Science.gov

Sample records for juan fernandez seamounts

  1. Aerobic and anaerobic enzymatic activity of orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) from the Juan Fernandez seamounts area.

    PubMed

    Saavedra, L M; Quiñones, R A; Gonzalez-Saldía, R R; Niklitschek, E J

    2016-06-01

    The aerobic and anaerobic enzymatic activity of two important commercial bathypelagic species living in the Juan Fernández seamounts was analyzed: alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus). These seamounts are influenced by the presence of an oxygen minimum zone (OMZ) located between 160 and 250 m depth. Both species have vertical segregation; alfonsino is able to stay in the OMZ, while orange roughy remains at greater depths. In this study, we compare the aerobic and anaerobic capacity of these species, measuring the activity of key metabolic enzymes in different body tissues (muscle, heart, brain and liver). Alfonsino has higher anaerobic potential in its white muscle due to greater lactate dehydrogenase (LDH) activity (190.2 μmol NADH min(-1) g ww(-1)), which is related to its smaller body size, but it is also a feature shared with species that migrate through OMZs. This potential and the higher muscle citrate synthase and electron transport system activities indicate that alfonsino has greater swimming activity level than orange roughy. This species has also a high MDH/LDH ratio in its heart, brain and liver, revealing a potential capacity to conduct aerobic metabolism in these organs under prolonged periods of environmental low oxygen conditions, preventing lactic acid accumulation. With these metabolic characteristics, alfonsino may have increased swimming activity to migrate and also could stay for a period of time in the OMZ. The observed differences between alfonsino and orange roughy with respect to their aerobic and anaerobic enzymatic activity are consistent with their characteristic vertical distributions and feeding behaviors.

  2. Tectonics and evolution of the Juan Fernandez microplate at the Pacific-Nazca-Antarctic triple junction

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, S.; Larson, R. L.; Engein, J. F.; Lundgren, P.; Stein, S.

    1986-01-01

    Magnetic and bathymetric profiles derived from the R/V Endeavor survey and focal mechanism studies for earthquakes on two of the Juan Fernandez microplate boundaries are analyzed. It is observed that the Nazca-Juan Fernandez pole is in the northern end of the microplate since the magnetic lineation along the East Ridge of the microplate fans to the south. The calculation of the relative motion of the Juan Fernandez-Pacific-Nazca-Antarctic four-plate system using the algorithm of Minster et al. (1974) is described. The development of tectonic and evolutionary models of the region is examined. The tectonic model reveals that the northern boundary of the Juan Fernandez microplate is a zone of compression and that the West Ridge and southwestern boundary are spreading obliquely; the evolutionary model relates the formation of the Juan Fernandez microplate to differential spreading rates at the triple junction.

  3. Mesobathic chondrichthyes of the Juan Fernández seamounts: are they different from those of the central Chilean continental slope?

    PubMed

    Andrade, Isabel; Pequeño, Germán

    2008-03-01

    We compared the geographic distribution of groups of chondrychthid fishes of two physically proximal, although geographically different, regions that include the Juan Fernández seamounts and the central Chilean continental slope, both sampled at mesopelagic and mesobenthonic depths. The ridge is in the Nazca Plate, while the slope region in on the South American Plate, and is closer to the South American continent. We found six species of Chondrichthyes for the seamounts (four orders, four families). The slope sampling produced ten species of Chondrichthyes, of which Torpedo tremens De Buen 1959, was the only species in common with the Juan Fernandez area. There are clear differences between the Chondrichthyes of the two regions. These fisheries require adequate administrative modes.

  4. A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32°S), central Chile

    NASA Astrophysics Data System (ADS)

    Marot, M.; Monfret, T.; Pardo, M.; Ranalli, G.; Nolet, G.

    2013-07-01

    The region of central Chile offers a unique opportunity to study the links between the subducting Juan Fernandez Ridge, the flat slab, the double seismic zone (DSZ), and the absence of modern volcanism. Here we report the presence and characteristics of the first observed DSZ within the intermediate-depth Nazca slab using two temporary seismic catalogs (Ovalle 1999 and Chile Argentina Seismological Measurement Experiment). The lower plane of seismicity (LP) is located 20-25 km below the upper plane, begins at 50 km depth, and merges with the lower plane at 120 km depth, where the slab becomes horizontal. Focal mechanism analysis and stress tensor calculations indicate that the slab's state of stress is dominantly controlled by plate convergence and overriding crust thickness: Above 60-70 km depth, the slab is in horizontal compression, and below, it is in horizontal extension, parallel to plate convergence, which can be accounted for by vertical loading of the overriding lithosphere. Focal mechanisms below 60-70 km depth are strongly correlated with offshore outer rise bend faults, suggesting the reactivation of preexisting faults below this depth. The large interplane distances for all Nazca DSZs can be related to the slab's unusually cold thermal structure with respect to its age. Since LPs globally seem to mimic mantle mineral dehydration paths, we suggest that fluid migration and dehydration embrittlement provide the mechanism necessary to weaken the rock and that the stress field determines the direction of rupture.

  5. Biogeography and historical demography of the Juan Fernandez Rock Lobster, Jasus frontalis (Milne Edwards, 1837).

    PubMed

    Porobic, Javier; Canales-Aguirre, Cristian B; Ernst, Billy; Galleguillos, Ricardo; Hernández, Cristián E

    2013-03-01

    The genetic structure of present-day populations has been highly affected by glacial periods and physical oceanographic forcing, particularly with respect to species distributions and population gene-flow patterns. We assessed the current genetic composition of the Jasus frontalis population in the southeastern Pacific Islands off the coast of Chile to evaluate their connectivity modulated by contemporary and historic oceanographic processes. Population structure and demographical history for this species were assessed based on classic and Bayesian approaches using 84 sequences of cytochrome oxidase subunit I. In addition, we estimated the time of origin of J. frontalis in the different geographic zones. The analyses show a panmictic population with high gene flow between subcomponents and a lack of genetic structure (F (ST) < 0.008). This high gene flow is mainly modulated by mesoscale oceanographic factors such as eddies and meanders. In a historical spatial context, the most probable common ancestor of J. frontalis could have colonized the region around 0.258 million years before present (MYBP), first becoming established in the Juan Fernández Archipelago and then expanding toward the Desventuradas Islands. The demographic history shows a consistent increase in the effective population size (N ( e )) starting approximately 0.130 MYBP, which is highly correlated with sea-level changes during the last glacial maximum.

  6. Geochemistry of Axial seamount lavas: Magmatic relationship between the Cobb hotspot and the Juan de Fuca Ridge

    SciTech Connect

    Rhodes, J.M.; Morgan, C.; Lilas, R.A. )

    1990-08-10

    Axial seamount, located along the central portion of the Juan de Fuca Ridge axis and at the eastern end of the Cobb-Eickelberg seamount chain, is the current center of the Cobb hotspot. Lava chemistry and bathymetry indicate that Axial seamount is a discrete volcanic unit, with a more productive shallow magmatic plumbing system separate from the adjacent ridge segments. Despite this classic association of spreading center and hotspot volcanic activity, there is no evidence in the lavas for geochemical or isotopic enrichment typical of hotspot or mantle plume activity. The differences in composition between the Axial seamount lavas and the Juan de Fuca Ridge lavas are attributed to melting processes rather than to any fundamental differences in their mantle source compositions. The higher magma production rates, higher Sr, and lower silica saturation in the seamount lavas relative to the ridge lavas are thought to be a consequence of melt initiation at greater depths. The melting column producing the seamount lavas is thought to be initiated in the stability field of spinel peridotite, whereas the ridge lavas are produced from a melting column initiated at shallower levels, possibly within or close to the stability field of plagioclase peridotite. Implicit in this interpretation is the conclusion that the Juan de Fuca Ridge lavas, and by analogy most MORB, are generated at shallow mantle levels, mostly within the stability field of plagioclase peridotite. This interpretation also requires that for the upwelling mantle to intersect the solidus at different depths, the mantle supplying Axial seamount must be hotter than the rest of the Juan de Fuca Ridge. Axial seamount, therefore, reflects a thermal anomaly in the mantle, rather than a geochemically enriched ocean island basalt type mantle plume.

  7. Geochemical constraints on the formation of near-ridge Vance seamount chain at the Juan de Fuca Ridge (Invited)

    NASA Astrophysics Data System (ADS)

    Walters, R. L.; Hann, N.; Perfit, M. R.

    2013-12-01

    Observations and sampling of off-axis lava flows and near-ridge seamounts, coupled with the recent discovery of large melt bodies away from ridge axes, attest to the significance of off-axis magmatic phenomena for the formation of the oceanic lithosphere at mid-ocean ridges (MORs). One of the most crucial unsolved questions of oceanic volcanism surrounds the physical mantle processes that cause the initial formation of near-ridge seamounts and sustain volcanism over several million years to produce seamount chains. The Vance Seamounts are just one example of a series of near-ridge seamount chains on the Pacific Plate. The chain comprises six submarine mountains that sit more than 1km above the surrounding oceanic crust just west of the Vance segment of the Juan de Fuca Ridge (JdFR). Dive observations indicate that the seamount chain formed sequentially with the oldest seamount furthest from the ridge axis. The geochemical characteristics of the oldest seamount suggest that the initiation of seamount volcanism was associated with a localized chemical (× thermal) heterogeneity in the mantle. Trace element and isotopic signatures suggest that the chemical heterogeneity was progressively depleted as subsequent seamounts were formed. Central seamount lavas have N-MORB compositions with trace element and isotopic ratios that are significantly more depleted than N-MORB lavas erupted at the JdFR axis. Depletion in the most incompatible elements is so severe for the central seamounts that no physically realistic forward geochemical models involving average depleted MORB mantle can reproduce potential parental melt compositions. The lava compositions from seamounts closest to the ridge reverse the trend in trace element depletion becoming more similar to N-MORB erupted at the current axis. We suggest that excess melt is generated off-axis due to the impingement of a discrete chemical heterogeneity that is more fusible than the DMM matrix. A variety of 2D model ridge

  8. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  9. Petrological variability of recent magmatism at Axial Seamount summit, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Dreyer, Brian M.; Clague, David A.; Gill, James B.

    2013-10-01

    A combined study of mapping, observational, age constraint, and geochemical data at the summit of Axial Seamount, Juan de Fuca Ridge, has revealed its recent petrological history. Multiple basalt types erupted at the summit in a time sequence. At least three different magma batches have been present beneath the Axial Summit caldera during the last millennium, each with a range in differentiation. The first, prior to 1100 CE, was compositionally diverse, dominantly aphyric T-MORB. The second, from ˜1220 to 1300 CE, was dominantly plagioclase-phyric, more mafic N-MORB erupted mostly in the central portion of the caldera. Since ˜1400 CE, lavas have been more differentiated, and nearly aphyric T-MORB mostly erupted in the caldera's rift zones. Parental magmas vary subtly due to small coupled differences in the degree of melting and sources, but all share a uniform differentiation trend indicating pooling at similar depths. Thus, melts percolate through melt-rich lenses that remain partially isolated in space and/or time. Centennial magmatic timescales at Axial Seamount are similar to those for fast spreading ridge segments. The fluctuation between aphyric and plagioclase-phyric lava likely reflects different pathways or velocities of melt migration.

  10. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  11. The sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Little, Sarah A.; Stolzenbach, Keith D.; Purdy, G. Michael

    1990-08-01

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the caldera wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 10-4Pa2/Hz was noticed on two records taken within 3 m of the Inferno black smoker. Hie frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities.

  12. Magma Dynamics at Axial Seamount, Juan de Fuca Ridge, from Seafloor Deformation Data

    NASA Astrophysics Data System (ADS)

    Baumgardt, E.; Nooner, S. L.; Chadwick, W.

    2014-12-01

    Axial Seamount is located about 480 km west of the Oregon coast at the intersection of the Cobb hotspot and the Juan de Fuca Ridge. Two eruptions have been observed since routine observations began in the 1990's, one in January 1998 and the other in April 2011. Precise bottom pressure measurements have documented an inflation/deflation cycle within Axial's summit caldera. The slow inflation observed at the center of the caldera was punctuated by sudden rapid deflation of 3.2 m during the 1998 eruption and 2.4 m during the 2011 eruption. Pressure data collected in September 2013 from continuously recording bottom pressure recorders and campaign-style measurements with an ROV indicates that Axial Seamount inflated 1.57 m from April 2011 to September 2013 at an average inflation rate of 61 cm/yr, meaning it had already recovered more than 65% of the deflation from the 2011 eruption within just 2.4 years. The geometry and location of the deformation source is not well constrained by the spatially-sparse pressure data, particularly for the most recent co-eruption deflation and post-eruption inflation signals. Here, we use geodetic data collected in September 2013 to test the fit of multiple numerical models of increasing complexity. We show that for this time period (since April 2011) neither a simple point deformation source (Mogi model) nor an oblate spheroid (penny-shaped crack) provide a good fit to the data. We then use finite element models to build more complex inflation geometries, guided by recent seismically imaged magma reservoirs, in an attempt to understand the source(s) of the observed deformation pattern. The recent seismic data provide good constraints on magma reservoir geometry and show the most robust melt occurs under the southeast part of the caldera at Axial. However, previous geodetic measurements at Axial have consistently shown a deformation source near the caldera center. We use numerical modeling to attempt to reconcile these differences.

  13. Microbiological characterization of post-eruption "snowblower" vents at Axial Seamount, Juan de Fuca Ridge.

    PubMed

    Meyer, Julie L; Akerman, Nancy H; Proskurowski, Giora; Huber, Julie A

    2013-01-01

    Microbial processes within the subseafloor can be examined during the ephemeral and uncommonly observed phenomena known as snowblower venting. Snowblowers are characterized by the large quantity of white floc that is expelled from the seafloor following mid-ocean ridge eruptions. During these eruptions, rapidly cooling lava entrains seawater and hydrothermal fluids enriched in geochemical reactants, creating a natural bioreactor that supports a subseafloor microbial "bloom." Previous studies hypothesized that the eruption-associated floc was made by sulfide-oxidizing bacteria; however, the microbes involved were never identified. Here we present the first molecular analysis combined with microscopy of microbial communities in snowblower vents from samples collected shortly after the 2011 eruption at Axial Seamount, an active volcano on the Juan de Fuca Ridge. We obtained fluid samples and white flocculent material from active snowblower vents as well as orange flocculent material found on top of newly formed lava flows. Both flocculent types revealed diverse cell types and particulates when examined by phase contrast and scanning electron microscopy (SEM). Distinct archaeal and bacterial communities were detected in each sample type through Illumina tag sequencing of 16S rRNA genes and through sequencing of the sulfide oxidation gene, soxB. In fluids and white floc, the dominant bacteria were sulfur-oxidizing Epsilonproteobacteria and the dominant archaea were thermophilic Methanococcales. In contrast, the dominant organisms in the orange floc were Gammaproteobacteria and Thaumarchaeota Marine Group I. In all samples, bacteria greatly outnumbered archaea. The presence of anaerobic methanogens and microaerobic Epsilonproteobacteria in snowblower communities provides evidence that these blooms are seeded by subseafloor microbes, rather than from microbes in bottom seawater. These eruptive events thus provide a unique opportunity to observe subseafloor microbial

  14. Comparison of Volatile and Major Element Concentrations in Melt Inclusions from Juan de Fuca Ridge Seamounts and the Adjacent Ridge Axis

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.; Perfit, M. R.; Clague, D. A.

    2014-12-01

    Here we present volatile (CO2, H2O, F, S, Cl) and major element data from >200 naturally glassy, olivine-hosted melt inclusions and glasses erupted from five seamounts proximal to the Juan de Fuca Ridge. This includes 90 analyses of melt inclusions from the Vance Seamount chain and 126 analyses from two small, mafic (glass MgO > 9 wt%) near-axis cones (T461 and T881). We provide geochemical constraints on both the compositional variations and the depths of crystallization beneath the seamounts using vapor-saturation pressures derived from CO2-H2O concentrations. These data suggest crystallization occurs beneath the two near-axis cones from seafloor pressures to 6400 bars corresponding to depths up to 9 km below the seafloor. This range of crystallization is similar to that calculated from olivine-hosted melt inclusions from the adjacent Juan de Fuca Ridge axis. By contrast, crystallization pressures from Vance Seamounts are more limited with pressures ranging from 400 to 1300 bars or depths of 0.7 to 3.8 km below seafloor. The Vance Seamounts have a prominent peak in depths of crystallization at ~2-3 km below seafloor in histograms, perhaps suggesting that it is the preferred depth of melt storage and crystallization beneath seamounts chains. By contrast, crystallization peaks beneath the small, near-axis cones are less prominent and occur slightly deeper at 3-4 km below seafloor. Overall, S and F concentrations in the seamount melt inclusions are similar to on-axis inclusions; however, Cl concentrations in the seamounts are remarkably low. On-axis inclusions have an average of 61 ppm Cl and range from 4-163 ppm. By contrast, Cl concentrations in the seamounts range from 3-82 ppm, but have an average of only 11 ppm. Excess Cl in mid-ocean ridge lavas is often attributed to contamination by seawater or brines associated with hydrothermal circulation. We suggest that the low Cl concentrations in the seamount inclusions may result from either a seamount mantle source

  15. Geochemistry and petrology of andesites from the north rift zone of Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Smithka, I. N.; Perfit, M. R.; Clague, D. A.; Wanless, V. D.

    2014-12-01

    In 2013, the ROV Doc Ricketts onboard R/V Western Flyer explored ~4 km of an elongate pillow ridge up to ~300 m high along the eastern edge of the north rift zone of Axial Seamount. The steep-sided volcanic ridge is constructed of large pillow lavas up to 2-3 m in diameter and smaller elongated pillow tubes. Of the 27 samples collected during dive D526, all but one are andesites making it one of the largest confirmed high-silica exposures along a mid-ocean ridge (MOR). Based on radiocarbon ages of sediment on top of flows, the mounds are at least ~1390 years old. This minimum age is much younger than the 56 Ka age calculated based on distance from the rift axis, indicating eruption off-axis through older, colder crust and supporting the hypothesis and model calculations that extensive fractional crystallization (>85%) caused the high silica content. The andesitic lavas are primarily glassy, highly vesicular, crusty, and sparsely phyric with small (~1 mm) plagioclase crystals and olivine, clinopyroxene, and Fe-Ti oxide microphenocrysts. Microprobe analyses of glasses are similar to wax-core samples previously collected from this area but are more compositionally variable. Excluding one basalt (7.7 wt% MgO) sampled between mounds, the lavas are basaltic andesites and andesites (53-59 wt% SiO2) with <3 wt% MgO and 12.8-15.7 wt% FeO concentrations. Incompatible trace element abundances are ~4-6 times more enriched than in Axial Seamount T-MORB. Primitive mantle-normalized patterns are similar to those of high-silica lavas from other MORs (southern Juan de Fuca Ridge, 9N East Pacific Rise) with significant positive U anomalies, large negative Sr anomalies, small negative Eu anomalies, and slight positive Zr-Hf anomalies. The andesites are more enriched in light rare earth elements than basalts from Axial Seamount ((La/Yb)N 1.35-1.4 vs. 0.7-1.27) and N-MORB from the southern Juan de Fuca Ridge. The andesites also have high Cl (~0.3-0.6 wt%) and H2O (~1.60-1.71 wt

  16. Assimilation of Seawater in Basaltic Magmas: Evidence Found in a Lava Pillar From Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Zierenberg, R.; Chadwick, W. W.; Clague, D. A.

    2008-12-01

    A lava pillar formed during the 1998 eruption at Axial Seamount exhibits compositional and textural evidence consistent with the direct assimilation of seawater under magmatic conditions. Glass immediately adjacent to anastomosing microfractures within 1 cm of the inner pillar wall is oxidized and significantly enriched in both Na and Cl (and depleted in Fe and K) with respect to that in selvages from the (unaffected) outer pillar wall. The affected glass contains up to 1 wt. % Cl and is enriched by ca. 2 wt. % Na2O relative to unaffected glass, consistent with a nearly 1:1 (molar) assimilation of NaCl. Glass not adjacent to microfractures in the inner pillar wall is depleted in Na, but enriched in K, with respect to the NaCl-enriched, inner pillar wall glass and the unaffected outer pillar wall glass. The 87Sr/86Sr ratio of the NaCl-enriched glass (ca. 0.704 +/- .001), as determined by LA ICPMS, is slightly elevated with respect to that of unaffected glass (ca. .703) consistent with the incorporation of a seawater-derived fluid. The presence of tiny (< 10 mm) grains of Cu-Fe- and Fe-sulfides as well as elemental Ni, Ag, and Au in the Na-depleted, K-enriched glass of the inner pillar wall implies significant reduction of this glass, presumably by hydrogen generated during seawater assimilation and oxidation of magma adjacent to microfractures. We interpret that the chemical anomalies we see in the glass of the interior pillar wall are caused by nearly instantaneous assimilation of seawater into the magma during pillar growth. Other lava pillars we have examined from Axial Seamount and elsewhere on the Juan de Fuca Ridge do not display similar features, although we have not examined a statistically significant number of samples to ascertain how widespread a process this is for seawater assimilation.

  17. Degassing and Vesiculation during the 2011 Eruption of Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jones, M.; Soule, S. A.

    2015-12-01

    The dependency of CO2 disequilibrium in mid-ocean ridge basalts (MORB) on magma ascent and emplacement rates makes volatile analysis a valuable tool for evaluating submarine eruption dynamics. This study examines volatile content and vesicle size distributions in a suite of samples collected from the 2011 eruption of Axial Seamount. The samples exhibit a wide range of dissolved CO2 concentrations (68 - 339 ppm), low H2O concentrations (0.17 - 0.26 wt %), and consistent supersaturation relative to the expected CO2-H2O phase equilibrium in basaltic melts. The vesicularity, characteristic bubble radii, and bubble number density correlate with the dissolved volatile concentrations and indicate that bubble nucleation and growth occur within a closed system. The extent of degassing increases with distance from the eruptive vent and variations are also observed along the eruptive fissure providing a spatially resolved record of eruption dynamics. A bubble growth model is used to constrain the minimum ascent rates, eruption duration, and flow rates for the 2011 eruption. These results are compared to similar data from the global mid-ocean ridge system to evaluate differences in timescales of emplacement and ascent in MOR eruptions.

  18. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  19. Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount, Juan de Fuca Ridge

    PubMed Central

    Meyer, Julie L.; Akerman, Nancy H.; Proskurowski, Giora; Huber, Julie A.

    2013-01-01

    Microbial processes within the subseafloor can be examined during the ephemeral and uncommonly observed phenomena known as snowblower venting. Snowblowers are characterized by the large quantity of white floc that is expelled from the seafloor following mid-ocean ridge eruptions. During these eruptions, rapidly cooling lava entrains seawater and hydrothermal fluids enriched in geochemical reactants, creating a natural bioreactor that supports a subseafloor microbial “bloom.” Previous studies hypothesized that the eruption-associated floc was made by sulfide-oxidizing bacteria; however, the microbes involved were never identified. Here we present the first molecular analysis combined with microscopy of microbial communities in snowblower vents from samples collected shortly after the 2011 eruption at Axial Seamount, an active volcano on the Juan de Fuca Ridge. We obtained fluid samples and white flocculent material from active snowblower vents as well as orange flocculent material found on top of newly formed lava flows. Both flocculent types revealed diverse cell types and particulates when examined by phase contrast and scanning electron microscopy (SEM). Distinct archaeal and bacterial communities were detected in each sample type through Illumina tag sequencing of 16S rRNA genes and through sequencing of the sulfide oxidation gene, soxB. In fluids and white floc, the dominant bacteria were sulfur-oxidizing Epsilonproteobacteria and the dominant archaea were thermophilic Methanococcales. In contrast, the dominant organisms in the orange floc were Gammaproteobacteria and Thaumarchaeota Marine Group I. In all samples, bacteria greatly outnumbered archaea. The presence of anaerobic methanogens and microaerobic Epsilonproteobacteria in snowblower communities provides evidence that these blooms are seeded by subseafloor microbes, rather than from microbes in bottom seawater. These eruptive events thus provide a unique opportunity to observe subseafloor microbial

  20. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge

    USGS Publications Warehouse

    Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Chadwick, William W Jr; Caress, David W; Portner, Ryan A; Guilderson, Thomas P.; McGann, Mary; Thomas, Hans; Butterfield, David A; Embley, Robert W

    2013-01-01

    Multibeam (1 m resolution) and side scan data collected from an autonomous underwater vehicle, and lava samples, radiocarbon-dated sediment cores, and observations of flow contacts collected by remotely operated vehicle were combined to reconstruct the geologic history and flow emplacement processes on Axial Seamount's summit and upper rift zones. The maps show 52 post-410 CE lava flows and 20 precaldera lava flows as old as 31.2 kyr, the inferred age of the caldera. Clastic deposits 1–2 m thick accumulated on the rims postcaldera. Between 31 ka and 410 CE, there are no known lava flows near the summit. The oldest postcaldera lava (410 CE) is a pillow cone SE of the caldera. Two flows erupted on the W rim between ∼800 and 1000 CE. From 1220 to 1300 CE, generally small eruptions of plagioclase phyric, depleted, mafic lava occurred in the central caldera and on the east rim. Larger post-1400 CE eruptions produced inflated lobate flows of aphyric, less-depleted, and less mafic lava on the upper rift zones and in the N and S caldera. All caldera floor lava flows, and most uppermost rift zone flows, postdate 1220 CE. Activity shifted from the central caldera to the upper S rift outside the caldera, to the N rift and caldera floor, and then to the S caldera and uppermost S rift, where two historical eruptions occurred in 1998 and 2011. The average recurrence interval deduced from the flows erupted over the last 800 years is statistically identical to the 13 year interval between historical eruptions.

  1. Evidence of active ground deformation on the mid-ocean ridge: Axial seamount, Juan de Fuca Ridge, April-June 1988

    SciTech Connect

    Fox, C.G. )

    1990-08-10

    Since September 1987 a precision bottom pressure recorder (BPR) has been deployed within the summit caldera of Axial seamount. The instrument is capable of measuring pressure of 1 mbar resolution and recording these measurements at 64 samples per hour for up to 15 months. Any significant change in the pressure record should indicate a change of depth associated with vertical ground movement, commonly indicative of active inflation or deflation of underlying magma bodies. Results from the first 9 months of the BPR deployment revealed a significant change in pressure, which is interpreted to represent a 15-cm subsidence of the caldera floor during two 2- to 3-week periods in April-June 1988. Also during these periods, an anomalous decline in temperature at the site was recorded that is correlated with an apparent increase in current velocity at the Axial Seamount Hydrothermal Emissions Study (ASHES) vent field, suggesting vigorous advection of cold water into the caldera. Concurrent oceanographic data from Geosat and from current meter arrays do not indicate any large-scale oceanographic phenomena capable of generating these simultaneous events. One mechanism to explain simultaneous ground subsidence and temperature decline at the caldera center and increased bottom current at the caldera margin is the generation of a buoyant parcel of heated water in response to the intrusion or the eruption of magma associated with volcanic deflation. Similar volcanic events also may have generated large midwater plumes that have been described previously along the southern Juan de Fuca Ridge.

  2. Seismic Investigations of the O'Higgins Seamount Group: Aseismic Ridge Emplacement and Hydration of Hot Spot Modified Lithosphere

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Flueh, E. R.; Papenberg, C.; Klaeschen, D.; Scientists, S.

    2003-12-01

    The segmentation of the South American continental margin has been linked to the subduction of bathymetric elevations on the oceanic plate. Offshore Valparaiso, Chile, the subduction of the hot spot generated aseismic Juan Fernandez Ridge correlates with the southern segment boundary of the Chilean flat slab. A causative relationship has been attributed to the enhanced buoyancy of anomalous crust and the shallowing of the Wadati-Benioff zone. In 2001, the SPOC project set out to investigate the effects of subducting aseismic ridges on the seismicity and structure of the Chilean margin. A seismic study along the easternmost extent of the Juan Fernandez Ridge reveals a magmatic origin dominated by extrusive processes for the O'Higgins Seamount Group. Hot spot magmatic processes have only moderately added to the crust of the Juan Fernandez Ridge. Thus only limited increased buoyancy may be expected from crustal thickening, insufficient to cause the shallowing of the subduction zone in the flat slab segment. The modest size of the volcanic edifices causes a flexural bending of the upper crust underneath O'Higgins Guyot, but does not affect the trend of the crust-mantle boundary. The off-axis aseismic ridge emplacement caused deficiencies of the lithosphere. These syngenetic structures are reactivated in the outer rise setting and evolve to ridge-parallel fracture zones with vertical offsets exceeding 800 m. Tomographic inversion of seismic mantle phases reveals reduced uppermost mantle velocities indicative of mineral alterations in the hot spot modified lithosphere. Uppermost mantle hydration is solely limited to the flawed lithosphere of the Juan Fernandez Ridge and is linked to the reactivation of hot spot induced fractures. Enhanced buoyancy due to crustal and upper mantle hydration may represent an important additional mechanism for shallow subduction.

  3. Constraining Seasonal and Vertical Distributions of Planktonic Foraminifera for Paleoclimate Reconstruction Since MIS3 at the Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Chen, S. L.; Ravelo, A. C.; Clague, D. A.

    2015-12-01

    The California Current is an upwelling region with dynamic interactions between circulation, biological productivity and ecology. A 77 cm piston push core was taken from the Juan de Fuca Ridge Axial Seamount using a Remotely Operated Vehicle (ROV) (2213m, 45.55º N, 130.08º W), an active submarine volcano ~480 km off Oregon's coast. Five radiocarbon dates indicate that the sediment ranges from 42.6 ka at 77 cm to 17.6 ka at 15 cm, with an average sediment accumulation rate of 2.47 cm/ka from 77-15 cm, and an average rate of 0.85 cm/ka during the postglacial period (<17.6 ka). Multiple species of planktic foraminifera from the core representing subtropical, subartic, and arctic fauna have been used to constrain changes in vertical and seasonal temperature since Marine Isotope Stage 3 (MIS3). Measurements of δ18O of the upwelling species Globigerina bulloides, the thermocline dwelling species Neogloboquadrina dutertrei, and the warm mixed-layer species Orbulina universa are offset from each other, reflecting vertical and seasonal variation among the planktonic foraminifera. Of the three species, G. bulloides shows the least variation in δ18O, possibly indicating that marked changes in temperature are masking changes in the δ18O of seawater due to global ice volume changes. G. bulloides and O. universa δ18O values are similar in MIS 3 and diverge with time, indicating the development of strong seasonal succession of species, since the last glacial maximum. Bulk nitrogen isotopes and nitrogen flux provide additional constraints on upwelling strength and insight into local biological productivity and nutrient dynamics. Obtaining Mg/Ca data will clarify the δ 18O interpretation except deep in the core where metal-bearing authigenic precipitates affect Mg concentrations. These climatic proxies together provide insight into how global climate change and local seamount volcanism impacts regional productivity in the California Current.

  4. In the Footsteps of Charles Darwin: Patterns of Coastal Subsidence and Uplift Associated with Seamount Subduction, Basal Fore-arc Erosion and Seamount Accretion in Latin America

    NASA Astrophysics Data System (ADS)

    Fisher, D. M.; Kirby, S. H.; David, S. W.

    2004-12-01

    In Geological Observations on South America (1846), Charles Darwin described beds of late Cenozoic marine seashells that were uplifted to elevations as much as several hundred meters above some localities on the western coastline of South America and implied that the whole coast was uplifting at geologic time scales. We know now that such evidence is generally restricted to coastal embayments above fore-arc basins where offshore seamounts are colliding with the South American fore arc (e.g., the Juan Fernandez seamount chain, Valpariso Basin and Valpariso Bay). We suggest that the phenomena of basal fore-arc erosion and basin formation and coastal uplift are closely related to effects of seamount subduction. Marine multibeam sonar images and multichannel seismic reflection surveys by others demonstrate that seamounts, although locally cut by normal faults in the outer-rise/near-trench region, initally subduct intact and the primary interaction with the toe of the fore arc is plowing, with material eroded from the fore arc that accumulates above and on the margins of the seamount. Submarine landslides above such regions over-steepened by plowing can lead to coastal embayments far upslope of the plowing. Such plowing interaction can therefore lead to the formation of large forearc basins and coastal embayments such as those at Valpariso, Chile, or narrow corridors of subsidence in the wake of subducting seamounts in Costa Rica. It is also known that the transition between interplate thrust seismicity, representing mechanical coupling between the plates, and aseismic slip occurs at depths of typically 30-60 km and often geographically near coastlines that mark the boundary between outer fore-arc subsidence and inner fore-arc uplift. We suggest that decoupling can occur at the base of seamounts (i.e., the originally sedimented seafloor on which the seamount lavas are laid down) and that such seamounts can be accreted to the fore arc above and lead to coastal uplift

  5. Competing styles of deep-marine explosive eruptions revealed from Axial seamount and Juan De Fuca ridge push core records

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Clague, D. A.; Paduan, J. B.; Martin, J. F.

    2012-12-01

    Pyroclastic lithofacies from Axial seamount record two distinct styles of deep-marine explosive eruption activity at 1.4-1.5 km water depth. The first style is preserved by limu o Pele-rich ash, which is widely distributed and thin bedded. Individual beds are normal to coarse-tail graded with increasing planar grain-fabric and decreasing limu o Pele thickness upward. Grain-size generally ranges from medium lapilli to medium ash, which is well to poorly sorted depending on the abundance of outsized fluidal shards. Fluidal shards include limu o Pele and Pele's hair, and lesser amounts of tendril-like tube pumice and droplet-like shards. Rare blocky to fluidal lapilli contain up to 70% vesicles. Angular plagioclase and basalt lithics occur in minor amounts (2-15%). Most beds display overall upward changes in particle morphology from dense blocky angular lapilli in their bases to fluidal ash in their tops. Shards are most equidimensional near the base, and most varied in the mid-upper parts of most beds where 4-8 mm size limu occur with 1-2 mm blocky shards. This outsized-component association results from drastically different settling speeds for the two morphologies. Outsized fluidal shards become abundant across a relatively sharp boundary in the middle to lower portions of most beds causing a seemingly double-graded appearance. These systematic changes in particle morphology and grain size suggest a cogenetic association of blocky and fluidal shards to the same depositional event and causative eruption. Fluidal-vesicular particle morphologies suggest that this lithofacies represents ash fall from magmatically explosive eruptions. Planar-grain fabric trends, absence of shard imbrication, and grading profiles suggest that beds were deposited via near-vertical suspension fall-out from weak turbidity flows. The second pyroclastic lithofacies is dominated by normal graded greenish grey ashy mud beds. Ash makes up 10-80% of individual beds, and is well-sorted, coarse- to

  6. Contamination of basaltic lava by seawater: Evidence found in a lava pillar from Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Schiffman, Peter; Zierenberg, Robert; Chadwick, William W.; Clague, David A.; Lowenstern, Jacob

    2010-04-01

    A lava pillar formed during the 1998 eruption at Axial Seamount exhibits compositional and textural evidence for contamination by seawater under magmatic conditions. Glass immediately adjacent to anastomosing microfractures within 1 cm of the inner pillar wall is oxidized and significantly enriched in Na and Cl and depleted in Fe and K with respect to that in glassy selvages from the unaffected outer pillar wall. The affected glass contains up to 1 wt % Cl and is enriched by ˜2 wt % Na2O relative to unaffected glass, consistent with a nearly 1:1 (molar) incorporation of NaCl. Glass bordering the Cl-enriched glass in the inner pillar wall is depleted in Na but enriched in K. The presence of tiny (<10 μm) grains of Cu-Fe sulfides and Fe sulfides as well as elemental Ni, Ag, and Au in the Na-depleted, K-enriched glass of the inner pillar wall implies significant reduction of this glass, presumably by hydrogen generated during seawater contamination and oxidation of lava adjacent to microfractures. We interpret the compositional anomalies we see in the glass of the interior pillar wall as caused by rapid incorporation of seawater into the still-molten lava during pillar growth, probably on the time scale of seconds to minutes. Only one of seven examined lava pillars shows this effect, and we interpret that seawater has to be trapped in contact with molten lava (inside the lava pillar, in this case) to produce the effects we see. Thus, under the right conditions, seawater contamination of lavas during submarine eruptions is one means by which the oceanic crust can sequester Cl during its global flux cycle. However, since very few recent lava flows have been examined in similar detail, the global significance of this process in effecting Earth's Cl budget remains uncertain.

  7. AUV Mapping of Axial Seamount, Juan de Fuca Ridge: The Southern Caldera Floor and Upper South Rift

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Caress, D.; Paduan, J. B.; Chadwick, W. W.; Butterfield, D. A.; Thomas, H.; Conlin, D.; Thompson, D. R.

    2007-12-01

    During September 2006 and August 2007 NOAA NeMO cruises, we conducted 7 high-resolution near-bottom seafloor mapping surveys of Axial Seamount using the MBARI Mapping AUV D. Allan B. The 200 kHz multibeam and 110 kHz sidescan surveys of the south caldera and upper south rift, conducted at 50 m vehicle altitude, achieved sub-meter resolution bathymetry and sidescan imagery. Numerous previous and concurrent submersible or ROV dives provide ground-truth of what the maps depict. A companion poster presents the AUV surveys of the north caldera and northeastern caldera rim. The southern caldera wall is buried beneath at least 5 voluminous lava flows, including the 1998 flow, each erupted from fissures extending along the southeastern edge of the caldera roughly parallel to the upper south rift zone. The caldera wall here was not as tall as on the southwest, north, and northeast of the caldera, and may have been as low as 35 m tall before it was buried. Active and inactive hydrothermal vents are generally located along the inferred buried caldera wall. Eruptive fissures are characterized by series of depressions aligned along each fissure; no ramparts or other constructional edifices were constructed along them. The aligned depressions suggest that lava drained back down the fissures at the end of the eruptions. The fissure eruptions were large volume and had large effusion rates as seen by their interwoven channels and the extent of the flows. Most of these flows have central channels of lineated sheet flows, bordered by folded and then jumbled sheet flows, surrounded by lobate flows with lava pillars and collapse structures and pillowed flow margins. As an example, the 1998 eruption in and near the caldera issued from 5 en echelon fissures extending at least 3 km. The largest flow lobe extending to the south was mapped along its entire western boundary using JASON II, but the flow extends to the southeast beyond the mapped region. An unusual km-across feature was mapped

  8. Phylogenetic and Physiological Diversity of Subseafloor Microbial Communities at Axial Seamount, Juan de Fuca Ridge: Summary of Results From the New Millenium Observatory (NeMO), 1998-2004

    NASA Astrophysics Data System (ADS)

    Baross, J. A.; Huber, J. A.; Mehta, M. P.; Opatkiewicz, A.; Bolton, S. A.; Butterfield, D. A.; Sogin, M. L.; Embley, R. W.

    2005-12-01

    Axial Seamount (45 ° 58' N; 130 ° 00' W) is an active submarine volcano located on the Juan de Fuca Ridge, approximately 300 miles off the coast of Oregon. Lying at the intersection of a seamount chain and a spreading axis, Axial is a unique study site from both the geological and biological perspective. In January of 1998, Axial experienced a week-long series of earthquakes, and subsequent water column and seafloor observations on the southeast portion of the caldera found temperature and chemical anomalies, extensive new seafloor lava flows, large "snow blower" type vents, and other characteristics commonly associated with diking-eruptive events. Due to its high activity and close proximity to shore, Axial was chosen as a site for a multi-year observatory (New Millenium Observatory, NeMO) to document changes and interactions between geology, chemistry, and biology on the mid-ocean ridge system. From 1998 through 2004, we extensively sampled diffuse vents at Axial Seamount to determine the physiological and phylogenetic diversity of subseafloor microbial communities and their relationship to the geochemical environment. Here we present a summary of those studies, including molecular-based phylogenetic surveys of bacteria, archaea, and potential nitrogen-fixing organisms, culturing results of thermophiles and hyperthermophiles from over 20 sites, and the distribution of one particular group of hyperthermophiles at diffuse vents throughout the caldera and how that distribution may be linked to the geochemical habitat. Results indicate that Axial supports a diverse subseafloor microbial community, including hydrogen and sulfur oxidizers, hyperthermophilic methane producers and heterotrophs, and many organisms with the potential to fix nitrogen. In addition, we find that the species composition of the microbial community changes in response to changes in the physical and chemical conditions at each vent site. The extent of seawater mixing with hydrothermal fluids

  9. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater

  10. Interview of Antonio Vergara Fernandez about the First Beam

    SciTech Connect

    2008-07-31

    Antonio Vergara Fernandez : Engineer of the LHC commissioning Questions asked : 1. What does it take to start up the LHC machine? 2. What's the plan for 1st injection day? 3. How do you feel about this?

  11. Interview of Antonio Vergara Fernandez about the First Beam

    ScienceCinema

    None

    2016-07-12

    Antonio Vergara Fernandez : Engineer of the LHC commissioning Questions asked : 1. What does it take to start up the LHC machine? 2. What's the plan for 1st injection day? 3. How do you feel about this?

  12. A 2-D tomographic model of the Juan de Fuca plate from accretion at axial seamount to subduction at the Cascadia margin from an active source ocean bottom seismometer survey

    NASA Astrophysics Data System (ADS)

    Horning, G.; Canales, J. P.; Carbotte, S. M.; Han, S.; Carton, H.; Nedimović, M. R.; Keken, P. E.

    2016-08-01

    We report results from a wide-angle controlled source seismic experiment across the Juan de Fuca plate designed to investigate the evolution of the plate from accretion at the Juan de Fuca ridge to subduction at the Cascadia margin. A two-dimensional velocity model of the crust and upper mantle is derived from a joint reflection-refraction traveltime inversion. To interpret our tomography results, we first generate a plausible baseline velocity model, assuming a plate cooling model and realistic oceanic lithologies. We then use an effective medium theory to infer from our tomography results the extent of porosity, alteration, and water content that would be required to explain the departure from the baseline model. In crust of ages >1 Ma and away from propagator wakes and regions of faulting due to plate bending, we obtain estimates of upper crustal hydration of 0.5-2.1 wt % and find mostly dry lower crust and upper mantle. In sections of the crust affected by propagator wakes we find upper estimates of upper crustal, lower crustal, and upper mantle hydration of 3.1, 0.8, and 1.8 wt %, respectively. At the Cascadia deformation front, we find that the amount of water stored at uppermost mantle levels in the downgoing JdF plate is very limited (<0.3 wt %), with most of the water carried into the subduction zone being stored in the oceanic crust.

  13. Geochemical Diversity of Near-Ridge Seamounts: Insights into Oceanic Magmatic Processes and Sources

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Wendt, R. E.; Lundstrom, C.; Clague, D. A.

    2009-12-01

    Geochemical studies of lavas erupted at seamounts that form in close proximity to active mid-ocean ridges provide an opportunity to better understand the composition of shallow mantle underneath spreading ridges and how it melts in order to form new oceanic crust. This is because while on-axis samples mostly reflect homogenization of melts within the axial magma lens, seamount lavas bypass this process providing a window into the diversity of melts produced in the melting column. We have analyzed lavas from small near-axis seamounts and two larger near-ridge seamount chains for trace elements and Sr-Nd-Pb isotopes: the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N and the Vance Seamounts next to the Juan de Fuca Ridge (JdFR) ~45°N. One purpose of the study is to test the hypothesis that near ridge seamount chains reflect focusing of melts by dunite channels in the upwelling asthenospheric mantle and that such conduits might affect melting in the shallow mantle (Lundstrom et al., 2000). Our results indicate that lavas from these seamounts have incompatible trace element patterns varying from very depleted to moderately enriched (found at the oldest, most distant Vance seamounts) relative to typical mid-ocean ridge basalts (MORB). Trace element compositions and Sr-Nd-Pb isotope data show that lava compositions vary significantly between seamounts in the chain as well as within individual seamounts. Overall, the Vance and Lamont seamount lavas are more primitive and diverse than associated ridge samples. These variations can be explained by multiple sources as well as different extents of melting, and are unlikely to reflect shallow level fractional crystallization. Sr-Nd-Pb isotope data also indicate some mixing between mantle end members. The significant variations in incompatible trace element and isotopic compositions that are somewhat correlated suggest that the mantle underneath the seamounts is heterogeneous on a small scale. The fact that

  14. A Transpacific Voyage: The Representation of Asia in Jose Joaquin Fernandez de Lizardi's "El Periquillo Sarniento"

    ERIC Educational Resources Information Center

    Hagimoto, Koichi

    2012-01-01

    This essay seeks to explore the representation of Asia in Jose Joaquin Fernandez de Lizardi's "El Periquillo Sarniento" (1816), which is often considered the first novel produced in Latin America. Although many scholars have examined the picaresque element as well as the nationalist aspect of the novel, the Asian presence in Fernandez de…

  15. Petrogenesis of Near-Ridge Seamounts: AN Investigation of Mantle Source Heterogeneity and Melting Processes

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Lundstrom, C.; Clague, D. A.

    2010-12-01

    Near-ridge (NR) seamounts offer an important opportunity to study lavas that have similar sources to ridge basalts but have been less affected by fractionation and homogenization that takes place at adjacent spreading ridge axes. By studying lavas erupted at these off-axis sites, we have the potential to better understand source heterogeneity and melting and transport processes that can be applied to the ridge system as a whole. One purpose of our study is to investigate the role of dunite conduits in the formation of near-ridge seamount chains. We believe that near-ridge seamounts could form due to focusing of melts in dunite channels located slightly off-axis and that such conduits may be important in the formation and transport of melt both on- and off-axis (Lundstrom et al., 2000). New trace element and isotopic analyses of glasses from Rogue, Hacksaw, and T461 seamounts near the Juan de Fuca Ridge (JdFR), the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N, and the Vance Seamounts next to the JdFR ~45°N provide a better understanding of the petrogenesis of NR seamounts. Our data indicate that lavas from these seamounts have diverse incompatible trace element compositions that range from highly depleted to slightly enriched in comparison to associated ridge basalts. Vance A lavas (the oldest in the Vance chain) have the most enriched signatures and lavas from Rogue seamount on the JdFR plate have the most depleted signatures. Sr-Nd-Pb isotopic ratios indicate that NR seamount lava compositions vary within the chains as well as within individual seamounts, and that there is some mixing between heterogeneous, small-scale mantle sources. Using the program PRIMELT2.XLS (Herzberg and Asimow, 2008), we calculated mantle potential temperatures (Tp) for some of the most primitive basalts erupted at these seamounts. Our data indicate that NR seamount lavas have Tp values that are only slightly higher than that of average ambient mantle. Variations in

  16. Sr isotopic variations along the Juan de Fuca Ridge.

    USGS Publications Warehouse

    Eaby, J.; Clague, D.A.; Delaney, J.R.

    1984-01-01

    The Sr isotopic ratios of 39 glass and microcrystalline basalt samples along the Juan de Fuca Ridge and one glass sample from Brown Bear Seamount are at the lower end of the range for normal MORB; the average 87Sr/86Sr ratio is 0.70249 + or - 0.00014 (2sigma ). Although subtle variations exist along the strike of the ridge, the Sr isotopic data do not show systematic variation relative to the proposed Cobb hotspot. The isotopic data are inconsistent with an enriched mantle-plume origin for the Cobb-Eikelberg Seamount chain.-W.H.B.

  17. The Eratosthenes Seamount - Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ehrhardt, A.; Schnabel, M.; Damm, V.

    2012-04-01

    The Eratosthenes Seamount forms a prominent landmark in the Eastern Mediterranean. It is located south of Cyprus with the Levantine Basin on its eastern side, the Herodotus Basin on its western side and the Nile Cone south of the seamount. The Eratosthenes Seamount rises up to 750 m below sea surface and is about 1200 m higher than the surrounding seafloor of the Levantine Basin and the Nile Cone sediments. The Eratosthenes Seamount is considered as a continental fragment of the former African-Nubian Plate that was rifted to its present position relative to Africa during the formation of the Tethyan Ocean. In 2010 a detailed geophysical survey was carried out in the area of the Eratosthenes Seamount by the Federal Institute for Geosciences and Natural Resources of Germany including multichannel seismic (MCS), refraction seismics, magnetic, gravity and magnetotelluric data acquisition. First results show a highly deformed seamount, with a plateau-like top that is impacted by west-east trending graben formation. The slopes of the seamount are eroded showing deep incised ripple patterns and recent submarine landslides. The Eratosthenes Seamount produces also a prominent magnetic and gravity anomaly, both supporting its uniqueness in the area of the Eastern Mediterranean. Velocity information by refraction seismic modeling, as well as the models of the magnetic and gravity data show evidence for a volcanic core of the seamount with carbonate layers on top of the volcanic core. The slopes of the seamount terminate against a conspicuous rim-like escarpment that forms in addition the northern and western termination of the Messinian Evaporites in the study area. The MCS and refraction seismic data show a very deep Levantine Basin with maximum acoustic basement depths of 12 to 14 km very close to the slope of the Eratosthenes Seamount. The deepest sediments resolved by the MCS data are of Lower Cretaceous to Jurassic age. The refraction seismic model shows a 14 km thick

  18. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Nooner, Scott L.; Butterfield, David A.; Lilley, Marvin D.

    2012-07-01

    Axial Seamount is an active submarine volcano located at the intersection between the Cobb hotspot and the Juan de Fuca spreading centre in the northeast Pacific Ocean. The volcano has been closely monitored since it erupted in 1998 (refs , ). Since then, Axial Seamount seemed to exhibit a similar inflation-deflation cycle to basaltic volcanoes on land and, on that basis, was expected to erupt again sometime before 2014 or 2020 (refs , ). In April 2011 Axial Seamount erupted. Here we report continuous measurements of ocean bottom pressure that document the deflation-inflation cycle of Axial Seamount between 1998 and 2011. We find that the volcano inflation rate, caused by the intrusion of magma, gradually increased in the months leading up to the 2011 eruption. Sudden uplift occurred 40-55min before the eruption onset, which we interpret as a precursor event. Based on our measurements of ground deformation through the entire eruption cycle at Axial Seamount, we suggest that another eruption could occur as early as 2018. We propose that the long-term eruptive cycle of Axial Seamount could be more predictable compared with its subaerial counterparts because the volcano receives a relatively steady supply of magma through the Cobb hotspot and because it is located on thin oceanic crust at a spreading plate boundary.

  19. Global distribution of seamounts from Seasat profiles

    NASA Technical Reports Server (NTRS)

    Craig, Claire H.; Sandwell, David T.

    1988-01-01

    A new measurement techique based on a model of a Gaussian seamount loading a thin elastic lithosphere was developed to analyze seamounts that, until then, were not surveyed or seamounts with poor bathymetric coverage. The model predicts that the seamount diameter is equal to the peak-to-trough distance along the vertical deflection profile and that the flexural diameter of a seamount is related to the age of the lithosphere when the seamount formed. This model also suggests that these two measurements are relatively insensitive to the cross-track location from the seamount. These model predictions were confirmed using Seasat altimeter profiles crossing 14 surveyed seamounts in the Pacific. The analysis of the seamount distribution indicated considerable variations in population density and type across the oceans. Most notable among them are the absence of seamounts in the Atlantic, variations in population density across large fracture zones in the Pacific, and the prevalence of small signatures in the Indian Ocean.

  20. Erratic Continental Rocks on Volcanic Seamounts off California and Oregon

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Davis, A. S.

    2006-12-01

    The seamounts off the California continental margin, and those well offshore of California and Oregon that formed near mid-ocean ridges, are all constructed of basaltic lava flows and volcanic breccias and sandstones. However, explorations of these seamounts using dredges, and more recently, the remotely operated vehicle Tiburon, frequently recover rocks of a wide assortment of continental lithologies including gabbro, granodiorite, silicic volcanics, limestone, dolomite, and metamorphic rocks. These rocks are often rounded like river and beach cobbles, and the softer rocks are bored as by worms or bivalves. They are covered with manganese oxide crusts of thicknesses that range from a patina to several cm, approaching the thickness on the in-situ basaltic rocks. These rocks are often easier to collect than the basalts. We recognize these rocks to be erratics of continental origin. Erratics have been documented as being transported by icebergs at higher latitudes, but this mechanism is unlikely to be responsible for the erratics we have found as far south as 31.9° N. Three brief papers published by K.O. Emery from 1941 to 1954 proposed that such erratics found in many thick sections of fine-grained sedimentary sequences such as the Monterey Formation, were transported long distances by kelp holdfasts, tree roots, or in the guts of pinnipeds. We propose that these vectors also transport erratics to seamounts, where they have been accumulating since the seamounts formed millions of years ago. Those seamounts that were once islands would have intercepted even more erratics along their shorelines while they stood above sea level. We have recovered or observed such erratics on the Vance Seamounts; Gumdrop, Pioneer, Guide, Davidson, Rodriguez, San Juan, Little Joe, and San Marcos Seamounts; on the muddy bottom of Monterey Bay; and on Northeast Bank and along the Patton Escarpment at the western edge of the California Borderland. These locations are as far as 250 nautical

  1. Observations on Gulf of Alaska seamount chains by multi-beam sonar

    NASA Astrophysics Data System (ADS)

    Smoot, N. Christian

    1985-06-01

    Geomorphic and age data are presented for the Dellwood, Denson, Dickins, Giacomini, and Ely seamounts, the Tsimshian Seachannel, and the southern Juan de Fuca Ridge with Brown Bear, Bear Cub, Grizzly Bear, and Cobb seamounts. Formational speculations extrapolated to a regional scale allow the strikes and outer limits of the seamount chains to be interpreted. Six of these chains are shown in the Gulf of Alaska, none of which conform to the Pratt-Welker or Kodiak-Bowie in the literature. Different strikes show the chains/plate to have rotated 23° about 17 m.y. ago. Morphology also shows that there are four less guyots in the Gulf than previously thought, and that, at least in the Gulf of Alaska, guyot heights do not necessarily reflect sealevel during erosion.

  2. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  3. Introduction to Seamount Special Section

    NASA Astrophysics Data System (ADS)

    Watts, A. B.

    1984-12-01

    This special section is the outcome of a symposium held at the Lamont-Doherty Geological Observatory November 17-19, 1982, on the origin and evolution of seamounts. The topic for the symposium arose from the realization that although there is now a wealth of new ideas on the geology, geophysics, and geochemistry of the ocean floor, the study of seamounts has been relatively neglected despite their great importance to plate tectonics. One of the most interesting features of the ocean floor is the large number of small volcanoes or seamounts. Usually, these features are circular in plan view and have a sharp summit. There has been extensive debate in the literature about the significance of the different morphological types of seamounts. A traditional view has been that flattopped seamounts (e.g., guyots) formed as a result of subaerial erosion when the volcanoes were above sea level. Seamounts covered by fringing reefs or sediments (e.g., atolls), on the other hand, are believed to have formed when the original volcanic foundation subsided below sea level.

  4. Resolving Seamounts in Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H.

    2006-12-01

    We have examined three factors influencing the use of satellite altimeter data to map seamounts and guyots in the deep ocean: (1) the resolution of seamount and guyot gravity anomalies by altimetry; (2) the non-linearity of the relationship between gravity and bathymetry; and (3) the homogeneity of the mass density within the seamount or guyot. When altimeter data are used to model the marine gravity anomaly field the result may have limited resolution due to noise levels in the altimeter data, track spacing of the satellite profiles, inclination angles of the orbits, and filters used to combine and interpolate the data (Sandwell and Smith, JGR, 1997). We compared the peak-to-trough amplitude of gravity anomalies in Sandwell and Smith`'s version 15.1 field to peak-to-trough amplitudes measured by gravimeters on board ships. The satellite gravity field amplitudes match ship measurements well over seamounts and guyots having volumes exceeding ~2000 km3. Over smaller volume seamounts, where the anomalies have most of their power at quite short wavelengths, the satellite field under-estimates the anomaly amplitude. If less filtering could be done, or a new mission with a lower noise level were flown, more of the anomalies associated with small seamounts might be resolved. Smith and Sandwell (Science, 1997) predicted seafloor topography from altimetric gravity assuming that the density of seafloor topography is nearly constant over ~100 km distances, and that the relationship between gravity and topography may be approximated by a liner filter over those distances. In fact, the true theoretical relationship is non-linear (Parker, Geophys. J. R. astr. Soc, 1972); it can be expressed as an N-th order expansion, with the N=1 term representing a linear filter and the N>1 terms accounting for higher-order corrections. We find that N=2 is a sufficient approximation at both seamounts and guyots. Constant density models of large volume guyots do not fit the observed gravity

  5. On "Nocilla" and the Urbanization of Consciousness: Multiplicity and Interdisciplinarity in Agustin Fernandez Mallo's Fragmented Trilogy

    ERIC Educational Resources Information Center

    Fraser, Benjamin

    2012-01-01

    This essay reappropriates the segmentary form of the three works of Agustin Fernandez Mallo's "Nocilla" project ("Nocilla Dream" [2006]; "Nocilla Experience" [2008]; "Nocilla Lab" [2009]) en route to an urban reading of its fragmentary structure. The project's interdisciplinary push, overwhelming incorporation of both scientific and…

  6. Age of Kōko Seamount, Emperor Seamount chain

    USGS Publications Warehouse

    Clague, David A.; Dalrymple, G. Brent

    1973-01-01

    KAr ages obtained by the conventional isotope-dilution and the 40Ar/39Ar techniques on two sanidine trachytes, four basalts, and a phonolite dredged from the top of Ko¯ko Seamount, 300 km north of the Hawaiian-Emperor bend, show that the seamount is 46.4 ± 1.1 my old. These data indicate that the volcanoes in the Hawaiian-Emperor chain continue to increase in age to the west and north beyond Midway Atoll, as predicted by the melting-spot hypothesis for the origin of the chain, and that the rate of volcanic migration along the chain was nonlinear between the time of formation of the island of Hawaii and Ko¯ko Seamount.

  7. Oceanographic aspects of the Emperor Seamounts region

    SciTech Connect

    Roden, G.I.; Taft, B.A.; Ebbesmeyer, C.C.

    1982-11-20

    Effects of the Emperor Seamount Chain on the thermohaline structure and baroclinic flow are investigated on the basis of historical hydrographic data. The amplitudes of dynamic height perturbations are 3 to 5 times larger west than east of the chain. The intensity of the thermal fronts is stronger west than east of the seamounts; near the crest of the southern seamounts, strong east-west thermohaline fronts and a strong northward baroclinic flow are observed. The Kuroshio Extension west of the seamount chain is a well-defined meandering current, the axis of which generally lies between 33/sup 0/ and 36/sup 0/N. The available data indicate that the Kuroshio Extension turns northward and then flows eastward through the gaps of the seamount chain. East of the seamounts, the Kuroshio Extension widens threefold and appears to be poorly defined.

