS has been tested and successfully applied to existing JPL hardware tasks with a resulting reduction in schedule time and costs.

  3. Space nuclear safety from a user's viewpoint

    NASA Technical Reports Server (NTRS)

    Campbell, R. W.

    1985-01-01

    The National Aeronautics and Space Administration (NASA) launched the Jet Propulsion Laboratory's (JPL) two Voyager spacecraft to Jupiter in 1977, each using three radioisotope thermoelectric generators (RTGs) supplied by the Department of Energy (DOE) for onboard electric power. In 1986 NASA will launch JPL's Galileo spacecraft to Jupiter equipped with two DOE supplied RTGs of an improved design. NASA and JPL are also responsible for obtaining a single RTG of this type from DOE and supplying it to the European Space Agency as part of its participation in the International Solar Polar Mission. As a result of these missions, JPL has been deeply involved in space nuclear safety as a user. This paper will give a brief review of the user contributions by JPL - and NASA in general - to the nuclear safety processes and relate them to the overall nuclear safety program necessary for the launch of an RTG. The two major safety areas requiring user support are the ground operations involving RTGs at the launch site and the failure modes and probabilities associated with launch accidents.

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Operations (OSO). The TDA Office also performs work funded by two other NASA program offices through and with the cooperation of the OSO. These are the Orbital Debris Radar Program and 21st Century Communication Studies.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) in the following areas: space communications, radio navigation, radio science, and ground-based radio and radar astronomy. This document also reports on the activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). The TDA Office also performs work funded by another NASA program office through and with the cooperation of OSC. This is the Orbital Debris Radar Program with the Office of Space Systems Development.

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  8. Electric vehicle chassis dynamometer test methods at JPL and their correlation to track tests

    NASA Technical Reports Server (NTRS)

    Marte, J.; Bryant, J.

    1983-01-01

    Early in its electric vehicle (EV) test program, JPL recognized that EV test procedures were too vague and too loosely defined to permit much meaningful data to be obtained from the testing. Therefore, JPL adopted more stringent test procedures and chose the chassis dynamometer rather than the track as its principal test technique. Through the years, test procedures continued to evolve towards a methodology based on chassis dynamometers which would exhibit good correlation with track testing. Based on comparative dynamometer and track test results on the ETV-1 vehicle, the test methods discussed in this report demonstrate a means by which excellent track-to-dynamometer correlation can be obtained.

  9. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    NASA Technical Reports Server (NTRS)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-01-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  10. Ada and the rapid development lifecycle

    NASA Technical Reports Server (NTRS)

    Deforrest, Lloyd; Gref, Lynn

    1991-01-01

    JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.

  11. Study Program to Determine the Acceleration Environment Capability of the GG159C Gas- Bearing Spinmotor Final Report

    NASA Technical Reports Server (NTRS)

    Erickson, G. J.

    1964-01-01

    The goal of this contract was to determine the g environment under which the GC159C Gas-Bearing Spinmotor (GBSM) could reliably operate. This was fulfilled by building and testing of four GBSM's, a test fixture, and a "dummy" gyro. The test program was divided into two phases when a gas bearing improvement was required to withstand JPL shock requirement of 200 g. Phase I determined existing g capabilities and performance of the GC159C GBSM and gimbal-case structure. Phase II increased GBSM capability to meet required JPL g environments. Life tests were run on two GBSM's which were shocked at a high level to obtain bearing contact while rotating at their operating speed of 23,000 rpm. A third (nonoperating) GBSM was exposed to JPL maximum shock levels, and a fourth (nonoperating) GBSM was exposed to random vibration. Both nonoperating GBSM's were then subjected to life testing.

  12. Program listing for fault tree analysis of JPL technical report 32-1542

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    The computer program listing for the MAIN program and those subroutines unique to the fault tree analysis are described. Some subroutines are used for analyzing the reliability block diagram. The program is written in FORTRAN 5 and is running on a UNIVAC 1108.

  13. Comets: Very Eccentric Characters

    NASA Technical Reports Server (NTRS)

    Kwok, Enoch; Fisher, Diane

    1999-01-01

    Astronomical distances, even within our own solar system, are very difficult for anyone, let alone children, to imagine. In this month's space-program-related activity, students have the opportunity to create a visual and kinesthetic model of the solar system on a scale that may begin to inspire an awed comprehension of how big space is and how small Earth is. In addition, they will learn a little basic geometry in demonstrating for themselves the difference between a circular planetary orbit and an elongated elliptical cometary orbit. As a space exploration first the Jet Propulsion Laboratory (JPL), under contract to the National Aeronautics and Space Administration (NASA), is planning to send a spacecraft to rendezvous with and land on a comet. The Space Technology 4/Champollion mission is part of NASA's New Millennium Program, the primary goal of which is to test new technologies for use in 21st century planetary and earth observing missions.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  15. Free-Space Optical Communications Program at JPL

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1999-01-01

    Conceptual design of a multi-functional optical instrument is underway for the X2000-Second Delivery Program. The transceiver will perform both free-space optical-communication and science imaging by sharing a common 10-cm aperture telescope.

  16. Preparing to Install APXS Sensor Head

    NASA Image and Video Library

    2009-10-13

    Grad student Nicholas Boyd left and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, prepare for the installation of the Alpha Particle X-ray Spectrometer sensor head during testing at NASA JPL.

  17. Climate Science Program at California State University, Northridge

    NASA Astrophysics Data System (ADS)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical Information System (GIS). In addition the Geography department will similarly update the corresponding graduate courses on Remote Sensing, Geog 690D, and Climate Change Geog 620F, and there will be a reciprocal curriculum and data sharing collaboration with the Earth and Environmental Sciences program at Santa Monica College. Throughout the academic year a seminar series offers the students the opportunity to learn about ongoing work on Atmospheric Sciences and Climate and during the summer they have access to research experiences at NASA's Jet Propulsion Laboratory.

  18. DAQ: Software Architecture for Data Acquisition in Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Ahmad, Mohammad; Tran, Thanh; Nichols, Heidi; Bowles-Martinez, Jessica N.

    2011-01-01

    A multithreaded software application was developed by Jet Propulsion Lab (JPL) to collect a set of correlated imagery, Inertial Measurement Unit (IMU) and GPS data for a Wallops Flight Facility (WFF) sounding rocket flight. The data set will be used to advance Terrain Relative Navigation (TRN) technology algorithms being researched at JPL. This paper describes the software architecture and the tests used to meet the timing and data rate requirements for the software used to collect the dataset. Also discussed are the challenges of using commercial off the shelf (COTS) flight hardware and open source software. This includes multiple Camera Link (C-link) based cameras, a Pentium-M based computer, and Linux Fedora 11 operating system. Additionally, the paper talks about the history of the software architecture's usage in other JPL projects and its applicability for future missions, such as cubesats, UAVs, and research planes/balloons. Also talked about will be the human aspect of project especially JPL's Phaeton program and the results of the launch.

  19. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  20. DARPA DTN Phase 3 Core Engineering Support

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Richard Borgen, Richard; McKelvey, James; Segui, John; Tsao, Phil

    2010-01-01

    This report covers the initial DARPA DTN Phase 3 activities as JPL provided Core Engineering Support to the DARPA DTN Program, and then further details the culmination of the Phase 3 Program with a systematic development, integration and test of a disruption-tolerant C2 Situation Awareness (SA) system that may be transitioned to the USMC and deployed in the near future. The system developed and tested was a SPAWAR/JPL-Developed Common Operating Picture Fusion Tool called the Software Interoperability Environment (SIE), running over Disruption Tolerant Networking (DTN) protocols provided by BBN and MITRE, which effectively extends the operational range of SIE from normal fully-connected internet environments to the mobile tactical edges of the battlefield network.

  1. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in existence for over two years and has been used by teachers and students from across the US. The Mars Exploration Student Data Team Program was created and prototyped during the Mars Exploration Rover mission this past January through April. Over 500 students from 25 schools from across the US participated in real-time data analysis using the Mars Odyssey and Mars Global Surveyor infrared instruments -Thermal Emission Spectrometer - TES and THEMIS to monitor the rover landing sites. This program utilized a virtual team format and allowed high school students to collaborate with other teams that were, at times, thousands of miles away to implement real-time observations. This program will be carried forward to several of the upcoming missions. Finally, the Athena Student Intern Program is the higher end of involvement for students and teachers. These students and teachers were competitively selected to spend a week during the mission operations of the rovers at JPL. All of these programs have a common thread..ownership of the experience. By empowering the next generation of learners with the knowledge that they can be part of their future through such immersive experiences before they reach college, they will be ready to take on harder challenges that will reach higher towards new frontiers

  2. Asynchronous Messaging and Data Transfer in a Spacecraft: An Implementation

    NASA Technical Reports Server (NTRS)

    Moholt, Joseph M.

    2005-01-01

    Data transfer and messaging is an important part of a spacecraft. Creating a standard protocol for messaging that can be used for a variety of applications is an extremely beneficial project at the Jet Propulsion Laboratory (JPL). The Asynchronous Messaging Service (AMS) is a protocol outlining how subsystems initialize and conduct communication between each other. There are currently two implementations of AMS in the works. At JPL, my task is to get a working implementation of AMS onto vxWorks as a proof of concept. An Autocoder, a program used to convert visually created state chart diagrams to C++, has also been created to accomplish a part of the implementation. I was assigned to make the program portable on any Unix type environment. Lastly, I was to develop a program to demonstrate messaging between two FireWire cards running vxworks.

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on the activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data, information systems, and reimbursable DSN work performed for other space agencies through NASA.

  4. A new state space model for the NASA/JPL 70-meter antenna servo controls

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA.

  6. Publications of the Jet Propulsion Laboratory, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature.

  7. Spacecraft load, design and test philosophies

    NASA Technical Reports Server (NTRS)

    Wada, B. K.

    1986-01-01

    The development of spacecraft loads, design and test philosophies at the Jet Propulsion Laboratory (JPL) during the past 25 years is presented. Examples from the JPL's Viking, Voyager and Galileo spacecraft are used to explain the changes in philosophy necessary to meet the program requirements with a reduction in cost and schedule. Approaches to validate mathematical models of large structures which can't be ground tested as an overall system because of size and/or adverse effects of terrestrial conditions such as gravity are presented.

  8. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  9. Artwork Separation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Under a grant from California Institute of Technology, Jet Propulsion Laboratory (JPL) and LACMA (Los Angeles County Museum of Art) used image enhancement techniques to separate x-ray images of paintings when one had been painted on top of another. The technique is derived from computer processing of spacecraft-acquired imagery, and will allow earlier paintings, some of which have been covered for centuries, to be evaluated. JPL developed the program for "subtracting" the top painting and enhancing the bottom one, and believes an even more advanced system is possible.

  10. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  11. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    NASA Headquarters Public Affairs Officer Steve Cole, standing, moderates a Orbiting Carbon Observatory-2 (OCO-2) briefing with (from left), Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters, Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, Mike Gunson, OCO-2 project scientist with JPL, and Annmarie Eldering, OCO-2 deputy project scientist JPL, , Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  12. JPL Innovation Foundry

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; McCleese, Daniel

    2012-01-01

    Space science missions are increasingly challenged today: in ambition, by increasingly sophisticated hypotheses tested; in development, by the increasing complexity of advanced technologies; in budgeting, by the decline of flagship-class mission opportunities; in management, by expectations for breakthrough science despite a risk-averse programmatic climate; and in planning, by increasing competition for scarce resources. How are the space-science missions of tomorrow being formulated? The paper describes the JPL Innovation Foundry, created in 2011, to respond to this evolving context. The Foundry integrates methods, tools, and experts that span the mission concept lifecycle. Grounded in JPL's heritage of missions, flight instruments, mission proposals, and concept innovation, the Foundry seeks to provide continuity of support and cost-effective, on-call access to the right domain experts at the right time, as science definition teams and Principal Investigators mature mission ideas from "cocktail napkin" to PDR. The Foundry blends JPL capabilities in proposal development and concurrent engineering, including Team X, with new approaches for open-ended concept exploration in earlier, cost-constrained phases, and with ongoing research and technology projects. It applies complexity and cost models, projectformulation lessons learned, and strategy analyses appropriate to each level of concept maturity. The Foundry is organizationally integrated with JPL formulation program offices; staffed by JPL's line organizations for engineering, science, and costing; and overseen by senior Laboratory leaders to assure experienced coordination and review. Incubation of each concept is tailored depending on its maturity and proposal history, and its highest leverage modeling and analysis needs.

  13. Status of Fundamental Physics Program

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.

    2003-01-01

    Update of the Fundamental Physics Program. JEM/EF Slip. 2 years delay. Reduced budget. Community support and advocacy led by Professor Nick Bigelow. Reprogramming led by Fred O Callaghan/JPL team. LTMPF M1 mission (DYNAMX and SUMO). PARCS. Carrier re baselined on JEM/EF.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publiction provides archival reports on developments in programs managed by JPL Telecommunications and Mission Operations Directorate (TMOD), which now includes the former communications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The Orbital Debris Radar Program, funded by the Office of Space Systems Development, makes use of the planetary radar capability when the antennas are configured at science instruments making direct observations of planets, their satellites, and asteroids of our solar system.

  16. Description of data base management systems activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    One of the major responsibilities of the JPL Computing and Information Services Office is to develop and maintain a JPL plan for providing computing services to the JPL management and administrative community that will lead to improved productivity. The CISO plan to accomplish this objective has been titled 'Management and Administrative Support Systems' (MASS). The MASS plan is based on the continued use of JPL's IBM 3032 Computer system for administrative computing and for the MASS functions. The current candidate administrative Data Base Management Systems required to support the MASS include ADABASE, Cullinane IDMS and TOTAL. Previous uses of administrative Data Base Systems have been applied to specific local functions rather than in a centralized manner with elements common to the many user groups. Limited capacity data base systems have been installed in microprocessor based office automation systems in a few Project and Management Offices using Ashton-Tate dBASE II. These experiences plus some other localized in house DBMS uses have provided an excellent background for developing user and system requirements for a single DBMS to support the MASS program.

  17. The CUREA 1996 Summer Program in Astrophysics at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Snider, Joe; Faison, Michael

    1996-05-01

    The Consortium for Undergraduate Research and Education in Astronomy (CUREA) will present its hands-on course in astrophysics and observational astronomy at Mount Wilson Observatory for the seventh time, from August 7-20, 1996. Students and staff live and work at the Observatory, situated in the San Gabriel Mountains above Los Angeles. This is a beautiful site at which the atmospheric seeing conditions are equal to the best in the world. This poster paper presents in text and photographs some of the highlights of past programs. During the program informal discussions led by staff members provide the necessary background for using the following facilities: the Snow Horizontal Solar Telescope, which was the first major solar telescope in the world and the first telescope to be installed on Mount Wilson when G.E.Hale founded the Observatory; a high-resolution Littrow pit spectrograph; a 6-inch diffraction-limited refractor and 24- inch reflector; a photometer and a CCD detector; a unique atomic-beam apparatus for recording solar 5-minute oscillations; and this summer for the first time, the historic 100-inch Hooker Telescope. Attention is devoted to many observable solar phenomena, such as sunspots, granulation, limb darkening, important spectral lines, Zeeman splitting of solar lines, and the measurement of solar rotation using the Doppler shift of a spectral line. Nighttime observing includes celestial objects such as the Moon, planets, variable stars, clusters, galaxies and other deep-sky objects. Students learn how to process celestial photographs and spectral plates in the darkroom. Each student works on a special project she or he has chosen, and reports on it at the end of the program. Tours of research projects on the mountain, talks by visiting astronomers and field trips to JPL, Cal Tech and Palomar are included.

  18. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  19. 1st NASA Electronic Parts Packaging (NEPP) Program Electronic Technology Workshop (ETW)

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    NEPP supports all of NASA for >20 years - 7 NASA Centers and JPL actively participate The NEPP Program focuses on the reliability aspects of electronic devices - Three prime technical areas: Parts (die), Packaging, and Radiation Alternately, reliability may be viewed as: -

  20. Wind-Driven Montgolfiere Balloons for Mars

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  1. KSC-2011-2273

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  2. KSC-2011-2274

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  3. KSC-2011-2276

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  4. Probing below the Surface of Mars. ITEA/NASA-JPL Learning Activity.

    ERIC Educational Resources Information Center

    Urquhart, Mary; Urquhart, Sally

    2000-01-01

    This activity, developed by NASA's Jet Propulsion Laboratory, involves students in recording and graphing temperature data to learn about NASA's Mars Microprobe Mission, Deep Space 2, and how the properties of a material affect the transfer of heat. (Author/JOW)

  5. EDI at the Jet Propulsion Laboratory Library

    NASA Technical Reports Server (NTRS)

    Amago, B.

    1994-01-01

    The JPL Library and Information Center orders and claims material elecronically whenever feasible. The NASA Aerospace Research Information Network (ARIN) is used to order books for the library collection; BIP Plus on CD-ROM is used to order office copies. Paper copies of invoices are processed when material is received. Subscriptions are ordered using the vendor's online system; monthly and annual invoices are received both in paper and electronic format (diskette of FTP). Library-developed dbase programs complement or duplicate functions available through ARIN and/or the JPL institutional accounting system.

  6. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters, left, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, right, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    A compilation is presented of articles on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition. In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network are reported in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations are reported for searching the microwave spectrum.

  8. Environmental projects. Volume 16: Waste minimization assessment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the MoJave Desert, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), the world's largest and most sensitive scientific telecommunications and radio navigation network. The Goldstone Complex is operated for NASA by the Jet Propulsion Laboratory. At present, activities at the GDSCC support the operation of nine parabolic dish antennas situated at five separate locations known as 'sites.' Each of the five sites at the GDSCC has one or more antennas, called 'Deep Space Stations' (DSS's). In the course of operation of these DSS's, various hazardous and non-hazardous wastes are generated. In 1992, JPL retained Kleinfelder, Inc., San Diego, California, to quantify the various streams of hazardous and non-hazardous wastes generated at the GDSCC. In June 1992, Kleinfelder, Inc., submitted a report to JPL entitled 'Waste Minimization Assessment.' This present volume is a JPL-expanded version of the Kleinfelder, Inc. report. The 'Waste Minimization Assessment' report did not find any deficiencies in the various waste-management programs now practiced at the GDSCC, and it found that these programs are being carried out in accordance with environmental rules and regulations.

  9. The JPL Library information retrieval system

    NASA Technical Reports Server (NTRS)

    Walsh, J.

    1975-01-01

    The development, capabilities, and products of the computer-based retrieval system of the Jet Propulsion Laboratory Library are described. The system handles books and documents, produces a book catalog, and provides a machine search capability. Programs and documentation are available to the public through NASA's computer software dissemination program.

  10. LDR structural technology activities at JPL

    NASA Technical Reports Server (NTRS)

    Wada, Ben

    1988-01-01

    The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.

  11. Pluto Fast Flyby: An Overview of the Mission and Spacecraft Design, Advanced Technology Insertion Efforts, and Student Involvement Opportunities

    NASA Technical Reports Server (NTRS)

    Abraham, D. S.; Staehle, R.; Brewster, S.; Caldwell, D.; Carraway, J.; Henry, P.; Herman, M.; Kissel, G.; Peak, S.; Randolph, V.; hide

    1994-01-01

    In an effort to complete the initial reconnanissance of our solar system, the Jet Propulsion Laboratory (JPL) is designing a mission to send two very small spacecraft to explore Pluto and its moon, Charon.

  12. Results of the 1980 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Seaman, C. H.; Weiss, R. S.

    1981-01-01

    Thirty-eight modules were carried to an altitude of about 36 kilometers. In addition to the cell calibration program, an experiment to evaluate the calibration error versus altitude was performed. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.

  13. Crazy Engineering Starshade and Coronagraph

    NASA Image and Video Library

    2016-04-26

    Episode 7 of Crazy Engineering series. Host Mike Meacham, Mechanical Engineer at JPL, learns about the two technologies NASA is investing in to image exoplanets: the Starshade and the Coronagraph. Mike interviews Nick Siegler, Program Chief Technologist, NASA Exoplanet Program in the Starshade lab and the High Contrast Imaging Testbed lab.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition are presented. Emphasis is placed on activities of the Deep Space Network and its associated ground facilities.

  15. A Non-science Major Undergraduate Seminar on the NASA Earth Observing System (EOS): A Student Perspective

    NASA Astrophysics Data System (ADS)

    Weatherford, V. L.; Redemann, J.

    2003-12-01

    Titled "Observing Climate Change From Space-what tools do we have?", this non-science major freshman seminar at UCLA is the culmination of a year-long interdisciplinary program sponsored by the Institute of the Environment and the College Honors programs at the University. Focusing on the anthropogenic and natural causes of climate change, students study climate forcings and learn about satellite and other technological means of monitoring climate and weather. NASA's Terra satellite is highlighted as one of the most recent and comprehensive monitoring systems put into space and the role of future NASA platforms in the "A-train"-constellation of satellites is discussed. Course material is typically presented in a Power-Point presentation by the instructor, with assigned supplementary reading to stimulate class discussion. In addition to preparing lectures for class presentation, students work on a final term paper and oral presentation which constitutes the majority of their grade. Field trips to the San Gabriel mountains to take atmospheric measurements with handheld sunphotometers and to JPL, Pasadena (CA) to listen to a NASA scientist discuss the MISR instrument aboard the Terra satellite help bring a real-world perspective to the science learned in the classroom. In this paper, we will describe the objectives and structure of this class and present measurement results taken during the field trip to the San Gabriel Mountains. In this context we will discuss the potential relevance of hands-on experience to meeting class objectives and give a student perspective of the overall class experience.

  16. Proceeding With Caution

    NASA Technical Reports Server (NTRS)

    2002-01-01

    E-ViEWS was developed with assistance from the Technology Affiliates Program at NASA's Jet Propulsion Laboratory (JPL). The system incorporates JPL expertise in the areas of systems engineering, transportation systems, antennas, controls, optical displays, and mechanical systems. It consists of three modules that streamline traffic flow in the presence of emergency vehicles, and act as a guardrail to protect today's motorists from distractions that could result in serious accidents. Although emergency vehicles use sirens and flashing lights to warn others as they rapidly pass through intersections, some drivers may be oblivious to the emergency situation at hand, due to factors such as car radios, cellular phones, air conditioning, rolled-up windows, vehicle sound proofing, and hearing impairment. The company has also the company has launched testing efforts for Intellirail, a highly intelligent locomotive warning system that is based on the JPL/E-ViEWS preemption emergency vehicle platform.

  17. A modeling analysis program for the JPL table mountain Io sodium cloud

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Goldberg, B. A.

    1985-01-01

    Progress and achievements in the first year are discussed in three main areas: (1) review and assessment of the massive JPL Table Mountain Io sodium cloud data set, (2) formulation and execution of a plan to perform further processing of this data set, and (3) initiation of modeling activities. The complete 1976-79 and 1981 data sets are reviewed. Particular emphasis is placed on the superior 1981 Region B/C images which provide a rich base of information for studying the structure and escape of gases from Io as well as possible east-west and magnetic longitudinal asymmetries in the plasma torus. A data processing plan is developed and is undertaken by the Multimission Image Processing Laboratory of JPL for the purpose of providing a more refined and complete data set for our modeling studies in the second year. Modeling priorities are formulated and initial progress in achieving these goals is reported.

  18. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA

    2015-08-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, instructors, students and the public.

  19. Mentoring, Type, and Coping with Change

    NASA Technical Reports Server (NTRS)

    Fairhurst, A.; Garcia, M.

    1994-01-01

    Formal mentoring programs can help meet organizational goals. A case study at JPL illustrates the dey elements of a successful mentoring program. In the full-day training session, interpretation of two tools (the Meyers-Brigg Type Indicator and Invest in Your Values) helps participants to understand and appreciate the wide range of human norms. Career training within the program helps individuals cope with change.

