Science.gov

Sample records for jri tamm kutsub

  1. Tamm-Langmuir surface waves

    NASA Astrophysics Data System (ADS)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  2. Tamm State-Coupled Emission: Effect of Probe Location and Emission Wavelength

    PubMed Central

    2015-01-01

    We report the effect of the probe location and wavelength on the emission spatial distribution and spectral properties of fluorophores located on structures which display Tamm states. Our structure consists of a one-dimensional photonic crystal (1DPC)—that is, a multilayer structure of alternate high and low refractive index dielectrics—and a thin top silver film. Simulations show the presence of Tamm and surface plasmon modes in the structure. The electric field intensities for the Tamm modes are located mostly in the dielectric layer below the metal film. The corresponding field intensities for the surface plamon modes are located above the metal film in the distal side. Tamm states can be in resonance with the incident light normal or near normal to the surface, within the light line, and can be accessed without the use of a coupling prism or gratings. We investigated the emission spectra and angular distribution of the emission for probes located above and below the metal film to explore the interaction of fluorophores with Tamm plasmons and surface plasmons modes. Three probes were chosen with different overlap of the emission spectra with the Tamm modes. The fluorophores below the metal film coupled predominantly with the Tamm state and displayed more intense and only Tamm state-coupled emission (TSCE). Probes above the metal film display both surface plasmon-coupled emission (SPCE) and Tamm state-coupled emission. In contrast to SPCE, which shows only KR, P-polarized emission, the Tamm states can display both S- and P-polarized emission and can be populated using both RK and KR illuminations. The TSCE angle is highly sensitive to wavelength, which suggests the use of Tamm structures to provide both directional emission and wavelength dispersion. The combination of plasmonic and photonic structures with directional emission close to surface normal offers the opportunities for new design formats for clinical testing, portable devices, and other

  3. Confinement of gigahertz sound and light in Tamm plasmon resonators

    NASA Astrophysics Data System (ADS)

    Villafañe, V.; Bruchhausen, A. E.; Jusserand, B.; Senellart, P.; Lemaître, A.; Fainstein, A.

    2015-10-01

    We demonstrate theoretically and by pump-probe picosecond acoustics experiments the simultaneous confinement of light and gigahertz sound in Tamm plasmon resonators, formed by depositing a thin layer of Au onto a GaAs/AlGaAs Bragg reflector. The cavity has InGaAs quantum dots (QDs) embedded at the maximum of the confined optical field in the first GaAs layer. The different sound generation and detection mechanisms are theoretically analyzed. It is shown that the Au layer absorption and the resonant excitation of the QDs are the more efficient light-sound transducers for the coupling of near-infrared light with the confined acoustic modes, while the displacement of the interfaces is the main back-action mechanism at these energies. The prospects for the compact realization of optomechanical resonators based on Tamm plasmon cavities are discussed.

  4. Projected BCS-Tamm-Dancoff approximation with blocking effect

    NASA Astrophysics Data System (ADS)

    Dias, H.; Krmpotić, F.

    1982-05-01

    The blocking effect is introduced through a canonical transformation in the projected BCS-Tamm-Dancoff approximation. It is suggested that the blocking effect may play an important role in the description of the low-lying states in odd-mass nuclei. Present address: Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina. Member of Carrera de Investigador Científico, CONICET, Argentina. Sponsored by Financiadora de Estudos e Projetos (FINEP), Brasil.

  5. Loop-acting diuretics do not bind to Tamm-Horsfall urinary glycoprotein.

    PubMed

    Brunisholz, M C; Lynn, K L; Hunt, J S

    1987-09-01

    1. Binding between the radiolabelled loop-acting diuretics ([14C]frusemide, [14C]ethacrynic acid and [3H]bumetanide) and human Tamm-Horsfall glycoprotein or human serum albumin in vitro was evaluated by equilibrium dialysis. 2. The diuretic action and binding to urinary Tamm-Horsfall glycoprotein of the radiolabelled diuretics in vivo, after intravenous administration, were examined in rabbits. 3. In vitro, all three radiolabelled diuretics bound strongly to human serum albumin, but not to Tamm-Horsfall glycoprotein. 4. Radiolabelled frusemide and bumetanide, but not ethacrynic acid, caused a diuresis in rabbits, but no binding between the drugs and Tamm-Horsfall glycoprotein was seen in vivo. 5. Binding to Tamm-Horsfall glycoprotein does not appear to be an important mechanism in the action of loop diuretics.

  6. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons

    PubMed Central

    Rahman, SK. Shaid-Ur; Klein, Thorsten; Klembt, Sebastian; Gutowski, Jürgen; Hommel, Detlef; Sebald, Kathrin

    2016-01-01

    We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires. PMID:27698359

  7. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons

    NASA Astrophysics Data System (ADS)

    Rahman, Sk. Shaid-Ur; Klein, Thorsten; Klembt, Sebastian; Gutowski, Jürgen; Hommel, Detlef; Sebald, Kathrin

    2016-10-01

    We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.

  8. Electro optical tuning of Tamm-plasmon exciton-polaritons

    SciTech Connect

    Gessler, J.; Baumann, V.; Emmerling, M.; Amthor, M.; Winkler, K.; Schneider, C.; Kamp, M.; Höfling, S.

    2014-11-03

    We report on electro optical tuning of the emission from GaAs quantum wells resonantly coupled to a Tamm-plasmon mode in a hybrid metal/dielectric structure. The structures were studied via momentum resolved photoluminescence and photoreflectance spectroscopy, and the surface metal layer was used as a top gate, which allowed for a precise tuning of the quantum well emission via the quantum confined Stark effect. By tuning the resonance, we were able to observe the characteristic anticrossing behavior of a polaritonic emission in the strong light-matter coupling regime, yielding a Rabi splitting of (9.2 ± 0.2) meV.

  9. Optical Tamm states in one-dimensional superconducting photonic crystal

    NASA Astrophysics Data System (ADS)

    El Abouti, O.; El Boudouti, E. H.; El Hassouani, Y.; Noual, A.; Djafari-Rouhani, B.

    2016-08-01

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Different kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.

  10. Tamm states in graphene-based different combined magneto-electric superlattice heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Liying; Yan, Qiqi; Xu, Huaizhe; Wang, Hailong; Zhang, Gaolong; Zhou, Xiaoping

    2016-09-01

    Tamm states localized at the interface between a homogeneous potential barrier and a combined magneto-electric potential barriers superlattice in monolayer graphene have been theoretically investigated. The results show that the symmetries of Tamm states are different when the components of the superlattice are different. When the single unit of the superlattice consists of double anti-parallel potential barriers and two gaps, Tamm states present symmetry about momentum wave vector ky‧ = 0 at the same intensity of the homogeneous potential barrier (Vs). When the single unit of the superlattice consists of double anti-parallel magnetic potential barriers and two gaps, it demonstrates that Tamm states at positive Vs are symmetric to that at negative Vs about the electron incident energy E0 = 0. When the single unit of the superlattice consists of double anti-parallel combined magneto-electric potential barriers, the band gap at Dirac point is opened, Tamm states exhibit no symmetry about ky‧ or the electron incident energy whether at the same Vs or at positive and negative Vs.

  11. Unconventional optical Tamm states in metal-terminated three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Korovin, Alexander V.; Romanov, Sergei G.

    2016-03-01

    Unconventional optical Tamm surface states have been demonstrated in transmission and reflectance spectra of three-dimensional opal photonic crystals coated by thin metal films. These states appear in registry with diffraction resonances and localize the electromagnetic energy in asymmetric resonators formed by stacks of lattice planes and metal semishells. Tamm defect states provide the bypass for light at the edges of the Bragg diffraction resonances and thus reduce the diffraction efficiency. Despite the hidden nature of this effect, its magnitude is comparable to the extraordinary transmission associated with the surface-plasmon polaritons that are simultaneously excited at the surfaces of the corrugated metal films.

  12. Unconventional optical Tamm defect states in metal-terminated opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Korovin, Alexander V.; Romanov, Sergei G.

    2016-04-01

    Optical Tamm surface states are formed in 3-dimensional photonic crystals coated by thin metal films. These states appear in registry with diffraction resonances and localize the electromagnetic energy in resonators formed by diffraction mirrors of lattice planes and metal semishells. Tamm defect states provide the bypass for light in the spectral range of photonic stop-bands and thus reduce the efficiency of the Bragg diffraction resonances. In spite of hidden nature of this effect, its magnitude is comparable to the extraordinary transmission associated with tunneling of surface plasmon polaritons, which are simultaneously excited at surfaces of corrugated metal film coating.

  13. Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    SciTech Connect

    Lopez-Garcia, M.; Ho, Y.-L. D.; Taverne, M. P. C.; Chen, L.-F.; Rarity, J. G.; Oulton, R.; Murshidy, M. M.; Edwards, A. P.; Adawi, A. M.; Serry, M. Y.

    2014-06-09

    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed.

  14. Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness

    SciTech Connect

    Gao Jun; Lakhtakia, Akhlesh; Lei Mingkai

    2010-01-15

    The boundary-value problem of the propagation of Dyakonov-Tamm waves guided by the planar interface between two structurally chiral materials that are identical except for structural handedness was formulated and numerically solved. Detailed analysis showed that either two or three different Dyakonov-Tamm waves can propagate. These waves have different phase speeds and degrees of localization to the interface with a sudden handedness change. The most localized Dyakonov-Tamm waves are essentially confined to within a small number of structural periods of the interface on either side.

  15. Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure

    PubMed Central

    Badugu, Ramachandram; Descrovi, Emiliano; Lakowicz, Joseph R.

    2014-01-01

    There is a continuing need to increase the brightness and photostability of fluorophores for use in biotechnology, medical diagnostics and cell imaging. One approach developed during the past decade is to use metallic surfaces and nanostructures. It is now known that excited state fluorophores display interactions with surface plasmons, which can increase the radiative decay rates, modify the spatial distribution of emission and result in directional emission. One important example is Surface Plasmon-Coupled Emission (SPCE). In this phenomenon the fluorophores at close distances from a thin metal film, typically silver, display emission over a small range of angles into the substrate. A disadvantage of SPCE is that the emission occur at large angles relative to the surface normal, and at angles which are larger than the critical angle for the glass substrate. The large angles make it difficult to collect all the coupled emission and have prevented use of SPCE with high-throughput and/or array applications. In the present report we describe a simple multi-layer metal-dielectric structure which allows excitation with light that is perpendicular (normal) to the plane and provides emission within a narrow angular distribution that is normal to the plane. This structure consist of a thin silver film on top of a multi-layer dielectric Bragg grating, with no nanoscale features except for the metal or dielectric layer thicknesses. Our structure is designed to support optical Tamm states, which are trapped electromagnetic modes between the metal film and the underlying Bragg grating. We used simulations with the transfer matrix method to understand the optical properties of Tamm states and localization of the modes or electric fields in the structure. Tamm states can exist with zero in-plane wavevector components and can be created without the use of a coupling prism. We show that fluorophores on top of the metal film can interact with the Tamm state under the metal film

  16. Left/right asymmetry in Dyakonov-Tamm-wave propagation guided by a topological insulator and a structurally chiral material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-11-01

    The propagation of Dyakonov-Tamm waves guided by the planar interface of an isotropic topological insulator and a structurally chiral material, both assumed to be nonmagnetic, was investigated by numerically solving the associated canonical boundary-value problem. The topologically insulating surface states of the topological insulator were quantitated via a surface admittance {γ }{{TI}}, which significantly affects the phase speeds and the spatial profiles of the Dyakonov-Tamm waves. Most significantly, it is possible that a Dyakonov-Tamm wave propagates co-parallel to a vector {u} in the interface plane, but no Dyakonov-Tamm wave propagates anti-parallel to {u}. The left/right asymmetry, which vanishes for {γ }{{TI}}=0, is highly attractive for one-way on-chip optical communication.

  17. Tamm-Horsfall mucoproteins promote calcium oxalate crystal formation in urine: quantitative studies

    SciTech Connect

    Rose, G.A.; Sulaiman, S.

    1982-01-01

    The technique of rapid evaporation of whole urine to standard osmolality has been studied further and quantitative measurements made of the calcium oxalate crystals resulting, firstly by a microscope method and secondly by isotope method using 14C-oxalate. It is confirmed that ultrafiltration of urine prior to evaporation leads to a large reduction in calcium oxalate crystal formation and that this is largely restored by addition of human urinary Tamm-Horsfall protein (uromucoid). Albumin does not have this effect.

  18. The Tamm-Dancoff Approximation as the Contraction Limit of the Richardson-Gaudin Equations

    NASA Astrophysics Data System (ADS)

    de Baerdemacker, S.

    2013-03-01

    A connection is made between the exact eigenstates of the level-independent Bardeen-Cooper-Schrieffer (BCS) Hamiltonian and its Tamm-Dancoff Approximation (TDA). This is done by means of a deformation of the quasi-spin algebra, which connects the Bethe Ansatz states with a unique multi-phonon mode of the TDA. The procedure is illustrated with a model describing neutron superluidity in 56Fe.

  19. Spatial and Fourier-space distribution of confined optical Tamm modes

    NASA Astrophysics Data System (ADS)

    Feng, Fu; Daney de Marcillac, Willy; Lafosse, Xavier; Portalupi, Simone Luca; Nasilowski, Michel; Dubertret, Benoît; Frigerio, Jean-Marc; Schwob, Catherine; Maître, Agnès; Senellart, Pascale; Coolen, Laurent

    2016-08-01

    In this paper, we characterize the electric field distribution of confined optical modes in a 0D Tamm structure, consisting in a metallic disk deposited on a Bragg mirror. The modes are probed at room temperature, through the fluorescence of semiconductor colloidal nanocrystals. We perform a combined analysis of the resonant modes distribution in both direct space and Fourier space and show, in good agreement with numerical simulations, that a subportion of the structure will radiate with a different angular distribution depending on its position. Such analysis is shown to probe the gradient of the phase of the confined optical modes.

  20. Meta-Optics with Nanowire Grid Arrays: Hyperbolic Fabry-Perot Modes and Hyperbolic Tamm Plasmons

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Keene, David; Lepain, Matthew

    2015-03-01

    In this talk we introduce a new class of structures - cavities formed by metal-dielectric metasurfaces. These cavities support a zoo of various resonances, including hyperbolic Tamm plasmons and hyperbolic Fabry-Perot modes, which feature anisotropic clover-leaf dispersion parallel to the metasurface and strong coupling between TM and TE polarizations in the modes. The properties and spectrum of the modes are highly tunable by the dimensional and material parameters of the structure and can be used for directional emission, modification of radiation produced by electric dipole emitters into magnetic dipole radiation as well as 90 degree polarization rotators and polarization rotation mirrors.

  1. Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E.

    2014-07-01

    Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the {T}1/{T}2 conical intersection of benzaldehyde.

  2. Generalized q-deformed Tamm-Dancoff oscillator algebra and associated coherent states

    SciTech Connect

    Chung, Won Sang; Hounkonnou, Mahouton Norbert Arjika, Sama

    2014-08-15

    In this paper, we propose a full characterization of a generalized q-deformed Tamm-Dancoff oscillator algebra and investigate its main mathematical and physical properties. Specifically, we study its various representations and find the condition satisfied by the deformed q-number to define the algebra structure function. Particular Fock spaces involving finite and infinite dimensions are examined. A deformed calculus is performed as well as a coordinate realization for this algebra. A relevant example is exhibited. Associated coherent states are constructed. Finally, some thermodynamics aspects are computed and discussed.

  3. Effect of Metal Film Thickness on Tamm Plasmon-Coupled Emission

    PubMed Central

    Chen, Yikai; Zhang, Douguo; Zhu, Liangfu; Fu, Qiang; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2015-01-01

    Tamm plasmons (TPs) are the result of trapping optical energy at the interface between a metal film and a one-dimensional photonic crystal. In contrast to surface plasmons, TPs display unique properties such as the ability of direct optical excitation without the aid of prisms, or gratings, being populated using both S- and P- polarized light, and importantly, they can be created with incident light normal to the surfaces. This latter property has recently been used to obtain Tamm plasmon-coupled emission (TPCE) which beams along a path directly perpendicular to the surface. In this paper the effects of metal film thickness on TPCE are investigated using back focal plane (BFP) imaging and spectral resolutions. The observed experimental results are in agreement with the numerical simulations. The present work provides the basic understanding to design the structures for TPCE, which in turn has potential applications in the fabrication of the active material for light emitting devices, fluorescence based-sensing using microarrays and imaging. PMID:25349013

  4. Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm-Horsfall glycoprotein in urine.

    PubMed

    Hunt, J S; McGiven, A R; Groufsky, A; Lynn, K L; Taylor, M C

    1985-05-01

    Rabbit antibodies to human Tamm-Horsfall glycoprotein (prepared by salt precipitation from normal urine) were purified by affinity chromatography using columns containing Tamm-Horsfall glycoprotein linked to CNBr-activated Sepharose 4B. The specificity of these antibodies was determined by analysis of their binding characteristics on Western blots of Tamm-Horsfall protein from sodium dodecyl sulphate/polyacrylamide gradient gels and comparison with the reactivity of monoclonal antibodies to this glycoprotein. Optimal conditions of adsorption to poly(vinyl chloride) microtitre plates were established such that these purified antibodies could be used in a solid-phase radioimmunoassay for the determination of urinary Tamm-Horsfall-glycoprotein concentration. The specificity of the immunoassay was confirmed by competitive inhibition of the urinary Tamm-Horsfall glycoprotein by purified freeze-dried material in solution. A standard curve obtained with this material showed the radioimmunoassay to have a sensitivity of at least 5 ng/ml, with linearity between 30 and 600 ng/ml. The mean coefficient of variation over the linear section of the curve was 11.3 +/- 2.2% (n = 13). The effects of dialysis and freezing of urine samples before determination of Tamm-Horsfall-glycoprotein concentrations were investigated and the mean 24 h urinary excretion rate in 60 normal donors was shown to be 84.9 +/- 44.1 mg.

  5. Conical Intersections from Particle-Particle Random Phase and Tamm-Dancoff Approximations.

    PubMed

    Yang, Yang; Shen, Lin; Zhang, Du; Yang, Weitao

    2016-07-01

    The particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) are applied to the challenging conical intersection problem. Because they describe the ground and excited states on the same footing and naturally take into account the interstate interaction, these particle-particle methods, especially the pp-TDA, can correctly predict the dimensionality of the conical intersection seam as well as describe the potential energy surface in the vicinity of conical intersections. Though the bond length of conical intersections is slightly underestimated compared with the complete-active-space self-consistent field (CASSCF) theory, the efficient particle-particle methods are promising for conical intersections and nonadiabatic dynamics. PMID:27293013

  6. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Weigend, Florian

    2015-01-01

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its "spin-forbidden" triplet-singlet transition.

  7. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    SciTech Connect

    Kühn, Michael; Weigend, Florian

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  8. Conical Intersections from Particle-Particle Random Phase and Tamm-Dancoff Approximations.

    PubMed

    Yang, Yang; Shen, Lin; Zhang, Du; Yang, Weitao

    2016-07-01

    The particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) are applied to the challenging conical intersection problem. Because they describe the ground and excited states on the same footing and naturally take into account the interstate interaction, these particle-particle methods, especially the pp-TDA, can correctly predict the dimensionality of the conical intersection seam as well as describe the potential energy surface in the vicinity of conical intersections. Though the bond length of conical intersections is slightly underestimated compared with the complete-active-space self-consistent field (CASSCF) theory, the efficient particle-particle methods are promising for conical intersections and nonadiabatic dynamics.

  9. Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation

    SciTech Connect

    Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.; Shao, Yihan

    2014-07-14

    Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.

  10. The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles

    NASA Astrophysics Data System (ADS)

    Vetrov, S. Ya; Pankin, P. S.; Timofeev, I. V.

    2016-06-01

    We investigate the optical Tamm states (OTSs) localized at the interface between a photonic crystal (PC) and a nanocomposite consisting of spherical nanoparticles with a dielectric core and a metallic shell, which are dispersed in a transparent matrix, and is characterized by the resonance permittivity. Spectra of transmission, reflection, and absorption of normally incident light waves by the investigated structure are calculated. The spectral manifestation of the Tamm states caused by negative values of the real part of the effective permittivity in the visible spectral range is studied. It is demonstrated that, along with the significantly extended band gap of the PC, the transmission spectrum contains an additional stopband caused by nanocomposite absorption near the resonance frequency. It is shown that the OTSs can be implemented in two band gaps of the PCs, each corresponding to a certain plasmon resonance frequency of the nanocomposite. It is established that the characteristics of the Tamm state localized at the edge of the PCs significantly depend on the ratio between the particle core volume and the total particle volume.

  11. Release of gelatinase and superoxide from human mononuclear phagocytes in response to particulate Tamm Horsfall protein.

    PubMed Central

    Thomas, D. B.; Davies, M.; Williams, J. D.

    1993-01-01

    This study describes the in vitro activation of human mononuclear phagocytes by particulate Tamm Horsfall protein (THP). Peripheral blood monocytes phagocytosed THP particles with the accompanying release of superoxide radicals, N-acetyl-beta-D-glucosaminidase, and neutral metalloproteinase. Immunoprecipitation and substrate gel analysis identified the neutral proteinase as a 95-kd gelatinase. A comparison with other particulate ligands highlighted the specificity of the response to THP and showed that the magnitude of the response was comparable with that obtained with lipopolysaccharide (100 micrograms/ml). Parallel studies using peritoneal macrophages resulted in a similar pattern of enzyme release and reactive oxygen species synthesis. THP has been implicated in the pathogenesis of tubulointerstitial nephritis associated with reflux nephropathy. The present study indicates that an inflammatory response initiated by a neutrophil-THP interaction may be extended into a chronic phase via the activation of mononuclear phagocytes. The subsequent release of reactive oxygen metabolites and proteinases may contribute to the tissue damage and fibrosis associated with chronic immune-mediated tubulointerstitial nephritis. Images Figure 4 Figure 5 Figure 6 PMID:8380953

  12. Relationship of abnormal Tamm-Horsfall glycoprotein localization to renal morphology and function.

    PubMed

    Chambers, R; Groufsky, A; Hunt, J S; Lynn, K L; McGiven, A R

    1986-07-01

    Tamm-Horsfall glycoprotein (TH) distribution was studied using a biotin-avidin immunoperoxidase technique in renal biopsies from 166 consecutive patients and 8 normal kidneys. Tubulointerstitial damage was independently assessed and graded. In 109 patients TH antibodies were measured by ELISA and in 30 of these urinary TH and beta 2-microglobulin excretions were measured by radioimmunoassay. In 124 biopsies only distal tubular epithelium and casts were stained. Glomerular space (8) or interstitial (34) deposits were seen in 42 biopsies; 16/68 with glomerulonephritis, 4/14 with systemic vasculitis, 12/33 with chronic interstitial nephritis, 1/8 with acute interstitial nephritis, 9/43 with other nephropathies. There was no correlation between TH distribution and the degree of tubulointerstitial damage (p greater than 0.5), urinary TH excretion (p greater than 0.05), urinary beta 2-microglobulin excretion (p greater than 0.05), glomerular filtration rate, urinary concentrating ability, or the incidence of pyuria. TH antibodies did not correlate with TH distribution (p greater than 0.5) or the degree of tubulointerstitial damage. Abnormal TH distribution showed no statistical relationship to the degree of tubulointerstitial damage, changes in renal function or levels of TH antibodies.

  13. Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization

    NASA Astrophysics Data System (ADS)

    Sander, Tobias; Maggio, Emanuele; Kresse, Georg

    2015-07-01

    Linear optical properties can be accurately calculated using the Bethe-Salpeter equation. After introducing a suitable product basis for the electron-hole pairs, the Bethe-Salpeter equation is usually recast into a complex non-Hermitian eigenvalue problem that is difficult to solve using standard eigenvalue solvers. In solid-state physics, it is therefore common practice to neglect the problematic coupling between the positive- and negative-frequency branches, reducing the problem to a Hermitian eigenvalue problem [Tamm-Dancoff approximation (TDA)]. We use time-inversion symmetry to recast the full problem into a quadratic Hermitian eigenvalue problem, which can be solved routinely using standard eigenvalue solvers even at a finite wave vector q . This allows us to access the importance of the coupling between the positive- and negative-frequency branch for prototypical solids. As a starting point for the Bethe-Salpeter calculations, we use self-consistent Green's-function methods (GW ), making the present scheme entirely ab initio. We calculate the optical spectra of carbon (C), silicon (Si), lithium fluoride (LiF), and the cyclic dimer Li2F2 and discuss why the differences between the TDA and the full solution are tiny. However, at finite momentum transfer q , significant differences between the TDA and our exact treatment are found. The origin of these differences is explained.

  14. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    NASA Astrophysics Data System (ADS)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  15. Carotenoids and light-harvesting: from DFT/MRCI to the Tamm-Dancoff approximation.

    PubMed

    Andreussi, Oliviero; Knecht, Stefan; Marian, Christel M; Kongsted, Jacob; Mennucci, Benedetta

    2015-02-10

    Carotenoids are known to play a fundamental role in photosynthetic light-harvesting (LH) complexes; however, an accurate quantum-mechanical description of that is still missing. This is due to the multideterminant nature of the involved electronic states combined with an extended conjugation which limits the applicability of many of the most advanced approaches. In this study, we apply a multireference configuration interaction extension of density functional theory (DFT/MRCI) to describe transition energies and densities as well as the corresponding excitonic couplings, for the three lowest singlet excited states of nine carotenoids present in three different LH complexes of algae and plants. These benchmark results are used to find an approximated computational approach, which could be used to quantitatively reproduce the key quantities at a reduced computational cost. To this end, we tested the Tamm-Dancoff approximation (TDA) to time-dependent density functional theory in combination with different functionals. By analyzing the errors with respect to DFT/MRCI-TDA results for the full set of electronic properties, we conclude that TDA-TPSS with small basis sets indeed represents an effective approach to investigate LH processes that involve carotenoids. PMID:26579601

  16. Performance of Tamm-Dancoff approximation on nonadiabatic couplings by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hu, Chunping; Sugino, Osamu; Watanabe, Kazuyuki

    2014-02-01

    The Tamm-Dancoff approximation (TDA), widely used in physics to decouple excitations and de-excitations, is well known to be good for the calculation of excitation energies but not for oscillator strengths. In particular, the sum rule is violated in the latter case. The same concern arises within the TDA in the calculation of nonadiabatic couplings (NACs) by time-dependent density functional theory (TDDFT), due to the similarities in the TDDFT formulations of NACs and oscillator strengths [C. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007)]. In this study, we present a systematic evaluation of the performance of TDDFT/TDA for the calculation of NACs. In the cases we considered, including a variety of systems possessing Jahn-Teller and Renner-Teller intersections, as well as an example with accidental conical intersections, it is found that the TDDFT/TDA performs better than the full TDDFT, contrary to the conjecture that the TDA might cause the NAC results to deteriorate and violate the sum rule. The surprisingly good performance of the TDA for NACs is probably because the TDA can partially compensate for the local-density-approximation error and give better excitation energies in the vicinity of intersections of potential energy surfaces. Our study also shows that it is important to use the TDA based on the rigorous full-TDDFT formulation of NACs, instead of using it based on an alternative approximate formulation.

  17. Molecular properties in the Tamm-Dancoff approximation: indirect nuclear spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.