  8. Evidence for age and evolution of Corner seamounts and Great Meteor seamount chain from multibeam bathymetry

    NASA Technical Reports Server (NTRS)

    Tucholke, Brian E.; Smoot, N. Christian

    1990-01-01

    The morphology of the Corner and Cruiser seamounts is discussed and the apparent age of seamount geomorphic features that are thought to have formed at sea level is derived. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots and terraces. The pattern of volcanism is consistent with the sequential formation of the New England, Corner, and Great Meteor chain seamounts above the New England hotspot. However, Late Cretaceous and Cenozoic absolute motion of the African plate over the hotspot differs significantly from predictions of the existing models. The derived age pattern of volcanism indicates formation of the Corner seamounts at ca. 80 Ma to 76 Ma.

  9. Evidence for age and evolution of Corner seamounts and Great Meteor seamount chain from multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Tucholke, Brian E.; Smoot, N. Christian

    1990-10-01

    The morphology of the Corner and Cruiser seamounts is discussed and the apparent age of seamount geomorphic features that are thought to have formed at sea level is derived. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots and terraces. The pattern of volcanism is consistent with the sequential formation of the New England, Corner, and Great Meteor chain seamounts above the New England hotspot. However, Late Cretaceous and Cenozoic absolute motion of the African plate over the hotspot differs significantly from predictions of the existing models. The derived age pattern of volcanism indicates formation of the Corner seamounts at ca. 80 Ma to 76 Ma.

  10. Caldera Formation on the Vance Seamounts

    NASA Astrophysics Data System (ADS)

    Clague, D.; Paduan, J.; Cousens, B.; Cornejo, L.; Perfit, M.; Wendt, R.; Stix, J.; Helo, C.

    2006-12-01

    The Vance Seamounts are a chain of near-ridge volcanoes located just west of the southern Juan de Fuca Ridge. The six volcanoes are built on ocean crust ranging from 0.78 Ma at the southeastern end to 2.55 Ma in the northwest. Morphologic analysis indicates that the volcanoes were constructed sequentially and get younger to the southeast towards the ridge axis. Like many near-ridge volcanoes, some of the Vance Seamounts have large offset calderas that presumably formed above evacuated shallow magma chambers within the upper ocean crust. In summer 2006, we completed 6 dives using MBARI's ROV Tiburon to study the formation of these calderas. The floor of each caldera consists of flat-lying volcaniclastite, under about 25 cm of pelagic sediment. Some caldera floors have mounds of post-caldera pillow flows. The caldera walls have a lower section covered by talus and an upper section of interbedded massive flows with columnar joints (to 11 m thick) and pillow basalts. The top of each caldera wall has a unit of volcanic mudstone to sandstone ranging from 20 cm to 2 m thick. The fine matrix of many of these samples is green hydrothermal clay. The finest siltstone to mudstone samples appear to be layers of massive tan hydrothermal clays. Talus fragments, lava and volcaniclastite outcrops are universally coated and cemented by 1 to 4 cm-thick deposits of hydrothermal Mn-oxide crusts, even on the youngest of the volcanoes. Volcanic particles in the sandstones are mostly dense angular glass, but bubble-wall fragments (limu o Pele) are present and indicate formation during low-energy pyroclastic eruptions. Without the few percent limu o Pele fragments, the glass fragments would resemble those inferred to form by quench granulation. We suggest that quench granulation is actually pyroclastic fragmentation that occurs as coalesced magmatic gas bubbles disrupt the molten lava surface at the vents. Our observations confirm that the more southeasterly offset calderas truncated thick

  11. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Fishing moratorium at Hancock Seamounts... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of, Hawaii bottomfish and seamount groundfish MUS in the Hancock Seamounts Ecosystem Management Area...

  12. 50 CFR 665.209 - Fishing moratorium on Hancock Seamount.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fishing moratorium on Hancock Seamount... Hawaii Fisheries § 665.209 Fishing moratorium on Hancock Seamount. Fishing for Hawaii bottomfish and seamount groundfish MUS on the Hancock Seamount is prohibited through August 31, 2010....

  13. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Fishing moratorium at Hancock Seamounts... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of, Hawaii bottomfish and seamount groundfish MUS in the Hancock Seamounts Ecosystem Management Area...

  14. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Fishing moratorium at Hancock Seamounts... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of, Hawaii bottomfish and seamount groundfish MUS in the Hancock Seamounts Ecosystem Management Area...

  15. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Fishing moratorium at Hancock Seamounts... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of, Hawaii bottomfish and seamount groundfish MUS in the Hancock Seamounts Ecosystem Management Area...

  16. Deep-sea fish distribution varies between seamounts: results from a seamount complex off New Zealand.

    PubMed

    Tracey, Dianne M; Clark, Malcolm R; Anderson, Owen F; Kim, Susan W

    2012-01-01

    Fish species data from a complex of seamounts off New Zealand termed the "Graveyard Seamount Complex' were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748-891 m and elevation from 189-352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts.

  17. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the

  18. Axial, Brownbear and Cobb Seamounts: Examples of Growth and Demise of the Submarine Volcanic Edifice through Time.

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Merle, S. G.

    2014-12-01

    Axial, Brownbear and Cobb Seamounts, located along and to the west of the Juan de Fuca Ridge (JdFR), are the most recent volcanic expressions of the Cobb Hotspot. Cobb Seamount is the oldest (3.3 Ma) and furthest from the hotspot source. Cobb exhibits a circular volcanic edifice that rises from ~2800 m at its base to within 34 m of the sea surface. Multibeam bathymetry of Cobb indicates there are wave-cut terraces at the summit, as well as landslide scars along the flanks of the volcano. Brownbear Seamount (0.5-1.5 Ma) has an elongated (N-S) shape, which indicates an interaction of the hotspot plume with the extensional-stress field of the JdF spreading center. Brownbear also has two (~4 km wide) summit calderas which likely formed due to collapse once plate motion moved the seamount west of the magma source. Axial Seamount, in contrast, is the volcanic edifice directly above hotspot plume and is therefore in a constructional phase. Axial also straddles the ridge and because of this exhibits an elongate structure with well defined rift zones forming its northern and southern flanks. Axial also has a single large summit caldera (~8 km wide) which has been the location of two eruptions in 1998 and 2011 which produced extensive lava flows within the caldera and down the south rift zone. We will present multibeam bathymetry of these three volcanoes, and include the results of previous surveys and observations, to infer the evolution of the volcanic construction and destruction processes through time along this seamount chain.

  19. More on the Effects of Explicit Information in Instructed SLA: A Partial Replication and a Response to Fernandez (2008)

    ERIC Educational Resources Information Center

    Henry, Nicholas; Culmana, Hillah; VanPattena, Bill

    2009-01-01

    The role of explicit information (EI) as an independent variable in instructed SLA is largely underresearched. Using the framework of processing instruction, however, a series of offline studies has found no effect for EI (e.g., Benati, 2004; Sanz & Morgan-Short, 2004; VanPatten & Oikkenon, 1996). Fernandez (2008) presented two online experiments…

  20. Detection of uncharted seamounts using satellite altimetry

    SciTech Connect

    Lazarewicz, A.P.; Schwank, D.C.

    1982-04-01

    The topography of the marine geoid (and corresponding sea surface) contains characteristic local features caused by sediments. These features can be successfully detected and located using matched filters to process single tracks of satellite altimeter data. Comparison of detected seamount features with the SNYBAPS and Scripps bathymetric data bases can reveal uncharted seamounts. This technique has been applied to 33 Seasat tracks in a region of the western Pacific bounded by 0 to 15 degrees North and 160 and 165 degrees East. From this analysis, we find three uncharted seamounts in this region. In all three cases, a detailed examination of the bathymetry shows no known bathymetric feature consistent with the detected signature. The method used to estimate the size and location of these uncharted seamounts is discussed.

  1. Kodiak seamount not flat-topped.

    PubMed

    Hamilton, E L; von Huene, R E

    1966-12-09

    Earlier surveys in the Aleutian Trench southeast of Kodiak Island, Alaska, indicated that Kodiak Seamount had a flat top and was a tablemount or guyot. This seamount is of special significance because it has been supposed that its surface was eroded at the same time as those of a line of guyots to the southeast. If so, its present position in the axis of the Aleutian Trench indicates that the line of guyots was formed before the trench. A two-part survey in 1965 showed that Kodiak Seamount is not flat-topped, and should be eliminated from the category of guyots. Reflection profiling records indicate that the seamount was formed before the adjacent sediments were deposited, and that the small trough, or moat, on the south side is a depositional feature probably formed by a scouring effect or by the acceleration of turbidity currents around the base of the mount.

  2. 75 FR 69015 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish; Measures To Rebuild...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Pacific; Hawaii Bottomfish and Seamount Groundfish; Measures To Rebuild Overfished Armorhead at Hancock Seamounts AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... seamount groundfish at the Hancock Seamounts until the overfished U.S. stock of pelagic...

  3. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    interaction with ocean currents. These recent biological studies have suggested that seamounts may support highly productive ecosystems (Borets, 1975...unique, highly productive ecosystem capable of, if managed properly, maintaining a renewable, commercially feasible resource. Of the seamounts with...the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid

  4. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  5. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean).

    PubMed

    Du Preez, Cherisse; Curtis, Janelle M R; Clarke, M Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism.

  6. Microbial Ecology of Subseafloor Communities at Deep-sea Hydrothermal Seamounts of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Bolton, S.; Butterfield, D. A.; Baross, J. A.; Sogin, M. L.

    2006-12-01

    Circulation of hydrothermal fluids and seawater occurs within the upper 500 m of porous oceanic crust and provides a rich environment for microbial growth in the subseafloor. Enrichment cultures, geochemical indicators, and sequence analyses of PCR amplicons of ribosomal RNA genes demonstrate that these crustal fluids host a microbial community composed of organisms indigenous to the subseafloor and organisms from other deep-sea habitats, such as seawater. However, the subseafloor microbial communities remain undersampled and our knowledge of what microbes are present and how they are distributed in this dynamic environment over time and space is fragmentary. This work focuses on determining the microbial diversity and genomic content of the subseafloor microbial community at geographically and geochemically distinct deep- sea hydrothermal seamounts. The approach uses a combination of methods, including DNA-based, culturing, and geochemical methods applied to diffuse fluids from two locations: Axial Seamount on the Juan de Fuca Ridge in the northeast Pacific Ocean (45.92° N, 130° W) and seamounts along the Mariana Arc (14-22° N, 143-146° E) in the western Pacific. Both locations host recently eruptive seamounts located above 2000 m with diffusely venting fluids that contain high concentrations of carbon dioxide. However, their geological and chemical setting differs greatly; Axial is a mid-ocean ridge seamount with fluids dominated by high concentrations of hydrogen sulfide, and the Mariana seamounts are at a convergent plate boundary and host a variety of fluids, including those with very low pH and high concentrations of particulate sulfur. Initial studies reveal bacterial communities at both sites consist mainly of epsilon-proteobacteria, a physiologically and phylogenetically diverse group known to have a widespread distribution and dominance in many deep-sea vent habitats. However, while subseafloor archaeal communities at Axial are composed of autotrophic

  7. Flexure modelling at seamounts with dense cores

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Sep; Wessel, Paul

    2010-08-01

    The lithospheric response to seamounts and ocean islands has been successfully described by deformation of an elastic plate induced by a given volcanic load. If the shape and mass of a seamount are known, the lithospheric flexure due to the seamount is determined by the thickness of an elastic plate, Te, which depends on the load density and the age of the plate at the time of seamount construction. We can thus infer important thermomechanical properties of the lithosphere from Te estimates at seamounts and their correlation with other geophysical inferences, such as cooling of the plate. Whereas the bathymetry (i.e. shape) of a seamount is directly observable, the total mass often requires an assumption of the internal seamount structure. The conventional approach considers the seamount to have a uniform density (e.g. density of the crust). This choice, however, tends to bias the total mass acting on an elastic plate. In this study, we will explore a simple approximation to the seamount's internal structure that considers a dense core and a less dense outer edifice. Although the existence of a core is supported by various gravity and seismic studies, the role of such volcanic cores in flexure modelling has not been fully addressed. Here, we present new analytic solutions for plate flexure due to axisymmetric dense core loads, and use them to examine the effects of dense cores in flexure calculations for a variety of synthetic cases. Comparing analytic solutions with and without a core indicates that the flexure model with uniform density underestimates Te by at least 25 per cent. This bias increases when the uniform density is taken to be equal to the crustal density. We also propose a practical application of the dense core model by constructing a uniform density load of same mass as the dense core load. This approximation allows us to compute the flexural deflection and gravity anomaly of a seamount in the wavenumber domain and minimize the limitations

  8. Pronounced Shear Velocity Asymmetry in the Mantle Across the Juan de Fuca Ridge and Curious Lack of Features at the Gorda Ridge

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Ruan, Y.; Forsyth, D. W.

    2015-12-01

    With new Rayleigh-wave tomography results, we have detected a clear and strong asymmetry in the shear velocity structure of the Juan de Fuca ridge. Concentrated in a relatively thin layer with a depth range of ~30-60km, there lies a region of very low shear velocity, with velocities ranging from ~3.8km/s to 4.0km/s. Such low velocities provide strong evidence for the presence of partial melt. This low-velocity region is highly asymmetric, extending much further west than east of the ridge. Especially at shallow depths of ~35 km, this low-velocity region is concentrated just west of the southern portion of the ridge. Peaking near the Axial Seamount, the youngest of the Cobb-Eickelberg Seamounts, it extends south to the region around the small Vance Seamounts just north of the junction with the Blanco Fracture Zone. The Juan de Fuca plate is relatively stationary in the hotspot reference frame, and the Juan de Fuca ridge migrates westward in the hotspot reference frame. Seamounts are overwhelmingly concentrated on the western flank of the ridge, and an asymmetric upwelling driven by migration in the hotspot reference frame has been proposed to explain the seamount asymmetry (i.e. Davis and Karsten, 1986). Our velocity asymmetry, which matches the seamount asymmetry, provides evidence for this asymmetric upwelling and its connection to migration in the absolute hotspot reference frame. In the shear velocity results, the Gorda ridge displays a remarkable lack of features, with no clearly identifiable expression in the subsurface velocity. There is evidence of a broad low-velocity feature beneath Gorda beginning at a depth of ~150 km, but no clear shallow features can be tied to the ridge. At the depths we can resolve (~25-250km), the anisotropy beneath and within the Juan de Fuca plate is small, indicating a deep source of the shear wave splitting results (Bodmer et al., in press), which indicate a fast axis aligned with the Juan de Fuca plate's absolute motion. Around

  9. Pacific seamount volcanism in space and time

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  10. Jasper Seamount: Seven million years of volcanism

    SciTech Connect

    Pringle, M.S. ); Staudigel, H.; Gee, J. )

    1991-04-01

    Jasper Seamount is a young, mid-sized (690 km{sup 3}) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable {sup 40}Ar/{sup 39}Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual {sup 40}Ar/{sup 39}Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitonal series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. The age data are consistent with the complex magnetic anomaly of Jasper; however the dominant reversed polarity inferred from the anomaly suggests that most of the seamount formed at ca. 11 Ma, prior to the onset of Chron C5N. The duration of volcanism of Jasper Seamount is slightly longer than the duration of volcanism at Hawaiian volcanoes, suggesting that individual age data from seamounts may constrain the age of a seamount only to within about 7 m.y. unless the stage of volcanism can be unambiguously determined. Extrapolating from the results of our study, similar precision in age determinations should be possible on 50 mg of 1 Ma plagioclase from mid-ocean ridge basalt, opening new possibilities in the geochronology of young, low-potassium volcanic rocks.

  11. Impulsive Seafloor Signals from the 2015 Eruption of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Garcia, C.; Wilcock, W. S. D.; Tan, Y. J.; Tolstoy, M.

    2015-12-01

    Axial Seamount is a hotspot volcano on the Juan de Fuca Ridge that has erupted three times over the past two decades. The most recent eruption was recorded by a cabled seismic network in the southern half of the summit caldera that has been operated by the Ocean Observatories Initiative (OOI) since November 2014. After five months of increasing seismicity, a 10-hour seismic crisis involving thousands of earthquakes began at 0500 GMT on April 24, 2015 accompanied by ~2 m of deflation in the central caldera (Nooner et al., this meeting). Local seismicity declined rapidly after the eruption, but thousands of impulsive waterborne events were observed across the network starting immediately after the seismic crisis. Over 1500 events per day were recorded on April 25 and 26, decreasing to less than 500 per day after May 1, and ceasing altogether around May 20. Each event comprises a train of three to five consistently spaced arrivals visible on all 3 seismometer channels with a broad frequency content of 10-100 Hz. The timing of arrivals across the network is consistent with water column multiples from a seafloor source to the north. A subset of events has been manually picked and located by modeling travel times of the first three arrivals assuming flat bathymetry at a range of depths between 1500-1800 m and a sound speed of 1.5 km/s. The preliminary locations are clustered around Axial Seamount's northern rift at a distance of 10-15 km from the north rim of the caldera. In July, an OOI cruise discovered fresh pillow lavas up to 100 m thick and 670 m wide, and extending for 7 km along the rift in the same region (Kelley et al., this meeting). The source of the impulsive events is uncertain and could involve gas explosions, bubble collapse, and thermal or mechanical cracking, but their colocation with the fresh lava flow suggests that ocean bottom seismic networks can not only track the faulting and fracturing associated with subsurface magma movements but also the

  12. Thermal Constraints on Upper Basement Permeability Near a Venting Seamount

    NASA Astrophysics Data System (ADS)

    Hutnak, M.; Fisher, A. T.; Zuehlsdorff, L.; Spiess, V.

    2003-12-01

    We used transient numerical simulations of coupled heat and fluid transport to quantify relations between fluid fluxes, basement permeability, and the vigor of local convection on seafloor heat flow patterns adjacent to a basement outcrop through which warm hydrothermal fluids are discharged. These finite-element models are designed to replicate conditions near the Baby Bare outcrop on 3.5-Ma seafloor on the eastern flank of the Juan de Fuca Ridge, where 5-20 L/s of warm fluid seeps from the seafloor. Several transects of heat flow observations co-located along seismic reflection profiles around this feature provide observational constraints for the models. Heat flow is not greatly influenced by venting at the outcrop at distances of several kilometers from the point of sediment onlap, but values rise abruptly immediately adjacent to the outcrop. The model domain consisted of a 21 km x 5 km radial grid, with 8 sedimentary and 6 basalt units, and a characteristic node spacing of 20-500 meters. Conductive simulations include a small rise in heat flow near the outcrop as a result of conductive refraction, but the magnitude of the rise is much smaller than observed. Additional simulations were run using elevated basement thermal conductivity as a proxy for local convection, to evaluate the vigor of local convection required to generate large increases in heat flow near the outcrop. Nusselt numbers (the ratio of heat transported within the edifice by conduction and advection to that which would be transported by conduction alone) of 100 < Nu < 1000 are required in order to homogenize temperatures along the sediment-basement interface and closely match the observed heat flow profile. Interestingly, it is not necessary to vent any fluid at the outcrop to generate this pattern; local convection is sufficient. Fully-coupled simulations were run with fluid forced from the seamount at 5-20 L/s. We find that local convection occurs within the seamount in cases with

  13. Petrologic evolution of the Louisville seamount chain

    NASA Astrophysics Data System (ADS)

    Hawkins, James W.; Lonsdale, Peter F.; Batiza, Rodey

    The Louisville Seamount Chain (LSC) extends for 4300 km from Osbourn Seamount, at the junction of the Tonga and Kermadec Trenches, southeasterly towards the Pacific Antarctic Ridge. The chain is formed of 60 or more seamounts and guyots which are aligned along a trend concentric with the Emperor-Hawaii Chain. The Louisville Chain crosses at a low angle several fracture zones which are part of the Eltanin Fracture Zone system, but there is no apparent genetic relation between the two structures. Rocks collected from the Louisville Chain comprise a spectrum of rock types including alkalic basalt, hawaiite, and basanitoid. Some samples have compositions suggesting that they are transitional to tholeiitic basalt, but no true tholeiites have been collected from the seamounts. Osbourn Seamount, at the westernmost end of the chain, is capped with basanitoid; these have been dated as ˜66 Ma. Clinopyroxene phenocrysts in basaltic composition pebbles and detrital grains of clinopyroxene have been recovered from DSDP site 204, north of Osbourn Seamount, at subbottom depths of 112 to 114 meters (Late? Cretaceous age). Some of these pyroxenes have compositions indicating a tholeiitic parental magma, some were derived from alkalic magmas. Osbourn Seamount or an older neighbor were likely sources of the clastic sediments. This is an indication that the early stages of seamount volcanism included tholeiitic magmas, magmatism subsequently evolved through alkalic and basanitic types. Samples dredged from the carapaces of seamounts east of Osbourn are mainly alkalic basalt, or hawaiite, or both. The young, eastern end of the chain near Long. 139°10'W has alkalic basalt lavas. Modeling of trace element and REE data suggest that small amounts (e.g., 4%) melting of garnet Iherzolite could have provided the parental alkalic basalt magmas. Basanitoids represent slightly higher (˜9%) levels of melting. Element ratios of Ti/Zr, Nb/Zr, Y/Zr, Ba/La, La/Ce, La/Sm, Nb/La suggest that the

  14. Subtidal bottom pressure observed at Axial Seamount in the northeastern continental margin of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Mofjeld, H. O.; GonzáLez, F. I.; Eble, M. C.

    1996-07-01

    Since September 1987, bottom pressure (BP) has been observed at Axial Seamount (45°57.5'N, 130°00.3'W; 1540-m depth), located 450 km off the Oregon Coast on the Juan de Fuca Ridge. Observations from 1987 to 1992 show that subtidal Axial BP is dominated by barotropic 2- to 5-mbar fluctuations with frequencies ≤ 1/9 cycles per day (cpd). They are slightly smaller than subtidal BP observed 720 km to the west during the Ocean Storms Experiment and a factor of 2-4 smaller than the subtidal fluctuations of adjusted sea level (ASL) at the coast. For the period September 1987 to July 1988, Axial BP and Ocean Storms BP are significantly coherent (coh2 ≥ 0.5), except at intraseasonal frequencies (1/100-1/20 cpd) and in a band (1/8-1/6 cpd) of low Axial BP variance. In the coherent frequency bands, the phase relationships between the two BP series suggest independent atmospheric forcing. On the other hand, Axial BP and coastal ASL are not coherent except at the fortnightly tidal frequency. Looking for possible forcing of Axial BP by the curl of the wind stress (curl) over the NE Pacific, data analyses show that Axial BP and curl (derived from European Centre for Medium-Range Weather Forecasts winds) are significantly coherent in only two frequency bands: one band narrowly peaked near 1/9.1 cpd for curl in regions south of Axial Seamount and a 1/5-1/3.5 cpd band for curl in a large region NW of the seamount. In the 1/5-1/3.5 band, Axial BP also has a small-amplitude spectral peak associated with bottom-trapped (baroclinic) currents near Axial Seamount. Remote Axial BP/curl coherence at some frequencies is qualitatively consistent with the local-forcing theory of Lippert and Müller [1995] that attributes the coherence to stable phase relationships and the spatial characteristics of the BP/curl transfer function. However, the Axial BP/curl comparison is inhibited by the lack of accurate estimates of curl within 400 km of the coast. Fully understanding the origins and

  15. A review of the effects of seamounts on biological processes

    NASA Astrophysics Data System (ADS)

    Boehlert, George W.; Genin, Amatzia

    Seamounts interacting with oceanic currents create flow complexities which depend upon current speed, stratification, latitude, and seamount morphology. Seamount effects, which include internal wave generation, eddy formation, local upwelling, and closed circulation patterns called Taylor columns, have important effects upon pelagic and benthic ecosystems over seamounts. The biological effects of these current-topography interactions are poorly understood. Flow acceleration on upper flanks of seamounts may lead to low sedimentation but areas of high standing stocks of benthic fauna, particularly filter feeders. Other effects extend into the water column; nutrient enrichment and enhanced primary productivity occur over some seamounts. Longer observational periods will be necessary to understand the time-varying nature of such enhanced productivity and the extent to which it remains at the seamount or is advected away. At higher trophic levels, unusual patterns of distribution and abundance occur at some seamounts. Maintenance of high standing stocks of seamount-associated micronekton and demersal fishes suggests that seamounts are locations for high rates of energy transfer. The energy driving this biological productivity may either be generated from in situ processes or be advected from elsewhere and concentrated at the seamount; interdisciplinary studies will be necessary to better understand these ecosystems.

  16. Characteristics of Seamounts Near Hawaii as Viewed by GLORIA

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Using images and data acquired from the GLORIA sonar system, 390 seamounts within the U.S. Hawaiian Exclusive Economic Zone (HEEZ) off Hawaii have been studied. Their diameters range from 1 to 57 km. with most less than 15 km. Seamount abundance increases exponentially with decreasing size. The areal density of observed seamounts having diameters greater than 1 km is 182/10(exp 6) sq km. The theoretical abundance of seamounts of all sizes normalized to a unit area is (309 +/- 17)/10(exp 6) sq km, about an order of magnitude less than other surveyed areas of the Pacific. This may reflect a lower abundance of Cretaceous seamounts in this region, the covering of small seamounts by sediment, or discrepancies from the use of different data sets to derive the abundance statistics. The seamounts have morphologies ranging from steep-sided, flat-topped structures to cones to more amorphous structures; they are similar to volcanoes found elsewhere on the seafloor. A suite of secondary features associated with the seamounts includes summit craters, summit mounds, coalesced boundaries, landslides, and graben. Several seamount chains are aligned parallel to Cretaceous fracture zones, consistent with an origin close to the ancestral East Pacific Rise. Others are aligned parallel to the Necker Ridge, suggesting that they formed contemporaneously with Necker in the plate interior. This observation, together with high abundances of seamounts where other intraplate igneous processes have occurred, suggests some seamounts formed since leaving the spreading center.

  17. The ecology of seamounts: structure, function, and human impacts.

    PubMed

    Clark, Malcolm R; Rowden, Ashley A; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I; Rogers, Alex D; O'Hara, Timothy D; White, Martin; Shank, Timothy M; Hall-Spencer, Jason M

    2010-01-01

    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.

  18. The Ecology of Seamounts: Structure, Function, and Human Impacts

    NASA Astrophysics Data System (ADS)

    Clark, Malcolm R.; Rowden, Ashley A.; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I.; Rogers, Alex D.; O'Hara, Timothy D.; White, Martin; Shank, Timothy M.; Hall-Spencer, Jason M.

    2010-01-01

    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.

  19. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    PubMed

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  20. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R.; Caplan-Auerbach, Jacqueline; Dziak, Robert P.; Arnulf, Adrien F.; Mann, M. Everett

    2016-12-01

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera’s east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  1. Tuna Longline Fishing around West and Central Pacific Seamounts

    PubMed Central

    Morato, Telmo; Hoyle, Simon D.; Allain, Valerie; Nicol, Simon J.

    2010-01-01

    Background Seamounts have been identified as aggregating locations for pelagic biodiversity including tuna; however the topography and prevailing oceanography differ between seamounts and not all are important for tuna. Although a relatively common feature in oceanic ecosystems, little information is available that identifies those that are biologically important. Improved knowledge offers opportunities for unique management of these areas, which may advance the sustainable management of oceanic resources. In this study, we evaluate the existence of an association between seamounts and tuna longline fisheries at the ocean basin scale, identify significant seamounts for tuna in the western and central Pacific Ocean, and quantify the seamount contribution to the tuna longline catch. Methodology/Principal Findings We use data collected for the Western and Central Pacific Ocean for bigeye, yellowfin, and albacore tuna at the ocean basin scale. GLMs were applied to a coupled dataset of longline fisheries catch and effort, and seamount location information. The analyses show that seamounts may be associated with an annual longline combined catch of 35 thousand tonnes, with higher catch apparent for yellowfin, bigeye, and albacore tuna on 17%, 14%, and 14% of seamounts respectively. In contrast 14%, 18%, and 20% of seamounts had significantly lower catches for yellowfin, bigeye and albacore tuna respectively. Studying catch data in relation to seamount positions presents several challenges such as bias in location of seamounts, or lack of spatial resolution of fisheries data. Whilst we recognize these limitations the criteria used for detecting significant seamounts were conservative and the error in identification is likely to be low albeit unknown. Conclusions/Significance Seamounts throughout the study area were found to either enhance or reduce tuna catch. This indicates that management of seamounts is important Pacific-wide, but management approaches must take

  2. Science Priorities for Seamounts: Research Links to Conservation and Management

    PubMed Central

    Clark, Malcolm R.; Schlacher, Thomas A.; Rowden, Ashley A.; Stocks, Karen I.; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling

  3. Science priorities for seamounts: research links to conservation and management.

    PubMed

    Clark, Malcolm R; Schlacher, Thomas A; Rowden, Ashley A; Stocks, Karen I; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling

  4. 75 FR 52921 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish; Management Measures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Pacific; Hawaii Bottomfish and Seamount Groundfish; Management Measures for Hancock Seamounts to Rebuild... continue a moratorium on fishing for bottomfish and seamount groundfish at the Hancock Seamounts until the... also reclassify the management area around the Hancock Seamounts as an ecosystem management area....

  5. Drift-corrected seafloor pressure observations of vertical deformation at Axial Seamount 2013-2014

    NASA Astrophysics Data System (ADS)

    Sasagawa, G.; Cook, M. J.; Zumberge, M. A.

    2016-09-01

    Axial Seamount on the Juan de Fuca Ridge is a site of ongoing volcanic activity. The vertical component of the deformation can be observed with ambient seawater pressure gauges, which have excellent short-term resolution. However, pressure gauge drift adds additional and significant uncertainty in estimates of long-period deformation; drift rates equivalent to 20-30 cm/yr have been observed. One way to circumvent gauge drift is to make differential pressure measurements relative to a distant and presumably stable seafloor reference site. Such measurements require a remotely operated vehicle and can only be made infrequently. Another approach is to incorporate a piston gauge calibrator in the seafloor pressure recorder to generate an in situ reference pressure that, when periodically applied to the drift-susceptible gauge, can be used to determine and remove gauge drift from the time series. We constructed a self-calibrating pressure recorder and deployed it at Axial Seamount in September 2013. The drift-corrected record from that deployment revealed an uplift of the volcano summit of 60 cm over 17 months.

  6. The Seamount Catalog in EarthRef.org

    NASA Astrophysics Data System (ADS)

    Keizer, P.; Koppers, A.; Staudigel, H.; Helly, J.

    2001-12-01

    Seamounts are prominent features on the ocean floor that provide us with important insights to geology, geochemistry, geophysics and paleoclimate. To make accessible a diverse set of seamount data we developed the Seamount Catalog on the EarthRef.org web site that is accessible via http://earthref.org/databases/SC/. The goal of our effort is to provide simple access to the widest possible variety in digital data files as related to seamount research in a geospatial context. Each seamount is described in terms of its location, basic morphological features, and the types of data available in the catalog. The Seamount Catalog includes a series of basic bathymetry maps, processed grid files and original multibeam data. At least one screen-optimized JPEG file is available for online viewing and the remaining (higher resolution) files are directly downloadable from the EarthRef.org web site. The grid files are based on multibeam bathymetry data merged with the predicted bathymetry database of Smith and Sandwell (1996; 1997). The Seamount Catalog data objects are extensively described in terms of metadata allowing for searches by location (lat/lon), region name, seamount name, sample name or reference. We hope to further develop the Seamount Catalog by adding geophysical and other seamount data, expanding its metadata catalog, working towards a metadata interchange format (*.mif) and establishing interoperability with other data bases. The geospatial character of the Seamount Catalog would allow for interoperability between existing geochemistry, paleomagnetic and biological (biota) databases. Data files available for downloading will be stored using the Storage Resource Broker technology (SRB) while the generated metadata will be stored in the Seamount Catalog itself. Such developments represent the first steps towards the creation of a digital seamount research environment that includes electronic access to data and ultimately also the tools for working with the data.

  7. Morphology and distribution of seamounts surrounding Easter Island

    USGS Publications Warehouse

    Rappaport, Y.; Naar, D.F.; Barton, C.C.; Liu, Z.-J.; Hey, R.N.

    1997-01-01

    We investigate the morphology and distribution of a seamount population on a section of seafloor influenced by both superfast seafloor spreading and hotspot volcanism. The population under investigation is part of a broad chain of seamounts extending eastward from the East Pacific Rise, near Easter Island. In order to define the morphological variability of the seamounts, basal shape, cross-sectional area, volume, flatness, and flank slope are plotted against height for 383 seamounts with heights greater than 200 m, based on bathymetry data collected by GLORI-B and SeaBeam 2000, during three cruises onboard the R/V Melville in the spring of 1993. Nearly complete swath mapping coverage of the seamounts is available for the analysis of size and shape distribution. We quantitatively describe the seamount population of this active region, in which seamounts cover ???27% of the seafloor, and account for ???4.2% of the total crustal volume. Over 50% of the total volume (61,000 km3) of seamounts used in this study is made up by the 14 largest seamounts, and the remaining volume is made up by the 369 smaller seamounts (>200 m in height). Our analysis indicates there are at least two seamount populations in the Easter Island-Salas y Gomez Island (25??-29??S, 113??-104??W) study area. One population of seamounts is composed of short seamounts (1200 m), shield-like, pointy cones (flatness ???1200 m) originate exclusively from a hotspot source, but only a portion of the smaller volcanoes (

  8. Fluid flow through seamounts and implications for global mass fluxes

    NASA Astrophysics Data System (ADS)

    Harris, Robert N.; Fisher, Andrew T.; Chapman, David S.

    2004-08-01

    Seamounts contribute to globally significant hydrothermal fluxes, but the dynamics and impacts of fluid flow through these features are poorly understood. Numerical models of coupled heat and fluid flow illustrate how seamounts induce local convection in the oceanic crust. We consider idealized axisymmetric seamounts and calculate mass and heat fluxes by using a coupled heat- and fluid-flow model. By using P. Wessel's global database of ˜15,000 seamounts identified through satellite gravimetry, we estimate that the mass flux associated with seamounts is ˜1014 kg/yr, a number comparable to estimated regional mass fluxes through mid-ocean ridges and flanks. In addition, the seamount-generated advective heat flux may be locally significant well beyond the 65 Ma average age at which advective lithospheric heat loss on ridge flanks ends. These flows may be important for facilitating geochemical exchange between the crust and ocean and may affect subseafloor microbial ecosystems.

  9. The origin of the Canary Island Seamount Province - New ages of old seamounts

    PubMed Central

    van den Bogaard, Paul

    2013-01-01

    The Canary Island Seamount Province forms a scattered hotspot track on the Atlantic ocean floor ~1300 km long and ~350 km wide, perpendicular to lithospheric fractures, and parallel to the NW African continental margin. New 40Ar/39Ar datings show that seamount ages vary from 133 Ma to 0.2 Ma in the central archipelago, and from 142 Ma to 91 Ma in the southwest. Combining 40Ar/39Ar ages with plate tectonic reconstructions, I find that the temporal and spatial distribution of seamounts is irreconcilable with a deep fixed mantle plume origin, or derivation from passive mantle upwelling beneath a mid-ocean ridge. I conclude that shallow mantle upwelling beneath the Atlantic Ocean basin off the NW African continental lithosphere flanks produced recurrent melting anomalies and seamounts from the Late Jurassic to Recent, nominating the Canary Island Seamount Province as oldest hotspot track in the Atlantic Ocean, and most long-lived preserved on earth. PMID:23838703

  10. The origin of the Canary Island Seamount Province - new ages of old seamounts.

    PubMed

    van den Bogaard, Paul

    2013-01-01

    The Canary Island Seamount Province forms a scattered hotspot track on the Atlantic ocean floor ~1300 km long and ~350 km wide, perpendicular to lithospheric fractures, and parallel to the NW African continental margin. New (40)Ar/(39)Ar datings show that seamount ages vary from 133 Ma to 0.2 Ma in the central archipelago, and from 142 Ma to 91 Ma in the southwest. Combining (40)Ar/(39)Ar ages with plate tectonic reconstructions, I find that the temporal and spatial distribution of seamounts is irreconcilable with a deep fixed mantle plume origin, or derivation from passive mantle upwelling beneath a mid-ocean ridge. I conclude that shallow mantle upwelling beneath the Atlantic Ocean basin off the NW African continental lithosphere flanks produced recurrent melting anomalies and seamounts from the Late Jurassic to Recent, nominating the Canary Island Seamount Province as oldest hotspot track in the Atlantic Ocean, and most long-lived preserved on earth.

  11. Volcanic Rocks Collected With ROV Tiburon From Rodriguez Seamount, Located at the Continental Slope of the California Borderland

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.

    2004-12-01

    Volcanic rocks were collected from Rodriguez Seamount at the outer margin off the Continental Borderland with MBARI's ROV Tiburon in October 2003 and April 2004. Six dives recovered lava and volcaniclastic samples from the deep flanks ( ˜2120 m) to the summit at 630 m. Whole rock compositions of plagioclase-olivine-clionpyroxene bearing lava samples are predominantly alkalic basalt (<8% MgO) and hawaiite with minor mugearite (MgO=1.5%). Glass compositions of pillow rims and of volcaniclastic fragments in breccia and bedded sandstone are predominantly hawaiite, mugearite and minor evolved alkalic basalt. The lava samples include one rhyolite and one basaltic andesite with subduction-related chemistry; they are probably erratics. Other clearly identifiable erratics include granite, quartzite, amphibolite, and bored, erosion-sculpted sandstone, resembling typical beach deposits. Most of these erratics are pebble- to small cobble-size and occur in conglomerate and crossbedded sandstone that surround the summit at a break in slope that most likely marks the shoreline when Rodriguez was an island. The lava outcrops on the gently domed platform of the summit are dense, oxidized àà-like flows without glassy rinds. Sulfur content of glass, collected from the flanks of the volcano, ranges from 1300 ppm of a glass inclusion in an olivine crystal to ˜160 ppm of volcaniclastic grains, indicating extensive degassing. Petrographically and chemically these lavas are virtually identical to those erupted on Miocene seamounts offshore central California (e.g. Davidson, Guide, Pioneer, Gumdrop seamounts, Davis et al, 2002) as well as Northeast Bank on the continental shelf south of Rodriguez and seamounts farther offshore from the Continental Borderland (e.g. Little Joe, San Marcos, San Juan seamounts, Clague et al, unpublished; Davis et al., 1995). Trace element abundances and ratios (e.g. LREE, Zr/Nb, Ta/Nb) also completely overlap with those from the other sites, suggesting

  12. Seamounts, Direct Blast and Volume Reverberation Upgrades

    DTIC Science & Technology

    1988-11-30

    Highway. Suits 1204. Arlington, VA 22202-4302. "n to the Office of Management and Budget. Peperworik Reduction Project (0704-0188). Washington. DC 2050M. 1...Subtitle. 5. Funding Numbers. Seamounts, Direct Blast And Volume Reverberation Upgrades proram Eemen No 3 7 85N Project No R02017 6. Author(s). L...Section Pae 1 INTRODUCTION ................................. 1-1 2 ASERT: DATA PREPARATION FOR ASTRAL ........... 2-1 2.1 Overview and Purpose of

  13. NOAA Research Vessel Explores Atlantic Ocean Seamounts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-10-01

    Mike Ford, a biological oceanographer with the National Oceanic and Atmospheric Administration (NOAA), sat rapt in front of a bank of high-definition monitors. They provided live video and data feeds from a tethered pair of instrument-laden remotely operated vehicles (ROVs) that were descending 4692 meters on their deepest dive ever. Their target: an unnamed and unexplored New England seamount discovered in the North Atlantic last year.

  14. Age progressive volcanism in the Tasmantid Seamounts

    NASA Astrophysics Data System (ADS)

    McDougall, Ian; Duncan, Robert A.

    1988-07-01

    The Tasmantid Seamounts comprise a northerly trending linear chain of submarine volcanoes that extend over more than 1300 km in the middle of the Tasman Basin, located to the east of the Australian continental margin. The volcanoes are situated upon deep oceanic crust of Late Cretaceous/Early Cenozoic age. Several of the volcanoes were built from sea floor depths of more than 4000 m to above sea level, and were then eroded to flat-topped mountains which have subsided to depths as great as 400 m. Basalt samples dredged from Gascoyne, Taupo, Derwent Hunter, Britannia and Queensland Seamounts have been dated by the K-Ar and 40Ar/ 39Ar methods, yielding results in the range 24 to 6.4 Ma, Early to Late Miocene. A progressive younging of the volcanism southward along the seamount chain at an average rate of 67 ± 5mm/year is indicated. The predicted present position of the volcanic focus is at 40.4°S latitude, and between 155° and 156°E longitude, virtually coincident with the epicentre of a recent large earthquake. These results provide strong evidence that the Tasmantid Seamounts represent a hotspot track, effectively recording motion of the Australian plate across the sublithospheric mantle source region for the volcanism. Comparison with results from hotspot traces on the same plate and on the African plate further demonstrate that these hotspots provide a useful frame of reference for plate motions, and that relative movement between individual hotspots must be less than about 5 mm/year.

  15. Remembering Juan Navia.

    PubMed

    Dasanayake, A P; Li, Y; Maetz, H M; Vermund, S H

    2013-10-01

    Juan Navia died on September 4, 2010. Those who knew him as the director of the University of Alabama's John J. Sparkman Center for International Public Health Education and later the dean of UAB School of Public Health watched him train and shape the next generation of global public health leaders with a kind heart and a firm, but gentle, hand. On this third anniversary of Professor Navia's passing, in response to an invitation from the Journal of Dental Research to write an essay on an educator who influenced the professional trajectories of many people, we have put together an account of some of his contributions and attributes to highlight this remarkable leader's accomplishments in and impact on dental public health and global nutrition.

  16. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  17. Conversation with Juan Carlos Negrete.

    PubMed

    Negrete, Juan Carlos

    2013-08-01

    Juan Carlos Negrete is Emeritus Professor of Psychiatry, McGill University; Founding Director, Addictions Unit, Montreal General Hospital; former President, Canadian Society of Addiction Medicine; and former WHO/PAHO Consultant on Alcoholism, Drug Addiction and Mental Health.

  18. Ridge asymmetry and deep aqueous alteration at the trench observed from Rayleigh wave tomography of the Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Bell, Samuel; Ruan, Youyi; Forsyth, Donald W.

    2016-10-01

    Using Rayleigh wave tomography of noise-removed ocean bottom seismometer data from the Cascadia Initiative, we illuminate the structure of the upper mantle beneath the Juan de Fuca plate. Beneath the Juan de Fuca ridge, there is strong asymmetry, with a pronounced low-velocity zone in the 25-65 km depth range. Extending to the west from the spreading axis, this anomaly has velocities low enough to indicate the presence of melt. The asymmetry in velocity structure and the much greater abundance of seamounts on the west flank of the ridge suggest that dynamic, buoyant upwelling is important, perhaps triggered by thermal or compositional anomalies beneath Axial Seamount. In contrast, there is no evidence for asymmetry in the axial zone or lower than expected velocities beneath the Gorda ridge. On the eastern flank of the Juan de Fuca ridge, the shear velocity in the 25-65 depth range is higher than expected; the lithosphere appears to be colder and thicker than predicted by standard plate cooling models, perhaps caused by the downwelling counterpart of the upwelling on the west side of the ridge. Close to the trench, there is a sharp decrease in shear velocity. We interpret this as aqueous alteration caused by hydrothermal circulation through deep normal faults associated with bending of the plate. Beneath the Astoria and Nitinat fans, where abyssal plain sediment is thickest, the velocity decrease is much smaller, which is consistent with a thick sediment cap that prevents hydrothermal alteration of the plate.

  19. Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge

    SciTech Connect

    Hegner, E.; Tatsumoto, M.

    1987-10-10

    Pb, Sr, Nd isotopes of seven basalt glasses collected by the submersible Alvin from the southern Juan de Fuca Ridge (SJFR) are almost identical (/sup 206/Pb//sup 204/Pbapprox.18.45, /sup 207/Pb//sup 204/Pbapprox.15.47, /sup 208/Pb//sup 204/Pbapprox.37.81, /sup 87/Sr//sup 86/Srapprox.0.70249, /sup 143/Nd//sup 144/Ndapprox.0.51315). Whereas all basalts appear cogenetic, four of the samples have uniform abundances of U, Th, Rb, Nd, Sm, Pb, and Sr, indicating that they are also comagmatic. Two basalt glasses dredged previously at the SJFR have similar isotopic compositions but higher concentrations of U, Th, and Pb. The /sup 206/Pb//sup 204/Pb ratios are intermediate between generally less radiogenic ridge basalts from south of the Juan de Fuca Ridge (JFR) and often more radiogenic basalts from the northern JFR and NE Pacific seamounts. Sr and Nd isotopic compositions closely resemble data of other ridge basalts from the northernmost East Pacific Rise and are intermediate between isotopically more diverse seamount basalts produced nearby.

  20. Can seamounts provide a good habitat for polychaete annelids? Example of the northeastern Atlantic seamounts

    NASA Astrophysics Data System (ADS)

    Surugiu, Victor; Dauvin, Jean-Claude; Gillet, Patrick; Ruellet, Thierry

    2008-11-01

    Two seamount groups in the northeastern Atlantic were investigated during the 1980s and 1990s: the first was located along the Iberian and African coasts (Galicia, to the north of Portugal; and the Ampere, Gorringe, Josephine and Seine banks near the Madeira-Canary Islands) and the second was located offshore of the southern part of the Azores Islands, included the Atlantis, Hyeres, Irving, Meteor and Plato banks. Among the invertebrates, Annelida, specifically Polychaeta, were studied as surrogates for the biogeographical relationship between coastal and mid-oceanic seamounts in the northeastern Atlantic and the fauna in these areas. The dominant families were Onuphidae (27.46%), Syllidae (18.23%), Eunicidae (15.65%), Amphinomidae (11.45%) and Nereididae (5.61%), representing 78.4% of the total fauna. Data analyses clearly distinguished two seamount groups, one for coastal seamounts and the other offshore. Although the species distinguished and the family composition at the sampled sites were different (i.e., most diversified at the Josephine site and most impoverished at the Irving site), no coastal/offshore faunal impoverishment gradient could be identified. Thus, it seems that seamount environments do not favour any relationship between planktotrophic development and the direct development of polychaetes. Though the number of apparent endemic species was low (<7%), it remained in keeping with other invertebrate groups. Still, while seamounts may well encourage oceanic biodiversity in some zoological groups, this was clearly not the case for the polychaetes. We offer two explanations for this paradox: pelagic productivity and local environmental conditions.

  1. Detecting small seamounts in AltiKa repeat cycle data

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H. F.

    2016-12-01

    We present a technique of stacking repeat cycles of satellite altimeter sea surface height profiles that lowers the noise and improves the resolution of small seamounts. Our approach differs from other studies because it uses the median (not the mean) of the stacks, which suppresses outliers. Seamounts as small as 720 m tall are easily detected in stacked 40 Hz AltiKa data profiles, and a 500 m tall seamount is perceptible. Noise variance decreases with an increase in the number of cycles stacked, and RMS noise dips below 2 cm when 11 or more cycles are stacked. Coherence analyses between geoid height and bathymetry show that full wavelengths down to about 10 km can be resolved. Comparisons of study areas with and without seamounts find that signal from small seamounts lies in the 10-28 km waveband. A simple Gaussian band-pass filter based on the seamount waveband passes signals that can be used in seamount detection studies. Such studies may find seamounts <2 km tall that are predicted to be abundant on the ocean floor.

  2. Telepresence and real-time data transmission from Axial Seamount: implications for education and community engagement utilizing the OOI-RSN cabled observatory

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Kelley, D. S.; Sautter, L. R.; Proskurowski, G.; Kawka, O.; Delaney, J. R.

    2011-12-01

    Axial Seamount, the most robust volcanic system on the Juan de Fuca Ridge, is a future site of the cabled observatory component of the National Science Foundation's Ocean Observatories Initiative (OOI) (see Delaney et al; Proskurowski et al., this meeting). In 2014, high-bandwidth data, high-definition video and digital still imagery will be streamed live from the cable observatory at Axial Seamount via the Internet to researchers, educators, and the public. The real-time data and high-speed communications stream will open new approaches for the onshore public and scientists to experience and engage in sea-going research as it is happening. For the next 7 years, the University of Washington and the OOI will collaboratively support an annual multi-week cruise aboard the research vessel Thomas G. Thompson. These "VISIONS" cruises will include scientific and maintenance operations related to the cabled network, the OOI Regional Scale Nodes (RSN). Leading up to 2014, VISIONS cruises will also be used to engage students, educators, scientists and the public in science focused at Axial Seamount through avenues that will be adaptable for the live data stream via the OOI-RSN cable. Here we describe the education and outreach efforts employed during the VISIONS'11 cruise to Axial Seamount including: 1) a live HD video stream from the seafloor and the ship to onshore scientists, educators, and the public; 2) a pilot program to teach undergraduates from the ship via live and taped broadcasts; 3) utilizing social media from the ship to communicate with scientists, educators, and the public onshore; and 4) providing undergraduate and graduate students onboard immersion into sea-going research. The 2011 eruption at Axial Seamount (see Chadwick et al., this meeting) is a prime example of the potential behind having these effective tools in place to engage the scientific community, students, and the public when the OOI cabled observatory comes online in 2014.

  3. Emplacement and Growth of Serpentinite Seamounts on the Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Taylor, B.; Moore, G. F.; Fryer, P.; Morgan, J. K.; Goodliffe, A. M.

    2004-12-01

    Seamounts comprised primarily of serpentinite muds are found on the outer forearc of the Izu-Bonin-Mariana subduction system. They represent some of the first material outputs of the recycling process that takes place in subduction zones. Therefore, understanding their evolution is necessary to correctly quantify the flux of material through the subduction system. Serpentinite seamounts have been described as mud diapirs, mud volcanoes, uplifted blocks of mantle material, and a composite of the latter two. Multi-channel seismic (MCS) data collected in 2002 from the outer Mariana forearc imaged, for the first time, the large-scale internal structure of these seamounts. These data, combined with new bathymetry, have provided insight into how the seamounts grow and deform with time and have allowed us to evaluate proposed models for their formation. The serpentinite seamounts rest on faulted and sedimented Mariana forearc basement. Flank flows of serpentinite muds downlap existing forearc substrate, leaving the underlying stratigraphy largely undisturbed. Reflections located 3.5-5 km beneath forearc basement may represent Moho, suggesting that the seamounts are built on anomalously thin forearc crust. A strong reflection at the summit of Big Blue, the largest serpentinite seamount in the Mariana Forearc, represents a collapse structure that has been partially in-filled by younger muds, supporting the idea that serpentinite seamount growth is episodic. Basal thrusts that incorporate forearc sediments at the toe of Turquoise Seamount provide evidence for seamount settling and lateral growth. We are conducting numerical simulations of seamount growth and evolution using the discrete element method (DEM), previously used to examine gravity spreading phenomena in magmatic volcanoes. Simulations employing distinctly low basal and internal friction coefficients provide a good match to the overall morphology of the serpentinite seamounts, and offer insight into their internal

  4. Oceanic sharks clean at coastal seamount.

    PubMed

    Oliver, Simon P; Hussey, Nigel E; Turner, John R; Beckett, Alison J

    2011-03-14

    Interactions between pelagic thresher sharks (Alopias pelagicus) and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by "circular-stance-swimming," presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays.

  5. 75 FR 51237 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish; Management Measures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Pacific; Hawaii Bottomfish and Seamount Groundfish; Management Measures for Hancock Seamounts to Rebuild...), Amendment 2 would continue a moratorium on fishing at Hancock Seamounts for armorhead (Pseudopentaceros wheeleri) and other bottomfish and seamount groundfish until the armorhead stock is rebuilt, establish...

  6. Deformation associated with the 2015 Eruption of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Nooner, S. L.; Chadwick, W.; Caress, D. W.; Clague, D. A.; Paduan, J. B.; Yoerger, D.; Sasagawa, G. S.

    2015-12-01

    On April 24th 2015, an eruption began at Axial Seamount, a seafloor volcano located about 480 km west of the Oregon coast at the intersection of the Cobb hotspot and the Juan de Fuca Ridge. This eruption was first detected in real time by the newly operational Ocean Observatories Initiative cabled instrumentation at Axial (Delaney, AGU-2015, Wilcock, AGU-2015, Caplan-Auerbach, AGU-2015). Two prior eruptions have been observed since routine observations began in the 1990's, one in January 1998 and the other in April 2011. Precise water pressure measurements made on the volcano have documented an inflation/deflation cycle within Axial's summit caldera for the past 15 years. These data are now being supplemented by repeat bathymetric mapping by AUV. The long-term pattern appears to be "inflation predictable", in which eruptions are triggered at or near the same level of inflation. This pattern allowed us to successfully forecast in September 2014 that the next eruption was expected to occur at Axial sometime in 2015 (a 1-year time window). It is noteworthy that the rate of inflation between the 2011 and 2015 eruptions was about 4 times higher than between the 1998 and 2011 eruptions (60 cm/yr vs. 15 cm/yr). Subsidence at the caldera center began at 06:00 on 24 April (all times GMT) and amounted to 2.2 m by 02:00 on 25 April (20 hours in), 2.4 m by 00:00 on 28 April, and 2.45 m by 05 May when subsidence ended and re-inflation began (which has continued ever since). This amount of subsidence is similar to that observed during the 2011 eruption, but in 2015 the initial rate of subsidence was higher (11 cm/hr during the first 20 hours vs. 7 cm/hr in 2011) and the duration appears to have been longer (11 days vs. 6 days). Also, the 1998 and 2011 eruptions occurred along the southeastern edge of the caldera and along Axial's south rift zone, whereas the 2015 eruption occurred along the north rift zone (Kelley, AGU-2015). Here we present preliminary results of our August

  7. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and

  8. Jasper Seamount: seven million years of volcanism

    USGS Publications Warehouse

    Pringle, M.S.; Staudigel, H.; Gee, J.

    1991-01-01

    Jasper Seamount is a young, mid-sized (690 km3) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable 40Ar/39Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual 40Ar/39Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitional series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. -from Authors

  9. Seamounts are hotspots of pelagic biodiversity in the open ocean

    PubMed Central

    Morato, Telmo; Hoyle, Simon D.; Allain, Valerie; Nicol, Simon J.

    2010-01-01

    The identification of biodiversity hotspots and their management for conservation have been hypothesized as effective ways to protect many species. There has been a significant effort to identify and map these areas at a global scale, but the coarse resolution of most datasets masks the small-scale patterns associated with coastal habitats or seamounts. Here we used tuna longline observer data to investigate the role of seamounts in aggregating large pelagic biodiversity and to identify which pelagic species are associated with seamounts. Our analysis indicates that seamounts are hotspots of pelagic biodiversity. Higher species richness was detected in association with seamounts than with coastal or oceanic areas. Seamounts were found to have higher species diversity within 30–40 km of the summit, whereas for sets close to coastal habitat the diversity was lower and fairly constant with distance. Higher probability of capture and higher number of fish caught were detected for some shark, billfish, tuna, and other by-catch species. The study supports hypotheses that seamounts may be areas of special interest for management for marine pelagic predators. PMID:20448197

  10. Seamounts are hotspots of pelagic biodiversity in the open ocean.

    PubMed

    Morato, Telmo; Hoyle, Simon D; Allain, Valerie; Nicol, Simon J

    2010-05-25

    The identification of biodiversity hotspots and their management for conservation have been hypothesized as effective ways to protect many species. There has been a significant effort to identify and map these areas at a global scale, but the coarse resolution of most datasets masks the small-scale patterns associated with coastal habitats or seamounts. Here we used tuna longline observer data to investigate the role of seamounts in aggregating large pelagic biodiversity and to identify which pelagic species are associated with seamounts. Our analysis indicates that seamounts are hotspots of pelagic biodiversity. Higher species richness was detected in association with seamounts than with coastal or oceanic areas. Seamounts were found to have higher species diversity within 30-40 km of the summit, whereas for sets close to coastal habitat the diversity was lower and fairly constant with distance. Higher probability of capture and higher number of fish caught were detected for some shark, billfish, tuna, and other by-catch species. The study supports hypotheses that seamounts may be areas of special interest for management for marine pelagic predators.

  11. An Ecosystem Evaluation Framework for Global Seamount Conservation and Management

    PubMed Central

    Taranto, Gerald H.; Kvile, Kristina Ø.; Pitcher, Tony J.; Morato, Telmo

    2012-01-01

    In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals. PMID:22905190

  12. An ecosystem evaluation framework for global seamount conservation and management.

    PubMed

    Taranto, Gerald H; Kvile, Kristina Ø; Pitcher, Tony J; Morato, Telmo

    2012-01-01

    In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals.

  13. Counseling According to don Juan

    ERIC Educational Resources Information Center

    Pulvino, Charles J.; Lee, James L.

    1975-01-01

    This article specifies a number of precepts put forth by don Juan, a Yaqui Indian sorcerer. It also outlines the consequences of each precept for counselors. The intent is to facilitate the emergence of a new reality for counseling and other helping professions. (Author/BW)

  14. Search for seamounts in the southern Cook and Austral region

    SciTech Connect

    Lambeck, K.; Coleman, R.

    1982-04-01

    The existence of uncharted seamounts in the Cook-Austral region of the South Pacific has been investigated using GEOS 3 and SEASAT radar altimeter observations. Three previously uncharted submarine seamounts, provisionally named GEOS A to GEOS C, have been located between Mauke and Rimatara and a fourth, GEOS D, has been located east of Rurutu. This confirms that the Aitutaki-Mauke islands of the Southern Cooks are a continuation of the Austral chain. A second group of uncharted seamounts has been provisionally located some 200 km south of Rimatara and Maria and this is suggestive of a second seamount chain, south of the first, that includes Raratonga and Mangaia. Fabert Bank, to the south of Mangaia, appears to be mislocated by about 2/sup 0/ in longitude.

  15. Lagrangian observations of surface circulation at the Emperor Seamount chain

    NASA Technical Reports Server (NTRS)

    Vastano, A. C.; Hagan, D. E.; Mcnally, G. J.