  20. Satellite and terrestrial narrow-band propagation measurements at 2.05 GHz

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arv; Vogel, Wolf

    1995-01-01

    A series of satellite and terrestrial propagation measurements were conducted on 15 and 16 Dec. 1994 in the vicinity of the Jet Propulsion Laboratory (JPL), Pasadena, California, in support of the VOA/JPL DBS-Radio Program. The reason for including terrestrial measurements was the possible use of terrestrial boosters to improve reception in some satellite digital audio broadcasting system service areas. The signal sources used were the NASA TDRS satellite located at 171 degrees West and a terrestrial transmitter located on a high point on JPL property. Both signals were unmodulated carriers near 2.05 GHz, spaced a few kHz apart so that both could be received simultaneously by a single receiver. An unmodulated signal was used in order to maximize the dynamic range of the signal strength measurement. A range of greater than 35 dB was achieved with the satellite signal, and over 50 dB was achieved with the terrestrial signal measurements. Three test courses were used to conduct the measurements: (1) a 33 km round trip drive from JPL through Pasadena was used to remeasure the propagation of the satellite signal over the path previously used in DBS-Radio experiments in mid 1994. A shortened portion of this test course, approximately 20 km, was used to measure the satellite and terrestrial signals simultaneously; (2) a 9 km round trip drive through JPL property, going behind buildings and other obstacles, was used to measure the satellite and terrestrial signals simultaneously; and (3) a path through one of the buildings at JPL, hand carrying the receiver, was also used to measure the satellite and terrestrial signals simultaneously.

  1. Program for Continued Development and Use of Ocean Acoustic/GPS Geodetic Techniques

    NASA Technical Reports Server (NTRS)

    Spiess, Fred N.

    1997-01-01

    Under prior NASA grants our group, with collaboration from scientists at the CalTech Jet Propulsion Lab (JPL), visualized and carried out the initial development of a combined GPS and underwater acoustic (GPS/A) method for determining the location of points on the deep sea floor with accuracy relevant to studies of crustal deformation. Under an immediately preceding grant we built, installed and surveyed a set of the necessary seafloor marker precision transponders just seaward of the Cascadia Subduction Zone off British Columbia. The JPL group carried out processing of the GPS data.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DS) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.

  4. Securing Ground Data System Applications for Space Operations

    NASA Technical Reports Server (NTRS)

    Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan

    2014-01-01

    The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  6. Results of the 1984 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1984-01-01

    The 1984 solar cell calibration balloon flight was successfully completed on July 19, meeting all objectives of the program. Thirty-six modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  7. Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1986-01-01

    The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  8. Results of the 1982 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1983-01-01

    The 1982 solar cell calibration balloon flight was successfully completed on July 21, meeting all objectives of the program. Twenty-eight modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  9. Mariner Jupiter/Saturn LCSSE thruster/valve assembly and injection propulsion unit rocket engine assemblies: 0.2-lbf T/VA development and margin limit test report

    NASA Technical Reports Server (NTRS)

    Clark, E. C.

    1975-01-01

    Thruster valve assemblies (T/VA's) were subjected to the development test program for the combined JPL Low-Cost Standardized Spacecraft Equipment (LCSSE) and Mariner Jupiter/Saturn '77 spacecraft (MJS) programs. The development test program was designed to achieve the following program goals: (1) demonstrate T/VA design compliance with JPL Specifications, (2) to conduct a complete performance Cf map of the T/VA over the full operating range of environment, (3) demonstrate T/VA life capability and characteristics of life margin for steady-state limit cycle and momentum wheel desaturation duty cycles, (4) verification of structural design capability, and (5) generate a computerized performance model capable of predicting T/VA operation over pressures ranging from 420 to 70 psia, propellant temperatures ranging from 140 F to 40 F, pulse widths of 0.008 to steady-state operation with unlimited duty cycle capability, and finally predict the transient performance associated with reactor heatup during any given duty cycle, start temperature, feed pressure, and propellant temperature conditions.

  10. A global station coordinate solution based upon camera and laser data - GSFC 1973

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Klosko, S. M.

    1973-01-01

    Results for the geocentric coordinates of 72 globally distributed satellite tracking stations consisting of 58 cameras and 14 lasers are presented. The observational data for this solution consists of over 65,000 optical observations and more than 350 laser passes recorded during the National Geodetic Satellite Program, the 1968 Centre National d'Etudes Spatiales/Smithsonian Astrophysical Observatory (SAO) Program, and International Satellite Geodesy Experiment Program. Dynamic methods were used. The data were analyzed with the GSFC GEM and SAO 1969 Standard Earth Gravity Models. The recent value of GM = 398600.8 cu km/sec square derived at the Jet Propulsion Laboratory (JPL) gave the best results for this combination laser/optical solution. Solutions are made with the deep space solution of JPL (LS-25 solution) including results obtained at GSFC from Mariner-9 Unified B-Band tracking. Datum transformation parameters relating North America, Europe, South America, and Australia are given, enabling the positions of some 200 other tracking stations to be placed in the geocentric system.

  11. Deep Impact's EPO Program: Final Report

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; McLaughlin, S.; Behne, J.; Ristvey, J.; Rountree-Brown, M.

    2006-09-01

    NASA's Deep Impact mission sent an impactor spacecraft into the path of periodic comet 9P/Tempel 1 on July 4, 2005. The Education and Public Outreach goals of the mission were to effectively communicate the mission to target audiences, particularly educators and students with an emphasis on critical thinking using science, math and engineering concepts. A second goal was to invite audiences to participate throughout the mission using products and interactive programs. In the six-years of the mission, we built a community of scientists, educators, students, and both amateur and technically proficient astronomers, who brought the excitement of the mission to their own community. The web site was the focus of the program (http://deepimpact.umd.edu or deepimpact.jpl.nasa.gov). A monthly electronic newsletter sent to an ever- growing distribution list kept subscribers up to date on mission activities. A program to send your name to the comet engaged the public. Curriculum enhancements covering the physics of crater formation, nature of comets and a case study in optimized decision-making designed for students are available (http://deepimpact.umd.edu/educ/index.html). Mathematical (http://deepimpact.umd.edu/disczone/challenge.html) and conceptual questions of a technical nature (http://deepimpact.umd.edu/disczone/braintwist.html) are posed and solved in Mission Challenges and Brain Twisters. Materials provided for students and amateur astronomers to acquire comet observing skills are available (http://deepimpact.umd.edu/amateur/index.shtml).The Small Telescope Science Program was a successful pro-amateur collaboration providing information on brightness variations of the comet both before and after impact (http://deepimpact.umd.edu/stsp/). The night, of impact, events were held at public venues around the world where the excitement of a successful mission exploring the inside of a comet was felt. Results are at http://deepimpact.umd.edu/results/index.html. The mission is over but the web site has been archived and continues to hold material useful to educators and the interested public. This work was supported by NASA NASW00004 Deep Impact mission.

  12. Expanding Public Outreach: The Solar System Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2001-12-01

    The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums. In 2001, 206 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, who come from all walks of life. Last year, Ambassadors conducted almost 600 events that reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL organizations include Cassini, Galileo, STARDUST, Outer Planets mission, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR and Deep Impact, Deep Space Network, Solar System Exploration Forum and the Education and Public Outreach Office. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of materials, online resource links and information. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large. >http://www.jpl.nasa.gov/ambassador/front.html

  13. 12-21-2012 Just Another Day

    NASA Image and Video Library

    2012-03-13

    NASA scientist Don Yeomans from JPL's Near-Earth Object Program explains why the world won't end 12/21/2012. Subjects: The Mayan calendar, Niburu/Planet X, solar storms, planetary alignments, and shifting axes or magnetic poles.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1996-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.

  15. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man.Once selected, the Cal-Bridge Scholars benefit from three years of financial support, intensive, joint mentoring by CSU and UC faculty, professional development workshops, and exposure to research opportunities at the participating UC campuses.

  16. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man.Once selected, Cal-Bridge Scholars benefit from financial support, intensive, joint mentoring by CSU and UC faculty, professional development workshops, and exposure to research opportunities at the participating UC campuses.

  17. Creating a Community of Practice: Lessons Learned from the Center for Astronomy Education (Invited)

    NASA Astrophysics Data System (ADS)

    Brissenden, G.

    2009-12-01

    The Center for Astronomy Education (CAE) is devoted to improving teaching and learning in Astro 101. To accomplish this, a vital part of CAE is our broader community of practice which includes over 1000 instructors, graduate and undergraduate students, and postdocs. It is this greater community of practice that supports each other, helps, and learns from each other beyond what would be possible without it. As our community of practice has grown, we at CAE have learned many lessons about how different facets of CAE can best be used to promote and support our community both as a whole and for individual members. We will discuss the various facets of CAE, such as our online discussion group Astrolrner@CAE (http://astronomy101.jpl.nasa.gov/discussion) and its Guest Moderator program, our CAE Regional Teaching Exchange Coordinator program, our CAE Workshop Presenter Apprenticeship Training program, our online This Month’s Teaching Strategy, monthly newsletters, and various types of socializing and networking sessions we hold at national meetings. But more importantly, we will discuss the lessons we’ve learned about what does and does not work in building community within each of these facets.

  18. Advanced Energy Storage for Space Applications

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.

    1993-01-01

    NASA is planning a number of space science and space exploration missions into the early 21st century. The JPL Advanced Battery Program, which has the goal of developing batteries for these missions, is described. Under program consideration are Li-SOCl(sub 2) cells, secondary lithium cells, advanced metal hydride cells, and high-temperature sodium-nickel chloride cells.

  19. Results of the 1987 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1987-01-01

    The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.

  20. Results of the 1988 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1988-01-01

    The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  1. Results of the 1989 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1989-01-01

    The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  2. Results of the 1985 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1986-01-01

    The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).

  4. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of systems engineering at the Lab. It describes the general approach used and how they addressed the three key aspects of change: people, process and technology. It highlights a list of highly valued personal behaviors of systems engineers, discusses the various products, services and training that were developed, describes the deployment approach used, and concludes with several lessons learned.

  5. (abstract) Formal Inspection Technology Transfer Program

    NASA Technical Reports Server (NTRS)

    Welz, Linda A.; Kelly, John C.

    1993-01-01

    A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.

  6. JPL Export Compliance Program

    NASA Technical Reports Server (NTRS)

    Momjian, E.; Lam, C.

    2000-01-01

    The transfer of commodities, software, or technlogies to foreign persons is subject to U.S. export control laws and regulations. These export controls are applicable, regardless of whether the transfer occurs in the U.S. or outside of the U.S.

  7. JPL-082917-CASSINf-0001-Cassini A Saturn Odyssey

    NASA Image and Video Library

    2017-08-29

    A look at the 13-year Cassini-Huygens mission to Saturn and its moon Titan with key moments described by Linda Spilker, Cassini Project Scientist; Earl Maize, Cassini Program Manager; and Julie Webster, Cassini Operations Manager.

  8. Design and development of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Abesamis, Carlo; Andrade, Andres; Aumann, Hartmut; Gunapala, Sarath; Heneghan, Cate; Jarnot, Robert; Johnson, Dean; Lamborn, Andy; Maruyama, Yuki; Rafol, Sir; Raouf, Nasrat; Rider, David; Ting, Dave; Wilson, Dan; Yee, Karl; Cole, Jerold; Good, Bill; Kampe, Tom; Soto, Juancarlos; Adams, Arn; Buckley, Matt; Nicol, Fred; Vengel, Tony

    2017-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA Earth Science Technology Office (ESTO) sponsored mission to demonstrate key technologies used in very high spectral resolution infrared remote sensing of Earth's atmosphere from space. CIRAS was awarded under the ESTO In-flight Validation of Earth Science Technologies (InVEST) program in 2015 and is currently under development at NASA JPL with key subsystems being developed by industry. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS is under development by Ball Aerospace with the grating and slit developed by JPL. The third key technology is a blackbody fabricated with JPL's black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a 6U CubeSat developed by Blue Canyon Technologies. This paper provides an overview of the design and acquisition approach, and provides a status of the current development.

  9. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  10. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    From left, NASA Kennedy Space Center Public Affairs Officer George Diller, Ken Jucks, OCO-2 program scientist, NASA Headquarters, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  11. Disturbing Pop-Tart

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover's front right camera imaged Pop-tart, a small rock or indurated soil material which was pushed out of the surrounding drift material by Sojourner's front left wheel during a soil mechanics experiment.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. End-to-End Information System design at the NASA Jet Propulsion Laboratory. [data transmission between user and space-based sensor

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    In recognition of a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote-space-based sensor, an end-to-end approach to the design of information systems has been adopted at the JPL. This paper reviews End-to-End Information System (EEIS) activity at the JPL, with attention given to the scope of the EEIS transfer function, and functional and physical elements of the EEIS. The relationship between the EEIS and the NASA End-to-End Data System program is discussed.

  13. Description and performance of a digital mobile satellite terminal

    NASA Technical Reports Server (NTRS)

    Lay, N.; Jedrey, T.; Parkyn, J.; Divsalar, D.

    1990-01-01

    A major goal of the Mobile Satellite Experiment (MSAT-X) program at the Jet Propulsion Lab (JPL) is the development of an advanced digital terminal for use in land mobile satellite communication. The terminal has been developed to minimize the risk of applying advanced technologies to future commercial mobile satellite systems (MSS). Testing with existing L band satellites was performed in fixed, land mobile and aeronautical mobile environments. JPL's development and tests of its mobile terminal have demonstrated the viability of narrowband digital voice communications in a land mobile environment through geostationary satellites. This paper provides a consolidated description of the terminal architecture and the performance of its individual elements.

  14. Comet Borrelly's Varied Landscape

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this Deep Space 1 image of comet Borrelly, sunlight illuminates the bowling-pin shaped nucleus from directly below. At this distance, many features are become vivid on the surface of the nucleus, including a jagged line between day and night on the comet, rugged terrain on both ends with dark patches, and smooth, brighter terrain near the center. The smallest discernable features are about 110 meters (120 yards) across.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  15. JPL Space Telecommunications Radio System Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  16. Discovery Planetary Mission Operations Concepts

    NASA Technical Reports Server (NTRS)

    Coffin, R.

    1994-01-01

    The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.

  17. Connect Global Positioning System RF Module

    NASA Technical Reports Server (NTRS)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  18. Research and Development in Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report in the form of lecture slides summarizes the optical-communications program of NASA s Jet Propulsion Laboratory (JPL) and describes the JPL Optical Communications Telescope Laboratory (OCTL) and its role in the program. The purpose of the program is to develop equipment and techniques for laser communication between (1) ground stations and (2) spacecraft (both near Earth and in deep space) and aircraft. The OCTL is an astronomical- style telescope facility that includes a 1-m-diameter, 75.8-m-focal length telescope in an elevation/azimuth mount, plus optical and electronic subsystems for tracking spacecraft and aircraft, receiving laser signals from such moving targets, and transmitting high-power laser signals to such targets. Near-term research at the OCTL is expected to focus on mitigating the effects of atmospheric scintillation on uplinks and on beacon-assisted tracking of ground stations by stations in deep space. Near-term experiments are expected to be performed with retroreflector-equipped aircraft and Earth-orbiting spacecraft techniques to test mathematical models of propagation of laser beams, multiple-beam strategies to mitigate uplink scintillation, and pointing and tracking accuracy of the telescope.

  19. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  20. Development of a Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.

    2007-12-01

    JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.

  1. Summary of JPL Activities

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.; Surampudi, Subbarao

    2000-01-01

    A viewgraph presentation outlines the Jet Propulsion Laboratory (JPL) flight programs, including past, present and future missions targeting Solar System exploration. Details, including launch dates and batteries used, are given for Deep Space 1 (Asteroid Rendezvous), Deep Space 2 (Mars Penetrator), Mars Global Surveyor, Mars Surveyor '98, Stardust, Europa Orbiter, Mars Surveyor 2001, Mars 2003 Lander and Rover, and Genesis (Solar Dust Return). Earth science projects are also outlined: Active Cavity Radiometer Irradiance Monitor (ARIMSAT), Ocean Topography Experiment (TOPEX/Poseidon), Jason-1 (TOPEX follow-on), and QuikScat/Seawinds (Ocean Winds Tracking). The status, background, and plans are given for several batteries: (1) 2.5 inch common pressure vessel (CPV), (2) 3.5 inch CPV, (3) Ni-H2, and (4) Li-Ion.

  2. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  4. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    NASA Astrophysics Data System (ADS)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  5. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  6. Documents of the JPL Photovoltaics Program Analysis and Integration Center: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Pearson, A. M.

    1985-01-01

    A bibliography of internal and external documents produced by the Jet Propulsion Laboratory, based on the work performed by the Photovoltaics Program Analysis and Integration Center, is presented with annotations. As shown in the Table of Contents, the bibliography is divided into three subject areas: (1) Assessments, (2) Methdological Studies, and (3) Supporting Studies. Annotated abstracts are presented for 20 papers.

  7. Results of the 1979 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Seaman, C. H.; Weiss, R. S.

    1980-01-01

    Calibration of solar cells to be used as reference standards in simulator testing of cells and arrays was accomplished. Thirty-eight modules were carried to an altitude of about 36 kilometers during the solar cell calibration balloon flight.

  8. Long-term stability of amorphous-silicon modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  9. JPL-20180131-EXPLORs-0001- 60th Anniversary Explorer 1 The Beginning of the US Space Program

    NASA Image and Video Library

    2018-01-31

    Flashback to Jan. 31, 1958, the day a rocket carrying a javelin-shaped satellite took flight into space. Explorer 1 was America's first satellite. Here's a look back at the beginning of the Space Age.

  10. The NuSTAR Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; NuSTAR Science Team

    2011-09-01

    NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team under the direction of CalTech Professor Fiona Harrison. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at energies up to 79 keV, NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission's science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We will also develop printed materials that describe the mission, and help develop the STEM pipeline through local after-school programs.

  11. Coal and Open-pit surface mining impacts on American Lands (COAL)

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.

  12. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.

  13. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.

  14. Climate and Population Health Vulnerabilities to Vector-Borne Diseases: Increasing Resilience Under Climate Change Conditions in Africa

    NASA Astrophysics Data System (ADS)

    Ceccato, P.; McDonald, K. C.; Podest, E.; De La Torre Juarez, M.; Kruczkiewicz, A.; Lessel, J.; Jensen, K.; Thomson, M. C.

    2014-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases (i.e. malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities, ministries of health and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above.

  15. 300-Watt Power Source Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.

    2005-01-01

    This viewgraph presentation reviews the JPL program to develop a 300 Watt direct methanol fuel cell. The immediate use of the fuel cell is to power test instrumentation on armored vehicles. It reviews the challenges, the system design and the system demonstration.

  16. Total-dose radiation effects data for semiconductor devices. 1985 Supplement. Volume 2, part B

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 (Parts A and B) provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done steady-state 2.5-MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose. All data were generated in support of NASA space programs by the JPL Radiation Effects and Testing Group (514).

  17. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  18. Minority Universities Systems Engineering (MUSE) Program at the University of Texas at El Paso

    NASA Technical Reports Server (NTRS)

    Robbins, Mary Clare; Usevitch, Bryan; Starks, Scott A.

    1997-01-01

    In 1995, The University of Texas at El Paso (UTEP) responded to the suggestion of NASA Jet Propulsion Laboratory (NASA JPL) to form a consortium comprised of California State University at Los Angeles (CSULA), North Carolina Agricultural and Technical University (NCAT), and UTEP from which developed the Minority Universities Systems Engineering (MUSE) Program. The mission of this consortium is to develop a unique position for minority universities in providing the nation's future system architects and engineers as well as enhance JPL's system design capability. The goals of this collaboration include the development of a system engineering curriculum which includes hands-on project engineering and design experiences. UTEP is in a unique position to take full advantage of this program since UTEP has been named a Model Institution for Excellence (MIE) by the National Science Foundation. The purpose of MIE is to produce leaders in Science, Math, and Engineering. Furthermore, UTEP has also been selected as the site for two new centers including the Pan American Center for Earth and Environmental Sciences (PACES) directed by Dr. Scott Starks and the FAST Center for Structural Integrity of Aerospace Systems directed by Dr. Roberto Osegueda. The UTEP MUSE Program operates under the auspices of the PACES Center.

  19. The Robert E. Hopkins Center for Optical Design and Engineering

    NASA Astrophysics Data System (ADS)

    Zavislan, James M.; Brown, Thomas G.

    2008-08-01

    In 1929, a grant from Eastman Kodak and Bausch and Lomb established The Institute of Optics as the nation's first academic institution devoted to training optical scientists and engineers. The mission was 'to study light in all its phases', and the curriculum was designed to educate students in the fundamentals of optical science and build essential skills in applied optics and optical engineering. Indeed, our historic strength has been a balance between optical science and engineering--we have alumni who are carrying out prize-winning research in optical physics, alumni who are innovative optical engineers, and still other alumni who are leaders in the business community. Faculty who are top-notch optical engineers are an important resource to optical physics research groups -- likewise, teaching and modeling excellent optical science provides a strong underpinning for students on the applied/engineering end of the spectrum. This model -an undergraduate and graduate program that balances fundamental optics, applied optics, and optical engineering- has served us well. The impressive and diverse range of opportunities for our BS graduates has withstood economic cycles, and the students graduate with a healthy dose of practical experience. Undergraduate advisors, with considerable initiative from the program coordinator, are very aggressive in pointing students toward summer research and engineering opportunities. The vast majority of our undergraduate students graduate with at least one summer of experience in a company or a research laboratory. For example, 95% of the class of 2008 spent the summer of 2007 at companies and/or research laboratories: These include Zygo, NRL, Bausch and Lomb, The University of Rochester(The Institute of Optics, Medical Center, and Laboratory for Laser Energetics), QED, ARL Night Vision laboratories, JPL, Kollsman, OptiMax, Northrup Grumman, and at least two other companies. It is an impressive list, and bodes well for the career preparation for these students. While this extracurricular experience is truly world-class, an integrated design experience defined within our academic program is increasingly necessary for those going on to professional careers in engineering. This paper describes the philosophy behind a revision to our undergraduate curriculum that integrates a design experience and describes the engineering laboratory that has been established to make it a reality. The laboratory and design center has been named in honor of Robert E. Hopkins, former director and professor, co-founder of Tropel corporation, and a lifelong devotee to engineering innovation.

  20. Observation model and parameter partials for the JPL geodetic (GPS) modeling software 'GPSOMC'

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1990-01-01

    The physical models employed in GPSOMC, the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities with their counterparts in the computer programs. The present version is the second revision of the original document which it supersedes. The modeling is expanded to provide the option of using Cartesian station coordinates; parameters for the time rates of change of universal time and polar motion are also introduced.

  1. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Rocky terrain & airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of very rocky terrain at the Ares Vallis landing site, along with the lander's deflated airbags, were imaged by the Imager for Mars Pathfinder (IMP) before its deployment on Sol 2. The metallic object at the bottom is a bracket for the IMP's release mechanism.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  4. Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Hall, Jeffery L.

    2006-01-01

    This paper presents experimental results on a set of 4 thermo-mechanical research tasks aimed at Titan and Venus aerobots: 1. A cryogenic balloon materials development program culminating in the fabrication and testing of a 4.6 m long blimp prototype at 93K. 2. A combined computational and experimental thermal analysis of the effect of radioisotope power system (RPS) waste heat on the behavior of a helium filled blimp hull. 3. Aerial deployment and inflation testing using a blimp 4. A proof of concept experiment with an aerobot-mounted steerable high gain antenna These tasks were supported with JPL internal R&D funds and executed by JPL engineers with substantial industry collaboration for Task #1, the cryogenic balloon materials

  5. Sojourner's APXS at Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover is seen next to the rock 'Shark', in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock 'Wedge' is in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Quantitative software models for the estimation of cost, size, and defects

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Bright, L.; Decker, B.; Lum, K.; Mikulski, C.; Powell, J.

    2002-01-01

    The presentation will provide a brief overview of the SQI measurement program as well as describe each of these models and how they are currently being used in supporting JPL project, task and software managers to estimate and plan future software systems and subsystems.