    2015-07-01

    The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.

  18. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    NASA Astrophysics Data System (ADS)

    Lazar, Markus; Pellegrini, Yves-Patrick

    2016-11-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.

  19. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    SciTech Connect

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  20. Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic–photonic structures

    PubMed Central

    Chen, Yikai; Zhang, Douguo; Zhu, Liangfu; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2015-01-01

    Photonic and plasmon-coupled emissions present new opportunities for control on light emission from fluorophores, and have many applications in the physical and biological sciences. The mechanism of and the influencing factors for the coupling between the fluorescent molecules and plasmon and/or photonic modes are active areas of research. In this paper, we describe a hybrid photonic–plasmonic structure that simultaneously contains two plasmon modes: surface plasmons (SPs) and Tamm plasmons (TPs), both of which can modulate fluorescence emission. Experimental results show that both SP-coupled emission (SPCE) and TP-coupled emission (TPCE) can be observed simultaneously with this hybrid structure. Due to the different resonant angles of the TP and SP modes, the TPCE and SPCE can be beamed in different directions and can be separated easily. Back focal plane images of the fluorescence emission show that the relative intensities of the SPCE and TPCE can be changed if the probes are at different locations inside the hybrid structure, which reveals the probe location-dependent different coupling strengths of the fluorescent molecules with SPs and TPs. The different coupling strengths are ascribed to the electric field distribution of the two modes in the structure. Here, we present an understanding of these factors influencing mode coupling with probes, which is vital for structure design for suitable applications in sensing and diagnostics. PMID:26526929

  1. Bovine and rodent tamm-horsfall protein (THP) genes: cloning, structural analysis, and promoter identification.

    PubMed

    Yu, H; Papa, F; Sukhatme, V P

    1994-01-01

    We have isolated bovine and rodent cDNA and genomic clones encoding the kidney-specific Tamm-Horsfall protein (THP). In both species the gene contains 11 exons, the first of which is noncoding. Exon/intron junctions were analyzed and all were shown to follow the AG/GT rule. A kidney-specific DNase I hypersensitive site was mapped onto a rodent genomic fragment for which the sequence is highly conserved in three species (rat, cow, and human) over a stretch of 350 base pairs. Primer extension and RNase protection analysis identified a transcription start site at the 3' end of this conserved region. A TATA box is located at 32 nucleotides upstream of the start site in the bovine gene and 34 nucleotides upstream in the rodent gene. An inverted CCAAT motif occurs at 65 and 66 nucleotides upstream of the start site in the bovine and rodent genes, respectively. Other highly conserved regions were noted in this 350 bp region and these are likely to be binding sites for transcription factors. A functional assay based on an in vitro transcription system confirmed that the conserved region is an RNA Pol II promoter. The in vitro system accurately initiated transcription from the in vivo start site and was highly sensitive to inhibition by alpha-amanitin at a concentration of 2.5 micrograms/ml. These studies set the stage for the further definition of cis-acting sequences and trans-factors regulating expression of the THP gene, a model for kidney-specific gene expression.

  2. Tunneling time in attosecond experiments, intrinsic-type of time. Keldysh, and Mandelstam–Tamm time

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2016-05-01

    Tunneling time in attosecond and strong-field experiments is one of the most controversial issues in current research, because of its importance to the theory of time, the time operator and the time–energy uncertainty relation in quantum mechanics. In Kullie (2015 Phys. Rev. A 92 052118) we derived an estimation of the (real) tunneling time, which shows an excellent agreement with the time measured in attosecond experiments, our derivation is found by utilizing the time–energy uncertainty relation, and it represents a quantum clock. In this work, we show different aspects of the tunneling time in attosecond experiments, we discuss and compare the different views and approaches, which are used to calculate the tunneling time, i.e. Keldysh time (as a real or imaginary quantity), Mandelstam–Tamm time, the classical view of the time measurement and our tunneling time relation(s). We draw some conclusions concerning the validity and the relation between the different types of the tunneling time with the hope that they will help to answer the question put forward by Orlando et al (2014 J. Phys. B 47 204002, 2014 Phys. Rev. A 89 014102): tunneling time, what does it mean? However, as we will see, the important question is a more general one: how to understand the time and the measurement of the time of a quantum system? In respect to our result, the time in quantum mechanics can be, in more general fashion, classified in two types, intrinsic dynamically connected, and external dynamically not connected to the system, and consequently (perhaps only) classical Newtonian time remains as a parametric type of time.

  3. Tunneling time in attosecond experiments, intrinsic-type of time. Keldysh, and Mandelstam-Tamm time

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2016-05-01

    Tunneling time in attosecond and strong-field experiments is one of the most controversial issues in current research, because of its importance to the theory of time, the time operator and the time-energy uncertainty relation in quantum mechanics. In Kullie (2015 Phys. Rev. A 92 052118) we derived an estimation of the (real) tunneling time, which shows an excellent agreement with the time measured in attosecond experiments, our derivation is found by utilizing the time-energy uncertainty relation, and it represents a quantum clock. In this work, we show different aspects of the tunneling time in attosecond experiments, we discuss and compare the different views and approaches, which are used to calculate the tunneling time, i.e. Keldysh time (as a real or imaginary quantity), Mandelstam-Tamm time, the classical view of the time measurement and our tunneling time relation(s). We draw some conclusions concerning the validity and the relation between the different types of the tunneling time with the hope that they will help to answer the question put forward by Orlando et al (2014 J. Phys. B 47 204002, 2014 Phys. Rev. A 89 014102): tunneling time, what does it mean? However, as we will see, the important question is a more general one: how to understand the time and the measurement of the time of a quantum system? In respect to our result, the time in quantum mechanics can be, in more general fashion, classified in two types, intrinsic dynamically connected, and external dynamically not connected to the system, and consequently (perhaps only) classical Newtonian time remains as a parametric type of time.

  4. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams

    SciTech Connect

    Meng, Zi-Ming E-mail: lizy@aphy.iphy.ac.cn; Hu, Yi-Hua; Ju, Gui-Fang; Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan E-mail: lizy@aphy.iphy.ac.cn

    2014-07-28

    Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.

  5. Collectivity of the pygmy dipole resonance within schematic Tamm-Dancoff approximation and random-phase approximation models

    NASA Astrophysics Data System (ADS)

    Baran, V.; Palade, D. I.; Colonna, M.; Di Toro, M.; Croitoru, A.; Nicolin, A. I.

    2015-05-01

    Within schematic models based on the Tamm-Dancoff approximation and the random-phase approximation with separable interactions, we investigate the physical conditions that may determine the emergence of the pygmy dipole resonance in the E 1 response of atomic nuclei. By introducing a generalization of the Brown-Bolsterli schematic model with a density-dependent particle-hole residual interaction, we find that an additional mode will be affected by the interaction, whose energy centroid is closer to the distance between two major shells and therefore well below the giant dipole resonance (GDR). This state, together with the GDR, exhausts all the transition strength in the Tamm-Dancoff approximation and all the energy-weighted sum rule in the random-phase approximation. Thus, within our scheme, this mode, which could be associated with the pygmy dipole resonance, is of collective nature. By relating the coupling constants appearing in the separable interaction to the symmetry energy value at and below saturation density we explore the role of density dependence of the symmetry energy on the low-energy dipole response.

  6. Kristine Bonnevie, Tine Tammes and Elisabeth Schiemann in early genetics: emerging chances for a university career for women.

    PubMed

    Stamhuis, Ida H; Monsen, Arve

    2007-01-01

    The beginning of the twentieth century saw the emergence of the discipline of genetics. It is striking how many female scientists were contributing to this new field at the time. At least three female pioneers succeeded in becoming professors: Kristine Bonnevie (Norway), Elisabeth Schiemann (Germany) and the Tine Tammes (The Netherlands). The question is which factors contributed to the success of these women's careers? At the time women were gaining access to university education it had become quite the norm for universities to be sites for teaching and research. They were still expanding: new laboratories were being built and new disciplines were being established. All three women benefited from the fact that genetics was considered a new field promising in terms of its utility to society; in the case of Tammes and Schiemann in agriculture and in the case of Bonnevie in eugenics. On the other hand, the field of genetics also benefited from the fact that these first female researchers were eager for the chance to work in science and wanted to make active contributions. The all worked and studied in environments which, although different from one another, were positive towards them, at least at the start. Having a patron was generally a prerequisite. Tammes profited from her teacher's contacts and status. Bonnevie made herself indispensable through her success as a teacher and eventually made her position so strong that she was no longer dependent on a single patron. The case of Schiemann adds something new; it shows the vulnerability of such dependency. Initially, Schiemann's teacher had to rely on the first generation of university women simply because he was unable to attract ambitious young men to his institute. In those early, uncertain years of the new discipline, male scientists tended to choose other, better established, and more prestigious disciplines. However, when genetics itself had become an established field, it also became more attractive to men

  7. Kristine Bonnevie, Tine Tammes and Elisabeth Schiemann in early genetics: emerging chances for a university career for women.

    PubMed

    Stamhuis, Ida H; Monsen, Arve

    2007-01-01

    The beginning of the twentieth century saw the emergence of the discipline of genetics. It is striking how many female scientists were contributing to this new field at the time. At least three female pioneers succeeded in becoming professors: Kristine Bonnevie (Norway), Elisabeth Schiemann (Germany) and the Tine Tammes (The Netherlands). The question is which factors contributed to the success of these women's careers? At the time women were gaining access to university education it had become quite the norm for universities to be sites for teaching and research. They were still expanding: new laboratories were being built and new disciplines were being established. All three women benefited from the fact that genetics was considered a new field promising in terms of its utility to society; in the case of Tammes and Schiemann in agriculture and in the case of Bonnevie in eugenics. On the other hand, the field of genetics also benefited from the fact that these first female researchers were eager for the chance to work in science and wanted to make active contributions. The all worked and studied in environments which, although different from one another, were positive towards them, at least at the start. Having a patron was generally a prerequisite. Tammes profited from her teacher's contacts and status. Bonnevie made herself indispensable through her success as a teacher and eventually made her position so strong that she was no longer dependent on a single patron. The case of Schiemann adds something new; it shows the vulnerability of such dependency. Initially, Schiemann's teacher had to rely on the first generation of university women simply because he was unable to attract ambitious young men to his institute. In those early, uncertain years of the new discipline, male scientists tended to choose other, better established, and more prestigious disciplines. However, when genetics itself had become an established field, it also became more attractive to men

  8. A sensitive and specific ELISA using a monoclonal capture antibody for detection of Tamm-Horsfall urinary glycoprotein in serum.

    PubMed

    Hunt, J S; Peach, R J; Brünisholz, M C; Lynn, K L; McGiven, A R

    1986-07-11

    An enzyme-linked immunosorbent assay (ELISA) has been established using Nunc polystyrene immunoplates coated with a monoclonal antibody to human Tamm-Horsfall urinary glycoprotein (THP) to detect and measure THP in human serum. Optimal reaction conditions for both the monoclonal capture antibody and the affinity-purified rabbit anti-human THP second antibody were established to produce standard curves which showed linearity between 20-90 ng/ml with a sensitivity of 2-3 ng/ml. The plate-to-plate standard curve mean coefficient of variation (CV) was 5.9 +/- 2.9% on assays performed on the same day while day to day mean CV was 13.3 +/- 2.4%. The specificity of the ELISA was demonstrated by inhibition of binding after preincubation of both urinary THP standards and serum with monoclonal anti-THP antibody. Sera from 195 blood donors tested by the ELISA had a mean concentration of THP antigenic determinants of 260 +/- 105 ng/ml. Results from three control sera run on all plates used in the survey showed mean CV less than 7.6% while no binding was observed with sera from an anephric patient.

  9. Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    König, Carolin; Schlüter, Nicolas; Neugebauer, Johannes

    2013-01-01

    In subsystem time-dependent density functional theory (TDDFT) [J. Neugebauer, J. Chem. Phys. 126, 134116 (2007), 10.1063/1.2713754] localized excitations are used to calculate delocalized excitations in large chromophore aggregates. We have extended this formalism to allow for the Tamm-Dancoff approximation (TDA). The resulting response equations have a form similar to a perturbative configuration interaction singles (CIS) approach. Thus, the inter-subsystem matrix elements in subsystem TDA can, in contrast to the full subsystem-TDDFT case, directly be interpreted as exciton coupling matrix elements. Here, we present the underlying theory of subsystem TDDFT within the TDA as well as first applications. Since for some classes of pigments, such as linear polyenes and carotenoids, TDA has been reported to perform better than full TDDFT, we also report applications of this formalism to exciton couplings in dimers of such pigments and in mixed bacteriochlorophyll-carotenoid systems. The improved description of the exciton couplings can be traced back to a more balanced description of the involved local excitations.

  10. A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan

    2013-06-01

    Two approximations in the Tamm-Dancoff density functional theory approach (TDA-DFT) to electronically excited states are proposed which allow routine computations for electronic ultraviolet (UV)- or circular dichroism (CD) spectra of molecules with 500-1000 atoms. Speed-ups compared to conventional time-dependent DFT (TD-DFT) treatments of about two to three orders of magnitude in the excited state part at only minor loss of accuracy are obtained. The method termed sTDA ("s" for simplified) employs atom-centered Löwdin-monopole based two-electron repulsion integrals with the asymptotically correct 1/R behavior and perturbative single excitation configuration selection. It is formulated generally for any standard global hybrid density functional with given Fock-exchange mixing parameter ax. The method performs well for two standard benchmark sets of vertical singlet-singlet excitations for values of ax in the range 0.2-0.6. The mean absolute deviations from reference data are only 0.2-0.3 eV and similar to those from standard TD-DFT. In three cases (two dyes and one polypeptide), good mutual agreement between the electronic spectra (up to 10-11 eV excitation energy) from the sTDA method and those from TD(A)-DFT is obtained. The computed UV- and CD-spectra of a few typical systems (e.g., C60, two transition metal complexes, [7]helicene, polyalanine, a supramolecular aggregate with 483 atoms and about 7000 basis functions) compare well with corresponding experimental data. The method is proposed together with medium-sized double- or triple-zeta type atomic-orbital basis sets as a quantum chemical tool to investigate the spectra of huge molecular systems at a reliable DFT level.

  11. Electronic circular dichroism of highly conjugated π-systems: breakdown of the Tamm-Dancoff/configuration interaction singles approximation.

    PubMed

    Bannwarth, Christoph; Grimme, Stefan

    2015-04-16

    We show that the electronic circular dichroism (ECD) of delocalized π-systems represents a worst-case scenario for Tamm-Dancoff approximated (TDA) linear response methods. We mainly consider density functional theory (TDA-DFT) variants together with range-separated hybrids, but the conclusions also apply for other functionals as well as the configuration interaction singles (CIS) approaches. We study the effect of the TDA for the computation of ECD spectra in some prototypical extended π-systems. The C76 fullerene, a chiral carbon nanotube fragment, and [11]helicene serve as model systems for inherently chiral, π-chromophores. Solving the full linear response problem is inevitable in order to obtain accurate ECD spectra for these systems. For the C76 fullerene and the nanotube fragment, TDA and CIS approximated methods yield spectra in the origin-independent velocity gauge formalism of incorrect sign which would lead to the assignment of the opposite (wrong) absolute configuration. As a counterexample, we study the ECD of an α-helix polypeptide chain. Here, the lowest-energy transitions are dominated by localized excitations within the individual peptide units, and TDA methods perform satisfactorily. The results may have far-reaching implications for simple semiempirical methods which often employ TDA and CIS for huge molecules. Our recently presented simplified time-dependent DFT approach proves to be an excellent low-cost linear response method which together with range-separated density functionals like ωB97X-D3 produces ECD spectra in very good agreement with experiment. PMID:25798823

  12. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function.

    PubMed

    Renigunta, Aparna; Renigunta, Vijay; Saritas, Turgay; Decher, Niels; Mutig, Kerim; Waldegger, Siegfried

    2011-01-21

    Tamm-Horsfall glycoprotein (THGP) or Uromodulin is a membrane protein exclusively expressed along the thick ascending limb (TAL) and early distal convoluted tubule (DCT) of the nephron. Mutations in the THGP encoding gene result in Familial Juvenile Hyperuricemic Nephropathy (FJHN), Medullary Cystic Kidney Disease type 2 (MCKD-2), and Glomerulocystic Kidney Disease (GCKD). The physicochemical and biological properties of THGP have been studied extensively, but its physiological function in the TAL remains obscure. We performed yeast two-hybrid screening employing a human kidney cDNA library and identified THGP as a potential interaction partner of the renal outer medullary potassium channel (ROMK2), a key player in the process of salt reabsorption along the TAL. Functional analysis by electrophysiological techniques in Xenopus oocytes showed a strong increase in ROMK current amplitudes when co-expressed with THGP. The effect of THGP was specific for ROMK2 and did not influence current amplitudes upon co-expression with Kir2.x, inward rectifier potassium channels related to ROMK. Single channel conductance and open probability of ROMK2 were not altered by co-expression of THGP, which instead increased surface expression of ROMK2 as determined by patch clamp analysis and luminometric surface quantification, respectively. Despite preserved interaction with ROMK2, disease-causing THGP mutants failed to increase its current amplitude and surface expression. THGP(-/-) mice exhibited increased ROMK accumulation in intracellular vesicular compartments when compared with WT animals. Therefore, THGP modulation of ROMK function confers a new role of THGP on renal ion transport and may contribute to salt wasting observed in FJHN/MCKD-2/GCKD patients. PMID:21081491

  13. The acid-base buffer capacity of podzolic soils and its changes under the impact of treatment with the Mehra-Jackson and Tamm reagents

    NASA Astrophysics Data System (ADS)

    Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.

    2010-10-01

    The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.

  14. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  15. Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode

    SciTech Connect

    Braun, T.; Baumann, V.; Iff, O.; Schneider, C.; Kamp, M.; Höfling, S.

    2015-01-26

    We report on the enhancement of the spontaneous emission in the visible red spectral range from site-controlled InP/GaInP quantum dots by resonant coupling to Tamm-plasmon modes confined beneath gold disks in a hybrid metal/semiconductor structure. The enhancement of the emission intensity is confirmed by spatially resolved micro-photoluminescence area scans and temperature dependent measurements. Single photon emission from our coupled system is verified via second order autocorrelation measurements. We observe bright single quantum dot emission of up to ∼173 000 detected photons per second at a repetition rate of the excitation source of 82 MHz, and calculate an extraction efficiency of our device as high as 7%.

  16. Al, Fe, and Si compounds in Tamm and Mehra-Jackson extracts from mucky-peaty-podzolic gley soil: Contents, reserves, and profile and particle-size distributions

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.; Tolpeshta, I. I.; Maksimova, Yu. G.

    2014-05-01

    Equal or comparable contents of Fe and Al extractable by Tamm and Mehra-Jackson solutions have been revealed in all the horizons of a loamy mucky-peaty-podzolic gley soil on binary deposits. The content of Si extractable by the Mehra-Jackson solution has exceeded that of oxalate-soluble Si by an order of magnitude. The distributions of Al in the Tamm solutions from the entire soil and its fractions of 1-5 and >5 μm are of accumulative type with a maximum in the mucky H horizon and a gradual decrease of the content with depth in relation with the analogous distribution of Al-organic complexes. The maximum content of oxalate-soluble Al in the clay fraction has been found in the eluvial ELg horizon, which can be due to the partial dissolution of Al hydroxide interlayers in soil chlorites. The distribution of Fe in the entire soil has two maximums, in the H horizon due to the accumulation of Fe-organic complexes and in the concretion-rich ELnn,g horizon due to the accumulation of Fe hydroxides. Depletion of oxalate-soluble Fe in the eluvial ELg horizon has been observed in all the fractions, which can be related to its mobilization and removal under strongly acidic conditions and the development of reductive processes, as well as the enrichment of the concretion-rich horizon with these compounds because of an increase in pH and the development of conditions favorable for water stagnation and Fe segregation.

  17. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB).

    PubMed

    Grimme, Stefan; Bannwarth, Christoph

    2016-08-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H-Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  18. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph

    2016-08-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H-Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  19. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB).

    PubMed

    Grimme, Stefan; Bannwarth, Christoph

    2016-08-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H-Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  20. A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Liu, Fenglai; Gan, Zhengting; Shao, Yihan; Hsu, Chao-Ping; Dreuw, Andreas; Head-Gordon, Martin; Miller, Benjamin T.; Brooks, Bernard R.; Yu, Jian-Guo; Furlani, Thomas R.; Kong, Jing

    2010-10-01

    We derived the analytic gradient for the excitation energies from a time-dependent density functional theory calculation within the Tamm-Dancoff approximation (TDDFT/TDA) using Gaussian atomic orbital basis sets, and introduced an efficient serial and parallel implementation. Some timing results are shown from a B3LYP/6-31G**/SG-1-grid calculation on zincporphyrin. We also performed TDDFT/TDA geometry optimizations for low-lying excited states of 20 small molecules, and compared adiabatic excitation energies and optimized geometry parameters to experimental values using the B3LYP and ωB97 functionals. There are only minor differences between TDDFT and TDA optimized excited state geometries and adiabatic excitation energies. Optimized bond lengths are in better agreement with experiment for both functionals than either CC2 or SOS-CIS(D0), while adiabatic excitation energies are in similar or slightly poorer agreement. Optimized bond angles with both functionals are more accurate than CIS values, but less accurate than either CC2 or SOS-CIS(D0) ones.

  1. Tamm-Horsfall Protein Regulates Circulating and Renal Cytokines by Affecting Glomerular Filtration Rate and Acting as a Urinary Cytokine Trap*

    PubMed Central

    Liu, Yan; El-Achkar, Tarek M.; Wu, Xue-Ru

    2012-01-01

    Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this “trapping” effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity. PMID:22451664

  2. Specificity, sensitivity, and operability of RSID™-urine for forensic identification of urine: comparison with ELISA for Tamm-Horsfall protein.

    PubMed

    Akutsu, Tomoko; Watanabe, Ken; Sakurada, Koichi

    2012-11-01

    In this study, the specificity, sensitivity, and operability of RSID™-Urine, a new immunochromatographic test for urine identification, was evaluated and compared with ELISA detection of Tamm-Horsfall protein (THP). Urine was successfully identified among other body fluids using RSID™-Urine and ELISA detection of THP. The detection limit of RSID™-Urine equated to 0.5 μL of urine; although the sensitivity of RSID™-Urine may be lower than that of ELISA detection of THP, it is thought to be sufficient for application to casework samples. However, results from RSID™-Urine must be interpreted with caution when the sample may have been contaminated with blood or vaginal fluid, because this might inhibit urine detection. The RSID™-Urine assay can be performed in just 15 min by dropping the extracted sample onto the test cassette. Therefore, RSID™-Urine should be an effective tool for the forensic identification of urine, in addition to ELISA detection of THP.

  3. Differential binding of human blood group Sd(a+) and Sd(a-) Tamm-Horsfall glycoproteins with Dolichos biflorus and Vicia villosa-B4 agglutinins.

    PubMed

    Wu, A M; Wu, J H; Watkins, W M; Chen, C P; Song, S C; Chen, Y Y

    1998-06-16

    The binding patterns of human blood group Sd(a+) and Sd(a-) Tamm-Horsfall glycoproteins (THGPs) with respect to four GalNAc specific agglutinins were studied by quantitative precipitin assay (QPA) and enzyme linked lectinosorbent assay (ELLSA). Of the native and asialo Sd(a+) and Sd(a-) THGP tested by QPA and ELLSA, only native and asialo Sd(a+) bound well with Dolichos biflorus (DBA) and Vicia villosa-B4 (VVA-B4), while Sd(a-) THGP reacted poorly with these two lectins. Neither Sd(a+) nor Sd(a-) THGPs reacted with two other GalNAc alpha-anomer specific lectins: Codium fragile subspecies tomentosoides and Artocarpus integrifolia. Furthermore, the binding of asialo Sd(a+)THGP-VVA-B4 and native Sd(a+)THGP-DBA through GalNAc beta--> was confirmed by inhibition assay. These results demonstrate that DBA and VVA-B4 are useful reagents to differentiate between Sd(a+) and Sd(a-) THGP.

  4. Studies to assess the biological relevance of anti-Tamm-Horsfall protein antibodies detected by direct-binding enzyme-linked immunosorbent assay.

    PubMed

    Hunt, J S; Groufsky, A; Lynn, K L

    1987-11-01

    1. A role has been suggested for anti-Tamm-Horsfall protein (THP) antibodies in renal disease based on the results of immunoassays of pathological sera. The putative autoantibodies have not been isolated from such sera nor have definitive inhibition studies of their binding been carried out. We have carried out such studies using rabbit anti-THP antibodies as control reagents. 2. Urinary THP prepared by salt precipitation was used to prepare four immunoabsorbent columns by covalent coupling to CNBr-activated Sepharose 4B. After washing with a variety of dissociating agents to remove any non-covalently bound subunit THP, each column was incubated with normal and immune rabbit serum. Fractions washed and eluted from columns were tested for anti-THP antibodies by enzyme-linked immunosorbent assay (ELISA) and THP antigen by radioimmunoassay, and showed NH4SCN (3 mol/l) and guanidine hydrochloride (GuHCl) (6 mol/l) equivalent and sodium dodecyl sulphate (20 g/l) to be inferior in their capacity to produce immunoabsorbent THP capable of isolating specific antibodies from immune rabbit serum. 3. The column treated with GuHCl (6 mol/l) was used further in attempts to isolate putative anti-THP antibodies from five patients, who had a history of urinary tract infections and whose sera showed strong binding by ELISA. 4. Results from direct and inhibition ELISA experiments on fractions collected after washing and elution with all sera suggested that the putative human anti-THP antibodies were of very low affinity and/or directed against non-subunit THP. 5. The pathological relevance of human anti-THP antibodies measured by ELISA remains to be established.

  5. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    PubMed

    Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment. PMID:26627950

  6. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    NASA Astrophysics Data System (ADS)

    Zuehlsdorff, T. J.; Hine, N. D. M.; Payne, M. C.; Haynes, P. D.

    2015-11-01

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  7. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    SciTech Connect

    Zuehlsdorff, T. J. Payne, M. C.; Hine, N. D. M.; Haynes, P. D.

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  8. Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function.