    1985-01-01

    In a Kuroshio tracking experiment initiated in February 1977, two satellite-reporting buoys, drogued to 100-m depth, were released southeast of Kuyshu Island, Japan. These drifters crossed the Shatskiy Rise in the Kuroshio extension during May and October and then traversed the Emperor Seamount Chain. Although they reached the chain 117 days apart, their movements near the seamounts display remarkably similar patterns, demonstrating upstream meanders in the surface flow; cyclonic eddy activity immediately west of the chain; passage through the same gap associated with the Jingu and Nintoku seamounts; and a wavelike pattern present over the Hess Rise east of the chain. One drifter exhibited cyclonic eddy motion east of the chain in the lee of the Kinmei Seamount.

  16. Subduction of the Daiichi Kashima Seamount in the Japan Trench

    USGS Publications Warehouse

    Lallemand, S.; Culotta, R.; Von Huene, R.

    1989-01-01

    In 1984-1985, the Kaiko consortium collected Seabeam, single-channel seismic and submersible sampling data in the vicinity of the Daiichi-Kashima seamount and the southern Japan trench. We performed a prestack migration of a Shell multichannel seismic profile, that crosses this area, and examined it in the light of this unusually diverse Kaiko dataset. Unlike the frontal structure of the northern Japan trench, where mass-wasting appears to be the dominant tectonic process, the margin in front of the Daiichi-Kashima shows indentation, imbrication, uplift and erosion. Emplacement of the front one-third of the seamount beneath the margin front occurs without accretion. We conclude that the Daiichi-Kashima seamount exemplifies an intermediate stage between the initial collision and subduction of a seamount at a continental margin. ?? 1989.

  17. Microbial community on oceanic ferro-manganese crusts from Takuyo-Daigo Seamount and Ryusei Seamount

    NASA Astrophysics Data System (ADS)

    Nitahara, S.; Kato, S.; Yamagishi, A.

    2012-12-01

    Background and Purpose Iron and manganese oxide deposits are often found on deep seafloor. Rocks covered with these oxides are called ferro-manganese crusts (Mn crusts), and are ubiquitously distributed on deep seafloor (Rona 2003). Because Mn crusts contain rare metals such as Co, Pt and rare earth element, it can be resources in the future. Mn crusts and microbes on Mn crusts may contribute to material, especially carbon and nitrogen circulation between hydrosphere and lithosphere. Mechanism of Mn crust formation is not completely understood. Wang et al. propose a model that microorganisms associate with initial Mn mineral deposition (Wang et al., 2011). There is a possibility that microbes may contribute to formation of Mn crust relying on their ability to oxidize Fe and Mn. However, there is limited information about diversity, spatial distribution and abundance of microbes on Mn crust surface. Our purpose is to clarify microbial community composition, spatial distribution, diversity and abundance of microbes on Mn crusts collected from Takuyo-Daigo seamount and Ryusei seamount. Method We collected Mn crusts, sediments and ambient seawater from Takuyo-Daigo seamount at the depth of 1200 m, 1419 m, 2209 m and 2991 m during NT09-02 cruise in Feb 2009 and Ryusei seamount at the depth of 1194 m, 2079 m during KY11-02 in Feb 2011 with remotely operated vehicle Hyper-Dolphin (JAMSTEC). Genomic DNA was extracted from each sample using Fast DNA kit for soil (Qbiogene). Partial 16S rRNA gene and amoA gene were amplified by PCR with prokaryote-universal primer set (Uni516F-Uni1407R) and bacterial and archaeal amoA specific primer sets. PCR products were cloned. The nucleotide sequences of randomly selected clones were determined. We performed phylogenetic and statistical analysis to determine microbial community compositions, and estimated diversity indices. We also estimated the copy numbers of 16S rRNA and amoA genes of Bacteria and Archaea by quantitative PCR. Results

  18. Topographically induced circulation patterns and mixing over Condor seamount

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I.; Loureiro, C. M.; Martins, A.

    2013-12-01

    Analysis of mean and oscillatory circulation patterns over Condor seamount, situated near the central group of the Azores islands, was performed. During 1.5 years of observations, at least half of the time an anticyclonic cap was established over the summit. The vortex was characterised by a strong asymmetry: it was shifted to the south of the summit and strongly stretched along the gentle eastern and western slopes of the seamount.

  19. Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic)

    NASA Astrophysics Data System (ADS)

    Colaço, A.; Giacomello, E.; Porteiro, F.; Menezes, G. M.

    2013-12-01

    Compared to the surrounding ocean waters, seamounts are commonly considered habitats where biological productivity is higher and consumers proliferate. Despite their high productivity, studies of seamount trophic webs are still scarce and fragmentary, and little is known about the connections between the different compartments. What are the trophic interactions of seamount fauna? How do the pelagic and benthic environment couple? In order to answer these questions, stable isotopes δ15N and δ13C were measured in the organisms collected during the course of numerous campaigns at the Condor seamount in the North Atlantic. The Condor seamount food chain is composed of five trophic levels. Mesopelagic organisms are the link between the epipelagic environment and the benthic and benthopelagic organisms, bridging the gap between primary consumers and the 4th and 5th trophic chain levels. Our results demonstrate, through stable isotope analysis, the important role of mesopelagic organisms in the transfer of energy within the seamount food web, as modeling/theoretical studies have previously suggested.

  20. Otolith chemistry reveals seamount fidelity in a deepwater fish

    NASA Astrophysics Data System (ADS)

    Régnier, Thomas; Augley, Julian; Devalla, Sandhya; Robinson, Craig D.; Wright, Peter J.; Neat, Francis C.

    2017-03-01

    There are thousands of seamounts (underwater mountains) throughout the world's deep oceans, many of which support diverse faunal communities and valuable fish stocks. Although seamounts are often geographically and bathymetrically isolated from one another, it is not clear how biologically isolated they are from one another. We analysed the chemical signature of the otoliths of a deepwater fish, the roundnose grenadier (Coryphaenoides rupestris) to test the null hypothesis that there is random exchange between individuals from a seamount and other adjacent areas. The fish were sampled on the Scottish west coast, from the Rosemary Bank seamount and two adjacent locations of similar depth, in the same year at roughly the same time of year. We used flow-injection inductively coupled plasma mass spectrometry to measure trace element concentrations from micro-milled portions of the otolith corresponding to adult and juvenile life history stages. The elemental signatures of the fish from the seamount were distinguishable from the fish from the two other areas during both the juvenile and adult life-history phase. We infer that once juveniles settle on the seamount they remain there for the rest of their lives. Evidence for population structure should be factored into exploitation strategies to prevent local depletion and is an important consideration with respect to Rosemary bank being included in a network of Marine Protected Areas around Scotland.

  1. Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Hegner, E.; Tatsumoto, M.

    1987-01-01

    Isotopic Pb, Sr, and Nd data were collected by the Alvin submersible from seven basalt glasses in the southern Juan de Fuca Ridge (JFR), giving similar ratios for Pb-206/Pb-204 of about 18.45, for Pb-207/Pb-204 of about 15.47, for Pb-208/Pb-204 of about 37.81, for Sr-87/Sr-86 of about 0.70249, and for Nd-143/Nd-144 of about 0.51315. Data suggest that the basalts are all cogenetic, and that four of the samples are also comagmatic. It is concluded that isotopic data for the JFR and seamount basalts provide additional support for the mantle blob cluster model (Allegre et al., 1984), suggesting the involvement of multiple components in the genesis of ridge basalts, and including an unusual end-member that has nonradiogenic Sr and variable Pb-206/Pb-204 isotopic compositions.

  2. Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities.

    PubMed

    Opatkiewicz, Andrew D; Butterfield, David A; Baross, John A

    2009-12-01

    The microbial community structure of five geographically distinct hydrothermal vents located within the Axial Seamount caldera, Juan de Fuca Ridge, was examined over 6 years following the 1998 diking eruptive event. Terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene sequence analyses were used to determine the bacterial and archaeal diversity, and the statistical software primer v6 was used to compare vent microbiology, temperature and fluid chemistry. Statistical analysis of vent fluid temperature and composition shows that there are significant differences between vents in any year, but that the fluid composition changes over time such that no vent maintains a chemical composition completely distinct from the others. In contrast, the subseafloor microbial communities associated with individual vents changed from year to year, but each location maintained a distinct community structure (based on TRFLP and 16S rRNA gene sequence analyses) that was significantly different from all other vents included in this study. Epsilonproteobacterial microdiversity is shown to be important in distinguishing vent communities, while archaeal microdiversity is less variable between sites. We propose that persistent venting at diffuse flow vents over time creates the potential to isolate and stabilize diverse microbial community structures between vents.

  3. Origins of nonvolcanic seamounts in a forearc environment

    NASA Astrophysics Data System (ADS)

    Fryer, Patricia; Fryer, Gerard J.

    The outer half of the Mariana forearc, the region between the trench axis and the active volcanic arc, contains numerous large seamounts formed entirely by nonvolcanic processes. These seamounts are up to 30 km in diameter and rise as much as 2 km from the seafloor around them. Within about 50 km of the trench axis most of the seamounts are horst blocks of uplifted forearc material. From 50 to about 120 km from the trench axis the seamounts are either sites of updomed forearc material caused by diapiric intrusion, or sites of extrusion of diapirically emplaced serpentinized ultra manes fiom the lower crust/upper mantle of the underlying forearc. The formation of the diapiric material comprising these seamounts is dependent on the evolution of the thermal structure of the shallow (above 30 km) portion of the overriding plate as a convergence zone develops. Changes in the thermal structure influence the distribution of the stability fields of various regional metamorphic facies within the forearc region. As a convergence zone evolves, the greenschist stability field retreats from the region of the trench axis and is replaced by the stability field of the lawsonite-albite-chlorite facies at shallow levels, and by that of the the blueschist facies at depth. The disappearance of the greenschist facies stability field from the forearc suggests that the serpentinite diapirs are either emplaced early in the history of the forearc or that serpentinite remains metastable within the outer forearc for tens of millions of years. The growth of the chlorite and blueschist stability fields may explain the apparent capacity of forearc regions to accommodate large amounts of fluids driven off the downgoing slab by compaction, desiccation, and dehydration reactions. Although conditions appropriate for the formation of either fault block seamounts or diapirically formed seamounts may exist in any forearc, the occurrence of the seamounts is dependent on the local tectonic environment

  4. Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Sallarès, Valentí; Ranero, César R.; Gerya, Taras

    2016-09-01

    Seamounts or submarine volcanoes frequently collide with the overriding crust along presently active subduction zones locally modifying stress and permanent deformation patterns. Dynamics of this process is not fully understood, and several end-member scenarios of seamount-crust interaction are proposed. Here we use high-resolution 3-D numerical models to investigate evolution of crustal deformation and stress distribution within the upper plate induced by the underthrusting of subducting seamounts. The dynamical effects of the upper plate strength, subduction interface strength, and strain weakening of the crust are investigated. Experiment results demonstrate that characteristic crustal fracturing patterns formed in response to different seamount-crust interaction scenarios. Indenting seamounts strongly deform the overriding plate along a corridor as wide as the underthrusting seamount by constantly shifting subvertical shear zones rooted at the seamount extensions. A reentrant develops during initial seamount collision. A topographic bulge atop the seamount and lateral ridges emerge from further seamount subduction. Obtained stress pattern shows areas of large overpressure above the rearward and large underpressure above the trenchward flank of the seamount. Results of numerical experiments are consistent with seismic reflection images and seismic velocity models of the upper plate in areas of seamount subduction along the Middle America Trench and give important insights into the long-lasting question, whether subducting seamounts and rough seafloor act as barriers or asperities for megathrust earthquakes.

  5. Geochemical Evolution of the Louisville Seamount Chain

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, L.; Mahoney, J. J.; Koppers, A. A.; Lonsdale, P. F.

    2007-12-01

    The Louisville seamount chain is a 4300 km long chain of submarine volcanoes in the southwestern Pacific that is commonly thought to represent a hotspot track. It spans an ~80 Myr age range, comparable to that of the Hawaiian-Emperor chain (Koppers et al., G-cubed, 5 (6), 2004). The few previously dredged igneous samples are dominantly basaltic and alkalic, and have been inferred to represent post-shield volcanism (Hawkins et al., AGU Monograph, 43, 235, 1987). Their isotope and trace element signatures suggest an unusually homogenous mantle source (Cheng et al., AGU Monograph, 43, 283, 1987). Dredging in 2006, during the AMAT02RR cruise of the R.V. Revelle, was carried out in the hope of recovering both shield and post-shield samples and of exploring the geochemical evolution of the chain. Igneous rocks were recovered from 33 stations on 23 seamounts covering some 47 Myr of the chain's history. Our study, focusing on the major and trace element and Sr, Nd and Pb isotopic characteristics of these samples, shows that all are alkalic basalts, basanites and tephrites containing normative nepheline. Variations in major and trace elements appear to be controlled predominantly by variable extents of melting and fractional crystallization, with little influence from mantle source heterogeneity. Indeed, age-corrected isotopic values define only a narrow range, in agreement with long-term source homogeneity relative to the scale of melting; e.g., ɛNd varies from +4.1 to +5.7, 206Pb/204Pb from 19.048 to 19.281, and 87Sr/86Sr from 0.70362 to 0.70398. These values broadly fall within the fields of the proposed "C" or "FOZO" mantle end-members. However, small variations are present, with less radiogenic Nd and Pb isotope ratios at the older, western end of the chain, defining a trend toward a broadly EM2-like composition. Although some workers have postulated that the Louisville hotspot was the source of the ~120 Myr Ontong Java Plateau, our samples are isotopically distinct

  6. Spionidae (Polychaeta: Canalipalpata: Spionida) from seamounts in the NE Atlantic.

    PubMed

    Meißner, Karin; Bick, Andreas; Guggolz, Theresa; Götting, Miriam

    2014-04-10

    Spionidae (Polychaeta) collected from seamounts in the Atlantic Ocean were studied. Altogether six species were found of which two are new to science and one belongs to a new genus. Aonidella cf. dayi Maciolek in López-Jamar, 1989 and Glandulospio orestes gen. et sp. nov. were the most common species and occurred on both the Great and Little Meteor Seamount, the Irving Seamount and the Hyeres Seamount. Laonice norgensis Sikorski, 2003 and Malacoceros jirkovi Sikorski, 1992 have a wider distribution in the North Atlantic, including the Mediterranean Sea in case of L. norgensis. Aonides selvagensis Brito, Núñez and Riera, 2006 is only known from the Macaronesian Region. Dipolydora paracaulleryi sp. nov. has been collected from both the Great and Little Meteor Seamounts. All species are compared with morphological similar species and their taxonomy is discussed. Detailed descriptions are provided for the species new to science and descriptions of the previously known species are amended. Accompanying histological studies revealed the presence of very strong dorsoventral musculature in A. cf. dayi and for G. orestes gen. et sp. nov. the presence of glandular organs in the middle body region. Laonice maciolekae Aguirrezabalaga & Ceberio, 2005 was found to be a junior synonym of L. appellöfi Söderström, 1920 and is formally synonymised. Molecular data suggest gene flow between seamounts and autochthonous as well as allochthonous larval recruitment for different species. The results of previous studies by other authors, that polychaete communities of the North Atlantic Seamounts are characterized by low diversity, low rates of endemism, and the predominance of widely distributed (and cosmopolitan) species is not corroborated by our results. 

  7. Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge

    USGS Publications Warehouse

    Chadwick, J.; Perfit, M.; Ridley, I.; Jonasson, I.; Kamenov, G.; Chadwick, W.; Embley, R.; le, Roux P.; Smith, M.

    2005-01-01

    The interaction of the Juan de Fuca Ridge with the Cobb hot spot has had a considerable influence on the magmatism of the Axial Segment of the ridge, the second-order segment that overlies the hot spot. In addition to the construction of the large volcanic edifice of Axial Seamount, the Axial Segment has shallow bathymetry and a prevalence of constructional volcanic features along its 100-km length, suggesting that hot spot-derived magmas supplement and oversupply the ridge. Lavas are generally more primitive at Axial Seamount and more evolved in the Axial Segment rift zones, suggesting that fractional crystallization is enhanced with increasing distance from the hot spot because of a reduced magma supply and more rapid cooling. Although the Cobb hot spot is not an isotopically enriched plume, it produces lavas with some distinct geochemical characteristics relative to normal mid-ocean ridge basalt, such as enrichments in alkalis and highly incompatible trace elements, that can be used as tracers to identify the presence and prevalence of the hot spot influence along the ridge. These characteristics are most prominent at Axial Seamount and decline in gradients along the Axial Segment. The physical model that can best explain the geochemical observations is a scenario in which hot spot and mid-ocean ridge basalt (MORB) magmas mix to varying degrees, with the proportions controlled by the depth to the MORB source. Modeling of two-component mixing suggests that MORB is the dominant component in most Axial Segment basalts. Copyright 2005 by the American Geophysical Union.

  8. The Census of Marine Life on Seamounts: results from a global science program

    NASA Astrophysics Data System (ADS)

    Stocks, K.; Clark, M.; Rowden, A.; Consalvey, M.

    2010-12-01

    CenSeam (a Global Census of Marine Life on Seamounts) is a network of more than 500 scientists, policy makers and conservationists around the world. These participants are collaborating to increase our understanding of the factors driving seamount community composition and diversity, such that we can better understand and manage the effects of human activities. The major scientific outcomes of the CenSeam community include the findings that 1) Seamount community composition is often similar to surrounding habitats; however, community structure can be different. 2) Contrary to conventional wisdom, few seamounts follow island biogeography predictions. 3) Seamounts can support a higher benthic biomass than surrounding habitats. 4) Seamounts can support species and communities new to science, and represent range extensions for known species, which are being described from CenSeam voyages. 5) For the first time, the extent of the vulnerability and risk to seamount benthic communities from fishing has been quantified. 6) Whilst long assumed, CenSeam researchers have demonstrated that seamount communities are disturbed by fishing and are slow to recover. And 7) Seamounts might act as repositories of biodiversity during future periods of extreme environmental change, as they have likely done in the past. The major products of Censeam include 1) a book synthesizing seamount knowledge: Seamounts: Ecology, Fisheries and Conservation (from Blackwell Publishing); 2) a recent review of the structure and function of seamount benthic communities, human impacts, and seamount management and conservation (Ann Rev Mar Sci); 3) hundreds of scientific publications, including Special Issues in Marine Ecology and Oceanography (in collaboration with the Seamount Biogeogsciences Network), and a Special Collection in PLoSONE; 4) guidance documents and formal advising for seamount management communities, including the United Nations Environment Program, International Seabed Authority

  9. High-resolution AUV mapping and lava flow ages at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.; Martin, J.

    2011-12-01

    Mapping along mid-ocean ridges, as on land, requires identification of flow boundaries and sequence, and ages of some flows to understand eruption history. Multibeam sonars on autonomous underwater vehicles (AUV) now generate 1-m resolution maps that resolve lava pillars, internal flow structures and boundaries, and lava flow emplacement sequences using crosscutting relations and abundance of fissures. MBARI has now mapped the summit caldera floor and rims and the upper south rift zone on Axial Seamount on the Juan de Fuca Ridge. With the advent of the high-resolution bathymetry and the ability to observe flow contacts to determine superposition using ROVs and submersibles, the missing component has been determining absolute ages of the flows. We used the MBARI ROV Doc Ricketts to collect short push cores (<30 cm) of the thin sediment nestled between pillow lava lobes and sieve and then hand-pick planktic foraminifera from the base of the cores to date by AMS 14C. Ages of planktic foraminifera are marine-calibrated in years before present, and provide minimum ages for the underlying flows, as there is probably some basal sediment that is not recovered. 14C ages have been determined for 10 cores near the summit of Axial Seamount and for 6 from the lowermost south rift. Ages of nearby samples commonly yield statistically identical ages, and 2 cores near the center of the caldera had multiple layers dated. These ages systematically increase with depth, indicating that redistribution of sediment by bottom currents does not significantly affect the stratigraphy. We will expand these collections in summer 2011. The coring is accompanied by collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition inferred from the mapping data. Six ages from the lowermost part of the south rift of Axial Seamount include samples on a cone with deep summit crater that is ~16,580 aBP and on 5 flows between 950 and 1510 aBP. Two

  10. Observed deep energetic eddies by seamount wake.

    PubMed

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-11-30

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

  11. Observed deep energetic eddies by seamount wake

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-11-01

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

  12. Observed deep energetic eddies by seamount wake

    PubMed Central

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-01-01

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport. PMID:26617343

  13. Dredged trachyte and basalt from kodiak seamount and the adjacent aleutian trench, alaska.

    PubMed

    Forbes, R B; Hoskin, C M

    1969-10-24

    Blocky fragments of aegirine-augite trachyte (with accompanying icerafted gravels.) were recovered from the upper slopes of Kodiak Seamount in several dredge hauls. An alkali basalt pillow segment was also dredged from a moatlike depression, at a depth of 5000 meters, near the west base of the seamount. These retrievals confirm the volcanic origin of Kodiak Seamount and further support the view of Engel, Engel, and Havens that the higher elevations of seamounts are composed of alkali basalts or related variants.

  14. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  15. Seismic velocity structure of the Juan de Fuca and Gorda plates revealed by a joint inversion of ambient noise and regional earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Haiying

    2016-05-01

    The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade back arc, is imaged with full-wave propagation simulation and a joint inversion of ambient noise and regional earthquake recordings. The spreading centers have anomalously low shear wave velocity beneath the oceanic lithosphere. Around the Cobb axial seamount, we observe a low-velocity anomaly underlying a relatively thin oceanic lithosphere, indicating its influence on the Juan de Fuca ridge. The oceanic Moho is clearly defined by a P velocity increase from 6.3 km/s to 7.5 km/s at about 6 km depth beneath the seafloor. The thickness of the oceanic plates is less than 40 km prior to subduction, and the structure of the oceanic lithosphere varies both along strike and along dip. Farther landward, very low velocity anomalies are observed above the plate interface along the Cascade fore arc, indicative of subducted sediments.

  16. Geophysical exploration of the Southeast Tyrrhenian Sea (Italy): Seamounts batimetries

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; Milano, Girolamo

    2010-05-01

    The Tyrrhenian Sea is a young extensional basin in the Central Mediterranean that formed within a complex convergent boundary between Africa and Eurasian Plates. Its opening, associated to the west dipping subduction of the Ionian lithosphere, started about 11 My ago and was marked first by an EW and successively by an ESE directed extension. This last mainly affected the Southeast Tyrrhenian Sea and led to the formation of the Marsili ocean-like basin. This large-scale extension produced the onset of volcanism throughout the Tyrrhenian Sea and the formation of several seamounts. High values of heat flow (>150 mW m-2) and the thin crust (7 km on average) and lithosphere (30 km on average) testify the young age of formation of oceanic crust in the Southeast Tyrrhenian Sea. On November 2007, a multidisciplinary oceanographic survey was carried out in the Southeast Tyrrhenian Sea by a group of researchers of the IAMC-CNR (Naples), Osservatorio Vesuviano (INGV, Naples), NOAA (Seattle) and GNS (New Zealand) on board of the R/V Urania. The main aim of the survey was the identification and the exploration of potential active volcanic and/or hydrothermal vents on the seamounts located in the Southeast Tyrrhenian Sea. Twelve Tyrrhenian seamounts have been explored with a modified CTD system, in order to acquire "tow-yo" profiles in dynamic mode (real time monitoring of physical and chemical parameters of seawater along vertical/horizontal profiles). In addiction, Multibeam swath bathymetry was carried out over fifteen seamounts. The strategy for the achieving of the aim consisted in two phases: i) row multibeam acquisition of the sea floor morphology to verify, confirm or review all available data, ii) tow-yo activity and seawater sampling. Here, we show the main results of bathymetric data acquisition carried out over fifteen seamounts with the use of the Reson Seabat 8160 multibeam sonar system mounted on keel of the R/V Urania. The most interesting morphostructural

  17. Internal tidal currents over the summit of cross seamount

    USGS Publications Warehouse

    Noble, M.; Mullineaux, L.S.

    1989-01-01

    Spectral analysis of 46 days of record from a current meter deployed above the summit of Cross Seamount (approximately 300 km west of the Hawaiian Islands) indicates that the strongest current fluctuations were driven by the semidiurnal tide. The tides accounted for 28% of the variance in the current spectrum, were mainly baroclinic in character, and were propagated towards the west-northwest. The amplitude of the S2 current flowing parallel to the major axis of the current ellipse ranged between 4 and 9 cm-1 s. The S2 current was 1.5 times larger than the M2 current. This ratio is 4 times larger than is expected for this region of the Pacific and is not a general characteristics of flows over seamounts. Instantaneous current speeds over the seamount often exceeded 20 cm s-1 and were probably responsible for the small ripples observed on the sediment-covered regions of the summit. ?? 1990.

  18. Live from the Seafloor: Seismic Signals associated with the 2015 Eruption of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S. D.; Tolstoy, M.; Garcia, C.; Tan, Y. J.; Waldhauser, F.

    2015-12-01

    Axial seamount is the most active volcanic feature on the Juan de Fuca Ridge having previously erupted in 1998 and 2011. In 2014, the Ocean Observatories Initiative installed a multidisciplinary, cabled observatory on Axial seamount that includes a compact network of 7 seismometers spanning the southern half of the summit caldera with another seismometer located at the base of the volcano. Real-time data from the seismic network has been archived at the IRIS Data Management Center from mid-November 2014. We have implemented an automated algorithm to detect earthquakes, pick P and S wave phases, determine hypocenters and estimate magnitudes. Over 5 months to mid-April earthquake rates increased from an average of ~100 per day to >500 per day. Most of the earthquakes were small (MW ≤ 1.5) and occurred in swarms beneath the east and west walls of the caldera at depths clustering around 1.5 km. On April 23, 2015 at 1700-2100 GMT there was a sizeable swarm of earthquakes near the east wall of the caldera with most activity north of the network. The main seismic crisis, which coincided with ~2 m of deflation at the center of the caldera (Nooner et al., this meeting), commenced at 0500 GMT on April 24. For the first 2 hours epicenters were confined near the east wall north of the network. The southern limit of seismicity then migrated ~3 km south over one hour to beneath the network where very high levels of seismicity (~500 per hour) persisted until 1500 GMT. During the seismic crisis, the caldera seismometers were swamped by nearby earthquakes, including ~100 per hour with MW ≥ 2; additional analysis is required to determine if seismicity also migrated outside the caldera. In the following weeks, earthquake rates beneath the caldera decreased to <10 per day. An exciting discovery during this period was the detection of a large number of impulsive water borne signals, each comprising a train of water column multiples with arrival times consistent with sound sources

  19. Diversity and endemism of the benthic seamount fauna in the southwest Pacific.

    PubMed

    de Forges, B R; Koslow, J A; Poore, G C

    2000-06-22

    Seamounts comprise a unique deep-sea environment, characterized by substantially enhanced currents and a fauna that is dominated by suspension feeders, such as corals. The potential importance of these steep-sided undersea mountains, which are generally of volcanic origin, to ocean biogeography and diversity was recognized over 40 years ago, but this environment has remained very poorly explored. A review of seamount biota and biogeography reported a total of 597 invertebrate species recorded from seamounts worldwide since the Challenger expedition of 1872. Most reports, based on a single taxonomic group, were extremely limited: 5 seamounts of the estimated more than 30,000 seamounts in the world's oceans accounted for 72% of the species recorded. Only 15% of the species occurring on seamounts were considered potential seamount endemics. Here we report the discovery of more than 850 macro- and megafaunal species from seamounts in the Tasman Sea and southeast Coral Sea, of which 29-34% are new to science and potential seamount endemics. Low species overlap between seamounts in different portions of the region indicates that the seamounts in clusters or along ridge systems function as 'island groups' or 'chains' leading to highly localized species distributions and apparent speciation between groups or ridge systems that is exceptional for the deep sea. These results have substantial implications for the conservation of this fauna, which is threatened by fishing activity.

  20. Endemicity, biogeograhy, composition, and community structure on a northeast pacific seamount.

    PubMed

    McClain, Craig R; Lundsten, Lonny; Ream, Micki; Barry, James; DeVogelaere, Andrew

    2009-01-01

    The deep ocean greater than 1 km covers the majority of the earth's surface. Interspersed on the abyssal plains and continental slope are an estimated 14000 seamounts, topographic features extending 1000 m off the seafloor. A variety of hypotheses are posited that suggest the ecological, evolutionary, and oceanographic processes on seamounts differ from those governing the surrounding deep sea. The most prominent and oldest of these hypotheses, the seamount endemicity hypothesis (SMEH), states that seamounts possess a set of isolating mechanisms that produce highly endemic faunas. Here, we constructed a faunal inventory for Davidson Seamount, the first bathymetric feature to be characterized as a 'seamount', residing 120 km off the central California coast in approximately 3600 m of water (Fig 1). We find little support for the SMEH among megafauna of a Northeast Pacific seamount; instead, finding an assemblage of species that also occurs on adjacent continental margins. A large percentage of these species are also cosmopolitan with ranges extending over much of the Pacific Ocean Basin. Despite the similarity in composition between the seamount and non-seamount communities, we provide preliminary evidence that seamount communities may be structured differently and potentially serve as source of larvae for suboptimal, non-seamount habitats.

  1. Weak interplate coupling by seamounts and repeating M approximately 7 earthquakes.

    PubMed

    Mochizuki, Kimihiro; Yamada, Tomoaki; Shinohara, Masanao; Yamanaka, Yoshiko; Kanazawa, Toshihiko

    2008-08-29

    Subducting seamounts are thought to increase the normal stress between subducting and overriding plates. However, recent seismic surveys and laboratory experiments suggest that interplate coupling is weak. A seismic survey in the Japan Trench shows that a large seamount is being subducted near a region of repeating earthquakes of magnitude M approximately 7. Both observed seismicity and the pattern of rupture propagation during the 1982 M 7.0 event imply that interplate coupling was weak over the seamount. A large rupture area with small slip occurred in front of the seamount. Its northern bound could be determined by a trace of multiple subducted seamounts. Whereas a subducted seamount itself may not define the rupture area, its width may be influenced by that of the seamount.

  2. The 1998 eruption of Axial Seamount: New insights on submarine lava flow emplacement from high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Clague, D. A.; Embley, R. W.; Perfit, M. R.; Butterfield, D. A.; Caress, D. W.; Paduan, J. B.; Martin, J. F.; Sasnett, P.; Merle, S. G.; Bobbitt, A. M.

    2013-10-01

    Axial Seamount, an active submarine volcano on the Juan de Fuca Ridge at 46°N, 130°W, erupted in January 1998 along 11 km of its upper south rift zone. We use ship-based multibeam sonar, high-resolution (1 m) bathymetry, sidescan sonar imagery, and submersible dive observations to map four separate 1998 lava flows that were fed from 11 eruptive fissures. These new mapping results give an eruption volume of 31 × 106 m3, 70% of which was in the northern-most flow, 23% in the southern-most flow, and 7% in two smaller flows in between. We introduce the concept of map-scale submarine lava flow morphology (observed at a scale of hundreds of meters, as revealed by the high-resolution bathymetry), and an interpretive model in which two map-scale morphologies are produced by high effusion-rate eruptions: "inflated lobate flows" are formed near eruptive vents, and where they drain downslope more than 0.5-1.0 km, they transition to "inflated pillow flows." These two morphologies are observed on the 1998 lava flows at Axial. A third map-scale flow morphology that was not produced during this eruption, "pillow mounds," is formed by low effusion-rate eruptions in which pillow lava piles up directly over the eruptive vents. Axial Seamount erupted again in April 2011 and there are remarkable similarities between the 1998 and 2011 eruptions, particularly the locations of eruptive vents and lava flow morphologies. Because the 2011 eruption reused most of the same eruptive fissures, 58% of the area of the 1998 lava flows is now covered by 2011 lava.

  3. Quantifying the direct use value of Condor seamount

    NASA Astrophysics Data System (ADS)

    Ressurreição, Adriana; Giacomello, Eva

    2013-12-01

    Seamounts often satisfy numerous uses and interests. Multiple uses can generate multiple benefits but also conflicts and impacts, calling, therefore, for integrated and sustainable management. To assist in developing comprehensive management strategies, policymakers recognise the need to include measures of socioeconomic analysis alongside ecological data so that practical compromises can be made. This study assessed the direct output impact (DOI) of the relevant marine activities operating at Condor seamount (Azores, central northeast Atlantic) as proxies of the direct use values provided by the resource system. Results demonstrated that Condor seamount supported a wide range of uses yielding distinct economic outputs. Demersal fisheries, scientific research and shark diving were the top-three activities generating the highest revenues, while tuna fisheries, whale watching and scuba-diving had marginal economic significance. Results also indicated that the economic importance of non-extractive uses of Condor is considerable, highlighting the importance of these uses as alternative income-generating opportunities for local communities. It is hoped that quantifying the direct use values provided by Condor seamount will contribute to the decision making process towards its long-term conservation and sustainable use.

  4. Condor seamount (Azores, NE Atlantic): A morpho-tectonic interpretation

    NASA Astrophysics Data System (ADS)

    Tempera, Fernando; Hipólito, Ana; Madeira, José; Vieira, Sara; Campos, Aldino S.; Mitchell, Neil C.

    2013-12-01

    High-resolution datasets collected by multibeam and acoustic backscatter surveys were used to produce fine-scale seafloor nature and morpho-tectonic interpretations of the Condor seamount. Condor constitutes an elongated volcanic ridge that extends for 39 km and rises more than 1800 m from the surrounding seafloor. Constructive morphologies include (i) linear eruptive centres, (ii) volcanic cones with or without summit depressions, (iii) lava flows and (iv) hummocky sectors. Eruptive type is interpreted to vary with depth. On the deeper seamount extremities, the predominance of highly acoustically backscattering volcanic cones and hummocky terrain is interpreted to result from effusive eruptions not yet covered by sediment deposits. In contrast, the smoother relief of the central seamount flanks is interpreted as draping and infilling of the underlying effusive relief by (i) primary volcaniclastic deposits produced by explosive eruptions on the shallowest parts of the ridge, together with (ii) secondary volcanigenic sediments resulting from truncation of the seamount top by swell erosion and (iii) sediments resulting from biogenic production.

  5. Mapping AUV Survey of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Thomas, H.; Caress, D.; Conlin, D.; Clague, D.; Paduan, J.; Butterfield, D.; Chadwick, W.; Tucker, P.

    2006-12-01

    In late August and early September 2006, the MBARI Mapping Autonomous Underwater Vehicle (AUV) was deployed for 5 missions on Axial Seamount during a NOAA NeMO cruise on the R/V Thompson. The objective of the survey was to determine the geologic history of the summit of Axial Seamount using high resolution multibeam, sidescan, and sub-bottom profiler data. The Mapping AUV is a torpedo-shaped, 6000 m rated vehicle designed and constructed by MBARI. The vehicle is equipped with a 200 kHz multibeam sonar, 110 kHz and 410 kHz chirp sidescan sonar, and a 2-16 kHz sweep chirp sub-bottom profiler. The multibeam provides a 120-degree swath with 0.94 degree by 0.94 degree beam resolution. The endurance of the AUV is eight hours at 3 knots. Navigation derives from an inertial navigation system (INS) incorporating a ring laser gyro aided by GPS at the surface and by velocity-over- ground observations from a Doppler velocity log (DVL) when within 130 m of the seafloor. A navigational precision of 0.05 percent of distance traveled is achieved with continuous DVL bottom lock. An acoustic modem allows surface aiding of navigation during deep descents. The AUV ran two types of missions: those on the rim of the caldera were run at 90 m altitude with a line spacing of 250 m and those on the caldera floor were run at 50 m altitude with a line spacing of 150 or 175 m. The surveys covered most of 1998 lava flow on the south rim of the caldera and northern part of the south rift zone, the southern region of the caldera floor where hydrothermal vents are common, the northeast rim of the caldera where volcaniclastic deposits related to caldera collapse drape the surface, the north rift zone, and the northern portion of the caldera floor. The low-altitude maps have a resolution of 1 m, so large individual lava pillars and hydrothermal chimneys can be seen, fissures stand out clearly, and the regions of collapsed lobate flows and lava channels are prominent. Many of the flows, including the

  6. Gravimetric determination of densities of seamounts along the Bonin Arc

    NASA Astrophysics Data System (ADS)

    Ishihara, Takemi

    A new term "effective depth" is defined as the water depth including the nonlinear effect on a complete Bouguer correction. A least-squares method is used to determine the densities of seamounts from the linear relationship between free-air anomaly and the effective depth, which is calculated by applying a two-dimensional FFT to the bathymetric data. Densities of 19 seamounts along the Bonin Arc are determined using this least-squares method. For seven seamounts including two calderas and two islands, the densities are recalculated removing gravity effects of simple inner structures, which are inferred from the apparent density variations as functions of search radii. Generally speaking, with a track spacing less than 3 nautical miles and with a range of effective depths greater than 1 km, the densities can be determined with an accuracy of 0.05 g/cc. The determined densities have a wide range from 2.4 to nearly 3.0 g/cc. A relationship is recognized between densities of seamounts and their mean depths: the density increases with the depth and a prominent change in the rate of increase is seen at a depth of about 1 km. This is probably due to a decrease in porosity with increase in the depth. A clear pattern of densities is recognized for seamounts with mean depths of about 2 km: a density lower than 2.67 g/cc corresponds to an andesitic volcano and a density higher than 2.67 g/cc corresponds to a basaltic volcano. Two calderas are associated with high Bouguer anomalies.

  7. Caldera collapse at near-ridge seamounts: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Coumans, Jason P.; Stix, John

    2016-10-01

    Collapse calderas are sub-circular volcanic depressions caused by subsidence of the magma reservoir roof during an eruption. Scaled physical models of caldera collapse using flat topography have been instrumental in investigating the spatial and temporal development of calderas, in particular, two distinctive sets of concentric ring faults, one reverse and one normal. More recent analog studies have investigated the effect of non-flat topography which alters the principle stress trajectories and resulting collapse structure. This work provides the basis for investigating how naturally scaled topographic loads may affect caldera collapse in relation to shallow magma reservoirs. The objective of this study is to understand how a near-ridge seamount affects caldera collapse from both a central and offset position as the seamount migrates above the magma reservoir as a result of plate motion. We utilize scaled analog models of caldera collapse in conjunction with three-dimensional (3D) laser scanning and digital particle image velocimetry (DPIV) to investigate caldera collapse dynamics at near-ridge seamounts. Experiments using a seamount cone positioned centrally above the magma reservoir result in (1) increased subsidence along the interior outward-dipping faults and (2) a preference to more symmetric collapse patterns as indicated by the subsidence profile and structure of the caldera relative to experiments with an offset cone. When the cone is offset, the collapse is asymmetric and trapdoor in nature, with the center of greatest subsidence displaced away from the region of largest topographic load. For these latter experiments, subsidence is focused where the roof is thinnest along an initial reverse fault, followed by a transition to an antithetic graben structure. The asymmetric collapse in the experiments results in a caldera with a tilted profile. Offset calderas at near-ridge seamounts are tilted towards the ridge axis, suggesting that they may have collapsed

  8. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    PubMed

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  9. Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount

    PubMed Central

    McClain, Craig R.; Lundsten, Lonny; Ream, Micki; Barry, James; DeVogelaere, Andrew

    2009-01-01

    The deep ocean greater than 1 km covers the majority of the earth's surface. Interspersed on the abyssal plains and continental slope are an estimated 14000 seamounts, topographic features extending 1000 m off the seafloor. A variety of hypotheses are posited that suggest the ecological, evolutionary, and oceanographic processes on seamounts differ from those governing the surrounding deep sea. The most prominent and oldest of these hypotheses, the seamount endemicity hypothesis (SMEH), states that seamounts possess a set of isolating mechanisms that produce highly endemic faunas. Here, we constructed a faunal inventory for Davidson Seamount, the first bathymetric feature to be characterized as a ‘seamount’, residing 120 km off the central California coast in approximately 3600 m of water (Fig 1). We find little support for the SMEH among megafauna of a Northeast Pacific seamount; instead, finding an assemblage of species that also occurs on adjacent continental margins. A large percentage of these species are also cosmopolitan with ranges extending over much of the Pacific Ocean Basin. Despite the similarity in composition between the seamount and non-seamount communities, we provide preliminary evidence that seamount communities may be structured differently and potentially serve as source of larvae for suboptimal, non-seamount habitats. PMID:19127302

  10. Uranium-series disequilibria of inflated sections of the Juan de Fuca Ridge: Implications for mantle melting

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Gill, J. B.; Ramos, F. C.; Clague, D. A.; Scott, S. R.

    2010-12-01

    U-Th disequilibria are reported for the two inflated portions (defined by bathymetric highs) of the Juan de Fuca Ridge (JdFR): Axial Seamount and the northern Endeavour segment. Both have broad axis-centered bathymetric plateaus, commonly attributed to the influence of the adjacent Heckle and Cobb melt anomalies, respectively. We explore structural and geochemical contrasts between them that imply fundamental differences in magma plumbing and/or transport processes. The depth to the axial magma chamber (AMC) within the JdFR crust is shallowest beneath Axial Seamount and deepest and most variable beneath Endeavour. Lavas from Endeavour include the most enriched and diverse compositions of the JdFR. Endeavour N-MORBs are most similar to Axial basalts in K2O/TiO2, La/Yb, Na8, and Fe8 although most Axial basalts have lower MgO. Major element trends suggest clinopyroxene saturation at higher MgO at Endeavour. Additional basalt types from Endeavour (i.e., those with K2O/TiO2 >0.15), the West Valley segment to the north, and Southwest Seamount to the west share similar enrichments in incompatible trace elements (Th, Nb) and radiogenic-Pb. Similar characteristics are absent from basalts from the adjacent Heck and Heckle seamount chains, which are highly-depleted N-MORBs, precluding the hypothesis that thickened and inflated crust at Endeavour is associated with increased melt supply due to transit over the seamount source. In contrast, Axial basalts are more chemically homogeneous, and share selected geochemical characteristics with the adjacent Cobb seamount chain. New uranium-series data suggest fundamental differences in melting parameters between inflated and non-inflated portions of the JdFR. Average Th/U at Endeavour (3.03 ± 6, n=10) is nearly indistinguishable from Axial (2.83 ± 9, n=17), but both are distinct from elsewhere on the JdFR (~2.1-2.5). That is, basalts erupted from regions of inflated crust have higher Th/U. Despite high overall compositional

  11. Botanical and geological significance of potassium-argon dates from the Juan Fernández Islands

    USGS Publications Warehouse

    Stuessy, Tod F.; Foland, K.A.; Sutter, John F.; Sanders, Roger W.; Silva, O. Mario

    1984-01-01

    Potassium-argon dating of five basalts from the three main islands of the Juan Fernández (or Robinson Crusoe) Islands of Chile in the southeastern Pacific gives ages of 1.01 ± 0.12 and 2.44 ± 0.14 million years for Masafuera, 3.79 ± 0.20 and 4.23 ± 0.16 for Masatierra, and 5.8 ± 2.1 for Santa Clara. These ages are much younger than that of the underlying oceanic plate and are consistent with the origin of the island-seamount chain from a mantle hot spot beneath the eastward moving Nazca plate. The young age for the archipelago suggests that speciation within endemic genera has occurred within the past 4 to 5 million years. Endemic genera of apparently more ancient origins, such as Lactoris and Thyrsopteris, have apparently dispersed to the islands and survive refugially.

  12. 33 CFR 165.754 - Safety Zone: San Juan Harbor, San Juan, PR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: San Juan Harbor, San Juan, PR. 165.754 Section 165.754 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and...

  13. 33 CFR 165.754 - Safety Zone: San Juan Harbor, San Juan, PR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following area: (1) The waters around Liquefied Petroleum Gas ships entering San Juan Harbor in an area one... referenced use datum: NAD 83. (2) The waters around Liquefied Petroleum Gas ships departing San Juan Harbor... Petroleum Gas vessels via a marine broadcast Notice to Mariners. (5) Should the actual time of entry of...

  14. 33 CFR 165.754 - Safety Zone: San Juan Harbor, San Juan, PR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following area: (1) The waters around Liquefied Petroleum Gas ships entering San Juan Harbor in an area one... referenced use datum: NAD 83. (2) The waters around Liquefied Petroleum Gas ships departing San Juan Harbor... Petroleum Gas vessels via a marine broadcast Notice to Mariners. (5) Should the actual time of entry of...

  15. 33 CFR 165.754 - Safety Zone: San Juan Harbor, San Juan, PR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following area: (1) The waters around Liquefied Petroleum Gas ships entering San Juan Harbor in an area one... referenced use datum: NAD 83. (2) The waters around Liquefied Petroleum Gas ships departing San Juan Harbor... Petroleum Gas vessels via a marine broadcast Notice to Mariners. (5) Should the actual time of entry of...

  16. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Taylor, B.; Fryer, P.; Moore, G. F.; Goodliffe, A. M.; Morgan, J. K.

    2007-08-01

    Serpentinite seamounts, representing some of the first material outputs of the recycling process that takes place in subduction zones, are found on the outer Mariana forearc. Multichannel seismic (MCS) and bathymetric data collected in 2002 image the large-scale structures of five seamounts, as well as the pre-seamount basement geometry and sediment stratigraphy. We present data from three edifices that provide insights into seamount growth and internal deformation processes and allow us to support the interpretation that serpentinite mud volcanoes are formed by the episodic eruption of mud flows from a central region. The presence of thrust faulting at the base of Turquoise and Big Blue Seamounts, along with the low surface slopes (5°-18°) of all the seamounts studied, lead us to infer that these edifices spread laterally and are subject to gravitational deformation as they grow. Numerical simulations using the discrete element method (DEM) were used to model their growth and the origins of features that we see in MCS sections, such as basal thrusts, inward-dipping reflections and mid-flank benches. The DEM simulations successfully reproduced many of the observed features. Simulations employing very low basal and internal friction coefficients (~0.1 and ~0.4, respectively) provide the best match to the overall morphology and structures of the serpentinite seamounts. However the simulations do not capture all of the processes involved in seamount growth, such as withdrawal of material from a central conduit leading to summit deflation; compaction, dewatering and degassing of mud flows; mass wasting in the form of sector collapse and growth upon a dipping substrate. A strong reflection beneath the summit of Big Blue, the largest serpentinite seamount on the Mariana forearc, represents the floor of a summit depression that has been partially in-filled by younger muds, supporting the idea that serpentinite seamounts grow by episodic mud volcanism. Boundaries of mud

  17. Circulation, stratification and seamounts in the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pollard, Raymond; Read, Jane

    2017-02-01

    Circulation in the vicinity of six seamounts along the Southwest Indian Ridge was studied as part of a multidisciplinary survey in November 2009. Examination of altimetric data shows that several of the seamounts lie in the area of slow mean westward flow between the southern tip of Madagascar (25°S) and the Agulhas Return Current (ARC) flowing eastward between 37°S and 40°S. The mean westward drift of mesoscale features was 4.1±0.9 cm s-1. Integrated between Madagascar and 37°S, this westward drift can account for 50 Sv (1 Sv=106 m3 s-1), which, added to 25 Sv of southward flow past Madagascar, is sufficient to account for the total Agulhas Current transport of 70±21 Sv. The transport of the ARC was also measured, at two longitudes, down to 2000 m. Combined with earlier crossings of the ARC in 1986 and 1995, the full depth transport of the ARC is estimated at 71-85 Sv at longitudes 40-50°E, indicating that the Agulhas Current then ARC transport continues unreduced as far as 50°E before beginning to recirculate in the Southwest Indian Ocean subtropical gyre. The primary control on the circulation near each seamount was its position relative to any mesoscale eddy at the time of the survey. Melville lay on the flank of a cyclonic eddy that had broken off the ARC and was propagating west before remerging with the next meander of the ARC. Nearby Sapmer, on the other hand, was in the centre of an anticyclonic eddy, resulting in very weak stratification over the seamount at the time of the survey. Middle of What lies most often on the northern flank of the ARC, in strong currents, but was at the time of the survey near the edge of the same eddy as Sapmer. Coral, in the Subtropical Front south of the ARC, was in waters much colder, fresher, denser and more oxygenated than all the other seamounts. Walter was close to the path of eddies propagating southwest from east of Madagascar, while Atlantis, the furthest east and north seamount, experienced the weakest eddy

  18. Stepwise coupled mode scattering of ambient noise by a cylindrically symmetric seamount.

    PubMed

    Evans, Richard B

    2006-01-01

    The question of how underwater ambient noise, at low frequencies, interacts with seamounts is addressed. The vertical directivity of the ambient noise, with and without the seamount interaction, is of particular interest. The problem of ambient noise scattering by seamounts motivates the development of a numerical modeling procedure, based on stepwise coupled modes. The procedure is designed to analyze scattering from a cylindrically symmetric seamount. The stepwise coupled mode procedure is extended to more general boundary conditions and brought up to date in the process. An example, using the geometry of the Dickins seamount, suggests that the seamount removes energy from the steeply traveling ambient noise, for this case. The energy is not converted into angles near the horizontal; the energy is lost through bottom interaction and attenuation.

  19. Dispersal and Retention of Benthic Invertebrate Larvae in Flows Near a Seamount

    DTIC Science & Technology

    1994-07-13

    of several seamount coral species was observed, and enhanced abundances of seabirds were documented near the seamount. On Volcano 7, a striking benthic...and a few (in particular, a barnacle and a serpulid worm) are found exclusively at the summit. Do these species have special life-history or behavioral...supported under this grant. During an expedition to Volcano 7 (a seamount off the coast of Mexico), a research team led by Karen Wishner investigated the

  20. High-Resolution Geomorphometry of Seamounts of the Young Walvis Ridge Guyot Province

    NASA Astrophysics Data System (ADS)

    Schnur, S. R.; Koppers, A. A.

    2012-12-01

    In February and March 2012, cruise MV1203 surveyed and dredged seamounts at the young end of the Walvis Ridge hotspot trail in the South Atlantic. The scientific goals were to better understand the hotspot origins of the Walvis Ridge by collecting rock samples for high-precision 40Ar/39Ar geochronology and by investigating the relationship between seamount morphology and different mechanisms of intra-plate volcanism. The area had until now been only sparsely-sampled, and most of the seamounts had never been mapped with multibeam. Here we present a geomorphometric analysis of edifice size and shape parameters from 74 seamounts of the young Walvis Ridge guyot province. The base data for each seamount consists of Simrad EM122 multibeam bathymetry combined with bathymetry from the SRTM30 PLUS compilation (V7.0: Becker et al., 2009; Sandwell and Smith, 2009), gridded at 180 m resolution. Multibeam coverage of individual seamounts ranges from 100% for small seamounts to 15% for large seamounts, with most seamounts having at least 50% coverage. Most of this data focuses on seamount flanks rather than flat guyot tops, covering the areas of greatest topographic variability even for seamounts with relatively low multibeam coverage. For each seamount we quantify edifice height, perimeter, volume, elongation, azimuth, irregularity and distance to nearest neighbor. These variables are compared to the age of the underlying crust, distance to the Mid-Atlantic Ridge and distance from the Etendeka flood basalts of Namibia, which are thought to signal the initial stages of hotspot volcanism at the old end of the chain. Additionally we assess how the addition of high resolution data affects these geomorphologic parameters. We will present an overview of the cruise outcomes as well as highlight unusual features observed in the new bathymetry and backscatter data. The cruise data suggest that the young Walvis Ridge guyot province holds great potential for further exploration and

  1. On geoid heights and flexure of the lithosphere at seamounts

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Ribe, N. M.

    1984-12-01

    The sea surface height has now been mapped to an accuracy of better than ±1 m by using radar altimeters on board orbiting satellites. The major influence on the mean sea surface height is the marine geoid which is an equipotential surface. We have carried out preliminary studies of how oceanic volcanoes, which rise above the ocean floor as isolated seamounts and oceanic islands or linear ridges, contribute to the marine geoid. Simple one- and two-dimensional models have been constructed in which it is assumed that the oceanic lithosphere responds to volcanic loads as a thin elastic plate overlying a weak fluid substratum. Previous studies based on gravity and bathymetry data and uplift/subsidence patterns show that the effective flexural rigidity of oceanic lithosphere and the equivalent elastic thickness Te increase with the age of the lithosphere at the time of loading. The models predict that isolated seamounts emplaced on relatively young lithosphere on or near a mid-ocean ridge crest will be associated with relatively low amplitude geoid anomalies (about 0.4-0.5 m/km of height), while seamounts formed on relatively old lithosphere, on ridge flanks, will be associated with much higher amplitude anomalies (1.4-1.5 m/km). Studies of the Seasat altimetric geoid prepared by NASA's Jet Propulsion Laboratory support these model predictions; geoid amplitudes are relatively low over the Mid-Pacific Mountains and Line Islands, which formed on or near a mid-ocean ridge crest, and relatively high over the Magellan Seamounts and Wake Guyots, which formed off ridge. Direct modeling of the altimetric geoid over these features is complicated, however, by the wide spacing of the satellite tracks (which can exceed 100 km) and poor bathymetric control beneath individual satellite tracks. In regions where multibeam bathymetric surveys are available, models can be constructed that fit the altimetric geoid to better than ±1 m. Studies of geoid anomalies over the Emperor seamount

  2. Ocean eddies generated by seamounts in the north pacific.

    PubMed

    Royer, T C

    1978-03-10

    Small-scale (diameters of about 37 kilometers) fluctuations in dynamic topography north of Hawaii along 158 degrees W are well correlated with upstream seamounts. The fluctuations are subsurface but are manifested as baroclinic eddies at the sea surface. These eddies are confirmed by direct observations and supported by theoretical considerations. The eddies cause small-scale variability in the currents and hydrographic structures in this area, and they should be considered in any sampling programs of the region.

  3. Statistical self-similarity of hotspot seamount volumes modeled as self-similar criticality

    USGS Publications Warehouse

    Tebbens, S.F.; Burroughs, S.M.; Barton, C.C.; Naar, D.F.

    2001-01-01

    The processes responsible for hotspot seamount formation are complex, yet the cumulative frequency-volume distribution of hotspot seamounts in the Easter Island/Salas y Gomez Chain (ESC) is found to be well-described by an upper-truncated power law. We develop a model for hotspot seamount formation where uniform energy input produces events initiated on a self-similar distribution of critical cells. We call this model Self-Similar Criticality (SSC). By allowing the spatial distribution of magma migration to be self-similar, the SSC model recreates the observed ESC seamount volume distribution. The SSC model may have broad applicability to other natural systems.

  4. Subsidence and flexure along the Pratt-Welker seamount chain

    NASA Astrophysics Data System (ADS)

    Lambeck, K.; Penney, C. L.; Nakiboglu, S. M.; Coleman, R.

    1984-02-01

    A geophysical examination of the degree of isostatic compensation of guyots in the Pratt-Welker seamount chain in the Gulf of Alaska is presented in order to test the hypothesis of several previous studies that the origin of the Pratt-Welker chain cannot be attributed to a single cause. The test is carried out using GEOS 3 and Seasat altimeter data. The effective flexural rigidity of the lithosphere below all the seamounts in the chain is found to be less than about 10 to the 20th Nm, such that the isostatic state is local rather than regional. This may be the result of all seamounts having formed on an initially weak lithosphere. The subsidence of guyots in the chain is associated with numerous factors including thermal contraction of the seafloor, sediment loading, the flexure of the lithosphere prior to its subduction along the Aleutian Trench, and stress relaxation. The conclusions from the flexure and subsidence analyses are in agreement with the bulk of data from previous studies of the area.

  5. Juan de Fuca Plate Ridge-to-Trench Experiment: initial results from active source seismic imaging of the Juan de Fuca plate and Cascadia fore-arc (Invited)

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Han, S.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Nedimovic, M. R.; Abers, G. A.; Trehu, A. M.

    2013-12-01

    Active source seismic data were acquired during the Juan de Fuca Ridge-to-Trench experiment (June-July 2012) to characterize the evolution and structure of the Juan de Fuca plate from formation at the ridge, through evolution in the plate interior, to subduction at the Cascadia trench. The survey provides plate-scale images of the sediments, crust, and shallowest mantle along two ridge-perpendicular transects, one extending from Axial seamount to the Oregon margin near Hydrate Ridge and the other from near Endeavour segment to Grays Harbor offshore Washington. In addition, a 450 km long trench-parallel line ~10 km seaward of the Cascadia deformation front was acquired to characterize variations in plate structure along the margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were collected along each transect. Using these data, our current investigations focus on the properties of the thick sediment blanket covering the Juan de Fuca plate and evidence for fluid flow at the deformation front, crustal structure within the plate interior and near the deformation front, and tracking the downgoing plate beneath the margin. Highlights include the discovery of numerous pockmarks on the seafloor providing evidence of active fluid flow up to 60 km west of the deformation front. Along the Oregon transect, a bright decollement horizon is imaged at ~1sec twtt above basement whereas at the Washington margin, protothrusts of the deformation front reach to the top of the oceanic crust. Variations in sediment properties are documented within the margin-parallel transect with changes in the stratigraphic level of decollement. While crustal thickness is quite uniform along the margin (~ 6 km), variations in crustal reflectivity and in shallowest mantle velocities are observed over ~30-50 km length scales that could be related to structural variations in the Cascadia subduction zone. Further landward, the top of the

  6. 33 CFR 80.1385 - Strait of Juan de Fuca.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Strait of Juan de Fuca. 80.1385... NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1385 Strait of Juan de Fuca. The 72 COLREGS shall apply on all waters of the Strait of Juan de Fuca....

  7. 33 CFR 80.1385 - Strait of Juan de Fuca.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Strait of Juan de Fuca. 80.1385... NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1385 Strait of Juan de Fuca. The 72 COLREGS shall apply on all waters of the Strait of Juan de Fuca....

  8. 33 CFR 80.1385 - Strait of Juan de Fuca.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Strait of Juan de Fuca. 80.1385... NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1385 Strait of Juan de Fuca. The 72 COLREGS shall apply on all waters of the Strait of Juan de Fuca....

  9. 33 CFR 80.1385 - Strait of Juan de Fuca.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Strait of Juan de Fuca. 80.1385... NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1385 Strait of Juan de Fuca. The 72 COLREGS shall apply on all waters of the Strait of Juan de Fuca....

  10. 75 FR 48306 - San Juan National Forest Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Forest Service San Juan National Forest Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The San Juan National Forest Resource Advisory Council (RAC) will meet in... comments should be sent to Attn: San Juan National Forest RAC, 15 Burnett Court, Durango, CO...