  7. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There is no centralized arbitration or bus granting. The JPL design provides for autonomous synchronization of the nodes on the ring bus. An address-synchronous latency adjust buffer (LAB) has been designed that cannot get out of synchronization and needs no external input. Also, a priority-driven cable selection behavior has been programmed into each unit on the ring bus. This makes the bus able to connect itself up, according to a maximum redundancy priority system, without the need for computer intervention at startup. Switching around a failed or switched-off unit is also autonomous. The JPL bus provides a map of all the active units for the host computer to read and use for fault management. With regard to timing, this enhanced bus recognizes coordinated timing on a spacecraft as critical and addresses this with a single source of absolute and relative time, which is broadcast to all units on the bus with synchronization maintained to the tens of nanoseconds. Each BIU consists of up to five programmable triggers, which may be programmed for synchronization of events within the spacecraft of instrument. All JPL-formatted data transmitted on the ring bus are automatically time-stamped.

  8. The NuSTAR Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; Boggs, S.; Christensen, F.; Craig, W.; Hailey, C. J.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team

    2013-01-01

    NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that is opening the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission’s objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and/or Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission’s science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We are also developing printed materials that describe the mission and special workshops for girls at public libraries in order to improve the STEM pipeline.

  9. The NuSTAR Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; Boggs, S. E.; Christensen, F.; Hailey, C. J.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team

    2013-04-01

    NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that is opening the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission’s objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and/or Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission’s science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We are also developing printed materials that describe the mission and special workshops for girls at public libraries in order to improve the STEM pipeline.

  10. JPL-20170926-TECHf-0001-Robot Descends into Alaska Moulin

    NASA Image and Video Library

    2017-09-26

    JPL engineer Andy Klesh lowers a robotic submersible into a moulin. Klesh and JPL's John Leichty used robots and probes to explore the Matanuska Glacier in Alaska this past July. Image Credit: NASA/JPL-Caltech

  11. Results of the 1983 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1984-01-01

    The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).

  12. Solid Earth and Natural Hazards (SENH) Research and Applications Program and Internation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a final report for grant NAG5-8627 entitled 'Joint UNAVCO and JPL proposal to NASA for support of the Solid Earth and Natural Hazards Research and Applications Program and Internation'. This report consists of the following sections: (1) new installations (with site visits); (2) upgrades (with site visits; (3) upcoming upgrades (with site visits); and (4) data management and archive efforts during the performance period.

  13. International Astronomical Search Collaboration: An Online Student-Based Discovery Program in Astronomy (Invited)

    NASA Astrophysics Data System (ADS)

    Pennypacker, C.; Miller, P.

    2009-12-01

    The past 15 years has seen the development of affordable small telescopes, advanced digital cameras, high speed Internet access, and widely-available image analysis software. With these tools it is possible to provide student programs where they make original astronomical discoveries. High school aged students, even younger, have discovered Main Belt asteroids (MBA), near-Earth objects (NEO), comets, supernovae, and Kuiper Belt objects (KBO). Student-based discovery is truly an innovative way to generate enthusiasm for learning science. The International Astronomical Search Collaboration (IASC = “Isaac”) is an online program where high school and college students make original MBA discoveries and important NEO observations. MBA discoveries are reported to the Minor Planet Center (Harvard) and International Astronomical Union. The NEO observations are included as part of the NASA Near-Earth Object Program (JPL). Provided at no cost to participating schools, IASC is centered at Hardin-Simmons University (Abilene, TX). It is a collaboration of the University, Lawrence Hall of Science (University of California, Berkeley), Astronomical Research Institute (ARI; Charleston, IL), Global Hands-On Universe Association (Portugal),and Astrometrica (Austria). Started in Fall 2006, IASC has reached 135 schools in 14 countries. There are 9 campaigns per year, each with 15 schools and lasting 45 days. Students have discovered 150 MBAs and made > 1,000 NEO observations. One notable discovery was 2009 BD81, discovered by two high school teachers and a graduate student at the Bulgarian Academy of Science. This object, about the size of 3 football fields, crosses Earth’s orbit and poses a serious impact risk. Each night with clear skies and no Moon, the ARI Observatory uses its 24" and 32" prime focus telescopes to take images along the ecliptic. Three images are taken of the same field of view (FOV) over a period of 30 minutes. These are bundled together and placed online at the IASC home site (iasc.hsutx.edu) into the participating school folders. In the morning, the students download their image sets, analyzing the set using the software Astrometrica. The software aligns the images using stars in the FOV then blinks them back and forth. The students easily see the asteroids moving in the background. Astrometrica records the times and celestial coordinates into a report that is forwarded to the Minor Planet Center. IASC is a volunteer-managed program. It has 17 volunteers from 6 countries. They run 9 campaigns per year for 135 schools, although the full capacity is 16 serving 240 schools world-wide. In addition to search campaigns open to any interested school, there have been dedicated campaigns including: 1) All-China Asteroid Search Campaign National Astronomical Observatory of China 2) All-Africa Asteroid Search Campaign South African Astronomical Observatory and Space School Africa 3) All-Texas Asteroid Search Campaign Texas Regional Collaboratives (University of Texas, Austin) Future plans for IASC include new campaigns searching for objects other than MBAs. These include comets, KBOs, supernovae, and active galactic nuclei. Students will also work on variable stars and asteroid light curves, and search for exoplanets.

  14. Remote Observational Techniques in Education

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Mayo, L.

    2002-09-01

    The ability to observe celestial objects remotely is making a major impact into classroom access to astronomical instrumentation previously impossible to encorporate into curriculum. Two programs, Radio Jove and Telescopes In Education have made important contributions in this field. Radio JOVE is an interactive, hands-on, educational activity for learning the scientific method through the medium of radio observations of Jupiter, the Sun, and the galactic radio background. Students build radio receivers from relatively inexpensive non-profit kits (about \\$125 plus shipping) and use them to record data, analyze the data, and share the results with others. Alternatively, for no cost, the students can record and analyze data from remote radio receivers connected to the web. The projects are useful adjuncts to activities in optical observing since students should recognize that we learn about the universe through more than just the optical spectrum. The projects are mini-electronics courses and also teach about charged particles and magnetic fields. The Radio JOVE web site (http://radiojove.gsfc.nasa.gov) should be consulted for further information. The NASA-sponsored Telescopes In Education (TIE) network (http://tie.jpl.nasa.gov) has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. These telescopesare integrated seamlessly into one virtual observatory providing the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community.

  15. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    From Left to Right: Ashley Karp (NASA JPL), Hunjoo Kim (NASA JPL), Brian Schratz (NASA JPL) and Kyle Botteon (NASA JPL) Testing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (building N249, OARF) at NASA’s Ames Research Center.

  16. Sequence System Building Blocks: Using a Component Architecture for Sequencing Software

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; O'Reilly, Taifun

    2005-01-01

    Over the last few years software engineering has made significant strides in making more flexible architectures and designs possible. However, at the same time, spacecraft have become more complex and flight software has become more sophisticated. Typically spacecraft are often one-of-a-kind entities that have different hardware designs, different capabilities, different instruments, etc. Ground software has become more complex and operations teams have had to learn a myriad of tools that all have different user interfaces and represent data in different ways. At Jet Propulsion Laboratory (JPL) these themes have collided to require an new approach to producing ground system software. Two different groups have been looking at tackling this particular problem. One group is working for the JPL Mars Technology Program in the Mars Science Laboratory (MSL) Focused Technology area. The other group is the JPL Multi-Mission Planning and Sequencing Group . The major concept driving these two approaches on a similar path is to provide software that can be a more cohesive flexible system that provides a act of planning and sequencing system of services. This paper describes the efforts that have been made to date to create a unified approach from these disparate groups.

  17. Sequencing System Building Blocks: Using a Component Architecture for Sequencing Software

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; O'Reilly, Taifun

    2006-01-01

    Over the last few years software engineering has made significant strides in making more flexible architectures and designs possible. However, at the same time, spacecraft have become more complex and flight software has become more sophisticated. Typically spacecraft are often one-of-a-kind entities that have different hardware designs, different capabilities, different instruments, etc. Ground software has become more complex and operations teams have had to learn a myriad of tools that all have different user interfaces and represent data in different ways. At Jet Propulsion Laboratory (JPL) these themes have collided to require a new approach to producing ground system software. Two different groups have been looking at tackling this particular problem. One group is working for the JPL Mars Technology Program in the Mars Science Laboratory (MSL) Focused Technology area. The other group is the JPL Multi-Mission Planning and Sequencing Group. The major concept driving these two approaches on a similar path is to provide software that can be a more cohesive flexible system that provides a set of planning and sequencing system of services. This paper describes the efforts that have been made to date to create a unified approach from these disparate groups.

  18. Climate and Health Vulnerability to Vector-Borne Diseases: Increasing Resilience under Climate Change Conditions in Africa

    NASA Astrophysics Data System (ADS)

    Ceccato, P.

    2015-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases ( malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities; ministries of health; the WMO Global Framework for Climate and Services; and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above with examples in South Africa, Zimbabwe, Tanzania and Malawi.

  19. The NASA Exploration Design Team; Blueprint for a New Design Paradigm

    NASA Technical Reports Server (NTRS)

    Oberto, Robert E.; Nilsen, Erik; Cohen, Ron; Wheeler, Rebecca; DeFlorio, Paul

    2005-01-01

    NASA has chosen JPL to deliver a NASA-wide rapid-response real-time collaborative design team to perform rapid execution of program, system, mission, and technology trade studies. This team will draw on the expertise of all NASA centers and external partners necessary. The NASA Exploration Design Team (NEDT) will be led by NASA Headquarters, with field centers and partners added according to the needs of each study. Through real-time distributed collaboration we will effectively bring all NASA field centers directly inside Headquarters. JPL's Team X pioneered the technique of real time collaborative design 8 years ago. Since its inception, Team X has performed over 600 mission studies and has reduced per-study cost by a factor of 5 and per-study duration by a factor of 10 compared to conventional design processes. The Team X concept has spread to other NASA centers, industry, academia, and international partners. In this paper, we discuss the extension of the JPL Team X process to the NASA-wide collaborative design team. We discuss the architecture for such a process and elaborate on the implementation challenges of this process. We further discuss our current ideas on how to address these challenges.

  20. Observation model and parameter partials for the JPL geodetic GPS modeling software GPSOMC

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Border, J. S.

    1988-01-01

    The physical models employed in GPSOMC and the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities in the current report with their counterparts in the computer programs. There are no basic model revisions, with the exceptions of an improved ocean loading model and some new options for handling clock parametrization. Such misprints as were discovered were corrected. Further revisions include modeling improvements and assurances that the model description is in accord with the current software.

  1. GRACE-FO Prelaunch Briefing

    NASA Image and Video Library

    2018-05-21

    NASA Headquarters Public Affairs Officer Steve Cole, left, moderates the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission prelaunch media briefing with David Jarrett, GRACE-FO program executive in the Earth Science Division at NASA Headquarters; Frank Webb, GRACE-FO project scientist at JPL; Frank Flechtner, GRACE-FO project manager for the German Research Centre for Geosciences (GFZ) in Potsdam, Germany; Phil Morton, NASA GRACE-FO project manager at JPL; and Capt. Jennifer Haden, weather officer, 30th Space Wing, Vandenberg Air Force Base, right, Monday, May 21, 2018, at Vandenberg Air Force Base in California. The twin GRACE-FO spacecraft will measure changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Bill Ingalls)

  2. Experimental evaluation of active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  3. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose.

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN). Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), 'The TDA Progress Report' reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry.

  5. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Proceedings of the 2004 NASA/JPL Workshop on Physics for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M. (Editor); Banerdt, Bruce; Barmatz, M.; Chung, Sang; Chui, Talso; Hamell, R.; Israelsson, Ulf; Jerebets, Sergei; Le, Thanh; Litchen, Stephen

    2004-01-01

    The conference was held April 20-22, 2004, the NASA/JPL Workshop on Physics for Planetary Exploration focused on NASA's new concentration on sending crewed missions to the Moon by 2020 and then to Mars and beyond. However, our ground-based physics experiments are continuing to be funded, and it will be possible to compete for $80-90 million in new money from the NASA exploration programs. Papers presented at the workshop related how physics research can help NASA to prepare for and accomplish this grand scheme of exploration. From sensors for water on the Moon and Mars, to fundamental research on those bodies, and to aids for navigating precisely to landing sites on distant planets, diverse topics were addressed by the Workshop speakers.

  8. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. Advanced Compact Holographic Data Storage System

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying; Reyes, George

    2000-01-01

    JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Advanced Holographic Memory (AHM) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electro-optic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and highspeed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology to enhance mission capabilities for all NASA's Earth Science Mission. In this paper, recent technology progress in developing this CHDS at JPL will be presented.

  10. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    From Left to Right: 1. Hunjoo Kim (NASA JPL) 2. Kyle Botteon (NASA JPL) 3. Ashley Karp (NASA JPL) 4. Brian Schratz (NASA JPL) Testing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (building N249, OARF) at Ames Research Center.

  11. Space Images for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  12. Results of the 1994 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1994-01-01

    The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.

  13. Results of the 1991 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1991-01-01

    The 1991 solar cell calibration balloon flight was completed on August 1, 1991. All objectives of the flight program were met. Thirty-nine modules were carried to an altitude of 119,000 ft. (36.3 km). Data telemetered from the modules were corrected to 28 C and to 1 AU. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  14. Results of the 1992 NASA/JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1992-01-01

    The 1992 solar cell calibration balloon flight was completed on August 1, 1992. All objectives of the flight program were met. Forty-one modules were carried to an altitude of 119,000 ft (36.3 km). Data telemetered from the modules was corrected to 28 C and 1 AU. The calibrated cells have been returned to 39 participants and can now be used as reference standards in simulator testing of cells and arrays.

  15. Results of the 1993 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1993-01-01

    The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.

  16. Interferometry science center

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.

    2002-01-01

    The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.

  17. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported in space communications, radio navigation, radio science, and ground-based radio and radar astronomy.

  19. JPL in-house fluidized bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1985-01-01

    The progress in the in-house program on the silane fluidized-bed system is reported. A seed-particle cleaning procedure was developed to obtain material purity near the level required to produce a semiconductor-grade product. The liner-seal design was consistently proven to withstand heating/cooling cycles in all of the experimental runs.

  20. Systems concepts: Lectures on contemporary approaches to systems.

    NASA Technical Reports Server (NTRS)

    Miles, R. F., Jr.

    1973-01-01

    Collection of papers dealing with the application of systems concepts to a wide range of disciplines. The topics include systems definitions and designs, models for systems engineering, the evolution of the JPL, systems concepts in lunar and planetary projects, civil systems projects, and Apollo program evaluation. Individual items are announced in this issue.

  1. G-Guidance Interface Design for Small Body Mission Simulation

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John; Phan, Linh

    2008-01-01

    The G-Guidance software implements a guidance and control (G and C) algorithm for small-body, autonomous proximity operations, developed under the Small Body GN and C task at JPL. The software is written in Matlab and interfaces with G-OPT, a JPL-developed optimization package written in C that provides G-Guidance with guaranteed convergence to a solution in a finite computation time with a prescribed accuracy. The resulting program is computationally efficient and is a prototype of an onboard, real-time algorithm for autonomous guidance and control. Two thruster firing schemes are available in G-Guidance, allowing tailoring of the software for specific mission maneuvers. For example, descent, landing, or rendezvous benefit from a thruster firing at the maneuver termination to mitigate velocity errors. Conversely, ascent or separation maneuvers benefit from an immediate firing to avoid potential drift toward a second body. The guidance portion of this software explicitly enforces user-defined control constraints and thruster silence times while minimizing total fuel usage. This program is currently specialized to small-body proximity operations, but the underlying method can be generalized to other applications.

  2. Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space

    NASA Technical Reports Server (NTRS)

    Strayer, Don (Editor)

    2003-01-01

    The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.

  3. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  4. A Formal Approach to Domain-Oriented Software Design Environments

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper describes a formal approach to domain-oriented software design environments, based on declarative domain theories, formal specifications, and deductive program synthesis. A declarative domain theory defines the semantics of a domain-oriented specification language and its relationship to implementation-level subroutines. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that guides them in creating diagrams denoting formal specifications. The diagrams also serve to document the specifications. Deductive program synthesis ensures that end-user specifications are correctly implemented. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory, which includes an axiomatization of JPL's SPICELIB subroutine library. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development. Furthermore, AMPHION synthesizes one to two page programs consisting of calls to SPICELIB subroutines from these specifications in just a few minutes. Test results obtained by metering AMPHION's deductive program synthesis component are examined. AMPHION has been installed at JPL and is currently undergoing further refinement in preparation for distribution to hundreds of SPICELIB users worldwide. Current work to support end-user customization of AMPHION's specification acquisition subsystem is briefly discussed, as well as future work to enable domain-expert creation of new AMPHION applications through development of suitable domain theories.

  5. Computerized Attendance Accounting and Emergency Assistance Communications: Viable Tools in Secondary School Administration

    NASA Technical Reports Server (NTRS)

    Roberts, Vasel W.

    1971-01-01

    In the late 1968, the Space Technology Application Office at the Jet Propulsion Laboratory (JPL) initiated a pilot study to determine whether technological aids could be developed that would help secondary school administrators cope with the volatile and chaotic situations that often accompany student activism, disorders, and riots. The study was conducted in cooperation with the Sacramento City Unified School District (SCUSD) and at the John F. Kennedy Senior High School (JFK) in Sacramento, California. The problems at JFK and in the SCUSD were identified and described to the JPL team by members of the Kennedy staff and personnel at various levels and departments within the school district. The JPL team of engineers restricted their scope to problems that appeared solvable, or at least partially solvable, through the use of technological systems. Thus far, two hardware systems have been developed for use in the school. The first, a personal emergency assistance communication system, has already been tested operationally at JFK and has met the objectives established for it. The second technological aid developed was a computerized attendance accounting system. This system has been fabricated, tested, and installed at JFK. Full-scale operational testing began in April 1971. While studies and hardware tests were in progress at JFK, contacts were made with several other schools in order that, insofar as practicable, hardware designs could allow for possible adaptation to schools other than JFK.

  6. Credit WCT. Original 2'" x 2'" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  7. Making Sense of Remotely Sensed Ultra-Spectral Infrared Data

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, Earth Observing System (EOS) programs, the Deep Space Network (DSN), and various Department of Defense (DOD) technology demonstration programs, combined their technical expertise to develop SEASCRAPE, a software program that obtains data when thermal infrared radiation passes through the Earth's atmosphere and reaches a sensor. Licensed by the California Institute of Technology (Caltech), SEASCRAPE automatically inverts complex infrared data and makes it possible to obtain estimates of the state of the atmosphere along the ray path. Former JPL staff members created a small entrepreneurial firm, Remote Sensing Analysis Systems, Inc., of Altadena, California, to commercialize the product. The founders believed that a commercial version of the software was needed for future U.S. government missions and the commercial monitoring of pollution. With the inversion capability of this software and remote sensing instrumentation, it is possible to monitor pollution sources from safe and secure distances on a noninterfering, noncooperative basis. The software, now know as SEASCRAPE_Plus, allows the user to determine the presence of pollution products, their location and their abundance along the ray path. The technology has been cleared by the Department of Commerce for export, and is currently used by numerous research and engineering organizations around the world.

  8. Mars Exploration Rovers Landing Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  9. Multicolor pyrometer for materials processing in space

    NASA Technical Reports Server (NTRS)

    Frish, M. B.; Frank, J.; Baker, J. E.; Foutter, R. R.; Beerman, H.; Allen, M. G.

    1990-01-01

    This report documents the work performed by Physical Sciences Inc. (PSI), under contract to NASA JPL, during a 2.5-year SBIR Phase 2 Program. The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, and controlling the temperature distribution across the surface of a moving object suspended in space. These goals were achieved and the instrument was delivered to JPL in November 1989. The pyrometer utilizes an optical system which operates at short wavelengths compared to the peak of the black-body spectrum for the temperature range of interest, thus minimizing errors associated with a lack of knowledge about the heated sample's emissivity. To cover temperatures from 900 to 2500 K, six wavelengths are available. The preferred wavelength for measurement of a particular temperature decreases as the temperature increases. Images at all six wavelengths are projected onto a single CCD camera concurrently. The camera and optical system have been calibrated to relate the measured intensity at each pixel to the temperature of the heated object. The output of the camera is digitized by a frame grabber installed in a personal computer and analyzed automatically to yield temperature information. The data can be used in a feedback loop to alter the status of computer-activated switches and thereby control a heating system.

  10. Estimating How Often Mass Extinctions Due to Impacts Occur on the Earth

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.

    2013-01-01

    This hands-on, inquiry based activity has been taught at JPL's summer workshop "Teachers Touch the Sky" for the past two decades. Students act as mini-investigators as they gather and analyze data to estimate how often an impact large enough to cause a mass extinction occurs on the Earth. Large craters are counted on the Moon, and this number is extrapolated to the size of the Earth. Given the age of the Solar System, the students can then estimate how often large impacts occur on the Earth. This activity is based on an idea by Dr. David Morrison, NASA Ames Research Center.

  11. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  12. Telerobotics test bed for space structure assembly

    NASA Technical Reports Server (NTRS)

    Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.

    1994-01-01

    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.

  13. Technical progress in silicon sheet growth under DOE/JPL FSA program, 1975-1986

    NASA Technical Reports Server (NTRS)

    Kalejs, J. P.

    1986-01-01

    The technical progress made in the Silicon Sheet Growth Program during its 11 years was reviewed. At present, in 1986, only two of the original 9 techniques have survived to the start-up, pilot-plant stage in industry. These two techniques are the edge-defined, film-fed growth (EFG) technique that produces closed shape polygons, and the WEB dendritic technique that produces single ribbons. Both the status and future concerns of the EFG and WEB techniques were discussed.

  14. Mars extant-life campaign using an approach based on Earth-analog habitats

    NASA Technical Reports Server (NTRS)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  15. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  16. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  17. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  18. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Making Sense of Rocket Science - Building NASA's Knowledge Management Program

    NASA Technical Reports Server (NTRS)

    Holm, Jeanne

    2002-01-01

    The National Aeronautics and Space Administration (NASA) has launched a range of KM activities-from deploying intelligent "know-bots" across millions of electronic sources to ensuring tacit knowledge is transferred across generations. The strategy and implementation focuses on managing NASA's wealth of explicit knowledge, enabling remote collaboration for international teams, and enhancing capture of the key knowledge of the workforce. An in-depth view of the work being done at the Jet Propulsion Laboratory (JPL) shows the integration of academic studies and practical applications to architect, develop, and deploy KM systems in the areas of document management, electronic archives, information lifecycles, authoring environments, enterprise information portals, search engines, experts directories, collaborative tools, and in-process decision capture. These systems, together, comprise JPL's architecture to capture, organize, store, and distribute key learnings for the U.S. exploration of space.

  20. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker, right, looks on as Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  2. KSC-2011-6820

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, members of NASA's Gravity Recovery and Interior Laboratory (GRAIL) launch team monitor GRAIL's launch countdown from the Mission Directors Center in Hangar AE. From left are David Lehman, spacecraft mission director and GRAIL project manager, NASA's Jet Propulsion Laboratory (JPL); Tom Hoffman, deputy spacecraft mission director, JPL; and John Henk, GRAIL program manager, Lockheed Martin Space Systems. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8 from Space Launch Complex 17B on Cape Canaveral Air Force Station. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  3. Space Qualification Testing of a Shape Memory Alloy Deployable CubeSat Antenna

    DTIC Science & Technology

    2016-09-15

    the SMA deployment in the space environment. The HCT QHA successfully passed all required NASA General Environmental Verification Standards space... NASA /JPL parabolic deployable antenna design [28] .................. 19 Figure 11. SERC and NASA /JPL parabolic antenna prototype [28...19 Figure 12. SERC and NASA /JPL parabolic antenna stowed configuration [28] ............. 20 Figure 13. JPL KaPDA antenna [29

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are presented. Activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) related to DSN advanced systems, systems implementation, and DSN operations are addressed. In addition, recent developments in the NASA SETI (Search for Extraterrestrial Intelligence) sky survey are summarized.