    PubMed

    Jaggi, Markus; Nakagawa, Yasushi; Zipperle, Ljerka; Hess, Bernhard

    2007-04-01

    Tamm-Horsfall protein (THP) powerfully inhibits calcium oxalate crystal aggregation, but structurally abnormal THPs from recurrent calcium stone formers may promote crystal aggregation. Therefore, increased urinary excretion of abnormal THP might be of relevance in nephrolithiasis. We studied 44 recurrent idiopathic calcium stone formers with a positive family history of stone disease (RCSF(fam)) and 34 age- and sex-matched healthy controls (C). Twenty-four-hour urinary THP excretion was measured by enzyme linked immunosorbent assay. Structural properties of individually purified THPs were obtained from analysis of elution patterns from a Sepharose 4B column. Sialic acid (SA) contents of native whole 24-h urines, crude salt precipitates of native urines and individually purified THPs were measured. THP function was studied by measuring inhibition of CaOx crystal aggregation in vitro (pH 5.7, 200 mM sodium chloride). Twenty-four-hour urine excretion of THP was higher in RCSF(fam) (44.0 +/- 4.0 mg/day) than in C (30.9 +/- 2.2 mg/day, P = 0.015). Upon salt precipitation and lyophilization, elution from a Sepharose 4B column revealed one major peak (peak A, cross-reacting with polyclonal anti-THP antibody) and a second minor peak (peak B, not cross-reacting). THPs from RCSF(fam) eluted later than those from C (P = 0.021), and maximum width of THP peaks was higher in RCSF(fam )than in C (P = 0.024). SA content was higher in specimens from RCSF(fam) than from C, in native 24-h urines (207.5 +/- 20.4 mg vs. 135.2 +/- 16.1 mg, P = 0.013) as well as in crude salt precipitates of 24-h urines (10.4 +/- 0.5 mg vs. 7.4 +/- 0.9 mg, P = 0.002) and in purified THPs (75.3 +/- 9.3 microg/mg vs. 48.8 +/- 9.8 microg/mg THP, P = 0.043). Finally, inhibition of calcium oxalate monohydrate crystal aggregation by 40 mg/L of THP was lower in RCSF(fam) (6.1 +/- 5.5%, range -62.0 to +84.2%) than in C (24.9 +/- 6.0%, range -39.8 to +82.7%), P = 0.022, and only 25 out of 44 (57%) THPs from RCSF

  9. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: Linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Isegawa, Miho; Truhlar, Donald G.

    2013-04-01

    Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel

  10. γ-decay of {}_{8}^{16}{{\\rm{O}}}_{8}\\,{and}\\,{}_{7}^{16}{{\\rm{N}}}_{9} in proton-neutron Tamm-Dancoff and random phase approximations with optimized surface δ interaction

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Firoozi, B.

    2016-09-01

    γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.

  11. The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes.

    PubMed

    Roper, Ian P E; Besley, Nicholas A

    2016-03-21

    The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.

  12. Work of the Tamm-Sakharov group on the first hydrogen bomb

    NASA Astrophysics Data System (ADS)

    Ritus, V. I.

    2014-09-01

    This review is an extended version of a report delivered at a session of the Department of Physical Sciences, the Department of Energetics, Mechanical Engineering, Mechanics, and Control Processes, and the Coordination Council on Technical Sciences of the RAS devoted to the 60th anniversary of the first hydrogen bomb test. The significant physical ideas suggested by A D Sakharov and V L Ginzburg underlying our first hydrogen bomb, RDS-6s, and numerous concrete problems and difficulties that had to be solved and overcome in designing thermonuclear weapons are presented. The understanding of the country's leaders and the Atomic Project managers of the exceptional role of fundamental science in the appearance and implementation of our scientists' concrete ideas and suggestions is emphasized.

  13. SO(4) group structure for a motivated QCD Hamiltonian: Analytic and Tamm-Dancoff solutions

    NASA Astrophysics Data System (ADS)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2016-08-01

    Starting from the QCD Hamiltonian written in the canonical Coulomb gauge formalism, we developed a mapping onto an SO(4) representation which is suitable for the description of the QCD spectra at low energies. The mapping does not break the flavor symmetry and it preserves the singlet-colorless structure of the states. We present and discuss the structure of integer and half-integer-spin states with masses below 2 GeV. Finally, we extend the formalism in order to include particle-hole-like correlations in building excitations.

  14. Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm-Dancoff approximation and beyond

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano; Curchod, Basile F. E.; Laktionov, Andrey; Rothlisberger, Ursula

    2010-11-01

    Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S1/S2 nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations.

  15. Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm-Dancoff approximation and beyond.

    PubMed

    Tavernelli, Ivano; Curchod, Basile F E; Laktionov, Andrey; Rothlisberger, Ursula

    2010-11-21

    Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S(1)/S(2) nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations. PMID:21090851

  16. 77 FR 74544 - Eagle Fund III, L.P., License No. 07/07-0116; Notice Seeking Exemption Under Section 312 of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ...., proposes to provide debt financing to JRI Holdings, Inc., 1339 N. Cedarbrook, Springfield, MO 65802. The... Investment Act of 1958, as amended (``the Act''), in connection with the financing of a small concern, has sought an exemption under Sec. 312 of the Act and Sec. 107.730, Financings which constitute conflicts...

  17. 77 FR 74545 - Eagle Fund III-A, L.P.; License No. 07/07-0117: Notice Seeking Exemption Under Section 312 of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ..., L.P., proposes to provide debt financing to JRI Holdings, Inc., 1339 N. Cedarbrook, Springfield, MO... Investment Act of 1958, as amended (``the Act''), in connection with the financing of a small concern, has sought an exemption under Sec. 312 of the Act and Sec. 107.730, Financings which constitute conflicts...

  18. High-resolution airborne gravity imaging over James Ross Island (West Antarctica)

    USGS Publications Warehouse

    Jordan, T.A.; Ferraccioli, F.; Jones, P.C.; Smellie, J.L.; Ghidella, M.; Corr, H. F. J.; Zakrajsek, A.F.

    2007-01-01

    James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled caldera, or a partially molten magma chamber.

  19. Early Complications Following Cemented Modular Hip Hemiarthroplasty

    PubMed Central

    Sullivan, Niall P.T; Hughes, Andrew W; Halliday, Ruth L; Ward, Abigail L; Chesser, Tim J.S

    2015-01-01

    Introduction : Hemiarthroplasty is the recommended treatment for displaced, intracapsular, femoral neck fractures. This study aimed to evaluate the early complications following insertion of the JRI Furlong cemented hemiarthroplasty, a contemporary, modular, double tapered, polished prosthesis. Method : A series of 459 consecutive patients (May 2006 - June 2009) treated with a JRI hemiarthroplasty with a minimum of one-year (1-4years) follow-up were evaluated. Data collected retrospectively from clinical records and hospital databases included patient demographics, mortality, deep infection, dislocation, periprosthetic fracture, and any requirement for revision or complications related to the prosthesis. Results : Full data were available for 429 of 459 (93%), partial data for 30 (7%). Average age was 83 years (52-100), 76% were female. One-year mortality was 24%. Intraoperative fractures occurred in 17 patients (3.7%). There were two intraoperative deaths. There were nine early deep wound infections (2%). There were two revisions to total hip replacement (THR), four patients required conversion to THR and one underwent an excision arthroplasty procedure. Discussion : Early surgical outcomes for the JRI hemiarthroplasty prosthesis are equivalent or superior to other major hemiarthroplasty prostheses previously reported however, there was a high intraoperative fracture rate of 3.7%. We recommend using a stem one size smaller than the final broach in fragile, osteoporotic bone. No patients re-presented with aseptic loosening or stem failure. PMID:25685248

  20. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings, such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  1. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  2. Intraseasonal and Interannual Variability of Mars Present Climate

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1996-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.

  3. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Harberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. ne primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-110 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase 1 aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars' middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  4. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-110 km) for seasonal dates and locations during Phase I aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars' middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  5. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-1 10 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  6. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  7. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  8. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  9. Engineering of a multi-station shoulder simulator.

    PubMed

    Smith, Simon L; Li, Lisa; Joyce, Thomas J

    2016-05-01

    This work aimed to engineer a multi-station shoulder simulator in order to wear test shoulder prostheses using recognized shoulder activities of daily living. A bespoke simulator was designed, built and subject to commissioning trials before a first wear test was conducted. Five JRI Orthopaedics Reverse Shoulder VAIOS 42 mm prostheses were tested for 2.0 million cycles and a mean wear rate and standard deviation of 14.2 ± 2.1 mm(3)/10(6) cycles measured for the polymeric glenoid components. This result when adjusted for prostheses diameters and test conditions showed excellent agreement with results from hip simulator studies of similar materials in a lubricant of bovine serum. The Newcastle Shoulder Simulator is the first multi-station shoulder simulator capable of applying physiological motion and loading for typical activities of daily living. PMID:27160564

  10. Nonperturbative renormalization of QED in light-cone quantization

    SciTech Connect

    Hiller, J.R.; Brodsky, S.J.

    1996-08-01

    As a precursor to work on QCD, we study the dressed electron in QED non-perturbatively. The calculational scheme uses an invariant mass cutoff, discretized light cone quantization, a Tamm-Dancoff truncation of the Fock space, and a small photon mass. Nonperturbative renormalization of the coupling and electron mass is developed.

  11. New Microscopic Approach to Multiphonon Nuclear Spectra

    NASA Astrophysics Data System (ADS)

    Andreozzi, F.; Knapp, F.; Lo Iudice, N.; Porrino, A.; Kvasil, J.

    2008-04-01

    The method outlined here consists in generating a multiphonon basis by constructing and solving iteratively a set of equations of motion within a subspace spanned by states which are tensor products of n Tamm Dancoff phonons. In such a basis, the Hamiltonian takes on a simple form and can be easily diagonalized. For illustrative purposes, the method is applied to 16O.

  12. Geometric-optical studies for metamaterial representations of curved spacetime

    NASA Astrophysics Data System (ADS)

    Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2011-10-01

    Metamaterials offer opportunities to explore curved-spacetime scenarios which would otherwise be impractical or impossible to study. These opportunities arise from the formal analogy that exists between light propagation in vacuous curved spacetime and in a certain nonhomogeneous bianisotropic medium, called a Tamm medium. As the science and technology of nanostructured metamaterials continues its rapid development, the practical realization of Tamm mediums is edging ever closer. We considered two particular curved spacetimes associated with: (a) spinning cosmic strings, and (b) the Alcubierre drive. For both examples, a Tamm medium formulation was developed which is asymptotically identical to vacuum and is therefore amenable to physical realization. A study of ray trajectories for both Tamm mediums was undertaken, within the geometric optics regime. For the spinning cosmic string, it was observed that: (i) rays do not cross the string's boundary; (ii) evanescent waves are supported in regions of phase space that correspond to those regions of the string's spacetime wherein closed timelike curves may arise; and (iii) a non-spinning string is nearly invisible whereas a spinning string may be rather more visible. For the Alcubierre drive, it was observed that: (i) ray trajectories are highly sensitive to the magnitude and direction of the warp bubble's velocity, but less sensitive to the thickness of the transition zone between the warp bubble and its background; and (ii) the warp bubble acts as a focusing lens for rays which travel in the same direction as the bubble, especially at high speeds.

  13. Multiphonon Approaches to Complex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Iudice N, Lo; D, Bianco; F, Knapp; F, Andreozzi; A, Porrino; Vesely, P.

    2012-05-01

    An equation of motion method for solving the nuclear eigenvalue problem in a basis of microscopic multiphonon states has been upgraded so as to generate states solely composed of quasiparticle Tamm-Dancoff phonons. The method is applied to the neutron rich 20O. A space covering up to three-phonon states is adopted to compute the electric dipole response.

  14. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-?15N measurements

    NASA Astrophysics Data System (ADS)

    Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J. A.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.

    2013-12-01

    Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air- δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model- δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.

  15. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    NASA Astrophysics Data System (ADS)

    Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.

    2013-05-01

    Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model-δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.

  16. Adaptations of a deep sea scavenger: high ammonia tolerance and active NH₄⁺ excretion by the Pacific hagfish (Eptatretus stoutii).

    PubMed

    Clifford, Alexander M; Goss, Greg G; Wilkie, Michael P

    2015-04-01

    The Pacific hagfish (Eptatretus stoutii) has an exceptional ability to both withstand and recover from exposure to high external ammonia (HEA). This tolerance is likely due to the feeding behavior of this scavenger, which feeds on intermittent food falls of carrion (e.g. fish, large marine mammals) during which time it may be exposed to high concentrations of total ammonia (T(Amm)=NH3+NH4(+)) while burrowed inside the decomposing carcass. Here we exposed hagfish to 20 mmol L(-1) T(Amm) for periods of up to 48 h and then let animals recover in ammonia-free seawater. During the 48 h HEA exposure period, plasma T(Amm) increased 100-fold to over 5000 μmol L(-1) while ammonia excretion (J(amm)) was transiently inhibited. This increase in plasma T(Amm) resulted from NH3 influx down massive inwardly directed ΔP(NH3) gradients, which also led to a short-lived metabolic alkalosis. Plasma [T(Amm)] stabilized after 24-48 h, possibly through a reduction in NH3 permeability across the body surface, which lowered NH3 influx. Ammonia balance was subsequently maintained through the re-establishment of J(amm) against an inwardly directed ΔP(NH3). Calculations of the Nernst potential for ammonia strongly indicated that J(amm) was also taking place against a large inwardly directed NH4(+) electrochemical gradient. Recovery from HEA in ammonia-free water was characterized by a large ammonia washout, and the restoration of plasma TAmm concentrations to near control concentrations. Ammonia clearance was also accompanied by a residual metabolic acidosis, which likely offset the ammonia-induced metabolic alkalosis seen in the early stages of HEA exposure. We conclude that restoration of J(amm) by the Pacific hagfish during ammonia exposure likely involves secondary active transport of NH4(+), possibly mediated by Na(+)/NH4(+) (H(+)) exchange.

  17. Direct Observation of Strain-Induced Change in Surface Electronic Structure

    NASA Astrophysics Data System (ADS)

    Sekiba, Daiichiro; Nakatsuji, Kan; Yoshimoto, Yoshihide; Komori, Fumio

    2005-01-01

    We have observed a novel modification of a surface state due to a local strain field induced by a nanopattern formation. N adsorption on the Cu(100) surface induces a nanoscale grid pattern, where the clean Cu regions remain periodically. The lattice is contracted on the clean region by adjacent c(2×2)N domains, which have a larger lattice constant. On this patterned surface, we have investigated the Tamm-type surface state at M¯ by means of angle-resolved ultraviolet photoelectron spectroscopy. The binding energy of the Tamm state shifts toward the Fermi level continuously with increasing N coverage, i.e., the intensity of the strain field. This behavior due to the strain field is completely different from that caused by electron confinement observed on vicinal surfaces. The Brillouin zone extension corresponding to the lattice contraction was also detected.

  18. Theory and operation of the Gould 32/27 programs ABLE-2A and EBLE for the tropospheric air motion measurement system

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    Software development for the Trospheric Air Motion Measurement Systems (TAMMS) is documented. In July/August the TAMMS was flown on the NASA/Goddard Flight Center Electra aircraft for 19 mission for the ABLE-2A (Amazon Boundary Layer Experiment) in Brazil. In December 1985, several flights were performed to assess the contamination and boundary layer of the Electra. Position data, flow angles, pressure transducer measurements were recorded. The programs written for the ABLE-2A were modified due to timing considerations for this particular program. The 3-step programs written for EBLE (Electra Boundary Layer Experiment) are described. Power up and log-on procedures are discussed. A few editing techniques are described for modification of the programs.

  19. Nuclear Response Within a New Microscopic Multiphonon Approach

    NASA Astrophysics Data System (ADS)

    Lo Iudice, N.; Bianco, D.; Knapp, F.; Andreozzi, F.; Porrino, A.; Vesely, P.

    2013-03-01

    We have revised an equation of motion method for generating a basis of microscopic multiphonon states built of Tamm-Dancoff phonons. This new version removes the inconsistencies of the previous formulation and yields eigenvalue equations of simple structure. To test the method we have computed the electric dipole response of the neutron rich 20O in a space extending up to the three-phonon subspace.

  20. E4 properties in deformed nuclei and the sdg interacting boson model

    SciTech Connect

    Wu, H.C.; Dieperink, A.E.L.; Scholten, O.; Harakeh, M.N.; De Leo, R.; Pignanelli, M.; Morrison, I.

    1988-10-01

    The hexadecapole transition strength distribution is measured for the deformed nucleus /sup 150/Nd using the (p,p') reaction at E/sub p/ = 30 MeV. The experimental information on B(E4) values in this nucleus and in /sup 156/Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main features of the experimental data are fairly well reproduced by a Hartree-Bose method plus Tamm-Dancoff approximation.

  1. Soil thermal properties at two different sites on James Ross Island in the period 2012/13

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Láska, Kamil

    2015-04-01

    James Ross Island (JRI) is the largest island in the eastern part of the Antarctic Peninsula. Ulu Peninsula in the northern part of JRI is considered the largest ice free area in the Maritime Antarctica region. However, information about permafrost on JRI, active layer and its soil properties in general are poorly known. In this study, results of soil thermal measurements at two different sites on Ulu Peninsula are presented between 1 April 2012 and 30 April 2013. The study sites are located (1) on an old Holocene marine terrace (10 m a. s. l.) in the closest vicinity of Johann Gregor Mendel (JGM) Station and (2) on top of a volcanic plateau named Johnson Mesa (340 m a. s. l.) about 4 km south of the JGM Station. The soil temperatures were measured at 30 min interval using platinum resistance thermometers Pt100/8 in two profiles up to 200 cm at JGM Station and 75 cm at Johnson Mesa respectively. Decagon 10HS volumetric water content sensors were installed up 30 cm at Johnson Mesa to 50 cm at JGM Station, while Hukseflux HFP01 soil heat flux sensors were used for direct monitoring of soil physical properties at 2.5 cm depth at both sites. The mean soil temperature varied between -5.7°C at 50 cm and -6.3°C at 5 cm at JGM Station, while that for Johnson Mesa varied between -6.9°C at 50 cm and -7.1°C at 10 cm. Maximum active layer thickness estimated from 0 °C isotherm reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively which corresponded with maximum observed annual temperature at 50 cm at both sites. The warmest part of both profiles detected at 50 cm depth corresponded with maximum thickness of active layer, estimated from 0°C isotherm, reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively. Volumetric water content at 5 cm varied around 0.25 m3m-3 at both sites. The slight increase to 0.32 m3m-3 was observed at JGM Station at 50 cm and at Johnson Mesa at 30 cm depth. Soil texture analysis showed distinctly higher share of coarser

  2. Effect of hydrochloric acid on sound absorption and relaxation frequency in magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Fisher, F. H.

    2002-05-01

    The epic work of Kurtze and Tamm on sound absorption spectroscopy in divalent sulfate electrolyte solutions (1953) from the low-kHz region up to over 200 MHz revealed astonishing variability at frequencies below 10 MHz and a common relaxation frequency at about 200 MHz. For magnesium sulfate [Epsom salts] solutions, the salt producing 30× the absorption of fresh water below the 100-kHz region in the oceans at low concentrations [~0.02 moles/liter], Kurtze and Tamm investigated the effects of adding HC1 or H2SO4. They found that as formal pH increased, the results were different for these acids in reducing the sound absorption. Fisher (1983) found that if the absorption was plotted against free hydrogen, ion concentration was the same. We used the 100-liter titanium sphere, a spare ballast tank from the WHOI submarine ALVIN. With precise temperature control, we found an increase in the relaxation frequency as HC1 was added in conjunction with the reduction in sound absorption. The results will be presented and an explanation will be proposed in the context of the Eigen and Tamm multistate dissociation model for MgSO4 (1962) which explains the effects of pressure on both absorption and conductance. [Work supported by ONR.] The author acknowledges C. C. Hsu for his work on this project.

  3. Devescovinid trichomonad with axostyle-based rotary motor ("Rubberneckia"): taxonomic assignment as Caduceia versatilis sp. nov

    NASA Technical Reports Server (NTRS)

    d'Ambrosio, U.; Dolan, M.; Wier, A. M.; Margulis, L.

    1999-01-01

    An amitochondriate trichomonad cell of the family Devescovinidae (Class Parabasalia), helped demonstrate the fluid model of lipoprotein cell membranes. This wood-ingesting symbiont in the hindgut of the dry wood-eating termite Cryptotermes cavifrons is informally known to cell biologists as "Rubberneckia". As the microtubular axo-style complex generates force causing clockwise movement of the entire anterior portion of the cell at the shear zone the protist displays "head" rotation. Studies by phase contrast and videomicroscopy of live cells, of whole mounts by scanning, and thin sections by transmission electron microscopy extend the observations of Tamm and Tamm [24-26] and Tamm [19-23]. Habitat, cell shape, size, nuclear features, parabasal apparatus and other morphological details permit the assignment of "Rubberneckia" to Kirby's cosmopolitan genus Caduceia. This large-sized devescovinid has distinctive parabasal gyres, an axostylar rotary, motor, and regularly-associated nonflagellated, fusiform and flagellated rod epibiotic surface bacteria. In addition to regularly aligned epibionts intranuclear and endocytoplasmic bacteria are abundant and hydrogenosomes are Present. "Rubberneckia" is compared here to the other seven species of Caduceia. Since it is clearly sufficiently distinctive to warrant new species status, we named it C. versatilis.

  4. Ca/Ba/Sr-induced conformational changes of ciliary axonemes.

    PubMed

    Tamm, S; Tamm, S

    1990-01-01

    Macrocilia of the ctenophore Beroë undergo Ca/Ba/Sr-dependent activation of ciliary beating and microtubule sliding disintegration [Tamm, J. Comp. Physiol. A163:23-31, 1988a; Tamm, Cell Motil. Cytoskeleton 11:126-138, 1988b; Tamm, Cell Motil. Cytoskeleton 12:104-112, 1989; Tamm and Tamm, Proc. Natl. Acad. Sci. U.S.A. 86:6987-6991, 1989]. Here we report that detergent-extracted macrocilia show an ATP-independent conformational change in response to high concentrations of Ca, Ba, or Sr ions. When applied locally by iontophoresis, these ions induce a rapid planar curvature of the distal end of the macrociliary shaft, followed by a slower relaxation to the rest position. Tip curling occurs in a direction opposite to the physiological Ca/Ba/Sr response. When applied uniformly in the bath, a threshold concentration of 10(-1) M Sr is required to induce curling of the tip, and the distal ends remain curved. Calmodulin antagonists do not inhibit the tip curling response. Previous workers found that Ca induces changes in the helical shape of isolated doublet microtubules [Miki-Noumura and Kamiya, Exp. Cell Res. 97:451-453, 1976; Miki-Noumura and Kamiya, J. Cell Biol. 81:355-360, 1979; Takasaki and Miki-Noumura, J. Mol. Biol. 158:317-324, 1982] and sperm axonemes [Okuno and Brokaw, Cell Motil. 1:349-362, 1981] and suggested that conformational changes in microtubules may play a role in Ca regulation of ciliary motility. We propose that the Ca/Ba/Sr-induced curling of the macrociliary tip is due to similar helical changes of doublet microtubules, some of which in macrocilia are prevented from sliding by permanent connections (compartmenting lamellae) between adjacent axonemes within the shaft. Although the tip curling response does not appear to be directly relevant to the physiological Ca response of macrocilia, it provides a novel system for investigating Ca-induced conformational changes of microtubules independent of dynein-powered active sliding.

  5. Think tank (2) Its development and the current situation of the key organizations in Japan

    NASA Astrophysics Data System (ADS)

    Obara, Michio

    There were some think tank businesses in Japan before the war. South Manchuria Railway Company established its Research Department for the purpose of getting power to control Manchuria as a colony, and got the good results. Think tank business was flourishing three times after the war. This business attracts much attention when the social and economic paradigm is going to change. Among the key large-scale think tanks in Japan, Nomura Research Institute, Ltd. (NRI) was the first to enhance the system functions by the merger, and posted think tank function up in the SI business. Mitsubishi Research Institute, Inc. (MRI) intends to be an orthodox think tank, and established an advanced research institute and the laboratory for R&D. Daiwa Institute of Research, Ltd. (DIR) focuses on economic forecast by using system. Fuji Research Institute. Corp. (FUJI RIC) focuses on survey and policy proposing in macro-economics, and analyzing technology. The Japan Research Institute, Ltd. (JRI) focuses on regional development, and R&D in advanced technology.

  6. Think tank (3) - Present activities of other representative organizations

    NASA Astrophysics Data System (ADS)

    Obara, Michio

    There were some think tank businesses in Japan before the war. South Manchuria Railway Company established its Research Department for the purpose of getting power to control Manchuria as a colony, and got the good results. Think tank business was flourishing three times after the war. This business attracts much attention when the social and economic paradigm is going to change. Among the key large-scale think tanks in Japan, Nomura Research Institute, Ltd. (NRI) was the first to enhance the system functions by the merger, and posted think tank function up in the SI business. Mitsubishi Research Institute, Inc. (MRI) intends to be an orthodox think tank, and established an advanced research institute and the laboratory for R&D. Daiwa Institute of Research, Ltd. (DIR) focuses on economic forecast by using system. Fuji Research Institute, Corp. (FUJI RIC) focuses on survey and policy proposing in macro-economics, and analyzing technology. The Japan Research Institute, Ltd. (JRI) focuses on regional development, and R&D in advanced technology.

  7. Micro-Pressure Sensors for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  8. The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish.

    PubMed

    Wilkie, Michael P; Pamenter, Matthew E; Duquette, Stephanie; Dhiyebi, Hadi; Sangha, Navjeet; Skelton, Geoffrey; Smith, Matthew D; Buck, Leslie T

    2011-12-15

    Acute ammonia toxicity in vertebrates is thought to be characterized by a cascade of deleterious events resembling those associated with anoxic/ischemic injury in the central nervous system. A key event is the over-stimulation of neuronal N-methyl-D-aspartate (NMDA) receptors, which leads to excitotoxic cell death. The similarity between the responses to acute ammonia toxicity and anoxia suggests that anoxia-tolerant animals such as the goldfish (Carassius auratus Linnaeus) may also be ammonia tolerant. To test this hypothesis, the responses of goldfish were compared with those of the anoxia-sensitive rainbow trout (Oncorhynchus mykiss Walbaum) during exposure to high external ammonia (HEA). Acute toxicity tests revealed that goldfish are ammonia tolerant, with 96 h median lethal concentration (LC(50)) values of 199 μmol l(-1) and 4132 μmol l(-1) for NH(3) and total ammonia ([T(Amm)]=[NH(3)]+[NH(4)(+)]), respectively. These values were ~5-6 times greater than corresponding NH(3) and T(Amm) LC(50) values measured in rainbow trout. Further, the goldfish readily coped with chronic exposure to NH(4)Cl (3-5 mmol l(-1)) for 5 days, despite 6-fold increases in plasma [T] to ~1300 μmol l(-1) and 3-fold increases in brain [T(Amm)] to 6700 μmol l(-1). Muscle [T(Amm)] increased by almost 8-fold from ~900 μmol kg(-1) wet mass (WM) to greater than 7000 μmol kg(-1) WM by 48 h, and stabilized. Although urea excretion rates (J(Urea)) increased by 2-3-fold during HEA, the increases were insufficient to offset the inhibition of ammonia excretion that occurred, and increases in urea were not observed in the brain or muscle. There was a marked increase in brain glutamine concentration at HEA, from ~3000 μmol kg(-1) WM to 15,000 μmol kg(-1) WM after 48 h, which is consistent with the hypothesis that glutamine production is associated with ammonia detoxification. Injection of the NMDA receptor antagonists MK801 (0.5-8 mg kg(-1)) or ethanol (1-8 mg kg(-1)) increased trout

  9. Effects of plasma total ammonia content and pH on urea excretion in Nile tilapia.

    PubMed

    McKenzie, D J; Piraccini, G; Felskie, A; Romano, P; Bronzi, P; Bolis, C L

    1999-01-01

    Nile tilapia (Oreochromis niloticus) were infused with ammonium salts, acid, and base to investigate the effects of changes in arterial plasma total ammonia content (Tamm) and pH (pHa) on plasma urea-nitrogen (urea-N) levels and urea-N excretory fluxes (Jurea-N). The tilapia did not possess a functional hepatic ornithine urea-cycle (no significant carbamyl phosphate synthetase III activity). Infused substances were dissolved in a saline vehicle and injected twice (5 mL kg-1), the first infusion to "prime" the animal and promote a more marked response to the second infusion, given 2.5 h later. The results reported are those of the second infusion. Infusion of 200 mM NH4Cl increased Tamm, reduced pHa, and increased plasma urea-N and Jurea-N. Two hundred mM NH4HCO3 increased Tamm and arterial plasma total CO2 content (TaCO2), reduced pHa, and increased Jurea-N. Fifty mM HCl reduced pHa but had no effects on urea dynamics. Fifty mM NaOH increased pHa, plasma urea-N levels, and Jurea-N. Two hundred mM NaHCO3 increased pHa, TaCO2, plasma urea-N levels, and Jurea-N. Infusion of the saline vehicle was without effect. The results indicate that ammonia loading and plasma alkalosis both stimulate urea excretion in uricolytic fish. The responses to hyperammonemia or alkalosis were not modified when combined with elevated plasma bicarbonate levels.

  10. Surface Glycosylation Profiles of Urine Extracellular Vesicles

    PubMed Central

    Gerlach, Jared Q.; Krüger, Anja; Gallogly, Susan; Hanley, Shirley A.; Hogan, Marie C.; Ward, Christopher J.

    2013-01-01

    Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. PMID:24069349

  11. Memories of David Kirzhnits

    NASA Astrophysics Data System (ADS)

    Bolotovsky, B. M.

    2013-06-01

    In the mid-1950s, a new staff member appeared at the Theory Division of the Physical Institute of the Academy of Sciences (FIAN): David Abramovich Kirzhnits. A Moscow State University alumnus, after graduation he had been assigned to a large defense plant in the city of Gorky, where he had worked for several years as an engineer. He was "liberated" from there by Igor Evgenyevich Tamm, our department head, who managed to transfer him to FIAN. Igor Evgenyevich knew D. A. Kirzhnits - they had met in Moscow before Kirzhnits finished university. At that time Kirzhnits was performing thesis work with professor A. S. Kompaneyets as academic adviser. At his adviser's suggestion, D. Kirzhnits consulted with I. E. Tamm on questions pertaining to the thesis topic. I. E. Tamm took a great liking for the diploma student, and he even wanted to recruit D. A. Kirzhnits for the Theory Division immediately after graduation. But at that time (1949) this proved impossible for several reasons. First, D. Kirzhnits was, as they say, an "invalid of the fifth group" - a Jew - which during those years of violent struggle against cosmopolitanismb often proved an obstacle in looking for work. Second, during the years of mass repressions D. Kirzhnits' father had been arrested on treason charges (according to the charges, he had wanted to sell the Far East to Japan). After intensive investigation his father was released, but he lived only a little longer. Reports of this also could have impeded his acceptance. Third, Igor Evgenyevich didn't have enough weight in officials' eyes at that time and so was unable to overcome "first" and "second."...

  12. Richardson-Gaudin description of pairing in atomic nuclei

    NASA Astrophysics Data System (ADS)

    De Baerdemacker, Stijn

    2012-05-01

    The present contribution discusses a connection between the exact Bethe Ansatz eigenstates of the reduced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian and the multi-phonon states of the Tamm-Dancoff Approximation (TDA). The connection is made on the algebraic level, by means of a deformed quasi-spin algebra with a bosonic Heisenberg-Weyl algebra in the contraction limit of the deformation parameter. Each exact Bethe Ansatz eigenstate is mapped on a unique TDA multi-phonon state, shedding light on the physics behind the Bethe Ansatz structure of the exact wave function. The procedure is illustrated with a model describing neutron pairing in 56Fe.

  13. A Local CC2 and TDA-DFT Double Hybrid Study on BODIPY/aza-BODIPY Dimers as Heavy Atom Free Triplet Photosensitizers for Photodynamic Therapy Applications.

    PubMed

    Momeni, Mohammad R; Brown, Alex

    2016-04-28

    A series of 11 different boron-dipyrromethene (BODIPY) dimers is carefully examined by means of ab initio and Tamm-Dancoff approximated density functional theory methods. Vertical and 0-0 excitation energies along with the tetraradical character of these dimers are determined. Possible application of a series of linked dimers for photodynamic therapy (PDT) was investigated through computing their excitation energies, spin-orbit coupling matrix elements, and singlet-triplet energy gaps. Finally through a systematic investigation of a series of 36 different BODIPY and aza-BODIPY dimers, a new class of near-IR heavy atom free photosensitizers for PDT action is introduced. PMID:27035753

  14. Quantum speed limits—primer, perspectives, and potential future directions

    NASA Astrophysics Data System (ADS)

    Frey, Michael R.

    2016-10-01

    Fundamental physical limits on the speed of state evolution in quantum systems exist in the form of the Mandelstam-Tamm and the Margolus-Levitin inequalities. We give an expository review of the development of these quantum speed limit (QSL) inequalities, including extensions to different energy statistics and generalizations to mixed system states and open and multipartite systems. The QSLs expressed by these various inequalities have implications for quantum computation, quantum metrology, and control of quantum systems. These connections are surveyed, and some important open questions are noted.

  15. Dynamics of Sulfur Dioxide in the Marine Boundary During Trace P

    NASA Astrophysics Data System (ADS)

    Thornton, D. C.; Tu, F.; Bandy, A. R.; Kim, M.; Thornhill, L.; Barrick, J. D.; Anderson, B.

    2002-12-01

    An atmospheric pressure ionization mass spectrometer (APIMS) was employed to obtain 25 Hz sulfur dioxide (SO2) meausrements during the NASA Trace P field experiment. The APIMS was deployed on the NASA Wallops P-3B, which was equiped with the total air motion measurement system (TAMMS). The APIMS SO2 signal was recorded on the TAMMS data system to insure that the data was recorded on the same time base to allow processing of the data for eddy correlation measurements of SO2 with the vertical wind velocity from TAMMS. A preliminary estimate of the SO2 deposition velocity will be presented. At the high data sampling rates the dynamics of boundary layer could be studied for the effects on the SO2 distribution in conjunction with high data rate water vapor and temperature data from TAMMS. The turbulence data showed that the well mixed layer (within the planetary boundary layer) often was approximately 500 m with an intermittently turbulent layer above. The vertical distribution of SO2 was often constrained by the dynamics of these layers. In some cases the highest SO2 concentrations were in the well mixed layer and at other times the highest SO2 concentrations were in the less well mixed layer above. This partitioning could also be seen for water vapor and sometimes for carbon monoxide. In some cases it appeared that the continental boundary layer air had overrun the marine mixed layer during frontal progress through the experiment area. This partitioning can greatly affect the loss rates and mechanisms of SO2 in the absence of convection. When SO2 is predominantly above the well mixed layer, SO2 loss to the sea surface is primarily controlled by entraiment into the well mixed layer, which is a relatively slow process. When the SO2 is primarily in the well mixed layer its lifetime during transport can be much shorter than during transport aloft unless convection through the boundary layer occurs. The transport of SO2 in and around clouds was also observed during Trace P

  16. Accidental degeneracies in nonlinear quantum deformed systems

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2011-09-01

    We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.

  17. Theoretical study on spin-forbidden transitions of osmium complexes by two-component relativistic time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Imamura, Yutaka; Kamiya, Muneaki; Nakajima, Takahito

    2016-03-01

    We study spin-forbidden transitions of Os polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The absorption spectra, including spin-forbidden-transition peaks, for the Os complexes are reasonably reproduced in comparison with the experimental ones. The extension of the conjugated lengths in the Os complexes is investigated and found to be effective to enhance photo absorption for spin-allowed transitions as well as spin-forbidden ones. This study provides fruitful information for a design of new dyes in terms of conjugation lengths.

  18. Theoretical investigation on dye sensitizer solar cell: Spin-forbidden transition

    SciTech Connect

    Imamura, Yutaka

    2015-12-31

    We studied spin-forbidden transitions of metal polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The singlet-to-triplet transition, which is assigned to a metal-to-ligand charge-transfer type excitation, appears for a phosphine-coordinated Ru(II), DX1. Absorption spectra of the modified DX1 molecules, whose Ru is replaced with Fe and Os, were also calculated for examining the effects of metals on the spin-orbit interaction.

  19. Investigations of the g{sub K}-factors in the {sup 175,177,179}Hf Isotopes

    SciTech Connect

    Yakut, Hakan; Kuliev, Ali; Guliyev, Ekber

    2008-11-11

    In this paper the intrinsic g{sub K} and effective spin g{sub s} factors of the odd-mass {sup 175-179}Hf isotopes have been investigated within the Tamm-Dancoff approximation by using the realistic Saxon-Woods potential. The theoretically calculated g{sub K} and g{sub s}{sup eff} values are compared with experimental data. The comparison of the measured and calculated values of the effective g{sub s} factor shows that the spin polarization explains quite well the observed reduction of g{sub s} from its free-nucleon value.

  20. Projected quasiparticle calculations for the N =82 odd-proton isotones

    SciTech Connect

    Losano, L. ); Dias, H. )

    1991-12-01

    The structure of low-lying states in odd-mass {ital N}=82 isotones (135{le}{ital A}{le}145) is investigated in terms of a number-projected one- and three-quasiparticles Tamm-Dancoff approximation. A surface-delta interaction is taken as the residual nucleon-nucleon interaction. Excitation energies, dipole and quadrupole moments, and {ital B}({ital M}1) and {ital B}({ital E}2) values are calculated and compared with the experimental data.

  1. Theoretical investigation on dye sensitizer solar cell: Spin-forbidden transition

    NASA Astrophysics Data System (ADS)

    Imamura, Yutaka

    2015-12-01

    We studied spin-forbidden transitions of metal polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The singlet-to-triplet transition, which is assigned to a metal-to-ligand charge-transfer type excitation, appears for a phosphine-coordinated Ru(II), DX1. Absorption spectra of the modified DX1 molecules, whose Ru is replaced with Fe and Os, were also calculated for examining the effects of metals on the spin-orbit interaction.

  2. Thermodynamic parameterization

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.

    1992-12-01

    A new method of succesive construction of a solution is developed for problems of strongly nonequilibrium Boltzmann kinetics beyond normal solutions. Firstly, the method provides dynamic equations for any manifold of distributions where one looks for an approximate solution. Secondly, it gives a successive procedure of obtaining corrections to these approximations. The method requires meither small parameters, nor strong restrictions upon the initial approximation; it involves solutions of linear problems. It is concordant with the H-theorem at every step. In particular, for the Tamm-Mott-Smith approximation, dynamic equations are obtained, an expansion for the strong shock is introduced, and a linear equation for the first correction is found.

  3. Nonequilibrium processes in a shock wave profile

    NASA Astrophysics Data System (ADS)

    Bashlykov, A. M.; Velikodnyi, V. Iu.

    1989-03-01

    A modified Tamm-Mott-Smith approach is used to study the distribution of heat fluxes in a shock wave profile and their relationship with the distribution of partial temperature in gas mixtures. Results are presented on changes of partial and mean temperature, and heat fluxes in an He-Xe mixture at a Mach number of 4.4 and in an He-Ar mixture at a Mach number of 1.58. Conditions are established under which the heat flux of the heavy component of the mixture has the same sign as the gradient of its partial temperature.

  4. Eigenmodal analysis of Anderson localization: Applications to photonic lattices and Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Ying, Guanwen; Kouzaev, Guennadi

    2016-10-01

    We present the eigenmodal analysis techniques enhanced towards calculations of optical and non-interacting Bose-Einstein condensate (BEC) modes formed by random potentials and localized by Anderson effect. The results are compared with the published measurements and verified additionally by the convergence criterion. In 2-D BECs captured in circular areas, the randomness shows edge localization of the high-order Tamm-modes. To avoid strong diffusive effect, which is typical for BECs trapped by speckle potentials, a 3-D-lattice potential with increased step magnitudes is proposed, and the BECs in these lattices are simulated and plotted.

  5. Quantum speed limits—primer, perspectives, and potential future directions

    NASA Astrophysics Data System (ADS)

    Frey, Michael R.

    2016-07-01

    Fundamental physical limits on the speed of state evolution in quantum systems exist in the form of the Mandelstam-Tamm and the Margolus-Levitin inequalities. We give an expository review of the development of these quantum speed limit (QSL) inequalities, including extensions to different energy statistics and generalizations to mixed system states and open and multipartite systems. The QSLs expressed by these various inequalities have implications for quantum computation, quantum metrology, and control of quantum systems. These connections are surveyed, and some important open questions are noted.

  6. Geometric derivation of the quantum speed limit

    SciTech Connect

    Jones, Philip J.; Kok, Pieter

    2010-08-15

    The Mandelstam-Tamm and Margolus-Levitin inequalities play an important role in the study of quantum-mechanical processes in nature since they provide general limits on the speed of dynamical evolution. However, to date there has been only one derivation of the Margolus-Levitin inequality. In this paper, alternative geometric derivations for both inequalities are obtained from the statistical distance between quantum states. The inequalities are shown to hold for unitary evolution of pure and mixed states, and a counterexample to the inequalities is given for evolution described by completely positive trace-preserving maps. The counterexample shows that there is no quantum speed limit for nonunitary evolution.

  7. Meson Structure in a Relativistic Many-Body Approach

    SciTech Connect

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-02-07

    Results from an extensive relativistic many-body analysis utilizing a realistic effective QCD Hamiltonian are presented for the meson spectrum. A comparative numerical study of the BCS, Tamm-Dancoff (TDA), and RPA treatments provides new, significant insight into the condensate structure of the vacuum, the chiral symmetry governance of the pion, and the meson spin, orbital, and flavor mass splitting contributions. In contrast to a previous glueball application, substantial quantitative differences are computed between TDA and RPA for the light quark sector with the pion emerging as a Goldstone boson only in the RPA. (c) 2000 The American Physical Society.

  8. Quantum speed limits, coherence, and asymmetry

    NASA Astrophysics Data System (ADS)

    Marvian, Iman; Spekkens, Robert W.; Zanardi, Paolo

    2016-05-01

    The resource theory of asymmetry is a framework for classifying and quantifying the symmetry-breaking properties of both states and operations relative to a given symmetry. In the special case where the symmetry is the set of translations generated by a fixed observable, asymmetry can be interpreted as coherence relative to the observable eigenbasis, and the resource theory of asymmetry provides a framework to study this notion of coherence. We here show that this notion of coherence naturally arises in the context of quantum speed limits. Indeed, the very concept of speed of evolution, i.e., the inverse of the minimum time it takes the system to evolve to another (partially) distinguishable state, is a measure of asymmetry relative to the time translations generated by the system Hamiltonian. Furthermore, the celebrated Mandelstam-Tamm and Margolus-Levitin speed limits can be interpreted as upper bounds on this measure of asymmetry by functions which are themselves measures of asymmetry in the special case of pure states. Using measures of asymmetry that are not restricted to pure states, such as the Wigner-Yanase skew information, we obtain extensions of the Mandelstam-Tamm bound which are significantly tighter in the case of mixed states. We also clarify some confusions in the literature about coherence and asymmetry, and show that measures of coherence are a proper subset of measures of asymmetry.

  9. Recent progress in density functional theory

    NASA Astrophysics Data System (ADS)

    Truhlar, Donald

    2014-03-01

    Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.

  10. Ammonia first? The transition from cutaneous to branchial ammonia excretion in developing rainbow trout is not altered by exposure to chronically high NaCl.

    PubMed

    Zimmer, Alex M; Wood, Chris M

    2015-05-15

    Larval rainbow trout (Oncorhynchus mykiss) were reared from hatch under control ([Na(+)]=0.60 mmol l(-1)) or high NaCl ([Na(+)]=60 mmol l(-1)) conditions to elucidate the driving force for the ontogeny of branchial Na(+)/NH4 (+) exchange, one of the earliest gill functions. We hypothesized that if Na(+) uptake is the driving force, then in high NaCl there would be a delay in the skin-to-gill shift in ammonia excretion (Jamm) and/or an elevation in whole-body total ammonia (Tamm). In both groups, however, the skin-to-gill shift for Jamm, determined using divided chambers, occurred at the same time (13 days post-hatch; dph) and whole-body Tamm was unchanged. Moreover, high NaCl larvae displayed elevated whole-body [Na(+)] relative to controls by 18 dph, suggesting that maintaining branchial Jamm occurs at the expense of Na(+) balance. Overall, these results support the 'ammonia hypothesis', which posits that ammonia excretion, probably as Na(+)/NH4 (+) exchange, is the primary function of the early fish gill.

  11. Quantum Localization in Laser-Driven Molecular Rotation

    NASA Astrophysics Data System (ADS)

    Averbukh, Ilya

    2016-05-01

    Recently we predicted that several celebrated solid state quantum localization phenomena - Anderson localization, Bloch oscillations, and Tamm-Shockley surface states - may manifest themselves in the rotational dynamics of laser-kicked molecules. In this talk, I will present these new rotational effects in a gas of linear molecules subject to a moderately long periodic train of femtosecond laser pulses. A small detuning of the train period from the rotational revival time causes Anderson localization in the angular momentum space above some critical value of J - the Anderson wall. This wall marks an impenetrable border stopping any further rotational excitation. Below the Anderson wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. I will present the results of the first experimental observation of the laser-induced rotational Bloch oscillations in molecular nitrogen at ambient conditions (Stanford & Weizmann, 2015). We will also discuss the prospects of observing the rotational analogues of the Tamm surface states in a similar experimental setup. Our results offer laser-driven molecular rotation as a new platform for studies on the localization phenomena in quantum transport. These effects are important for many processes involving highly excited rotational states, including coherent optical manipulations in molecular mixtures, and propagation of powerful laser pulses in atmosphere.

  12. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  13. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  14. Contact conductance of a graphene nanoribbon with its graphene nano-electrodes

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Kino, Hiori; Joachim, Christian

    2016-04-01

    Electronically contacted between two graphene nano-electrodes, the contact conductance (G0) of a graphene nanoribbon (GNR) molecular wire is calculated using mono-electronic Elastic Scattering Quantum Chemistry (ESQC) theory. Different nano-electrode contact geometries are considered ranging from a top face to face van der Waals contact to an adiabatic funnel like planar chemical bonding. The Tamm state contributions to the GNR-graphene nano-electrode electronic interactions are discussed as a function of the molecular orbital hybridization. Contrary to the common belief, the adiabatic-like triangle shaped contact nano-graphene electrode does not provide a large G0 as compared to the abrupt contact geometry. The abrupt contact geometry is even worth than a top face to face van der Waals electronic contact with a metal.

  15. Accuracy of different DFT formalisms for prediction of two-photon absorption properties of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Nayyar, Iffat; Mikhailov, Ivan; Masunov, Artem

    2010-03-01

    The importance of organic molecules with large two-photon absorption (2PA) is realized for deep-tissue fluorescence microscopy, photodynamic therapy, three-dimensional microfabrication and optical data storage. Computer predictions provide understanding of structure/activity relationships and assist in the rational design of polymer materials as an alternative to trial and error methods. In this contribution, we compare various density functional theory (DFT) formalisms to predict two-photon absorption spectra in a series of large donor-acceptor substituted conjugated molecules. We conclude that the accuracy of a posteriori Tamm-Dancoff approximation [1] is close to the exact results obtained in Coupled Electronic Oscillators formalism [2]. Adjusting fraction of exact exchange in XC functionals allow for improved agreement with experiment. [1] Mikhailov, I.A.; Tafur, S.; Masunov, A.E., Phys. Rev. A 77, 01250 (2008) [2] Masunov, A.M.; Tretiak, S., J. Phys. Chem. B 108, 899 (2004)

  16. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories.

    PubMed

    Tretiak, Sergei; Isborn, Christine M; Niklasson, Anders M N; Challacombe, Matt

    2009-02-01

    Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations. PMID:19206962

  17. Pseudospectral time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Ko, Chaehyuk; Malick, David K.; Braden, Dale A.; Friesner, Richard A.; Martínez, Todd J.

    2008-03-01

    Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.

  18. Charge-changing particle-hole excitation of 16N and 16F nuclei

    NASA Astrophysics Data System (ADS)

    Taqi Al-Bayati, Ali H.; Darwesh, Sarah S.

    2013-12-01

    The nuclear structure of 16N (closed shell + ν - π) and 16F (closed shell + π - ν) nuclei is studied using particle-hole proton-neutron Tamm-Dancoff Approximation pn TDA and particle-hole proton-neutron Random Phase Approximation pn RPA. The particle-hole Hamiltonian of PSD model space is to be diagonalized in the presence of the PSDMWKPN interaction: for P-space the Cohen-Kurath interaction, for SD-space the Wildenthal Interaction, for the coupling matrix elements between P- and SD-spaces the Millener-Kurath interaction is used, spurious components were eliminated with CM contribution. The results containing energy level schemes and electromagnetic transition strength are compared with the available experimental data.

  19. Gamow-Teller {beta}{sup +} decay of deformed nuclei near the proton drip line

    SciTech Connect

    Frisk, F.; Hamamoto, I.; Zhang, X.Z. |

    1995-11-01

    Using a quasiparticle Tamm-Dancoff approximation (TDA) based on deformed Hartree-Fock (HF) calculations with Skyrme interactions, the distribution of the Gamow-Teller (GT) {beta}{sup +} decay strength is estimated for the HF local minima of even-even deformed nuclei near the proton drip line in the region of 28{lt}{ital Z}{lt}66. The distribution often depends sensitively on the nuclear shape (namely, oblate or prolate). In the region of {ital Z}{lt}50 the possibility of observing {beta}-delayed proton emission depends sensitively on the excess of {ital Z} over {ital Z}={ital N}. In the region of {ital Z}{gt}50 almost the entire estimated GT strength is found to lie below the ground states of the even-even mother nuclei, and the observation of the total GT strength by {beta}-delayed charged-particle(s) emission will be of essential importance.

  20. Double, Rydberg and Charge Transfer Excitations from Pairing Matrix Fluctuation and Particle-Particle Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2014-03-01

    Double, Rydberg and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N +/- 2) -electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  1. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels

    NASA Astrophysics Data System (ADS)

    Li, Zhendong; Suo, Bingbing; Liu, Wenjian

    2014-12-01

    The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.

  2. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    SciTech Connect

    Yang, Yang; Aggelen, Helen van; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  3. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-01

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  4. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei; Isborn, Christine M.; Niklasson, Anders M. N.; Challacombe, Matt

    2009-02-01

    Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.

  5. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.

  6. All-electron first-principles GW+Bethe-Salpeter calculation for optical absorption spectra of sodium clusters

    SciTech Connect

    Noguchi, Yoshifumi; Ohno, Kaoru

    2010-04-15

    The optical absorption spectra of sodium clusters (Na{sub 2n}, n{<=} 4) are calculated by using an all-electron first-principles GW+Bethe-Salpeter method with the mixed-basis approach within the Tamm-Dancoff approximation. In these small systems, the excitonic effect strongly affects the optical properties due to the confinement of exciton in the small system size. The present state-of-the-art method treats the electron-hole two-particle Green's function by incorporating the ladder diagrams up to the infinite order and therefore takes into account the excitonic effect in a good approximation. We check the accuracy of the present method by comparing the resulting spectra with experiments. In addition, the effect of delocalization in particular in the lowest unoccupied molecular orbital in the GW quasiparticle wave function is also discussed by rediagonalizing the Dyson equation.

  7. First-Principles Studies of the Excited States of Chromophore Monomers and Dimers

    NASA Astrophysics Data System (ADS)

    Hamed, Samia; Sharifzadeh, Sahar; Neaton, Jeffrey

    2015-03-01

    Elucidation of the energy transfer mechanism in natural photosynthetic systems remains an exciting challenge. Through the careful analysis of excited states on individual chromophores and dimers - and the predictive first-principles methods used to compute them - we are building towards an understanding of the nature of excitation transfer among arrays of chromophores embedded in protein environments. Excitation energies, transition dipoles, and natural transition orbitals for the important low-lying singlet and triplet states of experimentally-relevant chromophores are obtained from first-principles time-dependent density functional theory (TDDFT) and many body perturbation theory. The effect of the Tamm-Dancoff approximation and the performance of several exchange-correlation functionals, including an optimally-tuned range-separated hybrid, are evaluated with TDDFT, and compared to MBPT calculations and experiments. This work has been supported by the DOE; computational resources have been provided by NERSC.

  8. Analysis of a QCD Hamiltonian in the low energy regime.

    NASA Astrophysics Data System (ADS)

    Yépez-Martínez, T.; Amor Quiroz, D. A.; Hess, P. O.; Civitarese, O.

    2016-07-01

    We present a QCD motivated Hamiltonian for the light quark sector. Inspired from self-consistent analysis of the Coulomb interaction, we implement an interaction of the form (-a/r + br) between color sources, which already consider gluonic dynamics by the linear potential contribution. A prediagonalization of the kinetic energy term followed by the implementation of the Tamm-Dancoff method are used to obtain the eigenvalues of the Hamiltonian. A variational analysis is implemented to obtain the optimized basis for the low energy meson spectrum. The potential parameter is compared to the reported lattice string tension with relatively good agreement. The obtained energies are located close to the experimental values and further improvements are discussed.

  9. Introduction of a valence space in quasiparticle random-phase approximation: Impact on vibrational mass parameters and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Lechaftois, F.; Deloncle, I.; Péru, S.

    2015-09-01

    For the first time, using a unique finite-range interaction (D1M Gogny force), a fully coherent and time-feasible calculation of the Bohr Hamiltonian vibrational mass is envisioned in a Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation (QRPA) framework. In order to reach a reasonable computation time, we evaluate the feasibility of this method by considering two restrictions for the QRPA: the Tamm-Dancoff approximation and the insertion of a valence space. We validate our approach in the even-even tin isotopes by comparing the convergence scheme of the mass parameter with those of built-in QRPA outputs: excited-state energy and reduced transition probability. The seeming convergence of these intrinsic quantities is shown to be misleading and the difference with the theoretical expected value is quantified. This work is a primary step towards the systematic calculation of mass parameters.

  10. Linear scaling solution of the time-dependent self-consistent-field equations with quasi-independent Rayleigh quotient iteration

    SciTech Connect

    Challacombe, Matt

    2009-01-01

    An algorithm for solution of the Time-Dependent Self-Consistent-Field (TD-SCF) equations is developed, based on dual solution channels for non-linear optimization of the Tsiper functional [J.Phys.B, 34 L401 (2001)]. This formulation poses the TD-SCF problem as two Rayleigh quotients, coupled weakly through biorthogonality. Convergence rates for the Random Phase Approximation (RPA) are found to be equivalent to the Tamm-Dancoff approximation (TDA). Moreover, the variational nature of the quotient is robust to approximation errors, allowing linear scaling solution to the bulk limit of the RPA matrix-eigenvalue and exchange operator problem for molecular wires with extended conjugation, including polyphenylene vinylene and the (4,3) nanotube.

  11. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides.

    PubMed

    Beattie, Bradley J; Thorek, Daniel L J; Schmidtlein, Charles R; Pentlow, Keith S; Humm, John L; Hielscher, Andreas H

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use.

  12. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels

    SciTech Connect

    Li, Zhendong; Suo, Bingbing; Liu, Wenjian

    2014-12-28

    The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.

  13. Mixed optical Cherenkov-Bremsstrahlung radiation in vicinity of the Cherenkov cone from relativistic heavy ions: Unusual dependence of the angular distribution width on the radiator thickness

    NASA Astrophysics Data System (ADS)

    Rozhkova, E. I.; Pivovarov, Yu. L.

    2016-07-01

    The Cherenkov radiation (ChR) angular distribution is usually described by the Tamm-Frank (TF) theory, which assumes that relativistic charged particle moves uniformly and rectilinearly in the optically transparent radiator. According to the TF theory, the full width at half maximum (FWHM) of the ChR angular distribution inversely depends on the radiator thickness. In the case of relativistic heavy ions (RHI) a slowing-down in the radiator may sufficiently change the angular distribution of optical radiation in vicinity of the Cherenkov cone, since there appears a mixed ChR-Bremsstrahlung radiation. As a result, there occurs a drastic transformation of the FWHM of optical radiation angular distribution in dependence on the radiator thickness: from inversely proportional (TF theory) to the linearly proportional one. In our paper we present the first analysis of this transformation taking account of the gradual velocity decrease of RHI penetrating through a radiator.

  14. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. V.; Berzhansky, V. N.; Karavainikov, A. V.; Shaposhnikov, A. N.; Prokopov, A. R.; Lyashko, S. D.

    2016-08-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi1.0Y0.5Gd1.5Fe4.2Al0.8O12 / Bi2.8Y0.2Fe5Oi2 is located between the dielectric Bragg mirrors (SiO2 / TiO2)m (were m is number of layer pairs) and buffer SiO2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found.

  15. Contact conductance of a graphene nanoribbon with its graphene nano-electrodes.

    PubMed

    Srivastava, Saurabh; Kino, Hiori; Joachim, Christian

    2016-04-28

    Electronically contacted between two graphene nano-electrodes, the contact conductance (G0) of a graphene nanoribbon (GNR) molecular wire is calculated using mono-electronic Elastic Scattering Quantum Chemistry (ESQC) theory. Different nano-electrode contact geometries are considered ranging from a top face to face van der Waals contact to an adiabatic funnel like planar chemical bonding. The Tamm state contributions to the GNR-graphene nano-electrode electronic interactions are discussed as a function of the molecular orbital hybridization. Contrary to the common belief, the adiabatic-like triangle shaped contact nano-graphene electrode does not provide a large G0 as compared to the abrupt contact geometry. The abrupt contact geometry is even worth than a top face to face van der Waals electronic contact with a metal. PMID:27089225

  16. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  17. Particle-Particle Hole-Hole Tda - and Beyond - for the Nuclear Pairing Hamiltonian

    NASA Astrophysics Data System (ADS)

    Molique, Hervé; Dudek, Jerzy

    A comparison of different seniority zero solutions to the picket-fence model for the nuclear pairing hamiltonian problem is performed. These solutions are calculated, in the normal regime, within the self-consistent Random Phase Approximation (SCRPA) and various simplifications of this formalism, and also with the Tamm-Dancoff approach in the particle-particle-hole-hole channel (pphh-TDA). The latter formalism represents a first approximation to the earlier developped so-called P-Symmetric Many-Body method (PSY-MB). In the superfluid regime, the solutions are compared with the BCS results. By comparing the results with the exact ones, obtained by the Richardson method, it is shown that the PSY-MB method provides a powerful tool in solving the problem with good accuracy both in the normal and the superfluid regime, for single-particle space sizes adapted to typical nuclear structure calculations.

  18. General approach to constructing models of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.

    1994-05-01

    The problem of thermodynamic parameterization of an arbitrary approximation of reduced description is solved. On the base of this solution a new class of model kinetic equations is constructed that gives a model extension of the chosen approximation to a kinetic model. Model equations describe two processes: rapid relaxation to the chosen approximation along the planes of rapid motions, and the slow motion caused by the chosen approximation. The H-theorem is proved for these models. It is shown, that the rapid process always leads to entropy growth, and also a neighborhood of the approximation is determined inside which the slow process satisfies the H-theorem. Kinetic models for Grad moment approximations and for the Tamm-Mott-Smith approximation are constructed explicitly. In particular, the problem of concordance of the ES-model with the H-theorem is solved.

  19. Second-order variational coupled-cluster linear-response method: A Hermitian time-dependent theory

    SciTech Connect

    Kats, Daniel; Usvyat, Denis; Schuetz, Martin

    2011-06-15

    The formalism is presented for the linear response of a time-dependent (TD) variational coupled cluster (VCC), truncated according to Moeller-Plesset perturbation theory, i.e., a TD-VCC[n] linear response, where n denotes the order of the corresponding quasienergy with respect to the fluctuation potential. The resulting eigenvalue problem determining the excitation energies is Hermitian and of the simple Tamm-Dancoff form. The VCC excitation energies are equivalent to those of the configuration-interaction singles (CIS) model, while the Casida equation for the TD-Hartree-Fock approach is an approximation to it. The TD-VCC response, the lowest-order method including electron correlation, is discussed in detail and the relations to other second-order methods, such as the CC2 linear response and the algebraic diagrammatic construction at second order [ADC(2)] are explored.

  20. Charge-changing particle-hole excitation of {sup 16}N and {sup 16}F nuclei

    SciTech Connect

    Taqi Al-Bayati, Ali H.; Darwesh, Sarah S.

    2013-12-16

    The nuclear structure of {sup 16}N (closed shell + ν − π) and {sup 16}F (closed shell + π − ν) nuclei is studied using particle-hole proton-neutron Tamm-Dancoff Approximation pn TDA and particle-hole proton-neutron Random Phase Approximation pn RPA. The particle-hole Hamiltonian of PSD model space is to be diagonalized in the presence of the PSDMWKPN interaction: for P-space the Cohen-Kurath interaction, for SD-space the Wildenthal Interaction, for the coupling matrix elements between P- and SD-spaces the Millener-Kurath interaction is used, spurious components were eliminated with CM contribution. The results containing energy level schemes and electromagnetic transition strength are compared with the available experimental data.

  1. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  2. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.

    PubMed

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  3. A D Sakharov: personality and fate

    NASA Astrophysics Data System (ADS)

    Ritus, Vladimir I.

    2012-02-01

    A D Sakharov was an amazingly gifted person for whom, with his combined talents as a physicist and inventor, "physical laws and the relation among phenomena were directly visualized and tangible in all their inherent simplicity" (I E Tamm). The author of the key ideas involved in the hydrogen weapons and fusion reactor programs, and well aware of his scientific and public status, Sakharov was, nevertheless, a modest and highly decent man, always trustful of people in discussing their or his problems. Although his greatest satisfaction lay in successfully solving fundamental problems in physics and cosmology, fate and duty made him turn to matters of universal human significance, particularly human rights, to the gruelling struggle to which he devoted many years of his life.

  4. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias).

    PubMed

    Nawata, C Michele; Walsh, Patrick J; Wood, Chris M

    2015-07-01

    Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator. PMID:25794843

  5. Calcium control of ciliary reversal in ionophore-treated and ATP- reactivated comb plates of ctenophores

    PubMed Central

    1985-01-01

    Previous work showed that ctenophore larvae swim backwards in high-KCl seawater, due to a 180 degrees reversal in the direction of effective stroke of their ciliary comb plates (Tamm, S. L., and S. Tamm, 1981, J. Cell Biol., 89: 495-509). Ion substitution and blocking experiments indicated that this response is Ca2+ dependent, but comb plate cells are innervated and presumably under nervous control. To determine whether Ca2+ is directly involved in activating the ciliary reversal mechanism and/or is required for synaptic triggering of the response, we (a) determined the effects of ionophore A23187 and Ca2+ on the beat direction of isolated nerve-free comb plates dissociated from larvae by hypotonic, divalent cation-free medium, and (b) used permeabilized ATP- reactivated models of comb plates to test motile responses to known concentrations of free Ca2+. We found that 5 microM A23187 and 10 mM Ca2+ induced dissociated comb plate cells to beat in the reverse direction and to swim counterclockwise in circular paths instead of in the normal clockwise direction. Detergent/glycerol-extracted comb plates beat actively in the presence of ATP, and reactivation was reversibly inhibited by micromolar concentrations of vanadate. Free Ca2+ concentrations greater than 10(-6)M caused reversal in direction of the effective stroke but no significant increase in beat frequency. These results show that ciliary reversal in ctenophores, like that in protozoa, is activated by an increase in intracellular free Ca2+ ions. This allows the unique experimental advantages of ctenophore comb plate cilia to be used for future studies on the site and mechanism of action of Ca2+ in the regulation of ciliary motion. PMID:3921553

  6. Novel Urinary Protein Biomarkers Predicting the Development of Microalbuminuria and Renal Function Decline in Type 1 Diabetes

    PubMed Central

    Schlatzer, Daniela; Maahs, David M.; Chance, Mark R.; Dazard, Jean-Eudes; Li, Xiaolin; Hazlett, Fred; Rewers, Marian; Snell-Bergeon, Janet K.

    2012-01-01

    OBJECTIVE To define a panel of novel protein biomarkers of renal disease. RESEARCH DESIGN AND METHODS Adults with type 1 diabetes in the Coronary Artery Calcification in Type 1 Diabetes study who were initially free of renal complications (n = 465) were followed for development of micro- or macroalbuminuria (MA) and early renal function decline (ERFD, annual decline in estimated glomerular filtration rate of ≥3.3%). The label-free proteomic discovery phase was conducted in 13 patients who progressed to MA by the 6-year visit and 11 control subjects, and four proteins (Tamm-Horsfall glycoprotein, α-1 acid glycoprotein, clusterin, and progranulin) identified in the discovery phase were measured by enzyme-linked immunosorbent assay in 74 subjects: group A, normal renal function (n = 35); group B, ERFD without MA (n = 15); group C, MA without ERFD (n = 16); and group D, both ERFD and MA (n = 8). RESULTS In the label-free analysis, a model of progression to MA was built using 252 peptides, yielding an area under the curve (AUC) of 84.7 ± 5.3%. In the validation study, ordinal logistic regression was used to predict development of ERFD, MA, or both. A panel including Tamm-Horsfall glycoprotein (odds ratio 2.9, 95% CI 1.3–6.2, P = 0.008), progranulin (1.9, 0.8–4.5, P = 0.16), clusterin (0.6, 0.3–1.1, P = 0.09), and α-1 acid glycoprotein (1.6, 0.7–3.7, P = 0.27) improved the AUC from 0.841 to 0.889. CONCLUSIONS A panel of four novel protein biomarkers predicted early renal damage in type 1 diabetes. These findings require further validation in other populations for prediction of renal complications and treatment monitoring. PMID:22238279

  7. Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?

    PubMed

    De Boeck, Gudrun; Wood, Chris M

    2015-01-15

    We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3(-)]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3(-)]a. Injection with NaHCO3 which increased pHa and [HCO3(-)]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream.

  8. Reversible brain swelling in crucian carp (Carassius carassius) and goldfish (Carassius auratus) in response to high external ammonia and anoxia.

    PubMed

    Wilkie, Michael P; Stecyk, Jonathan A W; Couturier, Christine S; Sidhu, Sanya; Sandvik, Guro K; Nilsson, Göran E

    2015-06-01

    Increased internal ammonia (hyperammonemia) and ischemic/anoxic insults are known to result in a cascade of deleterious events that can culminate in potentially fatal brain swelling in mammals. It is less clear, however, if the brains of fishes respond to ammonia in a similar manner. The present study demonstrated that the crucian carp (Carassius carassius) was not only able to endure high environmental ammonia exposure (HEA; 2 to 22 mmol L(-1)) but that they experienced 30% increases in brain water content at the highest ammonia concentrations. This swelling was accompanied by 4-fold increases in plasma total ammonia (TAmm) concentration, but both plasma TAmm and brain water content were restored to pre-exposure levels following depuration in ammonia-free water. The closely related, ammonia-tolerant goldfish (Carassius auratus) responded similarly to HEA (up to 3.6 mmol L(-1)), which was accompanied by 4-fold increases in brain glutamine. Subsequent administration of the glutamine synthetase inhibitor, methionine sulfoximine (MSO), reduced brain glutamine accumulation by 80% during HEA. However, MSO failed to prevent ammonia-induced increases in brain water content suggesting that glutamine may not be directly involved in initiating ammonia-induced brain swelling in fishes. Although the mechanisms of brain swelling are likely different, exposure to anoxia for 96 h caused similar, but lesser (10%) increases in brain water content in crucian carp. We conclude that brain swelling in some fishes may be a common response to increased internal ammonia or lower oxygen but further research is needed to deduce the underlying mechanisms behind such responses.

  9. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias).

    PubMed

    Nawata, C Michele; Walsh, Patrick J; Wood, Chris M

    2015-07-01

    Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator.

  10. Exposures to 1,6-hexamethylene diisocyanate during polyurethane spray painting in the U.S. Air Force.

    PubMed

    Carlton, G N; England, E C

    2000-09-01

    1,6-Hexamethylene diisocyanate (HDI) exposures were measured during polyurethane enamel spray painting at four Air Force bases. Breathing zone samples were collected for HDI monomer and polyisocyanates (oligomers) using three sampling methods: NIOSH Method 5521, the Iso-Chek sampler, and the total aerosol mass method (TAMM). Exposures to HDI monomer are low when compared to current occupational exposure limits; the highest 8-hr time-weighted average (TWA) exposure found was 3.5 micrograms/m3, below the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 34 micrograms/m3. HDI oligomer levels were higher; mean task exposures indicated by either the Iso-Chek sampler or TAMM are above the Oregon ceiling limit of 1 mg/m3. Eight-hour TWA exposures, however, were much lower, with only one exceeding the Oregon standard of 0.5 mg/m3. Poor worker practices commonly observed during this study included: standing in downwind positions so paint overspray passed through breathing zones; spraying toward other painters; and using excessive paint spray gun air cap pressures. Workers should stand in upwind orientation relative to the aircraft being painted, causing overspray to move away from the painter's breathing zone; adjust their position to prevent spraying other painters or limit paint application to one worker at a time; and use air cap pressure gauges prior to spraying to limit spray gun air cap pressures and reduce paint overspray generation rates. These improved techniques will result in reduced worker exposures to isocyanates. PMID:10983405

  11. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    SciTech Connect

    Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  12. Can STOP Trial Velocity Criteria Be Applied to Iranian Children with Sickle Cell Disease?

    PubMed Central

    Bavarsad Shahripour, Reza; Mortazavi, Martin M.; Barlinn, Kristian; Keikhaei, Bijan; Mousakhani, Hadi; Azarpazhooh, Mahmoud Reza; Oghbaee, Morteza; Sajedi, Seyed Aidin; Kepplinger, Jessica; Tubbs, R. Shane; Albright, Karen C.

    2014-01-01

    Background and Purpose Sickle cell disease (SCD) is strongly linked to stroke across all haplotypes in the pediatric population. Transcranial Doppler (TCD) ultrasound is known to identify the highest risk group in African-Americans who need to receive and stay on blood transfusions, but it is unclear if the same flow velocity cut-offs can be applied to the Iranian population. We aimed to evaluate baseline TCD findings in Iranian children with SCD and no prior strokes. Methods Children with genetically confirmed SCD (Arabian haplotype, homozygote) and without SCD (controls) were prospectively recruited from pediatric outpatient clinic over a period of 9 months. We performed TCD in both groups to determine flow velocities in the middle cerebral (MCA) and terminal internal carotid arteries (TICA). Results Of 74 screened children, 60 met the inclusion/exclusion criteria (62% female; mean age 10±4 years). Baseline characteristics did not differ between the cases and controls, except hemoglobin (Hb) which was significantly lower in the SCD group (P<0.001). The right MCA TAMM (Time Averaged Maximum Mean) was significantly higher than in controls (125+5.52 cm/s vs. 92.5+1.63 cm/s, P<0.001). Left MCA did not show differences. The TICA TAMM was also different between cases and controls (P<0.05). Conclusions Among Iranian children with asymptomatic SCD and without receiving recent transfusion TCD velocities are higher as compared to healthy controls but appear much lower than those observed in STOP (Stroke Prevention Trial in Sickle Cell Anemia) studies. We hypothesize that some children at high risk may be present with velocities lower than 170-200 cm/s thresholds. A prospective validation of ethnicity-specific prognostic criteria is warranted. PMID:24949316

  13. The suitability of an uncemented hydroxyapatite coated (HAC) hip hemiarthroplasty stem for intra-capsular femoral neck fractures in osteoporotic elderly patients: the Metaphyseal-Diaphyseal Index, a solution to preventing intra-operative periprosthetic fracture.

    PubMed

    Chana, Rishi; Mansouri, Reza; Jack, Chris; Edwards, Max R; Singh, Ravi; Keller, Carmel; Khan, Farid

    2011-11-18

    This study will seek to identify a measurable radiographic index, the Metaphyseal-Diaphyseal Index (MDI) score to determine whether intra-operative fracture in osteoporotic bone can be predicted.A 5 year prospective cohort of 560 consecutive patients, undergoing hemiarthroplasty (cemented or uncemented), was evaluated. A nested case-control study to determine risk factors affecting intra-operative fracture was carried out. The Vancouver Classification was used to classify periprosthetic fracture. The MDI score was calculated using radiographs from the uncemented group. As a control (gold standard), Yeung et al's Canal Bone Ratio (CBR) score was also calculated. From this, a receiver operating characteristic (ROC) curve was formulated for both scores and area under the curve (AUC) compared. Intra and inter-observer correlations were determined. Cost analysis was also worked out for adverse outcomes. Four hundred and seven uncemented and one hundred and fifty-three cemented stems were implanted. The use of uncemented implants was the main risk factor for intra-operative periprosthetic fracture. Sixty-two periprosthetic fractures occurred in the uncemented group (15.2%), nine occurred in the cemented group (5.9%), P < 0.001. The revision rate for sustaining a periprosthetic fracture (uncemented group) was 17.7%, P < 0.001 and 90 day mortality 19.7%, P < 0.03. MDI's AUC was 0.985 compared to CBR's 0.948, P < 0.001. The MDI score cut-off to predict fracture was 21, sensitivity 98.3%, specificity 99.8%, positive predictive value 90.5% and negative predictive value 98%. Multivariate regression analysis ruled out any other confounding factors as being significant. The intra and inter-observer Pearson correlation scores were r = 0.99, P < 0.001. JRI uncemented hemiarthroplasty has a significantly higher intra-operative fracture rate. We recommend cemented arthroplasty for hip fractures. We propose a radiographic system that may allow surgeons to select patients who are good

  14. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    NASA Astrophysics Data System (ADS)

    Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.

    2012-12-01

    Correct estimate of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice cores studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: output of a firn densification model and measurements of δ15N of N2 in air trapped in ice core. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available δ15N measurements performed from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rate and temperature conditions. While firn densification simulations are able to correctly represent most of the δ15N trends over the last deglaciation measured in the EDC, BI, TALDICE and EDML ice cores, they systematically fail to capture BI and EDML δ15N glacial levels, a mismatch previously seen for Central East Antarctic ice cores. Using empirical constraints of the EDML gas-ice depth offset during the Laschamp event (~ 41 ka), we can rule out the existence of a large convective zone as the explanation of the glacial firn model-δ15N data mismatch for this site. The good match between modelled and measured δ15N at TALDICE as well as the lack of any clear correlation between insoluble dust concentration in snow and δ15N records in the different ice cores suggest that past changes in loads of impurities are not the only main driver of glacial-interglacial changes in firn lock-in depth. We conclude that firn densification dynamics may instead be driven mostly by accumulation rate changes. The mismatch between modelled and measured δ15N may be due to inaccurate reconstruction of past accumulation rate or underestimated influence of accumulation rate in firnification models.

  15. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G

  16. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G

  17. Application of recent double-hybrid density functionals to low-lying singlet-singlet excitation energies of large organic compounds

    NASA Astrophysics Data System (ADS)

    Meo, F. Di; Trouillas, P.; Adamo, C.; Sancho-García, J. C.

    2013-10-01

    The present work assesses some recently developed double-hybrid density functionals (B2π-PLYP, PBE0-DH, and PBE0-2) using linear-response Tamm-Dancoff Time-Dependent Density Functional Theory. This assessment is achieved against experimentally derived low-lying excitation energies of large organic dyes of recent interest, including some excitations dominated by charge-transfer transitions. Comparisons are made with some of the best-performing methods established from the literature, such as PBE0 or B3LYP hybrid or the recently proposed B2-PLYP and B2GP-PLYP double-hybrid models, to ascertain their quality and robustness on equal footing. The accuracy of parameter-free or empirical forms of double-hybrid functionals is also briefly discussed. Generally speaking, it turns out that double-hybrid expressions always provide more accurate estimates than corresponding hybrid methods. Double-hybrid functionals actually reach averaged accuracies of 0.2 eV, that can be admittedly considered close to any intended accuracy limit within the present theoretical framework.

  18. Time-dependent projected Hartree-Fock

    SciTech Connect

    Tsuchimochi, Takashi; Van Voorhis, Troy

    2015-03-28

    Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H{sub 2}, F{sub 2} and O{sub 3} at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.

  19. METHODOLOGICAL NOTES: Force on matter in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Makarov, Vyacheslav P.; Rukhadze, Anri A.

    2009-09-01

    This article, in essence, is a continuation of the work by V L Ginzburg and V A Ugarov (Usp. Fiz. Nauk 118 175 (1976) [Sov. Phys. Usp. 19 94 (1976)]). It is shown that the results given in § 75 of the book Electrodynamics of Continuous Media by L D Landau and E M Lifshitz (Moscow: Nauka, 1982, in Russian) and in § 105 of the book Fundamentals of the Theory of Electricity by I E Tamm (Moscow: Nauka, 1989, in Russian) unambiguously follow only from the Maxwell equations of macroscopic electrodynamics, the corresponding constitutive equations, and the equations of motion of a substance (the hydrodynamic equations). These results are as follows: (1) the force acting on a unit volume of a motionless substance is given by the sum of the Helmholtz force and the Abraham force; (2) the momentum density of an electromagnetic field is the Umov-Poynting vector divided by c2, and (3) the stress tensor related to the field coincides in its form with the sum of the stress tensor of the electrostatic field and the stress tensor of the magnetostatic field. Thus, it is proved that the symmetric form of the Abraham tensor stands for the energy-momentum tensor of an electromagnetic field in a motionless medium.

  20. Properties of pili from Escherichia coli SS142 that mediate mannose-resistant adhesion to mammalian cells.

    PubMed Central

    Mett, H; Kloetzlen, L; Vosbeck, K

    1983-01-01

    We isolated pili from Escherichia coli SS142. These pili had a diameter of 6 nm and an average length of 400 nm. They were composed of subunits with a molecular weight of 18,000. Their amino acid composition was determined; methionine and proline were not detected. The isolated pili retained mannose-resistant hemagglutinating activity. Proteolytic digestion and glutaraldehyde fixation led to partial or complete loss of the hemagglutinating activity of the pili without causing any detectable damage to their supramolecular structure, which was only disintegrated by treatment with hot sodium dodecyl sulfate. The hemagglutinating activity of E. coli SS142 was inhibited by the glycoproteins fetuin and Tamm-Horsfall protein, as well as by the glycolipids phytyl lactoside, dansyl-sphingosine lactoside, and digalactosyl diglyceride. Isolated pili inhibited the adhesion of the homologous strain E. coli SS142 to Intestine 407 cell monolayers, but did not inhibit the adhesion of E. coli strain B-413, B-506, or 2699. This indicates that E. coli SS142 binds to a receptor different from those recognized by the other strains and that mannose-resistant adhesion to tissue culture cells can be classified into different subtypes. Images PMID:6130060

  1. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution. PMID:26907588

  2. All-electron G W +Bethe-Salpeter calculations on small molecules

    NASA Astrophysics Data System (ADS)

    Hirose, Daichi; Noguchi, Yoshifumi; Sugino, Osamu

    2015-05-01

    Accuracy of the first-principles G W +Bethe-Salpeter equation (BSE) method is examined for low-energy excited states of small molecules. The standard formalism, which is based on the one-shot G W approximation and the Tamm-Dancoff approximation (TDA), is found to underestimate the optical gap of N2, CO, H2O ,C2H4 , and CH2O by about 1 eV. Possible origins are investigated separately for the effect of TDA and for the approximate schemes of the self-energy operator, which are known to cause overbinding of the electron-hole pair and overscreening of the interaction. By applying the known correction formula, we find the amount of the correction is too small to overcome the underestimated excitation energy. This result indicates a need for fundamental revision of the G W +BSE method rather than adjustment of the standard one. We expect that this study makes the problems in the current G W +BSE formalism clearer and provides useful information for further intrinsic development beyond the current framework.

  3. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  4. QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: 157-167Er isotopes

    NASA Astrophysics Data System (ADS)

    Yakut, H.; Guliyev, E.; Guner, M.; Tabar, E.; Zenginerler, Z.

    2012-08-01

    A new microscopic method has been developed in the framework of the Quasiparticle-Phonon Nuclear Model (QPNM) in order to investigate spin polarization effects on the magnetic properties such as magnetic moment, intrinsic magnetic moment and effective gs factor of the ground state of odd-mass 157-167Er isotopes. The calculations were performed using both Tamm-Dancoff Approximation (TDA) and Quasiparticle Random-Phase Approximation (QRPA). Reasonably good agreement has been obtained between the QRPA results and the relevant experimental data. Furthermore the variation of the intrinsic magnetic moment gK values with the mass number A exhibits similar behavior for both theoretical and experimental results. From the compression of the calculated intrinsic magnetic moment values with the experimental data the spin-spin interaction parameter has been found as χ=(30/A) MeV for odd-mass 157-167Er isotopes. Our results clarify the possibility of using this new method to describe the magnetic properties of odd-mass deformed nuclei.

  5. Thouless theorem for matrix product states and subsequent post density matrix renormalization group methods

    NASA Astrophysics Data System (ADS)

    Wouters, Sebastian; Nakatani, Naoki; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2013-08-01

    The similarities between Hartree-Fock (HF) theory and the density matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function Ansatz. Linearization of the time-dependent variational principle near a variational minimum allows to derive the random phase approximation (RPA). We show that the nonredundant parameterization of the matrix product state (MPS) tangent space [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.070601 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e., an explicit nonredundant parameterization of the entire MPS manifold, starting from a specific MPS reference. Excitation operators are identified, which extends the analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA), the configuration interaction (CI) expansion, and coupled cluster theory. For a small one-dimensional Hubbard chain, we use a CI-MPS Ansatz with single and double excitations to improve on the ground state and to calculate low-lying excitation energies. For a symmetry-broken ground state of this model, we show that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes are obtained.

  6. Analytical approach for the excited-state Hessian in time-dependent density functional theory: Formalism, implementation, and performance

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liang, WanZhen

    2011-11-01

    The paper presents the formalism, implementation, and performance of the analytical approach for the excited-state Hessian in the time-dependent density functional theory (TDDFT) that extends our previous work [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011)] on the analytical Hessian in TDDFT within Tamm-Dancoff approximation (TDA) to full TDDFT. In contrast to TDA-TDDFT, an appreciable advantage of full TDDFT is that it maintains the oscillator strength sum rule, and therefore yields more precise results for the oscillator strength and other related physical quantities. For the excited-state harmonic vibrational frequency calculation, however, full TDDFT does not seem to be advantageous since the numerical tests demonstrate that the accuracy of TDDFT with and without TDA are comparable to each other. As a common practice, the computed harmonic vibrational frequencies are scaled by a suitable scale factor to yield good agreement with the experimental fundamental frequencies. Here we apply both the optimized ground-state and excited-state scale factors to scale the calculated excited-state harmonic frequencies and find that the scaling decreases the root-mean-square errors. The optimized scale factors derived from the excited-state calculations are slightly smaller than those from the ground-state calculations.

  7. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Truhlar, Donald G

    2015-08-21

    Three singlet states, namely a closed-shell ground state and two excited states with (1)ππ* and (1)nσ* character, have been suggested to be responsible for the radiationless decay or photochemical reaction of photoexcited thioanisole. The correct interpretation of the electronic spectrum is critical for understanding the character of these low-lying excited states, but the experimental spectrum is yet to be fully interpreted. In the work reported here, we investigated the nature of those three states and a fourth singlet state of thioanisole using electronic structure calculations by multireference perturbation theory, by completely-renormalized equation-of-motion coupled cluster theory with single and double excitations and noniterative inclusion of connected triples (CR-EOM-CCSD(T)), and by linear-response time-dependent density functional theory (TDDFT). We clarified the assignment of the electronic spectrum by simulating it using a normal-mode sampling approach combined with TDDFT in the Tamm-Dancoff approximation (TDA). The understanding of the electronic states and of the accuracy of the electronic structure methods lays the foundation of our future work of constructing potential energy surfaces. PMID:26088195

  8. Calculation Method for Exciton Wavefunctions with Electron--Hole Exchange Interaction: Application to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi

    2013-05-01

    A new method for calculating exciton wavefunctions in the presence of a long-range electron--hole (e--h) exchange interaction (EXI) is presented. The e--h EXI arises, for example, for cross-polarized excitons in a single-walled carbon nanotube (SWNT). Cross-polarized excitons have previously been calculated as an eigenvalue problem of a Bethe--Salpeter equation (BSE) within the Tamm--Dancoff-type approximation (TDA). The resulting wavefunctions provide quite different absorption spectra in comparison with those calculated in the self-consistent-field method [S. Uryu and T. Ando, J. Phys.: Conf. Ser. 302 (2011) 012004]. Although the self-consistent-field method is more reliable, exciton wavefunctions cannot be obtained from this method. A general method is derived here to obtain exciton wavefunctions that take the e--h EXI into account within the TDA, and the method is applied to the cross-polarized excitons of a SWNT. The absorption spectra calculated from the resulting exciton wavefunctions agree well with the spectra calculated from the self-consistent-field method within a rotating-wave approximation.

  9. Photonic confinement in laterally structured metal-organic microcavities

    SciTech Connect

    Mischok, Andreas Brückner, Robert; Sudzius, Markas; Reinhardt, Christoph; Lyssenko, Vadim G.; Fröb, Hartmut; Leo, Karl

    2014-08-04

    We investigate the formation of optical modes in organic microcavities with an incorporated perforated silver layer. The metal leads to a formation of Tamm-plasmon-polaritons and thus separates the sample into metal-free or metal-containing areas, supporting different resonances. This mode splitting is exploited to confine photons in elliptic holes and triangular cuts, forming distinctive standing wave patterns showing the strong lateral confinement. A comparison with a Maxwell-Bloch based rate equation model clearly shows the nonlinear transition into the lasing regime. The concentration of the electric field density and inhibition of lateral loss channels in turn decreases the lasing threshold by up to one order of magnitude, to 0.1 nJ. By spectroscopic investigation of such a triangular wedge, we observe the transition from the unperturbed cavity state to a strongly confined complex transversal mode. Such a structured silver layer can be utilized in future for charge carrier injection in an electrically driven organic solid state laser.

  10. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  11. Modified non-Euclidean transformation on the SO(2N+2) U(N+1) Grassmannian and SO(2N + 1) random phase approximation for unified description of Bose and Fermi type collective excitations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Seiya; da Providência, João

    2016-02-01

    In a slight different way from the previous one, we propose a modified non-Euclidean transformation on the SO(2N+2) U(N+1) Grassmannian which gives the projected SO(2N+1) Tamm-Dancoff equation. We derive a classical time-dependent (TD) SO(2N + 1) Lagrangian which, through the Euler-Lagrange equation of motion for SO(2N+2) U(N+1) coset variables, brings another form of the previous extended-TD Hartree-Bogoliubov (HB) equation. The SO(2N + 1) random phase approximation (RPA) is derived using Dyson representation for paired and unpaired operators. In the SO(2N) HB case, one boson and two boson excited states are realized. We, however, stress non-existence of a higher RPA vacuum. An integrable system is given by a geometrical concept of zero-curvature, i.e. integrability condition of connection on the corresponding Lie group. From the group theoretical viewpoint, we show the existence of a symplectic two-form ω.

  12. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  13. Ab initio calculations of optical spectra by solving the Bethe-Salpeter equation without empty states.Work

    NASA Astrophysics Data System (ADS)

    Rocca, Dario; Lu, Deyu; Galli, Giulia

    2009-03-01

    We present a novel first principle approach to solve the Bethe-Salpeter equation (BSE) that builds on recent progress in time-dependent density functional perturbation theory [1], and uses an eigenvalue decomposition representation of the dielectric matrix [2]. This approach does not require the explicit calculation of excited single particle electronic states, making it suitable for calculations involving large basis sets and/or a large number of transitions. The numerical solution of the BSE is obtained through a generalized, non-Hermitian Lanczos iterative algorithm and does not require the use of the Tamm-Dancoff approximation. Furthermore, since Lanczos coefficients are frequency independent, optical spectra may be obtained in a very broad energy range. The efficiency and accuracy of the new approach are demonstrated by calculating the optical properties of silicon nanoclusters with up to 1 nm diameter. [1] D. Rocca, R. Gebauer, Y Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008). [2] H.Wilson, F.Gygi and G.Galli, Phys. Rev. B 78, 113303 (2008).

  14. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  15. [Urine protein analysis with the sodium-dodecyl-sulfate-polyacrylamide gel-electrophoresis (SDS-PAGE) in healthy cats and cats with kidney diseases].

    PubMed

    Meyer-Lindenberg, A; Wohlsein, P; Trautwein, G; Nolte, I

    1997-03-01

    In this investigation, the value of urine protein analysis by means of molecular-weight related sodium dodecyl-polyacryl gradient gel electrophoresis (SDS-PAGE) was examined with regard to its applicability and diagnostic significance in nephropathy in the cat. A total of 87 cats was included in the study, 30 of them that were clinically healthy served as the control group. The urine protein pattern of this group had, besides the band representing the market albumin, and additional broad band within the size of the marker transferrin. In some cases, weak bands were present within the range of the Tamm-Horsfall-protein and immunoglobulin G. Micromolecular protein bands were not demonstrable. The remaining 57 animals had a histologically proven nephropathy. Thirty-eight cats had elevated urea and/or creatinine values in the plasma (group 1), and 19 animals had values within the reference range (group 2). The urine protein pattern as evidenced by SDS-urine electrophoresis was altered in all cats with histologically proven nephropathy, and it is thus concluded that with this technique a nephropathy can be diagnosed very early and prior to changes of plasma urea and creatinine (group 2). Moreover, in most of the cases, the nephrological changes can be classified as glomerular or tubulo-interstitial (group 1 and group 2). However, it is not possible to draw exact conclusions concerning the underlying morphological changes, nor can the severity of the disease be correctly assessed. PMID:9123982

  16. Cortisol emphasizes the metabolic strategies employed by common carp, Cyprinus carpio at different feeding and swimming regimes.

    PubMed

    Liew, Hon Jung; Chiarella, Daniela; Pelle, Antonella; Faggio, Caterina; Blust, Ronny; De Boeck, Gudrun

    2013-11-01

    The objective of this study was to investigate the interaction between feeding, exercise and cortisol on metabolic strategies of common carp over a 168h post-implant period. Feeding provided readily available energy and clearly increased muscle and liver protein and glycogen stores. Swimming, feeding and cortisol all induced aerobic metabolism by increasing oxygen consumption, and stimulated protein metabolism as demonstrated by the increased ammonia and urea excretion and ammonia quotient. Hypercortisol stimulated ammonia self-detoxifying mechanisms by enhancing ammonia and urea excretion, especially during severe exercise. At high swimming level, higher branchial clearance rates in cortisol treated fish succeeded in eliminating the elevation of endogenous ammonia, resulting in reduced plasma Tamm levels compared to control and sham implanted fish. Carp easily induced anaerobic metabolism, both during routine and active swimming, with elevated lactate levels as a consequence. Both feeding and cortisol treatment increased this dependence on anaerobic metabolism. Hypercortisol induced both glycogenesis and gluconeogenesis resulting in hyperglycemia and muscle and liver glycogen deposition, most likely as a protective mechanism for prolonged stress situations and primarily fuelled by protein mobilization.

  17. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application.

    PubMed

    Yang, Fan; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Ji, Ting; Shi, Fang; Wei, Bin

    2015-12-01

    We demonstrate a visible transparent organic photovoltaic (OPV) with improved transmission and absorption based on tandem photonic crystals (TPCs) for greenhouse applications. The proposed device has an average transmittance of 40.3% in the visible range of 400-700 nm and a high quality transparency spectrum for plant growth with a crop growth factor of 41.9%, considering the weight of the AM 1.5G solar spectrum. Compared with the corresponding transparent OPV without photonic crystals, an enhancement of 20.7% in the average transmittance and of 24.5% in the crop growth factor are achieved. Detailed investigations reveal that the improved transmittance is attributed to the excitation of the optical Tamm state and the light interference effect in TPC. Concomitantly, the total absorption efficiency in the active layer of the designed TPC based transparent OPV reaches 51.5%, being 1.78% higher than that of the transparent OPV without PC and 76% of that of the opaque counterpart. The improved absorption originates from the Bragg forbidden reflectance of TPC. Overall, our proposal achieves the optimized utilization of sunlight by light manipulation of TPC. PMID:26836682

  18. Biogeochemical role of magnetite in urban soils (Review of publications)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2013-03-01

    The surface horizons of urban soils are enriched in technogenic magnetite Fe3O4 accumulated from emissions. Its content there reaches 3-4% and more, whereas it does not exceed 0.1% in the back-ground soils. In urban soils, large spherical magnetite particles of pseudo-single-domain and multidomain fabric predominate; the cavities in magnetic spherules decrease their chemical stability and increase their reactivity. Magnetite is most often destroyed in urban soils due to complexing; its destruction may be initiated by mineral salts entering the soil with deicing mixtures and by organic acids excreted by roots (e.g., by oxalic acid). The high solubility of magnetite with ammonium oxalate should be taken into account when using Tamm's reagent for the analysis of urban soils. Magnetite is a mineral carrier of some heavy metals. Therefore, its content (as determined from the magnetic susceptibility) serves as an indirect index of soil pollution. In addition, magnetite may affect many soil properties as a reducer and sorbent. It adsorbs phosphorus thus preventing the penetration of this nutrient into rivers and lakes. Magnetite also oxidizes Cl-containing aliphatic hydrocarbons and purifies the soil. Although magnetite enters urban soils as a pollutant, its influence on the soil properties cannot be unambiguously judged as only negative.

  19. Tokamak foundation in USSR/Russia 1950-1990

    NASA Astrophysics Data System (ADS)

    Smirnov, V. P.

    2010-01-01

    In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER.

  20. Crystal aggregation in kidney stones; a polymer aggregation problem?

    NASA Astrophysics Data System (ADS)

    Wesson, J.; Beshensky, A.; Viswanathan, P.; Zachowicz, W.; Kleinman, J.

    2008-03-01

    Kidney stones most frequently form as aggregates of calcium oxalate monohydrate (COM) crystals with organic layers between them, and the organic layers contain principally proteins. The pathway leading to the formation of these crystal aggregates in affected people has not been identified, but stone forming patients are thought to have a defect in the structure or distribution of urinary proteins, which normally protect against stone formation. We have developed two polyelectrolyte models that will induce COM crystal aggregation in vitro, and both are consistent with possible urinary protein compositions. The first model was based on mixing polyanionic and polycationic proteins, in portions such that the combined protein charge is near zero. The second model was based on reducing the charge density on partially charged polyanionic proteins, specifically Tamm-Horsfall protein, the second most abundant protein in urine. Both models demonstrated polymer phase separation at solution conditions where COM crystal aggregation was observed. Correlation with data from other bulk crystallization measurements suggest that the anionic side chains form critical binding interactions with COM surfaces that are necessary along with the phase separation process to induce COM crystal aggregation.

  1. Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy

    SciTech Connect

    Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

    2008-05-28

    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

  2. Photonic lattices in organic microcavities: Bloch states and control of lasing

    NASA Astrophysics Data System (ADS)

    Mischok, Andreas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2015-09-01

    Organic microcavities comprising the host:guest emitter system Alq3:DCM offer an interesting playground to experimentally study the dispersion characteristics of laterally patterned microlasers due to the broad emission spectrum and large oscillator strength of the organic dye. By structuring of metallic or dielectric sublayers directly on top of the bottom mirror, we precisely manipulate the mode structure and influence the coherent emission properties of the device. Embedding silver layers into a microcavity leads to an interaction of the optical cavity-state in the organic layer and the neighboring metal which red-shifts the cavity resonance, creating a Tamm-plasmon-polariton state. A patterning of the metal can in turn be exploited to fabricate deep photonic wells of micron-size, efficiently confining light in lateral direction. In periodic arrays of silver wires, we create a Kronig-Penney-like optical potential in the cavity and in turn observe optical Bloch states spanning over several photonic wires. We modify the Kronig-Penney theory to analytically describe the full far-field emission dispersion of our cavities and show the emergence of either zero- , π-, or 2π- phase-locking in the system. By investigating periodic SiO2 patterns, we experimentally observe stimulated emission from the ground and different excited discrete states at room temperature and are able to directly control the laser emission from both extended and confined modes of the photonic wires at room-temperature.

  3. Electron correlation effects on photoionization time delay in atomic Ar and Xe

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.

    2016-05-01

    Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).

  4. Autoradiographic localization of benzodiazepine receptors in the rat kidney

    SciTech Connect

    Beaumont, K.; Healy, D.P.; Fanestil, D.D.

    1984-11-01

    The localization of benzodiazepine (BZD) receptors in the rat kidney was studied by autoradiography after in vitro labeling of kidney slices with flunitrazepam. The affinity, density, and rank order of displacement of (/sup 3/H)-flunitrazepam by several BZDs (RO 5-4864 > diazepam > clonazepam) demonstrated that binding was to BZD receptors of the peripheral type. In autoradiograms obtained with tritium-sensitive film, a high density of silver grains was obtained in the outer medulla, with lower densities in the cortex. Binding was absent from the inner medulla (papilla). In higher resolution autoradiograms obtained with an emulsion-coated cover slip procedure, silver grains were seen to be concentrated over a tubular element in both outer medulla and cortex, identifiable by morphology and distribution as the thick ascending limb of the loop of Henle and the distal convoluted tubule. The identity of the labeled tubules was confirmed by immunofluorescent localization in adjacent slices of Tamm-Horsfall protein, a specific marker for these segments of tubules. Investigation of the effects of peripherally specific BZDs such as RO 5-4864 on distal tubule function is indicated.

  5. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    PubMed

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies. PMID:26574215

  6. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides.

    PubMed

    Beattie, Bradley J; Thorek, Daniel L J; Schmidtlein, Charles R; Pentlow, Keith S; Humm, John L; Hielscher, Andreas H

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use. PMID:22363636

  7. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  8. Tailoring the optical properties of wide-bandgap based microcavities via metal films

    SciTech Connect

    Sebald, K. Rahman, SK. S.; Cornelius, M.; Gutowski, J.; Klein, T.; Klembt, S.; Kruse, C.; Hommel, D.

    2015-08-10

    We report on the tuning of the optical properties of II-VI-material-based microcavity samples, which is achieved by depositing Ag films on top of the structures. The micro-reflectivity spectra show a spectral shift of the sample resonance dependent on the metal layer thickness. By comparison of the experimental findings with the theoretical calculations applying the transfer matrix method on a metal-dielectric mirror structure, the influence of the metal layer particularly with regard to its partial oxidation was explored. Tamm plasmon modes are created at the interface between an open cavity with three ZnSe quantum wells and a metal layer on top. When tuning the excitonic emission relative to the mode by changing the sample temperature, an anticrossing of the resonances was observed. This is a clear indication that the strong coupling regime has been achieved in that sample configuration yielding a Rabi splitting of 18.5 meV. These results are promising for the realization of polariton-based optical devices with a rather simple sample configuration.

  9. Introducing constricted variational density functional theory in its relaxed self-consistent formulation (RSCF-CV-DFT) as an alternative to adiabatic time dependent density functional theory for studies of charge transfer transitions

    SciTech Connect

    Krykunov, Mykhaylo; Seth, Mike; Ziegler, Tom

    2014-05-14

    We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (α) of Hartree-Fock exchange ranging from α = 0 to α = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.

  10. Direct proton decay from the Gamow-Teller resonance in {sup 208}Bi

    SciTech Connect

    Akimune, H.; Daito, I.; Fujita, Y.; Fujiwara, M.; Greenfield, M.B.; Harakeh, M.N.; Inomata, T.; Jaenecke, J.; Katori, K.; Nakayama, S.; Sakai, H.; Sakemi, Y.; Tanaka, M.; Yosoi, M. ||||||||

    1995-08-01

    Spin-isospin excitations in {sup 208}Bi have been investigated using the {sup 208}Pb ({sup 3}He,{ital t}){sup 208}Bi reaction at near {theta}{approx}0{degree} at {ital E}({sup 3}He)=450 MeV. The microscopic structure of the Gamow-Teller resonance (GTR), the isobaric analog state (IAS), and the spin-flip dipole ({Delta}{ital L}=1) resonance (SDR) in {sup 208}Bi has been studied by observing their direct proton decays to the low-lying neutron-hole states in {sup 207}Pb. Decay protons were measured at backward angles in coincidence with tritons detected at and near 0{degree}. The total branching ratio for proton decay from the GTR is determined to be only 4.9{plus_minus}1.3%. The total branching ratio for proton decay from the SDR amounts to 14.1{plus_minus}4.2%. The deduced total widths as well as the total and partial proton escape widths of the GRR and IAS are found to be in reasonable agreement with recent theoretical estimates obtained in the framework of the continuum Tamm-Dancoff approximation.

  11. Loss of Urinary Macromolecules in Mice Causes Interstitial and Intratubular Renal Calcification Dependent on the Underlying Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Ru; Lieske, John C.; Evan, Andrew P.; Sommer, Andre J.; Liaw, Lucy; Mo, Lan

    2008-09-01

    Urinary protein macromolecules have long been thought to play a role in influencing the various phases of urolithiasis including nucleation, growth, aggregation of mineral crystals and their subsequent adhesion to the renal epithelial cells. However, compelling evidence regarding their precise role was lacking, due partly to the fact that most prior studies were done in vitro and results were highly variable depending on the experimental conditions. The advent of genetic engineering technology has made it possible to study urinary protein macromolecules within an in vivo biological system. Indeed, recent studies have begun to shed light on the net effects of loss of one or more macromolecules on the earliest steps of urolithiasis. This paper focuses on the in vivo consequences of inactivating Tamm-Horsfall protein and/or osteopontin, two major urinary glycoproteins, using the knockout approach. The renal phenotypes of both single and double knockout mice under spontaneous or hyperoxaluric conditions will be described. The functional significance of the urinary macromolecules as critical defense factors against renal calcification will also be discussed.

  12. In silico analysis of aqueous root extract of Rotula aquatica Lour for docking analysis of the compound 3-O-acetyl-11-keto-β-boswellic acid contents.

    PubMed

    Vijayakumari, Bhavaniamma; Sasikala, Venkatachalam; Radha, Singanallur Ramu; Rameshwar, Hiranmai Yadav

    2016-01-01

    Molecular docking is a bioinformatics tool used to study and analyse ligand receptor interactions. This helps in identifying the receptors (molecular targets) for different ligands. Using these technologies, compound isolation and drug discovery from herbals is achieved. Herbs are widely used in treatment of various ailments from time immemorial. Phytochemists and drug developers are now interestingly working in developing new molecules that can act effectively than conventional drugs. As they are developing it mostly from herbs they are found to be effective and safer drugs and quantity to be used become minimum. Rotula aquatica Lour is a plant distributed widely in India and used for urinary disorders. The plant root was extracted and studied for its active compounds that possess antiurolithiatic activity. After performing various preliminary phytochemical studies and applying chromatographic methods, molecular docking was carried out with isolated bioactive compound and Tamm-Horsfall protein (THP). By docking analysis the bioactive compound 3-O-acetyl-11-keto-β-boswellic acid interacted with THP and it may inhibit calcium oxalate crystallization. PMID:27652060

  13. Einstein studies in Russia

    NASA Astrophysics Data System (ADS)

    Balashov, Yuri; Vizgin, Vladimir

    This volume presents a selection of the best contributions by Russian scholars - historians and philosophers of science - to the Einstein Studies industry, broadly construed. Many of the papers were first published in Russian, in the Einshteinovskiy Sbornik series (Einstein Studies) initiated by I. Tamm in 1966. This book explores the historical and foundational issues in general relativity and relativistic cosmology, Einstein's contributions to quantum theory of radiation, and the rise of Dirac's quantum electrodynamics. It also includes a detailed description of the physics colloquium Einstein established and coordinated in 1912- 1914 in Zürich. The contributors draw extensively on documentation previously unavailable to most scholars. Materials from various Russian archives shed new light on the famous exchange (regarding the first evolutionary cosmological models) between Einstein and Alexander Friedmann in the early 1920's and on the role of Boris Podolsky and Vladimir Fock in the emergence of quantum electrodynamics. The little-known correspondence between Einstein and a famous German pilot Paul Erhardt suggests that during World War I, the former was involved with aero- and hydrodynamics research and ways of improving airplane design. Other articles introduce new approaches to important foundational questions in general relativity and cosmology. Historians, philosophers, and sociologists of science will find much new and unexpected material in this engaging volume presenting the best of recent Russian scholarship in the field. The book is also very accessible to the general reader.

  14. Computed Cerenkov luminescence yields for radionuclides used in biology and medicine.

    PubMed

    Gill, Ruby K; Mitchell, Gregory S; Cherry, Simon R

    2015-06-01

    Cerenkov luminescence imaging is an emerging biomedical imaging modality that takes advantage of the optical Cerenkov photons emitted following the decay of radionuclides in dielectric media such as tissue. Cerenkov radiation potentially allows many biomedically-relevant radionuclides, including all positron-emitting radionuclides, to be imaged in vivo using sensitive CCD cameras. Cerenkov luminescence may also provide a means to deliver light deep inside tissue over a sustained period of time using targeted radiotracers. This light could be used for photoactivation, including photorelease of therapeutics, photodynamic therapy and photochemical internalization. Essential to assessing the feasibility of these concepts, and the design of instrumentation designed for detecting Cerenkov radiation, is an understanding of the light yield of different radionuclides in tissue. This is complicated by the dependence of the light yield on refractive index and the volume of the sample being interrogated. Using Monte Carlo simulations, in conjunction with step-wise use of the Frank-Tamm equation, we studied forty-seven different radionuclides and show that Cerenkov light yields in tissue can be as high as a few tens of photons per nuclear decay for a wavelength range of 400-800 nm. The dependency on refractive index and source volume is explored, and an expression for the scaling factor necessary to compute the Cerenkov yield in any arbitrary spectral band is given. This data will be of broad utility in guiding the application of Cerenkov radiation emitted from biomedical radionuclides. PMID:25973972

  15. Long-range doublon transfer in a dimer chain induced by topology and ac fields

    PubMed Central

    Bello, M.; Creffield, C. E.; Platero, G.

    2016-01-01

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points – the particle does not pass through the intermediate sites–making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving. PMID:26932406

  16. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  17. Comparison of sampling methods for monomer and polyisocyanates of 1,6-hexamethylene diisocyanate during spray finishing operations.

    PubMed

    England, E; Key-Schwartz, R; Lesage, J; Carlton, G; Streicher, R; Song, R

    2000-06-01

    A comparison study of isocyanate sampling methods for 1,6-hexamethylene diisocyanate (HDI) monomer and HDI-based polyisocyanates was conducted in spray painting environments. This study compared the performance of the Iso-chek sampler against existing and proposed National Institute of Occupational Safety and Health (NIOSH) and Occupational Safety and Health Administration (OSHA) monitoring methods for HDI-based isocyanates. Six methods for monitoring HDI monomer and polyisocyanate levels were compared. Fifty-eight sampling sets were collected during spray painting of aircraft and aircraft parts at four U.S. Air Force bases. Impinger and cassette samplers were mounted side-by-side on a mannequin located in paint overspray areas. For HDI monomer sampling results, there were no significant differences between NIOSH 5521, NIOSH 5522, OSHA 42, MAP (the proposed NIOSH method), and the Iso-Chek. For HDI-based polyisocyanates, NIOSH 5522, NIOSH 5521, Iso-Chek, and the Total Aerosol Mass Method (TAMM) were significantly different from one another. There was no significant difference between MAP and the NIOSH 5522 polyisocyanate sampling results. This study suggests the Iso-Chek and MAP sampling methods compare favorably with established methods for monitoring in HDI spray painting environments and the Total Aerosol Mass Method provides a reasonable upper boundary for estimating HDI polyisocyanate concentrations. The results also reemphasize aerosol sampling physics and sampler geometries must be carefully considered and appropriate samplers used when measuring exposures in spray paint environments where particulates are of the inhalable size. PMID:10853287

  18. Multispeed entropic lattice Boltzmann model for thermal flows

    NASA Astrophysics Data System (ADS)

    Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.

    2014-10-01

    An energy-conserving lattice Boltzmann (LB) model based on the entropic theory of admissible higher-order lattice is presented in detail. The entropy supporting `zero-one-three" lattice is used to construct a model capable of reproducing the full Fourier-Navier-Stokes equations at low Mach numbers. The proposed direct approach of constructing thermal models overcomes the shortcomings of existing models and retains one of the most important advantages of the LB methods, the exact space discretization of the advection step, thus paving the way for direct numerical simulation of thermal flows. New thermal wall boundary condition capable of handling curved geometries immersed in a multispeed lattice is proposed by extending the Tamm-Mott-Smith boundary condition. Entropic realization of the current model ensures stability of the model also for subgrid simulations. Numerical validation and thermodynamic consistency is demonstrated with classical setups such as thermal Couette flow, Rayleigh-Bénard natural convection, acoustic waves, speed of sound measurements, and shock tube simulations.

  19. A phenomenographic approach to the meaning of death: a Chinese perspective.

    PubMed

    Yang, Shu Ching; Chen, Shih-Fen

    2002-02-01

    The purpose of this study was to investigate qualitative and quantitative differences in Chinese children's concepts of death, as reflected in their drawings, and to analyze this conceptual development as it related to background variables (such as gender, age, religious belief, and heath status). Participants were 239 children in 6 grade groups recruited from primary and junior high school. The children were asked to draw their impression of the word "death" and to give a verbal commentary of what they had drawn. The drawings were analyzed according to a phenomenographic method and assigned to one of 3 superordinate and 12 subordinate qualitative categories, adapted from M. E.Tamm and A. Granqvist (1995). Metaphysical and biological death concepts dominated, while psychological death concepts were depicted least. Consistent with previous studies of the development of concepts of death in children, biological death concepts were most common for the younger age groups, and metaphysical death concepts were found predominately in the older age groups. Chi-square analysis revealed no significant differences among death concept categories as a function of the participants' gender, health status, religious belief, funeral attendance, or prior death of relatives or pets. The results are interpreted as providing a unique window on death concepts among Chinese children.

  20. Immunoanatomic distribution of cytostructural and tissue-associated antigens in the human urinary tract.

    PubMed Central

    Cordon-Cardo, C.; Finstad, C. L.; Bander, N. H.; Melamed, M. R.

    1987-01-01

    The main objective of the present study is to define the expression and/or modulation of antigenic phenotypes in cells of the normal human kidney and urothelium according to cell type. Fourteen antibodies detecting differentiation and structural antigens expressed in the human urinary tract have been used to define the immunoanatomic distribution of these antigenic systems. They include urinary tract antigens (Tamm-Horsfall glycoprotein and prostate-specific antigen), tissue-associated antigens (epithelial membrane antigen, Factor VIII antigen, and Protein S-100), and cytoskeletal antigens of the intermediate filament classes (cytokeratins, vimentin, desmin, glial fibrillary acidic protein, and neurofilaments. Immunofluorescence and immunoperoxidase analyses performed on normal human fetal and adult tissue sections have demonstrated that these antigens are expressed by different cell types and domains of the nephron. Studies correlating normal fetal and adult tissues reveal that some of the antigens appear at distinct stages of maturation, representing early and late antigenic expression events. These antibodies offer a wide range of potential applications that include studies of embryogenesis of the human urinary tract and immunopathologic analyses of neoplastic and nonneoplastic diseases of the human kidney and urothelium. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3548401

  1. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    NASA Astrophysics Data System (ADS)

    Volkoff, T. J.; Whaley, K. B.

    2014-12-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.

  2. Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides

    PubMed Central

    Beattie, Bradley J.; Thorek, Daniel L. J.; Schmidtlein, Charles R.; Pentlow, Keith S.; Humm, John L.; Hielscher, Andreas H.

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use. PMID:22363636

  3. Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2014-01-01

    Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.

  4. Observation of unconventional edge states in ‘photonic graphene’

    NASA Astrophysics Data System (ADS)

    Plotnik, Yonatan; Rechtsman, Mikael C.; Song, Daohong; Heinrich, Matthias; Zeuner, Julia M.; Nolte, Stefan; Lumer, Yaakov; Malkova, Natalia; Xu, Jingjun; Szameit, Alexander; Chen, Zhigang; Segev, Mordechai

    2014-01-01

    Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded edge that have never been observed—because such an edge is unstable in graphene. Here, we use the optical equivalent of graphene—a photonic honeycomb lattice—to study the edge states and their properties. We directly image the edge states on both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The mechanism underlying its formation may counterintuitively appear in other crystalline systems.

  5. Electronic structure and electron correlation in weakly confining spherical quantum dot potentials

    NASA Astrophysics Data System (ADS)

    Kimani, Peter Borgia Ndungu

    The electronic structure and electron correlations in weakly confining spherical quantum dots potentials are investigated. Following a common practice, the investigation starts with the restricted Hartree-Fock (HF) approximation. Then electron correlation is added in steps in a series of approximations based on the single particle Green's function approach: (i) Second-order Green function (GF) (ii) 2ph-Tamm-Dancoff approximation (TDA) and (iii) an extended version thereof (XTDA) which introduces ground-state correlation into the TDA. The study includes as well Hartree-Fock V (N-1) potential approximation in which framework the Hartree-Fock virtual orbitals are calculated in the field of the N-1 electrons as opposed to the regular but unphysical N-electron field Hartree-Fock calculation of virtual orbitals. For contrast and comparison, the same approximation techniques are applied to few-electron closed-shell atoms and few-electron negative ions for which pertinent data is readily available. The results for the weakly confining spherical quantum dot potentials and the standard atomic systems exhibit fundamental similarities as well as significant differences. For the most part the results of these calculations are in favor of application of HF, GF, and TDA techniques in the modeling of three-dimensional weakly confining quantum dot potentials. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots such as the increased binding of electrons with higher angular momentum and the modified shell filling sequences.

  6. Long-range doublon transfer in a dimer chain induced by topology and ac fields.

    PubMed

    Bello, M; Creffield, C E; Platero, G

    2016-03-02

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain's end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.

  7. Nonperturbative renormalization and the electron{close_quote}s anomalous moment in large-{alpha} QED

    SciTech Connect

    Hiller, J.R.; Brodsky, S.J.

    1999-01-01

    We study the physical electron in quantum electrodynamics expanded on the light-cone Fock space in order to address two problems: (1) the physics of the electron{close_quote}s anomalous magnetic moment a{sub e} in nonperturbative QED and (2) the practical problems of ultraviolet regularization and renormalization in truncated nonperturbative light-cone Hamiltonian theory. We present results for a{sub e} computed in a light-cone gauge Fock space truncated to include one bare electron and at most two photons, i.e., up to two photons in flight. The calculational scheme uses an invariant mass cutoff, discretized light-cone quantization (DLCQ), a Tamm-Dancoff truncation of the Fock space, and a photon mass regulator. We introduce new weighting methods which greatly improve convergence to the continuum within DLCQ. Nonperturbative renormalization of the coupling and electron mass are carried out, and a limit on the magnitude of the effective physical coupling strength is computed. A large renormalized coupling strength {alpha}{sub R}=0.1 is then used to make the nonperturbative effects in the electron anomalous moment from the one-electron, two-photon Fock state sector numerically detectable. {copyright} {ital 1998} {ital The American Physical Society}

  8. Effects of urine composition on epithelial Na+ channel-targeted protease activity.

    PubMed

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-11-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H(+)-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15-515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0-500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm-Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  9. Benign salivary gland tissue inclusion in a pulmonary hilar lymph node from a patient with invasive well-differentiated adenocarcinoma of the lung: a potential misinterpretation for the staging of carcinoma.

    PubMed

    Lewis, Annisa L; Truong, Luan D; Cagle, Philip; Zhai, Qihui Jim

    2011-06-01

    Benign epithelial and nonepithelial inclusions have been found in lymph nodes in multiple body sites. These inclusions have been seen in cervical, axillary, mediastinal, abdominal, and pelvic lymph nodes. They appear as benign epithelial, parathyroid, decidual, mesothelial, angiolipomatous, nevus cells, or Tamm-Horsfall protein. Although heterotopic salivary gland tissue is not infrequent in paraparotid lymph nodes, it has only been described in lymph nodes of the pulmonary hilum once. A 68-year-old woman with gastric lymphoma now in remission presented for routine follow-up and was found to have a lung mass. After a fine needle aspiration biopsy diagnosis of adenocarcinoma, lobectomy and lymph node dissection were performed. Histological sections of lung demonstrated a well-differentiated adenocarcinoma and one lymph node, which displayed a subcapsular nest of well-formed salivary glands occupying approximately one third of the nodal tissue. The inclusion was composed of acinar cells of both serous and mucinous types, but ductal type of cells were not seen. Identification of heterotopic tissue in lymph nodes is of great importance for patient management. Misdiagnosing benign glandular inclusions for metastasis could potentially lead to incorrect tumor staging. Benign salivary gland tissue inclusions should be considered in the differential diagnosis when evaluating for metastatic adenocarcinoma. The salivary gland inclusion in pulmonary hilar lymph node may be histogenetically related to the minor salivary glands, which are located within the bronchial submucosa.

  10. Self-consistent quasiparticle formulation of a multiphonon method and its application to the neutron-rich O20 nucleus

    NASA Astrophysics Data System (ADS)

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Vesely, P.

    2016-04-01

    A Bogoliubov quasiparticle formulation of an equation-of-motion phonon method, suited for open-shell nuclei, is derived. Like its particle-hole version, it consists of deriving a set of equations of motions whose iterative solution generates an orthonormal basis of n -phonon states (n =0 ,1 ,2 ,... ), built of quasiparticle Tamm-Dancoff phonons, which simplifies the solution of the eigenvalue problem. The method is applied to the open-shell neutron-rich O20 for illustrative purposes. A Hartree-Fock-Bogoliubov canonical basis, derived from an intrinsic two-body optimized chiral Hamiltonian, is used to derive and solve the eigenvalue equations in a space encompassing a truncated two-phonon basis. The spurious admixtures induced by the violation of the particle number and the center-of-mass motion are eliminated to a large extent by a Gram-Schmidt orthogonalization procedure. The calculation takes into account the Pauli principle, is self-consistent, and is parameter free except for the energy cutoff used to truncate the two-phonon basis, which induces an increasing depression of the ground state through its strong coupling to the quasiparticle vacuum. Such a cutoff is fixed so as to reproduce the first 1- level. The two-phonon states are shown to enhance the level density of the low-energy spectrum, consistently with the data, and to induce a fragmentation of the E 1 strength which, while accounting for the very low E 1 transitions, is not sufficient to reproduce the experimental cross section in the intermediate energy region. This and other discrepancies suggest the need of including the three-phonon states. These are also expected to offset the action of the two phonons on the quasiparticle vacuum and, therefore, free the calculation from any parameter.

  11. Interactive chemistry of coal-petroleum processing: Quarterly progress report for March 15, 1987-June 15, 1987. [Effect of coal or resid on reaction

    SciTech Connect

    Curtis, C.W.; Guin, J.A.; Tarrer, A.R.

    1987-01-01

    The thermal reactions of model compounds NAPH, DMC, PN, BZT, and QN with Maya TLR (topped long resid) showed no reactions. The presence of Maya TLR blocked the intermediate hydrogenation pathway from QN to THQ compared to the reaction without Maya TLR where 13% THQ was formed. Maya TLR served as a strong inhibitor in the catalytic hydrogenations of model compounds, being more detrimental to the hydrogenation and heteroatom removal reactions than coal. The severe inhibition of Maya TLR is caused by the chemical composition of the resid. The resid contains large refractory hydrocarbon species and substantial amounts of metals. Maya TLR was most likely deactivating the NiMo/Al/sub 2/O/sub 3/ catalyst as well as possibly interacting with model species present. Catalyst deactivation due to pore-plugging by petroleum crude and residua reaction products from hydrotreating, i.e., metal sulfides and coke has been studied by Newson. In crude oils and residua, vanadium and nickel compounds are the most abundant organometallic constituents and cause major problems in hydrotreating of residuum oils. At hydroprocessing conditions, these metal compounds deposit on and deactivate the catalyst. Pore mouth plugging in the catalyst by the metal deposit has been known as the major cause in the catalyst deactivation. Tamm and co-workers studied two mechanisms of catalyst deactivation by petroleum feed metals: (1) poisoning of the active surface and (2) physical obstruction of the pore structure. Thus, two possible reasons for the severe deactivation observed in the Maya TLR are metal deposition and carbon laydown on the catalyst surface. Another reason why the Maya TLR had a stronger inhibiting effect than coal is that these reactions are at 350/sup 0/C, where the coal was only partially dissolved; therefore, all the bad actors from coal were not available in the system, while those from the resid were. 3 refs., 4 figs., 36 tabs.

  12. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense. PMID:26241473

  13. Neutrino mean free paths in cold symmetric nuclear matter

    SciTech Connect

    Cowell, S.; Pandharipande, V.R.

    2004-09-01

    The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.

  14. The role of retardation in the structure and linear response of finite nuclei

    SciTech Connect

    Crecca, M.A.

    1989-01-01

    Conventional random phase approximation (RPA) and Tamm-Dancoff approximation (TDA) calculations of nuclear structure and the linear response employ interactions between nucleons that are instantaneous. However, N-N interactions derived from the exchange of mesons between nucleons must depend on the space-time separation of the nucleons since the mesons travel at finite speeds. Furthermore, a quantum field theory that contains interacting meson and nucleon degrees of freedom employ the Feynman propagator, i{Delta}{sub F}(x - x{prime}), to connect the nucleon-meson vertices of Feynman diagrams. This raises the question of whether calculations done with space-time dependent interactions differ significantly from the conventional calculations that employ instantaneous forces, and what are the qualitative features of the difference. The inquiry into this question begins by generalizing the traditional RPA and TDA equations into the domain of retarded (space-time dependant) interactions. This entails establishing an integral equation (the Bethe-Salpeter equation) for the polarization propagator with the appropriate RPA or TDA kernel such that the integral equation reduces to the usual RPA or TDA matrix equation for the polarization propagator as the interaction becomes instantaneous. After establishing this generalization of the RPA and TDA, a TDA calculation is performed for an interaction arising from the exchange of a scalar meson. The results are compared with those obtained from the conventional instantaneous reduction of the scalar meson exchange interaction, the Yukawa potential. Upon comparing these results one finds that in general the nuclear structure obtained from scalar meson exchange differ little less than 10%.

  15. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    SciTech Connect

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-09-28

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C{sub 2}H{sub 4}O{yields}CH{sub 2}CH{sub 2}O. This is followed by hopping to the electronic ground state where hot (4000 K) dynamics leads to further reactions, namely, CH{sub 2}CH{sub 2}O{yields}CH{sub 3}CHO{yields}CH{sub 3}+CHO and CH{sub 4}+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S{sub 0},S{sub 1}) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

  16. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    NASA Astrophysics Data System (ADS)

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-09-01

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4O→C•H2CH2O•. This is followed by hopping to the electronic ground state where hot (4000K) dynamics leads to further reactions, namely, C•H2CH2O•→CH3CHO→C•H3+C•HO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

  17. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.

    PubMed

    Corzo, H H; Galano, Annia; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2015-08-20

    Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy. PMID:26226061

  18. Theoretical studies on the dimerization of substituted paraphenylenediamine radical cations

    NASA Astrophysics Data System (ADS)

    Punyain, Kraiwan; Kelterer, Anne-Marie; Grampp, Günter

    2011-12-01

    Organic radical cations form dicationic dimers in solution, observed experimentally as diamagnetic species in temperature-dependent EPR and low temperature UV/Vis spectroscopy. Dimerization of paraphenylenediamine, N,N-dimethyl-paraphenylenediamine and 2,3,5,6-tetramethyl-paraphenylenediamine radical cation in ethanol/diethylether mixture was investigated theoretically according to geometry, energetics and UV/Vis spectroscopy. Density Functional Theory including dispersion correction describes stable dimers after geometry optimization with conductor-like screening model of solvation and inclusion of the counter-ion. Energy corrections were done on double-hybrid Density Functional Theory with perturbative second-order correlation (B2PLYP-D) including basis set superposition error (BSSE), and multireference Møller-Plesset second-order perturbation theory method (MRMP2) based on complete active space method (CASSCF(2,2)) single point calculation, respectively. All three dication π-dimers exhibit long multicenter π-bonds around 2.9 ± 0.1 Å with strongly interacting orbitals. Substitution with methyl groups does not influence the dimerization process substantially. Dispersion interaction and electrostatic attraction from counter-ion play an important role to stabilize the dication dimers in solution. Dispersion-corrected double hybrid functional B2PLYP-D and CASSCF(2,2) can describe the interaction energetics properly. Vertical excitations were computed with Tamm-Dancoff approximation for time-dependent Density Functional Theory (TDA-DFT) at the B3LYP level with the cc-pVTZ basis set including ethanol solvent molecules explicitly. A strong interaction of the counter-ion and the solvent ethanol with the monomeric species is observed, whereas in the dimers the strong interaction of both radical cation species is the dominating factor for the additional peak in UV/Vis spectra.

  19. Fructus Gardenia Extract ameliorates oxonate-induced hyperuricemia with renal dysfunction in mice by regulating organic ion transporters and mOIT3.

    PubMed

    Hu, Qing-Hua; Zhu, Ji-Xiao; Ji, Jing; Wei, Lin-Lin; Miao, Ming-Xing; Ji, Hui

    2013-07-29

    The potent anti-hyperuricemia activities of Fructus Gardenia Extract (FGE) have been well reported. The aim of this study was to evaluate the uricosuric and nephro-protective effects of FGE and explore its possible mechanisms of action in oxonate-induced hyperuricemic mice. FGE was orally administered to hyperuricemic and normal mice for 1 week. Serum and urinary levels of uric acid, creatinine and blood urea nitrogen (BUN), and fractional excretion of uric acid (FEUA) were measured. The mRNA and protein levels of mouse urate transporter 1 (mURAT1), glucose transporter 9 (mGLUT9), ATP-binding cassette, subfamily G, 2 (mABCG2), organic anion transporter 1 (mOAT1), mOAT3, oncoprotein induced transcript 3 (mOIT3), organic cation/carnitine transporters in the kidney were analyzed. Simultaneously, Tamm-Horsfall glycoprotein (THP) levels in urine and kidney were detected. FGE significantly reduced serum urate levels and increased urinary urate levels and FEUA in hyperuricemic mice. It could also effectively reverse oxonate-induced alterations in renal mURAT1, mGLUT9, mOAT1 and mOIT3 expressions, as well as THP levels, resulting in the enhancement of renal uric acid excretion. Moreover, FGE decreased serum creatinine and BUN levels, and up-regulated expression of organic cation/carnitine transporters, improving renal dysfunction in this model. Furthermore, FGE decreased renal mABCG2 expressions in hyperuricemic mice, contributing to its beneficial actions. However, further investigation is needed in clinical trials of FGE and its bioactive components.

  20. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects.

    PubMed

    Uskov, Alexander V; Protsenko, Igor E; Ikhsanov, Renat S; Babicheva, Viktoriia E; Zhukovsky, Sergei V; Lavrinenko, Andrei V; O'Reilly, Eoin P; Xu, Hongxing

    2014-05-01

    We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles--surface and volume ones--and use models for these two mechanisms which allow us to obtain analytical results for the photoelectron emission rate from a nanoparticle. Calculations have been carried out for a step potential at the surface of a spherical nanoparticle, and a simple model for the hot electron cooling has been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to a substantial (by ∼5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism through the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary. The latter is stronger at relatively lower photon energies and correspondingly is more substantial for internal photoemission than for an external one. We show that in the general case, it is essential to take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna.

  1. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  2. Excited states with internally contracted multireference coupled-cluster linear response theory

    NASA Astrophysics Data System (ADS)

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-01

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  3. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors.

    PubMed

    Huang, H-S; Chen, J; Chen, C-F; Ma, M-C

    2006-08-01

    We previously reported that oxidative stress and renal tubular damage occur in chronic hyperoxaluric rats. However, the in vivo responses of renal epithelial cells after vitamin E administration and their correlations with calcium oxalate (CaOx) crystal formation have not been evaluated. Male Wistar rats received 0.75% ethylene glycol (EG) for 7, 21, or 42 days to induce CaOx deposition (EG group). Another group of EG-treated rats received 200 mg kg(-1) of vitamin E intraperitoneally (EG+E group) to evaluate its effect on hyperoxaluria. Urinary electrolytes and biochemistry and levels of lipid peroxides and enzymes were examined, together with serum vitamin E levels. Levels of the tubular markers, alpha and mu glutathione S-transferase, proliferating cell nuclear antigen (PCNA), osteopontinin (OPN), and Tamm-Horsfall protein (THP) were also measured, and TUNEL staining was performed to examine the viability of the tubular epithelium. There were no significant differences between the two age-matched controls either untreated or given vitamin E. Compared to untreated controls, tubular cell death was increased at all time points in EG rats with a gradual increase in CaOx crystals, whereas the number of PCNA-positive cells was only significantly increased on day 21. In EG+E rats, tubular cell death was decreased compared to the EG group, and cell proliferation was seen at all time points, while CaOx crystal deposition was decreased, but hyperoxaluria, urinary lipid peroxides, and enzymuria were unaffected. Vitamin E supplement prevented the loss of OPN and THP in renal tissues by EG and the reduction in their levels in the urine. The beneficial effect of vitamin E in reducing CaOx accumulation is due to attenuation of tubular cell death and enhancement of the defensive roles of OPN and THP.

  4. 4-Component relativistic calculations of L3 ionization and excitations for the isoelectronic species UO2(2+), OUN(+) and UN2.

    PubMed

    South, Christopher; Shee, Avijit; Mukherjee, Debashis; Wilson, Angela K; Saue, Trond

    2016-08-01

    We present a 4-component relativistic study of uranium 2p3/2 ionization and excitation in the isoelectronic series UO2(2+), OUN(+) and UN2. We calculate ionization energies by ΔSCF at the Hartree-Fock (HF) and Kohn-Sham (KS) level of theory. At the ΔHF level we observe a perfectly linear chemical shift of ionization energies with respect to uranium atomic charges obtained from projection analysis. We have also developed a non-canonical 2nd-order Møller-Plesset code for wave function based correlation studies. We observe the well-known failure of Koopmans' theorem for core ionization due to the dominance of orbital relaxation over electron correlation effects. More unexpectedly, we find that the correlation contribution has the same sign as the relaxation contribution and show that this is due to a strong coupling of relaxation and correlation. We simulate uranium L3 XANES spectra, dominated by 2p3/2 → U6d transitions, by restricted excitation window time-dependent density functional theory (REW-TDDFT) and the complex polarization propagator (CPP) approach and demonstrate that they give identical spectra when the same Lorentz broadening is chosen. We also simulate XANES spectra by the Hartree-Fock based static exchange (STEX) method and show how STEX excitation energies can be reproduced by time-dependent Hartree-Fock calculations within the Tamm-Dancoff approximation. We furthermore show that Koopmans' theorem provide a correct approximation of ionization energies in the linear response regime and use this observation to align REW-TDDFT and CPP spectra with STEX ones. We point out that the STEX method affords the most detailed assignment of spectra since it employs virtual orbitals optimized for the selected core ionization. The calculated XANES spectra reflect the loss of bound virtual orbitals as the molecular charge is reduced along the isoelectronic series. PMID:26878601

  5. Insights into cyclosporine A-induced atherosclerotic risk in transplant recipients: macrophage scavenger receptor regulation.

    PubMed

    Jin, Song; Mathis, A Scott; Rosenblatt, Joseph; Minko, Tamara; Friedman, Gary S; Gioia, Kevin; Serur, David S; Knipp, Gregory T

    2004-02-27

    Clinical monitoring of organ-transplant recipients suggests that administration of cyclosporine (CsA) may increase the risk of atherosclerosis when compared with the general population. The purpose of this work is to demonstrate the utility of the in vitro Tamm-Horsfall protein (THP)-1 human monocyte cell culture model for determining drug-related atherosclerotic potential in macrophages. The effect of CsA on the mRNA expression of macrophage scavenger receptor genes including CD36, CD68, scavenger receptor (SR)-A, SR-BII, and lectin-like oxidized low-density lipoprotein receptor (LOX-1); the nuclear hormone receptors, including peroxisome-proliferator activated receptor (PPAR)gamma and liver-X-receptor (LXR)alpha; and the cholesterol efflux pump ABCA1 were investigated as markers of atherosclerotic progression. The THP-1 cells were cultured and differentiated into macrophages. The macrophages were then treated with CsA to assess gene expression. Time- (1, 2, 4, 8, and 24 hours) and dose- (concentrations [mg/L] corresponding to the trough [0.5], peak [1.25] and 4x peak [5]) dependency of CsA was assessed. The treated macrophage mRNA gene expression of CD36, CD68, and PPARgamma were up-regulated in the presence of CsA. Interestingly, SR-A, SR-BII, LOX-1, and LXRalpha expression appeared to be slightly down-regulated, and ABCA1 was relatively unchanged. Immunoblotting studies demonstrated that the protein expression of CD36 was unchanged or increased, PPARgamma was unchanged, and ABCA1 was unchanged or decreased at 4 and 8 hours. The results document CsA-induced mRNA and protein changes in receptors relevant to lipid-laden foam cell formation and demonstrate the utility of THP-1 macrophages for screening of atherosclerotic risk potential. PMID:15084924

  6. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects

    NASA Astrophysics Data System (ADS)

    Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.; Babicheva, Viktoriia E.; Zhukovsky, Sergei V.; Lavrinenko, Andrei V.; O'Reilly, Eoin P.; Xu, Hongxing

    2014-04-01

    We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles - surface and volume ones - and use models for these two mechanisms which allow us to obtain analytical results for the photoelectron emission rate from a nanoparticle. Calculations have been carried out for a step potential at the surface of a spherical nanoparticle, and a simple model for the hot electron cooling has been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to a substantial (by ~5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism through the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary. The latter is stronger at relatively lower photon energies and correspondingly is more substantial for internal photoemission than for an external one. We show that in the general case, it is essential to take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna.

  7. Transition matrices and orbitals from reduced density matrix theory

    NASA Astrophysics Data System (ADS)

    Etienne, Thibaud

    2015-06-01

    In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.

  8. Insights into cyclosporine A-induced atherosclerotic risk in transplant recipients: macrophage scavenger receptor regulation.

    PubMed

    Jin, Song; Mathis, A Scott; Rosenblatt, Joseph; Minko, Tamara; Friedman, Gary S; Gioia, Kevin; Serur, David S; Knipp, Gregory T

    2004-02-27

    Clinical monitoring of organ-transplant recipients suggests that administration of cyclosporine (CsA) may increase the risk of atherosclerosis when compared with the general population. The purpose of this work is to demonstrate the utility of the in vitro Tamm-Horsfall protein (THP)-1 human monocyte cell culture model for determining drug-related atherosclerotic potential in macrophages. The effect of CsA on the mRNA expression of macrophage scavenger receptor genes including CD36, CD68, scavenger receptor (SR)-A, SR-BII, and lectin-like oxidized low-density lipoprotein receptor (LOX-1); the nuclear hormone receptors, including peroxisome-proliferator activated receptor (PPAR)gamma and liver-X-receptor (LXR)alpha; and the cholesterol efflux pump ABCA1 were investigated as markers of atherosclerotic progression. The THP-1 cells were cultured and differentiated into macrophages. The macrophages were then treated with CsA to assess gene expression. Time- (1, 2, 4, 8, and 24 hours) and dose- (concentrations [mg/L] corresponding to the trough [0.5], peak [1.25] and 4x peak [5]) dependency of CsA was assessed. The treated macrophage mRNA gene expression of CD36, CD68, and PPARgamma were up-regulated in the presence of CsA. Interestingly, SR-A, SR-BII, LOX-1, and LXRalpha expression appeared to be slightly down-regulated, and ABCA1 was relatively unchanged. Immunoblotting studies demonstrated that the protein expression of CD36 was unchanged or increased, PPARgamma was unchanged, and ABCA1 was unchanged or decreased at 4 and 8 hours. The results document CsA-induced mRNA and protein changes in receptors relevant to lipid-laden foam cell formation and demonstrate the utility of THP-1 macrophages for screening of atherosclerotic risk potential.

  9. Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach.

    PubMed

    Mutig, Kerim; Borowski, Tordis; Boldt, Christin; Borschewski, Aljona; Paliege, Alexander; Popova, Elena; Bader, Michael; Bachmann, Sebastian

    2016-08-01

    The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications.

  10. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies

    NASA Astrophysics Data System (ADS)

    Maier, Toni M.; Bahmann, Hilke; Arbuznikov, Alexei V.; Kaupp, Martin

    2016-02-01

    -energy dependent local hybrids, differences between spin-resolved and "common" local mixing functions in local hybrids, and the effects of the Tamm-Dancoff approximation on the excitation energies are also discussed.

  11. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    NASA Astrophysics Data System (ADS)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  12. Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach.

    PubMed

    Mutig, Kerim; Borowski, Tordis; Boldt, Christin; Borschewski, Aljona; Paliege, Alexander; Popova, Elena; Bader, Michael; Bachmann, Sebastian

    2016-08-01

    The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications. PMID:27306979

  13. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys.

    PubMed

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense.

  14. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.

    PubMed

    Corzo, H H; Galano, Annia; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2015-08-20

    Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy.

  15. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins.

    PubMed Central

    Parkkinen, J; Virkola, R; Korhonen, T K

    1988-01-01

    Earlier studies on the binding of Escherichia coli adhesins to the human urinary tract have indicated that the ability to recognize binding sites on the urinary tract epithelial cells is not a characteristic for P fimbriae only, but is also shared by some other adhesins that are not associated with pyelonephritis, especially S fimbriae. In the present study we have investigated whether human urine contains inhibitors of the binding of E. coli adhesins. Normal human urine was found to inhibit hemagglutination by S and type 1 fimbriae but not P fimbriae. The major inhibitor of S fimbriae in normal urine was identified as Tamm-Horsfall glycoprotein, and the interaction with S fimbriae is probably mediated by its sialyloligosaccharide chains. No significant variation was observed in the inhibitory effect of T-H glycoprotein preparations originating from different individuals. In contrast to S fimbriae, the major inhibitors of type 1 fimbriae in urine were identified as low-molecular-weight compounds. Gel filtration and ion-exchange chromatography and alpha-mannosidase treatment indicated that they were neutral alpha-mannosides, probably manno-oligosaccharides with three to five saccharides. Studies of urine samples collected from several individuals indicated the common occurrence of these inhibitory alpha-mannosides. Type 1 fimbriae bound to immobilized T-H glycoprotein, but, unlike S fimbriae, their binding was poorly inhibited by soluble T-H glycoprotein. Some urine samples were also found to contain low-molecular-weight inhibitors for the O75X adhesin of E. coli. These results emphasize that to function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptor structures at the infection sites that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type 1 or S fimbriae. PMID:2901405

  16. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  17. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  18. Double excitations and state-to-state transition dipoles in π-π∗ excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.

    2008-01-01

    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.

  19. Transition matrices and orbitals from reduced density matrix theory

    SciTech Connect

    Etienne, Thibaud

    2015-06-28

    In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.

  20. The electronic states of 1,2,5-oxadiazole studied by VUV absorption spectroscopy and CI, CCSD(T) and DFT methods

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.

    2009-06-01

    The 1,2,5-oxadiazole VUV absorption spectrum in the range 5-11.5 eV, shows broad bands centred near 6.2, 7.1, 8.3, 8.8, 10.6 and 11.3 eV. Rydberg states associated with three ionisation energies (IE) were identified in the complex fine structure above 8.7 eV. Electronic vertical excitation energies for singlet and triplet valence, and Rydberg states were computed using ab initio multi-reference multi-root CI methods. There is generally a good correlation between the envelope of the theoretical intensities and the experimental spectrum. The nature of the more intense calculated Rydberg states, and positions of the main valence and Rydberg bands are discussed. The lowest triplet, singlet and Rydberg 3s excited states have equilibrium structures that are non-planar with CS symmetry, in a chair-like orientation where the O and H atoms lie out of the NCCN plane. This finding is consistent with the doubling of the low energy UV spectral lines [B.J. Forrest, A.W. Richardson, Can. J. Chem., 50 (1972) 2088]. The nearly degenerate IE of the UV-photoelectron spectrum (UV-PES, Palmer et al. 1977) makes analysis of the VUV spectrum difficult, leading to the necessity for reinvestigation. Vertical studies (IEV) using CI, Tamm-Dancoff (TDA) and Green's Function (GF) methods all gave similar results, with near degeneracy of the first 3IEV confirming the earlier study. Studies of the adiabatic IE (IEA) using CCSD(T) and B3LYP methods, showed the energy sequence 2A2 < 2B1 < 2B2, but these states are all saddle points, in contrast to the 4th state (2A1) which is a minimum. In contrast, MP2 study of the 2B2 state showed a minimum, with only two saddle points. Complete minima were found after minor twisting of the structures. The lowest energy cationic state is 2A″ (CS), which closely resembles the 2B2 state. The O-N-C-C skeleton is twisted by 8°. The corresponding 2A‧ state (CS) is effectively identical to the 2B1 state. Attempts to find minima for other symmetry states were

  1. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.; Christiansen, Ove; Jensen, Hans Jørgen Aa.; Kongsted, Jacob

    2013-07-01

    We investigate the failure of time-dependent density functional theory (TDDFT) with the CAM-B3LYP exchange-correlation (xc) functional coupled to the polarisable embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge-transfer excitation in para-nitroaniline (pNA) in water by comparing with results obtained with the coupled cluster singles and doubles (CCSD) model also coupled to the polarisable embedding scheme (PE-CCSD). We determine the amount of charge separation in the ground and excited charge-transfer state with both methods by calculating the electric dipole moments in the gas phase and for 100 solvent configurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic shift are found to be inverse proportional to the change in dipole moment upon excitation, we conclude that the flaws in the description of the solvatochromic shift of this excitation are related to TDDFT itself and how it responds to the solvent effects modelled by the PE scheme. We recommend therefore to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge-transfer excitations in molecular systems similar to pNA against higher level ab initio wave function methods, like, e.g. CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure for charge-transfer character, we furthermore confirm that the difference between excitation energies calculated with TDDFT and with the Tamm-Dancoff approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution. This is supported by a corresponding correlation between the change in dipole moment and the size of the Λ index diagnostic for the investigated CT excitation.

  2. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    PubMed

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems. PMID

  3. Directing fluorescence with plasmonic and photonic structures.

    PubMed

    Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Lakowicz, Joseph R

    2015-08-18

    Fluorescence technology pervades all areas of chemical and biological sciences. In recent years, it is being realized that traditional fluorescence can be enriched in many ways by harnessing the power of plasmonic or photonic structures that have remarkable abilities to mold the flow of optical energy. Conventional fluorescence is omnidirectional in nature, which makes it difficult to capture the entire emission. Suitably designed emission directivity can improve collection efficiency and is desirable for many fluorescence-based applications like sensing, imaging, single molecule spectroscopy, and optical communication. By incorporating fluorophores in plasmonic or photonic substrates, it is possible to tailor the optical environment surrounding the fluorophores and to modify the spatial distribution of emission. This promising approach works on the principle of near-field interaction of fluorescence with spectrally overlapping optical modes present in the substrates. In this Account, we present our studies on directional emission with different kinds of planar metallic, dielectric, and hybrid structures. In metal-dielectric substrates, the coupling of fluorescence with surface plasmons leads to directional surface-plasmon-coupled emission with characteristic dispersion and polarization properties. In one-dimensional photonic crystals (1DPC), fluorophores can interact with Bloch surface waves, giving rise to sharply directional Bloch surface wave-coupled emission. The interaction of fluorescence with Fabry-Pérot-like modes in metal-dielectric-metal substrates and with Tamm states in plasmonic-photonic hybrid substrates provides beaming emission normal to the substrate surface. These interesting features are explained in the context of reflectivity dispersion diagrams, which provide a complete picture of the mode profiles and the corresponding coupled emission patterns. Other than planar substrates, specially fabricated plasmonic nanoantennas also have tremendous

  4. Quantitative studies of tubular immune complex formation and clearance in rats

    SciTech Connect

    Ishidate, T.; Ward, H.J.; Hoyer, J.R. )

    1990-12-01

    Tubular antibody deposition and clearance was quantitatively studied using affinity-purified rabbit antibodies to rat Tamm-Horsfall protein (TH), a surface membrane glycoprotein of the tubular cells of the thick ascending limb of the loop of Henle. Immune complexes are formed in situ at the base of these cells in rats injected with antisera to TH. The renal binding of I125-anti-TH was determined in pair label studies. Kidneys and other organs were removed from groups of rats for isotope counting at four hours to 14 days after an injection of I125-anti-TH and I131-normal rabbit IgG. The greatest total renal anti-TH binding after injection of 500 micrograms of anti-TH was observed at 24 hours in normal rats (18.55 +/- 1.6 micrograms). During the period of most rapid clearance (day 2 to day 7) the half life of renal anti-TH binding (84.2 hours) and the half life of anti-TH in the serum (68.5 hours) were shorter than that of IgG in the serum (117.8 hours). There was no substantial uptake of anti-TH by other organs. A close relationship between serum levels and renal uptake of anti-TH at 24 hours was also observed in rats given from 50 to 6000 micrograms of anti-TH; renal saturation was evident only at the highest dose. This close relationship was also present during the clearance phase in rats injected with 3700 micrograms of anti-TH; the half life of anti-TH was 96.2 hours in kidneys and 110 hours in serum while the half life of rabbit IgG in serum was 151.8 hours. Markedly increased renal uptake of anti-TH was observed in protein-uric rats with passive Heymann nephritis. In very proteinuric rats, 14.1% of the injected dose was bound to kidneys at 24 hours. In these rats, serum anti-TH levels decreased very rapidly to 4% of control serum levels by five days.

  5. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers.

    PubMed Central

    Gray, C.; Tamm, L. K.

    1998-01-01

    Influenza virus hemagglutinin (HA) has served as a paradigm for both pH-dependent and -independent viral membrane fusion. Although large conformational changes were observed by X-ray crystallography when soluble fragments of HA were subjected to fusion-pH conditions, it is not clear whether the same changes occur in membrane-bound HA, what the spatial relationship is between the conformationally changed HA and the target and viral membranes, and in what way HA perturbs the target membrane at low pH. We have taken a spectroscopic approach using an array of recently developed FTIR techniques to address these questions. Difference attenuated total reflection FTIR spectroscopy was employed to reveal reversible and irreversible components of the pH-induced conformational change of the membrane-bound bromelain fragment of HA, BHA. Additional proteolytic fragments of BHA were produced which permitted a tentative assignment of the observed changes to the HA1 and HA2 subunits, respectively. The membrane-bound HA1 subunit undergoes a reversible conformational change, which most likely involves the loss of a small proportion of beta-sheet at low pH. BHA was found to undergo a partially reversible tilting motion relative to the target membrane upon exposure to pH 5, indicating a previously undescribed hinge near the anchoring point to the target membrane. Time-resolved amide H/D exchange experiments revealed a more dynamic (tertiary) structure of membrane-bound BHA and its HA2, but not its HA1, subunit. Finally BHA and, to a lesser degree, HA1 perturbed the lipid bilayer of the target membrane at the interface, as assessed by spectral changes of the lipid ester carbonyl groups. These results are discussed in the context of a complementary study of HA that was bound to viral membranes through its transmembrane peptide (Gray C, Tamm LK, 1997, Protein Sci 6:1993-2006). A distinctive role for the HA1 subunit in the conformational change of HA becomes apparent from these combined

  6. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    2011-10-01

    The International Conference Alt100 - 'Resonances in Condensed Matter' was held in Kazan, Russian Federation, from 21-25 June, at Kazan (Volga Region) Federal University. The conference was devoted to the centenary of Professor, Corresponding member of Academy of Sciences of the USSR S A Altshuler (24.09.1911-24.01.1983), well known for his pioneer works together with E K Zavoiskii on EPR, prediction of neutron magnetic moment (with I E Tamm) and acoustic magnetic resonance. The program of the conference covered experimental and theoretical studies of (i) electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), ferromagnetic and antiferromagnetic resonances (FMR, AFMR) in condensed matter, enhanced nuclear magnetic resonance in Van-Vleck paramagnets (ENMR), optical spectroscopy of paramagnetic crystals; (ii) magnetic relaxation; (iii) bulk and local magnetic properties of transition metal oxides and intermetallic compounds; (iv) modern applications of magnetic resonance techniques and methods. The conference attracted 120 participants from 14 countries. There were 26 invited talks and 36 regular oral talks in the morning and afternoon sessions, and 70 poster presentations. A book of Abstracts is available on the conference website (http://alt100.ksu.ru). The Memorial Session involved talks from B I Kochelaev (Chairman of the Organizing Committee) and A A Manenkov and reminiscences about S A Altshuler given by A A Kaplyanskii, V A Kutuzov, Yu R Pol_skii and I N Pen_kov. The memorial talks and Kaplyanskii_ speech are presented in this volume. The papers submitted for this Proceedings were carefully considered by at least two referees, and we are very grateful to referees for their quick and very thoughtful responses. A few papers were eliminated because of referee reports. Finally 41 papers have been included. We thank the international advisory committee members very much for their recommendations of speakers for Alt100 and especially members of the

  7. The mechanism of Vavilov-Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Kobzev, A. P.

    2010-05-01

    The mechanism of generation of Vavilov-Cherenkov radiation is discussed in this article. The developers of the theory of the Vavilov-Cherenkov effect, I.E. Tamm and I.M. Frank, attributed this effect to their discovery of a new mechanism of radiation when a charged particle moves uniformly and rectilinearly in the medium. As such a mechanism presupposes the violation of the laws of conservation of energy and momentum, they proposed the abolition of these laws to account for the Vavilov-Cherenkov radiation mechanism. This idea has received a considerably wide acceptance in the creation of other theories, for example, transition radiation theory. In this paper, the radiation mechanism for the charge constant motion is demonstrated to be incorrect, because it contradicts not only the laws of conservation of energy and momentum, but also the very definitions of uniform and rectilinear motion (Newton's First Law). A consistent explanation of the Vavilov-Cherenkov radiation microscopic mechanism that does not contradict the basic laws is proposed. It is shown that the radiation arises from the interaction of the moving charge with bound charges that are spaced fairly far away from its trajectory. The Vavilov-Cherenkov radiation mechanism bears a slowing down character, but it differs fundamentally from bremsstrahlung, primarily because the Vavilov-Cherenkov radiation onset results from a two-stage process. First, the moving particle polarizes the medium; then, the already polarized atoms radiate coherently, provided that the particle velocity exceeds the phase speed of light in the medium. If the particle velocity is less than the phase speed of light in the medium, the polarized atoms return energy to the outgoing particle. In this case, radiation is not observed. Special attention is given to the relatively constant particle velocity as the condition of the coherent composition of waves. However, its motion cannot be designated as a uniform and rectilinear one in the

  8. Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC.

    PubMed

    Sun, Peng; Lin, Dao-Hong; Wang, Tong; Babilonia, Elisa; Wang, Zhijian; Jin, Yan; Kemp, Rowena; Nasjletti, Alberto; Wang, Wen-Hui

    2006-12-01

    We previously demonstrated that arachidonic acid (AA) inhibits epithelial Na channels (ENaC) through the cytochrome P-450 (CYP) epoxygenase-dependent pathway (34). In the present study, we tested the hypothesis that low Na intake suppresses the expression of CYP2C23, which is mainly responsible for converting AA to epoxyeicosatrienoic acid (EET) in the kidney (11) and attenuates the AA-induced inhibition of ENaC. Immunostaining showed that CYP2C23 is expressed in the Tamm-Horsfall protein (THP)-positive and aquaporin 2 (AQP2)-positive tubules. This suggests that CYP2C23 is expressed in the thick ascending limb (TAL) and collecting duct (CD). Na restriction significantly suppressed the expression of CYP2C23 in the TAL and CD. Western blot also demonstrated that the expression of CYP2C23 in renal cortex and outer medulla diminished in rats on Na-deficient diet (Na-D) but increased in those on high-Na diet (4%). Moreover, the content of 11,12-epoxyeicosatrienoic acid (EET) decreased in the isolated cortical CD from rats on Na-D compared with those on a normal-Na diet (0.5%). Patch-clamp study showed that application of 15 microM AA inhibited the activity of ENaC by 77% in the CCD of rats on a Na-D for 3 days. However, the inhibitory effect of AA on ENaC was significantly attenuated in rats on Na-D for 14 days. Furthermore, inhibition of CYP epoxygenase with MS-PPOH increased the ENaC activity in the CCD of rats on a control Na diet. We also used microperfusion technique to examine the effect of MS-PPOH on Na transport in the distal nephron. Application of MS-PPOH significantly increased Na absorption in the distal nephron of control rats but had no significant effect on Na absorption in rats on Na-D for 14 days. We conclude that low Na intake downregulates the activity and expression of CYP2C23 and attenuates the inhibitory effect of AA on Na transport. PMID:16849695

  9. Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization

    NASA Astrophysics Data System (ADS)

    Petrenko, Taras; Kossmann, Simone; Neese, Frank

    2011-02-01

    In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ˜26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ˜27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ˜24 on 30 processors. The

  10. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    PubMed

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  11. A. Sakharov and Fusion Research

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-02-01

    In the landmark paper by Tamm and Sakharov [1], a controlled nuclear fusion reactor based on an axisymmetric magnetic confinement configuration whose principles remain valid to this day, was proposed. In the light of present understanding of plasma physics the virtues (e.g. that of considering the D-D reaction) and the shortcomings of this paper are pointed out. In fact, relatively recent results of theoretical plasma physics (e.g. discovery of the so called second stability region) and advances in high field magnet technology have made it possible to identify the parameters of meaningful experiments capable of exploring D-D and D-^3He burn conditions. At the same time an experimental program (IGNIR) has been undertaken through a (funded) collaboration between Italy and Russia to investigate D-T plasmas close to ignition conditions based on an advanced high field toroidal confinement configuration. A. Sakharov envisioned a bolder approach to fusion research than that advocated by some of his contemporaries. The time taken to design and decide to fabricate the first experiment capable of reaching ignition conditions is due in part to the problem of gaining an adequate understanding the expected physics of fusion burning plasmas. However, most of the relevant financial effort has gone in the pursuit of slow and indirect enterprises complying with the ``playing it safe'' tendencies of large organizations or motivated by the purpose to develop technologies or maintain a high level of expertise in plasma physics to the expected benefit of other kinds of endeavors. The creativity demonstrated by A. Sakharov in dealing with civil rights and disarmament issues is needed, while maintaining our concerns for energy and the environment on a global scale, to orient the funding for fusion research toward a direct and well based scientific effort on concepts for which a variety of developments can be envisioned. These can span from uncovering new physics relevant, for instance

  12. Identification and quantification of nitrogen cycling processes in cryptogamic covers

    NASA Astrophysics Data System (ADS)

    Weber, Bettina; Wu, Dianming; Lenhart, Katharina; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Elbert, Wolfgang; Burrows, Susannah; Clough, Tim; Steinkamp, Jörg; Meusel, Hannah; Behrendt, Thomas; Büdel, Burkhard; Andreae, Meinrat O.; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul; Keppler, Frank; Su, Hang; Pöschl, Ulrich

    2016-04-01

    budget from natural terrestrial sources (Lenhart et al., 2015). 15N isotope labeling experiments revealed that nitrate (NO3-) was a precursor of N2O, suggesting that N2O may be formed during denitrification. Thus, our experiments revealed that CC play a prominent role in different steps of the N cycle, being relevant in terrestrial biogeochemistry, atmospheric chemistry and air quality. Literature Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosciences 5: 459-462. Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F (2015) Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21(10): 3889-3900. Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, Meusel H, Elbert W, Behrendt T, Sörgel M, Cheng Y, Crutzen P, Su H, Pöschl U (2015) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proceedings of the National Academy of Sciences 112(50): 15384-15389.

  13. Electronic structure of CuTPP and CuTPP(F) complexes: a combined experimental and theoretical study II.

    PubMed

    Mangione, Giulia; Sambi, Mauro; Carlotto, Silvia; Vittadini, Andrea; Ligorio, Giovanni; Timpel, Melanie; Pasquali, Luca; Giglia, Angelo; Nardi, Marco Vittorio; Casarin, Maurizio

    2016-09-28

    The unoccupied electronic structure of thick films of tetraphenylporphyrin and tetrakis(pentafluorophenyl)porphyrin Cu(ii) complexes (hereafter, CuTPP and CuTPP(F)) deposited on Au(111) has been studied by combining the outcomes of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with those of spin-unrestricted time-dependent density functional (TD-DFT) calculations carried out either within the scalar relativistic zeroth order regular approximation (ZORA) framework (C, N and F K-edges) or by using the Tamm-Dancoff approximation coupled to ZORA and including spin-orbit effects (Cu L2,3-edges). Similarly to the modelling of NEXAFS outcomes pertaining to other Cu(ii) complexes, the agreement between theory and experiment is more than satisfactory, thus confirming the open-shell TD-DFT to be a useful tool to look into NEXAFS results pertinent to Cu(ii) compounds. The combined effect of metalation and phenyl (Ph) fluorine decoration is found to favour an extensive mixing between (Ph)σ* and pristine porphyrin macrocyle (pmc) (pmc)π* virtual levels. The lowest lying excitation in the C and N K-edge spectra of both CuTPP and CuTPP(F) is associated with a ligand-to-metal-charge-transfer transition, unambiguously revealed in the (CuTPP)N K-edge spectral pattern. Moreover, the comparison with literature data pertaining to the modelling of the (Cu(II))L2,3 features in the phthalocyanine-Cu(ii) (CuPc) complex provided further insights into how metal-to-ligand-charge-transfer transitions associated with excitations from 2p(Cu(II)) AOs to low-lying, ligand-based π* MOs may contribute to the Cu(ii) L2,3-edge intensity and thus weaken its believed relationship with the Cu(ii)-ligand symmetry-restricted covalency. Despite the coordinative pocket of CuTPP/CuTPP(F) mirroring CuPc, the ligand-field strength exerted by the phthalocyanine ligand on the Cu(ii) centre is experimentally found and theoretically confirmed to be slightly stronger than that experienced by Cu

  14. Thirty-eight years of stone meetings in Europe.

    PubMed

    Bichler, K H

    2006-04-01

    Of decisive importance for the many research groups all over Europe were the scientific symposia dealing with the theoretical foundations and clinical aspects of urinary stone disease. There were several sources from which today's European Urinary Stone meetings and the "Eurolithiasis Society" itself arose. It was a long way from Leeds in 1968 to Jena 1970, Bonn-Vienna in 1972 and to 11 European meetings from 1989 to 2005. Which developments in urinary stone disease research have been presented at our congresses during the past 40 years? The 1970s and 1980s are the years marked by efforts to measure the important lithogenic substances such as calcium, ionized calcium, uric acid, phosphate, oxalate with reliable methods. Hypercalciuria and specifically mild hyperoxaluria were the topics of numerous investigations in the 1970s, 1980s and 1990s. The calcium-loading test described by Pak has been discussed frequently since its application. It became apparent that oxalic acid is more important in urinary stone formation than hypercalciuria. Of importance were investigations done by Robertson and his colleagues on the influence of diet (in particular, an animal protein-rich diet) on urinary stone formation. Another emphasis of research was investigation of the crystallization process: supersaturation, crystal growth and aggregation are important steps in urinary stone formation. Of great importance in the formation of urinary stones are inhibitors (inhibitory activity): citrate, magnesium, pyrophosphate, macromolecules: GAGs, THP etc. and it became possible in the early 1970s to determine substances such as Tamm-Horsfall protein (THP) and GAGs. Much attention in the 1970s and 1980s was focused on urinary stone analysis (X-ray diffraction, infrared spectroscopy, polarization microscopy) and standardization of these methods. In the mid-1980s, a whole series of epidemiological studies were carried out, with data for the Federal Republic of Germany, East Germany

  15. Intracellular Mg2+ and magnesium depletion in isolated renal thick ascending limb cells.

    PubMed Central

    Dai, L J; Quamme, G A

    1991-01-01

    Magnesium reabsorption and regulation within the kidney occur principally within the cortical thick ascending limb (cTAL) cells of the loop of Henle. Fluorometry with the dye, mag-fura-2, was used to characterize intracellular Mg2+ concentration ([Mg2+]i) in single cTAL cells. Primary cell cultures were prepared from porcine kidneys using a double antibody technique (goat anti-human Tamm-Horsfall and rabbit anti-goat IgG antibodies). Basal [Mg2+]i was 0.52 +/- 0.02 mM, which was approximately 2% of the total cellular Mg. Cells cultured (16 h) in high magnesium media (5 mM) maintained basal [Mg2+]i, 0.48 +/- 0.02, in the normal range. However, cells cultured in nominally magnesium-free media possessed [Mg2+]i, 0.27 +/- 0.01 mM, which was associated with a significant increase in net Mg transport, (control, 0.19 +/- 0.03 and low Mg, 0.35 +/- 0.01 nmol.mg-1 protein.min-1) as assessed by 28Mg uptake. Mg(2+)-depleted cells were subsequently placed in high Mg solution (5 mM) and the Mg2+ refill rate was assessed by fluorescence. [Mg2+]i returned to normal basal levels, 0.53 +/- 0.03 mM, with a refill rate of 257 +/- 37 nM/s. Mg2+ entry was not changed by 5.0 mM Ca2+ or 2 mM Sr2+, Cd2+, Co2+, nor Ba2+ but was inhibited by Mn2+ approximately La3+ approximately Gd3+ approximately Zn2+ approximately Be2+ at 2 mM. Intracellular Ca2+ and 45Ca uptake was not altered by Mg depletion or Mg2+ refill, indicating that the entry is relatively specific to Mg2+. Mg2+ uptake was inhibited by nifedipine (117 +/- 20 nM/s), verapamil (165 +/- 34 nM/s), and diltiazem (194 +/- 19 nM/s) but enhanced by the dihydropyridine analogue, Bay K 8644 (366 +/- 71 nM/s). These antagonists and agonists were reversible with removal and [Mg2+]i subsequently returned to normal basal levels. Mg2+ entry rate was concentration and voltage dependent and maximally stimulated after 4 h in magnesium-free media. Cellular magnesium depletion results in increases in a Mg2+ refill rate which is dependent, in part, on

  16. Identification and quantification of nitrogen cycling processes in cryptogamic covers

    NASA Astrophysics Data System (ADS)

    Weber, Bettina; Wu, Dianming; Lenhart, Katharina; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Elbert, Wolfgang; Burrows, Susannah; Clough, Tim; Steinkamp, Jörg; Meusel, Hannah; Behrendt, Thomas; Büdel, Burkhard; Andreae, Meinrat O.; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul; Keppler, Frank; Su, Hang; Pöschl, Ulrich

    2016-04-01

    budget from natural terrestrial sources (Lenhart et al., 2015). 15N isotope labeling experiments revealed that nitrate (NO3‑) was a precursor of N2O, suggesting that N2O may be formed during denitrification. Thus, our experiments revealed that CC play a prominent role in different steps of the N cycle, being relevant in terrestrial biogeochemistry, atmospheric chemistry and air quality. Literature Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosciences 5: 459-462. Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F (2015) Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21(10): 3889-3900. Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, Meusel H, Elbert W, Behrendt T, Sörgel M, Cheng Y, Crutzen P, Su H, Pöschl U (2015) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proceedings of the National Academy of Sciences 112(50): 15384-15389.

  17. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5

  18. “The Marshall Rosenbluth International Summer School – 2007: Plasma Thermonuclear Fusion and Plasma Astrophysics – 2007”

    SciTech Connect

    Stefan, Vladislav Alexander

    2007-10-01

    plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.

  19. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5