  11. 76 FR 12692 - San Juan National Forest Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Forest Service San Juan National Forest Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The San Juan National Forest Resource Advisory Council (RAC) will meet in... comments should be sent to Attn: San Juan National Forest RAC, 15 Burnett Court, Durango, CO...

  12. 76 FR 40876 - San Juan National Forest Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... Forest Service San Juan National Forest Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The San Juan National Forest Resource Advisory Council (RAC) will meet in... Sonoran Meeting Rooms. Written comments should be sent to Attn: San Juan National Forest RAC, 15...

  13. Is there a seamount effect on microbial community structure and biomass? The case study of Seine and Sedlo seamounts (northeast Atlantic).

    PubMed

    Mendonça, Ana; Arístegui, Javier; Vilas, Juan Carlos; Montero, Maria Fernanda; Ojeda, Alicia; Espino, Minerva; Martins, Ana

    2012-01-01

    Seamounts are considered to be "hotspots" of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0-150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a "seamount effect" is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community.

  14. Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor seamount chain: Post-hot-spot shield-building volcanism and deposition of the Meiji drift

    NASA Astrophysics Data System (ADS)

    Kerr, Bryan C.; Scholl, David W.; Klemperer, Simon L.

    2005-07-01

    Detroit Seamount, one of the northernmost seamounts of the Hawaiian-Emperor seamount chain, was formed at ca. 76 Ma. New seismic data suggest renewed volcanism as late as 25 m.y. after initial seamount formation. We use high-resolution single-channel seismic (SCS) data acquired over the summit of Detroit Seamount in 2001 on Ocean Drilling Program (ODP) Leg 197, supplemented by older SCS data acquired as part of the GLORIA mapping program of the U.S. Geological Survey, to characterize the seismic stratigraphy of Detroit Seamount. Volcanic edifices occur on the summit of the seamount and are older than the oldest beds of the Meiji drift (early Oligocene: ca. 34 Ma). On the basis of ash layers in ODP drill holes, we suggest the edifices were active throughout much of the Eocene (ca. 52-34 Ma), with activity possibly extending into the early Oligocene (<34 Ma). Hence the age difference between the shield-building lavas and the postshield cones on Detroit is far greater than the shield/postshield age differences observed on the Hawaiian Islands, suggesting that renewed volcanic activity and tectonic collapse may be possible on any of the Hawaiian Islands. We confirm earlier assertions that the thick sediment cap, Oligocene and younger in age, was deposited by an ocean-bottom current with a southeastward flow direction, along the northeast facing flank of the Emperor Seamount chain. This sediment cap, the Meiji drift, was deposited by a lower-velocity current than many other sediment drifts. A low-angle normal fault, dipping ˜19°, suggests topographic collapse of Detroit seamount sometime during the Eocene or late Cretaceous.

  15. Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.

    2013-12-01

    In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.

  16. Changes in nematode communities in different physiographic sites of the condor seamount (north-East atlantic ocean) and adjacent sediments.

    PubMed

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as 'oases' of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  17. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments

    PubMed Central

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  18. Geochemical fluxes related to alteration of a subaerially exposed seamount: Nintoku seamount, ODP Leg 197, Site 1205

    NASA Astrophysics Data System (ADS)

    RéVillon, Sidonie; Teagle, Damon A. H.; Boulvais, Philippe; Shafer, John; Neal, Clive R.

    2007-02-01

    Hole 1205A was drilled on Nintoku Seamount, which lies in the midportion of the Emperor Seamount Chain. This seamount was emergent ˜56 Myr ago but was submerged by 54 Ma, so the lavas have endured weathering in both subaerial and submarine environments. We have studied the petrology, mineralogy, and geochemistry of intercalated altered basalts, breccias, and soil samples recovered at Hole 1205A to quantify the chemical exchanges between the seamount and seawater and/or meteoric fluids. The secondary mineralogy is relatively uniform throughout the section and comprises smectite, Fe-oxyhydroxides, iddingsite, and Ca-carbonates. Soils are composed of variably altered basaltic clasts in a matrix of kaolinite, smectite, and vermiculite with minor goethite, hematite, and magnetite. Throughout the basement section, altered basalts, breccias, and soils are depleted in Si, Mg, Ca, Na, Sr, Rb, and Ba and enriched in Fe. Fe3+/FeT (up to ˜1), δ18O (up to ˜+20‰), and 87Sr/86Sr ratios are strongly elevated relative to primary igneous values. Differences in the 87Sr/86Sr ratios define an Upper Alteration Zone with 87Sr/86Sr close to 56 Ma seawater (˜0.7077) from a Lower Alteration Zone where 87Sr/86Sr are less elevated (˜0.704). The Lower Alteration Zone likely reflects interaction with a subaerial oxidizing fluid at low temperature. This zone probably retained most of the original subaerial weathering signature. The Upper Alteration Zone was altered through circulation of large quantities of cold oxidizing seawater that partially overprinted the subaerial weathering chemical characteristics. Altered samples were compared to estimated protolith compositions to calculate chemical gains and losses. Global chemical fluxes are calculated for the entire basement section using different lithological proportions models and different rates of oceanic island emplacement. Although the global construction rate of ocean islands is small compared to igneous accretion at mid

  19. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Yan, Quanshu; Castillo, Paterno; Shi, Xuefa; Wang, Liaoliang; Liao, Lin; Ren, Jiangbo

    2015-03-01

    The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6 Ma) was formed 10 my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6 Ma. The seamount subsided rapidly (> 0.12 mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (< 0.12 mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related.

  20. An introduction to the physical oceanography of six seamounts in the southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Read, Jane; Pollard, Raymond

    2017-02-01

    Exploratory surveys of six seamounts in the Southwest Indian Ocean provide a description of physical processes induced by seamounts along the Southwest Indian Ridge. Mean currents (15-25 cm s-1) in the vicinity of each seamount were dominated by mesoscale eddies. The dominant seamount-driven process was the generation of internal tides by the barotropic tide interacting with the seamount crests. This led to enhanced shear in the vicinity of the crests resulting in mixing where stratification was weak, for example in the core of an anticyclonic mesoscale eddy or where there had been a winter mixed layer. Tidally driven up- and downwelling was observed at the seabed with associated variability in bottom temperature of up to 3 °C over a tidal cycle. Vertical displacement of isopycnals by internal tidal waves reached 200 m peak to trough. Fluorescence in the surface (eutrophic) layer could thus extend down to the seamount crest on each tidal cycle. Apparently spatial variations in short conductivity/temperature/depth sections across each seamount were probably aliased temporal variations from the strong tidal signal. Evidence for Taylor caps or other potential trapped circulations at the seamount crest was weak, most likely because currents associated with mesoscale eddies were too strong to allow their formation.

  1. Megafauna associated with bathyal seamounts in the central North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Raymond R.; Smith, Kenneth L.; Rosenblatt, Richard H.

    1985-10-01

    Sixteen fish species and 31 invertebrate species were identified on Horizon Guyot and five other bathyal seamounts in the central North Pacific Ocean from trawl and baited-trap collections augmented with video camera recordings. The seamount fauna shows zoogeographic affinities with fauna of the Indo-West Pacific as does the marine shore fauna of central Pacific Islands.

  2. Fish Biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An Updated Database

    PubMed Central

    Pinheiro, Hudson T.; Mazzei, Eric; Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Carvalho-Filho, Alfredo; Braga, Adriana C.; Costa, Paulo A. S.; Ferreira, Beatrice P.; Ferreira, Carlos Eduardo L.; Floeter, Sergio R.; Francini-Filho, Ronaldo B.; Gasparini, João Luiz; Macieira, Raphael M.; Martins, Agnaldo S.; Olavo, George; Pimentel, Caio R.; Rocha, Luiz A.; Sazima, Ivan; Simon, Thiony; Teixeira, João Batista; Xavier, Lucas B.; Joyeux, Jean-Christophe

    2015-01-01

    Despite a strong increase in research on seamounts and oceanic islands ecology and biogeography, many basic aspects of their biodiversity are still unknown. In the southwestern Atlantic, the Vitória-Trindade Seamount Chain (VTC) extends ca. 1,200 km offshore the Brazilian continental shelf, from the Vitória seamount to the oceanic islands of Trindade and Martin Vaz. For a long time, most of the biological information available regarded its islands. Our study presents and analyzes an extensive database on the VTC fish biodiversity, built on data compiled from literature and recent scientific expeditions that assessed both shallow to mesophotic environments. A total of 273 species were recorded, 211 of which occur on seamounts and 173 at the islands. New records for seamounts or islands include 191 reef fish species and 64 depth range extensions. The structure of fish assemblages was similar between islands and seamounts, not differing in species geographic distribution, trophic composition, or spawning strategies. Main differences were related to endemism, higher at the islands, and to the number of endangered species, higher at the seamounts. Since unregulated fishing activities are common in the region, and mining activities are expected to drastically increase in the near future (carbonates on seamount summits and metals on slopes), this unique biodiversity needs urgent attention and management. PMID:25738798

  3. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  4. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  5. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  6. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  7. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  8. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management...

  9. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management...

  10. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii bottomfish and seamount groundfish fisheries. 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries....

  11. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii bottomfish and seamount groundfish fisheries. 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries....

  12. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii bottomfish and seamount groundfish fisheries. 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries....

  13. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management...

  14. Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database.

    PubMed

    Pinheiro, Hudson T; Mazzei, Eric; Moura, Rodrigo L; Amado-Filho, Gilberto M; Carvalho-Filho, Alfredo; Braga, Adriana C; Costa, Paulo A S; Ferreira, Beatrice P; Ferreira, Carlos Eduardo L; Floeter, Sergio R; Francini-Filho, Ronaldo B; Gasparini, João Luiz; Macieira, Raphael M; Martins, Agnaldo S; Olavo, George; Pimentel, Caio R; Rocha, Luiz A; Sazima, Ivan; Simon, Thiony; Teixeira, João Batista; Xavier, Lucas B; Joyeux, Jean-Christophe

    2015-01-01

    Despite a strong increase in research on seamounts and oceanic islands ecology and biogeography, many basic aspects of their biodiversity are still unknown. In the southwestern Atlantic, the Vitória-Trindade Seamount Chain (VTC) extends ca. 1,200 km offshore the Brazilian continental shelf, from the Vitória seamount to the oceanic islands of Trindade and Martin Vaz. For a long time, most of the biological information available regarded its islands. Our study presents and analyzes an extensive database on the VTC fish biodiversity, built on data compiled from literature and recent scientific expeditions that assessed both shallow to mesophotic environments. A total of 273 species were recorded, 211 of which occur on seamounts and 173 at the islands. New records for seamounts or islands include 191 reef fish species and 64 depth range extensions. The structure of fish assemblages was similar between islands and seamounts, not differing in species geographic distribution, trophic composition, or spawning strategies. Main differences were related to endemism, higher at the islands, and to the number of endangered species, higher at the seamounts. Since unregulated fishing activities are common in the region, and mining activities are expected to drastically increase in the near future (carbonates on seamount summits and metals on slopes), this unique biodiversity needs urgent attention and management.

  15. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii bottomfish and seamount groundfish fisheries. 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries....

  16. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii bottomfish and seamount groundfish fisheries. 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries....

  17. Geophysical investigation of seamounts near the Ogasawara Fracture Zone, western Pacific

    NASA Astrophysics Data System (ADS)

    Lee, T.-G.; Lee, K.; Hein, J. R.; Moon, J.-W.

    2009-03-01

    This paper provides an analysis of multi-channel seismic data obtained during 2000-2001 on seamounts near the Ogasawara Fracture Zone (OFZ) northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone that includes many seamounts. Seven units are delineated on the basis of acoustic characteristics and depth: three units (I, II, and III) on the summit of seamounts and four units (IV, V, VI, and VII) in basins. Acoustic characteristics of layers on the summit of guyots and dredged samples indicate that the seamounts had been built above sea level by volcanism. This was followed by reef growth along the summit margin, which enabled deposition of shallow-water carbonates on the summit, and finally by subsidence of the edifices. The subsidence depth of the seamounts, estimated from the lower boundary of unit II, ranges between 1,550 and 2,040 m. The thick unit I of the southern seamounts is correlated with proximity to the equatorial high productivity zone, whereas local currents may have strongly affected the distribution of unit I on northern seamounts. A seismic profile in the basin around the Ita Mai Tai and OSM4 seamounts shows an unconformity between units IV and V, which is widespread from the East Mariana Basin to the Pigafetta Basin.

  18. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management...

  19. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management...

  20. Deformation and faulting of subduction overriding plate caused by a subducted seamount

    NASA Astrophysics Data System (ADS)

    Ding, Min; Lin, Jian

    2016-09-01

    We conducted numerical experiments to simulate elastoplastic deformation of the overriding plate caused by a subducted seamount. Calculations revealed development of a distinct pair of fault-like shear zones, including a landward dipping forethrust fault initiated from the seamount top and a seaward dipping backthrust fault from the landward base of the seamount. Significant dome-shaped surface uplift was predicted above the thrust faults. Lesser-developed seaward dipping backthrust faults were calculated to develop under certain conditions. The overriding plate was calculated to deform in two stages: In Stage I, elastic deformation leads to the formation of fault-like shear zones. After major faults have cut through the entire plate, plastic deformation on faults dominates Stage II. On the subduction interface, compressional normal stress was calculated to increase on the landward leading flank of the seamount and decrease on the seaward trailing flank. These changes, together with associated stress singularities at seamount edges, could affect earthquake processes.

  1. AUV Mapping and ROV Sampling of Ridges and Seamounts: No Longer Wandering Around in the Dark

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Caress, D. W.

    2011-12-01

    Exploration by submersible has been described as akin to dangling from a helicopter, at night, in a snowstorm, with a flashlight. Until recently, the divers were further hampered by not knowing where they were: the best bathymetric maps had resolution the length of a football field, and detailed maps could be constructed only after considerable investment in ship time to deploy and calibrate long baseline networks on the sea floor. Since then, maps have greatly improved with the use of high-frequency multibeam sonars flown close to the bottom, reliable navigation systems on the vehicles and surface ships, and sophisticated software to process the data. Our submersible dives are now guided, and older dives reinterpreted, using 1-meter resolution maps made with the MBARI Mapping AUV. We have utilized this combo at 7 sites along NE Pacific mid-ocean ridges, 3 seamounts off California, and 2 back-arc volcanoes in the Lau Basin. Among these, on the northern Cleft Segment of the Juan de Fuca Ridge, four ROV dives were conducted over six years on a 30 km-long section of the ridge axis that was mapped with the AUV in two 18-hour surveys in 2009. Our experiences there will be used to illustrate advantages and challenges of studying the sea floor armed with better maps. The AUV maps are at a resolution where individual sulfide chimneys, lava pillars, eruptive fissures, lava channels and flow margins can be distinguished. Inflated flows and tectonically faulted seamounts can be examined in detail. Characteristic progressions in flow morphology from eruptive fissures through collapsed channels to pillowed margins can be traced along lava flow units. Relative age relationships can be determined from truncations of flow channels and tectonic fractures. The ROV's HD camera and array of samplers permit ground-truthing and refining of our interpretations of the maps. The mapped relationships of flows allow us to focus ROV sampling efforts and give wider context to the camera

  2. The ecology of xenophyophores (Protista) on eastern Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Thomas, Cynthia L.

    1988-12-01

    Large, agglutinating protozoans of the class Xenophyophorea are the dominant epifaunal organisms on soft and hard substrates of many bathyal seamounts in the eastern Pacific Ocean off Mexico. Observations made with the submersible Alvin and remotely towed camera sleds on 17 seamounts at 31°, 20°, 13° and 10°N revealed more than ten distinct xenophyophore test morphologies. Most of these appear to represent previously undescribed species. Reticulate forms are numerically dominant at 20°, 13° and 10°N. Xenophyophore abundances increase with decreasing latitude, being rare at 30°N, present at densities of 0.1-1.0 m -2 at 20° and 13°N and often exceeding 1.0 m -2 at 10°N, occasionally reaching 10-18 m -2. Highest concentrations are observed on caldera floors near the base of steep caldera walls, at depths between 1700 and 2500 m. Most individuals select sand-size pelagic foraminiferan tests (63-500 μm) and exclude pebble, silt and clay-size particles for test construction. Xenophyophore on seamounts modify the structure of metazoan communities and may play a role in maintenance of infaunal diversity. Twenty-seven xenophyophore tests were found to provide habitat for 16 major macrofaunal taxa (152 individuals) and three meiofaunal taxa (333 individuals). The presence of xenophyophores also enhances the abundance of isopods, tanaids, ophiuroids, nematodes and harpacticoid copepods dwelling in sediments surrounding the tests. Mobile megafauna are attracted to sediment beneath and adjacent to xenophyophores. We suggest that xenophyophores, which are abundant on many topographic features in deep water (e.g. guyots, trenches, canyons and continental slopes), are a functionally important component of deep-sea benthic communities and require further autecological and synecological investigation.

  3. Seismic Stratigraphy of Detroit Seamount: Observations From ODP Leg 197

    NASA Astrophysics Data System (ADS)

    Kerr, B. C.; Scholl, D. W.

    2002-12-01

    In July-August of 2001, ODP Leg 197 drilled Detroit Seamount of the Emperor seamount chain to obtain cores of basaltic lava flows. Prior to drilling, the JOIDES Resolution, performed high-resolution single-channel seismic surveys in the vicinity of preliminary site locations to help confirm suitability for drilling, and to collect digital seismic data. At least two seismic lines (about 10 km in length) cross directly over each of the two drill sites. On Detroit Seamount, a significant west-northwest-striking normal fault occurs in the basement with the hanging wall to the northeast. The apparent offset in the basement increases to the northwest from approximately 160 m to nearly 450 m. Normal faults with offsets on the order of tens of meters occur to the north east of the primary basement escarpment. Upward termination of sediment reflections near the escarpment suggests concurrent faulting and deposition. The lower section of the Meiji sediment drift sequence appears to have been blown over the basement topography, suggesting the faulted basement could have been channeling flow of the Meiji current. A channel in sea floor topography coincides with the faulted basement. The topography of the sediment bedforms also exhibit large amplitudes deep in the section, which decrease in amplitude higher up in section, indicating that the sediment is not simply settling to the ocean floor, but is being transported and deposited along the sea floor. Currently, we are generating synthetic seismograms using physical properties and logging tool measurements from ODP Sites 883, 1203, and 1204. The synthetic seismograms will help correlate reflections from sedimentary and volcanic units with the stratigraphy observed at the drill sites.

  4. 3-D modelling of seamount topography from satellite altimetry

    SciTech Connect

    Baudry, N. ); Calmant, S. )

    1991-06-01

    The authors develop a complete set of algorithms to perform 3D modelling of seamount bathymetry from satellite altimetry. The first stage of the data processing consists in gridding the geoid: to account for the long wavelength errors geoid heights are first bias-adjusted at cross-overs. Then a collocation on a regular grid is performed, accounting for the altimeter errors. In a second stage, geoid heights are converted into bathymetry. No simplifying assumption on the shape and location of the bathymetry highs is necessary. Bathymetric uncertainties due to the data sampling and the parameters of the mechanical and crustal models are evaluated.

  5. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge.

    PubMed

    West, M; Menke, W; Tolstoy, M; Webb, S; Sohn, R

    2001-10-25

    Axial volcano, which is located near the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain beneath the northeast Pacific Ocean, is a locus of volcanic activity thought to be associated with the Cobb hotspot. The volcano rises 700 metres above the ridge, has substantial rift zones extending about 50 kilometres to the north and south, and has erupted as recently as 1998 (ref. 2). Here we present seismological data that constrain the three-dimensional velocity structure beneath the volcano. We image a large low-velocity zone in the crust, consisting of a shallow magma chamber and a more diffuse reservoir in the lower crust, and estimate the total magma volume in the system to be between 5 and 21 km3. This volume is two orders of magnitude larger than the amount of melt emplaced during the most recent eruption (0.1-0.2 km3). We therefore infer that such volcanic events remove only a small portion of the reservoir that they tap, which must accordingly be long-lived compared to the eruption cycle. On the basis of magma flux estimates, we estimate the crustal residence time of melt in the volcanic system to be a few hundred to a few thousand years.

  6. Axial Seamount 2015 Eruption: A 127 m Thick, Microbially-Covered Lava Flow

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Delaney, J. R.; Chadwick, W.; Philip, B. T.; Merle, S. G.

    2015-12-01

    On April 24th, Axial Seamount on the Juan de Fuca Ridge erupted. This site now hosts the most advanced submarine volcanic observatory with a diverse, multidisciplinary array of 48 cabled instruments at its summit and base, and an instrumented state-of-the-art shallow profiling mooring providing real-time data to shore as part of NSF's Ocean Observatory Initiative (Delaney et al., AGU-2015). The onset of the eruption was marked by more than 8000 earthquakes (Wilcock et al., AGU-2015; Garcia et al., AGU-2015) and a drop in the seafloor of 2.4 m (Nooner et al., AGU-2015). Follow-on analyses of hydrophone data (Tolstoy et al., AGU-2015) pointed to the location of the eruption as the Northern Rift zone. During the OOI-NSF-UW Cabled Array maintenance cruise, the Northern Rift and eastern side of the caldera was mapped using the R/V Thompson's EM302 system at. Differencing of 2007 (Hydrosweep) and 2013 EM302 bathymetric data indicated that the flow was ~ 7 km in length and up to 127 m thick, where it filled in a preexisting small depression. On July 26th, the ROV ROPOS dove near the toe of the northeastern lobe of the flow, the location of the highest bathymetric difference. The steep north face of this lobe is composed of glassy pillow flows: ROPOS ascended ~ 85 m before reaching the summit. Immediately upon reaching the summit, the vehicle was engulfed in a blizzard of biologically-produced 'snowblower' material issuing from distributed small sites of diffuse flow that reached 18°C. These areas hosted white filamentous bacteria, presumably methane metabolizers. Extensive areas of the flow summit were covered with orange microbial mats that completely masked the underlying pillows flows. Particle-poor diffuse fluids issued from microbially-covered collapse features along the summit, assumed to mark the main feeder channels. This eruption was markedly different than the Axial April 2011 eruption, which was characterized by vast sheet flows and extensive collapse zones.

  7. Tidal influence on particulate organic carbon export fluxes around a tall seamount

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dumont, Matthew; Kiriakoulakis, Kostas; Legg, Sonya; Mohn, Christian; Peine, Florian; Wolff, George

    2016-12-01

    As tall seamounts may be 'stepping stones' for dispersion and migration of deep open ocean fauna, an improved understanding of the productivity at and food supply to such systems needs to be formed. Here, the 234Th/238U approach for tracing settling particulate matter was applied to Senghor Seamount - a tall sub-marine mountain near the tropical Cape Verde archipelago - in order to elucidate the effects of topographically-influenced physical flow regimes on the export flux of particulate organic carbon (POC) from the near-surface (topmost ⩽ 100 m) into deeper waters. The comparison of a suitable reference site and the seamount sites revealed that POC export at the seamount sites was ∼2-4 times higher than at the reference site. For three out of five seamount sites, the calculated POC export fluxes are likely to be underestimates. If this is taken into account, it can be concluded that POC export fluxes increase while the passing waters are advected around and over the seamount, with the highest export fluxes occurring on the downstream side of the seamount. This supports the view that biogeochemical and biological effects of tall seamounts in surface-ocean waters might be strongest at some downstream distance from, rather than centred around, the seamount summit. Based on measured (vessel-mounted ADCP) and modelled (regional flow field: AVISO; internal tides at Senghor: MITgcm) flow dynamics, it is proposed that tidally generated internal waves result in a 'screen' of increased rates of energy dissipation that runs across the seamount and leads to a combination of two factors that caused the increased POC export above the seamount: (1) sudden increased upward transport of nutrients into the euphotic zone, driving brief pulses of primary production of new particulate matter, followed by the particles' export into deeper waters; and (2) pulses of increased shear-driven aggregation of smaller, slower-settling into larger, faster-settling particles. This study

  8. The Effect of Plate Structure on Intraplate Volcanism, Kodiak-Bowie Seamount Chain, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Reece, R. S.; Christeson, G. L.; Gulick, S. S.; Barth, G. A.; Van Avendonk, H. J.

    2012-12-01

    Newly acquired ocean bottom seismometer (OBS) and multi-channel seismic (MCS) data in the vicinity of the Kodiak-Bowie Seamount Chain and Aja Fracture Zone reveal the character and structure of the Pacific Plate, overlying sediment, and seamounts in the Gulf of Alaska. Our data include two marine wide-angle OBS profiles, two coincident MCS profiles, and several nearby MCS profiles, including lines parallel to and crossing the Seamount Chain and Fracture Zone. This new data may help to reveal the character of the Kodiak-Bowie Seamount Chain and associated intraplate volcanism, much of which is concealed by the Surveyor and Baranof sedimentary fan systems. The Kodiak-Bowie Seamount Chain stretches over 1000 km across the Gulf of Alaska, from the Aleutian Trench in the northwest to offshore Queen Charlotte Islands in the southeast. The ages of the seamounts range from 24 Ma at Kodiak Seamount in the northwest to ≥0.7 Ma at Bowie Seamount in the southeast. Although the seamounts are largely age-progressive, some members of the chain are dated significantly out of sequence. Previous studies suggest the possibility that the majority of seamounts in the chain could be products of the Bowie plume. The Gulf-wide Aja Fracture Zone intersects the Kodiak-Bowie Seamount Chain in the central Gulf at the location of the seismic lines. Preliminary tomographic inversions of the seismic data reveal significant changes in crustal thickness across the Aja Fracture Zone, including at least a 3 km step up in the moho from south to north. Additionally, the region north of the Fracture Zone exhibits a 3 km thick low velocity zone in the upper crust, which is double the thickness of the same feature south of the fracture zone. This low velocity zone in the upper crust may be representative of intraplate volcanism associated with the Kodiak-Bowie Chain; several higher velocity perturbations within this zone are coincident with the locations of major seamounts. We will further refine

  9. Tidal currents and anticyclonic motions on two North Pacific seamounts

    USGS Publications Warehouse

    Genin, A.; Noble, M.; Lonsdale, P.F.

    1989-01-01

    Near-bottom currents were measured for several days at three sites on the summits of Fieberling Guyot (32??26???N, 127??46???W) and Horizon Guyot (19??15???N, 160??00???W). Three moorings comprised of two current meters were deployed on each summit; two moorings were deployed on opposite sides of the rim of the summit and one mooring was deployed near the center of the summit. The observed currents were strong, with maximum speeds of 48 and 24 cm s-1 on Fieberling and Horizon, respectively. The currents at specific frequencies were enhanced relative to those in the surrounding ocean. Diurnal currents were the dominant component of the current field on Fieberling Guyot. They accounted for 39-68% of the energy and had amplitudes around 12 cm s-1. We suspect that these diurnal currents were waves trapped over the seamount. Semidiurnal internal tidal currents were the strongest currents over Horizon Guyot, with amplitudes around 4 cm s-1. The flow patterns determined in this study seemed to affect the biological and geological characteristics of the seamounts. ?? 1990.

  10. Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall (Perciformes, Mullidae), a new subspecies of goatfish from the Red Sea and Arabian Sea.

    PubMed

    Fernandez-Silva, Iria; Randall, John E; Golani, Daniel; Bogorodsky, Sergey V

    2016-01-01

    The number of goatfish species has increased recently, thanks in part to the application of molecular approaches to the taxonomy of a family with conservative morphology and widespread intraspecific color variation. A new subspecies Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall is described from the Red Sea and Arabian Sea, including Socotra and Gulf of Oman. It is characterized by a yellow caudal fin, 25-28 gill rakers, and 37-38 lateral-line scales and it is differentiated from nominal subspecies Mulloidichthys flavolineatus flavolineatus by 1.7% sequence divergence at the mitochondrial cytochrome b gene. The morphometric examination of specimens of Mulloidichthys flavolineatus flavolineatus revealed variation in head length, eye diameter, and barbel length, in western direction from the Hawaiian Islands, South Pacific, Micronesia, and the East Indies to the Indian Ocean. The population of Mulloidichthys flavolineatus flavicaudus subsp. n. in the Gulf of Aqaba differs from that of the remaining Red Sea by shorter barbels, smaller eyes, shorter head, and shorter pelvic fins. We present a list of 26 endemic fishes from the Gulf of Aqaba and discuss the probable basis for the endemism in the light of the geological history of this region.

  11. Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall (Perciformes, Mullidae), a new subspecies of goatfish from the Red Sea and Arabian Sea

    PubMed Central

    Fernandez-Silva, Iria; Randall, John E.; Golani, Daniel; Bogorodsky, Sergey V.

    2016-01-01

    Abstract The number of goatfish species has increased recently, thanks in part to the application of molecular approaches to the taxonomy of a family with conservative morphology and widespread intraspecific color variation. A new subspecies Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall is described from the Red Sea and Arabian Sea, including Socotra and Gulf of Oman. It is characterized by a yellow caudal fin, 25–28 gill rakers, and 37–38 lateral-line scales and it is differentiated from nominal subspecies Mulloidichthys flavolineatus flavolineatus by 1.7% sequence divergence at the mitochondrial cytochrome b gene. The morphometric examination of specimens of Mulloidichthys flavolineatus flavolineatus revealed variation in head length, eye diameter, and barbel length, in western direction from the Hawaiian Islands, South Pacific, Micronesia, and the East Indies to the Indian Ocean. The population of Mulloidichthys flavolineatus flavicaudus subsp. n. in the Gulf of Aqaba differs from that of the remaining Red Sea by shorter barbels, smaller eyes, shorter head, and shorter pelvic fins. We present a list of 26 endemic fishes from the Gulf of Aqaba and discuss the probable basis for the endemism in the light of the geological history of this region. PMID:27551217

  12. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount.

    PubMed

    Johnston, D W; McDonald, M; Polovina, J; Domokos, R; Wiggins, S; Hildebrand, J

    2008-04-23

    Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.

  13. Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California.

    PubMed

    Jorgensen, Salvador J; Klimley, A Peter; Muhlia-Melo, Arturo; Morgan, Steven G

    2016-01-01

    Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a 'blue water' habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a 'fall assemblage' tracking warmer overall temperature, a 'spring assemblage' correlated with cooler temperature, and a 'year-round assemblage' with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts.

  14. Generation of mesoscale hydrodynamic phenomena by the Grappler and Whiting Seamounts, southeast of Puerto Rico

    SciTech Connect

    Capella, J.E.

    1983-01-01

    This work presents the results of research on topographically generated mesoscale eddies in the region of the Grappler and Whiting Seamounts which are located 22 km southeast of Puerto Rico. Three different data sets were used: (1) site specific hydrographic data, (2) satellite images from TIROS/NOAA, Landsat and Skylab satellites, and (3) free-drifting drogued-buoy tracks. A reference current meter station was established at the Benchmark B OTEC site (17/sup 0/ 57.3' N, 65/sup 0/ 51.5' W), at a depth of 20 meters. Predictions from numerical and analytical models were tested using the site specific data and then compared to experimental results. The hydrographic and drogue data definitively establish the presence of perturbations over the seamounts which are qualitatively consistent with model predictions. Closed contour regions in the distribution of dynamic heights, temperature, salinity and dissolved oxygen were found in the surface and subsurface waters above the top of Grappler Seamount. Horizontal flow perturbations, detected down to 100m, probably extend deeper. Whiting Seamount's effect was detected in the depth range from 200 to 300m, also near its top. Two distinct warm and cold regions were detected over this seamount. A cyclonic eddy-like feature located close to Grappler Seamount, in the satellite images, also suggests that eddies are being shed from the seamount region. 42 refs., 22 figs., 3 tabs.

  15. Prokaryote diversity and viral production in deep-sea sediments and seamounts

    NASA Astrophysics Data System (ADS)

    Danovaro, Roberto; Corinaldesi, Cinzia; Luna, Gian Marco; Magagnini, Mirko; Manini, Elena; Pusceddu, Antonio

    2009-05-01

    Despite the fact that marine prokaryotes and viruses have been increasingly investigated over the last decade, knowledge on prokaryote diversity and viral production in bathyal sediments is limited. We investigated microbial variables in the deep-sea sediments around two seamounts at 3000-m depth in the Tyrrhenian Sea and sediments located at the same depth, but not affected by the presence of the seamounts. We hypothesized that seamounts altered significantly prokaryotes-viruses interactions in surrounding deep-sea sediments. Sediments surrounding seamounts were characterised by prokaryotic abundances significantly higher than those observed in non-seamount sediments. Benthic viral production was about double in sediments close to seamounts than in non-seamount sediments, where virus turnover was up to 3 times lower. Total Bacteria, as assessed by CARD-FISH, dominated prokaryotic community structure, whereas Archaea accounted on average for approximately 10%. The fraction of Crenarchaeota was always higher than Euryarchaeota. Bacterial diversity, estimated using ARISA, was high, with up to 127 different microbial operational taxonomic units (OTUs) in a single sample. Archaeal richness (determined using T-RFLP of the 16S rRNA gene) ranged from 12 to 20 OTUs, while Archaeal evenness was comprised between 0.529±0.018 and 0.623±0.08. Results represent a pointer for future investigations dealing with the interactions between viruses and prokaryotes in deep-sea sediments.

  16. Petrology and tectonic significance of seamounts within transitional crust east of Orphan Knoll, offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Meredyk, Shawn; Zhang, Yuanyuan; Piper, David J. W.; Edinger, Evan

    2013-12-01

    The Early Cretaceous separation of Newfoundland from Iberia-Ireland is a classic example of a magma-poor continental margin with hyperextension and with widespread minor magmatism resulting in seamounts. This study defines the distribution of seamounts east of Orphan Knoll, and documents and interprets the geochemical character of the one recovered lava sample. Video imagery of lava outcrops, and the sample, were obtained by ROV from Orphan seamount, one of a linear series of small seamounts overlying transitional thinned continental crust on the seaward side of Orphan Knoll. New multibeam bathymetry and legacy seismic data show several seamounts that extend irregularly along the fault-bound NE margin of Orphan Knoll. Whole rock geochemistry shows the sample to be highly alkaline basanite or possibly tephrite. Diopside-hedenbergite, kaersutite and K-feldspar phenocrysts were analyzed by electron microprobe and scanning electron microscope, and alteration minerals including kaolinite were identified by X-ray diffraction. The highly alkaline character of the basanite is similar only to Early Cretaceous volcanic and sub-volcanic rocks erupted through thick continental crust of the Mesoproterozoic Grenville Orogeny. The location of the linear set of seamounts is related to margin-parallel faults on the seaward side of Orphan Knoll that provided a pathway for magma, although ENE-trending lineaments in individual seamounts or seamount groups suggest the influence of oceanic fracture zones. A lower gradient crest to Orphan seamount above 2,200 m suggests subaerial erosion, consistent with the presence of kaolinite as an alteration product and the absence of lava pillows at and above this depth.

  17. Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts

    NASA Astrophysics Data System (ADS)

    Sonnekus, Martinus J.; Bornman, Thomas G.; Campbell, Eileen E.

    2017-02-01

    A survey of six seamounts and two transects through the subtropical convergence zone (SCZ) in the South Indian Ocean in November and December 2009 showed a strong latitudinal gradient from the subtropics to the Sub-Antarctic Front. Concentrations of oxygen, nitrate, nitrite, soluble reactive phosphorous as well as phytoplankton biomass (measured as chlorophyll a) increased while salinity and temperature decreased with an increase in latitude. These differences resulted in significant differences between seamounts. The chlorophyll a maximum became shallower at higher latitudes, changing from a depth of 85 m in the subtropics to 35 m over the seamounts and in the SCZ. The mixed layer depth also increased from 50 m in the subtropics to 100 m at higher latitude stations. The N:P and N:Si ratio indicated that NO3- was limiting at all the seamounts except one, at which SiO4 was the limiting nutrient. The phytoplankton community also showed a latitudinal gradient with decreasing diversity and a change in dominance from dinoflagellates in the tropics to diatoms towards the SCZ. The dominant diatom genus of the survey (>50% of the cell counts) was Pseudo-nitzschia. Nutrients exhibited an inverse linear relationship with temperature and salinity. The oligotrophic subtropical areas differed from the mesotrophic seamounts in temperature while waters over seamounts north and south of the Agulhas Return Current (ARC) differed in salinity. The phytoplankton (148 taxa) responded to these differences, showing three communities: subtropical seamount phytoplankton (Atlantis Seamount, Walters Seamount and off-mount samples), phytoplankton of the waters north of the ARC (Melville Bank, Sapmer Bank, Middle of What Seamount) and phytoplankton south of the ARC (Coral Seamount, SCZ1) characterised by a bloom of Phaeocystis antarctica. The environmental drivers most strongly linked to these observed differences were nitrate, temperature and oxygen. These environmental drivers displayed a

  18. Don Juan and the vision of Vision.

    PubMed

    Smith, C U

    1981-01-01

    Castaneda's well-known sequence of Don Juan books is used as a paradigmatic example of the relativist position. Central to Don Juan's teaching is the problem of perception: the main task, he constantly reiterates, is simply to 'see', to recognise that the commonsense world we customarily perceive is nothing more than a cultural construct. To combat this thoroughgoing relativism a case study is taken from the early history of visual science. In classical antiquity several fundamentally different 'views' (to use Don Juan's term) of how we see contended for approval. It was only at the beginning of the seventeenth century that the 'modern' interpretation was selected. This interpretation was selected, ultimately, because it 'worked'. Reference is made to both Wittgenstein and Marx to support this appeal to praxis. It is argued that through an intricate, complex, and ill-understood process of popularisation our self-image is ultimately grounded in the theories of natural science; and these, in turn, are ultimately grounded in our action in the world of things.

  19. Morphology, petrography, age and origin of Fogo Seamount chain, offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Pe-Piper, G.; de Jonge, A.; Piper, D. J. W.; Jansa, L. F.

    2003-04-01

    The Fogo Seamounts are located approximately 500 km offshore from Newfoundland to the southwest of the Grand Banks of Newfoundland. This complex seamount chain is early Cretaceous in age and is partially buried under later continental slope deposits. It has in the past been ascribed to the passage of a Canary or Azores hot spot. The seamounts are developed along the northeastern transform margin of the Jurassic central Atlantic Ocean. The Narwhal F-99 well was drilled in 1986 on the continental slope into one buried seamount. In this study, we bring together unpublished data on the bathymetry, seismic-reflection character, and distribution of the Fogo Seamounts and interpret new petrographic, geochemical, isotopic and geochronological data from a dredge sample from the central part of the seamount chain and from the Narwhal F-99 well, making comparisons with other offshore volcanic rocks on the eastern Canadian margin. Petrographically, the seamount samples consist of vitrophyric basalt, with clinopyroxene at Narwhal and kaersutite in the dredge sample. Chemically, the samples are olivine basalt with a low Mg number and low concentration of transition metals. Trace element and REE abundances are similar to those of other early Cretaceous volcanic rocks on the southeast Canadian margin. Three petrogenetic types of mafic magma are recognised in the area. The dredge sample is typical OIB rather alkalic basalts and similar to those in other seamount chains. Rocks at Narwhal and Brant have a greater signature of a depleted mantle source (are more tholeiitic). All have Nd isotopes similar to the Newfoundland and New England seamounts. In Orpheus graben to the northwest, there appears to have been greater crustal contamination, either from the crust in the region or from mantle previously enriched in crustal contaminants. The dredge sample gave a 40Ar/39Ar age of 130.3 +/- 1.3 Ma (Hauterivian). A K/Ar age from the Narwhal F-99 well of 127 +/- 6 Ma is inconsistent with

  20. Learning to Characterize Submarine Lava Flow Morphology at Seamounts and Spreading Centers using High Definition Video and Photomosaics

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Sautter, L. R.; Kelley, D. S.; Delaney, J. R.; Kerr-Riess, M.; Denny, A. R.; Elend, M.

    2010-12-01

    In August, 2010 the UW ENLIGHTEN ’10 expedition provided ~140 hours of seafloor HD video footage at Axial Seamount, the most magmatically robust submarine volcano on the Juan de Fuca Ridge. During this expedition, direct imagery from an Insite Pacific HD camera mounted on the ROV Jason 2 was used to classify broad expanses of seafloor where high power (8 kw) and high bandwidth (10 Gb/s) fiber optic cable will be laid as part of the Regional Scale Nodes (RSN) component of the NSF funded Ocean Observatories Initiative. The cable will provide power and two-way, real-time communication to an array of >20 sensors deployed at the summit of the volcano and at active sites of hydrothermal venting to investigate how active processes within the volcano and at seafloor hot springs within the caldera are connected. In addition to HD imagery, over 10,000 overlapping photographs from a down-looking still camera were merged and co-registered to create high resolution photomosaics of two areas within Axial’s caldera. Thousands of additional images were taken to characterize the seafloor along proposed cable routes, allowing optimal routes to be planned well in advance of deployment. Lowest risk areas included those free of large collapse basins, steep flow fronts and fissures. Characterizing the modes of lava distribution across the seafloor is crucial to understanding the construction history of the upper oceanic crust at mid-ocean ridges. In part, reconstruction of crustal development and eruptive histories can be inferred from surface flow morphologies, which provide insights into lava emplacement dynamics and effusion rates of past eruptions. An online resource is under development that will educate students about lava flow morphologies through the use of HD video and still photographs. The objective of the LavaFlow exercise is to map out a proposed cable route across the Axial Seamount caldera. Students are first trained in appropriate terminology and background content

  1. Towards a paleolatitude record from the Louisville Seamount trail

    NASA Astrophysics Data System (ADS)

    Gee, J. S.; Pressling, N.; Hoshi, H.; Yamazaki, T.; Scientists, E. 3; IODP Expedition 330 Scientists

    2011-12-01

    The 4300 km long Louisville Seamount trail is the South Pacific counterpart of the much better studied Hawaii-Emperor chain. Both chains are thought to reflect motion of the Pacific plate over persistent mantle melting anomalies although the stationarity of these hotspots, and thus their suitability as a reference frame for Pacific plate motions, remains uncertain. Drilling at the Emperor Seamounts documented an ~15° southward shift of the Hawaiian hotspot between about 80 and 50 Ma. IODP Expedition 330 provided the first drillcore samples from the Louisville chain, with a primary goal of documenting the paleolatitudes of seamounts with ages comparable to those drilled in the Hawaii-Emperor chain. Six sites were drilled on five Louisville guyots. The recovered materials include sediments, submarine lava flows/pillows, less abundant subaerial flows and a substantial proportion of volcaniclastic and hyaloclastite material. Sites U1374 and U1373 on Rigil Guyot (28.6°S, ~73 Ma) penetrated 522m and 66m, respectively, and yielded about thirty cooling units including both normal and reversed polarity flows. Approximately 20 normal polarity cooling units were recovered from the 233m cored interval at Site U1372 on Canopus Guyot (26.5°, ~76 Ma). Site U1376 on Burton Guyot (32.2°, ~64 Ma) penetrated 182m, with 11 reversed polarity flows. A total of 17 reversed polarity cooling units were sampled at Hadar Guyot (38.2°S, ~50 Ma) despite more limited penetration. Characteristic remanent magnetization directions were determined for more than 22,000 two-cm intervals on the archive half cores. The most reliable of these data were used to calculate average directions for individual core pieces that compare well with results from stepwise demagnetization of nearly 500 discrete samples. Because of the abundance of (mostly submarine) volcaniclastic material recovered, estimating the paleolatitude for the Louisville guyots is less straightforward than for the sites on the Hawaii

  2. Frequency synchronization of blue whale calls near Pioneer Seamount.

    PubMed

    Hoffman, Michael D; Garfield, Newell; Bland, Roger W

    2010-07-01

    Vocalizations of blue whales were recorded with a cabled hydrophone array at Pioneer Seamount, 50 miles off the California coast. Most calls occurred in repeated sequences of two-call pairs (A, then B). The B call is a frequency-modulated tone highly repeatable in form and pitch. A model of this sound is described which permits detecting very small frequency shifts. B calls are found to be aligned in frequency to about one part in 180. This requires very fine pitch discrimination and control over calling frequency, and suggests that synchronizing to a common frequency pattern carries some adaptive advantage. Some possibilities for acoustic sensing by whales requiring this fine frequency resolution are discussed.

  3. The magnetisation of Rosemary Bank Seamount, Rockall Trough, northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Miles, P. R.; Roberts, D. G.

    1981-08-01

    Rosemary Bank is a non-uniformly magnetised seamount in the northern Rockall Trough. The reversely magnetised major component of the anomaly field was simulated by a numerical method and modelled using the Talwani three-dimensional magnetics program. The results suggest a higher Koenigsberger ratio than earlier reported for Rosemary Bank and a remanent magnetisation vector compatible with post-Jurassic formation and probably of a Late Cretaceous to Tertiary age. The limited depth to the base of the model implies that Rosemary Bank post-dates the underlying basement in agreement with a volcanic origin. The residual of the observed anomaly field is interpreted as being caused by normally magnetised bodies within and on top of the bank. This suggests subsequent volcanic activity during an interval of normal polarity.

  4. Composition and origin of hydrothermal ironstones from central Pacific seamounts

    USGS Publications Warehouse

    Hein, J.R.; Hsueh-Wen, Y.; Gunn, S.H.; Gibbs, A.E.; Chung-ho, W.

    1994-01-01

    Ironstones recovered from five Late Cretaceous seamounts in the central Pacific region probably formed during late-stage edifice-building volcanism. Ironstones are dense and compact with the appearance of brown chert. The ironstones are characterized by a goethite mineralogy with FeOOH contents up to 88%, extreme fractionation of Fe and Mn, low trace-element and rare earth element abundances, low Co Zn ratios, and isotopic equilibration temperatures of about 20-45 ??C. These characteristics indicate that the ironstones formed from hydrothermal fluids. Ironstones probably formed below the seawater-seafloor interface, as indicated by their occurrence as a proximal hydrothermal deposit, presence of primary goethite cement, pervasive replacement of rocks by goethite, and absence of interbedded pyro-clastic beds. ?? 1994.

  5. Extraordinarily high biomass benthic community on Southern Ocean seamounts.

    PubMed

    Thresher, R E; Adkins, J; Fallon, S J; Gowlett-Holmes, K; Althaus, F; Williams, A

    2011-01-01

    We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2-2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export to the deep-ocean. These conditions, and the taxa in the assemblage, are widely distributed around the Southern mid-latitudes, suggesting the high-biomass assemblage is also likely to be widespread. The role of this assemblage in regional ecosystem and carbon dynamics and its sensitivities to anthropogenic impacts are unknown. The discovery highlights the lack of information on deep-sea biota worldwide and the potential for unanticipated impacts of deep-sea exploitation.

  6. Extraordinarily high biomass benthic community on Southern Ocean seamounts

    PubMed Central

    Thresher, R. E.; Adkins, J.; Fallon, S. J.; Gowlett-Holmes, K.; Althaus, F.; Williams, A.

    2011-01-01

    We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2–2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export to the deep-ocean. These conditions, and the taxa in the assemblage, are widely distributed around the Southern mid-latitudes, suggesting the high-biomass assemblage is also likely to be widespread. The role of this assemblage in regional ecosystem and carbon dynamics and its sensitivities to anthropogenic impacts are unknown. The discovery highlights the lack of information on deep-sea biota worldwide and the potential for unanticipated impacts of deep-sea exploitation. PMID:22355636

  7. Geochemistry of hydrothermal plume in the Suiyo Seamount Caldera.

    NASA Astrophysics Data System (ADS)

    Shitashima, K.; Maeda, Y.

    2002-12-01

    Chemical compounds of the hot basalt origin are discharged into the deep ocean via hydrothermal plume by the deep-sea hydrothermal activity. The hydrothermal plume is widely diffused to the ocean by mixing with ambient seawater. Chemical reactions and interactions with microorganisms in the diffusion process of the hydrothermal plume are important to comprehend the oceanic geochemical cycles. Recently, it has been clarified that the variation of hydrothermal activity is greatly controlled in the tidal current. Not only geochemical observation but also physical observation, such as water current measurement, are necessary for the understanding of the deep-sea hydrothermal systems including the behavior of hydrothermal plume. In order to observe the diffusion process of hydrothermal plumes, sampling and chemical mapping of the hydrothermal plume and measurement of water current were carried out at the Suiyo Seamount Caldera during research cruises under the ?Archaean Park? project funded by MEXT. The three-dimensional acoustic current meters were moored at the height of 13m and 125m above the bottom in the Suiyo Seamount Caldera. At the 13m height, average water current speed and current direction were 10.46 cm/second and 228.1 degrees, respectively, and maximum water current speed was over 40.46 cm/second. On the other hand, average water current speed and current direction at the 125m height were 3.87 cm/second and 57.8 degrees, respectively. The strong water current of the southwest direction in 24 hours periods existed near bottom of the caldera. In addition, downward current and water temperature depreciation were observed, when there was the strong current in 24 hours periods. These results suggest that the low-temperature ocean water around the Suiyo Seamount flows toward the bottom of caldera periodically. The mini CTDT-RMS mounted twelve 1.2L Niskin bottles and the in-situ pH sensor were installed on the ROV or manned submersible. The hydrothermal plume

  8. 75 FR 17070 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XU60 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ]...

  9. 76 FR 10524 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National... closing the commercial and non-commercial fisheries in the main Hawaiian Islands ] fishery for seven... INFORMATION CONTACT: Jarad Makaiau, Sustainable Fisheries Division, NMFS Pacific Islands Region,...

  10. Chemically diverse, sporadic volcanism at seamounts offshore southern and Baja California

    USGS Publications Warehouse

    Davis, A.S.; Gunn, S.H.; Bohrson, W.A.; Gray, L.-B.; Hein, J.R.

    1995-01-01

    Compositions of lavas from seven small to medium-sized seamounts offshore southern and Baja California, include low-K2O tholeiitic, transitional, and mildly to moderately alkalic basalt and their differentiates. The seamounts with these MORB-like lavas are inferred to have formed at or near the spreading center. Based on 40Ar/39Ar laser fusion techniques, MORB-like lava from one of the northern edifices is as old as the underlying oceanic crust (>20 Ma), indicating that it originated at a spreading center. Other seamount lava ages are much younger than the oceanic crust on which they reside. Some of the seamounts with transitional and alkalic lavas may have formed as part of a short, age-progressive chain formed by a short-lived mantle plume. Many others, may have resulted from upwelling mantle diapirs in response to localized extension. -from Authors

  11. Volcanic inflation of Axial Seamount since the 1998 eruption

    NASA Astrophysics Data System (ADS)

    Nooner, S. L.; Chadwick, W.

    2010-12-01

    Since 2000, ambient seawater pressure has been precisely measured at five seafloor benchmarks inside the summit caldera at Axial Seamount in order to measure their relative depth and monitor volcanic inflation that has been occurring since an eruption in 1998. A remotely operated vehicle has been used to deploy a mobile pressure recorder (MPR) in campaign-style surveys, with additional seawater pressure data collected at the caldera center with multiyear deployments of continuously recording bottom pressure recorders (BPRs). Our previous measurements at Axial Seamount have shown steady inflation of the caldera center through 2007 and the spatial pattern of uplift has been consistent with magma storage in a shallow reservoir underlying the caldera at a depth of 3.5 km. This is the only location in the world where long-term monitoring of volcanic inflation has been accomplished at a submarine volcano. Here we present the results of new pressure data (both MPR and BPR) collected during a cruise on board the R/V Thomas Thompson in August-September 2010 and using the Jason ROV. Three years have passed since the previous survey, providing enough time to distinguish between two alternative models of inflation and magma recharge for the volcano. This allows us to refine our forecast for the next eruption at Axial and estimate total uplift that has occurred since the 1998 eruption. During the 2010 survey we also deployed new concrete benchmarks to replace our original galvanized steel benchmarks. The new benchmarks are larger and much heavier, and we expect them to be much more durable and stable over long time periods and help keep measurement errors as small as possible. We installed a sixth benchmark at a new site within the caldera, near the Ashes vent field, which will help constrain our modeling of the inflation signal in future years.

  12. Geophysical investigation of seamounts near the Ogasawara fracture zone, western Pacific

    USGS Publications Warehouse

    Lee, T.-G.; Lee, Kenneth; Hein, J.R.; Moon, J.-W.

    2009-01-01

    This paper provides an analysis of multi-channel seismic data obtained during 2000-2001 on seamounts near the Ogasawara Fracture Zone (OFZ) northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone that includes many seamounts. Seven units are delineated on the basis of acoustic characteristics and depth: three units (I, II, and III) on the summit of seamounts and four units (IV, V, VI, and VII) in basins. Acoustic characteristics of layers on the summit of guyots and dredged samples indicate that the seamounts had been built above sea level by volcanism. This was followed by reef growth along the summit margin, which enabled deposition of shallow-water carbonates on the summit, and finally by subsidence of the edifices. The subsidence depth of the seamounts, estimated from the lower boundary of unit II, ranges between 1,550 and 2,040 m. The thick unit I of the southern seamounts is correlated with proximity to the equatorial high productivity zone, whereas local currents may have strongly affected the distribution of unit I on northern seamounts. A seismic profile in the basin around the Ita Mai Tai and OSM4 seamounts shows an unconformity between units IV and V, which is widespread from the East Mariana Basin to the Pigafetta Basin. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  13. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor

  14. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  15. Chinanteco de San Juan Lealao, Oaxaca (Chinantec of San Juan Lealao, Oaxaca).

    ERIC Educational Resources Information Center

    Mexico Coll. (Mexico City)

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Chinantec, an indigenous language of Mexico spoken in San Juan Lealao, in the state of Oaxaca. The objective of collecting such a representative sampling of…

  16. Trique de San Juan Copala, Oaxaca (Trique of San Juan Copala, Oaxaca).

    ERIC Educational Resources Information Center

    Mexico Coll. (Mexico City)

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Trique, an indigenous language of Mexico spoken in San Juan Copala, in the state of Oaxaca. The objective of collecting such a representative sampling of the…

  17. Una Visita al Viejo San Juan (A Visit to Old San Juan).

    ERIC Educational Resources Information Center

    Cabello, Victor; And Others

    Written in Spanish, this black and white illustrated booklet provides a tour of Old San Juan, Puerto Rico's oldest and most historic city. Brief historical information is provided on the Perro de San Jeronimo, a statue of a barking dog found in front of the Castillo; Plaza de Colon, a small plaza dedicated to Christopher Columbus; the Catedral de…

  18. Sea-surface and deep-magnetic data at Vavilov Seamount, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Muccini, Filippo; Cocchi, Luca; Locritani, Marina; Carmisciano, Cosmo

    2016-04-01

    Sea surface and deep magnetic data were acquired at Vavilov seamount, in the Tyrrhenian sea. Vavilov seamount is located in the central portion of the homonymous Vavilov basin. The seamount stands about 2800 meters above the seafloor at 3600 meters depth, with the top at about 800 meters below the sea level. Oceanization of the basin occurred during the Late Miocene-Early Pliocene. The magnetic data were collected in 2011 on board the Nave Ammiraglio Magnaghi by using a Marine Magnetics Seaspy magnetometer. The sea surface magnetic survey was realized with two different grids: the first regional one, with 13 parallel lines about 43 Km long, 3 Km spaced (104° N oriented) and 6 tie control lines about 40 Km long, 5 Km spaced (014° N oriented). The second one was realized to better define the volcanic structure of the seamount, and was achieved by acquiring 12 magnetic parallel lines (104° N), 18 Km long and 1 Km spaced. The deep magnetic data were collected by towing a magnetic sensor coupled with a L3 sidescan sonar Klein 3000. A set of 5 parallel lines were acquired in correspondence of the bathymetric top of the seamount with the sensor flying at about constant depth of 700 meters. These data represents the first near-bottom magnetic data collected for Vavilov seamount and it allows comparison between sea-surface and deep magnetic data.

  19. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts.

    PubMed

    Huber, Julie A; Cantin, Holly V; Huse, Susan M; Welch, David B Mark; Sogin, Mitchell L; Butterfield, David A

    2010-09-01

    Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from five volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared with background seawater, and quantitative PCR results indicated that all fluids were dominated by bacteria. Operational taxonomic unit-based statistical tools applied to 454 data show that all vents from the northern end of the Mariana Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in the microbial community composition. At the local scale, most vents host a distinct population of Epsilonproteobacteria, regardless of seamount location. This suggests that there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc.

  20. Co-rich Mn crusts from the Magellan Seamount cluster: the long journey through time

    NASA Astrophysics Data System (ADS)

    Glasby, Geoffrey P.; Ren, Xiangwen; Shi, Xuefa; Pulyaeva, Irina A.

    2007-10-01

    The Magellan seamounts began forming as large submarine shield volcanoes south of the equator during the Cretaceous. These volcanoes formed as a cluster on the small Pacific plate in a period when tectonic stress was absent. Thermal subsidence of the seafloor led to sinking of these volcanoes and the formation of guyots as the seamounts crossed the equatorial South Pacific (10-0°S) sequentially and ocean surface temperatures became too high for calcareous organisms to survive. Guyot formation was completed between about 59 and 45 Ma and the guyots became phosphatized at about 39-34 and 27-21 Ma. Ferromanganese crusts began formation as proto-crusts on the seamounts and guyots of the Magellan Seamount cluster towards the end of the Cretaceous up to 55 Ma after the formation of the seamounts themselves. The chemical composition of these crusts evolved over time in a series of steps in response to changes in global climate and ocean circulation. The great thickness of these crusts (up to 15-20 cm) reflects their very long period of growth. The high Co contents of the outer parts of the crusts are a consequence of the increasing deep circulation of the ocean and the resulting deepening of the oxygen minimum zone with time. Growth of the Co-rich Mn crusts in the Magellan Seamount cluster can be considered to be the culmination of a long journey through time.

  1. 33 CFR 80.1385 - Strait of Juan de Fuca.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Strait of Juan de Fuca. 80.1385 Section 80.1385 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1385 Strait of Juan de Fuca. The 72 COLREGS shall apply on all waters of...

  2. 77 FR 47358 - San Juan National Forest Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Forest Service San Juan National Forest Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The San Juan National Forest Resource Advisory Council (RAC) will meet in... recommendations to the Forest Service concerning projects and funding consistent with Title II of the Act....

  3. Juan's Dilemma: A New Twist on the Old Lemon Battery

    ERIC Educational Resources Information Center

    Hunt, Vanessa; Sorey, Timothy; Balandova, Evguenia; Palmquist, Bruce

    2010-01-01

    When life hands you lemons, make a battery! In this article, the authors describe an activity they refer to as "Juan's Dilemma," an extension of the familiar lemon-battery activity (Goodisman 2001). Juan's Dilemma integrates oxidation and reduction chemistry with circuit theory in a fun, real-world exercise. The authors designed this activity for…

  4. Source rock maturation, San Juan sag

    SciTech Connect

    Gries, R.R.; Clayton, J.L.