  5. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Archival reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA) are presented. In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations.

  7. Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage

    NASA Technical Reports Server (NTRS)

    Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.

    2005-01-01

    Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.

  8. Microwave attenuation and brightness temperature due to the gaseous atmosphere: A comparison of JPL and CCIR values

    NASA Technical Reports Server (NTRS)

    Smith, E. K.; Waters, J. W.

    1981-01-01

    A sophisticated but flexible radiative transfer program designed to assure internal consistency was used to produce brightness temperature (sky noise temperature in a given direction) and gaseous attenuation curves. The curves, derived from atmospheric models, were compared and a new set was derived for a specified frequency range.

  9. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  10. Expanding public outreach: The solar system ambassadors program.

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    The Solar System Ambassadors Program is a public outreach program sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California designed to work with motivated volunteers across the nation. These competitively selected volunteers or- ganize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non_traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. In this talk I will give an overview of the program and discuss lessons learned. The Solar System Ambassadors Program is , an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA)

  11. Energy consumption program: A computer model simulating energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  12. Software Development Standard Processes (SDSP)

    NASA Technical Reports Server (NTRS)

    Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.; hide

    2011-01-01

    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.

  13. Environmental projects. Volume 1: Polychlorinated biphenyl (PCB) abatement program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. Some of the ancillary electrical equipment of thes Deep Space Stations, particularly transformers and power capicitors, were filled with stable, fire-retardant, dielectric fluids containing substances called polychlorobiphenyls (PCBs). Because the Environmental Protection Agency has determined that PCBs are environmental pollutants toxic to humans, all NASA centers have been asked to participate in a PCB-abatement program. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a two-year long PCB-abatement program has eliminated PCBs from the Goldstone Complex.

  14. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  15. Bringing the Excitement of Exploring Mars and the Giant Planets to Educators and the Public

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Dusenbery, P. B.; Harold, J.

    2003-05-01

    We are living in a wonderful era of planetary exploration. In 2004 alone, two rovers will land on Mars and the Cassini-Huygens mission will arrive in the Saturn system for an extended 4-year tour. These events will bring much public attention and provide excellent reasons for substantive educational outreach to educators and the public. The Space Science Institute (SSI) of Boulder, CO and collaborators are responding with a comprehensive array of funded and proposed projects. These include the refurbishment and redeployment of the 5000 sq. ft MarsQuest national traveling exhibition, the launch of a 600 sq. ft. "mini-MarsQuest" called Destination Mars, the launch of an interactive website called "MarsQuest Online" (in partnership with TERC and JPL), a variety of workshops for teachers, museum educators, and planetarians (in partnership with "To Mars with MER", and JPL), and the development of a "Family Guide to Mars" for use by adults and children in informal learning settings. SSI is also proposing to develop another national traveling exhibition called "Giant Planets: Exploring the Outer Solar System". This exhibit (envisioned to be 3500 sq.ft.) and its educational program will take advantage of the excitement generated by the Cassini mission and origins-related research. Its education program will also benefit from SSI having led the development of the "Saturn Educator Guide" - a JPL-sponsored resource for teachers in grades 5 and up. This paper will provide an overview of our resources in planetary science education and communicate the valuable lessons we've learned about their design, development and dissemination. SSI's educational endeavors related to planetary science have been funded by several NASA and NSF grants and contracts.

  16. Sentry: An Automated Close Approach Monitoring System for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Chamberlin, A. B.; Chesley, S. R.; Chodas, P. W.; Giorgini, J. D.; Keesey, M. S.; Wimberly, R. N.; Yeomans, D. K.

    2001-11-01

    In response to international concern about potential asteroid impacts on Earth, NASA's Near-Earth Object (NEO) Program Office has implemented a new system called ``Sentry'' to automatically update the orbits of all NEOs on a daily basis and compute Earth close approaches up to 100 years into the future. Results are published on our web site (http://neo.jpl.nasa.gov/) and updated orbits and ephemerides made available via the JPL Horizons ephemeris service (http://ssd.jpl.nasa.gov/horizons.html). Sentry collects new and revised astrometric observations from the Minor Planet Center (MPC) via their electronic circulars (MPECs) in near real time as well as radar and optical astrometry sent directly from observers. NEO discoveries and identifications are detected in MPECs and processed appropriately. In addition to these daily updates, Sentry synchronizes with each monthly batch of MPC astrometry and automatically updates all NEO observation files. Daily and monthly processing of NEO astrometry is managed using a queuing system which allows for manual intervention of selected NEOs without interfering with the automatic system. At the heart of Sentry is a fully automatic orbit determination program which handles outlier rejection and ensures convergence in the new solution. Updated orbital elements and their covariances are published via Horizons and our NEO web site, typically within 24 hours. A new version of Horizons, in development, will allow computation of ephemeris uncertainties using covariance data. The positions of NEOs with updated orbits are numerically integrated up to 100 years into the future and each close approach to any perturbing body in our dynamic model (all planets, Moon, Ceres, Pallas, Vesta) is recorded. Significant approaches are flagged for extended analysis including Monte Carlo studies. Results, such as minimum encounter distances and future Earth impact probabilities, are published on our NEO web site.

  17. 4. Credit WCT. Original 2'" x 21" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit WCT. Original 2-'" x 2-1" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the control room in use, with JPL employees Ron Wright, Harold Anderson, and John Morrow presiding. (JPL negative no. JPL-10288A, 27 January 1989.) - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  18. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  19. Comet Borrelly Slows Solar Wind

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Over 1300 energy spectra taken on September 22, 2001 from the ion and electron instruments on NASA's Deep Space 1 span a region of 1,400,000 kilometers (870,000 miles) centered on the closest approach to the nucleus of comet Borrelly. A very strong interaction occurs between the solar wind (horizontal red bands to left and right in figure) and the comet's surrounding cloud of dust and gas, the coma. Near Deep Space 1's closest approach to the nucleus, the solar wind picked up charged water molecules from the coma (upper green band near the center), slowing the wind sharply and creating the V-shaped energy structure at the center.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  20. AVIRIS Reflectance Retrievals: UCSB Users Manual. Appendix 1

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    The following write-up is designed to help students and researchers take Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance data and retrieve surface reflectance. In the event that the software is not available, but a user has access to a reflectance product, this document is designed to provide a better understanding of how AVIRIS reflectance was retrieved. This guide assumes that the reader has both a basic understanding of the UNIX computing environment, and that of spectroscopy. Knowledge of the Interactive Data Language (IDL) and the Environment for Visualizing Images (ENVI) is helpful. This is a working document, and many of the fine details described in the following pages have been previously undocumented. After having read this document the reader should be able to process AVIRIS to reflectance, provided access to all of the code is possible. The AVIRIS radiance data itself is pre-processed at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The first section of this paper describes how to read data from tape and byte-swap the data. Section 2 describes the procedure in preparing support files before running the 'h2o' suite of programs. Section 3 describes the four programs used in the process, h2olut9.f, h2ospl9.f, vlsfit9.f and rfl9.f.

  1. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  2. Mars Program Independent Assessment Team Report

    NASA Technical Reports Server (NTRS)

    Young, Thomas; Arnold, James; Brackey, Thomas; Carr, Michael; Dwoyer, Douglas; Fogleman, Ronald; Jacobson, Ralph; Kottler, Herbert; Lyman, Peter; Maguire, Joanne

    2000-01-01

    The Mars Climate Orbiter failed to achieve Mars orbit on September 23, 1999. On December 3, 1999, Mars Polar Lander and two Deep Space 2 microprobes failed. As a result, the NASA Administrator established the Mars Program Independent Assessment Team (MPIAT) with the following charter: 1) Review and analyze successes and failures of recent Mars and Deep Space Missions which include: a) Mars Global Surveyor, b) Mars Climate Orbiter, c) Pathfinder, d) Mars Polar Lander, e) Deep Space 1, and f) Deep Space 2; 2) Examine the relationship between and among, NASA Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), NASA Headquarters, and industry partners; 3) Assess effectiveness of involvement of scientists; 4) Identify lessons learned from successes and failures; 5) Review revised Mars Surveyor Program to assure lessons learned are utilized; 6) Oversee Mars Polar Lander and Deep Space 2 failure reviews; and 7) Complete by March 15, 2000. In-depth reviews were conducted at NASA Headquarters, JPL, and Lockheed Martin Astronautics (LMA). Structured reviews, informal sessions with numerous Mars Program participants, and extensive debate and discussion within the MPIAT establish the basis for this report. The review process began on January 7, 2000, and concluded with a briefing to the NASA Administrator on March 14, 2000. This report represents the integrated views of the members of the MPIAT who are identified in the appendix. In total, three related reports have been produced: a summary report, this report entitled "Mars Program Independent Assessment Team Report," and the "Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions".

  3. Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy; hide

    2008-01-01

    Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.

  4. 1-D Photochemical Modeling of the Martian Atmosphere: Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Emmanuel, S.; Hafsa, U.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Smith, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Blue, S.; Gurung, D.; Salako, O.

    2016-12-01

    High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), utilize Caltech/JPL's one-dimensional atmospheric, photochemical models. These sophisticated models, were built over the course of the last four decades, describing all planetary bodies in our Solar System and selected extrasolar planets. Specifically, students employed the Martian one-dimensional photochemical model to assess the seasonal variability of molecules in its atmosphere. Students learned the overall model construct, running a baseline simulation, and fluctuating parameters (e.g., obliquity, orbital eccentricity) which affects the incoming solar radiation on Mars, temperature and pressure induce by seasonal variations. Students also attain a `real-world' experience that exemplifies the required level of coding competency and innovativeness needed for building an environment that can simulate observations and forecast. Such skills permeate STEM-related occupations that model systems and/or predict how that system may/will behave.

  5. 6. Credit WCT. Original 21" x 2Y" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Credit WCT. Original 2-1" x 2-Y" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow weigh out small amounts of an undetermined substance according to a solid propellant formula (JPL negative no. JPL-10277AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  6. GNSS-Based Space Weather Systems Including COSMIC Ionospheric Measurements

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Mandrake, Lukas; Wilson, Brian; Iijima, Byron; Pi, Xiaoqing; Hajj, George; Mannucci, Anthony J.

    2006-01-01

    The presentation outline includes University Corporation for Atmospheric Research (UCAR) and Jet Propulsion Laboratory (JPL) product comparisons, assimilating ground-based global positioning satellites (GPS) and COSMIC into JPL/University of Southern California (USC) Global Assimilative Ionospheric Model (GAIM), and JPL/USC GAIM validation. The discussion of comparisons examines Abel profiles and calibrated TEC. The JPL/USC GAIM validation uses Arecibo ISR, Jason-2 VTEC, and Abel profiles.

  7. JPL scientist Dr. David Imel and U.S. Air Force Colonel Gwen Linde lead Chilean students on a tour of the DC-8 aircraft in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-17

    JPL scientist Dr. David Imel and U.S. Air Force Colonel Gwen Linde, the Defense Department Attache Officer assigned to the Chilean Embassy, lead Chilean students on a tour of the DC-8 aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  8. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  9. JPL, NASA and the Historical Record: Key Events/Documents in Lunar and Mars Exploration

    NASA Technical Reports Server (NTRS)

    Hooks, Michael Q.

    1999-01-01

    This document represents a presentation about the Jet Propulsion Laboratory (JPL) historical archives in the area of Lunar and Martian Exploration. The JPL archives documents the history of JPL's flight projects, research and development activities and administrative operations. The archives are in a variety of format. The presentation reviews the information available through the JPL archives web site, information available through the Regional Planetary Image Facility web site, and the information on past missions available through the web sites. The presentation also reviews the NASA historical resources at the NASA History Office and the National Archives and Records Administration.

  10. GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.

    1994-01-01

    Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.

  11. Manipulator control and mechanization: A telerobot subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Wilcox, B.

    1987-01-01

    The short- and long-term autonomous robot control activities in the Robotics and Teleoperators Research Group at the Jet Propulsion Laboratory (JPL) are described. This group is one of several involved in robotics and is an integral part of a new NASA robotics initiative called Telerobot program. A description of the architecture, hardware and software, and the research direction in manipulator control is given.

  12. JPL noise control program

    NASA Technical Reports Server (NTRS)

    Klascius, A. F.

    1975-01-01

    Exposures of personnel to noise pollution at the Jet Propulsion Laboratories, Pasadena, California, were investigated. As a result of the study several protective measures were taken: (1) employees exposed to noise hazards were required to wear ear-protection devices, (2) mufflers and air diversion devices were installed around the wind tunnels; and (3) all personnel that are required to wear ear protection are given annual audimeter tests.

  13. An update of the Near-Earth Asteroid Tracking/Maui Space Surveillance System (NEAT/MSSS) collaboration

    NASA Technical Reports Server (NTRS)

    Bambery, R. J.; Helin, E. F.; Pravdo, S. H.; Lawrence, K. J.; Hicks, M. D.

    2002-01-01

    Jet Propulsion Laboratory's (JPL) Near-Earth Asteroid Tracking (NEAT) program has two simultaneously-operating, autonomous search systems on two geographically-separated 1.2-m telescopes; one at the Maui Space Surveillance System (NEAT/MSSS) and the other on the Palomar Observatory's Oschin telescope (NEAT/Palomar). This paper will focus exclusively on the NEAT/MSSS system.

  14. A users evaluation of SAMIS. [Solar Array Manufacturing Industry Simulation

    NASA Technical Reports Server (NTRS)

    Grenon, L. A.; Coleman, M. G.

    1981-01-01

    SAMIS, the Solar Array Manufacturing Industry Simulation computer program was developed by Jet Propulsion Laboratories (JPL) to provide a method whereby manufacturers or potential manufacturers of photovoltaics could simulate a solar industry using their own particular approach. This paper analyzes the usefulness of SAMIS to a growing photovoltaic industry and clearly illustrates its limitations as viewed by an industrial user.

  15. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff member Leonard "Dutch" Sebring loads propellant grain into tube for a BATES (Ballistic And Test Evaluation System) test (JPL negative no. JPL-10279BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  16. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  17. Research and development activities in unified control-structure modeling and design

    NASA Technical Reports Server (NTRS)

    Nayak, A. P.

    1985-01-01

    Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.

  18. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, right, Cassini project scientist at JPL, Linda Spilker, center, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. A modeling analysis program for the JPL Table Mountain Io sodium cloud data

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Goldberg, B. A.

    1986-01-01

    Progress and achievements in the second year are discussed in three main areas: (1) data quality review of the 1981 Region B/C images; (2) data processing activities; and (3) modeling activities. The data quality review revealed that almost all 1981 Region B/C images are of sufficient quality to be valuable in the analyses of the JPL data set. In the second area, the major milestone reached was the successful development and application of complex image-processing software required to render the original image data suitable for modeling analysis studies. In the third area, the lifetime description of sodium atoms in the planet magnetosphere was improved in the model to include the offset dipole nature of the magnetic field as well as an east-west electric field. These improvements are important in properly representing the basic morphology as well as the east-west asymmetries of the sodium cloud.

  20. Impact of Space Transportation System on planetary spacecraft and missions design

    NASA Technical Reports Server (NTRS)

    Barnett, P. M.

    1975-01-01

    Results of Jet Propulsion Laboratory (JPL) activities to define and understand alternatives for planetary spacecraft operations with the Space Transportation System (STS) are summarized. The STS presents a set of interfaces, operational alternatives, and constraints in the prelaunch, launch, and near-earth flight phases of a mission. Shuttle-unique features are defined and coupled with JPL's existing program experience to begin development of operationally efficient alternatives, concepts, and methods for STS-launched missions. The time frame considered begins with the arrival of the planetary spacecraft at Kennedy Space Center and includes prelaunch ground operations, Shuttle-powered flight, and near-earth operations, up to acquisition of the spacecraft signal by the Deep Space Network. The areas selected for study within this time frame were generally chosen because they represent the 'driving conditions' on planetary-mission as well as system design and operations.

  1. An update of the JPL program to develop Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Halpert, S.; Ang, V.; Banes, R.; Dawson, S.; Frank, H.; Subbarao, S.; Whitcanack, L.

    1985-01-01

    The goal of producing spiral wound D cell was met. The cell design and electrodes, particularly the carbon cathodes were produced in-house. Also all parts were assembled, the welding performed, the electrolyte aided and the cells sealed in-house. The lithium capacity (theoretical) was 19.3 Ah and that of the SOCl2 in the 1.8 m LiAlCl4 electrolyte, 16.4 Ah (a greater excess of SOCl2 is necessary for safe high rate operation). The electrode surface area was 452 sq cm. The carbon electrode comprised Shawinigen Black/Teflon -30 (90/10 by weight) mixture 0.020 inches thick on an expanded metal screen prepared in the JPL laboratory. There were two tab connections to the cathode. The 0.0078 inch thick lithium foil was rolled into an expanded nickel screen. The separator was Mead 934-5 fiberglass material.

  2. Pooh Bear rock and Mermaid Dune

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. Heart Research

    NASA Technical Reports Server (NTRS)

    1991-01-01

    James Antaki and a group of researchers from the University of Pittsburgh School of Medicine used many elements of the Technology Utilization Program while looking for a way to visualize and track material points within the heart muscle. What they needed were tiny artificial "eggs" containing copper sulfate solution, small enough (about 2 mm in diameter) that they would not injure the heart, and large enough to be seen in Magnetic Resonance Imaging (MRI) images; they also had to be biocompatible and tough enough to withstand the beating of the muscle. The group could not make nor buy sufficient containers. After reading an article on microspheres in NASA Tech Briefs, and a complete set of reports on microencapsulation from the Jet Propulsion Laboratory (JPL), JPL put Antaki in touch with Dr.Taylor Wang of Vanderbilt University who helped construct the myocardial markers. The research is expected to lead to improved understanding of how the heart works and what takes place when it fails.

  4. Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image from the Pathfinder lander shows the rock 'Shark' at upper right (Shark is about 0.69 m wide, 0.40 m high, and 6.4 m from the lander). The rock looks like a conglomerate in Sojourner rover images, but only the large elements of its surface textures can be seen here. This demonstrates the usefulness of having a robot rover geologist able to examine rocks up close.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  5. Eigensolver for a Sparse, Large Hermitian Matrix

    NASA Technical Reports Server (NTRS)

    Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris

    2003-01-01

    A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).

  6. Obituary: Michael John Klein, 1940-2005

    NASA Astrophysics Data System (ADS)

    Gulkis, Samuel

    2006-12-01

    Michael John Klein died on 14 May 2005 at home in South Pasadena, California. The cause of death was tongue cancer that metastasized to the lungs. He was a non-smoker. Mike was a passionate radio astronomer, a trusted astronomical observer, an educator and a family man. Mike was born on 19 January 1940 in Ames, Iowa, the son of Florence Marie (Graf) and Fred Michael Klein. His mother was a homemaker, and his father was a banker. Mike had two older sisters, Lois Jean (Klein) Flauher and Marilyn June (Klein) Griffin. In 1962, Mike married his high school sweetheart Barbara Dahlberg, who survives him along with their three children, Kristin Marie (Klein) Shields, Michael John Klein Jr., Timothy Joel Klein, and six grandchildren. Mike developed a love for astronomy early in his life, and credited an early morning, newspaper-delivery route that he had at age twelve, which took him outside well before sunrise. He told family members that as he walked along his route, he stared into the sky and wondered what everything was. He studied sky charts, located stars, and began to understand how the planets shifted their positions relative to the stars each day. Another big influence in Mike's life was his brother in-law, Jim Griffin. Jim helped Mike understand that his passion for science did not have to remain a hobby, but could and should become a career. Jim's encouragement led Mike to attend Iowa State University in Ames, where he earned a BS in electrical engineering in 1962. Mike then started graduate school in electrical engineering at Michigan State, but after one semester transferred to the University of Michigan, Ann Arbor, where he earned an MS (1966) and PhD (1968) in astronomy. His doctoral dissertation, under the direction of Professor Fred Haddock, was based on extensive observations of the planets and examined the physical and thermal properties of planetary atmospheres and surfaces. Mike was awarded a Resident Research Associate position at JPL by the National Research Council in 1968. He joined JPL as a full time research scientist in 1969 where he remained until his death. He observed the radio emissions from Mercury, Jupiter, Uranus and other planets for over thirty-five years. Mike produced the most extensive set of observations of the synchrotron emission from Jupiter ever recorded. When JPL and the NASA Ames Research Center initiated a radio search for signs of extra-terrestrial intelligence (SETI) in the 1980s, Mike managed the JPL effort to scan the entire sky for signs of narrow band radio signals. He was open-minded about the possible existence of extra-terrestrial intelligent life. Mike devoted much of his energy to education in the last fifteen years of his life. He felt that science created a pathway for learning and remarked that "students need science and science needs students." Using SETI as a vehicle for education, Mike co-authored a book, Cosmic Quest: Searching for Life Among the Stars (with Margaret Poynter) in order to promote public awareness of astronomy and exobiology. In the early 1990s, Mike became a leader and driving force in a collaborative educational effort involving JPL, NASA, the Lewis Center for Educational Research in Apple Valley, California, and the Apple Valley Unified School District. A 34-meter (110-foot) radio antenna at NASA's Deep Space Network's Goldstone Complex was converted into an interactive, research, and teaching instrument available to classrooms throughout the United States and military bases overseas via the Internet. Known as the Goldstone Apple Valley Radio Telescope (GAVRT), the project has been in operation for approximately ten years in fourteen countries and three territories. More than 15,000 students from kindergarten through twelfth grade have participated to date and the number is expected to grow to more 50,000 students in the next four years. As a tribute to Mike's leadership, the GAVRT instrument has been named the "Michael J. Klein Radio Telescope." Mike was a member of the American Astronomical Society, the International Astronomical Union, the International Scientific Radio Union, and the American Institute for Aeronautics and Astronautics, for whom he was a Distinguished Lecturer in 1992 and 1993. He appeared on many television programs including CBS Nightwatch with Charlie Rose, ABC, NBC, and CNN News. Mike achieved balance and perspective in his personal and professional life. He loved being a professional radio astronomer and shared his passion with family, friends, and students. He would take his children with him when he went on overnight observing trips to the desert. Mike was also active in his church where he taught Sunday school and held other positions. His family recalls how he always made time for them, be it for weeklong treks in the Sierra Nevada Mountains, sporting events, church outings, vacations, or nightly family dinners. He was completely present in multiple worlds. Mike's children still marvel at the ability he had to take any controversial topic and explore how opposing sides might merge their views, where others would have debated the correctness of one side or the other. Mike was an inspiration to scientists and non-scientists alike. He set a high standard in his scientific work, and he shared his passion for life and the wonders of the universe.

  7. (abstract) NDE and Advanced Actuators at JPL

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1996-01-01

    JPL is responsible for deep space exploration using spacecraft and telerobotic technologies. Since all JPL's missions are one of a kind and hardware dependent, the requirements for nondestructive evaluation (NDE) of the materials and structures that are employed are significantly more stringent than the ones for conventional aerospace needs. The multidisciplinary technologies that are developed at JPL, particularily the ones for the exploration of Mars, are finding applications to a wide variety of NDE applications. Further, technology spin-offs are enabling the development of advanced actuators that are being used to drive various types of telerobotic devices. A review will be given of the recent JPL NDE and advanced actuators activity and it will include several short videos.

  8. Design of an optical PPM communication link in the presence of component tolerances

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1988-01-01

    A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.