    1989-09-01

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  5. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Coast Guard Base... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a.... Coast Guard or U.S. naval vessels. (c) Regulations. (1) No person or vessel may enter into the...

  6. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Coast Guard Base... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. (a.... Coast Guard or U.S. naval vessels. (c) Regulations. (1) No person or vessel may enter into the...

  7. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Coast Guard Base... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a.... Coast Guard or U.S. naval vessels. (c) Regulations. (1) No person or vessel may enter into the...

  8. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Coast Guard Base... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a.... Coast Guard or U.S. naval vessels. (c) Regulations. (1) No person or vessel may enter into the...

  9. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão

    2013-12-01

    Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.

  10. Petrological variability in recent magmatism at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Clague, D. A.; Gill, J. B.

    2011-12-01

    Axial Seamount is known for its compositional homogeneity. We report on petrological variability in lavas from the summit caldera and rims of Axial Seamount during the last ~1.2ka and its implications for shallow crustal magma dynamics. AUVs have mapped the summit at ~1 m resolution, and ROVs have collected numerous lavas and volcaniclastic cores. Geospatial, superpositional, compositional, and age constraint data were used to outline flow units and construct geologic maps. Nearly 200 glasses from summit lavas were analyzed for major elements. A subset of ~20 samples were analyzed for selected trace elements, Pb-, U-, and Th- isotope ratios, and 226Ra and 210Pb. The results a) confirm a high degree compositional homogeneity, b) demonstrate a more restricted range in Pb-isotope ratios than previous data, c) indicate uniform compositional source component(s) genetically linked to that of the Cobb-Eickelberg seamount chain, and d) expand the dataset of distinctly-low 230Th/232Th lavas and subdivide them into geospatial groups. Hundreds of volcaniclastic grains collected from subsurface depths of up to several tens of cm analyzed for major elements extend the record of summit magmatism beyond what is exposed. Summit lava glasses are compositionally N-MORB. Summit volcaniclastics range to higher MgO (+1%); thus, magmatism likely included more mafic episodes than is recorded in the flows as yet sampled or that volcaniclastics preferentially sample higher temperature lavas. Negative correlation of CaO/Al2O3 with MgO in all glasses suggests fractionation from parental melt(s) of plag ± ol but not cpx. K2O/TiO2 ranges are typical for much of the JdFR. Summit lavas range from aphyric to ~35% plag phyric ± a few % ol. Plag-phyric summit lavas tend to have greater MgO (>7.5%), lower CaO/Al2O3 (<0.80), and lower K2O/TiO2 (<0.10) compared to aphyric lavas. For ~18 caldera flows with absolute or relative age control, plag-phyric lavas are older than aphyric lavas, the oldest of

  11. Near-ridge seamount chains in the northeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Reynolds, Jennifer R.; Davis, Alicé S.

    2000-07-01

    High-resolution bathymetry and side-scan data of the Vance, President Jackson, and Taney near-ridge seamount chains in the northeast Pacific were collected with a hull-mounted 30-kHz sonar. The central volcanoes in each chain consist of truncated cone-shaped volcanoes with steep sides and nearly flat tops. Several areas are characterized by frequent small eruptions that result in disorganized volcanic regions with numerous small cones and volcanic ridges but no organized truncated conical structure. Several volcanoes are crosscut by ridge-parallel faults, showing that they formed within 30-40 km of the ridge axis where ridge-parallel faulting is still active. Magmas that built the volcanoes were probably transported through the crust along active ridge-parallel faults. The volcanoes range in volume from 11 to 187 km3, and most have one or more multiple craters and calderas that modify their summits and flanks. The craters (<1 km diameter) and calderas (>1 km diameter) range from small pit craters to calderas as large as 6.5×8.5 km, although most are 2-4 km across. Crosscutting relationships commonly show a sequence of calderas stepping toward the ridge axis. The calderas overlie crustal magma chambers at least as large as those that underlie Kilauea and Mauna Loa Volcanoes in Hawaii, perhaps 4-5 km in diameter and ˜1-3 km below the surface. The nearly flat tops of many of the volcanoes have remnants of centrally located summit shields, suggesting that their flat tops did not form from eruptions along circumferential ring faults but instead form by filling and overflowing of earlier large calderas. The lavas retain their primitive character by residing in such chambers for only short time periods prior to eruption. Stored magmas are withdrawn, probably as dikes intruded into the adjacent ocean crust along active ridge-parallel faults, triggering caldera collapse, or solidified before the next batch of magma is intruded into the volcano, probably 1000-10,000 years

  12. Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California

    PubMed Central

    Klimley, A. Peter; Muhlia-Melo, Arturo; Morgan, Steven G.

    2016-01-01

    Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a ‘blue water’ habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a ‘fall assemblage’ tracking warmer overall temperature, a ‘spring assemblage’ correlated with cooler temperature, and a ‘year-round assemblage’ with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts. PMID:27651985

  13. Distribution of zooplankton biomass at three seamounts in the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Martin, Bettina; Christiansen, Bernd

    2009-12-01

    During different seasons of the years 2003-2005 in the NE Atlantic, zooplankton were sampled with a MOCNESS (multiple opening/closing net and environmental sensing system, mesh size 333 μm) above the slopes and summits of Seine, Sedlo and Ampère seamounts and at remote reference sites outside the influence of the seamounts (far field). Wet weights of different zooplankton size classes (<0.5, 0.5-2, >2 cm) were measured. Night and day hauls were analysed in order to detect diel vertical migrations of the zooplankton, as well as a possible trapping effect due to the shallow topography. Biomass concentrations, independent of daytime, season and summit height, were reduced above the summits at all three seamounts compared to the slope and far-field sites. No trapping effect or retention of biomass was apparent above the seamounts. The vertical distribution patterns of the size class <0.5 cm did not differ between night and day hauls at most sites, but indications of diel vertical migrations were found in the larger size fractions. With the exception of gelatinous organisms, zooplankton >0.5 cm were nearly absent above the summits of Seine and Ampère seamounts, but considerable numbers were found above the slopes and at the far-field sites. Possible explanations for the observed distribution patterns of zooplankton biomass and size classes are discussed, including retention and lateral advection due to the hydrography at the seamounts, as well as predation by resident seamount fish.

  14. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25-30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount's summit. Sediment waves

  15. Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Clague, D.A.

    1988-01-01

    Ultramafic xenoliths were recovered in four alkalic lava flows from Loihi Seamount at depths between 2200 and 1400 m. No xenolith bearing flows were sampled near the summit despite a concentrated dredge program. The flows, three of alkalic basalt and one of basanite, contain common olivine megacrysts and small xenoliths of dunite, rarer harzburgite, and a single wehrlite. Olivine megacrysts as large as 8 mm are Fo84-88.6 and contain magnesiochromite inclusions with 1.1-3.5 wt.% TiO2. Dunite contains Fo83.5-88.5 olivine, meganesiochromite with 1.5-6.9 wt.% TiO2 (avg. 3.2 wt.), and extremely rare chrome-rich diopside. The wehrlite contains euhedral Fo85.9 olivine and magnesiochromite with 1.9-4.7 wt.% TiO2, poikilitically enclosed in chrome-rich diposide (Wo45.4En48.0s6.6). Most of the olivine megacrysts, dunite, and the wehrlite are cumulates of Loihi alkalic lavas that accumulated in a magma storage zone located at least 16 km below sea level. The rarity of dunite related to tholeiitic magmas supports the interpretation that the alkalic lavas at Loihi generally predate the tholeiitic lavas. -from Author

  16. Quantifying the eruption cycle at Axial Seamount using submarine geodesy

    NASA Astrophysics Data System (ADS)

    Nooner, S. L.; Chadwick, B.

    2011-12-01

    Bottom pressure instruments within the caldera of Axial Seamount recorded subsidence during eruptions in 1998 and again in April 2011, for a total repeat time of 13 years. We present here a summary of the vertical deformation history at Axial and describe what that tells us about changes in magma supply over an entire eruption cycle. Over the last 13 years we have used a combination of continuously recording bottom pressure recorder (BPR) instruments and campaign style mobile pressure recorder (MPR) surveys to document changes in the elevation of the caldera floor. These observations of caldera deformation directly reflect changes in the magmatic system throughout the entire volcanic eruption cycle. Rapid inflation of the volcano (>50 cm/yr) started immediately after the 1998 eruption and began slowing exponentially within a few months, ultimately transitioning to a constant linear inflation rate of 15 cm/yr that continued until the 2011 eruption. We interpret these two different inflation regimes as the surface manifestation of two entirely different recharge mechanisms within the magma chamber: 1) Short-duration poroelastic flow and viscoelastic relaxation immediately following eruption, and 2) Long-term linear recharge from the mantle. The second mechanism suggests that long-term flow rates from the mantle are controlled by permeability rather than pressure at Axial. Finally, we present evidence that the pattern of deformation at Axial can be used as a method of forecasting future eruptions here.

  17. Great Meteor Seamount revisited: DETAILED INTERNAL WAVE TURBULENCE

    NASA Astrophysics Data System (ADS)

    van Haren, H.; Gostiaux, L.

    2012-04-01

    Turbulent vertical eddy diffusivity (Kz) and dissipation rate (eps) are estimated between 0.5 and 50 m above a slope of Great Meteor Seamount, Canary Basin, using 101 moored temperature sensors, 1-mK precision, sampling at 1 Hz. Detailed observed time-depth temperature images are split in two: a statically stable and a turbulence image. Averaged over a fortnight, the observed overall time-depth mean Kz=3+-1x10-3 m2 s-1 and eps=1.5+-0.7x10-7 W kg-1. Variations with time and depth are large, by up to four orders of magnitude. Although tidal variations do occur, shorter-scale variations are more intense. A particular tidal period shows multiple vigorous overturning events, the largest found away from the bottom during the downslope phase but just prior to arrival of an upslope moving, equally vigorous bore. The strength of the bore may be controlled by the intensity of the mixing just prior to it. The bore itself is turbulent from the bottom upward, up to some 40 m above it. Its mixing is most efficient providing large fluxes in extremely thin layers.

  18. Quantitative Approach To Seamount Volumes And Eruption Rates For Serpentinite Mud Volcanoes

    NASA Astrophysics Data System (ADS)

    Fedenczuk, T.; Fryer, P.

    2008-12-01

    Serpentinite mud volcanoes in the Mariana forearc are formed by the hydration of mantle peridotite with slab- derived fluids. We calculated the volumes of five seamounts (Pacman, Celestial, Conical, Turquoise, and Big Blue Seamounts) using bathymetric, and (where available) multi-channel seismic reflection data. We interpolated the underlying pre-emplacent surfaces of each seamount using three methods (kriging, harmonic, and multiquadratic radial function), and three estimation techniques to define the pre-eruption seafloor surface beneath the seamounts (perimeter outline, wide area grid, and a geologically interpreted subsurface). We compared the percent difference between each. The interpolation methods produced volume results that differ as follows: 1.9% between kriging and the multiquadratic radial function, 3.6% between kriging and the harmonic function, and 3.8% between multiquadratic radial and the harmonic function. The techniques for determining the subsurface had larger percent differences as follows: 22% between the wide area grid and the geologic interpretation, 20% between geologic interpretation and the perimeter technique, and 18% between wide area grid and the perimeter technique. Based on linear regression results with a high R2, we conclude that there is a strong correlation between the results provided by all three methods. Based on the similarity of all of the regression slopes and their proximity to 1, we can conclude that no method will consistently over- or underestimate the volumes. The geologic interpretation technique should be used when subsurface data (seismic, drill cores, etc.) is available, or when workers have a strong geologic understanding and/or experience in the area. The other two techniques (perimeter and wide area grid) may be useful for large scale comparison studies that include many tens or hundreds of seamounts (or other features), where time constraints and a need for a systematic and repeatable approach is required, or

  19. Petrology and Geochemistry of the Northeast Seamounts of the Galapagos Platform

    NASA Astrophysics Data System (ADS)

    Sinton, C. W.; Harpp, K. S.; Christie, D. M.

    2010-12-01

    One of the best locations to study hotspot-ridge interactions is the Northern Galápagos Province (NGP), the region that lies between the Galapagos Spreading Center (GSC) and the central portion of the Galapagos Archipelago. The Galapagos hotspot is currently located off-axis from the GSC but still has a profound influence on the ridge in terms of axial lava composition and ridge bathymetry. The NGP is characterized by an array of volcanic lineaments that are composed of seamounts and five small islands. The eastern edge of the NGP is defined by a group of at least five seamounts (the Northeast Seamounts), three of which were mapped and dredged in 1990 during Leg 2 of the PLUME expedition of the R/V Thomas Washington. We report petrological and geochemical data from the basalts recovered at six dredge sites. All basalts are tholeiitic with a general MORB-like composition, but with considerable variation within some individual dredge hauls and between seamounts. Previously published isotopic data are limited but 3He/4He ratios (Graham et al. 1993) and Sr-Nd-Pb isotopic data (Harpp and White 2000) are consistent with a depleted mantle source for all three seamounts. Based on geochemistry and petrological observations, the basalts can be divided into at least thirteen distinct groups. The bulk of the analyzed glass samples have compositions more than MORB with MgO content of 8-10% wt., although two of the groups are in the 6-7% range. In addition, the primitive lavas have high CaO and Al2O3 . The mineralogy ranges from aphyric for the more evolved lavas to olivine + plagioclase-phyric or plagioclase ultraphyric for the more primitive basalts. The plagioclase appear to be very calcic (up to An91) xenocrysts that are often hosting aluminous spinel (Al2O3 46-48% wt.) and primitive melt inclusions (Sinton et al., 1993). Initial trace element data show light rare earth (LREE)-depleted signatures, although several samples are slightly enriched in the LREE. Taken together

  20. Is the Hawaiian-Emperor Bend Coeval for all Pacific Seamount Trails?

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Staudigel, H.

    2004-12-01

    By far the largest number of hotspots can be found in the South Pacific Thermal and Isotopic Anomaly (SOPITA). Its Cretaceous counterpart is preserved in a large range of seamounts and guyots found in the West Pacific Seamount Province (WPSP). The seamounts in these regions display very distinct and long-lived isotopic signatures (Staudigel et al., 1991; Koppers et al., 2003) that can be used to combine source region chemistry and seamount geochronology to map out mantle melting anomalies over geological time. These mappings may resolve many important questions regarding the stationary character, continuity and longevity of the hotspots in the South Pacific mantle. Most importantly, it may also answer the question whether the Hawaiian-Emperor Bend (HEB) is coeval for all Pacific Seamount trails at 47 Ma? Fixed hotspots should be expressed in volcanic trails on the lithospheric plates revealing absolute rates of motion from their age progressions and the direction of motion based on their azimuths. By definition, bends in these hotspot trails thus should give an indication of changing plate motion happening simultaneously across individual lithospheric plates. Based on the morphology of seamounts in the Pacific, the Hawaiian-Emperor, Louisville, Gilbert Ridge and Tokelau seamount trails may be identified as the only hotspot trails to exhibit a clear HEB-type bend (Kroenke et al. 2004). Of these, the Louisville seamount trail only displays a faint bend that may be coeval with the sharp 60 degree bend in the Hawaiian-Emperor trail (Koppers et al. 2004) at 47 Ma. However, new 40Ar/39Ar analyses indicate that the HEB-type bends in the Gilberts Ridge and Tokelau seamount trails are asynchronous around 67 Ma and 57 Ma, respectively. We argue, therefore, that plate motion alone cannot explain these age systematics, but that both hotspot motion and changing lithospheric stress regimes may play an important role in their creation. The simple and elegant hotspot model that

  1. Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies, and the moon

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; De Forest, Lisa G.; Domokos, Reka

    2011-05-01

    Micronekton abundance, biomass, and community composition was determined from 58 Cobb trawl samples taken from 2005 to 2008 at several locations in the lee of the Hawaiian Islands. The results indicated a strong influence of the lunar illumination on micronekton abundance and biomass. This effect was evident in shallow night tows and probably was the result of lunar light affecting the nighttime depths of migrating species. The abundance and biomass of micronekton is remarkably consistent between years and areas in Hawaiian waters after the affects of moon phase are accounted for. Micronekton, principally migratory myctophids, were reduced over the summit of Cross Seamount but not Finch Seamount that has a summit below the daytime depth of most migrators. However, during a new moon, micronekton abundance over Cross seamount was similar to surrounding areas either because of altered migration patterns or because predators such as tunas cannot forage as effectively at night without lunar illumination. Species belonging to the Hawaiian mesopelagic boundary layer community were found to vary in presence and abundance between years at Cross Seamount suggesting that a consistent seamount associated fauna does not exist. Sparse sampling of a cyclonic mid-ocean eddy suggested very high micronekton abundance and biomass both in shallow waters at night but also at depth during the day. Although preliminary, these results suggest that eddies may aggregate the micronekton which probably feed on the enhanced secondary productivity.

  2. Reconstruction of demersal fisheries history on the Condor seamount, Azores archipelago (Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Menezes, Gui M.; Diogo, Hugo; Giacomello, Eva

    2013-12-01

    Commercial fishing data were analyzed in order to reconstruct the history of the demersal fishery on Condor seamount, a temporarily protected area in the Northeast Atlantic (Azores). Considering the eight commercially most important demersal fish species, estimates for the period 1993-2009 revealed that on average landings from this area represented 2% of the annual landings by weight of these species in the Azores. Over this period the average estimated volume of the Condor landings was 71t/year, with the blackspot seabream (Pagellus bogaraveo) and the wreckfish (Polyprion americanus) representing about 54% of the landings, and the average value was €346 thousand per year. Annual trends of landings and of landings per unit effort suggest species-specific abundance responses to fishing, but most of the exploited species may have been significantly reduced at the Condor seamount. The proportion of large specimens may have declined in some of the studied species. Results suggest that artisanal fisheries are capable of causing important reductions in abundance levels of demersal species living on seamounts. Species life history characteristics, their degree of residency, and dependence on outside source areas may be important determinants for the status and the time scales required for recovery to previous abundances of the species. With the current Condor seamount fishing moratorium, exploitation rate has been reduced to zero and this is a unique opportunity to study the responses of the different previously exploited species to the reduced fishing mortality. New understanding may benefit seamount fisheries management in the region.

  3. Observations of fauna attending wood and bone deployments from two seamounts on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Amon, Diva J.; Copley, Jonathan T.; Dahlgren, Thomas G.; Horton, Tammy; Kemp, Kirsty M.; Rogers, Alex D.; Glover, Adrian G.

    2017-02-01

    The Southwest Indian Ridge is an ultraslow-spreading mid-ocean ridge with numerous poorly-explored seamounts. The benthic fauna of seamounts are thought to be highly heterogeneous, within even small geographic areas. Here we report observations from a two-year opportunistic experiment, which was comprised of two deployments of mango wood and whale bones. One was deployed at 732 m on Coral Seamount ( 32 °S) and the other at 750 m on Atlantis Bank ( 41 °S), two areas with little background faunal knowledge and a significant distance from the continental shelf. The packages mimic natural organic falls, large parcels of food on the deep-sea floor that are important in fulfilling the nutritional needs and providing shelter and substratum for many deep-sea animals. A large number of species colonised the deployments: 69 species at Coral Seamount and 42 species at Atlantis Bank. The two colonising assemblages were different, however, with only 11 species in common. This is suggestive of both differing environmental conditions and potentially, barriers to dispersal between these seamounts. Apart from Xylophaga and Idas bivalves, few organic-fall specialists were present. Several putative new species have been observed, and three new species have been described from the experiments thus far. It is not clear, however, whether this is indicative of high degrees of endemism or simply a result of under-sampling at the regional level.

  4. The Morphology, Structure and Origin of Seamounts on the South-West Indian Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Muller, L. A.; Watts, A. B.; JC066 shipboard scientific party

    2012-04-01

    The South-West Indian Ridge (SWIR) between longitude 46 and 57° East is an ultra-slow spreading (~16 mm/a) mid-ocean ridge system with a highly oblique (>50°) spreading direction and a large number of closely spaced transform faults. Previous swath bathymetry surveys onboard R/V Dr. Fridtjof Nansen in 2009 show that the ridge crest is characterised by a number of irregularly shaped seamounts which rise about 2500 m above the mean depth of the surrounding seafloor. However, the origin of these seamounts and whether they reflect passive cracking of the lithosphere or deep mantle processes is not clear. In November/December, 2011 we re-surveyed 5 of these seamounts onboard RRS James Cook using an EM120 swath bathymetry system, a Lacoste-Romberg air-sea gravimeter and a Remotely Operated Vehicle (ROV). Preliminary results show that the seamounts are highly fractured, with fault trends parallel and orthogonal to the spreading direction. There is evidence of both growth and collapse structures, including head scars, chutes and debris flows. We present here a preliminary analysis of the morphology, gravity field and rock sample data and its implications for tectonics, mass wasting and eruptive processes at young seamounts that have formed in an active extensional setting.

  5. On geoid heights derived from GEOS 3 altimeter data along the Hawaiian-Emperor seamount chain

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1979-01-01

    The geoid heights derived from preliminary GEOS 3 satellite radar altimeter data over the Hawaiian-Emperor seamount chain are examined. Two objectives are pursued: (1) to evaluate the contribution of the topography of the seamount chain and its compensation to the marine geoid; and (2) to determine whether geoid heights derived from GEOS 3 altimeter data can be used to provide information on isostasy at geological features such as the Hawaiian-Emperor seamount chain which formed as relatively young loads on the oceanic lithosphere. Short-wavelength geoid highs of 5-12 m over the crest of the seamount chain and geoid lows over flanking regions are observed. The geological undulations can be explained by a simple model in which the seamount-chain load is supported by a strong rigid lithospheric plate. The elastic thickness estimates agree with values based on surface ship gravity and bathymetry observations, and provide further support to the hypothesis that the elastic thickness acquired at a surface load depends on the temperature gradient of the lithosphere at the time of loading.

  6. Geodynamic Inferences from Integrated Ocean Drilling Program Expedition 330 to the Louisville Seamount Trail

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Yamazaki, T.; Geldmacher, J.; Scientific Party, E. 3; IODP Expedition 330 Scientific Party

    2011-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 330 drilled five different guyots in the Louisville Seamount Trail ranging in age between 80 and 50 Ma. The primary goals of this expedition were to drill a sufficiently large number of in situ lava flows at each seamount for high-quality estimates of their paleolatitudes using paleomagnetic measurements, for improving the overall age progression using high-precision 40Ar/39Ar geochronology, and for detailed geochemical studies of the volcanic evolution of these seamounts. With these data we can provide the unique record of the paleolatitude shift (or lack thereof) of the Louisville mantle plume and compare it with the ~15° paleolatitude shift observed for seamounts in the Hawaiian-Emperor Seamount Trail over the same time period. These comparisons are of fundamental importance to determine whether these two primary hotspots have moved coherently or not, to understand the nature of hotspots and convection in the Earth's mantle, and to evaluate the possibility of true polar wander. We will present new 40Ar/39Ar age data for Sites U1372, U1373, U1374 and U1376 in conjunction with Expedition 330 shipboard paleomagnetic inclination data to discuss the geodynamic inferences from the resulting paleolatitude history of the Louisville hotspot between 80 and 65 Ma.

  7. Thrust-type subduction-zone earthquakes and seamount asperites: A physical model for seismic rupture

    SciTech Connect

    Cloos, M. )

    1992-07-01

    A thrust-type subduction-zone earthquake of M{sub W} 7.6 ruptures an area of {approximately}6,000 km{sup 2}, has a seismic slip of {approximately}1 m, and is nucleated by the rupture of an asperity {approximately}25km across. A model for thrust-type subduction-zone seismicity is proposed in which basaltic seamounts jammed against the base of the overriding plate act as strong asperities that rupture by stick-slip faulting. A M{sub W} 7.6 event would correspond to the near-basal rupture of a {approximately}2-km-tall seamount. The base of the seamount is surrounded by a low shear-strength layer composed of subducting sediment that also deforms between seismic events by distributed strain (viscous flow). Planar faults form in this layer as the seismic rupture propagates out of the seamount at speeds of kilometers per second. The faults in the shear zone are disrupted after the event by aseismic, slow viscous flow of the subducting sediment layer. Consequently, the extent of fault rupture varies for different earthquakes nucleated at the same seamount asperity because new fault surfaces form in the surrounding subducting sediment layer during each fast seismic rupture.

  8. Model Simulations of Waves in Hurricane Juan

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Toulany, B.; Padilla-Hernandez, R.; Hu, Y.; Smith, P.; Zhang, W.; Zou, Q.; Ren, X.

    2004-05-01

    Hurricane Juan made landfall at 0300 UTC near Halifax Nova Scotia. This was a category 2 hurricane with winds of 44 m/s, the largest storm to pass over these coastal areas in several decades. Associated high ocean waves were experienced in coastal waters, from Peggy's Cove to Sheet Harbour, growing to epic proportions on the Scotian Shelf, and exceeding the 100-year return wave based on the present climatology. As part of the GoMOOS program (Gulf of Maine Ocean Observing System, www.gomoos.org), winds from the USA Navy COAMPS (Coupled Ocean Atmosphere Model Prediction System) were used to evaluate and compare three widely-used third generation numerical wave models, SWAN, WAM and WaveWatch-III (hereafter WW3) for accuracy, with in situ measurements. Model comparisons consist of a set of composite model systems, respectively nesting WAM, WW3 and SWAN in WAM and WW3. We report results from the intermediate-resolution grid for Hurricane Juan. Wave measurements were made using four operational deep-water buoys (C44258, C44142, C44137, 44005), by a conventional directional wave rider (DWR) moored offshore from Lunenburg Bay, and also by two acoustic Doppler current profiler (ADCP) located (1) near an oil rig on Sable Island Bank, in relatively shallow water, and (2) near the outer boundary of Lunenburg Bay. We discuss the reliability of DWR wave data compared to ADCP wave data. We show that all models provide reliable hindcasts for significant wave height (Hs) and for peak period (Tp) for Juan, although a clear under-estimation of Hs at the peak of the storm is evident, compared to observations. A feature in the COAMPS storm simulation is that the storm track appears to be slightly to the east of that of Quikscat scatterometer data. Comparisons between models and 2-dimensional wave spectra are presented. Preliminary results suggest that the recently released upgrade to the WW3 model shows slightly enhanced skill compared to the other models.

  9. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

    PubMed Central

    Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment

  10. RadNet Air Data From San Juan, PR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Juan, PR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc

    NASA Astrophysics Data System (ADS)

    Timm, Christian; Bassett, Daniel; Graham, Ian J.; Leybourne, Matthew I.; de Ronde, Cornel E. J.; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B.

    2013-04-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated 206Pb/204Pb, 208Pb/204Pb, 86Sr/87Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  12. The Tasmantid Seamounts: A window into the structural inheritance of ocean floor fabric

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Kalnins, L. M.; Watts, A. B.; Cohen, B. E.; Beaman, R. J.

    2015-12-01

    The extinct Tasman Sea spreading centre, active from 84--53 Ma, is intersected at a number of locations by the Tasmantid Seamount Chain. The chain, which extends for over 2000 km off the east coast of Australia, progressively increases in age from south to north with ages ranging between 6 Ma and ˜50 Ma. While thick sediment (˜1 km) obscures much of the northern Tasman Sea basement, detailed morphological and geophysical analyses of the seamounts reveal a strong correlation between tectonic setting, seamount orientation, and volcanic structure, despite the ≥20 Ma offset between spreading cessation and initial seamount emplacement. Morphologically, structural inheritance is evidenced by the contrast between two volcanic styles: 1) the rugged, predominantly fissure-fed, fabrics characterizing seamounts emplaced at inside corners of spreading segment-transform intersections; and 2) the conical seamounts with summit craters and isolated dyke-fed flank cones that develop off-axis. Furthermore, volcanic fabrics align closely with the principal stress directions expected for a spreading ridge system in which strong mechanical coupling occurs across transform faults. This suggests that the lithosphere is dissected by numerous deep faults, allowing magma to be channelled away from the site of melting along pre-existing structural trends. The generally low effective elastic thickness, TeT_e, (≤15 km) and lack of a plate age-TeT_e relationship along the chain indicate that structural inheritance is also the major control on lithospheric strength near the extinct spreading centre. While the importance of structural inheritance in controlling magmatic behaviour is commonly acknowledged in continental settings, these results clearly demonstrate the need to also consider it in the oceanic realm.The extinct Tasman Sea spreading centre, active from 84--53 Ma, is intersected at a number of locations by the Tasmantid Seamount Chain. The chain, which extends for over 2000 km off

  13. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  14. Juan-Ron fever: A rare case report.

    PubMed

    Acharya, Sourya; Shukla, Samarth

    2015-01-01

    Juan-Ron fever named after Juan Rosai and Ronald Dorfman is the fever associated with Rosai-Dorfman disease also known as sinus histiocytosis with massive lymphadenopathy (SHML). It is a rare disorder of unknown etiology that is characterized by abundant macrophages in the lymph nodes throughout the body. Usually patient presents with painless lymphadenopathy. We present a case of a 45-year-old male who presented to us with bilateral cervical lymphadenopathy and fever, later on diagnosed to have SHML.

  15. Geometrical Effects of a Possible Subducted Seamount in the 2011 Mw 9.0 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Duan, B.

    2014-12-01

    A concentrated large slip patch near the hypocenter of the 2011 Mw 9.0 Tohoku earthquake and tens of seconds delay in up-dip rupture propagation in the early stage of the event, revealed by kinematic inversions of seismic, GPS, and/or tsunami data, were explained by a possible subducted seamount just up-dip of the hypocenter in our previous study (Duan, 2012). Bathymetry of the source region (Amante and Eakins, 2009), seismicity studies (e.g., Uchida et al., 2010), and tomographic studies (e.g., Zhao et al., 2011; Yamamoto et al., 2014) support the seamount hypothesis. However, the seamount in our previous study was parameterized by elevated effective normal stress and shear stress on a planar, shallow-dipping subduction plane. In this study, we incorporate seamount geometry into spontaneous rupture models of a non-planar megathrust fault, to examine geometrical effects of a subducted seamount in the 2011 event. In particular, we examine geometrical effects of the seamount with various plausible initial stress conditions on the non-planar fault, including heterogeneous stress fields that may account for effects of previous magnitude 7~8 earthquakes. Furthermore, our non-planar fault is embedded in layered velocity structure, so that combined effects of fault geometrical complexity and surrounding velocity structure on rupture propagation of the 2011 event can be examined. We will compare our synthetics with near-field coseismic GPS and/or seismic recordings to constrain our models. More physical insights into why the rupture propagated in the way it did in the 2011 event will be gained from this study.

  16. Molluskan species richness and endemism on New Caledonian seamounts: Are they enhanced compared to adjacent slopes?

    NASA Astrophysics Data System (ADS)

    Castelin, Magalie; Puillandre, Nicolas; Lozouet, Pierre; Sysoev, Alexander; de Forges, Bertrand Richer; Samadi, Sarah

    2011-06-01

    Seamounts were often considered as 'hotspots of diversity' and 'centers of endemism', but recently this opinion has been challenged. After 25 years of exploration and the work of numerous taxonomists, the Norfolk Ridge (Southwest Pacific) is probably one of the best-studied seamount chains worldwide. However, even in this intensively explored area, the richness and the geographic patterns of diversity are still poorly characterized. Among the benthic organisms, the post-mortem remains of mollusks can supplement live records to comprehensively document geographical distributions. Moreover, the accretionary growth of mollusk shells informs us about the life span of the pelagic larva. To compare diversity and level of endemism between the Norfolk Ridge seamounts and the continental slopes of New Caledonia we used species occurrence data drawn from (i) the taxonomic literature on mollusks and (ii) a raw dataset of mainly undescribed deep-sea species of the hyperdiverse Turridae. Patterns of endemism and species richness were analyzed through quantitative indices of endemism and species richness estimator metrics. To date, 403 gastropods and bivalves species have been recorded on the Norfolk Ridge seamounts. Of these, at least 38 species (˜10%) are potentially endemic to the seamounts and nearly all of 38 species have protoconchs indicating lecithotrophic larval development. Overall, our results suggest that estimates of species richness and endemism, when sampling effort is taken into account, were not significantly different between slopes and seamounts. By including in our analyses 347 undescribed morphospecies from the Norfolk Ridge, our results also demonstrate the influence of taxonomic bias on our estimates of species richness and endemism.

  17. Enhanced seamount location database for the western and central Pacific Ocean: Screening and cross-checking of 20 existing datasets

    NASA Astrophysics Data System (ADS)

    Allain, Valérie; Kerandel, Julie-Anne; Andréfouët, Serge; Magron, Franck; Clark, Malcolm; Kirby, David S.; Muller-Karger, Frank E.

    2008-08-01

    Seamounts are habitats of considerable interest in terms of conservation and biodiversity, and in terms of fisheries for bentho-pelagic and pelagic species. Twenty previously compiled datasets including seamount/underwater feature lists, bathymetric maps and emerged feature maps from different sources (ship-derived and satellite altimetry-derived) at different spatial scales (from individual cruise to worldwide satellite data) were gathered in order to compile an enhanced list of underwater features for parts of the western and central Pacific Ocean (WCPO). The KL04 dataset [Kitchingman, A., and Lai, S., 2004. Inferences on potential seamount locations from mid-resolution bathymetric data. Fisheries Centre Research Reports 12 (5), 7-12], listing seamount positions and depths as calculated from satellite altimetry-derived bathymetry, provided the baseline data for this study as it covered the entire region of interest and included summit depth information. All KL04 potential seamounts were cross-checked with other datasets to remove any atolls and islands that had been incorrectly classified as seamounts, to add seamounts undetected by KL04, to update the overall database (geolocation, depth, elevation, and name) and to compile a 12-class typology of the different types of underwater features. Of the 4626 potential seamounts identified in KL04, 719 were multiple identifications of the same large underwater features and 373 (10%) were actually emerged banks, atolls and islands, leaving 3534 actual underwater features. Conversely, 487 underwater features were documented in other datasets but not registered by KL04. The screening of all the potential WCPO seamounts produced a final list of 4021 underwater features with agreed upon position and information. This enhanced list should have many applications in oceanography, biodiversity conservation and studies of the influence of seamounts on pelagic ecosystems and fisheries.

  18. Long-lived Seamount Volcanism in the Western Pacific, and Early Cretaceous Motion of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Hirano, N.

    2002-12-01

    Most seamounts, islands, and atolls on the present western Pacific Plate were formed by submarine intraplate volcanism, mainly during the Cretaceous. Some seamount chains in the West Pacific Seamount Province, including the Magellan group, define hotspot trails and plate motions. Samples of peralkaline rhyolite pillow lava and radiolarian-bearing pelagic sedimentary rocks were collected by the Japanese submersible Shinkai6500 from Quesada Seamount (western Magellan Seamount group), on the oceanward slope of the Mariana Trench. The Ar-Ar age of the peralkaline rhyolite is 129.3+/-2.6 Ma, about 10 m.y. younger than the radiolarian age of the oldest intercalated tuffaceous claystone (early Berriasian: approximately 140 Ma). The claystone contains fragments of alkali-basalt glass of the shield-building volcanic stage. Because peralkaline rhyolite commonly erupts during the last stage of shield activity, volcanic activity appears to have lasted for approximately 10 m.y. at Quesada Seamount. Slow Early Cretaceous motion of the Pacific Plate permitted the Quesada edifice to remain above the source hotspot for a long time. At Hemler Seamount on the northeastern tip of Quesada Seamount, a Late Cretaceous Ar-Ar age has previously been reported for nephelinite phenocrysts in strongly alkaline basalt, which also records the rejuvenated stage of a long-lived Early Cretaceous seamount volcano. Such seamount trails can be used to calculate the absolute Early Cretaceous motion of the Pacific Plate; in addition to the Quesada to Hemler SW to NE trail, others have been previously reported from Shatsky Rise and western Mid-Pacific Mountain.

  19. Mineralogy of iron microbial mats from loihi seamount.

    PubMed

    Toner, Brandy M; Berquó, Thelma S; Michel, F Marc; Sorensen, Jeffry V; Templeton, Alexis S; Edwards, Katrina J

    2012-01-01

    Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings - freshwater seeps to deep-sea vents - where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy. Particle sizes of 3.5-4.6 nm were estimated from magnetism data, and coherent scattering domain (CSD) sizes as small as 1.6 nm are indicated by pair distribution function (PDF) analysis. Disorder in the nanostructured Fe-bearing phases results in limited intermediate-range structural order: less than that of standard two-line ferrihydrite (Fh), except for the Pohaku site. The short-range ordered natural Fh (Fh(SRO)) phases were stable at 4°C in the presence of oxygen for at least 1 year and during 400°C treatment. The observed stability of the Fh(SRO) is consistent with magnetic observations that point to non-interacting nanoparticles. PDF analyses of total scattering data provide further evidence for Fh(SRO) particles with a poorly ordered silica coating. The presence of coated particles explains the small CSD for the mat minerals, as well as the stability of the minerals over time and against heating. The mineral properties observed here provide a starting point from which progressively older and more extensively altered Fe deposits may be examined, with the ultimate goal of improved interpretation of past biogeochemical conditions and diagenetic processes.

  20. Chemistry of hydrothermal solutions from Pele's Vents, Loihi Seamount, Hawaii

    SciTech Connect

    Sedwick, P.N.; McMurtry, G.M. ); Macdougall, J.D. )

    1992-10-01

    Hydrothermal fluids were sampled from Pele's Vents on the summit of Loihi Seamount, an intraplate, hotspot volcano, on four occasions from February 1987 to September 1990. The warm ([le]31C) vent solutions are enriched in dissolved Si, CO[sub 2], H[sub 2]S, alkalinity, K[sup +], Li[sup +], Rb[sup +], Ca[sup 2+], Ba[sup 2+], Fe[sup 2+], Mn[sup 2+], NH[sup +][sub 4], and possibly Ni[sup 2+], and depleted in SO[sup 2-][sub 4], O[sub 2], Mg[sup 2+], [sup 87]Sr/[sup 86]Sr, NO[sup -][sub 3], and sometimes Cl[sup -] and Na[sup +] (calculated), relative to ambient seawater. Dissolved Si correlates linearly with sample temperature, suggesting that the solutions sampled from numerous vents in the [approximately]20 m diameter field have a common source and that Si can be used as a conservative tracer for mixing of the vent fluids with ambient seawater. These juvenile inputs likely reflect the shallow, hotspot setting of this hydrothermal system. A simple quantitative fluid-history model is considered and shown to be consistent with mass-balance constraints and saturation-state calculations, which suggest that the Si concentration of the fluids may be controlled by amorphous silica saturation at [approximately]31C. Observed temporal variations in fluid composition between expeditions - specifically, in Cl[sup -], A[sub T], C[sub T], Na[sup +] (calculated), Mg[sup 2+], Ca[sup 2+], Sr[sup 2+], [sup 87]Sr/[sup 86]Sr, Fe[sup 2+], Mn[sup 2+] and perhaps NH[sup +][sub 4], relative to Si - are, excepting Mg[sup 2+], [sup 87]Sr/[sup 86]Sr, and Mn[sup 2+], consistent with the effects of variable phase segregation at the proposed high-temperature endmember.

  1. Mineralogy of Iron Microbial Mats from Loihi Seamount

    PubMed Central

    Toner, Brandy M.; Berquó, Thelma S.; Michel, F. Marc; Sorensen, Jeffry V.; Templeton, Alexis S.; Edwards, Katrina J.

    2011-01-01

    Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings – freshwater seeps to deep-sea vents – where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy. Particle sizes of 3.5–4.6 nm were estimated from magnetism data, and coherent scattering domain (CSD) sizes as small as 1.6 nm are indicated by pair distribution function (PDF) analysis. Disorder in the nanostructured Fe-bearing phases results in limited intermediate-range structural order: less than that of standard two-line ferrihydrite (Fh), except for the Pohaku site. The short-range ordered natural Fh (FhSRO) phases were stable at 4°C in the presence of oxygen for at least 1 year and during 400°C treatment. The observed stability of the FhSRO is consistent with magnetic observations that point to non-interacting nanoparticles. PDF analyses of total scattering data provide further evidence for FhSRO particles with a poorly ordered silica coating. The presence of coated particles explains the small CSD for the mat minerals, as well as the stability of the minerals over time and against heating. The mineral properties observed here provide a starting point from which progressively older and more extensively altered Fe deposits may be examined, with the ultimate goal of improved interpretation of past biogeochemical conditions and diagenetic processes. PMID:22485113

  2. The Morphology of the Tasmantid Seamounts: Interactions between Tectonic Inheritance and Magmatic Evolution

    NASA Astrophysics Data System (ADS)

    Richards, Fred; Kalnins, Lara; Watts, Anthony; Cohen, Benjamin; Beaman, Robin

    2015-04-01

    The Tasmantid seamounts extend for over 2000 km off the east coast of Australia and constitute one of three contemporaneous, sub-parallel Cenozoic hotspot tracks that traverse the region (the Tasmantid, Lord Howe, and East Australian volcanic chains), locally separated by as little as 500 km. Where dated, the three chains young from north to south, spanning ca. 34-6 Ma. At multiple locations, the Tasmantid chain intersects the extinct Tasman Sea spreading centre, which was active from 84 Ma to 53 Ma. Detailed morphological analysis reveals a strong correlation between tectonic setting, seamount orientation, and volcanic structure. Seamounts at inside corners of the spreading segment-transform intersections are more rugged and constructed via numerous intersecting fissure-fed volcanic ridges, whereas off-axis seamounts tend to be conical with summit craters and isolated dyke-fed flank cones. In addition, the orientation of the Bouguer gravity anomaly highs, interpreted as magmatic conduits, and the long axes of the seamounts align closely with the principal stress directions expected for a ridge system in which strong mechanical coupling occurs across transform faults. Such a strong connection between the long-lived mantle upwelling, ridge structure, and subsequent dyke emplacement ' despite the ≥ 20 Ma offset between spreading cessation and initial seamount emplacement ' suggests deep faulting of the Tasman Sea oceanic lithosphere in order to channel melts along pre-existing structural trends. Despite the large size of the edifices, up to ~ 4000 m high, slope gradient and backscatter analysis along the chain point to sluggish mass wasting rates with few or no large sector collapse structures. In addition, most seamounts are associated with Bouguer gravity highs. Together, these features suggest that the seamounts have dense, coherent cores with high intrusive to extrusive volume ratios. This indicates low rates of melt generation and intra-lithospheric transport

  3. Geochemistry characteristics of Seamounts in the Tonga arc : Influence of subduction component

    NASA Astrophysics Data System (ADS)

    Myeong, B.; Kim, J. H.; Woo, H.; Jang, Y. D.

    2015-12-01

    Located in the southwest Pacific ocean, The seamounts, from TA07 seamount to TA26, in the Tonga arc are located from 20 °S to 25 °S. At 25 °S, the Tonga trench is intersected by the Louisville ridge, a ~4,300-km-long chain of seamounts and the Osbourn trough, a paleo-spreading center. For this reason, magma which created these seamounts may have various origin. Based on this, the seamounts which forming the Tonga arc are divided into three groups; including group 1(region that the earliest Louisville ridge subduction arised, correspond to TA07-12), group 2(region that the second Louisville ridge subduction arised, correspond to TA14-24); and group 3(region that the Louisville ridge and the Osbourn trough are subducting, correspond to TA25-26). These seamounts are mostly stratovolcanoes with caldera. Rocks recovered by dredging have been identified as pumice, dacite, andesite, basaltic andesites and basalts(most abundant). Major element concentrations are constant, trace element concentrations are enriched LILE, depleted HFSE compared with MORB. The Tonga arc is affected by subduction components divided into the shallow and deep subduction components. Related to subduction components, variables include mantle source, AOC(altered oceanic crust), PS(pelagic sediment), LSC(Louisville seamount chain) and OS(Osbourn trough). In the case of shallow subduction component, it tends to have higher contents in group 1, 3 and lower contents in group 2. Thus, comparatively speaking, it seems that group 1, 3 have been heavily influenced by the fluid. However, origin of the fluid seems to be different, since its locations are not continuous. In the case of deep subduction component, it shows similar range in the group 1, 2, and shows a significantly lower ratio in the group 3. The reason why its values are similar is that it is effected by the melt during the Louisville ridge was subducting and the reason why the ratio in the group 3 shown lower is because of the fluid effect

  4. Mapping and Collection of Deep-Sea Corals from Seamounts in the NW Atlantic

    NASA Astrophysics Data System (ADS)

    Scheirer, D.; Adkins, J.; Yoerger, D.; Shank, T.

    2003-12-01

    We mapped the occurrence of living and fossil deep-sea corals using R/V Atlantis, DSV Alvin, the autonomous vehicle ABE, and a towed camera system, and we collected these corals and their associated fauna at sites on the New England and Muir seamount chains in the northwest Atlantic. On cruise AT7-35 (May-June 2003; the Medusa Expedition), we used a nested mapping approach to span observational scales from tens of kilometers with shipboard multibeam sonar to centimeters with human and camera observations. With these observations, we characterized the volcanic structure of the seamount edifices, their modification by mass-wasting, their primary volcanic surface features, and the deposition of sediments and metal-rich encrustations. These seamount properties, in turn, define the physical habitat important for recruitment and sustenance of faunal communities, and they influence oceanographic factors such as current concentration and stagnation, localized upwelling, and vertical mixing. Manning and Gosnold seamounts, on the New England chain, rise as much as 4 km above the surrounding abyssal plain; they are distinct edifices that merge with adjacent cones near their lower reaches. The largest edifices in the study area have undergone sector collapse, leaving up-slope hanging walls and amphitheaters above landslide run-outs. Visual images of these landslide slopes show sedimented talus with isolated blocks. The Muir seamount chain is composed of a handful of major edifices that merge to form a ridge >100 km in length. Sector collapse away from the axis of the ridge has sharpened the ridge and left occasional buttressing ridges perpendicular to the main ridge. Away from the landslides, the seamount tops are generally flat, and the seamount flanks are characterized by down-slope ridges and volcanic knobs. Much of the flat seafloor is completely sedimented; bottom currents have variable intensity and direction based on observed sedimentary structures and submersible

  5. New species of hippolytid shrimps (Crustacea: Decapoda: Caridea: Hippolytidae) from a southwest Indian Ocean seamount.

    PubMed

    Nye, Verity

    2013-01-01

    Two specimens representing two hippolytid genera were sampled recently from the Coral Seamount, southwest Indian Ocean, at 732 m water depth. Lebbeus ketophilos sp. nov. and Eualus oreios sp. nov. are described and illustrated and their morphologies are compared with those of previously described species. The new species are closest in morphology to L. indicus Holthuis, 1947 and E. kinzeri Tiefenbacher, 1990 respectively. They are distinguished clearly from these and other species by a suite of morphological features. This record enhances our present knowledge of seamount biodiversity and species richness of decapod crustaceans in the Indian Ocean.

  6. Post-Hotspot Collapse Feature and Shield-Building Volcanism on Detroit Seamount

    NASA Astrophysics Data System (ADS)

    Kerr, B. C.; Scholl, D. W.; Klemperer, S. L.

    2003-12-01

    In July-August of 2001, ODP Leg 197 drilled Detroit Seamount of the Emperor seamount chain to obtain cores of basaltic lava flows. Prior to drilling, the JOIDES Resolution conducted high-resolution single-channel seismic surveys in the vicinity of preliminary site locations to help confirm suitability for drilling and to collect digital seismic data. At least two seismic lines (about 10 km in length) cross directly over each of the two drill sites. The seismic data provide evidence for volcanism 24-42 Myr after the main shield building event, and for collapse faults possibly coincident with that volcanism. Detroit Seamount, one of the northernmost seamounts of the Hawaiian-Emperor seamount chain, was formed at c. 76 Ma. Combined with drill core data from the summit and northeast flank of Detroit Seamount, new seismic data suggest renewed volcanism occurred during the Eocene between 52 Ma and 34 Ma, 24-42 Myr after initial seamount formation. Hence the age difference between the shield-building lavas and the post-shield edifices on Detroit is far greater than the shield/post-shield age differences observed on the Hawaiian Islands. The seismic data reveal peaks in the basement, centered c. 7-11 km north of ODP Sites 883 and 1204, and buried by the Meiji drift sediment cap. These peaks are older then the earliest Meiji sediment (34 Ma) as Meiji sediment horizons onlap onto the slopes of the peaks. Ash layers recovered in cores from ODP Sites 883, 884 and 1204 appear to be mafic in composition, and erupted locally and subaqueously. We interpret the peaks as volcanic edifices, possibly the source of the ash layers cored at ODP Sites 883, 884, and 1204. On Detroit Seamount, a significant west-northwest-striking normal fault, Summit Fault, occurs in the basement with the downthrown block to the northeast. Though we were unable to image the fault plane below the volcanic basement, the fault scarp in the basement suggests a low-angle normal fault, dipping c. 19° . The

  7. Seamounts and ferromanganese crusts within and near the U.S. EEZ off California - Data for RV Farnella cruise F7-87-SC

    USGS Publications Warehouse

    Hein, James R.; Reid, Jane A.; Conrad, Tracey A.; Dunham, Rachel E.; Clague, David A.; Schulz, Marjorie S.; Davis, Alice S.

    2010-01-01

    The purpose of this report is to present and briefly describe ship-board and laboratory data for a U.S. Geological Survey (USGS) research cruise aboard the RV Farnella that took place December 3-21, 1987 (cruise F7-87-SC). The purpose of the cruise was to survey seamounts and ferromanganese crusts within and near the U.S. Exclusive Economic Zone (EEZ) off California. Eight seamounts were studied - Rodriguez, San Marcos, Adam, Hoss, Little Joe, Ben, Flint, and Jasper. A geophysical survey of Jasper Seamount took place, but that seamount was not sampled; whereas Adam and Hoss Seamounts were sampled, but not surveyed with geophysics lines.

  8. Subseafloor nitrogen redox processes at Loihi Seamount, Hawai

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Sylvan, J. B.; LaRowe, D.; Huber, J. A.; Moyer, C. L.; Edwards, K. J.

    2014-12-01

    Loihi seamount is a mid-plate hotspot volcano located 30 kilometers off the southeast corner of the Big Island of Hawai'i. We measured temperature, concentrations of nitrate + nitrite (NOx), ammonium (NH4+), nitrite (NO2-) and dissolved silica (dSi), as well as the stable N and O isotopic composition of nitrate (δ15N and δ18O) in end-member hydrothermal fluids and microbial mats during three cruises in 2008, 2009 and 2013. We also sequenced 16S rRNA from archaea and bacteria from the same sites during 2006. NH4+ ranged ~0.71-7.5 μM, was positively correlated to dSi and negatively correlated to NOx. NO2- ranged from below detection to 0.49 μM and was not correlated to NOx, dSi or NH4+. In the microbial mats found at the Ula Nui site at 5000 m, NO2-, dSi and NH4+ all increase with depth in the mat, creating a vertical zonation of niches within these mounds. Measured δ15N and δ18O of nitrate suggest biological production and reduction of nitrate are both occurring. Analysis of δ15N-NH4+ is underway and will help constrain the relative magnitude of nitrification to NO2- and the potential for N-fixation. Using the measured concentrations of NOx, NO2- and NH4+ and other published data from Loihi, Gibbs energy calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- could provide energy to microbes in Loihi fluids. Thermodynamically feasible electron donors including HS-, CH4, Fe2+ and NH4+, and the amount of energy available, in units of Joules per kg H2O, varies by orders of magnitude from one sample site to the next. Pyrosequencing of the V6 region of bacterial and archaeal 16S rRNA from four sites at Loihi detected groups known to participate in denitrification, N-fixation and NO2- oxidation. Among these, the most abundant putative N-reducing microbes include Caldithrix, Epsilonproteobacteria, Thiohalophilus and members of the SAR324 clade. Putative N-fixers detected include members of the bacterial order Chlorobiales and

  9. Macrobiotic Communities of Vailulu'u Seamount, Samoan Archipelago

    NASA Astrophysics Data System (ADS)

    Young, C. M.; Lee, R. W.; Pile, A. J.; Hudson, I. R.; Brooke, S. D.; Ted, P.; Staudigel, H.; Hart, S.; Bailey, B. E.; Haucke, L.; Koppers, A.; Konter, J.; Templeton, A.; Tebo, B.

    2005-12-01

    Vailulu'u, the active seamount on the hotspot at the Eastern end of the Samoan volcanic chain, was the focus of two research cruises in April and June 2005 using the Pisces V submersible. Warm-water vents on the summit of a newly formed volcanic cone in the crater supported a low-diversity community dominated by thick microbial mats and the synaphobranchid eel Dysommina rugosa. Isotope and gut analyses indicated that the eels feed not on the mats but on planktonic crustaceans imported to the system from the overlying water column. The microbial mat exhibited isotopic signatures consistent with local chemosynthesis, but not methane-based chemosynthesis; A<

  10. Euryhaline Halophilic Microorganisms From the Suiyo Seamount Hydrothermal Vents.

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Kimura, H.; Maruyama, A.; Naganuma, T.

    2002-12-01

    The euryhaline halophilic microorganisms grow in a wide salinity range from <3% NaCl (seawater equivalent) to >15% NaCl or to even saturation (about 30% NaCl). A number of euryhaline halophiles have been found in a wide range of habitats from oceanic and terrestrial regimes, from deep-sea vents and seeps, and from Antarctic sea ice and terrains. We have isolated the euryhaline strains independently from a Mid-Atlantic Ridge vent fluids and Antarctic terrains are closely related species of the genus Halomonas. Some euryhaline halophiles maintain intracellular osmotic balance by controlling the concentration of compatible solute such as ectoine. This compatible solute not only stabilizes the proteins from denaturation caused by high salt concentration but also serves as a protectant against stresses such as heating, freezing and drying. The sub-seafloor structure of a hydrothermal vent is highly complicated with mosaic heterogeneity of physicochemical parameters such as temperature and salinity. This premise led us to the hypothesis that some euryhaline halophiles including Halomonas species well adapt to a wide salinity-ranged habitat in the sub-vent. To test this hypothesis, isolation and characterization of euryhaline halophiles from the Suiyo Seamount hydrothermal vents were conducted the drill-cored rock samples from the sites APSK-02, 03, and 07 and the filter-trapped fluid particle samples from the sites APSK-01 and 05 were used. For initial cultivation, a heterotrophic bacterial medium of 15% NaCl was used. The samples was added to the medium and incubated under both aerobic and anaerobic conditions at room temperature. A total of 5 euryhaline halophilic strains were obtained and phylogenetically characterized: two strains (both related to Marinobacter) from APSK-02 core section 2; one strain (related to H. meridiana) from APSK-07 core section 3; and two strains (related to H. meridiana and H. variabilis) from APSK-01 trapped particles. In addition, some

  11. Spatial and temporal variability of demersal fishes at Condor seamount (Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Menezes, Gui M.; Giacomello, Eva

    2013-12-01

    Temporal and spatial patterns of variation of benthic and benthopelagic fish assemblages on the Condor Seamount of the Azores, Northeast Atlantic, were studied based on longline samples from the depth interval 200-1300 m depth. The seamount was used as a commercial fishing ground for decades but is currently closed to fishing as a temporary protected area for research. The protection regime offers an opportunity to monitor and analyze responses to harvesting and recovery from previous fishing impacts. Species number, catches per unit of effort, and zonation with depth corresponded in general with what was observed elsewhere for the Azorean demersal fish community. Total abundance, species richness and species composition significantly varied in time and space within the seamount, generally showing a North-South asymmetry. Abundance and species richness were higher in the Northern than in the Southern sector of the seamount, mainly due to higher abundances of the species Helicolenus dactylopterus, Pagellus bogaraveo, Beryx splendens and Trachurus picturatus. Analyses of abundance variation of the most frequent species showed an array of species-specific responses. The variability of fish assemblages is discussed in the light of oceanographic and anthropogenic factors, which may drive the observed patterns and trends.

  12. 76 FR 15222 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Seamount Groundfish Fisheries; Modification of Fishery Closures AGENCY: National Marine Fisheries Service... Islands (MHI) Deep-7 bottomfish fishery from 14 to 7 days. The intent of the change is to enhance administration of the fishery. DATES: This final rule is effective April 20, 2011. ADDRESSES: Copies of...

  13. Characteristics of the mesophotic megabenthic assemblages of the vercelli seamount (north tyrrhenian sea).

    PubMed

    Bo, Marzia; Bertolino, Marco; Borghini, Mireno; Castellano, Michela; Covazzi Harriague, Anabella; Di Camillo, Cristina Gioia; Gasparini, Gianpietro; Misic, Cristina; Povero, Paolo; Pusceddu, Antonio; Schroeder, Katrin; Bavestrello, Giorgio

    2011-02-03

    The biodiversity of the megabenthic assemblages of the mesophotic zone of a Tyrrhenian seamount (Vercelli Seamount) is described using Remotely Operated Vehicle (ROV) video imaging from 100 m depth to the top of the mount around 61 m depth. This pinnacle hosts a rich coralligenous community characterized by three different assemblages: (i) the top shows a dense covering of the kelp Laminaria rodriguezii; (ii) the southern side biocoenosis is mainly dominated by the octocorals Paramuricea clavata and Eunicella cavolinii; while (iii) the northern side of the seamount assemblage is colonized by active filter-feeding organisms such as sponges (sometimes covering 100% of the surface) with numerous colonies of the ascidian Diazona violacea, and the polychaete Sabella pavonina. This study highlights, also for a Mediterranean seamount, the potential role of an isolated rocky peak penetrating the euphotic zone, to work as an aggregating structure, hosting abundant benthic communities dominated by suspension feeders, whose distribution may vary in accordance to the geomorphology of the area and the different local hydrodynamic conditions.

  14. Assemblages of hydroids (Cnidaria) from three seamounts near Bermuda in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Calder, Dale R.

    2000-06-01

    Three seamounts flanking the oceanic island of Bermuda were sampled for hydroids. Collecting was undertaken by submersible (SDL-1) and by dredge at depths between 48 and 107 m on the summits of Argus and Challenger banks. A shallower collection (<20 m) from the pilings of a tower on Argus Bank was made using SCUBA. Major bottom types on both banks were aggregations of rhodoliths, limestone reefs, and areas of calcareous sand. Hydroids were ubiquitous, but quite sparse, on firm substrata. None was collected on sandy bottoms. Of 45 species identified from the two oceanic banks, over half (25) were found on both. On Bowditch Seamount, samples were obtained at depths between 1285 and 1381 m by dredge and grab. Of four species found, only one ( Filellum serratum) occurred in shallower collections from Argus and Challenger banks. Most species (43 of 48) from the three seamounts have been reported elsewhere in the Western Atlantic Tropical region, and many (38 of 48) are known from Bermuda. No endemics were discovered, and no relicts or exotics were recognized. Gonophores in >70% of the species are fixed sporosacs instead of free medusae. This conforms with a hypothesis that invertebrates of oceanic islands and seamounts tend to have short-lived pelagic larval stages, ensuring the greatest retention and conservation of propagules.

  15. Characteristics of the Mesophotic Megabenthic Assemblages of the Vercelli Seamount (North Tyrrhenian Sea)

    PubMed Central

    Bo, Marzia; Bertolino, Marco; Borghini, Mireno; Castellano, Michela; Covazzi Harriague, Anabella; Di Camillo, Cristina Gioia; Gasparini, GianPietro; Misic, Cristina; Povero, Paolo; Pusceddu, Antonio; Schroeder, Katrin; Bavestrello, Giorgio

    2011-01-01

    The biodiversity of the megabenthic assemblages of the mesophotic zone of a Tyrrhenian seamount (Vercelli Seamount) is described using Remotely Operated Vehicle (ROV) video imaging from 100 m depth to the top of the mount around 61 m depth. This pinnacle hosts a rich coralligenous community characterized by three different assemblages: (i) the top shows a dense covering of the kelp Laminaria rodriguezii; (ii) the southern side biocoenosis is mainly dominated by the octocorals Paramuricea clavata and Eunicella cavolinii; while (iii) the northern side of the seamount assemblage is colonized by active filter-feeding organisms such as sponges (sometimes covering 100% of the surface) with numerous colonies of the ascidian Diazona violacea, and the polychaete Sabella pavonina. This study highlights, also for a Mediterranean seamount, the potential role of an isolated rocky peak penetrating the euphotic zone, to work as an aggregating structure, hosting abundant benthic communities dominated by suspension feeders, whose distribution may vary in accordance to the geomorphology of the area and the different local hydrodynamic conditions. PMID:21304906

  16. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts.

    PubMed

    Penn, Kevin; Wu, Dongying; Eisen, Jonathan A; Ward, Naomi

    2006-02-01

    Although microbes associated with shallow-water corals have been reported, deepwater coral microbes are poorly characterized. A cultivation-independent analysis of Alaskan seamount octocoral microflora showed that Proteobacteria (classes Alphaproteobacteria and Gammaproteobacteria), Firmicutes, Bacteroidetes, and Acidobacteria dominate and vary in abundance. More sampling is needed to understand the basis and significance of this variation.

  17. Changes in polychaete standing stock and diversity on the northern side of Senghor Seamount (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Chivers, A. J.; Narayanaswamy, B. E.; Lamont, P. A.; Dale, A.; Turnewitsch, R.

    2012-12-01

    Interest in seamount research has gathered momentum over the past five years in an effort to understand the physical, geochemical and biological characteristics as well as the interconnectedness of seamount ecosystems. The majority of biological seamount research has concentrated upon the rich and diverse suspension feeding organisms that dominate the megafauna, such as gorgonians and antipatharian corals; by comparison there have been few studies that have investigated the no less enigmatic, but possibly just as important infauna. To help fill this knowledge gap, the macrofaunal community was sampled from a total of five stations along a northerly transect (capturing water depths from ~ 130 m to ~ 3300 m), on Senghor Seamount (NE Atlantic). The focus of this study is on the polychaete communities. Polychaete abundance peaked at the summit and a mid-slope station (~ 1500 m), a pattern mirrored by the biomass values. The polychaete community along the transect appeared to be particularly diverse, with 135 species nominally identified to putative species from a total of 954 individuals. A diversity maximum was identified on the upper slope at ~ 800 m depth, with species diversity, richness and evenness also all peaking at this station. Depth is likely to be a significant factor in determining levels of similarity between stations.

  18. Changes in polychaete standing stock and diversity on the northern side of Senghor Seamount (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Chivers, A. J.; Narayanaswamy, B. E.; Lamont, P. A.; Dale, A.; Turnewitsch, R.

    2013-06-01

    Interest in seamount research has gathered momentum over the past five years in an effort to understand the physical, geochemical and biological characteristics as well as the interconnectedness of seamount ecosystems. The majority of biological seamount research has concentrated upon the rich and diverse suspension feeding organisms that dominate the megafauna, such as gorgonians and antipatharian corals; by comparison there have been few studies that have investigated the no less enigmatic, but possibly just as important infauna. To help fill this knowledge gap, the macrofaunal community was sampled from a total of five stations along a northerly transect (capturing water depths from ∼130 m to ∼3300 m), on Senghor Seamount (NE Atlantic). The focus of this study is on the polychaete communities. Polychaete abundance peaked at the summit and a mid-slope station (∼1500 m), a pattern mirrored by the biomass values. The polychaete community along the transect appeared to be particularly diverse, with 135 species nominally identified to putative species from a total of 954 individuals. A diversity maximum was identified on the upper slope at ∼800 m depth, with species diversity, richness and evenness also all peaking at this station. Depth is likely to be a significant factor in determining levels of similarity between stations.

  19. The 1974 ALVIN Dives on Corner Rise and New England Seamounts.

    DTIC Science & Technology

    1977-02-01

    with welded fault breccia . A similar exposure , however, was not observed on the vertical seamount scarps. The coherent lava flows at the edge of the...as Mebobesia, a family which presently grows on the outer- most ridges of reef- breccia platforms (R. Johnson , personal communication , 1975). These

  20. Upper Campanian-lower Maastrichtian planktonic foraminifers from Govorov Guyot (Magellan Seamounts, Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Korchagin, O. A.; Pletnev, S. P.; Mel'Nikov, M. E.

    2011-06-01

    The planktonic foraminiferal assemblage from foraminiferal limestone (ooze) dredged from the summit of one of guyots in the Magellan Seamount system of the Pacific is dominated by one-keeled species belonging to the genus Globotruncanita. The taxonomic composition of the assemblage correlates host rocks with the upper Campanian-lower Maastrichtian. One species and one subspecies are described as new taxa.

  1. Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410

    NASA Astrophysics Data System (ADS)

    Rogers, A. D.; Alvheim, O.; Bemanaja, E.; Benivary, D.; Boersch-Supan, P.; Bornman, T. G.; Cedras, R.; Du Plessis, N.; Gotheil, S.; Høines, A.; Kemp, K.; Kristiansen, J.; Letessier, T.; Mangar, V.; Mazungula, N.; Mørk, T.; Pinet, P.; Pollard, R.; Read, J.; Sonnekus, T.

    2017-02-01

    The seamounts of the southern Indian Ocean remain some of the most poorly studied globally and yet have been subject to deep-sea fishing for decades and may face new exploitation through mining of seabed massive sulphides in the future. As an attempt to redress the knowledge deficit on deep-sea benthic and pelagic communities associated mainly with the seamounts of the South West Indian Ridge two cruises were undertaken to explore the pelagic and benthic ecology in 2009 and 2011 respectively. In this volume are presented studies on pelagic ecosystems around six seamounts, five on the South West Indian Ridge, including Atlantis Bank, Sapmer Seamount, Middle of What Seamount, Melville Bank and Coral Seamount and one un-named seamount on the Madagascar Ridge. In this paper, existing knowledge on the seamounts of the southwestern Indian Ocean is presented to provide context for the studies presented in this volume. An account of the overall aims, approaches and methods used primarily on the 2009 cruise are presented including metadata associated with sampling and some of the limitations of the study. Sampling during this cruise included physical oceanographic measurements, multibeam bathymetry, biological acoustics, and net sampling of phytoplankton, macrozooplankton and micronekton/nekton. The studies that follow reveal new data on the physical oceanography of this dynamic region of the oceans, and the important influence of water masses on the pelagic ecology associated with the seamounts of the South West Indian Ridge. New information on the pelagic fauna of the region fills an important biogeographic gap for the mid- to high-latitudes of the oceans of the southern hemisphere.

  2. Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    PubMed Central

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K. A. Kamesh; Mudholkar, Abhay

    2011-01-01

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only. PMID:21297959

  3. Megafaunal community structure of Andaman seamounts including the Back-arc Basin--a quantitative exploration from the Indian Ocean.

    PubMed

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K A Kamesh; Mudholkar, Abhay

    2011-01-31

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount--CSM) and a non-volcano (SM2) in the Andaman Back-arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only.

  4. Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith

    2015-02-01

    Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up

  5. Geochemical Constraints from Volcanic Glasses drilled along the Louisville Seamount Trail

    NASA Astrophysics Data System (ADS)

    Beier, C.; Nichols, A. R.; et al.

    2011-12-01

    The geochemical changes observed in long-lived seamount chains can be used to test models on the origin of oceanic intraplate volcanism and the evolution of magmas within a single seamount. Major and trace elements for volcanic glasses along the westernmost 1500 km of the Louisville Seamount trail show that volcanism was geochemically extremely uniform over a period from ~85 Ma to 50 Ma both along-chain and within a single seamount. Here, we present major (including F, S, and Cl), trace and volatile element data measured by electron microprobe, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and Fourier-transform infrared (FTIR) spectroscopy, respectively, from four guyots that were drilled during IODP Expedition 330. All 55 glass samples analysed are alkalic; most are basalts to tephrites, with a few trachybasalts, and their MgO and SiO2 contents range from 3.5 to 7.3 wt.% and 44.46 to 50.17 wt.%, respectively. The glasses provide no evidence for a tholeiitic shield building stage in the Lousiville guyots, contrary to what is generally observed in the Hawaiian volcanoes. Incompatible element ratios (e.g., Nb/U, Ce/Pb) imply that the glasses are fresh and, unlike published whole rock data (Cheng et al., 1987, Beier et al., revised), display no evidence for significant alteration despite the relatively large age range covered. Rare earth element (REE) ratios (e.g., Ce/Yb, Sm/Yb) from the deepest site drilled during IODP Expedition 330, U1374 at Rigil Guyot, imply that older glasses from deeper than 245 meters below seafloor may have been derived from smaller degrees of partial melting than the younger lavas. However, these changes are small (<1-2% difference in degree of partial melting). Immobile, source sensitive trace element ratios, e.g. La/Yb, Nb/Zr imply an extremely homogenous source over this ~35 Myr period of volcanism. H2O and CO2 concentrations in a subset of the same glass samples are currently being measured to complement the major

  6. Axial Seamount - Under the hood of the volcano machine.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2015-12-01

    On the Juan de Fuca ridge, Axial volcano is the most volcanically active site of the northwestern Pacific and it has been continuously monitored through two complete eruption cycles, with an increased number of seafloor instruments, leading in 2014 to the deployment of a permanent, wired-to-shore, seafloor observatory. Accurate imaging of the internal structure of volcanic systems is critical in order to characterize and quantify mass and energy transport mechanisms in such dynamic environments. To produce high-resolution velocity/reflectivity structures of Axial volcano, here, we combined a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism.We present an updated and more complete outlook of Axial volcano upper crustal structure. We find that the addition of 469,891 traveltime arrivals, from twelve different multichannel seismic lines, to a previous OBSs-based traveltime tomography inversion, greatly improved the resolution of the three-dimensional velocity structure. We observe two elongated crustal magma reservoir beneath the central volcano. We investigate the extent, volume and physical state of those magma reservoirs and provide images of the volcanic plumbing system. We use our 3D velocity structure to relocate several months of seismicity and track magma movements between the caldera and the eruption site. We show that crustal-aging is controlled by pipe-like pattern of focused hydrothermal circulation. We suggest that the subsiding caldera floor at Axial Volcano was initiated ~720kyr +/-100kyr and provides a near perfect trap for the ponding of lava flows.

  7. Flexure and gravity anomalies of the oceanic lithosphere beneath the Louisville seamount

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-08-01

    We have calculated the elastic thickness (Te), flexural deflection, and gravity anomaly of the oceanic crust beneath the Louisville seamount (LSC-03), near the Kermadec trench. A regional-residual separation of the bathymetry was performed to remove the effect of other geologic features (e.g., the trench). We used the uniform density and dense core models to approximate the total mass of the seamount, which was defined as the surface load required for flexural deformation. From the flexure modeling results, we found that more flexural depression was predicted by the uniform density model than by the dense core model. However, the uniform density model predicted a significantly smaller gravity anomaly than observed, whereas the dense core model minimized the prediction misfits reasonably. The best flexure model was found with a Te of 16 km for the uniform density model and 6 km for the dense core model. The flexure computed with the dense core model was consistent with the seismically detected Moho. The flexure modeling for LSC-03, thus, indicates that the dense core model better approximates the inner structure of the LSC-03. Based on the crustal age and geochronology of the given seamount, the age of the oceanic crust at the time of seamount formation (Δt) is 20 Ma. If this is the case, however, the Te estimates from both flexure models require some degree of lithospheric reheating by Louisville hotspot activity. Alternatively, considering the tectonic plate motion of the Osbourn Trough, Δt becomes approximately 4 Ma. This younger lithosphere model is more consistent with the observed flexural deformation and the Te estimate from the dense core model. Therefore, the time that the seamount-induced lithospheric deformation occurred may be far earlier than the age-dated volcanism.

  8. Constraints from Seamounts on Pacific Plate or Plume Motion Prior to 80 Ma.

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Koppers, A. A. P.; Jackson, M. G.; Finlayson, V.; Konrad, K.

    2015-12-01

    The Hawaii-Emperor and Louisville hotspot tracks have long dominated the data set constraining absolute plate motion models. However, prior to ~80 Ma, multiple shorter, discontinuous hotspot trails and oceanic plateaus have been used to constrain absolute plate motion. Based on this earlier work, a clear Hawaii-Emperor style bend seems apparent around 100 Ma in the West Pacific Seamount Province (WPSP). More importantly, the ongoing debate on a plate versus plume motion origin for the Hawaii-Emperor Bend is applicable here, as the ~100 Ma bend may correspond to a global plate reorganization (Matthews et al., EPSL, 2012). Data for a comparison of bends comes from three groups with similar geographic patterns: 1) Mid-Pacific Mountains, Line Islands; 2) Shatsky Rise, Hess Rise, Musician and Wentworth Seamounts; and 3) Wake Seamounts, Marshall Islands, Magellan Seamounts. Both groups 1 and 2 feature a large igneous province (LIP) at their oldest end: Shatsky Rise and the Mid-Pacific Mountains. According to plate reconstructions these LIPs were constructed near all-ridge triple junctions, thus potential plume-ridge interactions need to be clarified before these LIPs can be used to define an absolute mantle reference frame. In contrast, the volcanoes of the third group (Wake, Marshall, Magellan) did erupt truly intra-plate and we therefore argue that this group provides a constraint on plate motion beyond 80 Ma that is independent of plume-ridge interactions. Since the volcanoes in this group are part of the WPSP, which is densely populated with seamounts, a combination of 40Ar/39Ar ages and Sr-Nd-Pb-Hf isotopes is needed to distinguish different hotspot tracks in this region. Backtracking each volcano through its age to its original eruptive location and using compositional color-coding, reveals groupings and patterns that vary by plate motion model, while the temporal patterns of backtracked locations inform us about potential plume motions.

  9. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: Electron photomicrography and microprobe chemistry

    USGS Publications Warehouse

    Jeong, K.S.; Jung, H.-S.; Kang, J.-K.; Morgan, C.L.; Hein, J.R.

    2000-01-01

    Seven ferromanganese crusts from the northwest intertropical Pacific seamounts were analyzed for photomicroscopic growth structures, microprobe chemistry, and ages based on Co-chronometer growth rate. The crusts on the Marshall Islands seamounts are thick and ale divided into phosphatized lower older and nonphosphatized upper younger growth generations: the older crust consists of compact laminations and columns impregnated with carbonate fluoapatite (CFA), whereas the younger crust is characterized by porous botryoids and columns of ??-MnO2 and Fe oxyhydroxide. The crusts on the Federated States of Micronesia (FSM) and Palau Islands seamounts are thin and are often incorporated with inorganic opal-A in the uppermost part, comprising the younger generation. Some crusts show scours and fractures. Although the growth of crusts has been often interrupted by mass failure of slope sediments, the crusts on the Marshall Islands seamounts are estimated to have grown at rate of about 3 mm/Ma since the middle Eocene and to have been phosphatized in the late Oligocene during the host seamounts were located beneath the equatorial zone of high productivity. Prolonged infiltration of the oxygen minimum zone (OMZ) water into shallower water older crusts redistributed crust composition by precipitating CFA, enriching subsequent amounts of Mn and Ni, and removing some Co. The younger crust has formed at slower rate (about 2 mm/Ma) under the stronger influence of bottom-water circulation in the north of the equatorial zone, concentrating abundant Co. In the uppermost part of some crusts, siliceous skeletons transform with burial to inorganic opal-A and Si-rich Fe oxyhydroxide, suggesting that biosilica diagenesis can enhance crust growth. (C) 2000 Elsevier Science B.V.

  10. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    USGS Publications Warehouse

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-01-01

    Recent investigations of demersal fish communities in deep (>50 m) rugged habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. Although habitat types influence deepwater fish distribution, whether different rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, numerous rugged seafloor features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to examine demersal fish communities across various seafloor features. Also in this region, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across seafloor features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 ROV dives across 18 sites, yielding 156 species; 42% of which had not been previously recorded from particular depths or localities in the region. While fewer species were observed at seamounts than at other habitats in the NE Caribbean, assemblage structure was similar among habitat features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other rugged, topographic features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and is driven by changes in water mass characteristics including temperature (4.8-24.4 ºC) and dissolved oxygen (2.2-9.5 mg per l). Our study demonstrates the importance of water masses in shaping community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish

  11. Elastic Full Waveform Inversion reveals the fine-scale structure of Axial Volcano on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.

    2012-12-01

    Axial volcano (sometimes referred to as "Axial seamount" or "Axial") is located at 46N, 130W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a U-shaped caldera open to the southeast, which hosts an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical throws of >300 m beneath the caldera walls that suggests the tectonic thinning of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field and the most recent lava flows, on the southeast end of the caldera, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the nearby caldera center is filled by successive lava sequences (~450 m thick) that further appear to be micro faulted, suggesting a constant interplay between magmatic and tectonic processes. Surface velocities show limited variation over the whole volcano and may suggest relative recent formation, considering the rapid increase in layer 2A velocity with age. Finally, our velocity structures image a wide and complex magma chamber system beneath the volcano at depth

  12. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W....

  13. 33 CFR 167.1312 - In the Strait of Juan de Fuca: Southern lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1312 In the Strait of Juan de Fuca: Southern lanes. In the southern lanes of the Strait of Juan de Fuca, the following...

  14. 33 CFR 167.1300 - In the approaches to the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Juan de Fuca: General. 167.1300 Section 167.1300 Navigation and Navigable Waters COAST GUARD... approaches to the Strait of Juan de Fuca: General. The traffic separation scheme for the approaches to the Strait of Juan de Fuca consists of three parts: the western approach, the southwestern approach,...

  15. 33 CFR 167.1314 - In the Strait of Juan de Fuca: Eastern lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1314 In the Strait of Juan de Fuca: Eastern lanes. In the eastern lanes of the Strait of Juan de Fuca, the following are...

  16. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W....

  17. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1311 In the Strait of Juan de Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are...

  18. 33 CFR 167.1313 - In the Strait of Juan de Fuca: Northern lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1313 In the Strait of Juan de Fuca: Northern lanes. In the northern lanes of the Strait of Juan de Fuca, the following...

  19. 33 CFR 167.1310 - In the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the Strait of Juan de Fuca... Separation Schemes and Precautionary Areas Pacific West Coast § 167.1310 In the Strait of Juan de Fuca: General. The traffic separation scheme in the Strait of Juan de Fuca consists of five parts: the...

  20. 33 CFR 167.1314 - In the Strait of Juan de Fuca: Eastern lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1314 In the Strait of Juan de Fuca: Eastern lanes. In the eastern lanes of the Strait of Juan de Fuca, the following are...

  1. 33 CFR 167.1300 - In the approaches to the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Juan de Fuca: General. 167.1300 Section 167.1300 Navigation and Navigable Waters COAST GUARD... approaches to the Strait of Juan de Fuca: General. The traffic separation scheme for the approaches to the Strait of Juan de Fuca consists of three parts: the western approach, the southwestern approach,...

  2. 33 CFR 167.1310 - In the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In the Strait of Juan de Fuca... Separation Schemes and Precautionary Areas Pacific West Coast § 167.1310 In the Strait of Juan de Fuca: General. The traffic separation scheme in the Strait of Juan de Fuca consists of five parts: the...

  3. 33 CFR 167.1310 - In the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In the Strait of Juan de Fuca... Separation Schemes and Precautionary Areas Pacific West Coast § 167.1310 In the Strait of Juan de Fuca: General. The traffic separation scheme in the Strait of Juan de Fuca consists of five parts: the...

  4. 33 CFR 167.1300 - In the approaches to the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Juan de Fuca: General. 167.1300 Section 167.1300 Navigation and Navigable Waters COAST GUARD... approaches to the Strait of Juan de Fuca: General. The traffic separation scheme for the approaches to the Strait of Juan de Fuca consists of three parts: the western approach, the southwestern approach,...

  5. 33 CFR 167.1312 - In the Strait of Juan de Fuca: Southern lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1312 In the Strait of Juan de Fuca: Southern lanes. In the southern lanes of the Strait of Juan de Fuca, the following...

  6. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W....

  7. 33 CFR 167.1310 - In the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the Strait of Juan de Fuca... Separation Schemes and Precautionary Areas Pacific West Coast § 167.1310 In the Strait of Juan de Fuca: General. The traffic separation scheme in the Strait of Juan de Fuca consists of five parts: the...

  8. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W....

  9. 33 CFR 167.1313 - In the Strait of Juan de Fuca: Northern lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1313 In the Strait of Juan de Fuca: Northern lanes. In the northern lanes of the Strait of Juan de Fuca, the following...

  10. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1311 In the Strait of Juan de Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are...

  11. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1311 In the Strait of Juan de Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are...

  12. 33 CFR 167.1300 - In the approaches to the Strait of Juan de Fuca: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Juan de Fuca: General. 167.1300 Section 167.1300 Navigation and Navigable Waters COAST GUARD... approaches to the Strait of Juan de Fuca: General. The traffic separation scheme for the approaches to the Strait of Juan de Fuca consists of three parts: the western approach, the southwestern approach,...

  13. The Forts of Old San Juan: Guardians of the Caribbean. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Weltzin, Rosanna

    The massive masonry defenses of Old San Juan, Puerto Rico, which were begun in the 16th century, exist today as the oldest European-style fortifications within the territory of the United States. This lesson is based on the World Heritage Site nomination file and the National Park Service Handbook, "San Juan: The Forts of Old San Juan."…

  14. Volatile, Major and Trace Element Chemistry of Olivine-Hosted Melt Inclusions and Host Glasses in Cleft and Coaxial Segments of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Schwartz, D. M.; Wanless, V. D.; Lytle, M. L.

    2015-12-01

    To assess the influence of hotspot anomalies on crustal accretion along the Juan de Fuca Ridge, we examine lavas and olivine-hosted melt inclusions (MIs) erupted at segments adjacent to (Coaxial) and isolated from (Cleft) the Cobb Hotspot, which currently intersects the ridge at Axial Seamount. Coaxial samples (host basalt N = 7; MIs N=113) were collected from the center of an axial rise, ~60 km north of Axial Seamount. Cleft samples were collected within the axial graben, ~100 km south of Axial Seamount (host basalts N=3; MIs N=38). The MIs and host glasses were analyzed for major, trace and volatile element concentrations. Vapor-saturation pressures of each MI were determined using CO2-H2O concentrations. Entrapment depths for Coaxial MIs range from 0-16 km below seafloor (bsf) with a broad frequency peak centered about 1.5 km bsf. By contrast, the Cleft segment MIs have a narrower range of entrapment depths (0 to 12 km bsf), with a narrow and deeper frequency distribution centered around 3 km bsf. The average rare-earth element (REE) concentrations for the MIs closely resemble those of the host-basalt glasses. Coaxial MIs display variably depleted light and heavy REE patterns and indicate variable degrees of fractional crystallization. The Cleft MIs are uniformly depleted in light REEs only, and span a narrower compositional range, indicating similar crystallization histories. This suggests a model of accretion at Cleft, where relatively homogeneous mantle melts crystallize from ~10 km bsf to the seafloor, with significant storage and crystallization in a shallow (3 km depth) melt lens. At Coaxial, crystallization begins at greater depths (~15 km bsf) with a broader, shallower peak of MI entrapment depths and more variable trace element patterns. The peaks in crystallization depths are broadly consistent with the depths for seismically imaged melt lenses (Carbotte et al., 2006) at both segments. The broader peak of MI entrapment depths observed at Coaxial may

  15. Discovery of the 2011 eruption at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Nooner, S. L.; Butterfield, D. A.; Lilley, M. D.; Clague, D. A.; Caress, D. W.; Dziak, R. P.; Haxel, J. H.

    2011-12-01

    A new lava flow was discovered on the seafloor at Axial Seamount during an expedition in late July on R/V Atlantis with ROV Jason to conduct time-series monitoring and sampling. Major changes in depth, lava morphology, and the burial of pre-existing markers, monuments, and instruments made it clear that the new lava had not been there during the previous visit in August 2010. Pre-existing high-resolution bathymetry in the area aided in recognizing that the seafloor had changed significantly. The 2011 lava appears to have been erupted along the upper south rift, in a similar location to the 1998 eruption. The 2011 lava appears to be constrained by pre-existing topography to the east, but flowed at least 2 km downslope to the west, where it fills pre-existing channels and basins, and came with 170 m of the ASHES vent field near the SW caldera wall. The morphology of the 2011 lava is pillowed near the thin margins of the flows, and lobate elsewhere. The thin margins are the only places where the 2011 lava appears black, shiny, and new. Elsewhere where the lava is thicker it is covered by an orange/tan "eruption mat" (also observed after the 1998 eruption) that appears to be hydrothermal in origin, and is probably associated with cooling of the flow. In such places the 2011 lava looks deceptively "old". No collapse features were observed in the 2011 lavas, in marked contrast to the 1998 lava flow. This suggests that the 2011 eruption was longer-lived and larger in volume, consistent with the longer flow lengths. A fuller view of the extent of the 2011 lava flows will be provided by a coordinated re-survey collected with the MBARI mapping AUV on the heels of our Atlantis cruise. Hydrothermal venting on the 2011 lava flow was limited to isolated snow-blower vents and pre-existing vent sites, but we likely did not find all the sources of new venting in our limited dive time, based on the extremely poor visibility near the seafloor. CTD casts showed near bottom plumes up

  16. The Central Chilean Margin: Lower Plate Structure and Subduction Zone Geometry

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Flueh, E. R.; Klaeschen, D.; Thierer, P.; Ranero, C.; Gaedicke, C.

    2003-04-01

    The central Chilean margin was the target of a combined on-/offshore seismic experiment using RV SONNE as platform for the marine data acquisition during cruise SO161. The along-strike segmentation of the margin results in areas of reduced slab dip ('Flat slab' segments). Segment boundaries frequently coincide with the active subduction of bathymetric features on the lower plate. There may exist a correlation between the buoyancy of the subducted seafloor relief and the occurrence of shallow subduction. The fundamental effects of ridge subduction on the margin suggest a linkage of the subducting Juan Fernandez chain on the Nazca plate to the flat slab segment of the central Chilean margin, which poses one aspect investigated in the scope of the SPOC project presented here. The study area covers the eastern part of the aseismic Juan Fernandez Ridge and the continental slope off Valparaiso. Four wide-angle profiles were laid out: Two profiles are W-E oriented and located across the subduction complex at latitudes 32S and 31S, respectively. A small accretionary prism has accumulated against a backstop of increased shear strength. The upper slope is underlain by continental basement. 'Normal' oceanic crust enters the trench except where the lower plate is altered by the O'Higgins seamount group which marks the easternmost termination of the Juan Fernandez Ridge. This hotspot ridge is currently entering the trench and poses the target of a tomographic investigation using two perpendicular, densely spaced wide-angle lines. The inversion uses a top-to-bottom approach using first arrivals as well as later phases and includes a mantle inversion to obtain upper mantle velocities. Extrusive type volcanism formed the O'Higgins volcanoes when the plate moved over the hotspot that is currently forming Alexander Selkirk Island at the western termination of Juan Fernandez Ridge. A localized crustal root has evolved, but a downflexing of the crust cannot be observed.

  17. Radiometric ages of Kodiak Seamount and Giacomini Guyot, Gulf of Alaska: Implications for circum-pacific tectonics

    USGS Publications Warehouse

    Turner, D.L.; Forbes, R.B.; Naeser, C.W.

    1973-01-01

    Kodiak Seamount and Giacomini Guyot have been dated at 22.6 ??1.1 and 19.9 ??1.0 [2?? (standard deviation)] X 106 years, respectively. Concordant whole-rock and plagioclase potassium-argon dates and fission-track apatite ages demonstrate that significant quantities of excess radiogenic 40Ar are not present in the dated samples. These seamounts are the northwesternmost edifices of the Pratt-Welker chain, which cuts obliquely across magnetic anomaly patterns in an older northeastern Pacific sea floor. The older of the two dated seamounts is in the Aleutian Trench, apparently about to be subducted. If one assumes that seamounts are generated by plate motion over a fixed hot spot in the mantle, a Pacific-plate motion of 6.6 centimeters per year during early Miocene time may be calculated.

  18. LOD First Estimates In 7406 SLR San Juan Argentina Station

    NASA Astrophysics Data System (ADS)

    Pacheco, A.; Podestá, R.; Yin, Z.; Adarvez, S.; Liu, W.; Zhao, L.; Alvis Rojas, H.; Actis, E.; Quinteros, J.; Alacoria, J.

    2015-10-01

    In this paper we show results derived from satellite observations at the San Juan SLR station of Felix Aguilar Astronomical Observatory (OAFA). The Satellite Laser Ranging (SLR) telescope was installed in early 2006, in accordance with an international cooperation agreement between the San Juan National University (UNSJ) and the Chinese Academy of Sciences (CAS). The SLR has been in successful operation since 2011 using NAOC SLR software for the data processing. This program was designed to calculate satellite orbits and station coordinates, however it was used in this work for the determination of LOD (Length Of Day) time series and Earth Rotation speed.

  19. Physiography and Quaternary geology of the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Atwood, Wallace W.; Mather, Kirtley F.

    1932-01-01

    appeared from time to time as folios"' of the Geologic Atlas and reports on the economic geology of the mining districts, published by the United States Geological Survey between 1899 and 1910. Gradually the concept of the geologic problems was changed. Instead of considering individual mining districts as the units of investigation it became apparent that the San Juan region must itself be the unit. In 1908 Mr. Cross drafted plans for the completion of the San Juan studies on this enlarged basis. His aim was to arrange for the publication of papers on different subjects rather than one huge monograph on the region as a whole.

  20. Record of seamount production and off-axis evolution in the western North Atlantic Ocean, 25°25‧-27°10‧N

    NASA Astrophysics Data System (ADS)

    Jaroslow, Gary E.; Smith, Deborah K.; Tucholke, Brian E.

    2000-02-01

    Using multibeam bathymetry, we identified 86 axial and 1290 off-axis seamounts (near-circular volcanoes with heights ≥70 m) in an area of 75,000 km2 on the western flank of the Mid-Atlantic Ridge (MAR), 25°25'N to 27°10'N, extending ˜400 km from the inner rift valley floor to ˜29 Ma crust. Our study shows that seamounts are a common morphological feature of the North Atlantic seafloor. Seamount-producing volcanism occurs primarily on the inner rift valley floor, and few, if any, seamounts are formed on the rift valley walls or the ridge flank. The high abundance of off-axis seamounts is consistent with 1-3 km wide sections of oceanic crust being transferred intact from the axial valley to the ridge flank on crust >4 Ma. Significant changes in seamount abundances, sizes, and shapes are attributed to the effects of faulting between ˜0.6 and 2 m.y. off axis in the lower rift valley walls. Few seamounts are completely destroyed by (inward facing) faults, and population abundances are similar to those on axis. However, faulting reduces the characteristic height of the seamount population significantly. In the upper portions of the rift valley, on 2-4 Ma crust, crustal aging processes (sedimentation and mass wasting), together with additional outward facing faults, destroy and degrade a significant number of seamounts. Beyond the crest of the rift mountains (>4 Ma crust) faulting is no longer active, and changes in the off-axis seamount population reflect crustal aging processes as well as temporal changes in seamount production that occurred at the ridge axis. Estimates of population density for off-axis seamounts show a positive correlation to crustal thickness inferred from analysis of gravity data, suggesting that increased seamount production accompanies increased magma input at the ridge axis. We find no systematic variations in seamount population density along isochron within individual ridge segments. Possible explanations are that along-axis production

  1. Apparent Stress Variation in Response to Seamount Subduction at Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Stankova-Pursley, J.; Bilek, S. L.; Phillips, W. S.; Newman, A. V.

    2008-12-01

    Seamounts are high relief features seen on many oceanic plates, including the Cocos plate offshore Costa Rica. As these features enter the subduction zone at Middle America Trench, they may perturb interface coupling by changing physical properties of the plate interface. Here we explore the role of seamounts on rupture process of microseismicity along Nicoya Peninsula, Costa Rica. This peninsula lies close to a region where down-going Cocos plate structure varies along-strike of the trench. The Cocos plate has low relief along the north and central parts of Nicoya Peninsula, where the subducting plate was created at East Pacific Rise (EPR). Seamounts dot the plate subducting at the southern tip of the peninsula, where the plate was created at Cocos-Nazca Spreading center (CNS). Given these structural differences, we are able to evaluate possible along-strike variations in earthquake source properties. We use 357 earthquakes from the Costa Rica Seismogenic Zone (CR-SEIZE) project to estimate the effects of seamount subduction on apparent stress (σa). We compute σa, which is a measure of stress drop combined with seismic efficiency, using waveform coda because of its proven stability relative to measurements using direct arrivals. We allow variable source scaling, finding that non-constant scaling provides good fit for our data, suggesting that seismic moment is not proportional to the cube root of corner frequency at ML 0.8 to 4.2. σa values for well constrained data indicate along strike variations between the northern and southern tips of the peninsula. Except in the region of a previously subducted seamount in the Gulf of Nicoya where the mean σa is 1.03 MPa, the southern and central portions of the peninsula have mean σa values 0.79 and 0.89 MPa respectively, while the mean σa value in the northern region is 1.66 MPa. The larger mean σa values in the northern region and in the Gulf of Nicoya implies that the interface is more strongly coupled where there

  2. Quantitative Study of Seismogenic Potential Along Manila Trench: Effects of Scaborough Seamount Chain Subduction

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, Y.; Li, D.; Ning, J.; Matsuzawa, T.; Shibazaki, B.; Hsu, Y. J.

    2014-12-01

    Modern seismicity record along the Manila Trench shows only infrequent Mw7 earthquakes, the lack of great earthquakes may indicate the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a megathrust earthquake. We conduct numerical simulations of the plate coupling, earthquake nucleation and dynamic rupture propagation processes along the Manila subduction fault (15-19.5ºN), taking into consideration the effects of plate geometry (including subducted seamounts), fault strength, rate-state frictional properties and pore pressure variations. Specifically, we use the bathymetry to depict the outline of Manila trench along its strike, 2681 background seismicity (1970/02/13 to 2013/09/06) from Chinese Earthquake Network Center and 540 focal mechanism solutions (1976/01/01 to 2013/01/27) from Global CMT project to constrain the geometry of the subducting Sunda/Eurasian slab. The compilation of seismicity and focal mechanism indicates the plate dipping angle gradually changes from 28º (south of the Scaborough Seamount Chain) to 12º (north of it). This geometric anomaly may due to the subducted part of the seamount chain. Preliminary modeling results using gabbro gouge friction data show that the Scaborough Seamount Chain could be a barrier to earthquake rupture propagation. Only earthquakes larger than Mw7 can overcome the barrier to rupture the entire Manila trench. Smaller earthquakes would cease rupturing when it encounters the seamount chain. Moreover, we propose that Manila trench subduction zone has the potential of rupturing in a Mw8 megathrust earthquake, if the simulation period is long enough for an Mw8 earthquake cycle and dynamic rupture overcomes the subducted Scaborough Seamount Chain. Our model parameters will be further constrained by laboratory rock mechanics experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples (work in progress at China Earthquake Administration

  3. Observations of Flatfish "Spas" From Three Hydrothermally Active Seamounts in the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Dower, J.; Tunnicliffe, V.; Tyler, J.; Juniper, K.; Stevens, C.; Kouris, A.; Takano, B.

    2006-12-01

    During a cruise to the Mariana Islands in spring 2004, dense aggregations of small flatfish were recorded from areas of diffuse flow on two hydrothermally active seamounts known as Kasuga-2 and Daikoku. This is quite novel, as flatfish are not known to be part of vent faunas elsewhere. Based on a single specimen, it was determined to be a new species of tonguefish in the genus Symphurus, and is currently under description. In October 2005, we returned to the Mariana Arc and collected about 60 specimens from Kasuga-2, Daikoku, and a third site, Nikko Seamount. Interestingly, the Nikko specimens were about twice as large as the flatfish from Kasuga-2 and Daikoku. Current molecular work (using the Barcode of Life Data System) will determine the relationship among these populations, and verify whether they are the same species. Under the microscope, the sandy sediments from the flatfish habitat were found to be full of tiny nematodes and polychaete worms. Our current hypothesis is that the fish are feeding on both and, thus, are ultimately supported by chemosynthesis, since the worms likely feed on bacteria in the sediments. However, during our most recent cruise in May 2006, we also observed several instances in which dead (or nearly dead) mid-water fish and shrimp fell out of the water column onto the bottom, after which they were almost immediately fed upon by the flatfish. This suggests that there may also be an additional energy subsidy to the seamount benthos from the water column. We hypothesize that sulfite (or some other toxic chemical) in the plume overlying these active volcanoes either kills or anesthetizes small pelagics that get advected over the seamount summit while feeding in near-surface waters at night. Stable isotope and lipid analysis of samples from these "fish spas" are currently underway to establish trophic relationships. We hope to use otolith microstructure analyses to quantify individual growth trajectories and population age structure of

  4. Magmatic evolution of the Easter microplate-Crough Seamount region (South East Pacific)

    USGS Publications Warehouse

    Hekinian, R.; Stoffers, P.; Akermand, D.; Binard, N.; Francheteau, Jean; Devey, C.; Garbe-Schonberg, D.

    1995-01-01

    The Easter microplate-Crough Seamount region located between 25?? S-116?? W and 25?? S-122?? W consists of a chain of seamounts forming isolated volcanoes and elongated (100-200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065??), to the present day general spreading direction (N 100??) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26??30??? S-115?? W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges ( 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1-2.5}, {(La/Sm)N = 0.4-1.2} and {(Zr/Y)N = 0.7-2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (??? 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25?? S-118?? W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed

  5. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales.

    PubMed

    Garrigue, Claire; Clapham, Phillip J; Geyer, Ygor; Kennedy, Amy S; Zerbini, Alexandre N

    2015-11-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h(-1), while movements within the breeding ground averaged 2.01±1.63 km h(-1). The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management.

  6. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von, Huene R.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  7. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales

    PubMed Central

    Garrigue, Claire; Clapham, Phillip J.; Geyer, Ygor; Kennedy, Amy S.; Zerbini, Alexandre N.

    2015-01-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h−1, while movements within the breeding ground averaged 2.01±1.63 km h−1. The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management. PMID:26716006

  8. Juan Fernández Ridge (Nazca Plate): petrology and thermochronology of a rejuvenated hot spot trail

    NASA Astrophysics Data System (ADS)

    Reyes, J.; Lara, L. E.

    2012-04-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. However, geochronological data is still scarce and there are a few constrains to support this hypothesis like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), some published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages and specially the ongoing Ar-Ar dating effort in Robinson Crusoe define a ca. 1-4 Ma time span, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. In addition, new geological mapping shows a sharp unconformity between the older (ca. 4 Ma), strongly altered sequences and the more recent (ca. 1 Ma), post-erosional volcanic piles, where the proximal facies are still preserved. Petrological evidence also supports this evolution pattern. In fact, the partially altered older sequence is tholeiitic (Ba/Yb=12.70; La/Yb=8.12; Ba/Y=6.51; Ba/Zr=0.89). The shield stage (ca. 1-3 Ma) is transicional from tholeiitic to alkaline (Ba/Yb=18.07-8.32; La/Yb=4.59-9.84; Ba/Y=4.24-8.18; Ba/Zr=0.73-1.09) and the younger (ca. 1 Ma) is mostly alkaline (Ba/Yb=38.15; La/Yb=15.66; Ba/Y=20.27; Ba/Zr=2.31). A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. This research is supported by FONDECYT Project

  9. Seismic Evidence of Abundant Flank Magmatism at the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Hooft, E. E.; Wells, A. E.; Toomey, D. R.; Wilcock, W. S.

    2013-12-01

    anomalous zones are found on both the Pacific and Juan de Fuca plates. It is unlikely that the mid-crustal anomalous seismic regions are the result of localized mantle melt delivery from either hotspots associated with the Heck and Heckle seamount chains, or from crustal penetration along lithospheric strike-slip faulting due to a broad shear associated with the Sovanco Fracture Zone, because these effects would predominate on the Pacific flank. We infer that off-axis volcanism at the Endeavour segment is the result of a combination of weak focusing of melt to the ridge axis and of the unique tectonics of this ridge segment that provides conduits for that melt to enter the crust.

  10. Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda ridges by 238U230Th disequilibrium

    USGS Publications Warehouse

    Goldstein, S.J.; Murrell, M.T.; Janecky, D.R.; Delaney, J.R.; Clague, D.A.

    1991-01-01

    A highly precise mass spectrometric method of analysis was used to determine 238U234U230Th232Th in axial and off-axis basalt glasses from Juan de Fuca (JDF) and Gorda ridges. Initial 230Th activity excesses in the axial samples range from 3 to 38%, but generally lie within a narrow range of 12 to 15%. Secondary alteration effects were evaluated using ??234U and appear to be negligible; hence the 230Th excesses are magmatic in origin. Direct dating of MORB was accomplished by measuring the decrease in excess 230Th in off-axis samples. 238U230Th ages progressively increase with distance from axis. Uncertainties in age range from 10 to 25 ka for UTh ages of 50 to 200 ka. The full spreading rate based on UTh ages for Endeavour segment of JDF is 5.9 ?? 1/2 cm/yr, with asymmetry in spreading between the Pacific (4.0 ?? 0.6 cm/yr) and JDF (1.9 ?? 0.6 cm/yr) plates. For northern Gorda ridge, the half spreading rate for the JDF plate is found to be 3.0 ?? 0.4 cm/yr. These rates are in agreement with paleomagnetic spreading rates and topographic constraints. This suggests that assumptions used to determine ages, including constancy of initial 230Th 232Th ratio over time, are generally valid for the areas studied. Samples located near the axis of spreading are typically younger than predicted by these spreading rates, which most likely reflects recent volcanism within a 1-3 km wide zone of crustal accretion. Initial 230Th/232Th ratios and 230Th activity were also used to examine the recent Th/U evolution and extent of melting of mantle sources beneath these ridges. A negative anomaly in 230Th 232Th for Axial seamount lavas provides the first geochemical evidence of a mantle plume source for Axial seamount and the Cobb-Eickelberg seamount chain and indicates recent depletion of other JDF segment sources. Large 230Th activity excesses for lavas from northern Gorda ridge and Endeavour segment indicate formation from a lower degree of partial melting than other segments. An

  11. Juan Luis Vives: Tradition and Innovation in Renaissance Rhetoric.

    ERIC Educational Resources Information Center

    Abbott, Don Paul

    1986-01-01

    Argues that Juan Luis Vives' efforts to rehabilitate the discipline of discourse may well have been the most original of the sixteenth century, and that his discussion of elecutio (the essence of rhetoric) is considerably more distinguished than that of the better known Peter Ramus. (RS)

  12. Putting Educational Attainment First: An Interview with Juan Sepulveda

    ERIC Educational Resources Information Center

    Carreon, Joe

    2011-01-01

    This article presents an interview with Juan Sepulveda. Sepulveda was appointed by U.S. Secretary of Education Arne Duncan to the position of Executive Director of the White House Initiative on Educational Excellence for Hispanics on May 19, 2009. In this capacity, Sepulveda is responsible for directing the efforts of the White House Initiative in…

  13. Offshore finfish mariculture in the Strait of Juan de Fuca

    SciTech Connect

    Rensel, Jack; Kiefer, Dale; Forster, John R.; Woodruff, Dana L.; Evans, Nathan R.

    2007-10-07

    Finfish mariculture has existed in the U.S. Pacific Northwest for over thirty years, but for the past 15 years most effort has focused on culture of Atlantic salmon in protected, inshore cage sites. The Strait of Juan de Fuca (the "Strait") is a large area with relatively sparce shoreline development and several apparent advantages for mariculture using offshore technology.

  14. San Juan College Task Force on Innovation 1995 Report.

    ERIC Educational Resources Information Center

    Moore, Nelle

    In fall 1994, San Juan College, in New Mexico, established the Task Force on Innovation to examine changes in the paradigm of education and how those changes might affect the college. The Task Force determined that the primary driver of change in education was technology, and specifically the increasing number of means and ease of access to…

  15. Local Control and Self-Determination: The San Juan Case.

    ERIC Educational Resources Information Center

    Garman, Keats; Jack, Donald

    Rapidly increasing Navajo enrollment in San Juan County, Utah, public schools in the 1960's forced the rural school district to improve educational services to a sizable Navajo population while attempting to preserve local control in the face of changing Indian self-determination policy. The district implemented a Curriculum Development Center, a…

  16. Ladrillo and Tales of Juan Bobo: Puerto Rican Folk Tales.

    ERIC Educational Resources Information Center

    Matos, Reinaldo; Matos, Ana

    These two illustrated elementary readers contain the Spanish and English versions of the Puerto Rican folk tales, "Ladrillo" and "Cuentos de Juan Bobo." They are part of a series of reading materials for elementary-level migrant children. These materials are intended to help the child relate to his culture, develop interest in…

  17. [Psychiatric Hospital San Juan de Dios. One hundred years later].

    PubMed

    Cocula-León, Horacio

    2014-01-01

    Mental health and psychiatric diseases have always attracted people's and health authorities' attention due to its magical approach, the lack of knowledge that surrounds them, and, at the same time, the religious fear they provoke. Both have played an important role in the history of humanity, of public health politics, and of physicians. The places where psychiatric patients were treated are of historical interest, because through the historical knowledge we can identify an approach from the science and the health policies that prevailed in each age. At the beginning of the 20th century, it was developed in México a new model of hospital care attention to psychiatric patients. La Casa de Salud San Juan de Dios para Pacientes Alienados is an example; the concept "alienated patients" suggests a social and cultural perspective. This paper presents a chronological type description of one of the major institutions involved in mental health care in México. Similarly, it shows a review of the events that affected the religious order San Juan de Dios from 1901 to 2012, when the hospitaller order was reinstated in México and established the Casa de Salud San Juan de Dios para Pacientes Alienados in the town of Zapopan, Jalisco, institution that exists up to the present day and keeps participating in the mental health care in the state of Jalisco, with the current name of Servicios de Salud San Juan de Dios.

  18. Evidence of hydrothermal activity on Marsili Seamount, Tyrrhenian Basin. Technical report

    SciTech Connect

    Uchupi, E.; Ballard, R.D.

    1989-01-01

    In this paper we describe the finding of what appears to be an extensive hydrothermal mineral deposit on the crest of Marsili Seamount in the Tyrrhenian Basin, western Mediterranean Sea. The deposit on the seamount was discovered during a study of the geology of the Tyrrhenian Basin with the Argo video system (HARRIS and BALLARD, 1986) aboard the R.V. Starella during June 1988. Mounted on the vehicle were three Silicon Intensified target (SIT) cameras, a digital charge Couple Device (CCD) camera and a 35 mm camera with a 16 mm lens. The site was revisited in mid August aboard the R.V. Knorr during a cruise to test the dynamic position system on the Knorr.

  19. Oceanic rift propagation - a cause of crustal underplating and seamount volcanism

    SciTech Connect

    Calvert, A.J.; Hasselgren, E.A.; Clowes, R.M. )

    1990-09-01

    We present the first seismic reflection data across a pseudofault zone, the trace of a propagating rift away from a spreading axis. Strong reflections from the crust-mantle transition are discontinuous across the pseudofault. Deeper reflections, which originate near the base of the crust formed at the propagator tip, dip beneath the older oceanic crust and become subhorizontal. They are interpreted to represent the lower limit of an underplated subcrustal plutonic complex. An anomalously smooth basement surface indicative of massive lava flows and a 1200-m-high seamount are above the underplated zone. The sill complex extends tens of kilometres ahead of, and off-axis from, the former location of the propagating rift, indicating that the magmatic supply to the propagator tip was unusually vigorous. Other seamounts in the northeast Pacific lie close to pseudofaults and may have formed as a result of rift propagation.

  20. Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, Loïc; Mahoney, John J.; Koppers, Anthony A. P.; Beier, Christoph; Regelous, Marcel; Gee, Jeffrey S.; Lonsdale, Peter F.

    2014-06-01

    Louisville Seamount Chain is a ˜4300 km long chain of submarine volcanoes in the southwestern Pacific that spans an age range comparable to that of the Hawaiian-Emperor chain and is commonly thought to represent a hot spot track. Dredging in 2006 recovered igneous rocks from 33 stations on 22 seamounts covering some 49 Myr of the chain's history. All samples are alkalic, similar to previous dredge and drill samples, providing no evidence for a Hawaiian-type tholeiitic shield-volcano stage. Major and trace element variations appear to be predominantly controlled by small but variable extents of fractional crystallization and by partial melting. Isotopic values define only a narrow range, in agreement with a surprising long-term source homogeneity—relative to the length scale of melting—and overlap with proposed fields for the "C" and "FOZO" mantle end-members. Trace element and isotope geochemistry is uncorrelated with either seamount age or lithospheric thickness at the time of volcanism, except for a small number of lavas from the westernmost Louisville Seamounts built on young (<20 Ma old) oceanic crust. The Louisville hot spot has been postulated to be the source of the ˜120 Ma Ontong Java Plateau, but the Louisville isotopic signature cannot have evolved from a source with isotopic ratios like those measured for Ontong Java Plateau basalts. On the other hand, this signature can be correlated with that of samples dredged from the Danger Islands Troughs of the Manihiki Plateau, which has been interpreted as a rifted fragment of the "Greater" Ontong Java Plateau.

  1. Hf isotope systematics of seamounts near the East Pacific Rise (EPR) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Meng, Fanxue; Niu, Yaoling

    2016-10-01

    We report new Hf isotopic data for basaltic glasses from seamounts flanking the East Pacific Rise (EPR) between 5° and 15°N that have been previously analyzed for Sr-Nd-Pb isotopes as well as major and trace elements. The Hf isotopic data offer new perspectives on the petrogenesis of these samples in a broader context on mantle dynamics. The Hf isotope compositions show significant correlations with Sr-Nd-Pb isotopes and with both abundances and ratios of incompatible elements. The seamount lavas are thus best interpreted as products of melting-induced mixing in a two-component mantle. The range in composition of EPR seamount lavas cannot be generated by simple mixing of melt and melting of variably heterogeneous mantle in which enriched and depleted materials contribute equally to melting (source mixing). Instead, the trace element and isotope compositions of seamount lavas can be reproduced by melting models in which more enriched, fertile mantle component are preferentially melted during mantle upwelling. At progressively lower degrees of melting, erupted lavas are thus more enriched in incompatible trace elements, have higher 87Sr/86Sr, 208Pb/204Pb ratios and lower 143Nd/144Nd, 176Hf/177Hf ratios. The "EM1" and "pyroxenite" endmember might be the suitable enriched component. The Hf-Nd isotopic variations on global scale might result from the variations in amounts of residual continental lithospheric mantle that detached into upper mantle during continental rifting. The significant correlations of Rb/Sr vs 87Sr/86Sr, Sm/Nd vs 143Nd/144Nd and Lu/Hf vs 176Hf/177Hf give pseudochron ages of 182 ± 33 Ma, 276 ± 50 Ma and 387 ± 93 Ma, respectively. These different "ages" have no significance, but result from melting-induced mixing with the pseudochron slopes controlled by the compositions of enriched component and depleted end-member.

  2. Influence of Shimada Seamount on sediment composition in the eastern tropical North Pacific

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.; Nancy, L P.

    1989-01-01

    Shimada Seamount is a large, young volcanic edifice in the east-central Pacific that is not associated with any active spreading center or known hot spot. The sediments on the abyssal plain surrounding Shimada Seamount consist of pelagic clay with ferromanganese micronodules and zeolites. The pelagic clay is mostly barren of microfossils except for a few occurrences of highly corroded specimens of Radiolaria and diatoms. Eolian terrigenous material is the dominant component of the pelagic clay to a depth of at least 8 m below sea floor, with minor contributions from volcanic debris and hydrothermal and hydrogenous sources. The average amount of basaltic debris is only 0.25%, but concentrations are as high as 10% in some samples. The average hydrothermal component (metalliferous sediment) is 8.8% with a maximum of about 13% at 7.5 m below sea floor in one core. The hydrogenous component, mostly as ferromanganese micronodules, averages 4.1% with a maximum of 5.6%. There is no calcareous biogenic debris and essentially no siliceous biogenic debris. In the past, a decrease in hydrothermal components through time may have been the result of a decrease in relative importance of hydrothermal influences, or an increase in the flux of terrigenous debris transported by the northeast trade winds. Because volcanic activity is still active on Shimada Seamount, or has been in the recent past, the observed increase in relative abundance of terrigenous components probably was the result of increased wind transport and not decreased hydrothermal activity. Shimada Seamount may be an important local source of metalliferous sediment in the eastern equatorial North Pacific, and may have been an even more important source in the past. ?? 1989.

  3. IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.; Yamazaki, T.; Geldmacher, J.; IODP Expedition 330 Scientific Party, the

    2013-03-01

    Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth's rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to "fixed" deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn't involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components. doi:10.2204/iodp.sd.15.02.2013

  4. The Brava seamount, Cape Verde: Beyond the spatial extent of EM1 and petrogenesis of highly evolved alkaline lavas.

    NASA Astrophysics Data System (ADS)

    Barker, Abigail; Andersson, Axel; Troll, Valentin; Hansteen, Thor; Ellam, Robert

    2010-05-01

    Alkaline lavas from the Brava seamount, Cape Verde are investigated to establish the spatial distribution of compositional heterogeneity in the southwest of the Cape Verde archipelago. Highly evolved lavas provide a record of shallow level magma-crust interaction beneath the Brava seamount. The Brava seamount, located southwest of the island of Brava, Cape Verde was sampled during research cruise 8/85 of the R.R.S. Charles Darwin in 1985. Two groups of highly evolved alkaline volcanics are distinguished from the Brava seamount: 1) pyroxene-phonolites containing clinopyroxene, amphibole, nepheline, ±biotite, and minor sanidine and 2) feldspathoid-phonolites containing nepheline, nausean, minor biotite and leucite. All of the samples have MgO between 0.8 and 2 wt%, comparable to the most evolved volcanics sampled in the Cape Verde archipelago. The feldspathoid-phonolites have NaO2 of 12-13 wt%. Alkaline lavas from the Brava seamount have higher 87Sr/87Sr (0.70337 to 0.70347) at ɛNd of +6 to +7 than previously sampled in Cape Verde. Sr isotopes will be integrated with oxygen isotopes to establish magma and crust interactions in the magmatic plumbing system beneath the Brava seamount. Clinopyroxene-melt thermobarometry will be presented to constrain the depths of equilibrium crystallisation. Sr-O isotopes and thermobarometry will be combined to build a picture of the levels of magma stalling and interaction between magmas and the crust beneath the Brava seamount. The Brava seamount phonolitic lavas have high 206Pb/204Pb of 19.5 to 19.8 with negative ?8/4 and high ɛNd of +6 to +7 in contrast to the positive ?8/4 for lavas from nearby Brava and the southern islands of the Cape Verde archipelago. Lavas from the Brava seamount have Pb-Nd isotope systematics comparable to the northern Cape Verde islands, indicating the southwestern boundary in mantle heterogeneity and thereby the spatial extent of the EM1-like source contributing to the southern islands. The extensive

  5. Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Carmo, Vanda; Santos, Mariana; Menezes, Gui M.; Loureiro, Clara M.; Lambardi, Paolo; Martins, Ana

    2013-12-01

    Seamounts are common topographic features around the Azores archipelago (NE Atlantic). Recently there has been increasing research effort devoted to the ecology of these ecosystems. In the Azores, the mesozooplankon is poorly studied, particularly in relation to these seafloor elevations. In this study, zooplankton communities in the Condor seamount area (Azores) were investigated during March, July and September 2010. Samples were taken during both day and night with a Bongo net of 200 µm mesh that towed obliquely within the first 100 m of the water column. Total abundance, biomass and chlorophyll a concentrations did not vary with sampling site or within the diel cycle but significant seasonal variation was observed. Moreover, zooplankton community composition showed the same strong seasonal pattern regardless of spatial or daily variability. Despite seasonal differences, the zooplankton community structure remained similar for the duration of this study. Seasonal variability better explained our results than mesoscale spatial variability. Spatial homogeneity is probably related with island proximity and local dynamics over Condor seamount. Zooplankton literature for the region is sparse, therefore a short review of the most important zooplankton studies from the Azores is also presented.