  9. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  10. The Ganymede Interior Structure, and Magnetosphere Observer (GISMO) Mission Concept

    NASA Technical Reports Server (NTRS)

    Lynch, K. L.; Smith, I. B.; Singer, K. N.; Vogt, M. F.; Blackburn, D. G.; Chaffin, M.; Choukroun, M.; Ehsan, N.; DiBraccio, G. A.; Gibbons, L. J.; hide

    2011-01-01

    The NASA Planetary Science Summer School (PSSS) at JPL offers graduate students and young professionals a unique opportunity to learn about the mission design process. Program participants select and design a mission based on a recent NASA Science Mission Directorate Announcement of Opportunity (AO). Starting with the AO, in this case the 2009 New Frontiers AO, participants generate a set of science goals and develop a early mission concept to accomplish those goals within the constraints provided. As part of the 2010 NASA PSSS, the Ganymede Interior, Surface, and Magnetosphere Observer (GISMO) team developed a preliminary satellite design for a science mission to Jupiter's moon Ganymede. The science goals for this design focused on studying the icy moon's magnetosphere, internal structure, surface composition, geological processes, and atmosphere. By the completion of the summer school an instrument payload was selected and the necessary mission requirements were developed to deliver a spacecraft to Ganymede that would accomplish the defined science goals. This poster will discuss those science goals, the proposed spacecraft and the proposed mission design of this New Frontiers class Ganymede observer.

  11. Software Development for Asteroid and Variable Star Research

    NASA Astrophysics Data System (ADS)

    Sweckard, Teaghen; Clason, Timothy; Kenney, Jessica; Wuerker, Wolfgang; Palser, Sage; Giles, Tucker; Linder, Tyler; Sanchez, Richard

    2018-01-01

    The process of collecting and analyzing light curves from variable stars and asteroids is almost identical. In 2016 a collaboration was created to develop a simple fundamental way to study both asteroids and variable stars using methods that would allow the process to be repeated by middle school and high school students.Using robotic telescopes at Cerro Tololo (Chile), Yerkes Observatory (US), and Stone Edge Observatory (US) data were collected on RV Del and three asteroids. It was discovered that the only available software program which could be easily installed on lab computers was MPO Canopus. However, after six months it was determined that MPO Canopus was not an acceptable option because of the steep learning curve, lack of documentation and technical support.Therefore, the project decided that the best option was to design our own python based software. Using python and python libraries we developed code that can be used for photometry and can be easily changed to the user's needs. We accomplished this by meeting with our mentor astronomer, Tyler Linder, and in the beginning wrote two different programs, one for asteroids and one for variable stars. In the end, though, we chose to combine codes so that the program would be capable of performing photometry for both moving and static objects.The software performs differential photometry by comparing the magnitude of known reference stars to the object being studied. For asteroids, the image timestamps are used to obtain ephemeris of the asteroid from JPL Horizons automatically.

  12. TMAP: A NEO follow-up program utilizing undergraduate observers

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Deaver, D.; Martinez, R.; Foster, J.; Kuang, L.; Ates, A.; Anderson, M.; Mijac, M.; Gillam, S.; Hicks, M. D.

    2000-10-01

    In the spring of 2000 we began TMAP (Table Mountain Astrometry Project), a program designed to provide timely astrometric followup of newly discovered near-Earth asteroids. Relying on undergraduate observers from the local California State Universities, we have to date been involved with the over 50 NEO and new comet discoveries. This is a significant fraction of all near-Earth asteroids discovered over the time period. All observations are performed at JPL's Table Mountain Facility near Wrightwood California using the 0.6-meter telescope equipped with a Photometrics LN cooled 1k CCD mounted at the cassegrain focus. With this system we can routinely detect objects to R=20.5. We have typically scheduled two runs per month on weekends bracketing the new moon. The student observers man the telescope are trained to select and obtain R-band images of candidates from the Minor Planet Center's NEO Confirmation Page (http://cfa-www.harvard.edu/cfa/ps/NEO/TheNEOPage.html). The astrometry is then reduced and submitted to the Minor Planet Center the following day. TMAP has proven to be an efficient way both to obtain much needed astrometric measurements of newly discovered small bodies as well as to involve undergraduate researchers in planetary research. The limiting magnitudes provided by the 0.6-meter partially fills the gap between the extremely helpful and dedicated amateur astromitrists and the followup that the NEO detection programs do themselves. This work is supported by NASA.

  13. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  14. JPL Tech Works Mars 2020 Descent Stage

    NASA Image and Video Library

    2018-03-13

    A technician works on the descent stage for NASA's Mars 2020 mission inside JPL's Spacecraft Assembly Facility. Mars 2020 is slated to carry NASA's next Mars rover to the Red Planet in July of 2020. https://photojournal.jpl.nasa.gov/catalog/PIA22342

  15. Credit WCT. Original 21" x 2A" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1" x 2-A" color negative is housed in the JPL Photography Laboratory, Pasadena, California. The mixing pot of the 150-gallon (Size 16-PVM) Baker-Perkins vertical mixer appears in its lowered position, exposing the mixer paddles. JPL employees Harold "Andy" Anderson and Ron Wright in protective clothing demonstrate how to scrape mixed propellant from mixer blades (JPL negative JPL10284BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  16. Publications of the JPL Solar Thermal Power Systems Project 1976 Through 1985

    NASA Technical Reports Server (NTRS)

    Panda, P. (Compiler); Gray, V. (Compiler); Marsh, C. (Compiler)

    1985-01-01

    Bibliographical listings are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1986. Documents are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by titles are used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference; an author index; and a topical index.

  17. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. At one time, Building 4285/E-86 accommodated tensile testing of propellant samples. This view shows a tensile strength tester set up for propellant tests, under the supervision of JPL staff member Milton Clay (JPL negative no. JPL-10291AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  18. Archived 1976-1985 JPL Aircraft SAR Data

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Blom, Ronald G.

    2016-01-01

    This report describes archived data from the Jet Propulsion Laboratory (JPL) aircraft radar expeditions in the mid-1970s through the mid-1980s collected by Ron Blom, JPL Radar Geologist. The dataset was collected during Ron's career at JPL from the 1970s through 2015. Synthetic Aperture Radar (SAR) data in the 1970s and 1980s were recorded optically on long strips of film. SAR imagery was produced via an optical, holographic technique that resulted in long strips of film imagery.

  19. The NuSTAR Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; NuSTAR Team

    2010-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase student and public understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, by writing articles for Physics Teacher and Science Scope magazines to reach a broader community of educators, and by working with informal educators through museums and planetaria to develop an exhibit that includes a model of NuSTAR and describes the mission's science objectives. We will also develop printed materials such as a mission factsheet that describes the mission.

  20. The NuSTAR Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; NuSTAR Team

    2010-03-01

    NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase student and public understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, by writing articles for Physics Teacher and Science Scope magazines to reach a broader community of educators, and by working with informal educators through museums and planetaria to develop an exhibit that includes a model of NuSTAR and describes the mission's science objectives. We will also develop printed materials such as a mission factsheet that describes the mission.

  1. LAPTAG: Los Angeles Physics Teachers Alliance Group and the UCLA Basic Plasma User Facility.

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter

    2001-10-01

    LAPTAG was founded in 1993 during a meeting sponsored by the APS, which encouraged high schools and Universities to form alliances. There are currently about twenty high schools, several community colleges and two Universities (UCLA and USC) involved. At first LAPTAG organized tours of laboratories at UCLA, USC, JPL, General Atomics and the Mt. Wilson Observatory and had meetings in which issues on curricula were discussed. It became obvious after awhile that in order for the group to last that projects were necessary. An early project involved having the high school faculty and students create Websites for most of the schools. This was before most the schools could afford Internet connections and Web authoring tools did not exist. Then with funding from the UC Office of the President, a seismology project was initiated and ten schools received seismometers. There were lectures by geologists and staff members of the Southern California Earthquake center; results were reported on the Web. In the spring of 1999 LAPTAG gave seven posters at the Condensed Matter APS meeting in Los Angeles. A web based astronomy course was created and high school students controlled the Mount Wilson telescope remotely and studied a variable star. Our latest project, funded by the Department of Energy resulted in the construction of a plasma lab dedicated to LAPTAG. The lab has equipment that is used by practicing plasma physicists (tone-burst generators, digital scopes, digital data acquisition and computerized probe drives) as well as software (LabView, PVwave). The high school students and teachers built the machine and all the associated diagnostics. Examples of the experiments will be given, however it is not a cookbook lab. As new experiments are introduced the same difficulties we all face must be overcome; the students take part in this. The LAPD laboratory is now a National User Facility and LAPTAG is a key component of its outreach program. We have met with the director of science for the Los Angeles Unified School district, and others, to muster resources to allow many more schools to participate. This and plans for other programs such as the Integration of Art and Science, will be presented.

  2. The systems engineering upgrade intiative at NASA's Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2005-01-01

    JPL is implementing an initiative to significantly upgrade our systems engineering capabilities. This Systems Engineering Upgrade Initiative [SUI] has been authorized by the highest level technical management body of JPL and is sponsored with internal funds. The SUI objective is to upgrade system engineering at JPL to a level that is world class, professional and efficient compared to the FY04/05 baseline. JPL system engineering, along with the other engineering disciplines, is intended to support optimum designs; controlled and efficient implementations; and high quality, reliable, cost effective products. SUI technical activities are categorized into those dealing with people, process and tools. The purpose of this paper is to describe the rationale, objectives/plans and current status of the JPL SUI.

  3. Defect measurement and analysis of JPL ground software: a case study

    NASA Technical Reports Server (NTRS)

    Powell, John D.; Spagnuolo, John N., Jr.

    2004-01-01

    Ground software systems at JPL must meet high assurance standards while remaining on schedule due to relatively immovable launch dates for spacecraft that will be controlled by such systems. Toward this end, the Software Quality Improvement (SQI) project's Measurement and Benchmarking (M&B) team is collecting and analyzing defect data of JPL ground system software projects to build software defect prediction models. The aim of these models is to improve predictability with regard to software quality activities. Predictive models will quantitatively define typical trends for JPL ground systems as well as Critical Discriminators (CDs) to provide explanations for atypical deviations from the norm at JPL. CDs are software characteristics that can be estimated or foreseen early in a software project's planning. Thus, these CDs will assist in planning for the predicted degree to which software quality activities for a project are likely to deviation from the normal JPL ground system based on pasted experience across the lab.

  4. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  5. Resident research associateships. Postdoctoral and senior research awards: Opportunities for research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided.

  6. (abstract) Absolute Flux Calibrations of Venus and Jupiter at 32 GHz

    NASA Technical Reports Server (NTRS)

    Gatti, Mark S.; Klein, Michael J.

    1994-01-01

    The microwave flux densities of Venus and Jupiter at 32 GHz have been measured using a calibration standard radio telescope system at the Owens Valley Radio Observatory (OVRO) during April and May of 1993. These measurements are part of a joint JPL/Caltech program to accurately calibrate a catalog of other radio sources using the two bright planets as flux standards.

  7. Mars Science and Telecommunications Orbiter: Report of the Science Analysis Group, March 2006

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton Barney; Calvin, Wendy M.; Campbell, Bruce; Fox, Jane; Haberle, Bob; Kasting, Jim; Luhmann, Janet; Nagy, Andy; Allen, Mark; Winterhalter, Daniel

    2006-01-01

    This document reports the findings of the Mars Science and Telecommunications Orbiter (MSTO) Science Advocacy Group (SAG), which was convened by the Mars Exploration Program Analysis Group (MEPAG) and the Mars Exploration Office at JPL to identify and prioritize areas of Mars atmospheric and surface science objectives for Mars that can be accomplished from orbit on a MSTO like mission.

  8. TDA Assessment of Recommendations for Space Data System Standards

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Stevens, R.

    1984-01-01

    NASA is participating in the development of international standards for space data systems. Recommendations for standards thus far developed are assessed. The proposed standards for telemetry coding and packet telemetry provide worthwhile benefit to the DSN; their cost impact to the DSN should be small. Because of their advantage to the NASA space exploration program, their adoption should be supported by TDA, JPL, and OSTDS.

  9. Solar System Treks: Interactive Web Portals or STEM, Exploration and Beyond

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Viotti, M.

    2017-12-01

    NASA's Solar System Treks project produces a suite of online visualization and analysis tools for lunar and planetary mapping and modeling. These portals offer great benefits for education and public outreach, providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's STEM Activation Infrastructure, they are available as resources for NASA STEM programs, and to the greater STEM community. As new missions are planned to a variety of planetary bodies, these tools facilitate public understanding of the missions and engage the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: Moon Trek (https://moontrek.jpl.nasa.gov), Mars Trek (https://marstrek.jpl.nasa.gov), and Vesta Trek (https://vestatrek.jpl.nasa.gov). A new release of Mars Trek includes new tools and data products focusing on human landing site selection. Backed by evidence-based cognitive and computer science findings, an additional version is available for educational and public audiences in support of earning along novice-to-expert pathways, enabling authentic, real-world interaction with planetary data. Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL/OBJ files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. The program supports additional clients, web services, and APIs facilitating dissemination of planetary data to external applications and venues. NASA challenges and hackathons also provide members of the software development community opportunities to participate in tool development and leverage data from the portals.

  10. JPL stories: story on the story (series) Careering through JPL, presented by Alice M. Fairhurst

    NASA Technical Reports Server (NTRS)

    Hendrickson, S.

    2002-01-01

    Alice Fairhurst, co-author of Effective Teaching, Effective Learning, presented an enthusiastic overview of her tenure as a JPL career development and mentoring coordinator (1991-2001). Among other things, Alice is an expert in Keirseyian Temperament and Myers-Briggs typology.

  11. An Earth Summit in a Large General Education Oceanography Class

    NASA Astrophysics Data System (ADS)

    Dodson, H.; Prothero, W. A.

    2001-12-01

    An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth Summit countries. For example, students representing the country of Chile might model their investigations after a)winds and surface currents, b)atmosphere and ocean interactions, c) stratospheric ozone depletion, d)El Nino; and/or e)volcanoes and climate. Please join the "Oceanography" interest group of DLESE to discuss, develop, and access oceanography related mini-studies that use earth data (http://oceanography.geol.ucsb.edu/dlese/wg_oceanog/Index.html). >http://oceanography.geol.ucsb.edu/AWP/Class_Info/GS-4/Labs/Labs Index.html

  12. JPL HAMSR Takes Hurricane Matthew Temperature

    NASA Image and Video Library

    2016-10-07

    JPL's High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) instrument captured this look inside Hurricane Matthew's spiral clouds on Oct. 7, 2016, flying on a NASA Global Hawk unmanned aircraft. Red colors show cloud bands without precipitation; blues show rain bands. http://photojournal.jpl.nasa.gov/catalog/PIA21093

  13. Photovoltaic Module Encapsulation Design and Materials Selection, Volume 1, Abridged

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1982-01-01

    A summary version of Volume 1, presenting the basic encapsulation systems, their purposes and requirements, and the characteristics of the most promising candidate systems and materials, as identified and evaluated by the Flat-Plate Solar Array Project is presented. In this summary version considerable detail and much supporting and experimental information has necessarily been omitted. A reader interested in references and literature citations, and in more detailed information on specific topics, should consult Reference 1, JPL Document No. 5101-177, JPL Publication 81-102, DOE/JPL-1012-60 (JPL), June 1, 1982.

  14. Credit WCT. Original 2Y4" x 2Y4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-Y4" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow cast grain from the 1-gallon BakerPerkins model 4-PU mixer. A 1-pint Baker-Perkins model 2-PX mixer stands to the left in this view (JPL negative no. JPL-10295BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA

  15. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated next to his wife Karen and daughter Charlotte Pence, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  16. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  17. Goldstone Radar Observations of the 1999 Mars Opposition and other Observing Opportunities

    NASA Astrophysics Data System (ADS)

    Slade, M. A.

    1997-07-01

    As part of the International Mars Watch, Goldstone radar observations of Mars are planned during the 1999 Opposition ( Feb.'99-Aug'99). While some observing time is already allocated, a number of tracks could be made available for well-focused scientific objectives. Since the Deep Space Network plans far in advance, now is the time to develop your plans. During the next Mars opposition, the sub-Earth latitudes are in Mars' Northern hemisphere over the most northerly terrain accessible, which has not been previously examined with current sensitivity. The North residual ice cap is of particular interest. As a reminder to the Planetary Science community, observing proposals from any scientist with peer-reviewed planetary funding are solicited and should be forwarded to Martin.A.Slade@jpl.nasa.gov by email. Data reduction can, in principle, be carried out over the Internet. A graduate student or postdoctoral fellow resident at JPL for short period is recommended, however, to become familiar with suite of software for data analysis. Unfortunately, JPL cannot guarantee travel reimbursement due to funding limitations. We urge your consideration of becoming involved with the acquisition and analysis of Goldstone radar data. In the recent past, P.I.'s or co-I.s from Cornell, Arecibo/NAIC, Washington State University, Univ. Cal. Berkeley, Harvard -Smithsonian Center for Astrophysics, Univ. of Chicago, the DLR, Kashima SRC, ISAS, the Russian Academy of Science, the Russian Space Agency, and the USGS, have participated in radar experiments with Goldstone transmitting. This work is supported by the California Institute of Technology, under contract with NASA.

  18. Cassini Scientist for a Day: a tactile experience

    NASA Astrophysics Data System (ADS)

    Canas, L.; Altobelli, N.

    2012-09-01

    In September 2011, the Cassini spacecraft took images of three targets and a challenge was launched to all students: to choose the one target they thought would provide the best science and to write an essay explaining their reasons (more information on the "Cassini Scientist for a Day" essay contest official webpage in: http://saturn.jpl.nasa.gov/education/scientistforaday10thedition/, run by NASA/JPL) The three targets presented were: Hyperion, Rhea and Titan, and Saturn. The idea behind "Cassini Scientist for a Day: a tactile experience" was to transform each of these images into schematic tactile images, highlighting relevant features apprehended through a tactile key, accompanied by a small text in Braille with some additional information. This initial approach would allow reach a broader community of students, more specifically those with visual impairment disabilities. Through proper implementation and careful study cases the adapted images associated with an explanatory key provide more resources in tactile astronomy. As the 2012 edition approaches a new set of targeted objet images will be once again transformed and adapted to visually impaired students and will aim to reach more students into participate in this international competition and to engage them in a quest to expand their knowledge in the amazing Cassini discoveries and the wonders of Saturn and its moons. As the winning essays will be published on the Cassini website and contest winners invited to participate in a dedicated teleconference with Cassini scientists from NASA's Jet Propulsion Laboratory, this initiative presents a great chance to all visually impaired students and teachers to participate in an exciting experience. These initiatives must be complemented with further information to strengthen the learning experience. However they stand as a good starting point to tackle further astronomical concepts in the classroom, especially this field that sometimes lacks the resources. Although the images are ready, any feedback received is paramount. With this initiative we would like to make a call to all interested in participating in the implementation of this project in their country. All interested parties will have the images provided in their native languages by sending the text on your native language translated from the English version.

  19. KSC-2011-6227

    NASA Image and Video Library

    2011-08-04

    CAPE CANAVERAL, Fla. -- Dr. Steve Lee, with the Denver Museum of Nature and Science, left, hosts an educational webcast in the Mission Status Center at the Kennedy Space Center Visitor Complex in Florida. On hand to ask questions were students, teachers, and mentors of the Goldstone Apple Valley Radio Telescope (GAVRT) project who were invited to Kennedy to watch the launch of NASA's Juno spacecraft atop a United Launch Alliance Atlas V rocket. GAVRT is a partnership between NASA, the Jet Propulsion Laboratory (JPL), and The Lewis Center for Educational Research (LCER) in Apple Valley, Calif. It allows students to control a 34-meter radio telescope that, until recently, was part of NASA’s Deep Space Network, and to interact with scientists outside the classroom setting. Photo credit: NASA/Glenn Benson

  20. A beginner's guide to Pickett's SPCAT/SPFIT

    NASA Astrophysics Data System (ADS)

    Novick, Stewart E.

    2016-11-01

    Two of the most powerful and versatile high resolution spectroscopic predicting and fitting programs are SPCAT/SPFIT first presented by Herbert Pickett in 1991 and refined, expanded, and updated by Herb until his retirement from the Jet Propulsion Laboratory (JPL) in 2008. With versatility, unfortunately, comes complexity. The purpose of this paper is to present for the beginning spectroscopist (or the seasoned spectroscopist unfamiliar with these programs) a simple introduction to SPCAT/SPFIT. I will not be presenting the most powerful and sophisticated uses of these programs. I leave that for future articles, not necessarily by me. This paper outlines the file structures of the input and output files of the programs and a simple tutorial on how to run the programs. Simple examples are worked out, supported by a website containing the files and notes on more complex uses of the program.

  1. Project Bibliographies: Tracking the Expansion of Knowledge Using JPL Project Publications

    ERIC Educational Resources Information Center

    Coppin, Ann

    2016-01-01

    The Jet Propulsion Laboratory (JPL) Library defines a project bibliography as a bibliography of publicly available publications relating to a specific JPL instrument or mission. These bibliographies may be used to share information between distant project team members, as part of the required Education and Public Outreach effort, or as part of…

  2. Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience

    NASA Technical Reports Server (NTRS)

    Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.

  3. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  4. Results of the 1978 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Seaman, C. H.; Sidwell, L. B.

    1979-01-01

    The 1978 scheduled solar cell calibration balloon flight was successfully completed. Thirty six modules were carried to an altitude of above 36 kilometers. Recovery of telemetry and flight packages was without incident. These calibrated standard cells are used as reference standards in simulator testing of cells and arrays with similar spectral response characteristics. The factors affecting the spectral transmission of the atmosphere at various altitudes are summarized.

  5. InSight Prelaunch Briefing

    NASA Image and Video Library

    2018-05-03

    Stu Spath, InSight program manager, Lockheed Martin Space, left, and Tom Hoffman, InSight project manager, NASA JPL, discuss NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)

  6. Helicopter Visual Aid System

    NASA Technical Reports Server (NTRS)

    Baisley, R. L.

    1973-01-01

    The results of an evaluation of police helicopter effectiveness revealed a need for improved visual capability. A JPL program developed a method that would enhance visual observation capability for both day and night usage and demonstrated the feasibility of the adopted approach. This approach made use of remote pointable optics, a display screen, a slaved covert searchlight, and a coupled camera. The approach was proved feasible through field testing and by judgement against evaluation criteria.

  7. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  8. California four cities program, 1971 - 1973. [aerospace-to-urban technology application

    NASA Technical Reports Server (NTRS)

    Macomber, H. L.; Wilson, J. H.

    1974-01-01

    A pilot project in aerospace-to-urban technology application is reported. Companies assigned senior engineering professionals to serve as Science and Technology Advisors to participating city governments. Technical support was provided by the companies and JPL. The cities, Anaheim, Fresno, Pasadena, and San Hose, California, provided the working environment and general service support. Each city/company team developed and carried out one or more technical or management pilot projects together with a number of less formalized technology efforts and studies. An account and evaluation is provided of the initial two-year phase of the program.

  9. JPL-ANTOPT antenna structure optimization program

    NASA Technical Reports Server (NTRS)

    Strain, D. M.

    1994-01-01

    New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.

  10. Architectures for mission control at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Davidson, Reger A.; Murphy, Susan C.

    1992-01-01

    JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.

  11. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated 4th from left, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, Executive Director of the National Space Council Scott Pace, wife of Mike Pence, Karen Pence, daughter of Mike Pence, Charlotte Pence, and JPL Deputy Director Lt. Gen. (Ret) Larry James. Photo Credit: (NASA/Bill Ingalls)

  12. Planning the future of JPL's management and administrative support systems around an integrated database

    NASA Technical Reports Server (NTRS)

    Ebersole, M. M.

    1983-01-01

    JPL's management and administrative support systems have been developed piece meal and without consistency in design approach over the past twenty years. These systems are now proving to be inadequate to support effective management of tasks and administration of the Laboratory. New approaches are needed. Modern database management technology has the potential for providing the foundation for more effective administrative tools for JPL managers and administrators. Plans for upgrading JPL's management and administrative systems over a six year period evolving around the development of an integrated management and administrative data base are discussed.

  13. An Operations Concept for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Cooney, Lauren A.; Delp, Christopher L.; Dutenhoffer, Chelsea A.; Gostelow, Roli D.; Ingham, Michel D.; Jenkins, J. Steven; Smith, Brian S.

    2010-01-01

    As JPL's missions grow more complex, the need for improved systems engineering processes is becoming clear. Of significant promise in this regard is the move toward a more integrated and model-centric approach to mission conception, design, implementation and operations. The Integrated Model-Centric Engineering (IMCE) Initiative, now underway at JPL, seeks to lay the groundwork for these improvements. This paper will report progress on three fronts: articulating JPL's need for IMCE; characterizing the enterprise into which IMCE capabilities will be deployed; and constructing an operations concept for a flight project development in an integrated model-centric environment.

  14. Encouraging upward thinking with planetary imagery: science as motivator and enrichment for the adult basic skills learner

    NASA Astrophysics Data System (ADS)

    Fisher, C. G.; Fisher, K. E.

    2004-12-01

    Engaging students in the process of understanding the world around them in a college level remedial reading program presents an unmitigated challenge. Students previously unimpressed with the educational system become more active participants in their classrooms when high resolution prints from Landsat obtained from the NASA-GSFC education outreach center are used to initially motivate them to perceive the context of their surroundings. In the course, imagery from Landsat that clearly show the Compton Community College track is introduced, moving on to show students similar perspectives on Egyptian pyramids and other remote regions. The satellite imagery makes understanding maps intuitive. After linking these observations from space to both the student's own experience and far away places on earth, students are introduced to the Star-date publication [http://Stardate.org]. Students are encouraged to individually follow the phases of the moon, find constellations, visit the College's telescope on nights when the astronomy class makes observations, and look for meteor showers. NASA and JPL sites are then used to teach students to access the web. Students receive instruction in using computers to navigate the web, where they then follow missions in real time, and access archived imagery and written materials. These sources of reading material are particularly valuable because they are written simply, but follow the scientific convention of addressing readers as colleagues. Notably, students have returned after completing the three-course sequence to literacy and commented on the importance to them of having learned about space in the initial course. They have reported on the excitement of teaching their children and others in the community about what they can see by looking up, and indicated their appreciation of receiving posters and handouts obtained at this meeting by displaying them prominently in their homes. Although not a traditional venue for scientific education, the importance of motivating these adult students to develop not only reading skills, but also increased awareness of the world around them gives a clear impetus for including in Compton College's remedial reading sequence the striking imagery available from our space missions. We propose that outreach directed at instructors of courses at this level would result in significant benefit to an underserved population of students, and invite feedback on ways to accomplish this through existing facilities.

  15. Deep Space Networking Experiments on the EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the validation results.

  16. Reducing NPR 7120.5D to Practice: Transitioning from Design Reviews to the SIR Hardware Review

    NASA Technical Reports Server (NTRS)

    Taylor, Randall

    2011-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission was the first Jet Propulsion Laboratory (JPL) project initiated under NASA's revised rules for space flight project management, NPR 7120.5D, "NASA Space Flight Program and Project Management Requirements." NASA selected GRAIL through a competitive Announcement of Opportunity process and funded its Phase B Preliminary Design effort. The team's first major milestone was a JPL institutional milestone, the Project Mission System Review (PMSR), which proved an excellent tune-up for the end-of-Phase-B NASA life-cycle review, the Preliminary Design Review (PDR). Building on JPL experience on the Prometheus and Juno projects, the team successfully organized for and conducted these reviews on an aggressive schedule. For the Project Critical Design Review (CDR), lessons learned from the PDR and updated Standing Review Board (SRB) practices from the Agency were factored into the review preparation effort. Additionally, the review was held at the Principal Investigator's institution, the Massachusetts Institute of Technology, rather than at the project management center (JPL), which necessitated additional cross-country coordination steps. The PMSR, PDR, and CDR were design reviews and largely paper-oriented. For the System Integration Review (SIR), the project needed to transition to a hardware review and deal with paper in a very different manner. While many of the practices employed for the design reviews were modified and retained (e.g., review preparation team, gate products management, pre-reviews, SRB coordination), the review agenda, presentation style, and slide templates were significantly changed. A key success factor concerned the handling of project open paper, which was succinctly and effectively communicated to the SRB in presentations.This paper provides a brief overview of the GRAIL mission and its project management challenges, provides a detailed description of project SIR preparation and execution activities, including positive and negative lessons learned and identifies recommendations for future NASA (and non- NASA) project teams.

  17. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Wind effects on Martian soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false-color combination image highlights details of wind effects on the Martian soil at the Pathfinder landing site. Red and blue filter images have been combined to enhance brightness contrasts among several soil units. Martian winds have distributed these lighter and darker fine materials in complex patterns around the rocks in the scene (blue). For scale, the rock at right center is 16 centimeters (6.3 inches) long. This scene is one of several that will be monitored weekly for changes caused by wind activity.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, speaks during a press conference previewing Cassini's End of Mission as director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and Cassini project scientist at JPL, Linda Spilker, second from right, look on, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. A modeling analysis program for the JPL table mountain Io sodium cloud data

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Goldberg, Bruce A.

    1988-01-01

    Research in the third and final year of this project is divided into three main areas: (1) completion of data processing and calibration for 34 of the 1981 Region B/C images, selected from the massive JPL sodium cloud data set; (2) identification and examination of the basic features and observed changes in the morphological characteristics of the sodium cloud images; and (3) successful physical interpretation of these basic features and observed changes using the highly developed numerical sodium cloud model at AER. The modeling analysis has led to a number of definite conclusions regarding the local structure of Io's atmosphere, the gas escape mechanism at Io, and the presence of an east-west electric field and a System III longitudinal asymmetry in the plasma torus. Large scale stability, as well as some smaller scale time variability for both the sodium cloud and the structure of the plasma torus over a several year time period are also discussed.

  3. Obituary: David Fulmer Bender, 1913-2004

    NASA Astrophysics Data System (ADS)

    Miller, Sylvia L.

    2004-12-01

    David Fulmer Bender died in San Diego, California, on 13 September 2004, at the age of 91. His heart stopped suddenly while he was dancing. His pioneering work in establishing comprehensive, computer-accessible ephemerides of asteroids and comets found many applications, including the first-ever visit to an asteroid, Gaspra, by an interplanetary spacecraft. Dave was born in Reno, Nevada, on 10 February 1913, to Homer Charles Bender and Susan Bowers Bender. The family moved to Spokane, Washington, while Dave was very young. His father was a civil engineer and a graduate of MIT, who helped design bridges and dams throughout the Northwest, including the Grand Coolie Dam. Dave had a brother, Phillip (now deceased), who was one year younger. Advancing rapidly in the Spokane school system, Dave finished high school when he was 15 years old. At 16 he moved to Pasadena, California, and began his studies at the California Institute of Technology (Caltech). In addition to pursuing his course work, he was active in track and football, a tendency toward physical exercise that stayed with him for the rest of his life. It was probably during these years that Dave heard a lecture by Albert Einstein, as mentioned to colleagues many years later. Dave received a BS degree in physics in 1933, an MS in 1934, and a PhD in 1937, all from Caltech. His dissertation was entitled, "The Index of Refraction of Air in the Photographic Infrared." During his sophomore year he found his way to Pomona College in Claremont, California, where he met his future wife, Elizabeth Boyden at a social gathering. They were married in 1935. Dave's academic career spanned the years from 1937 to 1970, initially at Louisiana State University, Vanderbilt University, and then Fisk. As a life-long pacifist and conscientious objector, Dave served alternate duty during World War II. In 1946 he joined the faculty of the physics department at Whittier College in California, where he became the department chair and remained until 1970. Here Dave's strong personal interest in the students became evident. During each year's spring break, he and Beth led a car caravan of interested astronomy and physics students to Death Valley for primitive camping, exploring the desert, studying the stars, and shooting off rockets. Beth organized all the food and Dave cooked the breakfasts, with French toast being his specialty. This tradition was so popular that many students returned year after year, long after having left the college. Dave enjoyed leading the astronomy club at Whittier College, and also participated in a municipal astronomy club. In the sixties, in addition to his job at the college, Dave worked part time at the Space Science Laboratory of North American Aviation (later North American Rockwell and now Boeing). Dave co-authored, with Gary Mc Cue and others, several papers on orbital rendezvous techniques, a capability of prime interest to the Apollo program. Soon apparent, however, was Dave's interest in the hundreds of asteroids whose orbits were known at the time. In his spare time he punched their orbital elements into computer cards and initiated a long career of searching for opportunities for spacecraft to flyby or rendezvous with one of these minor planets. He learned enough Russian to read books important at the time on the subject of asteroid orbits. In 1966 he had enough data to publish a paper on some possible asteroid encounters by human missions to Mars. Through conferences of the American Astronautical Society, Dave became acquainted with Roger Bourke, the group supervisor of the Advanced Projects Group at the Jet Propulsion Laboratory (JPL), which is managed by Caltech for NASA. In 1970, Dave retired from Whittier College and began working full time for Roger at JPL. JPL was still working on missions to the inner planets and was starting to develop missions to the outer planets. Roger understood the potential of having Dave pursue his interest in the small bodies and of having him create a comprehensive set of ephemerides that would be available for the Advanced Projects Group to use for mission planning purposes. Dave worked with Phil Roberts, Carl Sauer, and others who were creating mission design software at the time to ensure that the asteroid file would be compatible with these computer programs. Dave, himself, authored many papers documenting trajectories he discovered to various asteroids, comets, and Lagrange points, along with the search techniques he used. He also documented surveys of opportunities, some for use with low-thrust propulsion as well as the more common chemical propulsion. Along with Raymond Jurgens, Dave published opportunities for radar astronomers to view asteroids passing close to the Earth. Dave did not restrict his investigations to small bodies. He also published papers on Venus missions, lunar swingby techniques, Jupiter gravity assist trajectories to Kuiper belt objects, and multibody-assist trajectories for missions to Jupiter's satellite Europa (the latter two in the 1990s!). Brian Marsden recalls that in1980 Dave visited him at the new facilities of the Minor Planet Center in Massachusetts and left with a box of new computer cards punched with the orbital elements of the 2000 asteroids known at that time. Colleagues at JPL remember how excited he was when he returned from that trip. As more asteroids were discovered, he would add their orbital elements to the file. Because of Dave's pioneering work in making the asteroid orbits accessible for mission studies before most people cared about these bodies, he can be credited in part for the mission Galileo's close flyby of both Gaspra (in 1991) and Ida (in 1993), along with the discovery of Dactyl, the first confirmed asteroid satellite. Dave eventually passed the responsibility of maintaining the small body file to Donald Yeomans and Ravenel (Ray) Wimberly at JPL. Now called DASTCOM, it includes elements for over 260,000 bodies, most of them asteroids. Dave retired from JPL in 1987. At a party in his honor, Eleanor Helin, a JPL colleague and persistent asteroid hunter, announced that an asteroid that she and, then student, Schelte (Bobby) Bus, had discovered in 1978 at Palomar would henceforth bear Dave's name. Dave was devoted to Beth. They participated in many activities together that strengthened their relationship. He wrote her love poems, sometimes quoting from The Prophet by Kahlil Gibran. Beth passed away in 1990. Dave lived another fourteen years, continuing an active life. He is survived by his son and daughter-in-law, Robert and Leta Bender of Jamul, California, his daughter, Susan Rodrigues, of Tucson, Arizona, and three grandchildren. Dave is remembered as a visionary, whose enthusiasm for space mission design was unstoppable; as someone who was still jogging and playing softball in his seventies; as a modest, kind, and generous human being; and as a caregiver who genuinely believed that the most important thing in life is love. How fitting it would be for a space vehicle to visit asteroid "2725 David Bender" one day. How pleased the mission planners would be to find in their research that the namesake of the object of their interest was a pioneer in their field of endeavor.

  4. Expanding Public Outreach: The Solar System Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Ferrari, K. A.

    2000-12-01

    The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. Those volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums, e.g. community service clubs, libraries, museums, planetariums, ``star parties," mall displays, etc. In 2001, 200 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, K-12 in-service educators, retirees, community college teachers, and other members of the general public interested in providing greater service and inspiration to the community at large. Last year, Ambassadors conducted approximately 600 events that directly reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL projects include Cassini, Galileo, STARDUST, Outer Planets mission, Solar Probe, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR-Shoemaker and Deep Impact, and the Deep Space Network. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. Integrating nation-wide volunteers in a public-engagement program helps optimize project funding set aside for education and outreach purposes. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.

  5. Former Administration Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. Building 11, one of the oldest buildings on lab, was once JPL's central administration building. It is now the Space Sciences Laboratory. This picture dates back to May 1943. http://photojournal.jpl.nasa.gov/catalog/PIA21201

  6. A Snowy Entrance

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. This photograph from 1949 shows the main entrance gate to the Jet Propulsion Laboratory in Pasadena, California, after a snowstorm. To the left is JPL's administration building at the time (Building 67). Building 67 is the Materials Research Building today. The Space Flight Operations Facility (Building 230), which houses JPL's Mission Control, now stands over the parking area on the right. As the lab expanded, the main entrance gate moved farther south. http://photojournal.jpl.nasa.gov/catalog/PIA21118

  7. 2. Credit JPL. Photographic copy of photograph, looking northeast at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit JPL. Photographic copy of photograph, looking northeast at unfinished original Test Stand 'C' construction. A portion of the corrugated steel tunnel tube connecting Test Stand 'C' to the first phase of JPL tunnel system construction is visible in the foreground. The steel frame used to support propellant tanks and engine equipment has been erected. The open trap door leads to a chamber inside the Test Stand 'C' base where gaseous nitrogen is distributed via manifolds to Test Stand 'C' control valves. (JPL negative no. 384-1568-A, 19 March 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  8. A cognitive operating system (COGNOSYS) for JPL's robot, phase 1 report

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    The most important software requirement for any robot development is the COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford University Artificial Intelligence Laboratory's hand eye software system from the point of view of developing a cognitive operating system for JPL's robot. In this, the Phase 1 of the JPL robot COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accomplished and guidelines have been prepared for the implementation of a Stanford University type hand eye software system on JPL-Caltech's computing facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operating sytem are also considered.

  9. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  10. Enhancing space transportation: The NASA program to develop electric propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Watkins, Marcus A.; Byers, David C.; Barnett, John W.

    1990-01-01

    The NASA Office of Aeronautics, Exploration, and Technology (OAET) supports a research and technology (R and T) program in electric propulsion to provide the basis for increased performance and life of electric thruster systems which can have a major impact on space system performance, including orbital transfer, stationkeeping, and planetary exploration. The program is oriented toward providing high-performance options that will be applicable to a broad range of near-term and far-term missions and vehicles. The program, which is being conducted through the Jet Propulsion Laboratory (JPL) and Lewis Research Center (LeRC) includes research on resistojet, arcjets, ion engines, magnetoplasmadynamic (MPD) thrusters, and electrodeless thrusters. Planning is also under way for nuclear electric propulsion (NEP) as part of the Space Exploration Initiative (SEI).

  11. ELV Payload Safety Program Workshop Green Propulsion Update

    NASA Technical Reports Server (NTRS)

    Robinson, Joel

    2014-01-01

    MSFC is engaged on the system solution: thrusters and power units; GRC is working plume diagnostics/modeling and independent thruster testing on GPIM.; GSFC is working slosh characteristics on GPIM tank.; JPL and ARC continually interested to infuse green propellant as potential replacement to hydrazine.; Mike Gazarik, AA of STMD, has requested MSFC lead the development of an Agency-level green propellant roadmap involving multiple Centers., Tentatively planned for August 2015 in Huntsville.

  12. Artist Rendering of NASA Dawn Spacecraft Approaching Mars

    NASA Image and Video Library

    2009-05-23

    Artist rendering of NASA's Dawn spacecraft approaching Mars. Dawn, part of NASA's Discovery Program of competitively selected missions, was launched in 2007 to orbit the large asteroid Vesta and the dwarf planet Ceres. The two bodies have very different properties from each other. By observing them both with the same set of instruments, Dawn will probe the early solar system and specify the properties of each body. http://photojournal.jpl.nasa.gov/catalog/PIA18152

  13. Performance Characteristics of Lithium Ion Prototype Cells for 2003 Mars Sample Return Athena Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R.; Surampudi, S.; Marsh, R. A.

    2000-01-01

    A viewgraph presentation outlines the mission objectives and power subsystem for the Mars Sample Return (MSR) Athena Rover. The NASA-DOD (depth of discharge) Interagency Li Ion program objectives are discussed. Evaluation tests performed at JPL are listed, and test results are shown for the Li-Ion cell initial capacity, charge/discharge capacity, voltage and ratio, specific energy, watt-hour efficiency, and cell voltage at various temperatures.

  14. Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.

    2015-01-01

    NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).

  15. The Mars Technology Program

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.

    2002-01-01

    Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.

  16. Office of the CIO: Setting the Vision

    NASA Technical Reports Server (NTRS)

    Rinaldi, James J.

    2006-01-01

    This slide presentation reviews the vision of the Office of JPL's Chief Information Officer for future of information technology (IT) at JPL. This includes a strong working relation with industry to provide cost efficient and effective IT services. This includes a vision of taking desktop to the next level and the process to achieve it and ensuring that JPL becomes a world class IT provider.

  17. Team RoboSimian

    NASA Image and Video Library

    2015-06-09

    Many members of Team RoboSimian and a few guests gather with competition hardware at a "Meet the Robots" event during the DARPA Robotics Challenge Finals in Pomona, California, on June 6, 2015. The RoboSimian team at JPL is collaborating with partners at the University of California, Santa Barbara, and the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19329

  18. The InSight Team at JPL

    NASA Image and Video Library

    2018-01-25

    The InSight Team at NASA's Jet Propulsion Laboratory, JPL, in June 2015. The InSight team is comprised of scientists and engineers from multiple disciplines and is a unique collaboration between countries and organizations around the world. The science team includes co-investigators from the U.S., France, Germany, Austria, Belgium, Canada, Japan, Switzerland and the United Kingdom. https://photojournal.jpl.nasa.gov/catalog/PIA22234

  19. Teachers Touch the Sky: A Workshop in Astronomy for Teachers in Grades 3-9

    NASA Astrophysics Data System (ADS)

    Buratti, B.; Edberg, S.

    2011-12-01

    Using the natural fascination the public holds towards its work, NASA encourages and funds its scientists to do education and public outreach (E&PO) to both children and adults. Space science is especially interesting to students, less threatening to teachers than some other sciences, and interdisciplinary in nature. These features make it the ideal vehicle for teaching basic scientific concepts to children in a concrete and captivating manner. During the past decade, and again during the summer of 2011, JPL staff and two master teachers conducted a one-week workshop for teachers in grades 3-9. The teachers are walked through hands-on activities that are all based on current projects in astronomy and space science at the Jet Propulsion Lab. The activities are inquiry-based and emphasize the scientific method and fundamental math and science skills. Each year the workshop focuses on a NASA theme: this year it will be the Dawn Mission to the asteroid 4 Vesta, as orbit insertion occurs right before the workshop. At least two activities are based on the Lawrence Livermore Lab's Great Exploration in Math and Science (GEMS) guides. Teachers tour JPL's facilities such as the Space Flight Operations Center, the Spacecraft Assembly Facility, and the Mars Yard. The integration of the lessons into the teachers' own curricula is discussed, and a field trip to JPL's Table Mountain Observatory is included. Teachers learn of the resources NASA makes available to them, and they have the opportunity to talk to "real" scientists about their work. Teachers receive an honorarium for participation plus classroom materials An extensive evaluation is done each year and improvements are made the next year based on the results of the evaluation. Funded by NASA.

  20. MSL Lessons Learned and Knowledge Capture

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2012-01-01

    The Mars Program has recently been informed of the Planetary Protection Subcommittee (PPS) recommendation, which was endorsed by the NAC, concerning Mars Science Lab (MSL) lessons learned and knowledge capture. The Mars Program has not had an opportunity to consider any decisions specific to the PPS recommendation. Some of the activities recommended by the PPS would involve members of the MSL flight team who are focused on cruise, entry descent & landing, and early surface operations; those activities would have to wait. Members of the MSL planetary protection team at JPL are still available to support MSL lessons learned and knowledge capture; some of the specifically recommended activities have already begun. The Mars Program shares the PPS/NAC concerns about loss of potential information & expertise in planetary protection practice.

  1. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  2. Credit WCT. Original 214" x 21/4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-14" x 2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This image depicts the tray dryer for "AP" (ammonium perchlorate, an oxidizer). The dryer was heated by a water jacket; insulated pipes appear at left in the view. In the extreme left foreground appears a marble table similar to the tables used for scales in the weighing room of Building E-35. Note the use of gloves, fireresistant coveralls and breathing apparatus by the JPL employee in view (JPL negative no. JPL-10283BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Blender Building, Edwards Air Force Base, Boron, Kern County, CA

  3. Science Opportunity Analyzer (SOA): Not Just Another Pretty Face

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Streiiffert, Barbara; O'Reilly, Taifun

    2004-01-01

    This viewgraph presentation reviews the Science Opportunity Analyzer (SOA). For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for sequence generation. This means that scientist at other institutions has more responsibility to build the spacecraft sequence. Tools are required to support the sequence development. JPL tools required a complete configuration behind a firewall, and the tools that the user community had developed did not interface with the JPL tools. Therefore the SOA was created to bridge the gap between the remote scientists and the JPL operations teams. The presentation reviews the development of the SOA, and what was required of the system. The presentation reviews the functions that the SOA performed.

  4. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  5. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  6. Automating the training development process for mission flight operations

    NASA Technical Reports Server (NTRS)

    Scott, Carol J.

    1994-01-01

    Traditional methods of developing training do not effectively support the changing needs of operational users in a multimission environment. The Automated Training Development System (ATDS) provides advantages over conventional methods in quality, quantity, turnaround, database maintenance, and focus on individualized instruction. The Operations System Training Group at the JPL performed a six-month study to assess the potential of ATDS to automate curriculum development and to generate and maintain course materials. To begin the study, the group acquired readily available hardware and participated in a two-week training session to introduce the process. ATDS is a building activity that combines training's traditional information-gathering with a hierarchical method for interleaving the elements. The program can be described fairly simply. A comprehensive list of candidate tasks determines the content of the database; from that database, selected critical tasks dictate which competencies of skill and knowledge to include in course material for the target audience. The training developer adds pertinent planning information about each task to the database, then ATDS generates a tailored set of instructional material, based on the specific set of selection criteria. Course material consistently leads students to a prescribed level of competency.

  7. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  8. The software product assurance metrics study: JPL's software systems quality and productivity

    NASA Technical Reports Server (NTRS)

    Bush, Marilyn W.

    1989-01-01

    The findings are reported of the Jet Propulsion Laboratory (JPL)/Software Product Assurance (SPA) Metrics Study, conducted as part of a larger JPL effort to improve software quality and productivity. Until recently, no comprehensive data had been assembled on how JPL manages and develops software-intensive systems. The first objective was to collect data on software development from as many projects and for as many years as possible. Results from five projects are discussed. These results reflect 15 years of JPL software development, representing over 100 data points (systems and subsystems), over a third of a billion dollars, over four million lines of code and 28,000 person months. Analysis of this data provides a benchmark for gauging the effectiveness of past, present and future software development work. In addition, the study is meant to encourage projects to record existing metrics data and to gather future data. The SPA long term goal is to integrate the collection of historical data and ongoing project data with future project estimations.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.

  10. Garrett solar Brayton engine/generator status

    NASA Astrophysics Data System (ADS)

    Anson, B.

    1982-07-01

    The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.

  11. UNIX-based data management system for the Mobile Satellite Propagation Experiment (PiFEx)

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1987-01-01

    A new method is presented for handling data resulting from Mobile Satellite propagation experiments such as the Pilot Field Experiment (PiFEx) conducted by JPL. This method uses the UNIX operating system and C programming language. The data management system is implemented on a VAX minicomputer. The system automatically divides the large data file housing data from various experiments under a predetermined format into various individual files containing data from each experiment. The system also has a number of programs written in C and FORTRAN languages to allow the researcher to obtain meaningful quantities from the data at hand.

  12. SP-100, a project manager's view

    NASA Technical Reports Server (NTRS)

    Truscello, Vincent C.

    1983-01-01

    Born to meet the special needs of America's space effort, the SP-100 Program testifies to the cooperation among government agencies. The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the Defense Advanced Research Projects Agency (DARPA) are working together to produce a 100-kW power system for use in outer space. At this point in the effort, it is appropriate to review: The approach to meet program goals; the status of activities of the Project Office, managed by the Jet Propulsion Laboratory (JPL); and, because this is a meeting on materials, answers beings developed by the Project Office to vital questions on refractory alloy technology.

  13. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  14. Design and fabrication of solar cell modules

    NASA Technical Reports Server (NTRS)

    Shaughnessy, T. P.

    1978-01-01

    A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

  15. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  16. Effects of mass transfer between Martian satellites on surface geology

    DTIC Science & Technology

    2015-12-21

    University Affiliated Research Center (UARC). Thanks to Bill Folkner (JPL/Caltech) for high-fidelity long-term Phobos/Deimos SPICE orbit propagations, and...created by JPL/Caltech to SPICE ephemeris information from NASA’s Navigation and Ancillary Information Facility (naif.jpl.nasa.gov) (Acton et al., 2002...References Acton, C. et al., 2002. Extending NASA’s SPICE ancillary information system to meet future mission needs. In: 2002 AIAA Space Operations

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, thanks JPL Deputy Director Lt. Gen. (Ret) Larry James, JPL Director Michael Watkins, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , and California Institute of Technology President Thomas Rosenbaum, right, for giving him a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  18. Hayabusa: Navigation Challenges for Earth Return

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Bhaskaran, S.; Strauss, W.; Sklyanskiy, E.; Graat, E. J.; Smith, J. J.; Menom, P.; Ardalan, S.; Ballard, C.; Williams, P.; hide

    2011-01-01

    Hayabusa was a JAXA sample-return mission to Itokawa navigated, in part, by JPL personnel. Hayabusa survived several near mission-ending failures at Itokawa yet returned to Earth with an asteroid regolith sample on June 13, 2010. This paper describes NASA/JPL's participation in the Hayabusa mission during the last 100 days of its mission, wherein JPL provided tracking data and orbit determination, plus verification of maneuver design and entry, descent and landing.

  19. Reform of the National Security Science and Technology Enterprise

    DTIC Science & Technology

    2008-10-01

    still attract the very best S&E talent.54 Table 1. National Academy Membership (Source: National Academies Website) ANL BNL JPL LANL LL LLNL IBM...ANL BNL JPL LANL LLNL NIH NIST NRL Articles 1023 761 705 1526 1038 4305 350 957 Government S&E Workforce—Tomorrow With the significant exception...ANL), Brookhaven National Laboratory ( BNL ), Jet Propulsion Laboratory (JPL), Lincoln Laboratory (LL), Los Alamos National Laboratory (LANL

  20. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  1. Interactions Measurement Payload for Shuttle (IMPS) Definition Phase Study.

    DTIC Science & Technology

    1984-12-15

    7 -AS5 222 INTERACTIONS MEASUREMENT PAYLOAD FOR SHUTTLE (IMPS) 1/3 DEFINITION PHASE STUDY(U) JET PROPULSION LAB PASADENA CA G C HILL 15 DEC 84 JPL-D...OF FUNDING NOS. PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO NO. NO. S 11 TITLE fnciude Security Classficalion Interactions Measure 63410F 1822 01...block number, d tor Shuttle The Interactions Measurement Payload for hyttle (IMPS) project will study interactions between large space vehicles, such as

  2. Total-dose radiation effects data for semiconductor devices, volume 1. [radiation resistance of components for the Galileo Project

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.

  3. VizieR Online Data Catalog: Methyl isocyanate in Orion (Cernicharo+, 2016)

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Kisiel, Z.; Tercero, B.; Kolesnikova, L.; Medvedev, I. R.; Lopez, A.; Fortman, S.; Winnewisser, M.; de Lucia, F. C.; Alonso, J. L.; Guillemin, J.-C.

    2016-02-01

    Final results of the analysis of the laboratory rotational spectrum of CH3NCO for use in astrophysical applications. 300K line list for the reported CH3NCO rotational transitions in the standard of the SPCAT program (including intensities and lower state energies). This line list is also given in Table A.6 in the standard format of the JPL catalog (Pickett et al., 1998, J. Quant. Spectr. Rad. Transf., 60, 883). (1 data file).

  4. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, to the Vice President's left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  5. Artist concept of SIM PlanetQuest Artist Concept

    NASA Image and Video Library

    2002-12-21

    Artist's concept of the current mission configuration. SIM PlanetQuest (formerly called Space Interferometry Mission), currently under development, will determine the positions and distances of stars several hundred times more accurately than any previous program. This accuracy will allow SIM to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized planets. SIM will open a window to a new world of discoveries. http://photojournal.jpl.nasa.gov/catalog/PIA04248

  6. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  7. Extraterrestrial intelligence? The search is on

    NASA Technical Reports Server (NTRS)

    Coulter, Gary R.

    1991-01-01

    NASA's SETI-Microwave Observing Project, beginning on October 12, 1992, will search the closest solar-type stars for radio signals from extraterrestrial civilizations. When completed in the year 2000, the NASA search will have surpassed the search volume of all prior searches by a factor of 10 exp 10. The world's largest radio telescopes will be employed, in conjunction with the NASA Deep Space Network communications antennas. The program will be led by NASA-Ames, with substantial contribution by JPL.

  8. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  9. Software of Seismic Proportions Promotes Enjoyable Learning

    NASA Technical Reports Server (NTRS)

    2005-01-01

    While working for NASA, Jack Sculley and Terry Brooks had a revelation. They wanted to find a novel and unique way to present the scientific principles of NASA research to the public, so as to not only enlighten, but entertain. Suddenly, their revelation morphed into something even grander. "Why stop at NASA?" they asked themselves. With this thought, Sculley and Brooks left NASA and set out to convey voluminous scientific findings from different organizations in the form of digital, interactive media that would enhance the exploration and adventure interests of people of all ages. Sculley, a former researcher at Ames Research Center, the Jet Propulsion Laboratory (JPL), and Apple, Inc. s and LucasFilm Ltd. s multimedia labs, and Brooks, a former public information officer at JPL and an Emmy award-winning documentary film producer, founded Seismic Entertainment in 1989 to communicate their "edutainment" ideas. The two acknowledge that NASA has provided much of the inspiration and content for Seismic Entertainment over the past decade and a half. Additionally, Sculley s experience as a virtual reality and Mars specialist and Brooks s experience creating NASA public access programs were significant to the San Francisco-based company s success. Its most recent project, "Inside NASA," provides virtual tours of NASA s field centers and allows for a comprehensive focus on the broad range of NASA programs for the benefit of the general public

  10. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  11. The Detection of a Striking Increase in the Microwave Emission from Jupiter's Radiation Belts in June and July 2003.

    NASA Astrophysics Data System (ADS)

    Klein, M. J.; Bolton, S. J.; Levin, S. M.; Mac Laren, D.

    2004-12-01

    Synchrotron emission from energetic electrons in Jupiter's radiation belts has been routinely measured by ground-based radio telescopes for three decades. The NASA-JPL Jupiter Patrol, using NASA's Deep Space Network (DSN) antennas at Goldstone, CA., has reported significant (5 %-to-30 %) variations in Jupiter's flux density near 13-cm wavelength with timescales from a few days to several months. In this paper we report observations of an unusually sudden increase in flux density from 3.8 to 4.3 Jy that occurred between 20 June and 15 July 2003. The rate of increase (approximately 0.6 percent per day) is the steepest increase that we have detected with the exception of the increase in 1994 following the impacts of fragments from comet Shoemaker-Levy 9. More than half of the reported observations were conducted by middle- and high school students from classrooms across the nation. The students and their teachers are participants in the Goldstone-Apple Valley Radio Telescope (GAVRT) science education project, which is a partnership involving NASA, the Jet Propulsion Laboratory and the Lewis Center for Educational Research (LCER) in Apple Valley, CA. Working with the Lewis Center over the Internet, GAVRT students conduct remotely controlled radio astronomy observations using 34-m antennas at Goldstone. We also report preliminary results from a special GAVRT observing campaign conducted in the fall of 2003 before, during and after the controlled impact of the Galileo spacecraft into the Jovian atmosphere. Simultaneous observations were made at 3.5 and 13 cm wavelengths three-to-four days per week. These data are being incorporated into synchrotron emission studies of the state of the radiation belts during the last weeks of the Galileo mission. The JPL contribution to this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings. [low cost solar array efficiency

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.

    1978-01-01

    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.

  13. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.

  14. Design and Performance of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Weinreb, Sander; Imbriale, William A.; Jones, Glenn; Mani, Handi

    2012-01-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.

  15. NASA's Lunar and Planetary Mapping and Modeling Program

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  16. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  17. Proceedings of the 11th JPL Airborne Earth Science Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2002-01-01

    This publication contains the proceedings of the JPL Airborne Earth Science Workshop forum held to report science research and applications results with spectral images measured by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web http://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html

  18. AirMSPI Level 1B2 V006 New Data for the NASA/JPL/Caltech ImPACT-PM Campaign

    Atmospheric Science Data Center

    2018-05-17

    AirMSPI Level 1B2 V006 New Data for the NASA/JPL/Caltech ImPACT-PM Campaign ImPACT-PM Wednesday, May 16, 2018 The NASA Langley Atmospheric Science Data Center (ASDC) and Jet Propulsion ... flight campaign.   AirMSPI flies in the nose of NASA's high-altitude ER-2 aircraft. The instrument was built by JPL and the ...

  19. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  20. Credit WCT. This view is an enlargement of an original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. This view is an enlargement of an original 2-A" x 2-Y4" color negative housed in the JPL Photography Laboratory, Pasadena, California. The doors of the conditioning chamber have been opened to reveal the arrangement of wrapped motors ready for treatment (JPL negative no. JPL-10281BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA

  1. Studying the Sky/Planets Can Drown You in Images: Machine Learning Solutions at JPL/Caltech

    NASA Technical Reports Server (NTRS)

    Fayyad, U. M.

    1995-01-01

    JPL is working to develop a domain-independent system capable of small-scale object recognition in large image databases for science analysis. Two applications discussed are the cataloging of three billion sky objects in the Sky Image Cataloging and Analysis Tool (SKICAT) and the detection of possibly one million small volcanoes visible in the Magellan synthetic aperture radar images of Venus (JPL Adaptive Recognition Tool, JARTool).

  2. Physics in NASA Exploration

    NASA Technical Reports Server (NTRS)

    O'Callaghan, Fred

    2004-01-01

    The primary focus of the workshop was NASA's new concentration on sending crewed missions to the Moon by 2020, and then on to Mars and beyond. Several speakers, including JPL s Fred O Callaghan and NASA's Mark Lee, broached the problem that there is now a serious reduction of capability to perform experiments in the ISS, or to fly significant mass in microgravity by other means. By 2010, the shuttle fleet will be discontinued and Russian craft will provide the only access to the ISS. O Callaghan stated that the Fundamental Physics budget is being reduced by 70%. LTMPF and LCAP are slated for termination. However, ground-based experiments are continuing to be funded at present, and it will be possible to compete for $80-90 million in new money from the Human Research Initiative (HRI). The new program thrust is for exploration, not fundamental physics. Fundamental, we were told by Lee, does not ring well in Washington these days. Investigators were advised to consider how their work can benefit missions to the Moon and Mars. Work such as that regarding atomic clocks is looked upon with favor, for example, because it is considered important to navigation and planetary GPS. Mark Lee stressed that physicists must convey to NASA senior management that they are able and willing to contribute to the new exploration research programs. The new mentality must be we deliver products, not do research. This program needs to be able to say that it is doing at least 50% exploration-related research. JPL s Ulf Israelsson discussed the implications to OBPR, which will deliver methods and technology to assure human health and performance in extraterrestrial settings. The enterprise will provide advanced life-support systems and technology that are reliable, capable, simpler, less massive, smaller, and energy-efficient, and it may offer other necessary expertise in areas such as low-gravity behavior. Like Dr. Lee, he stated that the focus must be on products, not research. While there is not yet a formal direction, he said, LTMPF and PARCS ISS flight projects are slated to terminate in October 2004. All flight investigations are being returned to ground programs and phased out by the end of FY07. Physics ground programs are intact for now, but to survive we must shift about 50% of research to supporting exploration. Basic research programs in other disciplines are being cancelled. Product lines will support human health, safety and life-support, including countermeasures against radiation and other hazards, as well as advances in time-keeping, navigation and communications technologies. Israelsson said that the new Fundamental Physics for Exploration Roadmap points to how fundamental physics research can and does support exploration. JPL will use the roadmap to argue for support for fundamental physics research under several codes. Nicholas Bigelow of the University of Rochester encouraged attendees not to become discouraged, but rather to embrace the opportunities presented by NASA's new direction.

  3. Software Defined GPS Receiver for International Space Station

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  4. Natural Satellite Ephemerides at JPL

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  5. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, poses for a group photograph with JPL Director Michael Watkins, left, JPL Deputy Director Lt. Gen. (Ret) Larry James, California Institute of Technology President Thomas Rosenbaum, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, and UAG Chairman, Admiral (Ret) James Ellis, right, after having toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  6. Electronic neuroprocessors

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1991-01-01

    The JPL Center for Space Microelectronics Technology (CSMT) is actively pursuing research in the neural network theory, algorithms, and electronics as well as optoelectronic neural net hardware implementations, to explore the strengths and application potential for a variety of NASA, DoD, as well as commercial application problems, where conventional computing techniques are extremely time-consuming, cumbersome, or simply non-existent. An overview of the JPL electronic neural network hardware development activities and some of the striking applications of the JPL electronic neuroprocessors are presented.

  7. (abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.

  8. JPL-20180430-JPLf-0001-Vice President Pence Visits NASA Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-30

    Vice President Mike Pence toured NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California on Saturday, April 28 with his wife, Karen, and their daughter, Charlotte. JPL is the birthplace of numerous past, present and future robotic missions. Pence saw and heard more about JPL missions, which support the nation’s goals of furthering exploration of the Moon and Mars. JPL Director Mike Watkins led the tour for Pence and his guests. Vice President Pence toured JPL’s Mission Control where engineers communicate with spacecraft across the solar system through NASA’s Deep Space Network. While there, Charlotte Pence uplinked commands to the Mars Curiosity rover to execute its next science activities. The signal took about seven minutes to reach the rover, which is about 80-million miles from Earth. Pence also saw the Spacecraft Assembly Facility, where the Mars 2020 mission hardware is being assembled in a giant “clean room.” Mars 2020 will not only look for signs of habitable conditions on Mars in the ancient past, but will also search for signs of past microbial life itself.

  9. Test Rover at JPL During Preparation for Mars Rover Low-Angle Selfie

    NASA Image and Video Library

    2015-08-19

    This view of a test rover at NASA's Jet Propulsion Laboratory, Pasadena, California, results from advance testing of arm positions and camera pointings for taking a low-angle self-portrait of NASA's Curiosity Mars rover. This rehearsal in California led to a dramatic Aug. 5, 2015, selfie of Curiosity, online at PIA19807. Curiosity's arm-mounted Mars Hand Lens Imager (MAHLI) camera took 92 of component images that were assembled into that mosaic. The rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This practice version was taken at JPL's Mars Yard in July 2013, using the Vehicle System Test Bed (VSTB) rover, which has a test copy of MAHLI on its robotic arm. MAHLI was built by Malin Space Science Systems, San Diego. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19810

  10. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  11. Martian Surface & Pathfinder Airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. KSC-2014-2480

    NASA Image and Video Library

    2014-05-01

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, Orbital Sciences workers and technicians move their work platforms away from NASA's Orbiting Carbon Observatory-2, or OCO-2, in preparation for its lift from the transportation trailer. Testing and launch preparations now will get underway for its launch from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket, scheduled for July 1, 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by NASA's Jet Propulsion Laboratory JPL in Pasadena, California, for NASA's Science Mission Directorate in Washington. Orbital Sciences built the spacecraft and provides mission operations under JPL’s leadership. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Doug Gruben, 30th Space Wing

  13. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  14. Ultra Low Power, Radiation Tolerant UHF Radio Technologies for In Situ Communication Applications

    NASA Technical Reports Server (NTRS)

    Lay, N. E.

    2001-01-01

    For future deep space missions, significant reductions in the mass and power requirements for short-range telecommunication systems will be critical in enabling a wide variety of new mission concepts. These possibilities include penetrators, gliders, miniature rovers, and sensor networks. Under joint funding from NASA's Cross Enterprise and JPL's Telecommunications and Mission technology programs, recent development activity has focused on the design of ultralow mass and power transceiver systems and subsystems suitable for operation in a flight environment. For these efforts, the functionality of the transceiver has been targeted towards a specific Mars communications scenario. However, the overall architecture is well suited to any short or medium range application where a remote probe will aperiodically communicate with a base station, possibly an orbiter, for the eventual purpose of relaying science information back to Earth. In 2001, these sponsors have been augmented with collaborative expertise and funding from JPL's Center for Integrated Space Microsystems in order to migrate existing concepts and designs to a System on a Chip (SOAC) solution. Additional information is contained in the original extended abstract.

  15. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Participants in the press conference were: Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from left, and principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Real-Time On-Board Processing Validation of MSPI Ground Camera Images

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.

    2010-01-01

    The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.

  18. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.

    2017-07-01

    Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.

  19. KSC-2014-3952

    NASA Image and Video Library

    2014-09-18

    CAPE CANAVERAL, Fla. – Members of an ISS Earth Science: Tracking Ocean Winds Panel brief media representatives in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. From left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  20. KSC-2014-3960

    NASA Image and Video Library

    2014-09-18

    CAPE CANAVERAL, Fla. – Media representatives ask questions of the ISS Earth Science: Tracking Ocean Winds Panel in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. On the dais from left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  1. KSC-2014-3959

    NASA Image and Video Library

    2014-09-18

    CAPE CANAVERAL, Fla. – Members of an ISS Earth Science: Tracking Ocean Winds Panel brief media representatives in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. From left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  2. Satellite Emission Range Inferred Earth Survey (SERIES) project

    NASA Technical Reports Server (NTRS)

    Buennagel, L. A.; Macdoran, P. F.; Neilan, R. E.; Spitzmesser, D. J.; Young, L. E.

    1984-01-01

    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying.

  3. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, are seen as they watch a replay of the final moments of the Cassini spacecraft during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, answer questions from the media during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, react to seeing images of the Cassini science and engineering teams during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Oxygen-hydrogen thrusters for Space Station auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Berkman, D. K.

    1984-01-01

    The feasibility and technology requirements of a low-thrust, high-performance, long-life, gaseous oxygen (GO2)/gaseous hydrogen (GH2) thruster were examined. Candidate engine concepts for auxiliary propulsion systems for space station applications were identified. The low-thrust engine (5 to 100 lb sub f) requires significant departure from current applications of oxygen/hydrogen propulsion technology. Selection of the thrust chamber material and cooling method needed or long life poses a major challenge. The use of a chamber material requiring a minimum amount of cooling or the incorporation of regenerative cooling were the only choices available with the potential of achieving very high performance. The design selection for the injector/igniter, the design and fabrication of a regeneratively cooled copper chamber, and the design of a high-temperature rhenium chamber were documented and the performance and heat transfer results obtained from the test program conducted at JPL using the above engine components presented. Approximately 115 engine firings were conducted in the JPL vacuum test facility, using 100:1 expansion ratio nozzles. Engine mixture ratio and fuel-film cooling percentages were parametrically investigated for each test configuration.

  7. Deep Space 1 Ion Engine

    NASA Image and Video Library

    2002-12-21

    This image of a xenon ion engine prototype, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The engine is now in an ongoing extended- life test, in a vacuum test chamber at JPL, and has run for almost 500 days (12,000 hours) and is scheduled to complete nearly 625 days (15,000 hours) by the end of 2001. A similar engine powers the New Millennium Program's flagship mission, Deep Space 1, which uses the ion engine in a trip through the solar system. The engine, weighing 17.6 pounds (8 kilograms), is 15.7 inches (40 centimeters) in diameter and 15.7 inches long. The actual thrust comes from accelerating and expelling positively charged xenon atoms, or ions. While the ions are fired in great numbers out the thruster at more than 110,000 kilometers (68,000 miles) per hour, their mass is so low that the engine produces a gentle thrust of only 90 millinewtons (20-thousandths of a pound). http://photojournal.jpl.nasa.gov/catalog/PIA04238

  8. The NASA/JPL 64-meter-diameter antenna at Goldstone, California: Project report, technical staff, tracking and data acquisition organization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.

  9. Credit WCT. Original 2¾" x 2Y4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-¾" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows JPL staff member John Morrow loading the grinder hopper. The hopper has a 10 mesh screen to filter out particles too large for the mill. Oxidizer is passed steadily to the hammers by a stainless steel feed screw. Oxidizer may be passed through the mill several times depending on the fineness required by a given propellant formula; the maximum charge is 130 pounds (59.0 Kg). The drum below the mill has an electrically conductive plastic liner which receives the ground oxidizer (JPL negative no. JPL10279AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA

  10. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  11. Study program for design improvements of the X-3060 klystron. Phase 3: Electron gun fabrication and beam analyzer evaluation. Phase 4: Klystron prototype fabrication and testing

    NASA Technical Reports Server (NTRS)

    Goldfinger, A.

    1981-01-01

    A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.

  12. 3DRT-MPASS

    NASA Technical Reports Server (NTRS)

    Lickly, Ben

    2005-01-01

    Data from all current JPL missions are stored in files called SPICE kernels. At present, animators who want to use data from these kernels have to either read through the kernels looking for the desired data, or write programs themselves to retrieve information about all the needed objects for their animations. In this project, methods of automating the process of importing the data from the SPICE kernels were researched. In particular, tools were developed for creating basic scenes in Maya, a 3D computer graphics software package, from SPICE kernels.

  13. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS)

    NASA Technical Reports Server (NTRS)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; hide

    2010-01-01

    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  14. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  15. An update on the Deep Space 1 power system: SCARLET integration and test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Murphy, D.M.

    1998-07-01

    The Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET) system for the Deep Space 1 (DS1) spacecraft have been completed and delivered to JPL for integration with the spacecraft. This paper describes the array assembly, the qualification test program, and the results of the qualification tests. The array will provide power to the DS1 spacecraft and its NSTAR ion electric propulsion system. Launch is scheduled for October, 1998 from Kennedy Space Center, FL.

  16. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    This publication reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation and in operations. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. This publication also reports on implementation and operations for searching the microwave spectrum.

  17. A modeling analysis program for the JPL table mountain Io sodium cloud data

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Goldberg, B. A.

    1984-01-01

    A detailed review of 110 of the 263 Region B/C images of the 1981 data set is undertaken and a preliminary assessment of 39 images of the 1976-79 data set is presented. The basic spatial characteristics of these images are discussed. Modeling analysis of these images after further data processing will provide useful information about Io and the planetary magnetosphere. Plans for data processing and modeling analysis are outlined. Results of very preliminary modeling activities are presented.

  18. Planetary submillimeter spectroscopy

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  19. Multi-Mission Strategic Technology Prioritization Study

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Rodriquez, G.; Elfes, A.; Derleth, J.; Smith, J. H.; Manvi, R.; Kennedy, B.; Shelton, K.

    2004-01-01

    This viewgraph presentation provides an overview of a pilot study intended to demonstrate in an auditable fashion how advanced space technology development can best impact future NASA missions. The study was a joint project by staff members of NASA's Jet Propulsion Laboratory (JPL), and Goddard Space Flight Center (GSFC). The other goals of the study were to show an approach to deal effectively with inter-program analysis trades, and to explore the limits of these approaches and tools in terms of what can be realistically achieved.

  20. Revisiting Training and Verification Process Implementation for Risk Reduction on New Missions at NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Bryant, Larry W.; Fragoso, Ruth S.

    2007-01-01

    In 2003 we proposed an effort to develop a core program of standardized training and verification practices and standards against which the implementation of these practices could be measured. The purpose was to provide another means of risk reduction for deep space missions to preclude the likelihood of a repeat of the tragedies of the 1998 Mars missions. We identified six areas where the application of standards and standardization would benefit the overall readiness process for flight projects at JPL. These are Individual Training, Team Training, Interface and Procedure Development, Personnel Certification, Interface and procedure Verification, and Operations Readiness Testing. In this paper we will discuss the progress that has been made in the tasks of developing the proposed infrastructure in each of these areas. Specifically we will address the Position Training and Certification Standards that are now available for each operational position found on our Flight Operations Teams (FOT). We will also discuss the MGSS Baseline Flight Operations Team Training Plan which can be tailored for each new flight project at JPL. As these tasks have been progressing, the climate and emphasis for Training and for V and V at JPL has changed, and we have learned about the expansion, growth, and limitations in the roles of traditional positions at JPL such as the Project's Training Engineer, V and V Engineer, and Operations Engineer. The need to keep a tight rein on budgets has led to a merging and/or reduction in these positions which pose challenges to individual capacities and capabilities. We examine the evolution of these processes and the roles involved while taking a look at the impact or potential impact of our proposed training related infrastructure tasks. As we conclude our examination of the changes taking place for new flight projects, we see that the importance of proceeding with our proposed tasks and adapting them to the changing climate remains an important element in reducing the risk in the challenging business of space exploration.

  1. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This interior view of the Xray chamber shows operator Leonard "Dutch" Sebring positioning the 1 million electron volt X-ray machine to make an image of a Syncom 2 motor (JPL negative no. JPL-10285BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA

  2. Publications of the JPL Solar Thermal Power Systems Project, 1976 to 1983

    NASA Technical Reports Server (NTRS)

    Gray, V. (Compiler); Marsh, C. (Compiler); Panda, P. (Compiler)

    1984-01-01

    The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

  3. Publications of the Jet Propulsion Laboratory: 1990 and 1991

    NASA Technical Reports Server (NTRS)

    1993-01-01

    JPL Bibliography 39-32 describes and indexes by primary author the externally distributed technical reporting, released during calendar years 1990 and 1991, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory (JPL). Three classes of publications are included: (1) JPL publications (90- and 91-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series); and (3) articles published in the open literature.

  4. 3. Credit WCT. Original 4"x5" black and white negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view of the vibrator shows a large mounted ATS (Advanced Technology Satellite) motor. Accelerometer instrumentation has been added. JPL caption reads "C-210E Vibration Exciter ATS Accelerometer Installation on Q4TX AXIS" (JPL negative no. 384-5848B, 31 March 1966). - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  5. 10. Photographic copy of engineering drawing showing the plumbing layout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photographic copy of engineering drawing showing the plumbing layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Flow Diagram,' sheet M-2 (JPL sheet number E18/41-0), September 1, 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  6. 9. Photographic copy of engineering drawing showing the mechanical layout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photographic copy of engineering drawing showing the mechanical layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Control Elevations & Schematics,' sheet M-5 (JPL sheet number E18/44-0), 1 September 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  7. MACSIGMA0 - MACINTOSH TOOL FOR ANALYZING JPL AIRSAR, ERS-1, JERS-1, AND MAGELLAN MIDR DATA

    NASA Technical Reports Server (NTRS)

    Norikane, L.

    1994-01-01

    MacSigma0 is an interactive tool for the Macintosh which allows you to display and make computations from radar data collected by the following sensors: the JPL AIRSAR, ERS-1, JERS-1, and Magellan. The JPL AIRSAR system is a multi-polarimetric airborne synthetic aperture radar developed and operated by the Jet Propulsion Laboratory. It includes the single-frequency L-band sensor mounted on the NASA CV990 aircraft and its replacement, the multi-frequency P-, L-, and C-band sensors mounted on the NASA DC-8. MacSigma0 works with data in the standard JPL AIRSAR output product format, the compressed Stokes matrix format. ERS-1 and JERS-1 are single-frequency, single-polarization spaceborne synthetic aperture radars launched by the European Space Agency and NASDA respectively. To be usable by MacSigma0, The data must have been processed at the Alaska SAR Facility and must be in the "low-resolution" format. Magellan is a spacecraft mission to map the surface of Venus with imaging radar. The project is managed by the Jet Propulsion Laboratory. The spacecraft carries a single-frequency, single-polarization synthetic aperture radar. MacSigma0 works with framelets of the standard MIDR CD-ROM data products. MacSigma0 provides four basic functions: synthesis of images (if necessary), statistical analysis of selected areas, analysis of corner reflectors as a calibration measure (if appropriate and possible), and informative mouse tracking. For instance, the JPL AIRSAR data can be used to synthesize a variety of images such as a total power image. The total power image displays the sum of the polarized and unpolarized components of the backscatter for each pixel. Other images which can be synthesized are HH, HV, VV, RL, RR, HHVV*, HHHV*, HVVV*, HHVV* phase and correlation coefficient images. For the complex and phase images, phase is displayed using color and magnitude is displayed using intensity. MacSigma0 can also be used to compute statistics from within a selected area. The statistics computed depend on the image type. For JPL AIRSAR data, the HH, HV, VV, HHVV* phase, and correlation coefficient means and standard deviation measures are calculated. The mean, relative standard deviation, minimum, and maximum values are calculated for all other data types. A histogram of the selected area is also calculated and displayed. The selected area can be rectangular, linear, or polygonal in shape. The user is allowed to select multiple rectangular areas, but not multiple linear or polygonal areas. The statistics and histogram are displayed to the user and can either be printed or saved as a text file. MacSigma0 can also be used to analyze corner reflectors as a measure of the calibration for JPL AIRSAR, ERS-1, and JERS-1 data types. It computes a theoretical radar cross section and the actual radar cross section for a selected trihedral corner reflector. The theoretical cross section, measured cross section, their ratio in dBs, and other information are displayed to the user and can be saved into a text file. For ERS-1, JERS-1, and Magellan data, MacSigma0 simultaneously displays pixel location in data coordinates and in latitude, longitude coordinates. It also displays sigma0, the incidence angle (for Magellan data), the original pixel value (for Magellan data), and the noise power value (for ERS-1 and JERS-1 data). Grey scale computed images can be saved in a byte format (a headerless format which saves the image as a string of byte values) or a PICT format (a standard format readable by other image processing programs for the Macintosh). Images can also be printed. MacSigma0 is written in C-language for use on Macintosh series computers. The minimum configuration requirements for MacSigma0 are System 6.0, Finder 6.1, 1Mb of RAM, and at least a 4-bit color or grey-scale graphics display. MacSigma0 is also System 7 compatible. To compile the source code, Apple's Macintosh Programmers Workbench (MPW) 3.2 and the MPW C language compiler version 3.2 are required. The source code will not compile with a later version of the compiler; however, the compiled application which will run under the minimum hardware configuration is provided on the distribution medium. In addition, the distribution media includes an executable which runs significantly faster but requires a 68881 compatible math coprocessor and a 68020 compatible CPU. Since JPL AIRSAR data files can be very large, it is often desirable to reduce the size of a data file before transferring it to the Macintosh for use in MacSigma0. A small FORTRAN program which can be used for this purpose is included on the distribution media. MacSigma0 will print statistics on any output device which supports QuickDraw, and it will print images on any device which supports QuickDraw or PostScript. The standard distribution medium for MacSigma0 is a set of five 1.4Mb Macintosh format diskettes. This program was developed in 1992 and is a copyrighted work with all copyright vested in NASA. Version 4.2 of MacSigma0 was released in 1993.

  8. Results of the 1995 JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to measurement of modules with fixed loads as had been done in the past.

  9. Engaging Scientists in Meaningful E/PO: The Universe Discovery Guides

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Lawton, B.; Gurton, S.; Smith, D. A.; Manning, J. G.

    2014-12-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly "Discovery Guides" for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today's NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into "evergreen" educational resources suitable for a variety of audiences. The Guides focus on "deep sky" objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive "big picture" approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences. Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov. We will share the Forum-led Collaborative's experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.

  10. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Lawton, Brandon; Berendsen, Marni; Gurton, Suzanne; Smith, Denise A.; NASA SMD Astrophysics E/PO Community, The

    2014-06-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov.The presenter will share the Forum-led Collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.

  11. NASA's Mobile and Telecom Antenna Development at JPL

    NASA Technical Reports Server (NTRS)

    Huang, John

    1997-01-01

    Chartered by NASA to develop and demonstrate enabling technologies for mobile and satellite telecommuniation systems, JPL has developed various antenna technologies throughout the microwave spectrum in the past two decades.

  12. The program at JPL to investigate the nuclear interaction of RTG's with scientific instruments on deep space probes

    NASA Technical Reports Server (NTRS)

    Truscello, V.

    1972-01-01

    A major concern in the integration of a radioisotope thermoelectric generator (RTG) with a spacecraft designed to explore the outer planets is the effect of the emitted radiation on the normal operation of scientific instruments. The necessary techniques and tools developed to allow accurate calculation of the neutron and gamma spectrum emanating from the RTG. The specific sources of radiation were identified and quantified. Monte Carlo techniques are then employed to perform the nuclear transport calculations. The results of these studies are presented. An extensive experimental program was initiated to measure the response of a number of scientific components to the nuclear radiation.

  13. Results of the 1996 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1996-01-01

    The 1996 solar cell calibration balloon flight campaign was completed with the first flight on June 30, 1996 and a second flight on August 8, 1996. All objectives of the flight program were met. Sixty-four modules were carried to an altitude of 120,000 ft (36.6 km). Full 1-5 curves were measured on 22 of these modules, and output at a fixed load was measured on 42 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.

  15. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    NASA Astrophysics Data System (ADS)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  16. Asteroid team

    NASA Technical Reports Server (NTRS)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  17. RoboSimian and Friends

    NASA Image and Video Library

    2014-07-16

    Limbed robot RoboSimian was developed at NASA Jet Propulsion Laboratory, seen here with Brett Kennedy, supervisor of the JPL Robotic Vehicles and Manipulators Group, and Chuck Bergh, a senior engineer in JPL Robotic Hardware Systems Group.

  18. Cascade Helps JPL Explore the Solar System

    NASA Technical Reports Server (NTRS)

    Burke, G. R.

    1996-01-01

    At Jet Propulsion Laboratory (JPL), we are involved with the unmanned exploration of the solar system. Unmanned probes observe the planet surfaces using radar and optical cameras to take a variety of measurements.

  19. RoboSimian Exits Vehicle

    NASA Image and Video Library

    2015-06-09

    JPL's RoboSimian exits its vehicle following a brief drive through a slalom course at the DARPA Robotics Challenge in Pomona, California. This image was taken June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19324

  20. RoboSimian Driving

    NASA Image and Video Library

    2015-06-09

    JPL's RoboSimian drives a four-wheeled vehicle through a slalom course at the DARPA Robotics Challenge Finals in Pomona, California. This image was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19325

  1. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  2. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  3. A Journey with MOM

    NASA Technical Reports Server (NTRS)

    Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian; hide

    2015-01-01

    In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.

  4. The JPL/KSC telerobotic inspection demonstration

    NASA Technical Reports Server (NTRS)

    Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob

    1990-01-01

    An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.

  5. Calling Home in 2003: JPL Roadmap to Standardized TT&C Customer Support

    NASA Technical Reports Server (NTRS)

    Kurtik, S.; Berner, J.; Levesque, M.

    2000-01-01

    The telecommunications and Mission Operations Directorate (TMOD at the Jet Propulsion Laboratory (JPL) provides tracking, telemetry and command (TT&C) services for execution of a broad spectrum of deep space missions.

  6. Mixed Reality Technology at NASA JPL

    NASA Image and Video Library

    2016-05-16

    NASA's JPL is a center of innovation in virtual and augmented reality, producing groundbreaking applications of these technologies to support a variety of missions. This video is a collection of unedited scenes released to the media.

  7. GIDEP Batching Tool

    NASA Technical Reports Server (NTRS)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  8. JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) data availability, version 1-94

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from right, tours NASA's Jet Propulsion Laboratory along with his wife Karen, and daughter Charlotte, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President t and his family on the tour are: UAG Chairman, Admiral (Ret) James Ellis , left, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, behind Mrs. Pence, California Institute of Technology President Thomas Rosenbaum, JPL Director Michael Watkins, and JPL Deputy Director Lt. Gen. (Ret) Larry James, right. Photo Credit: (NASA/Bill Ingalls)

  10. Atlas of Absorption Lines from 0 to 17900 cm-1

    DTIC Science & Technology

    1987-09-01

    Hampton, Virginia H. M. Pickett Jet Propulsion Laboratory Pasadena, California D. J. Richardson and J. S. Namkung ST Systems Corporation (STX...2 NH3 HN03 OH HF HCi HBr HI CIO OCS H2CO H0C1 N2 HCN CH3C! H202 C2H2 C2H6 PH3 Oj(JPL) +- 0(3P)(JPL) H02(JPL) Solor CO...Hanscom AFB, Massachusetts. H. M. Pickett: Jet Propulsion Laboratory, Pasadena, California. D. J. Richardson and J. S. Namkung: ST Systems Corporation

  11. Mission Control, 1964

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. When spacecraft in deep space "phone home," they do it through NASA's Deep Space Network. Engineers in this room at NASA's Jet Propulsion Laboratory -- known as Mission Control -- monitor the flow of data. This image was taken in May 1964, when the building this nerve center is in, the Space Flight Operations Facility (Building 230), was dedicated at JPL. http://photojournal.jpl.nasa.gov/catalog/PIA21120

  12. How to Quickly Import CAD Geometry into Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Wright, Shonte; Beltran, Emilio

    2002-01-01

    There are several groups at JPL (Jet Propulsion Laboratory) that are committed to concurrent design efforts, two are featured here. Center for Space Mission Architecture and Design (CSMAD) enables the practical application of advanced process technologies in JPL's mission architecture process. Team I functions as an incubator for projects that are in the Discovery, and even pre-Discovery proposal stages. JPL's concurrent design environment is to a large extent centered on the CAD (Computer Aided Design) file. During concurrent design sessions CAD geometry is ported to other more specialized engineering design packages.

  13. Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility

    NASA Technical Reports Server (NTRS)

    Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd

    1999-01-01

    We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.

  14. JPL Administration Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. The Administration Building of NASA's Jet Propulsion Laboratory (Building 180) is pictured in January 1965. What appears as a parking lot in this photograph later becomes "The Mall", a landscaped open-air gathering place. A small security control post can be seen at the left of the 1965 image. And Building 167, one of the lab's cafeterias, is on the right. http://photojournal.jpl.nasa.gov/catalog/PIA21121

  15. 3. Credit JPL. Photographic copy of photograph, view south into ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit JPL. Photographic copy of photograph, view south into oxidizer tank enclosure and controls on the north side of Test Stand 'C' shortly after the stand's construction in 1957 (oxidizer contents not determined). To the extreme left appear fittings for mounting an engine for tests. Note the robust stainless steel flanges and fittings necessary to contain highly pressurized corrosive chemicals. (JPL negative no. 384-1608-C, 29 August 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  16. The KALI multi-arm robot programming and control environment

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Hayati, Samad; Hayward, Vincent; Tso, Kam

    1989-01-01

    The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded.

  17. KSC-2011-6228

    NASA Image and Video Library

    2011-08-04

    CAPE CANAVERAL, Fla. -- From left, Dr. Steve Lee, with the Denver Museum of Nature and Science; Ulrik Solberg Lund, a LEGO minifigure designer; and Karsten Juel Bunch, a LEGO City senior designer, participate in an educational webcast in the Mission Status Center at the Kennedy Space Center Visitor Complex in Florida. On hand to ask questions of the guests were students, teachers, and mentors of the Goldstone Apple Valley Radio Telescope (GAVRT) project who were invited to Kennedy to watch the launch of NASA's Juno spacecraft atop a United Launch Alliance Atlas V rocket. GAVRT is a partnership between NASA, the Jet Propulsion Laboratory (JPL), and The Lewis Center for Educational Research (LCER) in Apple Valley, Calif. It allows students to control a 34-meter radio telescope that, until recently, was part of NASA’s Deep Space Network, and to interact with scientists outside the classroom setting. Photo credit: NASA/Glenn Benson

  18. KSC-2011-6229

    NASA Image and Video Library

    2011-08-04

    CAPE CANAVERAL, Fla. -- From left, Dr. Steve Lee, with the Denver Museum of Nature and Science; Ulrik Solberg Lund, a LEGO minifigure designer; and Karsten Juel Bunch, a LEGO City senior designer, participate in an educational webcast in the Mission Status Center at the Kennedy Space Center Visitor Complex in Florida. On hand to ask questions of the guests were students, teachers, and mentors of the Goldstone Apple Valley Radio Telescope (GAVRT) project who were invited to Kennedy to watch the launch of NASA's Juno spacecraft atop a United Launch Alliance Atlas V rocket. GAVRT is a partnership between NASA, the Jet Propulsion Laboratory (JPL), and The Lewis Center for Educational Research (LCER) in Apple Valley, Calif. It allows students to control a 34-meter radio telescope that, until recently, was part of NASA’s Deep Space Network, and to interact with scientists outside the classroom setting. Photo credit: NASA/Glenn Benson

  19. JPL Testbed Image of Airbag Retraction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the deflated airbags retracted underneath the lander petal at the JPL In-Situ Instrument Laboratory. Retracting the airbags helps clear the path for the rover to roll off the lander and onto the martian surface.

  20. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the ... in Hampton, VA. Image credit: NASA/GSFC/LaRC/JPL, MISR Team. Other formats available at JPL March 11, 2002 - ...

  1. Using LabVIEW for Telemetry Monitoring and Display

    NASA Technical Reports Server (NTRS)

    Wells, G.; Baroth, E.

    1994-01-01

    Part of the Jet Propulsion Laboratory's (JPL's) Instrumentation Section, the Measurement Technology Center (MTC) evaluates data acquisition hardware and software products for inclusion into the Instrument Loan Pool, which are the made available to JPL experimenters.

  2. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  3. KSC-2014-2978

    NASA Image and Video Library

    2014-06-18

    CAPE CANAVERAL, Fla. – Personnel from NASA's Jet Propulsion Laboratory JPL in California secure the protective cover around NASA's International Space Station-RapidScat during testing of its rotating radar antenna and its flight computer and airborne support equipment, at left, in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left are RapidScat project manager John Wirth and JPL flight technician Kieran McKay. Built at JPL, the radar scatterometer is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. ISS-RapidScat will be delivered to the station on the SpaceX-4 commercial cargo resupply flight targeted for August 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Daniel Casper

  4. Team X Report #1401: Exoplanet Coronagraph STDT Study 2013-06

    NASA Technical Reports Server (NTRS)

    Warfield, Keith

    2013-01-01

    This document is intended to stimulate discussion of the topic described. All technical and cost analyses are preliminary. This document is not a commitment to work, but is a precursor to a formal proposal if it generates sufficient mutual interest. The data contained in this document may not be modified in any way. Cost estimates described or summarized in this document were generated as part of a preliminary, first-order cost class identification as part of an early trade space study, are based on JPL-internal parametric cost modeling, assume a JPL in-house build, and do not constitute a commitment on the part of JPL or Caltech. JPL and Team X add cost reserves for development and operations. Unadjusted estimate totals and cost reserve allocations would be revised as needed in future more-detailed studies as appropriate for the specific cost-risks for a given mission concept.

  5. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  6. A new 3D multi-fluid dust model: a study of the effects of activity and nucleus rotation on the dust grains' behavior in the cometary environment

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Toth, G.; Fougere, N.; Tenishev, V.; Huang, Z.; Jia, X.; Hansen, K. C.; Gombosi, T. I.; Bieler, A. M.; Rubin, M.

    2016-12-01

    Cometary dust observations may deepen our understanding of the role of dust in the formation of comets and in altering the cometary environment. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on BATS-R-US in the University of Michigan's Space Weather Modeling Framework (SWMF). This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is running in the rotating comet reference frame with a real shaped nucleus in the computational domain, the fictitious centrifugal and Coriolis forces are included. The boundary condition on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun, which drives sublimation and the radiation pressure force, revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the grid is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. The effects of the rotating nucleus and the activity region on the surface are discussed and preliminary results are presented. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  7. MT's algorithm: A new algorithm to search for the optimum set of modulation indices for simultaneous range, command, and telemetry

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1989-01-01

    MT's algorithm was developed as an aid in the design of space telecommunications systems when utilized with simultaneous range/command/telemetry operations. This algorithm provides selection of modulation indices for: (1) suppression of undesired signals to achieve desired link performance margins and/or to allow for a specified performance degradation in the data channel (command/telemetry) due to the presence of undesired signals (interferers); and (2) optimum power division between the carrier, the range, and the data channel. A software program using this algorithm was developed for use with MathCAD software. This software program, called the MT program, provides the computation of optimum modulation indices for all possible cases that are recommended by the Consultative Committee on Space Data System (CCSDS) (with emphasis on the squarewave, NASA/JPL ranging system).

  8. Taking a Position

    NASA Technical Reports Server (NTRS)

    1999-01-01

    "TerrAvoid" and "Position Integrity" combine Global Positioning Satellite (GPS) data with high-resolution maps of the Earth's topography. Dubbs & Severino, Inc., based in Irvine, California, has developed software that allows the system to be run on a battery-powered laptop in the cockpit. The packages, designed primarily for military sponsors and now positioned to hit the consumer market in coming months, came about as the result of the Jet Propulsion Laboratory's Technology Affiliates Program. Intended to give American industry assistance from NASA experts and to facilitate business use of intellectual property developed for the space program, the Technology Affiliates Program introduced the start-up company of Dubbs & Severino to JPL's Dr. Nevin Bryant four years ago. GeoTIFF is now in the public domain, and its use for commercial product development has evolved into an industry standard over the last year.

  9. A Technology Program that Rescues Spacecraft

    NASA Astrophysics Data System (ADS)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  10. The JPL optical communications telescope laboratory (OCTL) test bed for the future optical Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Page, N.; Wu, J.; Srinivasan, M.

    2003-01-01

    Relative to RF, the lower power-consumption and lower mass of high bandwidth optical telecommunications make this technology extremely attractive for returning data from future NASA/JPL deep space probes.

  11. Engineers Test Roll-Off at JPL

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at JPL shows engineers testing the route by which the Mars Exploration Rover Opportunity will roll off its lander. Opportunity touched down at Meridiani Planum, Mars on Jan. 24, 9:05 p.m. PST, 2004, Earth-received time.

  12. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    Ashley Karp, NASA JPL (Left) and Hunjoo Kim, NASA JPL (Right) attaching heat sensors the Peregrine Hybrid Rocket Engine prior to its test at the Outdoor Aerodynamic Research Facility (OARF, N-249) at NASA's Ames Research Center.

  13. Antarctica's Larsen C Ice Shelf Crack

    Atmospheric Science Data Center

    2016-12-30

    ... square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to ... Virginia. JPL is a division of the California Institute of Technology in Pasadena.   Image Credit: NASA/GSFC/LaRC/JPL, ...

  14. Roll-Off Test at JPL

    NASA Image and Video Library

    2004-01-11

    This still image illustrates what the Mars Exploration Rover Spirit will look like as it rolls off the northeastern side of the lander on Mars. The image was taken from footage of rover testing at JPL In-Situ Instruments Laboratory, or Testbed.

  15. The Mars Express/NASA Project at JPL

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2006-03-01

    The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.

  16. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  17. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  18. Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    2000-01-01

    The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  19. The Geometry of Resonant Signatures in Debris Disks with Planets

    NASA Astrophysics Data System (ADS)

    Kuchner, M. J.; Holman, M. J.

    2002-09-01

    Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single planet with moderate eccentricity (e < 0.6) can create in a dynamically cold, optically thin dust disk. This overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical properties of the planets responsible for the perturbations. We compare the resonant structures found in the solar system with observations of planetary systems around Vega and other stars and we offer a new model for the asymmetries in the Epsilon Eridani disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) through the Michelson Fellowship program funded by NASA as an element of the Planet Finder Program.

  20. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

Top