  6. Chinstrap penguin foraging area associated with a seamount in Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Kokubun, Nobuo; Lee, Won Young; Kim, Jeong-Hoon; Takahashi, Akinori

    2015-12-01

    Identifying marine features that support high foraging performance of predators is useful to determine areas of ecological importance. This study aimed to identify marine features that are important for foraging of chinstrap penguins (Pygoscelis antarcticus), an abundant upper-trophic level predator in the Antarctic Peninsula region. We investigated the foraging locations of penguins breeding on King George Island using GPS-depth loggers. Tracking data from 18 birds (4232 dives), 11 birds (2095 dives), and 19 birds (3947 dives) were obtained in 2007, 2010, and 2015, respectively. In all three years, penguins frequently visited an area near a seamount (Orca Seamount) in Bransfield Strait. The percentage of dives (27.8% in 2007, 36.1% in 2010, and 19.1% in 2015) and depth wiggles (27.1% in 2007, 37.2% in 2010, and 22.3% in 2015) performed in this area was higher than that expected from the size of the area and distance from the colony (8.4% for 2007, 14.7% for 2010, and 6.3% for 2015). Stomach content analysis showed that the penguins fed mainly on Antarctic krill. These results suggest that the seamount provided a favorable foraging area for breeding chinstrap penguins, with high availability of Antarctic krill, possibly related to local upwelling.

  7. Geophysical researches (gravity and magnetic) of the Eratosthenes Seamount in the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Erbek, Ezgi; Dolmaz, M.

    2014-08-01

    New free-air gravity and magnetic maps of the Eratosthenes Seamount and its vicinity were regenerated from potential field data. Stages of data processing are power spectrum, upward continuation, filtering on the free-air gravity anomaly data. RTP, pseudo-gravity transformation map, power spectrum, upward continuation, filtering, AS, and HGAS were applied on the magnetic data. A HGAS map shows the images and locations of the Eratosthenes magnetic body. Spectral analysis of the gravity and magnetic anomalies indicates that there is an elliptical elongated structure of the Eratosthenes Seamount in the width of approx. 86 km NW-SE orientation and in the length of 138 km NE-SW orientation, with a strike of N40°E and inclined to NW. It is considered that 22.49 ± 0.08 km obtained from power spectrum of the gravity data may be related to the crust thickness. Also, 15.67 ± 0.02 km obtained from power spectrum of the magnetic data is considered to be related to the magmatic basement of the Eratosthenes Seamount.

  8. Ferromanganese deposits from the Gulf of Alaska seamount province: mineralogy, chemistry, and origin.

    USGS Publications Warehouse

    Koski, R.A.

    1988-01-01

    Petrographic and chemical data presented and discussed permit the following conclusions regarding the high-latitude Gulf of Alaska (GA) Fe-Mn deposits: 1) thick (10-50 mm) Fe-Mn crusts form on alkali-basalt and volcaniclastic substrates by hydrogenetic processes, contain delta -MnO2 as the principal Mn phase, and have compositions similar to those of seamount crusts from comparable depths in the Hawaiian archipelago. GA crusts have higher Mn/Fe and lower Co contents than crusts from low-altitude, central Pacific seamounts; 2) thin (<10 mm) crusts on tuffaceous conglomerate, sandstone and phosphorite have a high proportion of crystalline Mn oxides and are genetically related to vein deposits; 3) vein deposits of todorokite and cryptomelane form during low-T oxidative diagenesis of volcanogenic sediment. Mn and other transition metals are supplied during the initial palagonitization of basaltic glass. The oxidation of Fe2+ to Fe3+ in palagonite and the dissolution of the diluted microfossil fraction of the sediment lower the Eh of the ambient pore fluid and enhance the solubility of Mn2+. The K released during the formation of palagonite may be redeposited in secondary phyllosilicate minerals, phillipsite, todorokite and cryptomelane; 4) the vein deposits formed soon after the deposition of sediment derived from the erosion and mass wasting of Mill Seamount but before crust deposition. Therefore, the deposition of hydrogenous crusts and the deposition of diagenetic veins are chemically distinct processes in time and space.-J.M.H.

  9. Lead isotope relations in oceanic Ridge basalts from the Juan de Fuca-Gorda Ridge area N.E. Pacific Ocean

    USGS Publications Warehouse

    Church, S.E.; Tatsumoto, M.

    1975-01-01

    Lead isotopic analyses of a suite of basaltic rocks from the Juan de Fuca-Gorda Ridge and nearby seamounts confirm an isotopically heterogeneous mantle known since 1966. The process of mixing during partial melting of a heterogeneous mantle necessarily produces linear data arrays that can be interpreted as secondary isochrons. Moreover, the position of the entire lead isotope array, with respect to the geochron, requires that U/Pb and Th/Pb values are progressively increased over the age of the earth. Partial melting theory also dictates analogous behavior for the other incompatible trace elements. This process explains not only the LIL element character of MOR basalts, but also duplicates the spread of radiogenic lead data collected from alkali-rich oceanic basalts. This dynamic, open-system model of lead isotopic and chemical evolution of the mantle is believed to be the direct result of tectonic flow and convective overturn within the mantle and is compatible with geophysical models of a dynamic earth. ?? 1975 Springer-Verlag.

  10. Constraints on Past Plate and Mantle Motion from New Ages for the Hawaiian-Emperor Seamount Chain

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Steinberger, B. M.; Regelous, M.; Koppers, A. A.; Wijbrans, J. R.; Haase, K. M.; Stoffers, P.; Jokat, W.; Garbe-Schoenberg, C.

    2013-12-01

    Estimates of the relative motion between the Hawaiian and Louisville hotspots have consequences for understanding the role and character of deep Pacific-mantle return flow. The relative motion between these primary hotspots can be inferred by comparing the age records for their seamount trails. Our new 40Ar/39Ar ages for 18 lavas from 10 seamounts along the Hawaiian-Emperor Seamount Chain (HESC) show that volcanism started in the sharp portion of the Hawaiian-Emperor Bend (HEB) at ≥47.5 Ma and continued for ≥5 Myr (O'Connor et al., 2013). The slope of the along-track distance from the currently active Hawaiian hotspot plotted versus age is remarkably linear between ~57 and 25 Ma in the central ˜1900 km of the seamount chain, including the HEB. This model predicts an age for the oldest Emperor Seamounts that matches published ages, implying that a linear age-distance relationship might extend back to at least 82 Ma. In contrast, Hawaiian age progression was much faster since at least ~15 Ma and possibly as early as ~27 Ma. Linear age-distance relations for the Hawaii-Emperor and Louisville seamount chains predict ~300 km overall hotspot relative motion between 80 and 47.5 Ma, in broad agreement with numerical models of plumes in a convecting mantle, and paleomagnetic data. We show that a change in hotspot relative motion may also have occurred between ~55 Ma and ~50 Ma. We interpret this change in hotspot motion as evidence that the HEB reflects a combination of hotspot and plate motion changes driven by the same plate/mantle reorganization. O'Connor et al. (2013), Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain. Geochem. Geophys. Geosyst., in press.

  11. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Thomas, Cynthia L.

    1989-12-01

    We investigated the following hypotheses for deep seamounts in the central Pacific Ocean: (1) infaunal and microbial abundances are elevated in regions of current intensification, (2) infaunal lifestyles reflect variation in hydrodynamic conditions and (3) bioturbation is more intense in high-energy regimes. Our studies were carried out at three sites: the northwest perimeter of the Horizon Guyot sediment cap (1840 m), which is characterized by strong bottom currents and rippled foraminiferan sands, and the central summits of Horizon Guyot (1480 m) and Magellan Rise (3150 m), whose sediments are unrippled and finer grained. Contrary to our first hypothesis, the high-energy, Horizon perimeter sediments exhibited lower biological activity than the summit sites, as reflected in lower organic nitrogen (0.011% vs. 0.015-0.017%), higher C/N ratios (19 vs 11), lower bacterial counts (1.21 vs 2.03-2.15 × 10 8ml -1) and lower macrofaunal abundances (255 vs 388-829 m -2). Sediment organic carbon values (0.14-0.19%) and meiofaunal abundances (2866-5150 m -2) did not differ significantly among the three sites. Infaunal life habits varied among sites but sediment mixing did not. Macrofauna were found deeper in rippled perimeter sediments than in the cap sediments. Sessility and surface-feeding modes dominated among polychaetes at the higher-energy Horizon perimeter, while motility and subsurface feeding were common in the quieter, finer-grained regimes. Significant sediment mixing takes place on 100-year time scales a all three sites, probably a result of large, infaunal bioturbators at the cap sites and physical sediment instability at the perimeter site. Excess 210Pb exhibited moderately high inventories (38-59 dpm cm -2) and deep penetration (15 cm). Estimated mixing coefficients (D b) ranged from 0.6 to 3.0 cm 2y -1 at the three sites. Our findings indicate that hydrodynamic differences can lead to greater variation in sediment and faunal characteristics on a single

  12. Endolithic Mn-oxidizing bacteria commonly associated with basalts at active Seamounts

    NASA Astrophysics Data System (ADS)

    Templeton, A.; Haucke, L.; Bailey, B.; Staudigel, H.; Tebo, B.

    2005-12-01

    Mn is a trace component of volcanic rocks that is commonly enriched by 1-2 orders of magnitude within the secondary mineral assemblages associated with submarine basalts. Our analysis of relatively young basalts recovered from active seamounts such as Loihi Seamount (Hawaii) and Vailulu'u Seamount (American Samoa) shows that Mn(IV)-oxides readily form during short time-periods (10 years) of low-temperature (~2C) alteration, although the abiotic kinetics of Mn(II)-oxidation are slow at this temperatures and pH. We suggest that the formation of these secondary minerals are likely due to the common presence of heterotrophic bacteria with the functional capability of Mn(II)-oxidation, which accelerate the rates of oxidation several orders of magnitude faster than predicted for water-rock interaction alone. To identify and isolate endolithic Mn(II)-oxidizing microorganisms from naturally-weathered basalt surfaces, samples were recovered from the cold outer-flanks of Loihi and Vailulu'u Seamount via submersible with a sealable biobox. Using a variety of oligotrophic to organic-rich seawater-based media, we have isolated over 40 strains of Mn(II)-oxidizing bacteria. These isolates are primarily alpha- and gamma-Proteobacteria that can grow on low concentrations of simple to complex organics, but not Mn(II) as a sole energy source. None of the isolates, nor their closest relatively, were previously recognized as Mn(II)-oxidizing bacteria. In particular, we have found that there are several strains that are common to the basalts recovered from Loihi & Vailulu'u Seamount, as well as from basalts collected at the East Pacific Rise, particularly Pseudoalteromonas and Sulfitobacter sp. The 16S rRNA gene sequences of the Pseudoalteromonas isolates are also observed in T-RFLP data and 16S clone libraries for microbial mats at Loihi, indicating that these isolates are environmentally-relevant and abundant in-situ. The ubiquitous distribution of these isolates also suggests that

  13. Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar

    NASA Astrophysics Data System (ADS)

    Masson, D. G.; Parson, L. M.; Milsom, J.; Nichols, G.; Sikumbang, N.; Dwiyanto, B.; Kallagher, H.

    1990-12-01

    We describe here a 1300 km by 45 km GLORIA long-range sidescan sonar swath along the eastern Java Trench. The swath images the trench axis, a narrow strip of oceanic crust to the south, and the toe of the accretionary wedge to the north, between 108° and 120° E. Sonar images of the ocean crust show a pattern of normal faults typical of the outer wall of trenches. These result from tension related to the bending of the oceanic lithosphere into the subduction zone. A number of sub-circular seamounts are also seen, some of which are currently being subducted. Isolated "ponds" of flat-lying sediments occur in the trench axis, although along much of its length the trench is devoid of such sediment accumulations. On the inner trench wall, the accretionary wedge is recognised by its distinctive "grainy" texture, with the grain aligned sub-parallel to the deformation front. Where subducting seamounts are colliding with the wedge, large crescentic areas of very high backscattering correlate with re-entrants in the deformation front and large indentations in the wedge. The high backscattering within these collision scars is interpreted to arise from outcropping strata and talus covered slopes, resulting from erosion of an inner trench wall shortened and oversteepened by collision with a seamount. All of the sediment ponds in the trench axis occur in close association with collision scars, strongly suggesting localised erosion of the accretionary wedge in the scar areas. However, the volume of the indentations appears to be an order of magnitude greater than the volume of eroded sediments deposited in the trench, indicating that erosion cannot be the primary mechanism by which indentations are created. Most of the "missing" material must be displaced landward by thrusting and folding ahead of the seamount. Our observations at the Java Trench are broadly comparable with those made at the Japan Trench by French and Japanese workers. However, some differences in the detail of

  14. Compensation of Cretaceous Seamounts of the Darwin Rise, northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wolfe, Cecily J.; McNutt, Marcia K.

    1991-02-01

    We estimate the elastic thickness Te for the Pacific plate at the time of volcanism for approximately 60 guyots of Cretaceous age in the Japanese, Wake, and Mid-Pacific Mountain seamount groups of the northwest Pacific. The values of Te are constrained by comparing synthetic gravity and deflection of the vertical computed from digital bathymetry assuming regional compensation models to potential field data derived from Seasat radar altimetry. The amplitude of the gridded Seasat gravity field over the seamounts is consistent with Te values between 5 and 15 km, but these values represent only lower bounds since the 100-km spacing of satellite tracks may undersample the gravity for seamounts lying between adjacent passes. Direct modeling of the deflection of the vertical along individual satellite tracks avoids this distribution bias but can lead to errors if the bathymetric feature is mislocated with respect to the satellite coordinate system. Nevertheless, for no seamount does the root-mean-square (RMS) difference between observed and predicted deflection of the vertical show a distinct minimum for elastic plate thickness greater than 15 km. However, for some features the RMS minimum is unconstrained, allowing Te greater than 15 km. Given the possible bias in the modeling of satellite data, the low values for elastic plate thickness were confirmed for the Japanese and Wake group using shipborne gravity data and multibeam bathymetry collected during the Roundabout leg 10 expedition, supplemented with published Navy sonar array sounding system (SASS) bathymetry. The analysis of shipborne data constrains most elastic plate thickness values to between 10 and 15 km for crustal densities between 2600 and 2800 kg/m3. The low values for elastic plate thickness for these Cretaceous guyots that formed in the area of the "Darwin Rise" suggest either that they formed on lithosphere less than 40 m.y. old or that older lithosphere was reheated near the time of volcanism. While

  15. Coral Patch seamount (NE Atlantic) - a sedimentological and macrofaunal reconnaissance based on video and hydroacoustic surveys

    NASA Astrophysics Data System (ADS)

    Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.

    2012-12-01

    The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the south-western summit area of Coral Patch seamount (area: ~ 8 km2, water depth: 560-760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area, and thus, offer suitable habitat for settlement by benthic organisms, the macrofauna shows rather low abundance and diversity. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (area: 560 km2; water depth: 560-2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, also these data predict most of the summit area to be dominated by

  16. Coral Patch seamount (NE Atlantic) - a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys

    NASA Astrophysics Data System (ADS)

    Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.

    2013-05-01

    The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560-760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560-2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer

  17. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197

    NASA Astrophysics Data System (ADS)

    Duncan, Robert A.; Keller, Randall A.

    2004-08-01

    The Hawaiian-Emperor seamount chain is the "type" example of an age-progressive, hot spot-generated intraplate volcanic lineament. However, our current knowledge of the age distribution within this province is based largely on radiometric ages determined several decades ago. Improvements in instrumentation, sample preparation methods, and new material obtained by recent drilling warrant a reexamination of the age relations among the older Hawaiian volcanoes. We report new age determinations (40Ar-39Ar incremental heating method) on whole rocks and feldspar separates from Detroit (Sites 1203 and 1204), Nintoku (Site 1205), and Koko (Site 1206) Seamounts (Ocean Drilling Program (ODP) Leg 197) and Meiji Seamount (Deep Sea Drilling Project (DSDP) Leg 19, Site 192). Plateaus in incremental heating age spectra for Site 1203 lava flows give a mean age of 75.8 ± 0.6 (2σ) Ma, which is consistent with the normal magnetic polarity directions observed and biostratigraphic age assignments. Site 1204 lavas produced discordant spectra, indicating Ar loss by reheating and K mobilization. Six plateau ages from lava flows at Site 1205 give a mean age of 55.6 ± 0.2 Ma, corresponding to Chron 24r. Drilling at Site 1206 intersected a N-R-N magnetic polarity sequence of lava flows, from which six plateau ages give a mean age of 49.1 ± 0.2 Ma, corresponding to the Chron 21n-22r-22n sequence. Plateau ages from two feldspar separates and one lava from DSDP Site 192 range from 34 to 41 Ma, significantly younger than the Cretaceous age of overlying sediments, which we relate to postcrystallization K mobilization. Combined with new dating results from Suiko Seamount (DSDP Site 433) and volcanoes near the prominent bend in the lineament [, 2002], the overall trend is increasing volcano age from south to north along the Emperor Seamounts, consistent with the hot spot model. However, there appear to be important departures from the earlier modeled simple linear age progression, which we

  18. Demersal fish assemblages off the Seine and Sedlo seamounts (northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Menezes, Gui M.; Rosa, Alexandra; Melo, Octávio; Pinho, Mário R.

    2009-12-01

    Seamounts are thought to support special biological communities, and often maintain high standing stocks of demersal and benthopelagic fishes. Seamount fish fauna have been described in several studies but few works have included species taken below 600 m. The demersal fish assemblages of the Seine and Sedlo seamounts (northeast Atlantic) from the summits to 2000 m depth were investigated based on longline survey catch data, conducted as part of the OASIS project. A total of 41 fish species from 24 families were caught at Seine near Madeira, and 30 species from 19 families were caught at Sedlo north of the Azores. Both fish faunas have high affinities with the neighbouring areas of the Azores, Madeira and with the eastern North Atlantic and the Mediterranean Sea. Overall abundances and mean body weights were slightly higher at Sedlo seamount, appearing in conformity with the latitudinal effect of increasing species abundance and productivity from south to north. The differential influence of the Mediterranean Water at each seamount may contribute to explain (a) the differences found in vertical distribution of common species, which tend to distribute deeper at Seine, and (b) the observed changes in the species composition and dominance in deeper waters. Multivariate analysis revealed a vertical structure that is approximately coincident with the expected zonation of water masses at each seamount. Physiological tolerance to the prevailing vertical hydrological conditions may explain the species distribution and the large-scale vertical assemblage structure found. However, further ecological factors like productivity patterns affecting the amount and quality of the available food appear to shape the abundance, diversity or dominance patterns of functional groups within those main assemblages. At Seine, the species Trachurus picturatus dominated the catches, mainly at the shallower edge of the plateau, appearing consistent with the sound-scattering layer interception

  19. The San Juan Delta, Colombia: tides, circulations, and salt dispersion

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Kjerfve, Björn

    2002-05-01

    The San Juan River delta (Colombia) with an area of 800 km 2 is the largest delta environment on the Pacific coast of South America. It consists of active distributaries maintained by an average discharge of 2500 m 3 s -1, is tide dominated, and has relatively narrow estuarine mixing zones <17 km wide and typically ˜7 km wide. Water level and current time series in two distributary mouths indicate that the tide is semidiurnal with a form number 0.1-0.2 and a mean range of 3 m. Processes at tidal frequencies explain 75-95% of the water level variability with the remaining low-frequency variability attributed to meteorological forcing and river processes. The tidal phase for the main diurnal and semidiurnal constituents progress from north to south along the coast. Only the southernmost distributary experiences significant tidal asymmetry as a result of strong river discharge and shallow depths. In the northernmost distributary, shallow water constituents are insignificant. Tidal currents were more semidiurnal than the water level, with form number 0.09-0.13. Tidal ellipses indicated that currents were aligned with the channels and mean amplitudes <1 m s -1. In the delta distributaries, circulation modes varied from seaward flow at all depths during intermediate runoff conditions to gravitational circulation during rising and high discharge periods. In San Juan and Chavica distributaries, the currents were ebb-directed, while in Charambirá they were flood-directed. The circulation appears to be controlled by the morphology of the distributaries, which were weakly stratified and only sometimes moderately stratified. The net salt transport was directed seaward in San Juan and Charambirá, and landward at Chavica, indicating an imbalance in the salt budget, and signifying non-steady state behavior. The net longitudinal salt flux in the San Juan delta is largely a balance between ebb-directed advective flux, and flood-directed tidal sloshing. Along the distributary

  20. Geochemistry of Basalt Lava and Hyaloclastite From Young (President Jackson) and old (Taney) Near-ridge Seamount Chains

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.

    2005-12-01

    Short linear chains of seamounts are common near Pacific spreading centers. They are most abundant near fast spreading centers but also occur at moderate and slow spreading ridge segments. We explored two such near-ridge chains of vastly different ages. The young President Jackson chain, located at 42°20' N west of the northern Gorda Ridge, resides on ocean crust that is 2.2 to 4.2 million years old. An Ar-Ar age of ~26 Ma (G.B. Dalrymple as cited by Davis et al., 1998) for the Taney seamounts indicates they formed during the Miocene on the later subducted Farallon-East Pacific Rise spreading center. Three dives with MBARI's ROV Tiburon explored the eastern end of the President Jackson seamounts. Two dives explored two of the eastern seamounts of the Taney chain. Volcanoes in both chains are similar steep-sided, flat-topped structures with multiple, nested, overlapping calderas. The Taney seamounts, however, are considerably larger with volumes roughly three times that of the typical seamount in the President Jackson chain. Samples of glassy rimmed pillow lava and hyaloclastite were recovered from both chains, although those from the Taney chain are covered with thick manganese oxide crusts. The hyaloclastite samples from both sites consist of dense angular glass shards compositionally identical to pillow rims, suggesting they formed by quench granulation. One of the President Jackson Seamount samples is loosely consolidated ash, containing fluidal and bubble wall fragments, indicating some mildly explosive eruptions occurred. Glass data for the eastern President Jackson seamounts are all low-K2O N-MORB (0.04-0.13% K2O). Two distinct groups can be identified. One more depleted composition with exceedingly low K2O and MgO >8% and the second, overlapping group includes somewhat more evolved (7.3 -8.3% MgO) and slightly more enriched (>0.1-0.15% K2O) compositions. Both compositions erupted on a single volcano. Glass compositions of dive samples from the Taney

  1. Seamounts, knolls and petit spots on the NW Pacific Plate represent intra-plate volcanism from the Cretaceous to present

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Nakanishi, M.; Koppers, A. A.

    2007-12-01

    Most of seamounts of the western Pacific formed before 70 Ma in the so-called West Pacific Seamount Province (WPSP) which is characterized by relatively short seamount chains maybe indicating a significant short-lived hotspot system (Koppers et al., 2003). As for the NW Pacific Plate offshore of Northeast Japan, the Joban and Japanese Seamount Trail are also composed of middle Cretaceous seamounts, which are erupted on the northern margin of WPSP. The 120 to 100 Ma seamounts in the Joban seamount chain do not show a middle Cretaceous hotspot track, whereas the Japanese seamount chain shows a well-established ENE to WSW trend in this age range. On the other hand, the unnamed knolls, which are well-circular and flat-topped in shape, are scattered on the NW Pacific Plate and are not aligned to any volcanic chains. These were correspond to eruptive ages of 70 Ma based on Ar-Ar ages of a second volcanic event in the NW Pacific. As the last stage, we should note that Hirano et al. (2006) reported the 0-1, 2, 4.2, 6.0 and 8.6 Ma volcanoes, called petit spots, in the Japan Trench on the outer-rise system. The petit spot volcanoes imply episodic eruptions of magma over a distance of 600 km of plate motion on the flexural Pacific Plate before its subduction but with low volumes of magma production. The volume of volcanic edifice of the petit spot volcanoes certainly is several orders of magnitude less than the Cretaceous seamounts and knolls. Therefore, we can interpret that the petit spot volcanoes are not related to any mantle plumes and hotspots. Evidence includes the geochemical data and the tectonic alignment of the volcanoes which show that the petit spot lavas escaped along fractures in the lithosphere and were sourced from small pockets of asthenospheric melts. The bathymetric map and sidescan sonar imagery of the ocean-ward slope in the Tonga Trench also shows a possible presence of young volcanoes. Such small volcanoes, therefore, may be ubiquitous on the ocean

  2. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  3. Generation of mesoscale hydrodynamic phenomena by the Grappler and Whiting Seamounts, southeast of Puerto Rico. Master thesis

    SciTech Connect

    Capella, J.E.

    1983-01-01

    This work presents the results of research on topographically generated mesoscale eddies in the region of the Grappler and Whiting Seamounts which are located 22km southeast of Puerto Rico. Three different data sets were used: (1) site specific hydrographic data, (2) satellite images from TIROS/NOAA, Landsat and Skylab satellites, and (3) free-drifting drogued-buoy tracks. A reference current meter station was established at the Benchmark B OTEC site at a depth of 20 meters. Predictions from numerical and analytical models were tested using the site specific data and then compared to experimental results. The hydrographic and drogue data definitively establish the presence of perturbations over the seamounts which are qualitatively consistent with model predictions. Closed contour regions in the distribution of dynamic heights, temperature, salinity, and dissolved oxygen were found in the surface and subsurface waters above the top of Grappler Seamount. A cyclonic eddy-like feature located close to Grappler Seamount, in the satellite images, also suggests that eddies are being shed from the seamount region.

  4. Seasonal occurrence of sperm whales (Physeter macrocephalus) around Kelvin Seamount in the Sargasso Sea in relation to oceanographic processes

    NASA Astrophysics Data System (ADS)

    Wong, Sarah N. P.; Whitehead, Hal

    2014-09-01

    Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream's interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.

  5. Off-axis Crustal Thickness and Lower Crustal Velocity Structure from Seismic Tomography on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Soule, D. C.; Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Weekly, R. T.

    2013-12-01

    In August 2009, we conducted a seismic tomography experiment on the Endeavour segment of the Juan de Fuca Ridge to constrain the processes of crustal accretion. The experiment footprint extended 100 km along- and 60 km across-axis and covered the hydrothermally active central portion of the segment, two large overlapping spreading centers and the eastern end the Heck seamount chain. A total of 68 four-component ocean bottom seismometers were deployed at 64 sites and recorded 5567 shots of the 36-element, 6600 in.3 airgun array of the R/V Marcus G. Langseth. The data return rate was high, with good quality data recorded on either the vertical or hydrophone channel at all but two sites. In a prior study, 93,000 manually picked crustal refraction arrivals (Pg) were used to invert for three-dimensional upper crustal velocity. Here we add wide-angle PmP arrival times for non-ridge crossing paths in order to constrain the velocity of the lower crust and crustal thickness on both the Pacific and Juan de Fuca plates at crustal ages of 0.1-1.0 Ma. The starting model was obtained by extending the three-dimensional upper crustal model obtained from the Pg data downward, assuming no vertical velocity gradient in the lower crust and by adding a Moho at 6.3 km depth. Preliminary results using ~7000 PmP arrivals with reflection points at ages of 0.3-1.0 Ma show that crustal thicknesses varies from 6.1 to 7.6 km. The thickest crust is found beneath a 40-km-wide plateau located on the central portion of the Endeavour Segment. This region has been previously interpreted as a region of enhanced crustal production associated with the Heckle melt anomaly. Velocities at the base of the crust range from 6.9-7.2 km/s and tend to be slightly higher beneath the bathymetric plateau consistent with decreased levels of magmatic differentiation near the segment center. Thickened crust is also found on the Juan de Fuca plate beneath a failed propagator of the Cobb overlapping spreading center

  6. Juan Gabriel and audience interpretation. cultural impressions of effeminacy and sexuality in Mexico.

    PubMed

    Sowards, S K

    2000-01-01

    Juan Gabriel's purported effeminacy and sexuality have made him a controversial subject in Mexico, but still loved by fans. Juan Gabriel, by trying to gain acceptance into Mexican society, has become part of a hybrid culture, between the feminine/masculine and homosexual/bisexual/heterosexual groups. This study focuses on interviews with 20 participants who discuss Juan Gabriel's popularity and sexuality. The findings of the study indicate that Juan Gabriel may be considered by his fans to be effeminate, and consequently homosexual. Even though homophobia is widespread in Mexico, Juan Gabriel's fans tend to ignore or exoticize his sexuality, thus affording his success. It is also possible that Juan Gabriel, consciously or not, uses his controversial sexuality as a way to generate popular interest.

  7. Oral anatomy in the sixteenth century: Juan Valverde de Amusco.

    PubMed

    López-Valverde, A; Gómez de Diego, R; De Vicente, J

    2013-08-01

    In 1554 Juan Valverde de Amusco, a Spanish anatomist, wrote the History of the composition of the human body, a complete anatomical treatise that took as its model the Vesalius school of thought (La fábrica of Vesalius). Considered one of the most complete anatomical treatises of the Renaissance and one of the most widely read books of the sixteenth century, it was translated into four languages in its day. The first chapter, devoted to bones, provides a meticulously detailed analysis of the bones of the facial structures and of the teeth, their supporting structures, vascularisation and innervation. Juan Valverde de Amusco even describes techniques for reducing mandibular luxations. Even with the imprecise observations typical of the time the treatise must be considered an exceptional document.

  8. Mineralogy from Cores in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Johnson, Raymond H.; Yager, Douglas B.

    2007-01-01

    In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, data was collected from drill core, which included: (1) detailed descriptions of the subsurface geology and hydrothermal alteration patterns, (2) depth of sulfide oxidation, and (3) quantitative mineralogy.

  9. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bahia de San Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward...

  10. Teaching and Communicating Astronomy at Rey Juan Carlos University

    NASA Astrophysics Data System (ADS)

    Hernán-Obispo, M.; Serrano, A.; Aguirre, J.; Martín, P. San

    We present our activities of popularization of Astronomy at Rey Juan Carlos University in Madrid, especially our 30-h workshop for people older than 55 (University for the Elderly) held since the academic year 2002/2003. Our course aims to introduce the basic topics on Astronomy to a group of motivated students who, in most cases, were not able to complete their education in their youth due to the historical environment of Spain in the middle of the twentieth century.

  11. Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: The cause of the 1990 Mw = 7.0 Gulf of Nicoya earthquake

    NASA Astrophysics Data System (ADS)

    Husen, S.; Kissling, E.; Quintero, R.

    2002-04-01

    Tomographic images constrain the existence of a subducted seamount beneath the Gulf of Nicoya, Costa Rica. The subducted seamount is found at a depth of 30 km within the rupture area of the March 25, 1990, Mw = 7.0 Gulf of Nicoya earthquake. The Gulf of Nicoya earthquake was a typical thrust-type subduction earthquake and occurred on a shallow dipping thrust fault parallel or along the boundary between the subducting Cocos plate and the overriding plate. Precise relocation of the mainshock and its aftershocks in a 3-D P-wave velocity model shows that the area of the mainshock rupture is coincident with the imaged subducted seamount. Most of the aftershocks are relocated within or close to the inferred subducted seamount above the subducting oceanic plate. We interpret the subducted seamount as an asperity whose rupture caused the 1990 Gulf of Nicoya earthquake.

  12. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  13. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-06-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  14. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S.

    1998-11-01

    The Magellan Seamount Trail (MST) delineates a northwest trending chain of four Cretaceous guyots in the West Pacific Seamount Province (WPSP). Seamount morphology, 40Ar/ 39Ar geochronology and Sr-Nd-Pb geochemistry of the MST provides evidence for a hotspot origin between the Samoa, Rarotonga and Society hotspots of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The MST yields an excellent linear age progression of 47.6±1.6 mm/yr ( r2=1.000; MSWD = 0.23; 1 σ SE) including Vlinder guyot (95.1±0.5 Ma, n=5; 2 σ SD), Pako guyot (91.3±0.3 Ma, n=3) and Ioah guyot (87.1±0.3 Ma, n=2). The MST also exhibits a small range in Sr-Nd-Pb isotopic compositions indicating enriched mantle sources with an affinity of EMI. Nevertheless, three volcanic events are found out of sequence with linear MST hotspot volcanism: (1) an independent volcanic pedestal was formed 4-7 Myr before shield-volcanism started at Vlinder guyot, (2) a post-erosional volcanic cone was formed at least 20-30 Myr after drowning of Vlinder guyot, and (3) Ita Mai Tai guyot (118.1±0.5 Ma, n=3) was formed 34-36 Myr before the MST hotspot arrived at the predicted location of this guyot. By identifying and ruling out discordant volcanic events, we can use the age progression in MST to test the fixity of its hotspot. When presuming the fixed hotspot hypothesis, the local age progressions of the MST (47.6±1.6 mm/yr) and the copolar Musicians seamount trail (55.8±6.4 mm/yr) are not compatible with their 100-80 Ma Euler pole. We investigate two options: (1) acceptance of a `forced' Euler pole obeying the hotspot hypothesis by using both the age progressions and the azimuths of the studied seamount trails, or (2) acceptance of a `best-fit' Euler pole by using the azimuths of the studied seamount trail exclusively. In the first option, the angular speed of the Pacific plate during the 100-80 Ma stage pole is calculated at 0.502±0.017°/Myr. In the second option, the `best-fit' Euler pole is found

  15. San Juan sag: A newly discovered basin beneath San Juan volcanic field of south-central Colorado

    SciTech Connect

    Gries, R.R.

    1989-09-01

    The San Juan sag is a Laramide foreland basin formerly adjacent to and west of the Laramide northern Sangre de Cristo/San Luis highland. Wrench faulting (Eocene ) and rifting (Oligocene and Miocene) split this bounding uplift and formed the San Luis basin adjacent to and east of the sag. Volcanism concealed the San Juan sag with over 10,000 ft of intermediate volcanic deposits, and its presence remained in doubt until oil in the volcanic rocks encouraged exploration for the underlying sedimentary rocks. Drilling through the volcanic field since 1984 has revealed the presence of Paleocene and Eocene( ) clastic sediments, the Cretaceous Lewis, Mancos, and Dakota formations, and the Jurassic Morrison and Junction Creek formations. Additionally, oil and gas shows abound, and minor production has been established. Exploratory drilling and geophysical acquisitions have helped to define basin geometry, reservoir rocks, source rocks, and maturation and burial history.

  16. Maximising returns from large datasets with sparse and variable resolution: A seamount case study

    NASA Astrophysics Data System (ADS)

    Kalnins, Lara; Valentine, Andrew; Trampert, Jeannot

    2015-04-01

    Marine geomorphology studies at even a basic topographical level suffer from a duality of simultaneous data wealth ' the oceans are immense, and the resulting datasets large ' and data poverty ' resolution in many areas is very low (km scale), and rarely approaches standards taken for granted in terrestrial areas. A compounding factor is the nonuniform nature of the data. Some areas have 25-100 m scale coverage of bathymetry data measured directly by ship; others have only data that is inferred from gravity or sea surface altimetry data. This data is not only thus indirect, but also has resolution that is 1-2 orders of magnitude lower. Here we look at how these challenges affect what should be a basic, but fundamental task: identifying seamounts, submarine mountains that are the products of excess volcanism. Worldwide, 10,000-20,000 seamounts over 1 km in height have been identified, depending on the study, but it is estimated that up to 60% of seamounts in this height range remain unmapped. We explore how differing coverage in bathymetry versus gravity-based data affects our perception of the same feature, increasing the difficulty of making reliable identifications from partial information. To try to optimise results given these complexities, we analyse a range of data types at variable resolution using a new technique based on neural networks, a type of learning algorithm designed to have sophisticated pattern recognition capabilities. Potentially valuable directions for future developments include simultaneous analysis of multiple data types and algorithms specifically trained to work a finer resolutions, where available.

  17. Linking Environmental Forcing and Trophic Supply to Benthic Communities in the Vercelli Seamount Area (Tyrrhenian Sea)

    PubMed Central

    Covazzi Harriague, Anabella; Bavestrello, Giorgio; Bo, Marzia; Borghini, Mireno; Castellano, Michela; Majorana, Margherita; Massa, Francesco; Montella, Alessandro; Povero, Paolo; Misic, Cristina

    2014-01-01

    Seamounts and their influence on the surrounding environment are currently being extensively debated but, surprisingly, scant information is available for the Mediterranean area. Furthermore, although the deep Tyrrhenian Sea is characterised by a complex bottom morphology and peculiar hydrodynamic features, which would suggest a variable influence on the benthic domain, few studies have been carried out there, especially for soft-bottom macrofaunal assemblages. In order to fill this gap, the structure of the meio-and macrofaunal assemblages of the Vercelli Seamount and the surrounding deep area (northern Tyrrhenian Sea – western Mediterranean) were studied in relation to environmental features. Sediment was collected with a box-corer from the seamount summit and flanks and at two far-field sites in spring 2009, in order to analyse the metazoan communities, the sediment texture and the sedimentary organic matter. At the summit station, the heterogeneity of the habitat, the shallowness of the site and the higher trophic supply (water column phytopigments and macroalgal detritus, for instance) supported a very rich macrofaunal community, with high abundance, biomass and diversity. In fact, its trophic features resembled those observed in coastal environments next to seagrass meadows. At the flank and far-field stations, sediment heterogeneity and depth especially influenced the meiofaunal distribution. From a trophic point of view, the low content of the valuable sedimentary proteins that was found confirmed the general oligotrophy of the Tyrrhenian Sea, and exerted a limiting influence on the abundance and biomass of the assemblages. In this scenario, the rather refractory sedimentary carbohydrates became a food source for metazoans, which increased their abundance and biomass at the stations where the hydrolytic-enzyme-mediated turnover of carbohydrates was faster, highlighting high lability. PMID:25343621

  18. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    PubMed

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  19. Xenoliths from Late Cretaceous seamounts in the Central Pacific: Cumulates of fractionating alkalic basalt magma chambers

    SciTech Connect

    Davis, A.S.; Friesen, W.B.; Pickthorn, L.; Pringle, M.S.; Clague, D.A. )

    1990-06-01

    Abundant xenoliths in alkalic basalt were recovered from two Late Cretaceous seamounts in the Central Pacific. One seamount, located in the Phoenix archipelago (lat 0{degree}22'5, long 176{degree}05'W), is dated by {sup 40}Ar/{sup 39}Ar techniques as 65 Ma. The other seamount, located in the northern Line Islands (lat 15{degree}39'N, long 170{degree}23'W), is dated as 70 Ma. Host lavas are basanite and differentiated alkalic basalt. Mafic xenolith assemblages consist of clinopyroxene with variable amounts of amphibole and mica. Intermediate assemblages have abundant feldspar in addition to the mafic minerals. Rare felsic xenoliths consist of two or more feldspars. Variable amounts of apatite, titanite, and magnetite are poikilitically enclosed in mafic phases, and minor feldspathoids are present in some xenoliths. Most xenoliths are holocrystalline with fine- to medium-grained, equigranular cumulus texture, but two xenoliths have a seriate, interlocking crystal framework in a small amount of glassy to microcrystalline matrix. Clinopyroxene in the holocrystalline samples is partially replaced by amphibole. In a few samples, extensive replacement of clinopyroxene by rounded amphibole grains results in a nearly granoblastic texture. Clinopyroxene compositions range from diopside to ferrosalite and are essentially Cr-free but generally have high Ti and Al contents. Cr-rich diopside and Al-augite, characteristic of mantle clinopyroxene, are absent. Feldspars include plagioclase, anorthoclase, and sanidine. Mineral compositions of xenoliths are similar to those of phenocrysts in the host lavas, indicating that these xenoliths are not metasomatized mantle material, but rather are cumulates from fractionating alkalic basalt magma chambers.

  20. Linking environmental forcing and trophic supply to benthic communities in the Vercelli Seamount area (Tyrrhenian Sea).

    PubMed

    Covazzi Harriague, Anabella; Bavestrello, Giorgio; Bo, Marzia; Borghini, Mireno; Castellano, Michela; Majorana, Margherita; Massa, Francesco; Montella, Alessandro; Povero, Paolo; Misic, Cristina

    2014-01-01

    Seamounts and their influence on the surrounding environment are currently being extensively debated but, surprisingly, scant information is available for the Mediterranean area. Furthermore, although the deep Tyrrhenian Sea is characterised by a complex bottom morphology and peculiar hydrodynamic features, which would suggest a variable influence on the benthic domain, few studies have been carried out there, especially for soft-bottom macrofaunal assemblages. In order to fill this gap, the structure of the meio-and macrofaunal assemblages of the Vercelli Seamount and the surrounding deep area (northern Tyrrhenian Sea - western Mediterranean) were studied in relation to environmental features. Sediment was collected with a box-corer from the seamount summit and flanks and at two far-field sites in spring 2009, in order to analyse the metazoan communities, the sediment texture and the sedimentary organic matter. At the summit station, the heterogeneity of the habitat, the shallowness of the site and the higher trophic supply (water column phytopigments and macroalgal detritus, for instance) supported a very rich macrofaunal community, with high abundance, biomass and diversity. In fact, its trophic features resembled those observed in coastal environments next to seagrass meadows. At the flank and far-field stations, sediment heterogeneity and depth especially influenced the meiofaunal distribution. From a trophic point of view, the low content of the valuable sedimentary proteins that was found confirmed the general oligotrophy of the Tyrrhenian Sea, and exerted a limiting influence on the abundance and biomass of the assemblages. In this scenario, the rather refractory sedimentary carbohydrates became a food source for metazoans, which increased their abundance and biomass at the stations where the hydrolytic-enzyme-mediated turnover of carbohydrates was faster, highlighting high lability.

  1. Residency and Spatial Use by Reef Sharks of an Isolated Seamount and Its Implications for Conservation

    PubMed Central

    Barnett, Adam; Abrantes, Kátya G.; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (∼14 km away) and one grey reef shark completed a round trip of ∼250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef. PMID:22615782

  2. Primary production enhancement in a shallow seamount (Gorringe — Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Oliveira, Ana Paula; Coutinho, Teresa Pereira; Cabeçadas, Graça; Brogueira, Maria José; Coca, Josep; Ramos, Manuela; Calado, Gonçalo; Duarte, Pedro

    2016-12-01

    Gorringe bank is a shallow seamount having its summit within the euphotic layer. The purpose of this study was to test the hypothesis that the interaction of ocean currents with shallow water seamounts, as the Gorringe, has a significant effect on local upwelling and primary production. Three hydrographic surveys were carried out: one in autumn (October 2011) and two in summer (June and July 2012). Physical (salinity, temperature), chemical (nutrients, dissolved oxygen, pH, total alkalinity and suspended particulate matter) and biological (chlorophyll, pelagic primary production and phytoplankton composition and abundance) variables were measured and/or determined in the area of Gorringe Bank, in particular over and around the Ormonde and Gettysburg peaks. Multivariate analyses (PCA and MDS) were applied to environmental and phytoplankton data. Statistical analysis of historical satellite and model data was also carried out in order to analyze local hydrographic conditions and to compare sea surface temperature and chlorophyll concentrations over the peaks and off the peaks in different seasons. Pelagic primary production, measured by Dissolved Oxygen methodology, reached values up to 24.10 mg C m- 3 h- 1 in the vicinity of the peaks. Phytoplankton abundance ranged from 2.2 × 103 to 14 × 103 cells L- 1, being the community composed mainly of chain-forming Diatoms like Chaetoceros sp., Dactyliosolen spp., Hemiaulus hauckii and Pseudonitzschia spp., in summer months, in zones of high hydrodynamics of the peaks. By contrast, at locations away of the seamount summits and in autumn, Coccolithophores species reached the same or higher percentage in total abundance than Diatoms, being Discosphaera tubifer and Calcidiscus leptoporus cf. the most abundant species. The combined results indicate the presence of a seasonal effect of Gorringe summits on local upwelling and enhancement of primary production reflected in higher abundance of phytoplankton in the vicinity of the

  3. Geochemical characteristics and metal element enrichment in crusts from seamounts of the Western Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Zhu, Kechao; Du, Yong; Zhang, Fuyuan; Zhang, Weiyan; Ren, Xiangwen; Jiang, Binbin; Huang, Dasong

    2016-03-01

    Elemental geochemistry is an essential part of understanding mineralization mechanisms. In this paper, a data set of 544 cobalt crust samples from seamounts of the Western Pacific are used to study the enrichment characteristics of metal elements. REE normalization is utilized to reveal the origin of the crusts; effects of water depth on Co enrichment and impacts of phosphatization on mineral quality are discussed to obtain the evolution of these marine mineral deposits, which gives support to further resource assessment. Conclusions are reached as follows: 1) Elemental abundances, inter-element relationships, and shale-normalized REE patterns for phosphate-poor crusts from different locations reflect hydrogenetic origin of the crusts. EFs (enrichment coefficients) of REE exhibit exponential increase from surface sediments to phosphorite to polymetallic nodules to crusts, suggesting that the improved degree of hydrogeneous origin induces the enrichment of REE. 2) The crusts in the Western Pacific, formed through hotspot produced guyots trails, have relatively lower REE than those in the Mid-Pacific. The latter could be attributed to the peculiar submarine topography of seamounts formed by intraplate volcanism. 3) The non-phosphatized younger crust layers have 40% higher Co than the phosphatized older layers. This indicates the modification of the elemental composition in these crusts by phosphatization. A general depletion of hydroxide-dominated elements such as Co, Ni, and Mn and enrichment of P, Ca, Ba, and Sr is evident in phosphatized crusts, whereas non-phosphatized younger generation crusts are rich in terrigenous aluminosilicate detrital matter. 4) Co increases above the carbonate compensation depth (CCD) from less than 0.53% to over 0.65% in seamount regions with water depth of less than 2,500 m, suggesting the significance of the dissolution of carbonate in the sea water column to the growth and composition of crusts.

  4. Hydrologic data from wells at or in the vicinity of the San Juan coal mine, San Juan County, New Mexico

    USGS Publications Warehouse

    Stewart, Anne M.; Thomas, Nicole

    2015-01-01

    In 2010, in cooperation with the Mining and Minerals Division (MMD) of the State of New Mexico Energy, Minerals and Natural Resources Department, the U.S. Geological Survey (USGS) initiated a 4-year assessment of hydrologic conditions at the San Juan coal mine (SJCM), located about 14 miles west-northwest of the city of Farmington, San Juan County, New Mexico. The mine produces coal for power generation at the adjacent San Juan Generating Station (SJGS) and stores coal-combustion byproducts from the SJGS in mined-out surface-mining pits. The purpose of the hydrologic assessment is to identify groundwater flow paths away from SJCM coal-combustion-byproduct storage sites that might allow metals that may be leached from coal-combustion byproducts to eventually reach wells or streams after regional dewatering ceases and groundwater recovers to predevelopment levels. The hydrologic assessment, undertaken between 2010 and 2013, included compilation of existing data. The purpose of this report is to present data that were acquired and compiled by the USGS for the SJCM hydrologic assessment.

  5. Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Staudigel, H.; Blichert-Toft, J.; Hanan, B. B.; Polvé, M.; Davies, G. R.; Shimizu, N.; Schiffman, P.

    2009-02-01

    Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal "shield building" stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866-0.512909, 206Pb/204Pb: 18.904-19.054; La/Sm: 3.71-4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912-0.512948, 206Pb/204Pb: 19.959-20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999-0.513050, 206Pb/204Pb: 19.080-19.237; La/Sm: 5.73-8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet

  6. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle.

    PubMed

    Tarduno, John A; Duncan, Robert A; Scholl, David W; Cottrell, Rory D; Steinberger, Bernhard; Thordarson, Thorvaldur; Kerr, Bryan C; Neal, Clive R; Frey, Fred A; Torii, Masayuki; Carvallo, Claire

    2003-08-22

    The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.

  7. A new species of Nidalia Gray, 1835 from Mid-Atlantic seamounts (Octocorallia, Alcyonacea, Nidaliidae)

    NASA Astrophysics Data System (ADS)

    López-González, Pablo J.; Gili, Josep-Maria

    2008-12-01

    A new soft coral species of the genus Nidalia, from seamounts to the south of the Azores Archipelago is described. The main features of Nidalia aurantia n. sp. are as following: colony torch-like, a capitulum light orange in colour, not laterally flattened, dome-shaped and not distinctly projecting beyond the stalk, an introvert with sparse sclerites transversally placed, and an anthocodial crown with 13 17 sclerite rows. The new species is compared with its closest congeners. This is the first time that a species of Nidalia has been located in the Mid-Atlantic Ocean.

  8. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits

    USGS Publications Warehouse

    Hein, J.R.; Hsueh-Wen, Yeh; Gunn, S.H.; Sliter, W.V.; Benninger, L.M.; Chung-Ho, Wang

    1993-01-01

    The phosphorites occur in a wide variety of forms, but most commonly carbonate fluorapatite (CFA) replaced middle Eocene and older carbonate sediment in a deep water environment (>1000 m). Element ratios distinguish seamount phosphorites from continental margin, plateau, and insular phosphorites. Uranium and thorium contents are low and total rare earch element (REE) contents are generally high. The paleoceanographic conditions initiated and sustained development of phosphorite by accumulation of dissolved phosphorus in the deep sea during relatively stable climatic conditions when oceanic circulation was sluggish. Fluctuations in climate, sealevel, and upwelling that accompanied the climate transitions may have driven cycles of enrichment and depletion of the deep-sea phosphorus reservoir. -from Authors

  9. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.; Bull, J. M.; Ishizuka, O.; Scrutton, R. A.; Jaishankar, S.; Banakar, V. K.

    2014-02-01

    The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80-73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80-73 Ma, close to the India-Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6-13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25-35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85°E Ridge appear to be

  10. Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge

    NASA Astrophysics Data System (ADS)

    Letessier, Tom B.; De Grave, Sammy; Boersch-Supan, Philipp H.; Kemp, Kirsty M.; Brierley, Andrew S.; Rogers, Alex D.

    2017-02-01

    Maintenance of often-observed elevated levels of pelagic diversity and biomass on seamounts, of relevance to conservation and fishery management, involves complex interactions between physical and biological variables that remain poorly understood. To untangle these biophysical processes we explore factors influencing the distribution of epi- and meso-pelagic (0-1000 m) micronektonic crustaceans (>15 mm; order Lophogastridea, family Gnathophausiidea; and order Decapoda) on and off seamounts along the South West Indian Ridge (SWIR, 27° to 42°S) and on a seamount off the Madagascar Ridge (31.6°S, 42.8°E). Thirty-one species of micronektic crustaceans were caught using mid-water trawls within the study area but there was no apparent latitude-related patterns in species richness or abundance. Species richness predicted by rarefraction curves and numerical abundance was highest in the vicinity (<1 km) of seamounts (species richness: 15 to 21; abundance: 10±2 to 20±1 ind.10-3 m-1) compared with over the abyssal plains and ridge slopes (species richness: 9.2-9.9; abundance: 24±2 to 79±8 ind.10-3 m-1). Multivariate analysis of assemblage composition revealed significant groupings of individual trawl samples with respect to whether the sample was on or off a seamount and hydrographic region, but not with time of sampling relative to diel cycle (day/night or dawn) or depth of sampling (0-500, 500-800, >800 m). The dominant species assemblage comprised the shrimps Systellaspis debilis (37%) and Sergia prehensilis (34%), and was restricted to seamounts on the subtropical SWIR. Our observations suggest that the 'oasis effect' of seamounts conventionally associated with higher trophic levels is also applicable to pelagic micronektic crustaceans at lower trophic levels. We suggest that the enhanced biomass and species richness attributed is due to 'habitat enrichment', whereby seamounts provide favourable habitats for both pelagic and bentho-pelagic mid-water crustaceans.

  11. Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Santos, M.; Moita, M. T.; Bashmachnikov, I.; Menezes, G. M.; Carmo, V.; Loureiro, C. M.; Mendonça, A.; Silva, A. F.; Martins, A.

    2013-12-01

    The variability of phytoplankton biomass (chlorophyll a as a proxy of biomass) and community structure was evaluated over and around the Condor seamount SW of Faial Island in the Azores Archipelago using data provided from five cruises (July and November 2009, and March, July and October 2010). Phytoplankton cell abundance, taxonomy and chlorophyll a concentration were related to both the physical-chemical conditions and to the main circulation patterns observed, bringing new insights into the temporal and spatial variability of phytoplankton. Only microphytoplankton and large nanophytoplankton were identified. Higher phytoplankton abundances were observed during 2010 with a maximum in October (1.3×105 cells.L-1), and higher biomasses were reported at sub-surface in March (0.43 mg Chl-a.m-3). Diatoms were the dominant group (e.g., Pseudo-nitzschia spp. and Chaetoceros spp.) except in November 2009 when coccolithophores dominated (e.g., Ophiaster spp.). Significant differences were found between seasons but not in space, and salinity appears to be an important factor contributing for this seasonal variation. The present study also provides, for the first time, a list of phytoplankton species for this seamount.

  12. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic)

    PubMed Central

    Henry, Lea-Anne; Vad, Johanne; Findlay, Helen S.; Murillo, Javier; Milligan, Rosanna; Roberts, J. Murray

    2014-01-01

    We present the first remotely operated vehicle investigation of megabenthic communities (1004–1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3–14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40–56%). Two peaks in species richness occurred, the first at 1300–1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500–1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough. PMID:24998523

  13. Seamount mineral deposits: A source of rare metals for high-technology industries

    USGS Publications Warehouse

    Hein, J.R.; Conrad, T.A.; Staudigel, H.

    2010-01-01

    The near exponential growth in Earth's population and the global economy puts increasing constraints on our planet's finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining. deposits can be formed in volcanic arc seamounts, no commercially viable deposits have yet been identified in the submarine environment. However, a substantial body of research suggests that hydrogenous Fe-Mn crusts may provide significant resources, especially for "high-tech metals" that are increasingly used in solar cells, computer chips, and hydrogen fuel cells.

  14. Crustal structure in the area of the Levantine Basin and the Eratosthenes Seamount

    NASA Astrophysics Data System (ADS)

    Schnabel, M.; Ehrhardt, A.

    2011-12-01

    We present results from a seismic transect south of Cyprus. The line was acquired in 2010 using the German research vessel Maria S. Merian. The near-offset seismic signals were recorded using a 3900 m long streamer. To record the refracted phases and also wide-angle reflections, 12 ocean bottom hydrophones (OBH) were deployed along the profile. After processing of the multi-channel seismic data, the resulting velocity field and the interpreted horizons were used as a starting model for the analysis of the OBH data. Most of the OBH sections showed good data quality with seismic energy penetrating down to the mantle. Despite the short length of the profile (less than 140 km), it shows several interesting features of the Eastern Mediterranean. In the western part, the Eratosthenes Seamount is imaged. It represents a continental fragment of the former African-Arabian continental margin. The eastern part of the profile crosses the Levantine Basin, which is characterized by thick sedimentary successions covered by the Messinian evaporite sequence. In the central part of the line, the Baltim Hecataeus Line is situated, which may act as a wrench fault. A reason for this faulting is the northward movement of Africa, which is partly blocked due to the collision of the Eratosthenes Seamount with the Cyprus Arc.

  15. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

    PubMed Central

    Geersen, Jacob; Ranero, César R.; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  16. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic).

    PubMed

    Henry, Lea-Anne; Vad, Johanne; Findlay, Helen S; Murillo, Javier; Milligan, Rosanna; Roberts, J Murray

    2014-07-07

    We present the first remotely operated vehicle investigation of megabenthic communities (1004-1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3-14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40-56%). Two peaks in species richness occurred, the first at 1300-1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500-1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough.

  17. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area.

    PubMed

    Geersen, Jacob; Ranero, César R; Barckhausen, Udo; Reichert, Christian

    2015-09-30

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role.

  18. 33 CFR 3.35-25 - Sector San Juan Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Zone and Captain of the Port Zone. 3.35-25 Section 3.35-25 Navigation and Navigable Waters COAST GUARD... CAPTAIN OF THE PORT ZONES Seventh Coast Guard District § 3.35-25 Sector San Juan Marine Inspection Zone and Captain of the Port Zone. Sector San Juan's office is located in San Juan, PR. The boundaries...

  19. 33 CFR 3.35-25 - Sector San Juan Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Zone and Captain of the Port Zone. 3.35-25 Section 3.35-25 Navigation and Navigable Waters COAST GUARD... CAPTAIN OF THE PORT ZONES Seventh Coast Guard District § 3.35-25 Sector San Juan Marine Inspection Zone and Captain of the Port Zone. Sector San Juan's office is located in San Juan, PR. The boundaries...

  20. 33 CFR 3.35-25 - Sector San Juan Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Zone and Captain of the Port Zone. 3.35-25 Section 3.35-25 Navigation and Navigable Waters COAST GUARD... CAPTAIN OF THE PORT ZONES Seventh Coast Guard District § 3.35-25 Sector San Juan Marine Inspection Zone and Captain of the Port Zone. Sector San Juan's office is located in San Juan, PR. The boundaries...

  1. 33 CFR 3.35-25 - Sector San Juan Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Zone and Captain of the Port Zone. 3.35-25 Section 3.35-25 Navigation and Navigable Waters COAST GUARD... CAPTAIN OF THE PORT ZONES Seventh Coast Guard District § 3.35-25 Sector San Juan Marine Inspection Zone and Captain of the Port Zone. Sector San Juan's office is located in San Juan, PR. The boundaries...

  2. 33 CFR 167.1315 - In the Strait of Juan de Fuca: Precautionary area “PA.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1315 In the Strait of Juan de Fuca: Precautionary area “PA.” In the Strait of Juan de Fuca, precautionary area “PA” is...

  3. 33 CFR 167.1315 - In the Strait of Juan de Fuca: Precautionary area “PA.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1315 In the Strait of Juan de Fuca: Precautionary area “PA.” In the Strait of Juan de Fuca, precautionary area “PA” is...

  4. 33 CFR 167.1302 - In the approaches to the Strait of Juan de Fuca: Southwestern approach.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Juan de Fuca: Southwestern approach. 167.1302 Section 167.1302 Navigation and Navigable Waters....1302 In the approaches to the Strait of Juan de Fuca: Southwestern approach. In the southwestern approach to the Strait of Juan de Fuca, the following are established: (a) A separation zone bounded by...

  5. 33 CFR 167.1315 - In the Strait of Juan de Fuca: Precautionary area “PA.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1315 In the Strait of Juan de Fuca: Precautionary area “PA.” In the Strait of Juan de Fuca, precautionary area “PA” is...

  6. 33 CFR 167.1301 - In the approaches to the Strait of Juan de Fuca: Western approach.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Juan de Fuca: Western approach. 167.1301 Section 167.1301 Navigation and Navigable Waters COAST....1301 In the approaches to the Strait of Juan de Fuca: Western approach. In the western approach to the Strait of Juan de Fuca, the following are established: (a) A separation zone bounded by a line...

  7. 33 CFR 167.1302 - In the approaches to the Strait of Juan de Fuca: Southwestern approach.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Juan de Fuca: Southwestern approach. 167.1302 Section 167.1302 Navigation and Navigable Waters....1302 In the approaches to the Strait of Juan de Fuca: Southwestern approach. In the southwestern approach to the Strait of Juan de Fuca, the following are established: (a) A separation zone bounded by...

  8. 33 CFR 167.1315 - In the Strait of Juan de Fuca: Precautionary area “PA.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In the Strait of Juan de Fuca... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1315 In the Strait of Juan de Fuca: Precautionary area “PA.” In the Strait of Juan de Fuca, precautionary area “PA” is...

  9. 33 CFR 167.1301 - In the approaches to the Strait of Juan de Fuca: Western approach.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Juan de Fuca: Western approach. 167.1301 Section 167.1301 Navigation and Navigable Waters COAST....1301 In the approaches to the Strait of Juan de Fuca: Western approach. In the western approach to the Strait of Juan de Fuca, the following are established: (a) A separation zone bounded by a line...

  10. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage...

  11. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage...

  12. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage...

  13. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage...

  14. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage...

  15. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY.

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  16. CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE SAN JUAN BAY ESTUARY

    EPA Science Inventory

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  17. 33 CFR 110.229 - Straits of Juan de Fuca, Wash.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Straits of Juan de Fuca, Wash. 110.229 Section 110.229 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.229 Straits of Juan de Fuca, Wash. (a)...

  18. 33 CFR 110.229 - Straits of Juan de Fuca, Wash.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Straits of Juan de Fuca, Wash. 110.229 Section 110.229 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.229 Straits of Juan de Fuca, Wash. (a)...

  19. 78 FR 61958 - San Juan County Historical Society; Notice of Preliminary Determination of A Qualifying Conduit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-08

    ... Energy Regulatory Commission San Juan County Historical Society; Notice of Preliminary Determination of A..., San Juan County Historical Society filed a notice of intent to construct a qualifying conduit... Historical Society, P.O. Box 154, Silverton, CO 81433, Phone No. (970) 387-5488. FERC Contact: Robert...

  20. Evidence for a heterogeneous astenosphere from intra-transform and seamount lavas

    NASA Astrophysics Data System (ADS)

    Saal, A.; Nagle, A.; Myers, C.; Hauri, E.; Pickle, R.; Forsyth, D.; Niu, Y.

    2008-12-01

    The asthenosphere is a mechanically weak region in the shallow mantle (between 100 to 300 km) underneath the lithosphere. Its unique physical properties (location, depth, viscosity, seismic velocity, anisotropy, attenuation, electrical conductivity) have been attributed to either mineral properties at relevant temperatures and pressures or to the presence of melt and/or water. To understand the processes controlling the physical properties of the asthenosphere we rely on geochemical studies of primitive basalts from the Mid-Ocean Ridges (MORB). In this regard, establishing the composition (especially volatile content) of the mantle source of MORB is a fundamental step in our understanding of this mechanically weak region of the upper mantle. However, first it is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport (i.e., depth and extent of melting and melt migration); or alternatively, they are inherited from mixing processes during the aggregation of melts originated from an heterogeneous mantle beneath the mid-ocean ridge. The composition of melts within a ridge segment can be obscured by along-axis transport of magma within the crust in dikes or long-lived magma chambers. To address these issues, seamount and intra-transform lavas provide a better opportunity to deconstruct the source heterogeneity beneath mid-ocean ridges than axial lavas. Although they share a common mantle source with axial MORB, they represent smaller melt volumes tapped locally from areas lacking steady-state magma chambers and along-axis transport. Therefore, lavas from intra-transform faults and seamounts represent pre-aggregated melts experiencing relatively less mixing and differentiation, and their compositions provide insight into the heterogeneity of the asthenosphere Basalts from Quebrada/Discovery/Gofar (QDG) fracture zone system and

  1. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  2. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  3. Small-Scale Mantle Heterogeneities Beneath the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Harris, C. R.; Gill, J.; Woodcock, J.; Anderson, R.

    2008-12-01

    The Endeavour segment of the Juan de Fuca Ridge samples at least two different geochemical heterogeneities unrelated to adjacent hot spots. One is FOZO-like in isotopes and HFSE-rich. Another is K+LREE-rich. Both are sampled randomly in short spatial (few-km) and temporal succession through separate MORB melting events, but the FOZO-like MORB is restricted to axial magmas that rise along a major fault and by-pass the axial magma chamber. The large geochemical diversity and high density of submersible-collected samples creates opportunity for constraining melting processes and mantle dynamics beneath an intermediate spreading-rate ridge. Basalts from the Endeavour Axial Ridge Volcano (EARV) can be divided into N-type (normal) MORBs (K2O/TiO2 < 0.15), transitional, or T-MORBs (K2O/TiO2 = 0.15 - 0.25), and enriched, or E-MORBs (K2O/TiO2 > 0.25). N-MORBs have highest Zr/Nb and E-MORBs the lowest Zr/Nb. Recently we discovered the most trace element depleted N- MORB yet at Endeavour. This sample originates from the base of the western wall of the axial valley south of the Mothra vent field, located in the southern-most part of the EARV. However, none of the samples are as depleted as those from the sea floor beyond the ridge flanks or from the Heckle Seamounts to the north. Two subgroups of N-MORBs and three subgroups of T-MORBs are defined by consistent major and trace element characteristics. For example, T1 MORBs have the lowest SiO2; the T2 group has the lowest Na2O and higher Fe8 than T3. Trace element differences among the various groups can not be explained by crystal fractionation alone. Pb isotopes do not correlate with K2O/TiO2. T1 MORBs have the highest 206Pb/204Pb ratios and T3 MORBs generally have the lowest 206Pb/204Pb and lowest 143Nd/144Nd ratios. Pb isotopes of bulk rocks and sulfides define an array beneath the Northern Hemispheric Reference Line. The sulfide data (LaBonte et al., 2006; Cook, 1994; Tivey and Delaney, 1985) indicate deposition from

  4. Hydrothermal alteration of a seamount complex on La Palma, Canary Islands: Implications for metamorphism in accreted terranes

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Staudigel, H.

    1994-02-01

    The hydrothermal metamorphism of a sequence of Pliocene-age seamount extrusive and volcaniclastic rocks on La Palma, Canary Islands, is characterized by a relatively complete low-pressure-high-temperature facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200-300 °C/km. The metamorphism of the seamount, at least in its core region, is distinct from ocean-floor metamorphism: the former is characterized by a serially continuous facies series encompassing zeolite, prehnite-pumpellyite, and greenschist assemblages, and the latter by a discontinuous metamorphic gradient in which prehnite-pumpellyite assemblages are absent. These metamorphic features, presumably reflecting fundamental thermal-tectonic differences between extending oceanic crust at mid- oceanic ridges vs. the more static crust underlying seamount volcanoes, should aid in the recognition of incoherent fragments of seamount metamorphic rocks within accreted terranes which typically have undergone subsequent higher pressure-temperature regional metamorphism, albeit to comparable grades.

  5. Interaction between seabed morphology and water masses around the seamounts on the Motril Marginal Plateau (Alboran Sea, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Palomino, Desirée; Vázquez, Juan-Tomás; Ercilla, Gemma; Alonso, Belén; López-González, Nieves; Díaz-Del-Río, Víctor

    2011-12-01

    The seabed morphology in the vicinity of the seamounts on the Motril Marginal Plateau (northern Alboran Sea) was investigated using high-resolution (sparker) and very high-resolution (TOPAS) seismic reflection profiles and multibeam bathymetry. The aim of the study was to determine the recent geological processes, and in particular those that control the contourite depositional system associated with the intermediate and deep Mediterranean water masses. Six groups of morphological features were identified: structural features (seamount tops, tectonic depressions), fluid escape-related features (pockmarks), mass-movement features (gullies, slides), bottom-current features (moats, scour marks, terraces, elongated and separated drifts, plastered drifts, confined drifts, sheeted drifts), mixed features (ridges) and biogenic features (including evidence of (dead) cold water corals such as Lophelia pertusa and Madrepora oculata). The main processes controlling the formation of these features are recent tectonic activity and the interaction of Mediterranean water masses with the seafloor topography. Seamounts act as topographic barriers that affect the pathway and velocity of the deep Mediterranean water masses, which are divided into strands that interact with the surrounding seafloor. The influence of the intermediate Mediterranean water mass, by contrast, is restricted mainly to the tops of the seamounts. Sediment instability and fluid-escape processes play a minor role, their occurrence being probably related to seismicity.

  6. Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars.

    PubMed

    Ivarsson, M; Lausmaa, J; Lindblom, S; Broman, C; Holm, N G

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between approximately 10 wt % and approximately 50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C(2)H(4), phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (approximately 10-40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  7. 75 FR 45085 - Fisheries in the Western Pacific; Bottomfish and Seamount Groundfish Fisheries; 2010-11 Main...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XX15 Fisheries in the Western Pacific; Bottomfish and Seamount Groundfish Fisheries; 2010-11 Main Hawaiian Islands Bottomfish...

  8. 76 FR 54715 - Western Pacific Bottomfish and Seamount Groundfish Fisheries; 2011-12 Main Hawaiian Islands Deep...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XA470 Western Pacific Bottomfish and Seamount Groundfish Fisheries; 2011-12 Main Hawaiian Islands Deep 7 Bottomfish Annual Catch...

  9. Supraslab earthquakes above the Pacific-plate slab in NE Japan: A possible graveyard of detached seamounts and volcanic ridges?

    NASA Astrophysics Data System (ADS)

    Kirby, S.; Okada, T.; Uchida, N.; Hasegawa, A.; Matsuzawa, T.; Hino, R.

    2005-12-01

    Double-difference relocations of interplate thrust and intraslab earthquakes at depths greater than 35 km under NE Japan indicate that many clusters of earthquakes occur above the interplate thrust zone and hence are no longer part of the sinking Pacific-plate slab. The best examples of such clusters are found at depths of 40 to 60 km near the depth limit of interplate thrust earthquake activity and near the intersection of the forearc Moho with the plate interface. In some clusters, small repeating earthquakes occur on the plate interface below the supraslab clusters. The largest of these clusters have earthquakes that are as much as 25 km shallower than the plate boundary and extend as much as several tens of km in the down-dip direction. Offshore multi-beam sonar bathymetry shows seafloor relief that is dominated by seamounts and guyots, representing Cretaceous intraplate volcanic activity. The Japan inner trench slope is marked by many re-entrants that record past seamount-forearc collisions. Supraslab earthquake clusters may represent earthquake activity inside seamounts that have detached from the underlying Pacific plate along the original sedimented seafloor on which these intraplate shield volcanoes were built. If this interpretation is correct, then supraslab earthquakes may represent a unique cumulative record of past seamount subduction.

  10. Comparing Molecular Variation to Morphological Species Designations in the Deep-Sea Coral Narella Reveals New Insights into Seamount Coral Ranges

    PubMed Central

    Baco, Amy R.; Cairns, Stephen D.

    2012-01-01

    Recent studies have countered the paradigm of seamount isolation, confounding conservation efforts at a critical time. Efforts to study deep-sea corals, one of the dominant taxa on seamounts, to understand seamount connectivity, are hampered by a lack of taxonomic keys. A prerequisite for connectivity is species overlap. Attempts to better understand species overlap using DNA barcoding methods suggest coral species are widely distributed on seamounts and nearby features. However, no baseline has been established for variation in these genetic markers relative to morphological species designations for deep-sea octocoral families. Here we assess levels of genetic variation in potential octocoral mitochondrial barcode markers relative to thoroughly examined morphological species in the genus Narella. The combination of six markers used here, approximately 3350 bp of the mitochondrial genome, resolved 83% of the morphological species. Our results show that two of the markers, ND2 and NCR1, are not sufficient to resolve genera within Primnoidae, let alone species. Re-evaluation of previous studies of seamount octocorals based on these results suggest that those studies were looking at distributions at a level higher than species, possibly even genus or subfamily. Results for Narella show that using more markers provides haplotypes with relatively narrow depth ranges on the seamounts studied. Given the lack of 100% resolution of species with such a large portion of the mitochondrial genome, we argue that previous genetic studies have not resolved the degree of species overlap on seamounts and that we may not have the power to even test the hypothesis of seamount isolation using mitochondrial markers, let alone refute it. Thus a precautionary approach is advocated in seamount conservation and management, and the potential for depth structuring should be considered. PMID:23029093

  11. Comparing molecular variation to morphological species designations in the deep-sea coral Narella reveals new insights into seamount coral ranges.

    PubMed

    Baco, Amy R; Cairns, Stephen D

    2012-01-01

    Recent studies have countered the paradigm of seamount isolation, confounding conservation efforts at a critical time. Efforts to study deep-sea corals, one of the dominant taxa on seamounts, to understand seamount connectivity, are hampered by a lack of taxonomic keys. A prerequisite for connectivity is species overlap. Attempts to better understand species overlap using DNA barcoding methods suggest coral species are widely distributed on seamounts and nearby features. However, no baseline has been established for variation in these genetic markers relative to morphological species designations for deep-sea octocoral families. Here we assess levels of genetic variation in potential octocoral mitochondrial barcode markers relative to thoroughly examined morphological species in the genus Narella. The combination of six markers used here, approximately 3350 bp of the mitochondrial genome, resolved 83% of the morphological species. Our results show that two of the markers, ND2 and NCR1, are not sufficient to resolve genera within Primnoidae, let alone species. Re-evaluation of previous studies of seamount octocorals based on these results suggest that those studies were looking at distributions at a level higher than species, possibly even genus or subfamily. Results for Narella show that using more markers provides haplotypes with relatively narrow depth ranges on the seamounts studied. Given the lack of 100% resolution of species with such a large portion of the mitochondrial genome, we argue that previous genetic studies have not resolved the degree of species overlap on seamounts and that we may not have the power to even test the hypothesis of seamount isolation using mitochondrial markers, let alone refute it. Thus a precautionary approach is advocated in seamount conservation and management, and the potential for depth structuring should be considered.

  12. Mediastinal pathology and the contributions of Dr. Juan Rosai.

    PubMed

    Wick, Mark R

    2016-09-01

    Dr. Juan Rosai is one of the most prolific contributors to the literature on mediastinal pathology, and he has added steadily to that body of work over a 50-year period. Rosai has written several landmark articles in this topical area, including articles on thymic epithelial lesions, mediastinal neuroendocrine tumors, mediastinal lymphoma and other hematopoietic lesions, thymolipoma, thymoliposarcoma, mediastinal solitary fibrous tumor, intrathymic langerhans-cell histiocytosis, mediastinal germ cell neoplasms, and multilocular thymic cyst. This review recounts his role as one of the principal figures in the surgical pathology of mediastinal diseases.

  13. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K.; Mogollón, J. M.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.; Kasten, S.

    2016-01-01

    The Clarion-Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature hydrothermal seawater circulation through the oceanic crust. Recent studies in deep-sea environments of the Pacific and Atlantic Oceans have suggested and presented evidence of dissolved constituent exchange between the seawater flowing in the basaltic crust and the pore water of the overlying sediments. Through high-resolution pore-water oxygen and nutrient measurements, we examined fluxes and geochemical interactions between the seamount basaltic basement and pore waters of the overlying sediments at three sites located on a radial transect from the foot of Teddy Bare, a small seamount in the CCFZ. At three sites, located 1000, 700 and 400 m away from the foot of the seamount, we found that oxygen concentrations initially decrease with sediment depth but start to increase at depths of 3 and 7 m toward the basaltic basement. Nitrate (NO3-) concentrations mirror the oxygen concentration profiles, as they increase with sediment depth but decrease towards the basement. These profiles suggest an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments and a downward diffusion of NO32- from sediment pore water into the basaltic crust. At one site, we determined that the 87Sr/86Sr ratios of the bottom water and of the deep sediment near the basaltic crust are similar, further supporting diffusive exchange between basaltic crust fluids and sediment pore water. Transport-reaction modeling performed at two of the study sites revealed that (1) the diffusive flux of oxygen from the basaltic basement outpaces the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange

  14. Geochemistry of Mesozoic Basaltic Lavas from the West Pacific Seamount Province (WPSP): Constraints on Their Origin and Genesis

    NASA Astrophysics Data System (ADS)

    Yan, Q.; Shi, X.

    2014-12-01

    There distributed many relatively isolated seamounts in several inferred seamount chains in west Pacific, and the area has been named as west Pacific seamount province (WPSP). Studying on basaltic rocks from the WPSP will be helpful to better understanding the diversity of plume geodymanics and developing the plume theory. Basaltic lavas from eight seamounts in the WPSP have been studied for petrography, major-, trace element and Sr-Nd-Pb isotopic composition. The petrographic characteristics of these rocks show moderately to highly altered. Major element compositions show all of these rocks belong to alkalic series, and some samples lost their alkalis elements during submarine seawater alteration. Primitive mantle normalized spider diagram and chondrite normalized rare earth element distributional pattern show that they were originated from OIB-like source and possibly underwent low degree partial melting. Isotopic characteristics imply that three mantle end-members (DMM, EMI and HIMU) can explain Sr-Nd-Pb compositions of these rocks from the WPSP, i.e., DMM is depleted MORB mantle identical to that being created MORB in EPR, EMI (reprecented by Rarotonga island) is possibly from subducted ancient continental crust, and HIMU (represented by Cook-Austral Islands) is typically originated from recycled oceanic crust. Based on the present study combined with published data, we proposed that the origin of some (maybe all) of seamounts in the WPSP are splash plumes proposed by Davies and Bunge (2006) or smaller plumes branched at the base of lithosphere from the Superwell which has created the Ontong Java plateau. (This work was supported by the National Natural Science Foundation of China under contract Nos. 41322036, and 41276003)

  15. Subaqueous non-vesicular to poorly-vesicular shards: hydroclastic fragmentation on seamounts and summit calderas

    NASA Astrophysics Data System (ADS)

    Mueller, W. U.; Dingwell, D. B.; Downey, W. S.; Mastin, L. G.

    2008-12-01

    Recognizing pyroclastic deposits that originate directly from magmatic and phreatomagmatic explosions in a subaqueous setting is based upon sedimentary structures, such as massive, stratified, and graded beds as well as (pyro)clast size. Ideally such deposits form ordered fining-and thinning-upward sequences. Pumice, scoria, glass shards, euhedral and broken crystals, and lithic fragments are constituents that support an explosive heritage. Recent deep-sea ROV and submersible dives have retrieved non-vesicular to vesicle- poor, mm-scale, mafic shards in 5-15 cm-thick massive and/or graded (stratified) deposits, for which a subaqueous explosive origin has been inferred. These sheet hyaloclastites with variable shard shapes were first documented on Seamount 6 as deep-sea Limu O Pele at water depths > 1000 m. We identified in Seamount 6 samples equant to blocky shards with angular to subrounded terminations, but also subordinate hair-like and contorted glassy filaments, warped shards and irregular shards. Shards display internal laminations (flow-banding?) and have local perlitic fractures. Bubble wall shards derived from scoria burst were rare. In combination with all the above and a poor shard vesicularity (< 2%), a magmatic explosive origin seems improbable. Such small-volume deposits have been reported from seamounts and summit calderas associated with subaqueous drainage tubes and ponded magma in depths > 1000 m. We envision that hydrostatic pressure commensurate with water depth played a significant role. The deposits can be readily explained by a hydroclastic process whereby fragmentation occurred at the milli-second (Limu) to second scale (hyaloclastite). Hence, hyperquenched glass shards or thread-like glass filaments need not require magmatic explosivity. Constant surface interaction between aphyric, low-viscosity, high temperature, magma-lava at depth with seawater causes fragmentation (granulation) that can generate such delicate shards. The transfer of

  16. Numerical simulation of earthquake rupture sequences on the Manila thrust fault: Effects of seamount subduction

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, Y.; Ning, J.; He, C.; Zhang, L.

    2015-12-01

    The Manila subduction zone is located at the convergent boundary between the Philippine Sea Plate and the Sunda/Eurasian Plate from offshore Taiwan to northern Luzon of Philippines, where only infrequent M7 earthquakes were observed in modern seismological instrumentation history. The lack of great events (M8+) indicates the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a great earthquake. Here we conduct numerical simulations of earthquake rupture sequences in the framework of rate-state-friction along the 15-19.5ºN segment of the 3D plate boundary with subducted seamounts. Rate-state frictional properties are constrained by laboratory friction experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples from the basaltic basement rock under 100ºC - 600ºC, effective normal stress of 50 MPa and pore pressure of 100 MPa. During the modeled 2000-year period, the maximum magnitude of earthquakes is Mw7. Each sequence repeats every ~200 years and is consisted of three sub-events, event 1 (Mw7) that can overcome the barrier, where dip angle changes most rapidly along the strike, to rupture the entire fault. Events 2 (Mw 6.4) and 3 (Mw 5.7) are of smaller magnitudes and result in north-south segmented rupture pattern. We further quantify the potential of earthquake nucleation by the S-ratio (lower S ratio means the initial stress is closer to peak strength, hence more likely to nucleate an earthquake). The subducted seamount shows higher S-ratios than its surroundings mostly, implying an unlikely nucleate area. Our results are qualitatively similar to 2D subduction earthquake modeling by Herrendörfer et al. (2015, 2-3 events per supercycle and median long-term S is 0.5-1). Finally, we plan to use our coseismic rupture model results as inputs for a tsunami propagation model in SCS. Compared to the kinematic seafloor deformation input, our physics-based earthquake source model and its

  17. The Fate of the Juan de Fuca Plate

    NASA Astrophysics Data System (ADS)

    Xue, M.; Allen, R. M.

    2006-12-01

    The Juan de Fuca plate is subducting beneath the northwestern United States and southwestern Canada. Although the slab has been imaged to depths of at least ~{400} km beneath Washington and at least ~{200} to 300 km beneath northern Oregon with a dip of ~60° to the east, there is little evidence for a slab east of High Cascades deeper than ~150 km beneath central and ~200 km beneath southern Oregon. To image the slab beneath Oregon, we apply tomography technique using a dataset consisting of our own OATS deployment and all other available data. For the Vs inversion, a total of 95 events with clear S and SKS phases were recorded at 45 stations and a total number of 2148 rays were used. For the Vp inversion, a total of 74 events with clear direct P phase were recorded at 46 stations, and a total number of 2043 rays were used. Our tomographic images clearly show that the Juan de Fuca plate dives into the mantle beneath Oregon and continues east of the High Cascades with a dip of ~50° reaching a depth of ~400 km. The slab does not dip more vertically than its counterparts to north and south, which have a dip of ~60° and ~65° respectively. Resolution tests suggest there is little or no velocity anomaly associated with a slab below ~400 km.

  18. Paleogene and Neogene magmatism in the Valle del Cura region: New perspective on the evolution of the Pampean flat slab, San Juan province, Argentina

    NASA Astrophysics Data System (ADS)

    Litvak, Vanesa D.; Poma, Stella; Kay, Suzanne Mahlburg

    2007-09-01

    The Valle del Cura region is characterized by a thick volcanic and volcaniclastic sequence that records the Tertiary arc and backarc magmatic evolution of the Argentine Main Cordillera over the modern Pampean flatslab at 29.5-30°S. During the Eocene, a retroarc basin developed, represented by the Valle del Cura Formation synorogenic volcanosedimentary sequence, which includes rhyolites and dacitic tuffs. These silicic volcanic rocks have weak arc chemical signatures and high lithophile element concentrations and are isotopically enriched relative to the late Oligocene-early Miocene volcanic rocks that followed them. Their chemical characteristics fit with eruption through a thin crust. The Valle de Cura Formation was followed by the Oligocene-early Miocene Doña Ana Group volcanic sequence, which erupted at and near the arc front west of the border with Chile. The Doña Ana Group volcanic rocks have calc-alkaline chemical characteristics consistent with parental magmas forming in a mantle wedge and erupting through a normal thickness crust (35 km). Subsequent shallowing of the downgoing Nazca plate caused the volcanic front to migrate eastward. The volcanic sequences of the middle Miocene Cerro de las Tórtolas Formation erupted at this new arc front, essentially at the Argentine border. Two stages are recognized: an older one (16-14 Ma) in which magmas appear to have erupted through a normal thickness crust (30-35 km) and a younger one (13-10 Ma) in which the steeper REE pattern suggests the magmas last equilibrated with higher pressure residual mineral assemblages in a thicker crust. Isotopic ratios in the younger group are consistent with an increase in original crustal components and crust introduced into the mantle source by forearc subduction erosion. A peak in forearc subduction erosion near 12-10 Ma is consistent with when the main part of the Juan Fernandez Ridge began to subduct beneath the region. In addition to late Miocene Tambo Formation dacitic

  19. Structure of the Lithosphere-Asthenosphere System Beneath the Juan de Fuca Plate: Results of Body Wave Imaging Using Cascadia Initiative Data

    NASA Astrophysics Data System (ADS)

    Byrnes, J. S.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    The plate-scale deployment of ocean bottom seismometers (OBS) as part of the Cascadia Initiative (CI) of NSF provides a unique opportunity to study the structure and dynamics of the lithosphere-asthenosphere system beneath an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continent. Here we present tomographic images of the seismic structure of oceanic upper mantle beneath the Juan de Fuca (JdF) and Gorda plates derived from body wave delay times. The results constrain structural anomalies beneath the JdF and Gorda spreading centers, the Blanco and Mendocino transform faults, near ridge hotspots such as Axial Seamount, and the upper mantle structure beneath the subducting oceanic lithosphere. We measured delay times of teleseismic P and S wave phases for the first two years of the CI. Our tomographic analysis assumes both isotropic and anisotropic starting models and accounts for finite-frequency effects and three-dimensional ray bending. Preliminary results indicate that the upper mantle structure beneath the JdF spreading center is asymmetric, with lower shear wave velocities beneath the Pacific plate (also the direction of ridge migration). On a regional scale, regions of lower seismic velocities beneath the JdF and Gorda spreading centers correlate with shallower ridge depths. Beneath the southern Gorda plate a low velocity anomaly is detected, which is absent to the north; this anomaly is bounded to the south by the Mendocino transform. Ongoing work includes analysis of the third year of CI data, which will improve resolution of structure and allow better definition of anomalies in the vicinity of the Blanco transform. In addition, we will combine ocean and continental data to obtain images of the Cascadia subduction zone.

  20. Contrasting two-dimensional and three-dimensional models of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.; Zyvoloski, G.

    2015-12-01

    We present results from two-dimensional and three-dimensional coupled (fluid and heat flow) simulations of ridge-flank hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. Field studies in this region demonstrate the existence of an active hydrothermal siphon operating between two seamounts separated by ~50 km, and provide quantitative constraints that help to determine which simulations are successful in replicating known properties and processes. Constraints from field observations include (a) the flow rate between the outcrops, (b) the presence of secondary convection within the basement aquifer, leading to simultaneous recharge and discharge through a single outcrop (in additional to siphon flow between outcrops), (c) direct measurements of crustal permeability in basement boreholes, and (d) the lack of a regional seafloor heat flux anomaly as a consequence of outcrop-to-outcrop circulation. New simulations include an assessment of crustal permeability and thickness, outcrop permeability, and a comparison of simulation results using different geometries. Three-dimensional simulations are more consistent with field observations than their two-dimensional counterparts and indicate a crustal aquifer of ≤300 m thick having a bulk permeability between 3×10-13 and 2×10-12 m2, values consistent with borehole measurements. In addition, we find fluid flow rates and crustal cooling efficiencies that are an order of magnitude greater in three-dimensional simulations than inferred from two-dimensional simulations using equivalent properties. These results show that three-dimensional simulations of outcrop-to-outcrop hydrothermal circulation on a ridge flank improves the geological and geometric accuracy of results, in comparison to models run in two dimensions.

  1. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    NASA Astrophysics Data System (ADS)

    Clague, David. A.; Dreyer, Brian M.; Paduan, Jennifer B.; Martin, Julie F.; Caress, David W.; Gill, James B.; Kelley, Deborah S.; Thomas, Hans; Portner, Ryan A.; Delaney, John R.; Guilderson, Thomas P.; McGann, Mary L.

    2014-08-01

    bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ˜4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ˜4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ˜4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ˜2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620-1760 yr BP and within the axial graben since ˜1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ˜2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  2. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    USGS Publications Warehouse

    Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Caress, David W; Gillespie, James B.; Kelley, Deborah S; Thomas, Hans; Portner, Ryan A; Delaney, John R; Guilderson, Thomas P.; McGann, Mary L.

    2014-01-01

    High-resolution bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ~4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ~4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ~4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ~2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620–1760 yr BP and within the axial graben since ~1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ~2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  3. Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jheng, Sin-Ya; Lien, Ren-Chieh

    2016-08-01

    Trains of large Kelvin-Helmholtz (KH) billows within the Kuroshio current at ~230 m depth off southeastern Taiwan and above a seamount were observed by shipboard instruments. The trains of large KH billows were present in a strong shear band along the 0.55 m s-1 isotach within the Kuroshio core; they are presumably produced by flow interactions with the rapidly changing topography. Each individual billow, resembling a cat's eye, had a horizontal length scale of 200 m, a vertical scale of 100 m, and a timescale of 7 min, near the local buoyancy frequency. Overturns were observed frequently in the billow cores and the upper eyelids. The turbulent kinetic energy dissipation rates estimated using the Thorpe scale had an average value of O(10-4) W kg-1 and a maximum value of O(10-3) W kg-1. The turbulence mixing induced by the KH billows may exchange Kuroshio water with the surrounding water masses.

  4. Ocean plateau-seamount origin of basaltic rocks, Angayucham terrane, central Alaska

    USGS Publications Warehouse

    Barker, F.; Jones, D.L.; Budahn, J.R.; Coney, P.J.

    1988-01-01

    The Angayucham terrane of north-central Alaska (immediately S of the Brooks Range) is a large (ca. 500 km E-W), allochthonous complex of Devonian to Lower Jurassic pillow basalt, diabase sills, gabbro plutons, and chert. The mafic rocks are transitional normal-to-enriched, mid-ocean-ridge (MORB) type tholeiites (TiO2 1.2-3.4%, Nb 7-23 ppm, Ta 0.24-1.08 ppm, Zr 69-214 ppm, and light REE's slightly depleted to moderately enriched). Geologic and geochemical constraints indicate that Angayucham terrane is the upper "skin' (ca. 3-4 km thick) of a long-lived (ca. 170-200 ma) oceanic plateau whose basaltic-gabbroic rocks are like those of seamounts of the East Pacific Rise. -Authors

  5. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Merle, S. G.; Bobbitt, A. M.; Caress, D. W.; Philip, B. T.; Kelley, D. S.; Nooner, S. L.

    2016-12-01

    Axial Seamount is the best monitored submarine volcano in the world, providing an exceptional window into the dynamic interactions between magma storage, transport, and eruption processes in a mid-ocean ridge setting. An eruption in April 2015 produced the largest volume of erupted lava since monitoring and mapping began in the mid-1980s after the shortest repose time, due to a recent increase in magma supply. The higher rate of magma replenishment since 2011 resulted in the eruption of the most mafic lava in the last 500-600 years. Eruptive fissures at the volcano summit produced pyroclastic ash that was deposited over an area of at least 8 km2. A systematic spatial distribution of compositions is consistent with a single dike tapping different parts of a thermally and chemically zoned magma reservoir that can be directly related to previous multichannel seismic-imaging results.

  6. Seamount mineral deposits--A source of rare metals for high technology industries

    USGS Publications Warehouse

    Hein, James R.; Conrad, Tracey A.; Staudigel, Hubert

    2010-01-01

    The near exponential growth in Earth’s population and the global economy puts increasing constraints on our planet’s finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining.

  7. The May 2010 submarine eruption from South Sarigan seamount, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Neal, C. A.; Searcy, C. K.; Camacho, J. T.; Aydlett, W. B.; Embley, R. W.; Trusdell, F.; Paskievitch, J. F.; Schneider, D. J.

    2010-12-01

    A sudden submarine explosive eruption occurred on May 29, 2010, from a seamount south of Sarigan Island in the Northern Mariana Islands, propelling a diffuse steam and ash cloud to high altitude. Pre-eruptive seismicity was recorded in early April by stations located on Sarigan and Anatahan Island, 42 km to the south, and indicated a source ~12-16 km south of Sarigan. On May 27-28, a change in seismicity—the appearance of tremor-like waveforms—may have marked the onset of volcanic activity. Also on May 27, an elongate patch of discolored ocean water and possible light-colored floating debris about 8-11 km south of Sarigan was observed from a helicopter. This material was likely produced during low-intensity eruptive activity, and an Information Statement from the Commonwealth of the Northern Mariana Islands (CNMI) Emergency Management Office (EMO) and USGS issued at 2353 UTC May 28 described the observation. The Guam Weather Forecast Office of the National Weather Service reported that the area of discoloration, visible on satellite images at 2313 and 2330 UTC on May 28, was about 10 km2, about twice the size of Sarigan Island. Pulses of tremor merged into a nearly continuous signal by 0305 UTC on May 29, lasting for ~4.5 hours followed by nearly 4.5 hours of quiescence. The EMO issued a declaration closing the region south of Sarigan to all local boating traffic and issued an advisory to aircraft. The explosive onset of the main plume-producing event occurred at ~1148 UTC as confirmed by seismic records on Anatahan Island, with the strongest phase ending ~1200 UTC. Soon after, the Washington Volcanic Ash Advisory Center reported an eruption cloud reaching an estimated 40,000 feet (12 km) ASL that diminished rapidly on satellite imagery suggesting it was water-vapor dominated. Winds carried the cloud southwest over Guam, and although no ash fall was reported, the cloud was visible and was detected in Aura/OMI aerosol index imagery. Biologists on Sarigan Island

  8. Evidence for a sedimentary fingerprint of an asymmetric flow field surrounding a short seamount

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Reyss, Jean-Louis; Chapman, David C.; Thomson, John; Lampitt, Richard S.

    2004-06-01

    Physical oceanographic modeling and field studies have shown that kilometer-scale seafloor elevations of comparable breadth and width (abyssal hills, knolls, seamounts) are surrounded by complex flow fields. Asymmetric flow fields, reversed flow and closed streamlines around the topographic feature (Taylor caps), and resonantly amplified tidal currents around the seamount rim potentially control near-bottom particle dynamics, particle deposition at the seafloor and, consequently, the formation of the sedimentary record. We combine numerical modeling and field data to study how such topographically controlled flow-field features are reflected in the sedimentary record. Sediment deposition on a topographically isolated abyssal knoll (height: 900 m) on the Porcupine Abyssal Plain in the Northeast Atlantic (water depth above the abyssal plain: 4850 m) was studied, (1) by comparing the spatial distribution of 210Pb fluxes, calculated from inventories of sedimentary excess 210Pb, with 210Pb input from the water column as recorded by sediment traps; and (2) by comparing sedimentary grain-size distributions and Zr/Al ratios (an indicator for contents of the heavy mineral zircon) at slope, summit and far-field sites. Given Rossby numbers ≥0.23, a fractional seamount height of ˜0.2, and the absence of diurnal tides it is concluded that an asymmetric flow field without Taylor cap and without amplified tidal currents around the seamount rim is the principal flow-field feature at this knoll. The results and conclusions are as follows: (1) Geochemical and grain-size patterns in the sedimentary record largely agree with the predicted pattern of flow intensity around the topographic elevation: with increasing current strength (erosiveness) there is evidence for a growing discrepancy between water column-derived and sediment-derived 210Pb fluxes, and for increasing contents of larger and heavier particles. The topographically controlled flow field distorts a homogeneous particle

  9. Petrologic Aspects of Seamount and Guyot Volcanism on the Ancestral Mesozoic Pacific Plate: a Review

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2007-12-01

    Hundreds of large seamounts and guyots are widely scattered almost in a "shotgun-blast" arrangement in an area about the size of the United States west of the Mississippi River on the Mesozoic Pacific plate between the Mariana Trench and the Gilbert Islands. Most of these formed between ~160-100 Ma while the Pacific plate was surrounded by spreading ridges and growing outward in all directions. There is little to no indication that the seamounts and guyots formed along linear seamount chains; existing radiometric-age data show no age progressions. The volcanoes appear to have formed in response to a uniform stress configuration across the plate, which was either not moving or moving very slowly at the time (1, 2), much like the modern Antarctic plate. When the growing plate started to encounter subduction systems in the western Pacific at ~90 Ma, consistent stress patterns began to develop, and the broad linear Gilbert and Line volcanic ridge systems began to form. Even then, however, considerable overlapping of volcanism occurred, and only the most general age progressions are evident in existing data. Petrologic data from samples obtained from dozens of volcanic summits by dredging and beneath several carbonate platforms by drilling reveal considerable diversity in development of differentiated alkalic magmatic lineages rooted in diverse parental basaltic rocks. These include transitional, alkalic and basanitic compositions, with differentiates of hawaiite, mugearite, trachyte and one phonolite. Many of the basaltic rocks are partly to significantly transformed by alteration under oxidative conditions (dredged rocks) and both oxidative and non-oxidative conditions (drilled rocks). This can make estimations of mantle geochemical provenance difficult. Nevertheless, the province has been linked by backtracking techniques to the modern SOPITA region of the South Pacific (3), and its rocks show enrichments in trace elements and isotopic characteristics similar to

  10. Subduction of Louisville Ridge seamounts: Effects on Tonga-Kermadec Trench and forearc morphology and seismic structure

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Peirce, C.; Funnell, M.; Paulatto, M.; Watts, A. B.; Grevemeyer, I.; Bassett, D.; Hunter, J.

    2013-12-01

    Geophysical profiling normal and oblique to the Tonga-Kermadec Trench between 23° and 28° S highlights forearc and trench deformation structures in the vicinity of the subducting Louisville Ridge. A fast southwards migration of the ridge-trench collision zone (~180 km/myr), and the obliquity of the seamount chain to the trench make this an ideal case study for the effects of seamount subduction on lithospheric structure. Wide-angle and multichannel seismic, swath bathymetry and potential field data on four profiles are used to image seafloor and crustal structure. The study area covers three main deformation zones from north to south: post-, current and pre-seamount subduction. Mo'unga Seamount lies in the centre of the trench at the collision zone creating a disparity between the geomorphic and tectonic trench locations and broadening the trench floor. The geomorphic trench, the deepest part of the collision zone, is seaward of the seamount at the base of a graben formed by extensional bending faults on the down-going Pacific Plate. The true plate boundary lies ~16 km west, on the arcward side of Mo'unga Seamount, where a detachment fault separates forearc from Pacific Plate-derived trench fill. The steepness of the detachment fault indicates that the impinging seamount induces arcward rotation of the lower trench slope. Arcward rotation is also observed in the dipping sedimentary layers of the mid-slope basin. As no unconformable overlying sediments are observed, the deformation is inferred to be recent and ongoing. There is a southward decrease in the slope angle of the inner-trench wall and this is reflected in the style of extensional deformation structures in the mid-slope basin. A 30 km wide basin of distributed deformation on the shallow dipping mid-trench slope is observed in the south and a 10 km wide, ~2 km deep, fault-bounded basin on the steeply dipping mid-trench slope is observed in the collision zone and to the north. A greater degree of tectonic

  11. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Holden, Caroline; Power, William; Wang, Xiaoming; Downes, Gaye

    2014-07-01

    Tsunami earthquakes generate much larger tsunami than their surface wave magnitude would suggest and are a problem for tsunami warning systems. They are often not accompanied by intense or even strong ground shaking and hence do not provide a natural warning for self-evacuation. The lesser-known 1947 Offshore Poverty Bay and Tolaga Bay earthquakes along the east coast of the North Island, New Zealand share many characteristics with other well-known tsunami earthquakes (including low amplitude shaking, long durations and anomalously large tsunami), however these two New Zealand events are rare in that their source area has been imaged directly by long-offset 2D seismic reflection profiles. In this contribution we propose a source model for the 1947 Offshore Poverty Bay tsunami earthquake, recognising that the hypocentre occurs in a region where seismic reflection and magnetic data support the existence of a shallow (<10 km) subducted seamount updip of an area that experiences slow slip events. We propose a fault source model for the 1947 Offshore Poverty Bay event with two potential slip scenarios: i) uniform slip of 2.6 m across the fault; or ii) variable slip with slip of up to 5-6 m in the region of a more strongly geodetically coupled subducted seamount. Both the uniform and variable slip models require an unusually low rupture velocity of 150-300 m/s in order to model regional and teleseismic seismograms. Tsunami modelling shows that tsunami run-up heights are more than doubled when low rupture speeds of 150-300 m/s are employed, rather than assuming instantaneous rupture. This study suggests that subducted topography can cause the nucleation of up to M∼7 earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and their role in seismic hazard should not be under-estimated.

  12. Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Sylvan, Jason B.; Wankel, Scott D.; LaRowe, Douglas E.; Charoenpong, Chawalit N.; Huber, Julie A.; Moyer, Craig L.; Edwards, Katrina J.

    2017-02-01

    The role of nitrogen cycling in submarine hydrothermal systems is far less studied than that of other biologically reactive elements such as sulfur and iron. In order to address this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, Hawaii, using a combination of biogeochemical and isotopic measurements, bioenergetic calculations and analysis of the prokaryotic community composition in venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013. Concentrations of NH4+ were positively correlated to dissolved Si and negatively correlated to NO3- + NO2-, while NO2- was not correlated to NO3- + NO2-, dissolved Si or NH4+. This is indicative of hydrothermal input of NH4+ and biological mediation influencing NO2- concentrations. The stable isotope ratios of NO3- (δ15N and δ18O) was elevated with respect to background seawater, with δ18O values exhibiting larger changes than corresponding δ15N values, reflecting the occurrence of both production and reduction of NO3- by an active microbial community. δ15N-NH4+ values ranged from 0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation as well. Bioenergetic calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- coupled to sulfide and iron oxidation could provide energy to microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in the fluids reveals groups known to participate in denitrification and N-fixation. Taken together, our data support the hypothesis that microbes are mediating N-based redox processes in venting hydrothermal fluids at Loihi Seamount.

  13. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  14. New, high resolution swath bathymetry of Gettysburg and Ormonde Seamounts (Gorringe Bank, eastern Atlantic) and first geological results

    NASA Astrophysics Data System (ADS)

    Alteriis, G. De.; Passaro, S.; Tonielli, R.

    2003-09-01

    High resolution swath bathymetry of shallow water (< 200 m) oceanic seamounts is a relatively rare issue. During the recent Gorringe_2003 cruise over the Gorringe Bank (Eastern Atlantic) we collected multibeam bathymetry on the bank’s two shallow summits, Gettysburg and Ormonde in the 25/ 400m depth range at a resolution rarely achieved over an oceanic seamount. We also carried out bottom samplings and ROV dives in the same bathymetric interval. The acquisition parameters and the characteristics of the echosounder employed allowed to generate a Digital Terrain Model (DTM) with metric spatial resolution upto 75 100 m depths. To ensure proper tidal corrections a tide-gauge was deployed at sea-bottom during the survey. DTM reveals for the Gettysburg Seamount an almost perfectly circular summit resulting from the blanket of bioclastic sediments over an igneous ‘core’ consisting of sheared and foliated serpentinites. The core is dissecated by N 10° W trending ridges elevating some tens of metres and filled in between by bioclastic sands. Both foliation and ridge patterns seem related to primary igneous fabric rather than later structural deformation. The overall circular shape confirms the origin of the seamount as a mantle serpentinite diapir in analogy with similar, but subduction-related, circular seamounts observed in the Bonin Trench (western Pacific). In contrast the Ormonde elongated summit follows the regional tectonic trend with a N 60° E active (seismogenic?) fault on its southeastern flank. Its basement morphology corresponds to the outcrops of igneous rocks chiefly consisting of gabbros, volcanic rocks and dyke intrusions. On both seamounts topographic profiles show that the ‘shelf’ area is somewhat convex rather than flat like that of ‘Pacific type’ guyots and is bordered by a depositional, locally erosional shelf break, located between 170 and 130 m. Various terraced surfaces and some geological evidence confirm previous observations and

  15. In Drosophila, don juan and don juan like encode proteins of the spermatid nucleus and the flagellum and both are regulated at the transcriptional level by the TAF II80 cannonball while translational repression is achieved by distinct elements.

    PubMed

    Hempel, Leonie U; Rathke, Christina; Raja, Sunil Jayaramaiah; Renkawitz-Pohl, Renate

    2006-04-01

    The genes don juan (dj) and don juan like (djl) encode basic proteins expressed in the male germline. Both proteins show a similar expression pattern being localized in the sperm heads during chromatin condensation and along the flagella. Prematurely expressed Don Juan-eGFP and Myc-Don Juan Like localize to the cytoplasm of spermatocytes and in mitochondrial derivatives from the nebenkern stage onward suggesting that both proteins associate with the mitochondria along the flagella in elongated spermatids. Premature expression of Myc-Don Juan Like does not impair spermatogenesis where-as Don Juan-eGFP when prematurely expressed causes male sterility as spermatids fail to individualize. In spite of the sequence identity of 72% on the nucleotide level and 42% on the protein level, the presumptive promoter regions and the untranslated regions of the mRNA are diverged. Our in vivo analysis revealed that don juan and don juan like are transcriptionally and translationally controlled by distinct short cis regulatory regions. Transcription of don juan and don juan like depends on the male germ line specific TAF(II)80, Cannonball (Can). Translational repression elements for both mRNAs are localized in the 5' UTR and are capable to form distinct secondary structures in close proximity to the translational initiation codon.

  16. Bedrock aquifers of eastern San Juan County, Utah

    USGS Publications Warehouse

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The stu<¥ area is al:x>dy area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  17. Local Earthquake Distribution Off Valparaiso, Central Chile

    NASA Astrophysics Data System (ADS)

    Thierer, P. O.; Tilmann, F.; Flueh, E. R.; Kopp, H.; Comte, D.

    2003-04-01

    The SPOC experiment was carried out as a combined on- /offshore experiment using FS SONNE (cruise SO 161) to investigate the effects of subducting seamounts and fracture zones on the seismicity and structure of the Central Chilean margin off Valparaiso, Chile. The working area is characterised by the ongoing subduction of the oceanic Nazca Plate under the South American continent and shows highly segmentation. North of Valparaiso the subduction angle is very low (flat slab) and we observe only minor sediment input into the trench. In contrast we observe a steep dip angle and high sedimentation rates in the south. Segment boundaries commonly coincide with e.g. bathymetric highs as in this case the Juan Fernandez Ridge which interrupts the lateral, south-north going material flow along the trench. Local earthquake monitoring was carried out for a period of ten weeks using two marine subarrays totally comprising 23 ocean bottom instruments (OBH and OBS). Seismological land data from the Central Chilean Network (CCN) and a number of temporary land stations supplement the marine data set. We present results of about 600 hypocenter determinations detected on the marine OBH/S recordings and the temporary land stations. The hypocenter distribution shows a considerable seismic activity below the upper part of the continental margin. Due to the geometry of the arrays which focus on the transitional domain of the slope we can map the seaward termination of the seismogenic zone using a compilation of both data sets. The southern marine subarray registered a swarm of shallow earthquakes, located on top of the already subducted Topocalma Knoll. A relation to this seamount subduction is strongly indicated. Next to the Juan Fernandez Seamount on the outer rise, we observe considerable seismic activity.

  18. Diagnostic electron microscopy and the influence of Dr. Juan Rosai.

    PubMed

    Wick, Mark R

    2016-09-01

    Transmission electron microscopy (TEM) was introduced by Ruska and Knoll as a laboratory technique in 1933. Thereafter, several decades passed before the methods required for its optimal implementation were fully developed. Early uses of TEM were in Botany, rather than in Medicine; however, isolated publications did catalog the ultrastructural characteristics of several individual human tumor types. Finally, in 1968, Rosai and Rodriguez authored an important article, introducing the concept that TEM could be used for the differential diagnosis of histologically similar neoplasms. This publication heralded the steadily increasing application of TEM in anatomic pathology over the following decade, including continuing contributions by Dr. Juan Rosai. This brief review summarizes his influence on clinical electron microscopy, and lists some of the lesions for which that procedure is still a useful means of analysis.

  19. Central San Juan caldera cluster: regional volcanic framework

    USGS Publications Warehouse

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  20. Sea level Variability and Juan de Fuca Bathymetry

    NASA Astrophysics Data System (ADS)

    Huybers, P. J.; Boulahanis, B.; Proistosescu, C.; Langmuir, C. H.; Carbotte, S. M.; Katz, R. F.

    2015-12-01

    That deglaciation influences mid-ocean ridge volcanism is well established for Iceland, where depressurization associated with melting a ~2 km ice cap led to order of magnitude increases in volcanism during the last deglaciation. The case was also made that the more subtle ~100 m changes in sea level that accompany glacial cycles have identifiable implications for undersea mid-ocean ridge systems using both models and data from the Australian-Antarctic Ridge (Crowley et al., 2015). Sea level rising at ~1 cm/year during deglaciation leads to an expectation of ~10% decreases in melt production at ridges, given mantle upwelling rates of ˜3 cm/yr at intermediate spreading ridges and mantle density being ~3 times that of seawater. The implications of variations in melt production for bathymetry, however, involve numerous considerations, including whether melt signals are cancelled within the melt column, appreciably alter accretionary or fault processes, and have identifiable surface expressions. Further empirical assessment of bathymetry is thus useful for purposes of confirming patterns and constraining processes. Here we report on spectral analyses of bathymetry recently acquired from the Juan de Fuca ridge between 44°30'N and 45°15'N during the SeaVOICE expedition. Multibeam swath sonar data were acquired with an EM122 sonar insonfiying seafloor to crustal ages of ˜2 ma with 35 m spatial resolution. We examine (1.) the statistical significance of concentrations of bathymetric variability at the 100 ky, 41 ky, and 23 ky periods characteristic of late-Pleistocene sea level variability; (2.) whether sea level responses are primarily at 41 ky periods in crust accreted during the early Pleistocene, when global sea level variations were primarily at this period; and (3.) if sea level responses are superimposed on bathymetry variations or, instead, align with fault features. We also note that Juan de Fuca's proximity to the Cordilleran Ice Sheet implies that regional

  1. The fate of Don Juan: the myth and the man.

    PubMed

    Brockman, D D

    1992-01-01

    The literary character of Don Juan has offered an opportunity to study certain characteristics in an adult man who began a behavior pattern in adolescence that resembled the legendary and mythical Don Juan. Power and dominating control issues were paramount defenses against a narcissistic depression in this man as seen in his relationships with women and in the transference relationship with me. The transference data have been put to use in providing a formulation for an explanation of the phenomena observed. Other clinical data concerning women and some homosexual men are presented in a more abbreviated fashion. This research effort is a retrospective construction of the dynamics that led to this man's neurosis. In my opinion, a self psychological interpretation offers the more felicitous fit than the classic oedipal interpretation. In fact, at first I tried interpretations based on classic oedipal theory--concerning issues of competition with me as father and fear of retaliation and castration--but this strategy resulted in little or no response. More important than symptomatic response, however, the data minimally and weakly supported those interpretations. To be sure, there were and still are competitive and phallic oedipal issues. Moreover, when the patient's mother died, he was drawn into a closer relationship with his father, a relationship accompanied by wishes and fantasies of taking his mother's place. These wishes were quite real, but, as the analysis preceeded, this negative oedipal configuration occupied a much less prominent place in the dynamics. Power and control issues dominated the clinical picture, masking a depression emanating from a deeper narcissistic focus. Interpretation of these narcissistic issues provided my patient with the relief he was seeking, while the main effect of the antidepressant medication was to help him sleep. By giving him something, a deeply seated wish was gratified and was in keeping with an idealized mother

  2. Deglaciation and postglacial timberline in the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Carrara, P.E.; Mode, W.N.; Rubin, M.; Robinson, S.W.

    1984-01-01

    Lake Emma, which no longer exists because of a mining accident, was a tarn in a south-facing cirque near the headwaters of the Animas River in the San Juan Mountains of southwestern Colorado. During the Pinedale glaciation, this area was covered by a large transection glacier centered over the Lake Emma region. Three radiocarbon dates on basal organic sediment from Lake Emma indicate that by ca. 15,000 yr B.P. this glacier, one of the largest in the southern Rocky Mountains, no longer existed. Twenty-two radiocarbon dates on Picea and Abies krummholz fragments in the Lake Emma deposits indicate that from ca. 9600 to 7800 yr B.P., from 6700 to 5600 yr B.P., and at 3100 yr B.P. the krummholz limit was at least 70 m higher than present. These data, in conjunction with Picea:Pinus pollen ratios from both the Lake Emma site and the Hurricane Basin site of J. T. Andrews, P. E. Carrara, F. B. King, and R. Struckenrath (1975, Quaternary Research 5, 173-197) suggest than from ca. 9600 to 3000 yr B.P. timberline in the San Juan Mountains was higher than present. Cooling apparently began ca. 3000 yr B.P. as indicated by decreases in both the percentage of Picea pollen and Picea:Pinus pollen ratios at the Hurricane Basin site (Andrews et al., 1975). Cooling is also suggested by the lack of Picea or Abies fragments younger than 3000 yr B.P. at either the Lake Emma or the Hurricane Basin site. ?? 1984.

  3. Don Juan Basin, Wright Valley, Antarctica: Model for Surface Processes on Mars

    NASA Astrophysics Data System (ADS)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Patel, S.; Koeberl, C.

    2014-09-01

    Mineral, chemical, and soluble salt composition of drill core samples from Don Juan Basin, Wright Valley, Antarctica, indicate that the formation of the most saline terrestrial pond may include groundwater discharge and near surface flow processes.

  4. Letter to Silverton and San Juan County Regarding Potential Superfund Listing

    EPA Pesticide Factsheets

    Feb. 12, 2016 Update: EPA added a letter to the Town of Silverton and San Juan County regarding the agency’s commitment to the Town and County’s involvement during a potential Superfund listing process.

  5. Juan de Fuca plate: Aseismic subduction at 1. 8 cm/yr

    SciTech Connect

    Acharya, H.

    1981-11-01

    Volcanic activity in the Cascades in historic times suggests that the Juan de Fuca plate is underthrusting aseismically at about 1.8 cm/yr. This rate of underthrusting is identical to the rate computed from sediment studies.

  6. Digital image processing of Seabeam bathymetric data for structural studies of seamounts near the East Pacific Rise

    NASA Technical Reports Server (NTRS)

    Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.

    1984-01-01

    The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.

  7. Major and minor element geochemistry of deep-sea sediments in the Azores Platform and southern seamount region.

    PubMed

    Palma, Carla; Oliveira, Anabela; Valença, Manuela; Cascalho, João; Pereira, Eduarda; Lillebø, Ana I; Duarte, Armando C; Pinto de Abreu, Manuel

    2013-10-15

    The Azores Platform and the Irving and Great Meteor seamounts south of the archipelago (38°N-29°N) have rarely been studied geochemically, a fact which is surprising given that they represent the south-eastern limit of region V outlined in the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention). The main aim of the present work was therefore to characterise the spatial variability of major and minor elements in deep-sea sediment cores from these two regions. XRD and geochemical analyses revealed that whereas the Azores Platform sediments are composed of a mixture of biogenic and detrital volcanic material, those at the seamounts are characterised by carbonated biogenic remains. The latter sediments were found to contain very low amounts of volcanic or hydrothermal detrital material, being almost entirely comprised of CaCO3 (more than 80%).

  8. Distribution and habitat association of benthic fish on the Condor seamount (NE Atlantic, Azores) from in situ observations

    NASA Astrophysics Data System (ADS)

    Porteiro, Filipe M.; Gomes-Pereira, José N.; Pham, Christopher K.; Tempera, Fernando; Santos, Ricardo S.

    2013-12-01

    Distribution of fish assemblages and habitat associations of demersal fishes on the Condor seamount were investigated by analyzing in situ video imagery acquired by the Remotely-Operated Vehicles ROV SP300 and Luso 6000. A total of 51 fish taxa from 32 families were inventoried. Zooplanktivores (10 species) were the most abundant group followed by carnivores (23 species) and benthivores (18 species). Non-metric multidimensional scaling (MDS) analyses were performed on dive segments to visualize the spatial relationships between species and habitat type, substrate type or depth, with depth being the most significant parameter influencing fish distribution. Four major fish groups were identified from their vertical distribution alone: summit species (generally to <300 m depth); broad ranging species (ca. from 200 to 800 m); intermediate ranging slope species (ca. from 400 m to 800-850 m); and deeper species (800-850-1100 m). The fish fauna observed at the summit is more abundant (15.2 fish/100 m2) and habitat-specialized than the fish observed along the seamount slope. Down the seamount slope, the summit fish assemblage is gradually replaced as depth increases, with an overall reduction in abundance. On the summit, three species (Callanthias ruber, Anthias anthias and Lappanella fasciata) had higher affinity to coral habitats compared to non-coral habitats. A coherent specialized fish assemblage associated to coral habitats could not be identified, because most species were observed also in non-coral areas. On the seamount's slope (300-1100 m), no relationship between fish and coral habitats could be identified, although these might occur at larger scales. This study shows that in situ video imagery complements traditional fishing surveys, by providing information on unknown or rarely seen species, being fundamental for the development of more comprehensive ecosystem-based management towards a sustainable use of the marine environment.

  9. Demersal Fish Assemblages on Seamounts and Other Rugged Features in Deep Waters of the Greater and Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Quattrini, A.; Demopoulos, A. W.

    2015-12-01

    Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the deep (>200 m) assemblages remain poorly known due to the technical challenges associated with focused surveys at these greater depths. The numerous geological features (e.g., seamounts, island ridges, banks) that punctuate the insular margins increase habitat heterogeneity, which may lead to enhanced diversity of the deep demersal fish community in the region. Recent (2013-2014) expeditions in the area using the E/V Nautilus and the ROV Hercules surveyed fish communities during 17 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other environmental factors. Preliminary analyses suggested that assemblage differences are influenced by depth, dissolved oxygen, and differences in benthic microhabitat (i.e., soft substrate, rock outcrop, slope angle). Notably, both abundance and diversity of fishes was low at depths >700 m on seamounts in the Anegada Passage. This pattern is likely due to limited food supply in the region. ROV surveys further elucidated the biogeography of numerous species, as several range and depth extensions were documented. For instance, the morid Lepidion sp., previously known only from the eastern Atlantic and the western North Atlantic, was documented on Norrôit Seamount. A new species, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Also, many common, mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions influencing local-scale distribution of deep-sea fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic

  10. Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    PubMed Central

    Sinniger, Frederic; Ocaña, Oscar V.; Baco, Amy R.

    2013-01-01

    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals. PMID:23326345

  11. Diversity of zoanthids (anthozoa: hexacorallia) on Hawaiian seamounts: description of the Hawaiian gold coral and additional zoanthids.

    PubMed

    Sinniger, Frederic; Ocaña, Oscar V; Baco, Amy R

    2013-01-01

    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals.