Science.gov

Sample records for junction protein expression

  1. AB223. Expression of tight junction proteins in rat vagina

    PubMed Central

    Oh, Kyung Jin; Lee, Hyun-Suk; Chung, Ho Suck; Ahn, Kyu Youn; Park, Kwangsung

    2014-01-01

    Aim Tight junction plays a role in apical cell-to-cell adhesion and epithelial polarity. In this study, we investigated the expression of tight junction proteins, such as Claudin-1, zonula occludens (ZO)-1, junction adhesion molecule (JAM)-A, and occludin in rat vagina. Methods Female Sprague-dawley rats (230-240 g, n=20) were divided into two groups: control (n=10) and bilateral ovariectomy (n=10). The expression and cellular localization of claudin-1, ZO-1, JAM-A, and occludin were determined in each group by immunohistochemistry and Western blot. Results Immunolabeling of ZO-1 was mainly expressed in the capillaries and venules of the vagina. Claudin-1, JAM-A, and occludin were expressed in the epithelium of the vagina. The immunoreactivity and protein expression of claudin-1 was significantly decreased in the ovariectomy group compared with the control group. Conclusions Our results suggest that tight junction proteins may have an important role in the vagina. Further studies are needed to clarify the role of each tight junction protein on vaginal lubrication.

  2. Somatostatin regulates tight junction proteins expression in colitis mice.

    PubMed

    Li, Xiao; Wang, Qian; Xu, Hua; Tao, Liping; Lu, Jing; Cai, Lin; Wang, Chunhui

    2014-01-01

    Tight junction plays a critical role in intestinal defence. The alteration and perturbation of tight junction proteins could induce intestine barrier damage, and lead to the malabsorption of electrolytes and water. Previous studies had showed that colonic infection and inflammation could lead to the alteration of tight junction function, and somatostatin could protect intestinal epithelia. Thus, this study could explore that whether somatostatin could regulate tight junction in colitis mice. Colitis mice with diarrhea were induced by Citrobacter rodentium (CR) and Dextran sulfate sodium (DSS). In CR infected model, cladudin-1 and claudin-3 expression significantly decreased compared with the control mice (P<0.05); after octreotide treatment, claudin-1 and claudin-3 expression significantly increased compared with untreated CR infected mice (P<0.05). In DSS colitis model, occludin and claudin-3 expression significantly decreased compared with the control mice (P<0.05); and octreotide treatment could only significantly upregulate claudin-3 expression compared with untreated DSS colitis mice (P<0.05). To testify our results in vivo, we repeated the models in caco-2 cells by exposed with enteropathogenic Escherichia coli (E. Coli) and Tumor necrosis factor α (TNF-α). The results in vitro were consistent with in vivo study. The results suggested that somatostatin play a role in intestinal barrier protection by modulating tight junction proteins expression.

  3. Somatostatin regulates tight junction proteins expression in colitis mice

    PubMed Central

    Li, Xiao; Wang, Qian; Xu, Hua; Tao, Liping; Lu, Jing; Cai, Lin; Wang, Chunhui

    2014-01-01

    Tight junction plays a critical role in intestinal defence. The alteration and perturbation of tight junction proteins could induce intestine barrier damage, and lead to the malabsorption of electrolytes and water. Previous studies had showed that colonic infection and inflammation could lead to the alteration of tight junction function, and somatostatin could protect intestinal epithelia. Thus, this study could explore that whether somatostatin could regulate tight junction in colitis mice. Colitis mice with diarrhea were induced by Citrobacter rodentium (CR) and Dextran sulfate sodium (DSS). In CR infected model, cladudin-1 and claudin-3 expression significantly decreased compared with the control mice (P < 0.05); after octreotide treatment, claudin-1 and claudin-3 expression significantly increased compared with untreated CR infected mice (P < 0.05). In DSS colitis model, occludin and claudin-3 expression significantly decreased compared with the control mice (P < 0.05); and octreotide treatment could only significantly upregulate claudin-3 expression compared with untreated DSS colitis mice (P < 0.05). To testify our results in vivo, we repeated the models in caco-2 cells by exposed with enteropathogenic Escherichia coli (E. Coli) and Tumor necrosis factor α (TNF-α). The results in vitro were consistent with in vivo study. The results suggested that somatostatin play a role in intestinal barrier protection by modulating tight junction proteins expression. PMID:24966923

  4. Reciprocal influence of connexins and apical junction proteins on their expressions and functions

    PubMed Central

    Derangeon, Mickaël; Spray, David C.; Bourmeyster, Nicolas; Sarrouilhe, Denis; Hervé, Jean-Claude

    2009-01-01

    Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another. PMID:19046940

  5. Switch in Gap Junction Protein Expression is Associated with Selective Changes in Junctional Permeability During Keratinocyte Differentiation

    NASA Astrophysics Data System (ADS)

    Brissette, Janice L.; Kumar, Nalin M.; Gilula, Norton B.; Hall, James E.; Dotto, G. Paolo

    1994-07-01

    Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of α_1 (connexin 43) and β_2 (connexin 26) gap junction proteins is down-modulated, whereas that of β_3 (connexin 31) and β_4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process.

  6. Exogenous expression of the amino-terminal half of the tight junction protein ZO-3 perturbs junctional complex assembly.

    PubMed

    Wittchen, E S; Haskins, J; Stevenson, B R

    2000-11-13

    The functional characteristics of the tight junction protein ZO-3 were explored through exogenous expression of mutant protein constructs in MDCK cells. Expression of the amino-terminal, PSD95/dlg/ZO-1 domain-containing half of the molecule (NZO-3) delayed the assembly of both tight and adherens junctions induced by calcium switch treatment or brief exposure to the actin-disrupting drug cytochalasin D. Junction formation was monitored by transepithelial resistance measurements and localization of junction-specific proteins by immunofluorescence. The tight junction components ZO-1, ZO-2, endogenous ZO-3, and occludin were mislocalized during the early stages of tight junction assembly. Similarly, the adherens junction proteins E-cadherin and beta-catenin were also delayed in their recruitment to the cell membrane, and NZO-3 expression had striking effects on actin cytoskeleton dynamics. NZO-3 expression did not alter expression levels of ZO-1, ZO-2, endogenous ZO-3, occludin, or E-cadherin; however, the amount of Triton X-100-soluble, signaling-active beta-catenin was increased in NZO-3-expressing cells during junction assembly. In vitro binding experiments showed that ZO-1 and actin preferentially bind to NZO-3, whereas both NZO-3 and the carboxy-terminal half of the molecule (CZO-3) contain binding sites for occludin and cingulin. We hypothesize that NZO-3 exerts its dominant-negative effects via a mechanism involving the actin cytoskeleton, ZO-1, and/or beta-catenin.

  7. Exogenous Expression of the Amino-Terminal Half of the Tight Junction Protein Zo-3 Perturbs Junctional Complex Assembly

    PubMed Central

    Wittchen, Erika S.; Haskins, Julie; Stevenson, Bruce R.

    2000-01-01

    The functional characteristics of the tight junction protein ZO-3 were explored through exogenous expression of mutant protein constructs in MDCK cells. Expression of the amino-terminal, PSD95/dlg/ZO-1 domain-containing half of the molecule (NZO-3) delayed the assembly of both tight and adherens junctions induced by calcium switch treatment or brief exposure to the actin-disrupting drug cytochalasin D. Junction formation was monitored by transepithelial resistance measurements and localization of junction-specific proteins by immunofluorescence. The tight junction components ZO-1, ZO-2, endogenous ZO-3, and occludin were mislocalized during the early stages of tight junction assembly. Similarly, the adherens junction proteins E-cadherin and β-catenin were also delayed in their recruitment to the cell membrane, and NZO-3 expression had striking effects on actin cytoskeleton dynamics. NZO-3 expression did not alter expression levels of ZO-1, ZO-2, endogenous ZO-3, occludin, or E-cadherin; however, the amount of Triton X-100–soluble, signaling-active β-catenin was increased in NZO-3–expressing cells during junction assembly. In vitro binding experiments showed that ZO-1 and actin preferentially bind to NZO-3, whereas both NZO-3 and the carboxy-terminal half of the molecule (CZO-3) contain binding sites for occludin and cingulin. We hypothesize that NZO-3 exerts its dominant-negative effects via a mechanism involving the actin cytoskeleton, ZO-1, and/or β-catenin. PMID:11076967

  8. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina.

    PubMed

    Oh, Kyung-Jin; Lee, Hyun-Suk; Ahn, Kyuyoun; Park, Kwangsung

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230-240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication.

  9. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina

    PubMed Central

    Oh, Kyung-Jin; Ahn, Kyuyoun

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230–240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication. PMID:27127786

  10. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    PubMed Central

    Wang, Hui; Zhao, Jun-Xing; Hu, Nan; Ren, Jun; Du, Min; Zhu, Mei-Jun

    2012-01-01

    AIM: To investigate the effect of side-stream smoking on gut microflora composition, intestinal inflammation and expression of tight junction proteins. METHODS: C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks. Cecal contents were collected for microbial composition analysis. Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins. RESULTS: Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria, Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus), Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice. Meanwhile, side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα, accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6. The contents of tight junction proteins, claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking. In addition, side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling, while inhibiting AMP-activated protein kinase in the large intestine. CONCLUSION: Side-stream smoking altered gut microflora composition and reduced the inflammatory response, which was associated with increased expression of tight junction proteins. PMID:22611310

  11. Grainy head promotes expression of septate junction proteins and influences epithelial morphogenesis.

    PubMed

    Narasimha, Maithreyi; Uv, Anne; Krejci, Alena; Brown, Nicholas H; Bray, Sarah J

    2008-03-15

    Transcription factors of the Grainy head (Grh) family are required in epithelia to generate the impermeable apical layer that protects against the external environment. This function is conserved in vertebrates and invertebrates, despite the differing molecular composition of the protective barrier. Epithelial cells also have junctions that create a paracellular diffusion barrier (tight or septate junctions). To examine whether Grh has a role in regulating such characteristics, we used an epidermal layer in the Drosophila embryo that has no endogenous Grh and lacks septate junctions, the amnioserosa. Expression of Grh in the amnioserosa caused severe defects in dorsal closure, a process similar to wound closure, and induced robust expression of the septate junction proteins Coracle, Fasciclin 3 and Sinuous. Grh-binding sites are present within the genes encoding these proteins, consistent with them being direct targets. Removal of Grh from imaginal disc cells caused a reduction in Fasciclin 3 and Coracle levels, suggesting that Grh normally fine tunes their epithelial expression and hence contributes to barrier properties. The fact that ectopic Grh arrests dorsal closure also suggests that this dynamic process relies on epithelia having distinct adhesive properties conferred by differential deployment of Grh.

  12. Expression of gap junction protein connexin 43 in bovine urinary bladder tumours.

    PubMed

    Corteggio, A; Florio, J; Roperto, F; Borzacchiello, G

    2011-01-01

    The aetiopathogenesis of urinary bladder tumours in cattle involves prolonged ingestion of bracken fern and infection by bovine papillomavirus types 1 or 2 (BPV-1/2). The oncogenic activity of BPV is largely associated with the major oncoprotein E5. Gap junctions are the only communicating junctions found in animal tissues and are composed of proteins known as connexins. Alterations in connexin expression have been associated with oncogenesis. The present study investigated biochemically and immunohistochemically the expression of connexin 43 in samples of normal (n=2), dysplastic (n=3) and neoplastic (n=23) bovine urothelium. The tumours included 10 carcinomas in situ, five papillary urothelial carcinomas and eight invasive urothelial carcinomas. Normal and dysplastic urothelium had membrane expression of connexin 43, but this was reduced in samples of carcinoma in situ. Papillary urothelial carcinomas showed moderate cytoplasmic and membrane labelling, while invasive carcinoma showed loss of connexin 43 expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets.

    PubMed

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0-0.2%) in diets. The high dose SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects.

  14. Changes in gap junction protein (connexin 32) gene expression during rat liver carcinogenesis.

    PubMed

    Fitzgerald, D J; Mesnil, M; Oyamada, M; Tsuda, H; Ito, N; Yamasaki, H

    1989-10-01

    A rat liver gap junction (GJ) cDNA probe that detects mRNA encoding the 32 Kd GJ-protein (connexin 32) was employed to study GJ-protein gene expression in rat liver tumors induced by a single exposure to diethylnitrosamine (DEN) followed by exposure to 2-acetylaminofluorene (AAF)/CCl4/AAF or induced by systemic administration of N-ethyl-N-hydroxyethylnitrosamine (EHEN). All carcinomas generated by these carcinogens showed markedly reduced levels of GJ-protein mRNA. This may indicate that GJ-protein levels and gap-junctional intercellular communication (GJIC) capacity are also severely compromised. Moreover, all hyperplastic nodules also showed a reduced level of GJ-protein mRNA. Taken together with our earlier finding that the liver tumor promoter phenobarbital inhibits GJ-protein gene expression, these results suggest that deranged GJIC is a relatively early event in liver multistage carcinogenesis. A range of other cDNA probes was also used to characterize gene expression in the DEN-induced tumors. Induction of expression was seen for glutathione S-transferase (placental form) (GST-P), gamma-glutamyltranspeptidase (GGT), and c-raf but not for c-Ha-ras or c-myc.

  15. Expression of apical junction complex proteins in colorectal mucosa of miniature dachshunds with inflammatory colorectal polyps

    PubMed Central

    YOKOYAMA, Nozomu; OHTA, Hiroshi; KAGAWA, Yumiko; LEELA-ARPORN, Rommaneeya; DERMLIM, Angkhana; NISA, Khoirun; MORITA, Tomoya; OSUGA, Tatsuyuki; SASAKI, Noboru; MORISHITA, Keitaro; NAKAMURA, Kensuke; TAKIGUCHI, Mitsuyoshi

    2017-01-01

    We examine the expression of tight junction and adherence junction proteins in the colorectal mucosa of miniature dachshunds (MDs) with inflammatory colorectal polyps (ICRPs). Colorectal mucosa samples were endoscopically obtained from 8 MDs with ICRPs and 8 control dogs for immunoblotting. Paraffin-embedded tissues of surgically resected inflamed lesions from another 5 MDs with ICRPs and full-thickness colorectal specimens from 5 healthy beagles were obtained for immunohistochemistry. The expression patterns of claudin-1, -2, -3, -4, -5, -7 and -8, E-cadherin and β-catenin were analyzed in the non-inflamed mucosa and inflamed mucosa of ICRPs and colorectal mucosa of control dogs by immunoblotting. The localization of these proteins in the inflamed lesions was analyzed by immunohistochemistry. The expressions of each of claudin, E-cadherin and β-catenin were not significantly different between control dogs and non-inflamed colonic mucosa from MDs with ICRPs. In contrast, only E-cadherin and β-catenin were detected in the inflamed lesions of MDs with ICRPs. By immunohistochemistry, claudin-2, -3, -4, -5 and -7, E-cadherin and β-catenin were expressed in the colorectal epithelium within the inflamed mucosa, but not in granulation tissue. Distributions of claudin-2, -3, -4, -5, and -7, E-cadherin and β-catenin in the colonic epithelium were not different between MDs with ICRPs and control dogs. These results indicated that no significant alteration was detected in several tight junction or adherence junction proteins expression in the colorectal epithelium of ICRPs. PMID:28090006

  16. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    PubMed Central

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell

  17. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature

    PubMed Central

    Yokel, Robert A.; Hennig, Bernhard

    2009-01-01

    Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity. PMID:18830698

  18. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature.

    PubMed

    Chen, Lei; Yokel, Robert A; Hennig, Bernhard; Toborek, Michal

    2008-12-01

    Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity.

  19. Gap junction protein expression and cellularity: comparison of immature and adult equine digital tendons

    PubMed Central

    Stanley, Rachael L; Fleck, Roland A; Becker, David L; Goodship, Allen E; Ralphs, Jim R; Patterson-Kane, Janet C

    2007-01-01

    Injury to the energy-storing superficial digital flexor tendon is common in equine athletes and is age-related. Tenocytes in the superficial digital flexor tendon of adult horses appear to have limited ability to respond adaptively to exercise or prevent the accumulation of strain-induced microdamage. It has been suggested that conditioning exercise should be introduced during the growth period, when tenocytes may be more responsive to increased quantities or intensities of mechanical strain. Tenocytes are linked into networks by gap junctions that allow coordination of synthetic activity and facilitate strain-induced collagen synthesis. We hypothesised that there are reductions in cellular expression of the gap junction proteins connexin (Cx) 43 and 32 during maturation and ageing of the superficial digital flexor tendon that do not occur in the non-injury-prone common digital extensor tendon. Cryosections from the superficial digital flexor tendon and common digital extensor tendon of 5 fetuses, 5 foals (1–6 months), 5 young adults (2–7 years) and 5 old horses (18–33 years) were immunofluorescently labelled and quantitative confocal laser microscopy was performed. Expression of Cx43 and Cx32 protein per tenocyte was significantly higher in the fetal group compared with all other age groups in both tendons. The density of tenocytes was found to be highest in immature tissue. Higher levels of cellularity and connexin protein expression in immature tendons are likely to relate to requirements for tissue remodelling and growth. However, if further studies demonstrate that this correlates with greater gap junctional communication efficiency and synthetic responsiveness to mechanical strain in immature compared with adult tendons, it could support the concept of early introduction of controlled exercise as a means of increasing resistance to later injury. PMID:17848160

  20. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein.

    PubMed Central

    Reed, K E; Westphale, E M; Larson, D M; Wang, H Z; Veenstra, R D; Beyer, E C

    1993-01-01

    Gap junctions allow direct intercellular coupling between many cells including those in the blood vessel wall. They are formed by a group of related proteins called connexins, containing conserved transmembrane and extracellular domains, but unique cytoplasmic regions that may confer connexin-specific physiological properties. We used polymerase chain reaction amplification and cDNA library screening to clone DNA encoding a human gap junction protein, connexin37 (Cx37). The derived human Cx37 polypeptide contains 333 amino acids, with a predicted molecular mass of 37,238 D. RNA blots demonstrate that Cx37 is expressed in multiple organs and tissues (including heart, uterus, ovary, and blood vessel endothelium) and in primary cultures of vascular endothelial cells. Cx37 mRNA is coexpressed with connexin43 at similar levels in some endothelial cells, but at much lower levels in others. To demonstrate that Cx37 could form functional channels, we stably transfected communication-deficient Neuro2A cells with the Cx37 cDNA. The induced intercellular channels were studied by the double whole cell patch clamp technique. These channels were reversibly inhibited by the uncoupling agent, heptanol (2 mM). The expressed Cx37 channels exhibited multiple conductance levels and showed a pronounced voltage dependence. These electrophysiological characteristics are similar to, but distinct from, those of previously characterized connexins. Images PMID:7680674

  1. Endotoxemia alters tight junction gene and protein expression in the kidney.

    PubMed

    Eadon, Michael T; Hack, Bradley K; Xu, Chang; Ko, Benjamin; Toback, F Gary; Cunningham, Patrick N

    2012-09-15

    Intact tight junctional (TJ) proteins are required for tubular ion transport and waste excretion. Disruption of TJs may contribute to a decreased glomerular filtration rate in acute kidney injury (AKI) via tubular backleak. The effect of LPS-mediated AKI on murine TJs has not been studied extensively. We hypothesized LPS endotoxin administration to mice would disrupt tubular TJ proteins including zonula occludens-1 (ZO-1), occludin, and claudins. ZO-1 and occludin immunofluorescence 24 h post-LPS revealed a marked change in localization from the usual circumferential fencework pattern to one with substantial fragmentation. Renal ZO-1 expression was significantly reduced 24 h after LPS (decrease of 56.1 ± 7.4%, P < 0.001), with subsequent recovery. ZO-1 mRNA expression was increased 24 h post-LPS (4.34 ± 0.87-fold, P = 0.0019), suggesting disruption of ZO-1 protein is not mediated by transcriptional regulation, but rather by degradation or changes in translation. Similarly, claudin-4 protein expression was decreased despite elevated mRNA. LPS administration resulted in dephosphorylation of occludin and fragmented tubular redistribution. Protein expression of claudin-1, and -3 was increased after LPS. ZO-1, occludin, and claudin-1, -3, and -4 gene expression were increased 48 h after LPS, suggesting a renal response to strengthen TJs following injury. Interestingly, reduced mRNA expression was found only for claudin-8. This study provides further support that LPS-induced AKI is associated with structural injury and is not merely due to hemodynamic changes.

  2. Differential expression of claudin tight junction proteins in the human cortical nephron

    PubMed Central

    Kirk, Adam; Campbell, Sara; Bass, Paul; Mason, Juan; Collins, Jane

    2010-01-01

    Background. In renal tubules, paracellular permeability is tightly controlled to facilitate solute absorption and urinary concentration and is regulated by tight junctions, which incorporate claudin proteins. There is very limited information confirming the localization of these proteins in the human renal cortex. Most data is inferred from mouse, bovine and rabbit studies and differences exist between mouse and other species. Methods. A survey of claudin staining was performed on human kidney cortex embedded in glycolmethacrylate resin to enhance tissue morphology and facilitate the cutting of 2 µm serial sections. Results. Claudin-2, -10 and -11 antibodies labelled renal tubular epithelial cells, correlating with Lotus tetragonolobus and N-cadherin positive proximal tubules. Claudin-3, -10, -11 and -16 antibodies strongly stained a population of tubules that were positive for Tamm Horsfall protein on adjacent sections, confirming expression in the thick ascending limb of the Loop of Henle. Claudin-3, -4 and -8 antibodies reacted with tubules that correlated with the distal nephron markers, E-cadherin, epithelial membrane antigen and Dolichos biflorus and claudin-3, -4, -7 and -8 with the distal tubule marker, calbindin, and the collecting duct marker, aquaporin-2. Claudin-14 was localized in distal convoluted tubules, correlating positively with calbindin but negatively with aquaporin-2, whereas claudin-1 staining was identified in the parietal epithelium of Bowman's capsule, distal convoluted tubule and collecting duct. Cellular and tight junction localization of claudin staining in renal tubules was heterogeneous and is discussed. Conclusions. Complex variation in the expression of human claudins likely determines paracellular permeability in the kidney. Altered claudin expression may influence pathologies involving abnormalities of absorption. PMID:20124215

  3. Maternal Treatment with Glucocorticoids Modulates Gap Junction Protein Expression in the Ovine Fetal Brain

    PubMed Central

    Sadowska, Grazyna B.; Stonestreet, Barbara S.

    2014-01-01

    Gap junctions facilitate intercellular communication and are important in brain development. Connexins (Cx) comprise a transmembrane protein family that forms gap junctions. Cx-32 is expressed in oligodendrocytes and neurons, Cx-36 in neurons, and Cx-43 in astrocytes. Although single antenatal steroid courses are recommended for fetal lung maturation, multiple courses can be given to women at recurrent risk for premature delivery. We examined the effects of single and multiple glucocorticoid courses on Cx-32, Cx-36, and Cx-43 protein expression in fetal cerebral cortex, cerebellum, and spinal cord, and differences in connexin expression among brain regions under basal conditions. In the single course groups, the ewes received dexamethasone (6 mg) or placebo as four intramuscular injections every 12 h over 48 h. In the multiple course groups, the ewes received the same treatment, once a week for five weeks starting at 76–78 days of gestation. Connexins were measured by Western immunoblot on brain samples from 105–108 day gestation fetuses. A single dexamethasone course was associated with increases (P<0.05) in cerebral cortical and spinal cord Cx-36 and Cx-43 and multiple courses with increases in cerebellar and spinal cord Cx-36, and cerebral cortical and cerebellar Cx-43. Cx-32 did not change. Cx-32 was higher in cerebellum than cerebral cortex and spinal cord, Cx-36 higher in spinal cord than cerebellum, and Cx-43 higher in cerebellum and spinal cord than cerebral cortex during basal conditions. In conclusion, maternal glucocorticoid therapy increases specific connexins, responses to different maternal courses vary among connexins and brain regions, and connexin expression differs among brain regions under basal conditions. Maternal treatment with glucocorticoids differentially modulates connexins in the fetal brain. PMID:24929069

  4. Chinese medicine Tongxinluo increases tight junction protein levels by inducing KLF5 expression in microvascular endothelial cells.

    PubMed

    Li, Li-Min; Zheng, Bing; Zhang, Ruo-Nan; Jin, Li-Shuang; Zheng, Cui-Ying; Wang, Chang; Zhou, Pei-Pei; Guo, Zong-Wei; Ma, Dong; Wen, Jin-Kun

    2015-06-01

    Tongxinluo (TXL) is a compound prescription formulated according to the meridian theory of traditional Chinese medicine. It may play an important role in cardiovascular protection by improving endothelial cell function. The aim of present study was to investigate whether endothelial protection with TXL is related to its regulation of tight junction protein expression. Human cardiac microvascular endothelial cells (HCMECs) were cultured and treated with 10(-7)  mol l(-1) angiotensin II (Ang II) and the different doses of TXL; the expression of tight junction proteins occludin, claudin, VE-cadherin and beta-catenin was determined by Western blotting and real-time PCR. Gain-of-function and loss-of-function of Krüppel-like factor 5 (KLF5) were carried out in HCMEC transfected with either KLF5 adenovirus pAd-KLF5 or siRNA specific for KLF5. Angiotensinogen transgenic mice were treated with TXL by oral administration of TXL of 0.75 g kg(-1)  day(-1) , and immunohistochemical staining was performed with antioccludin, anticlaudin, anti-VE-cadherin, antibeta-catenin and anti-KLF5 antibodies. Ang II treatment significantly reduced the expression of tight junction proteins occludin, claudin, VE-cadherin and beta-catenin in cultured HCMECs. TXL pretreatment could abrogate the down-regulation of these tight junction proteins induced by Ang II. Ang II treatment also decreased KLF5 expression at the mRNA and protein levels; TXL pretreatment markedly reversed the inhibitory effect of Ang II on KLF5 expression. Gain-of-function and loss-of-function of KLF5 showed that KLF5 mediated the expression of tight junction proteins in HCMECs. TXL-enhanced expression of the tight junction proteins was mediated by KLF5. In angiotensinogen transgenic mice, TXL also increased the tight junction protein levels by inducing KLF5 expression. Chinese medicine TXL increases tight junction protein levels by inducing KLF5 expression in microvascular endothelial cells. Copyright © 2015 John

  5. Connexin35/36 gap junction proteins are expressed in photoreceptors of the tiger salamander retina.

    PubMed

    Zhang, Jian; Wu, Samuel M

    2004-02-23

    Photoreceptors in the vertebrate retina are electrically coupled with one another. Such coupling plays important roles in visual information processing. Physiological properties of rod-rod and rod-cone coupling have been best studied in the salamander retina, yet the cellular and molecular basis of these electrical synapses has not been established. Recently, connexin35/36 (Cx35/36) gap junction proteins were found to be highly expressed in brain and retina, suggesting that it may mediate photoreceptor coupling. To test this idea, we examined the cellular distribution of Cx35/36 in the salamander retina. Western blot analysis showed the expression of Cx35/36 proteins, and confocal microscopy revealed characteristic punctate Cx35/36 immunoreactivity in both synaptic layers. In addition, Cx35/36-positive plaques were detected in the outer nuclear layer (ONL) between neighboring rods, and these plaques outlined the mosaic of the rod network at a level distal to the external limiting membrane. Moreover, although Cx35/36 plaques were detected between some cones and their adjacent rods, the number and size of these plaques was smaller, and their staining intensity was diminished compared with the plaques between adjacent rods. Furthermore, Lucifer yellow injection together with confocal microscopy revealed that Cx35/36-puncta were colocalized with finlike structures of rod cell membrane, with the ultrastructure of gap junctions between paired rod fins having been found by electron microscopy. Therefore, our findings demonstrate that Cx35/36 expression in photoreceptors is primarily located between rods and to a lesser extent between rods and cones, suggesting that Cx35/36 may participate in electrical coupling between rods and between rods and cones in the salamander retina.

  6. Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells

    PubMed Central

    1995-01-01

    Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly

  7. Analysis of the distribution and expression of claudin-1 tight junction protein in the oral cavity.

    PubMed

    Ouban, Abderrahman; Ahmed, Atif

    2015-07-01

    Claudins are the main sealing proteins of the intercellular tight junctions and play an important role in cancer cell progression and dissemination. The authors have previously shown that overexpression of claudin-1 is associated with angiolymphatic and perineural invasion, consistent with aggressive tumor behavior and with advanced stage disease in oral squamous cell carcinomas (OSCCs). Our goal in this study was to examine claudin-1 expression in a tissue microarray of OSCCs taken from multiple sites within the oral cavity. This study examined and compared the expression of claudin-1 by immunohistochemistry in 60 tissue samples (49 OSCCs and 10 cases of non-neoplastic tissue, single core per case) were analyzed for claudin-1 expression by immunohistochemistry. The tumors included SCCs from the tongue (n=28), the cheek (n=9), gingival (n=4), lip (n=3), and oral cavity (n=5). Nonmalignant normal oral mucosa from the tongue (unmatched cases, n=2). Cancer adjacent tissue samples were taken from the tongue (n=6), gingival (n=2), and palate (n=1). This study demonstrates the expression of claudin-1 protein across a sample of OSCCs originating from multiple locations in the oral cavity. The highest expression of claudin-1 was observed in well-differentiated OSCCs, whereas poorly differentiated OSCCs exhibited mostly negative staining for claudin-1. In addition, we hereby report differential pattern of expression among tumors of different sites within the oral cavity, and between benign and cancerous samples. Our understanding of the exact function and role of claudin-1 in tumorigenesis is expanding exponentially.

  8. Tight junction proteins expression and modulation in immune cells and multiple sclerosis

    PubMed Central

    Mandel, Ilana; Paperna, Tamar; Glass-Marmor, Lea; Volkowich, Anat; Badarny, Samih; Schwartz, Ilya; Vardi, Pnina; Koren, Ilana; Miller, Ariel

    2012-01-01

    Abstract The tight junction proteins (TJPs) are major determinants of endothelial cells comprising physiological vascular barriers such as the blood–brain barrier, but little is known about their expression and role in immune cells. In this study we assessed TJP expression in human leukocyte subsets, their induction by immune activation and modulation associated with autoimmune disease states and therapies. A consistent expression of TJP complexes was detected in peripheral blood leukocytes (PBLs), predominantly in B and T lymphocytes and monocytes, whereas the in vitro application of various immune cell activators led to an increase of claudin 1 levels, yet not of claudin 5. Claudins 1 and 5 levels were elevated in PBLs of multiple sclerosis (MS) patients in relapse, relative to patients in remission, healthy controls and patients with other neurological disorders. Interestingly, claudin 1 protein levels were elevated also in PBLs of patients with type 1 diabetes (T1D). Following glucocorticoid treatment of MS patients in relapse, RNA levels of JAM3 and CLDN5 and claudin 5 protein levels in PBLs decreased. Furthermore, a correlation between CLDN5 pre-treatment levels and clinical response phenotype to interferon-β therapy was detected. Our findings indicate that higher levels of leukocyte claudins are associated with immune activation and specifically, increased levels of claudin 5 are associated with MS disease activity. This study highlights a potential role of leukocyte TJPs in physiological states, and autoimmunity and suggests they should be further evaluated as biomarkers for aberrant immune activity and response to therapy in immune-mediated diseases such as MS. PMID:21762372

  9. Impaired expression and distribution of adherens and gap junction proteins in the seminiferous tubules of rats undergoing autoimmune orchitis.

    PubMed

    Pérez, C; Sobarzo, C; Jacobo, P; Jarazo Dietrich, S; Theas, M; Denduchis, B; Lustig, L

    2011-12-01

    Experimental autoimmune orchitis (EAO) is characterized by an interstitial lymphomononuclear cell infiltration and a severe lesion of seminiferous tubules (ST) with germ cells that undergo apoptosis and sloughing. The aim of this study was to analyse the expression and localization of adherens junction (AJ) proteins: N-cadherin, α-, β- and p120 catenins and gap junction protein, connexin 43 (Cx43), to explore some aspects of germ-cell sloughing during the development of orchitis. EAO was induced in Sprague-Dawley adult rats by active immunization with testicular homogenate and adjuvants. Control rats (C) were injected with saline solution and adjuvants. Concomitant with early signs of germ-cell sloughing, we observed by immunofluorescence and Western blot, a delocalization and a significant increase in N-cadherin and α-catenin expression in the ST of EAO compared with C rats. In spite of this increased AJ protein expression, a severe germ-cell sloughing occurred. This is probably due to the impairment of the AJ complex function, as shown by the loss of N-cadherin/β-catenin colocalization (confocal microscopy) and increased pY654 β-catenin expression, suggesting lower affinity of these two proteins and increased pERK1/2 expression in the testis of EAO rats. The significant decrease in Cx43 expression detected in EAO rats suggests a gap junction function impairment also contributing to germ-cell sloughing.

  10. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation

    SciTech Connect

    Sheth, Bhavwanti; Nowak, Rachael L.; Anderson, Rebecca; Kwong, Wing Yee; Papenbrock, Thomas; Fleming, Tom P.

    2008-11-01

    Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.

  11. Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain.

    PubMed

    Beauchesne, Elizabeth; Desjardins, Paul; Hazell, Alan S; Butterworth, Roger F

    2009-09-01

    Wernicke's encephalopathy (WE) in humans is a metabolic disorder caused by thiamine deficiency (TD). In both humans and experimental animals, TD leads to selective neuronal cell death in diencephalic and brainstem structures. Neuropathologic features of WE include petechial hemorrhagic lesions, and blood-brain barrier (BBB) breakdown has been suggested to play an important role in the pathogenesis of TD. The goal of the present study was to examine expression of the tight junction (TJ) protein occludin, its associated scaffolding proteins zona occludens (ZO-1 and ZO-2), and to measure matrix metalloproteinase (MMP) levels as a function of regional BBB permeability changes in thiamine-deficient mice. TD was induced in 12-week-old male C57Bl/6 mice by feeding a thiamine-deficient diet and administration of the central thiamine antagonist pyrithiamine. BBB permeability was measured by IgG extravasation; expression of occludin, ZO-1 and ZO-2 was measured by Western blot analysis and RT-PCR, structural integrity of the BBB was assessed using occludin and ZO-1 immunostaining, and MMPs levels were measured by gelatin zymography and immunohistochemistry. Studies were performed in vulnerable (medial thalamus) versus spared (frontal cortex) regions of the brain. Hemorrhagic lesions, selective increases in brain IgG extravasation, a concomitant loss in protein expression of occludin, ZO-1 and ZO-2, as well as decreased and disrupted patterns of occludin and ZO-1 immunostaining were observed in the medial thalamus of thiamine-deficient mice. MMP-9 levels were also selectively increased in the medial thalamus of these animals, and were found to be localized in the vascular endothelium, as well as in cells with an apparent polymorphonuclear morphology. No changes of TJ gene expression were observed. These results indicate that alterations in TJ proteins occur in TD, and offer a plausible explanation for the selective increase in BBB permeability in thiamine-deficient animals

  12. Moxibustion combined with acupuncture increases tight junction protein expression in Crohn’s disease patients

    PubMed Central

    Shang, Hai-Xia; Wang, An-Qi; Bao, Chun-Hui; Wu, Huan-Gan; Chen, Wei-Feng; Wu, Lu-Yi; Ji, Rong; Zhao, Ji-Meng; Shi, Yin

    2015-01-01

    AIM: To investigate the effect of herb-partitioned moxibustion combined with acupuncture on the expression of intestinal epithelial tight junction (TJ) proteins. METHODS: Sixty patients diagnosed with mild to moderate Crohn’s disease (CD) were allocated into the herb-partitioned moxibustion combined with acupuncture (HMA) group (n = 30) or the mesalazine (MESA) group (n = 30) using a parallel control method. There were 2 sets of acupoints used alternately for HMA treatment. The following points were included in Set A: ST25 (Tianshu), RN6 (Qihai), and RN9 (Shuifen) for herb-partitioned moxibustion and ST36 (Zusanli), ST37 (Shangjuxu), LI11 (Quchi), and LI4 (Hegu) for acupuncture. The points for Set B included BL23 (Shenshu) and BL25 (Dachangshu) for herb-partitioned moxibustion and EX-B2 of T6-T1 (Jiajixue) for acupuncture. The patients received the same treatment 6 times a week for 12 consecutive weeks. The MESA group received 1 g of mesalazine enteric coated tablets 4 times daily for 12 consecutive weeks. Intestinal tissues were stained and examined to compare the morphological and ultrastructural changes before and after the treatment session. Immunohistochemistry and in situ hybridization assays were used to detect the expression of intestinal epithelial TJ proteins zonula occludens-1 (ZO-1), occludin, and claudin-1. The mRNA levels were also evaluated. RESULTS: After the treatment, both herb-partitioned moxibustion combined with acupuncture and mesalazine improved intestinal morphology and ultrastructure of CD patients; the patients treated with HMA showed better improvement. HMA significantly increased the expression of ZO-1 (P = 0.000), occludin (P = 0.021), and claudin-1 (P = 0.016). MESA significantly increased the expression of ZO-1 (P = 0.016) and occludin (P = 0.026). However, there was no significant increase in the expression of claudin-1 (P = 0.935). There was no statistically significant difference between the two groups for the expression of

  13. Reproductive age-related changes in the blood brain barrier: Expression of IgG and tight junction proteins

    PubMed Central

    Bake, Shameena; Friedman, Jonathan A; Sohrabji, Farida

    2009-01-01

    We previously demonstrated that there is significantly greater transfer of intravenously-injected Evan’s blue dye into the forebrain of acyclic (reproductive senescent) females compared to young adult females, indicating that blood brain barrier permeability is compromised in the reproductive senescent forebrain. The present study examined brain IgG expression and microvessel tight junction proteins to assess ovarian age-related changes in microvascular permeability, and further compared young and senescent females with age-matched males to distinguish changes attributable to age and reproductive senescence. Blood brain barrier breakdown are often associated with increased extravasation of plasma proteins and high levels of immunoglobulin G (IgG) in brain. In the present study, IgG expression was dramatically increased in the hippocampus and thalamus, but not the hypothalamus of reproductive senescent females compared to young adult females. In males, IgG expression was increased in all these regions in middle aged animals (aged-matched to senescent females) as compared to young males (age-matched to the young adult females). Furthermore, the proportion of hippocampal microvessels with perivascular IgG immunoreactivity was significantly greater in reproductive senescent females as compared to young adult females, while middle aged males and young adult males did not differ. The tight junctions between adjacent microvascular endothelial cells regulated by transmembrane proteins such as claudin-5 and occludin play a critical role in maintaining the blood brain barrier integrity. Increased hippocampal IgG expression in senescent females was paralleled by poor junctional localization of the tight junction protein claudin-5 in hippocampal microvessels. However, there was no difference in hippocampal claudin-5 localization between young adult and middle aged males, indicating that dysregulation of this junctional protein was associated with ovarian aging. Parallel

  14. TIGHT JUNCTION PROTEIN EXPRESSION AND BARRIER PROPERTIES OF IMMORTALIZED MOUSE BRAIN MICROVESSEL ENDOTHELIAL CELLS

    PubMed Central

    Brown, Rachel C.; Morris, Andrew P.; O’Neil, Roger G.

    2007-01-01

    Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions. PMID:17169347

  15. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells.

    PubMed

    Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G

    2007-01-26

    Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions.

  16. Effect of caveolin-1 on the expression of tight junction-associated proteins in rat glioma-derived microvascular endothelial cells

    PubMed Central

    Li, Yao; Liu, Li-Bo; Ma, Teng; Wang, Ping; Xue, Yi-Xue

    2015-01-01

    Caveolin-1 affects the permeability of blood-tumor barrier (BTB) by regulating the expression of tight junction-associated proteins. However, the effect is still controversial. In the present work, we studied the regulative effect of caveolin-1 on the expression of tight junction-associated proteins and BTB via directly silencing and overexpressing of caveolin-1 by recombinant adenovirus transduction of glioma-derived microvascular endothelial cells in rat brain. The results show that the caveolin-1 downregulation resulted in decreased expression of tight junction-associated proteins, opening of tight junctions, and increasing the permeability of BTB, whereas the overexpression of caveolin-1 presented the opposite effects. Therefore, we conclude that caveolin-1 regulates the expression of tight junction-associated proteins in a positive manner, which further plays a role in the regulation of BTB permeability. This finding provides a novel therapeutic target for selectively opening of BTB. PMID:26722502

  17. Sequence and developmental expression of mRNA coding for a gap junction protein in Xenopus

    PubMed Central

    1988-01-01

    Cloned complementary DNAs representing the complete coding sequence for an embryonic gap junction protein in the frog Xenopus laevis have been isolated and sequenced. The cDNAs hybridize with an RNA of 1.5 kb that is first detected in gastrulating embryos and accumulates throughout gastrulation and neurulation. By the tailbud stage, the highest abundance of the transcript is found in the region containing ventroposterior endoderm and the rudiment of the liver. In the adult, transcripts are present in the lungs, alimentary tract organs, and kidneys, but are not detected in the brain, heart, body wall and skeletal muscles, spleen, or ovary. The gene encoding this embryonic gap junction protein is present in only one or a few copies in the frog genome. In vitro translation of RNA synthesized from the cDNA template produces a 30-kD protein, as predicted by the coding sequence. This product has extensive sequence similarity to mammalian gap junction proteins in its putative transmembrane and extracellular domains, but has diverged substantially in two of its intracellular domains. PMID:2843548

  18. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus.

    PubMed

    Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S

    2012-12-13

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia.

  19. CAVEOLIN-1 REGULATES HIV-1 TAT-INDUCED ALTERATIONS OF TIGHT JUNCTION PROTEIN EXPRESSION VIA MODULATION OF THE RAS SIGNALING

    PubMed Central

    Zhong, Yu; Smart, Eric J.; Weksler, Babette; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) is the critical structure for preventing HIV trafficking into the brain. Specific HIV proteins, such as Tat protein, can contribute to the dysfunction of tight junctions at the BBB and HIV entry into the brain. Tat is released by HIV-1 infected cells and can interact with a variety of cell surface receptors activating several signal transduction pathways, including those localized in caveolae. The present study focused on the mechanisms of Tat-induced caveolae-associated Ras signaling at the level of the BBB. Treatment with Tat activated the Ras pathway in human brain microvascular endothelial cells (HBMEC). However, caveolin-1 silencing markedly attenuated these effects. Because the integrity of the brain endothelium is regulated by intercellular tight junctions, these structural elements of the BBB were also evaluated in the present study. Exposure to Tat diminished the expression of several tight junction proteins, namely, occludin, zonula occludens (ZO)-1, and ZO-2 in the caveolar fraction of HBMEC. These effects were effectively protected by pharmacological inhibition of the Ras signaling and by silencing of caveolin-1. The present data indicate the importance of caveolae-associated signaling in the disruption of tight junctions upon Tat exposure. They also demonstrate that caveolin-1 may constitute an early and critical modulator that controls signaling pathways leading to the disruption of tight junction proteins. Thus, caveolin-1 may provide an effective target to protect against Tat-induced HBMEC dysfunction and the disruption of the BBB in HIV-1-infected patients. PMID:18667611

  20. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model.

    PubMed

    Liu, Jun-Hua; Xu, Ting-Ting; Zhu, Wei-Yun; Mao, Sheng-Yong

    2014-07-01

    The omasal epithelial barrier plays important roles in maintaining nutrient absorption and immune homeostasis in ruminants. However, little information is currently available about the changes in omasal epithelial barrier function at the structural and molecular levels during feeding of a high-grain (HG) diet. Ten male goats were randomly assigned to two groups, fed either a hay diet (0% grain; n = 5) or HG diet (65% grain; n = 5). Changes in omasal epithelial structure and expression of tight junction (TJ) proteins were determined via electron microscopy and Western blot analysis. After 7 weeks on each diet, omasal contents in the HG group showed significantly lower pH (P <0.001) and significantly higher concentrations of free lipopolysaccharides (LPS; P = 0.001) than the hay group. The goats fed a HG diet showed profound alterations in omasal epithelial structure and TJ proteins, corresponding to depression of thickness of total epithelia, stratum granulosum, and the sum of the stratum spinosum and stratum basale, marked epithelial cellular damage, erosion of intercellular junctions and down-regulation in expression of the TJ proteins, claudin-4 and occludin. The study demonstrates that feeding a HG diet is associated with omasal epithelial cellular damage and changes in expression of TJ proteins. These research findings provide an insight into the possible significance of diet on the omasal epithelial barrier in ruminants.

  1. Effects of Interleukin-6 on the Expression of Tight Junction Proteins in Isolated Cerebral Microvessels from Yearling and Adult Sheep

    PubMed Central

    Cohen, Susan S.; Min, May; Cummings, Erin E.; Chen, Xiaodi; Sadowska, Grazyna B.; Sharma, Surendra; Stonestreet, Barbara S.

    2013-01-01

    Objectives The blood-brain barrier is a selective diffusion barrier between brain parenchyma and the intravascular compartment. Tight junctions (TJs) are integral components of the blood-brain barrier. Pro-inflammatory cytokines are important in the pathogenesis of brain injury and could modify the protein constituents of TJs. We hypothesized that IL-6 down-regulates key protein constituents of endothelial TJs (e.g., occludin and claudin-5). Methods We examined the effects of IL-6 on TJ protein expression using an in vitro blood-brain barrier model. We isolated microvessels from yearling and adult ovine cerebral cortex and placed them into culture with IL-6 concentrations of 0 (control, phosphate buffered saline), 1, 10, and 100 ng/mL for 24 hours. Cerebral microvessels were harvested, Western immunoblot performed for occludin and claudin-5, densitometry performed, and results expressed as a ratio to control values. Results Western immunoblot analysis showed that treatment with 100 ng/ml of IL-6, but not the lower concentrations, reduced (P<0.05) occludin expression in microvessels from yearling and adult sheep, and claudin-5 in microvessels from adult sheep However, treatment with 10 ng/ml of IL-6 increased claudin-5 in microvessels from yearling sheep. The percent of lactate dehydrogenase released from the microvessels into the surrounding media was not increased by IL-6 treatment, suggesting that the reductions in TJ proteins did not result from cell death. Treatment of adult cerebral cortical microvessels with IL-6 pre-incubated with anti-IL-6 monoclonal antibodies partially attenuated the reduction in claudin-5. Conclusion We conclude that IL-6 modulates tight junction protein expression in cerebral cortical microvessels from yearling and adult sheep. PMID:23867217

  2. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells.

    PubMed

    Limonciel, Alice; Wilmes, Anja; Aschauer, Lydia; Radford, Robert; Bloch, Katarzyna M; McMorrow, Tara; Pfaller, Walter; van Delft, Joost H; Slattery, Craig; Ryan, Michael P; Lock, Edward A; Jennings, Paul

    2012-11-01

    Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.

  3. EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier.

    PubMed

    Ding, Gui-Rong; Qiu, Lian-Bo; Wang, Xiao-Wu; Li, Kang-Chu; Zhou, Yong-Chun; Zhou, Yan; Zhang, Jie; Zhou, Jia-Xing; Li, Yu-Rong; Guo, Guo-Zhen

    2010-07-15

    The blood-brain barrier (BBB) is critical to maintain cerebral homeostasis. In this study, we examined the effects of exposure to electromagnetic pulse (EMP) on the functional integrity of BBB and, on the localization and expression of tight junction (TJ) proteins (occludin and ZO-1) in rats. Animals were sham or whole-body exposed to EMP at 200 kV/m for 400 pulses. The permeability of BBB in rat cerebral cortex was examined by using Evans Blue (EB) and lanthanum nitrate as vascular tracers. The localization and expression of TJ proteins were assessed by western blot and immunofluorescence analysis, respectively. The data indicated that EMP exposure caused: (i) increased permeability of BBB, and (ii) altered localization as well as decreased levels of TJ protein ZO-1. These results suggested that the alteration of ZO-1 may play an important role in the disruption of tight junctions, which may lead to dysfunction of BBB after EMP exposure. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Drosophila Syncrip modulates the expression of mRNAs encoding key synaptic proteins required for morphology at the neuromuscular junction.

    PubMed

    McDermott, Suzanne M; Yang, Lu; Halstead, James M; Hamilton, Russell S; Meignin, Carine; Davis, Ilan

    2014-10-01

    Localized mRNA translation is thought to play a key role in synaptic plasticity, but the identity of the transcripts and the molecular mechanism underlying their function are still poorly understood. Here, we show that Syncrip, a regulator of localized translation in the Drosophila oocyte and a component of mammalian neuronal mRNA granules, is also expressed in the Drosophila larval neuromuscular junction, where it regulates synaptic growth. We use RNA-immunoprecipitation followed by high-throughput sequencing and qRT-PCR to show that Syncrip associates with a number of mRNAs encoding proteins with key synaptic functions, including msp-300, syd-1, neurexin-1, futsch, highwire, discs large, and α-spectrin. The protein levels of MSP-300, Discs large, and a number of others are significantly affected in syncrip null mutants. Furthermore, syncrip mutants show a reduction in MSP-300 protein levels and defects in muscle nuclear distribution characteristic of msp-300 mutants. Our results highlight a number of potential new players in localized translation during synaptic plasticity in the neuromuscular junction. We propose that Syncrip acts as a modulator of synaptic plasticity by regulating the translation of these key mRNAs encoding synaptic scaffolding proteins and other important components involved in synaptic growth and function.

  5. Expressions of cell junction regulatory proteins and their association with clinicopathologic parameters in benign and malignant gallbladder lesions.

    PubMed

    Xiong, Li; Wen, Yu; Miao, Xiongying; Yang, Zhulin

    2011-11-01

    Cell junction regulatory proteins such as claudin-1, occludin, E-cadherin and snail play an important role in modulation of human cancer development. This study assessed the association of the expression of these proteins in lesions of gallbladder with clinicopathologic data. Tissue sections from adenocarcinoma, peritumoral tissues, adenomatous polyp and chronic cholecystitis were immunohistochemically analyzed for expression of claudin-1, occludin, E-cadherin and snail proteins. Expression of claudin-1, occludin and E-cadherin was significantly lower in adenocarcinoma than in peritumoral tissues, adenomatous polyp or chronic cholecystitis. Expression of snail was significantly higher in adenocarcinoma than in peritumoral tissues, adenomatous polyp or chronic cholecystitis. Furthermore, expression of claudin-1, occludin and E-cadherin was significantly higher in well-differentiated adenocarcinoma, defined by a maximal tumor size < 2 cm with neither lymph node metastasis nor invasion to the regional tissues, than those in poorly differentiated adenocarcinoma with a maximal tumor size ≥ 2 cm, lymph node metastasis and such invasion. Expression of snail was in reverse association. Patients with expression of claudin-1, occludin-1 and E-cadherin survived longer than the patients without these proteins, but patients with snail expression died earlier than those who did not. Cox multivariate regression analysis showed the characteristics of poorly differentiated adenocarcinoma (tumor size ≥ 2 cm, lymph node metastasis and tumor invasion to the regional tissues) were poor-prognostic factors negatively correlated with postoperative survival. Expression of claudin-1, occludin-1 and E-cadherin were favorable-prognostic factors. Snail expression, which was a poor-prognostic factor, was negatively correlated with postoperative survival.

  6. Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation.

    PubMed

    Bruggeman, Leslie A; Martinka, Scott; Simske, Jeffrey S

    2007-02-01

    Cell junctions in the nephron are highly specialized to perform specific and distinct filtration and reabsorption functions. The mature kidney forms complex cell junctions including slit diaphragms that prevent the passage of serum proteins into the filtrate, and tubule cell junctions that regulate specific paracellular ion reuptake. We have investigated the expression of TM4SF10 (Trans-Membrane tetra(4)-Span Family 10) in mouse kidneys. TM4SF10 is the vertebrate orthologue of Caenorhabditis elegans VAB-9, a tetraspan adherens junction protein in the PMP22/EMP/Claudin family of proteins. We found that TM4SF10 localizes at the basal-most region of podocyte precursors before the capillary loop stage, at some tubule precursors, and at the ureteric bud junction with S-shaped bodies. Overall expression of TM4SF10 peaked at postnatal day 4 and was virtually absent in adult kidneys. The very limited expression of TM4SF10 protein that persisted into adulthood was restricted to a few tubule segments but remained localized to the basal region of lateral membranes. In undifferentiated cultured podocytes, TM4SF10 localized to the perinuclear region and translocated to the cell membrane after Cadherin appearance at cell-cell contacts. TM4SF10 colocalized with ZO1 and p120ctn in undifferentiated confluent podocytes and also colocalized with the tips of actin filaments at cell contacts. Upon differentiation of cultured podocytes, TM4SF10 protein disappeared from cell contacts and expression ceased. These results suggest that TM4SF10 functions during differentiation of podocytes and may participate in the maturation of cell junctions from simple adherens junctions to elaborate slit diaphragms. TM4SF10 may define a new class of Claudin-like proteins that function during junctional development.

  7. Effects of di(2-ethylhexyl) phthalate on gap and tight junction protein expression in the testis of prepubertal rats.

    PubMed

    Sobarzo, Cristian M; Lustig, Livia; Ponzio, Roberto; Suescun, María Olga; Denduchis, Berta

    2009-11-01

    The aim of this study was to analyze whether di(2-ethylhexyl) phthalate (DEHP), a Sertoli and Leydig cell toxicant, is able to induce alterations in the expression of testicular gap and tight junction proteins. DEHP was administered by gavage (1 g/5 mL corn oil/kg body weight/day) to 25-day-old male Sprague-Dawley rats for 2 days (DEHP-27d) and control rats were treated with corn-oil vehicle for 2 days (C-27d); animals were killed 24 h after the last treatment. Testes of DEHP-27d rats showed different degrees of germ cell sloughing of seminiferous tubules (ST). No alterations of the blood testis barrier (BTB) by lanthanum tracer study were observed. ST of DEHP-27d rats showed a milder immunofluorescence and more restricted expression of connexin-43 (Cx43) in the adluminal and basal compartment compared to C-27d. In DEHP-27d rats, we found a discontinuous immunofluorescent (IF) pattern for zonula occludens (ZO-1), contrasting with the continuous IF profile observed in C-27d, and a delocalization of claudin-11. A decrease in Cx43 and ZO-1 and no changes in occludin expression were detected by Western blot in the testes of DEHP-27d rats. Results from 57-day-old rats treated with DEHP for 2 days and held for 30 days without treatment showed that the alterations in protein expression induced by DEHP are reversible. However, a delay of spermatogenesis compared to C-57d rats, occurred. Data demonstrated that DEHP does not impair BTB permeability but induces germ cell sloughing that might respond to a down regulation of Cx43 and ZO-1 that alters cell junction proteins.

  8. Tissue-specific expression of the tight junction proteins claudins and occludin in the rat salivary glands

    PubMed Central

    Peppi, M; Ghabriel, M N

    2004-01-01

    Tight junctions (TJs) are essential features of endothelial barrier membranes and of fluid-secreting epithelial cells, such as in the salivary glands. Novel integral membrane proteins have been identified as components of TJs, namely claudins and occludin. The aim of the present study was to determine the distribution of occludin and claudins in the large salivary glands of the rat. The parotid, submandibular and sublingual salivary glands were harvested from adult Sprague–Dawley rats and cryostat sections were stained using immunoperoxidase and immunofluorescence methods. Claudin-1 was expressed in endothelial cells of microvessels and in short selected segments of the duct system. Claudin-3 was expressed principally in the acinar cells and intercalated ducts, while claudin-4 was principally expressed by the striated and interlobular ducts. Claudin-5 was specific to endothelial cells of microvessels. Occludin was ubiquitously detected in the duct system. Double labelling and confocal microscopy showed some co-localization of claudin-3 with claudin-4, and minimal co-localization of occludin with claudin-4, in the striated ducts. Claudin 2 was not detected in any of the salivary glands. The results indicate specificity of the chemical composition of tight junctions in the rat salivary glands, and may reflect different physiological roles for TJs in the glandular and duct epithelial cells, and in endothelial cells of salivary gland microvessels. PMID:15447685

  9. Altered expression of matrix metalloproteinases and tight junction proteins in rats following PEMF-induced BBB permeability change.

    PubMed

    Zhang, Ya Mei; Zhou, Yan; Qiu, Lian Bo; Ding, Gui Rong; Pang, Xiao Feng

    2012-04-01

    To investigate the expression of occludin, ZO-1, MMP-2, and MMP-9 in cerebral microvasculature following Pulse Electromagnetic Field (PEMF) induced BBB permeability change. Sprague-Dawley rats were randomized into PEMF and sham exposed groups (n = 8). After exposure to PEMF at 0.5, 1, 3, 6, and 12 h, BBB permeability was measured by Evans-Blue extravasation. The expression of occludin, ZO-1, MMP-2, and MMP-9 were detected by real-time quantitative reverse transcriptase PCR and western blotting. MMP-2 and MMP-9 activity were detected by EnzChek gelatinase assay. Compared with the sham group, PEMF exposure led to increased permeability of the BBB to EB, which was prolonged after exposure. BBB permeability became progressively more severe, and recovered at 6 h. The gene and protein expression of occludin and ZO-1 were significantly decreased, while MMP-2 and MMP-9 expression were significantly increased after exposure to PEMF. All levels of expression recovered 12 h following PEMF. Changes to BBB permeability were related to the alteration expression of tight junction proteins and matrix metalloproteinase after exposure to PEMF.

  10. Effect of intercellular junction protein expression on water transport during freezing of MIN6 cells.

    PubMed

    Higgins, Adam Z; Karlsson, Jens O M

    2013-10-01

    A mouse insulinoma (MIN6) strain in which connexin expression has been inhibited by antisense technology holds promise as an experimental model system for investigating the role of gap junctions in intercellular ice propagation. However, to properly interpret measurements of intracellular ice formation kinetics, the effects of cell dehydration on cytoplasmic supercooling must be determined. Thus, the cell membrane water permeability in monolayer cultures of the antisense-transfected MIN6 strain was measured using a fluorescence quenching method. By repeating the experiments at 4°C, 12°C, 21°C, and 37°C, the activation energy for water transport was determined to be E(a) = 51 ± 3 k J/mol. Although differences between membrane permeability measurements in theantisense and wild-type strains were not statistically significant, simulation of water transport during rapid freezing (130°C/min) predicted that intracellular supercooling in the genetically modified MIN6 strain may become significantly larger than the supercooling in wild-type cells at temperatures below -15°C. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Reversed cellular polarity in primary cutaneous mucinous carcinoma: A study on tight junction protein expression in sweat gland tumors.

    PubMed

    Nagasawa, Yusuke; Ishida-Yamamoto, Akemi

    2017-04-01

    Primary cutaneous mucinous carcinoma (PCMC) is a rare sweat gland tumor characterized by the presence of abundant mucin around the tumor islands, but the molecular mechanisms for this structure are not well elucidated. Because mucin is epithelial in nature, it is likely to be produced by epithelial tumor cells, not by surrounding stromal cells. We hypothesized that the abundant mucin is a result of reversed cellular polarity of the tumor. To test this hypothesis, we conducted an immunohistological study to investigate expression of tight junction (TJ) proteins occludin and ZO-1 in PCMC, as well as in normal sweat glands and other sweat gland tumors. Dot-like or linear expression of TJ proteins was observed at ductal structures of sweat glands, and ductal or cystic structures of related tumors. In PCMC, however, TJ protein expression was clearly visible at the edges of tumor cell islands. This study provides evidence to show that the characteristic histological structure of PCMC is caused by inverse polarization of the tumor cells, and that TJ proteins are useful markers of ductal differentiation in sweat gland tumors.

  12. Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs.

    PubMed

    Metzler-Zebeli, Barbara U; Mann, Evelyne; Ertl, Reinhard; Schmitz-Esser, Stephan; Wagner, Martin; Klein, Dieter; Ritzmann, Mathias; Zebeli, Qendrim

    2015-04-14

    Ca plays an essential role in bone development; however, little is known about its effect on intestinal gene expression in juvenile animals. In the present study, thirty-two weaned pigs (9·5 (SEM 0·11) kg) were assigned to four diets that differed in Ca concentration (adequate v. high) and cereal composition (wheat-barley v. maize) to assess the jejunal and colonic gene expression of nutrient transporters, tight junction proteins, cytokines and pathogen-associated molecular patterns, nutrient digestibility, Ca balance and serum acute-phase response. To estimate the impact of mucosal bacteria on colonic gene expression, Spearman's correlations between colonic gene expression and bacterial abundance were computed. Faecal Ca excretion indicated that more Ca was available along the intestinal tract of the pigs fed high Ca diets as compared to the pigs fed adequate Ca diets (P> 0.05). High Ca diets decreased jejunal zonula occludens 1 (ZO1) and occludin (OCLN) expression, up-regulated jejunal expression of toll-like receptor 2 (TLR2) and down-regulated colonic GLUT2 expression as compared to the adequate Ca diets (P< 0.05). Dietary cereal composition up-regulated jejunal TLR2 expression and interacted (P= 0.021) with dietary Ca on colonic IL1B expression; high Ca concentration up-regulated IL1B expression with wheat-barley diets and down-regulated it with maize diets. Spearman's correlations (r> 0·35; P< 0·05) indicated an association between operational taxonomic units assigned to the phyla Bacteroidetes, Firmicutes and Proteobacteria and bacterial metabolites and mucosal gene expression in the colon. The present results indicate that high Ca diets have the potential to modify the jejunal and colonic mucosal gene expression response which, in turn, interacts with the composition of the basal diet and mucosa-associated bacteria in weaned pigs.

  13. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins

    PubMed Central

    Abuazza, Ghazala; Becker, Amy; Williams, Scott S.; Chakravarty, Sumana; Truong, Hoang-Trang; Lin, Fangming; Baum, Michel

    2014-01-01

    The adult proximal tubule is a low-resistance epithelium where there are high rates of both active transcellular and passive paracellular NaCl transport. We have previously demonstrated that the neonatal rabbit and rat proximal tubule have substantively different passive paracellular transport properties than the adult proximal tubule, which results in a maturational change in the paracellular passive flux of ions. Neonatal proximal tubules have a higher PNa/PCl ratio and lower chloride and bicarbonate permeabilities than adult proximal tubules. Claudins are a large family of proteins which are the gate keepers of the paracellular pathway, and claudin isoform expression determines the permeability characteristics of the paracellular pathway. Previous studies have shown that claudins 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, and 16 are expressed in the adult mouse kidney. To determine whether there are developmental claudin isoforms, we compared the claudin isoforms present in the neonatal and adult kidney using RT-PCR to detect mRNA of claudin isoforms. Claudin 6, claudin 9, and claudin 13 were either not expressed or barely detectable in the adult mouse kidney using traditional PCR, but were expressed in the neonatal mouse kidney. Using real-time RT-PCR, we were able to detect a low level of claudin 6 mRNA expression in the adult kidney compared with the neonate, but claudin 9 and claudin 13 were only detected in the neonatal kidney. There was the same maturational decrease in these claudin proteins with Western blot analysis. Immunohistochemistry showed high levels of expression of claudin 6 in neonatal proximal tubules, thick ascending limb, distal convoluted tubules, and collecting ducts in a paracellular distribution but there was no expression of claudin 6 in the adult kidney. Using real-time RT-PCR claudin 6 and 9 mRNA were present in 1-day-old proximal convoluted tubules and were virtually undetectable in proximal convoluted tubules from adults. Claudin 13 was

  14. The MAPK/ERK-Signaling Pathway Regulates the Expression and Distribution of Tight Junction Proteins in the Mouse Proximal Epididymis.

    PubMed

    Kim, Bongki; Breton, Sylvie

    2016-01-01

    The initial segment (IS) in rodents is functionally and structurally distinct from other epididymal segments and plays an important role in sperm maturation. The MAPK/ERK1/2 pathway is maintained active in the IS by testicular luminal factors and plays crucial roles in the maintenance and differentiation of the IS epithelium. Tight junctions (TJs) are constituents of the blood-epididymis barrier, which mediates the paracellular transport of ions, solutes, and water and controls epithelial cell differentiation, thereby contributing to the establishment of a unique luminal environment. We examine here the role of the MAPK/ERK1/2 pathway in the regulation of TJ proteins in the IS. Inhibition of mitogen activated protein kinase kinase (MAPKK or MEK1/2) with PD325901, followed by reduction of ERK1/2 phosphorylation (pERK), decreased zonula occludens (ZO)-2 expression and increased ZO-3 expression in TJs but had no effect on ZO-1 expression. In control mice, in addition to being located in TJs, claudin (Cldn)-1, Cldn-3, and Cldn-4 were detected in the basolateral membrane of epithelial cells, with enriched expression of Cldn-1 and Cldn-4 in basal cells. PD325901 reduced the expression of Cldn-1 and Cldn-4 at all locations without affecting Cldn-3. Occludin was undetectable in the IS of control mice, but PD325901 triggered its expression in TJs. No effect was observed for any of the proteins examined in the other epididymal regions. Our results indicate the participation of the MAPK/ERK1/2 pathway in the regulation of cell-cell events that control the formation and maintenance of the blood-epididymis barrier.

  15. Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS

    PubMed Central

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396

  16. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

    PubMed

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS.

  17. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery.

    PubMed

    Yang, Yi; Thompson, Jeffrey F; Taheri, Saeid; Salayandia, Victor M; McAvoy, Thera A; Hill, Jeff W; Yang, Yirong; Estrada, Eduardo Y; Rosenberg, Gary A

    2013-07-01

    In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood-brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke.

  18. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery

    PubMed Central

    Yang, Yi; Thompson, Jeffrey F; Taheri, Saeid; Salayandia, Victor M; McAvoy, Thera A; Hill, Jeff W; Yang, Yirong; Estrada, Eduardo Y; Rosenberg, Gary A

    2013-01-01

    In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood–brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke. PMID:23571276

  19. Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein.

    PubMed

    Teubner, B; Degen, J; Söhl, G; Güldenagel, M; Bukauskas, F F; Trexler, E B; Verselis, V K; De Zeeuw, C I; Lee, C G; Kozak, C A; Petrasch-Parwez, E; Dermietzel, R; Willecke, K

    2000-08-01

    The mouse connexin 36 (Cx36) gene was mapped on chromosome 2 and an identical transcriptional start site was determined in brain and retina on exon I. Rabbit polyclonal antibodies to the presumptive cytoplasmic loop of the Cx36 protein recognized in immunohistochemical analyses Cx36 expression in the retina, olfactory bulb, hippocampus, inferior olive and cerebellum. In olivary neurons strong punctate labeling at dendritic cell contacts and weaker labeling in the cytoplasm of dendrites were shown by immuno electron microscopy. After expression of mouse Cx36 cDNA in human HeLa cells, neurobiotin transfer was increased 1.8-fold and electrical conductance at least 15-fold compared to untransfected HeLa cells. No Lucifer Yellow transfer was detected in either untransfected or Cx36 transfected HeLa cells. Single Cx36 channels in transfected HeLa cells showed a unitary conductance of 14.3 + or - 0. 8 pS. The sensitivity of Cx36 channels to transjunctional voltage was low in both HeLa-Cx36 cells and Xenopus oocytes expressing mouse Cx36. No increased transfer of neurobiotin was detected in heterotypic gap junctions formed by Cx36 and 9 other connexins expressed in HeLa cells. Our results suggest that Cx36 channels function as electrical synapses for transmission of electrical and metabolic signals between neurons in the central nervous system.

  20. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate.

    PubMed

    Martínez-Peña, Annia A; Rivera-Baños, Jorge; Méndez-Carrillo, Laura L; Ramírez-Solano, Marcos I; Galindo-Bustamante, Aarón; Páez-Franco, J Carlos; Morimoto, Sumiko; González-Mariscal, Lorenza; Cruz, M Esther; Mendoza-Rodríguez, C Adriana

    2017-02-17

    We studied the effect of bisphenol-A (BPA) administration to rats, during the perinatal period, on the fertility of F1 generation and on the expression of tight junction (TJ) proteins in the uterus during early pregnancy. Pregnant Wistar dams (F0) received: BPA-L (0.05mg/kg/day), BPA-H (20mg/kg/day) or vehicle, from gestational day (GD) 6 to lactation day 21. F1 female pups were mated at 3 months of age and sacrificed at GD 1, 3, 6, and 7. Serum hormonal levels, ovulation rate, number of implantation sites and expression of TJ proteins in the uterus of F1 females were evaluated. BPA treatment induced no change in ovulation rate, but induced alterations in progesterone (P4) and estradiol (E2) serum levels, and in implantation rate. With regards to TJ proteins, BPA-H increased claudin-1 during all GDs; eliminated the peaks of claudins -3 and -4 at GD 3 and 6, respectively; and decreased claudin-7 at GD 6, ZO-1 from GD 1-6, and claudin-3 at GD 7 in stromal cells. BPA-L instead, eliminated claudin-3 peak at GD 3, increased claudin-4 and decreased claudin-7 from GD 1-6, decreased claudin-1 at GD 3 and 7 and claudin-4 at GD 7 in stromal cells. BPA-L also decreased ZO-1 at GDs 1 and 3 and increased ZO-1 at GD 6. Thus, BPA treatment during perinatal period perturbed, when the animals reached adulthood and became pregnant, the particular expression of TJ proteins in the uterine epithelium and reduced in consequence the number of implantation sites.

  1. The expression patterns of tight junction protein claudin-1, -3, and -4 in human gastric neoplasms and adjacent non-neoplastic tissues

    PubMed Central

    Wang, Haiming; Yang, Xingwang

    2015-01-01

    Recently, there is growing evidence that tight junction proteins are often abnormally regulated in human tumors. The function of tight junction proteins in the maintenance of normal epithelial physiology has been well discussed, but their role in the tumorigenesis of gastric cancer is less well defined. To explore the expression distinction of the tight junction proteins claudin-1, -3, and -4 expression in the gastric cancer, the expression of claudin-1, -3, and -4 in 92 gastric cancer tissues and the non-neoplastic tissues adjacent to the tumors were examined by immunohistochemistry. Compared with adjacent non-neoplastic tissues, the expression of claudin-1 was down regulated. However, the expression of claudin-3 and claudin-4 were up-regulated in gastric cancer tissue. In addition, the expression of claudin-3 is correlated with claudin-4 expression in gastric cancer. Our present study reveals that claudin-1, -3, and -4 protein expression altered between human gastric cancers and adjacent non-neoplastic tissues. PMID:25755790

  2. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells.

    PubMed

    Suzuki, Takuya; Tanabe, Soichi; Hara, Hiroshi

    2011-01-01

    Kaempferol, a natural flavonoid present in fruits, vegetables, and teas, provides beneficial effects for human health. We investigated the promotive effect of kaempferol on tight junction (TJ) barrier integrity in human intestinal Caco-2 cell monolayers. Transepithelial electrical resistance (TER; a TJ integrity marker) across the monolayers rapidly and markedly increased during the first 6 h after kaempferol administration and remained elevated until 48 h without any changes in the lucifer yellow or dextran fluxes. Immunoblot analysis demonstrated that kaempferol promoted the actin cytoskeletal association of the TJ proteins, zonula occludens (ZO)-1, ZO-2, occludin, claudin-1, claudin-3, and claudin-4, which was associated with the increase in TER. Kaempferol-mediated ZO-2 and claudin-4 expression was relatively smaller or occurred later than the kaempferol-promoted cytoskeletal association. Confocal microscopy showed that kaempferol-induced assembly of occludin and claudin-3 occurred at the TJ at 6 h postadministration. Extraction of cholesterol with methyl-β-cyclodextrin suppressed the kaempferol-mediated increase in TER. Sucrose density gradient centrifugation showed that the kaempferol treatment increased the TJ protein distributions in the cholesterol-rich lipid microdomain fraction. Taken together, these results indicate that the membrane lipid microdomain is involved in the kaempferol-mediated promotion of TJ protein assembly and intestinal TJ integrity.

  3. Cinnamicaldehyde regulates the expression of tight junction proteins and amino acid transporters in intestinal porcine epithelial cells.

    PubMed

    Sun, Kaiji; Lei, Yan; Wang, Renjie; Wu, Zhenlong; Wu, Guoyao

    2017-01-01

    Cinnamicaldehyde (CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction (TJ) proteins are vital for the maintenance of intestinal epithelial barrier function, transport, absorption and utilization of dietary amino acids and other nutrients. In this study, we tested the hypothesis that CA may regulate the expression of TJ proteins and amino acid transporters in intestinal porcine epithelial cells (IPEC-1) isolated from neonatal pigs. Compared with the control, cells incubated with 25 μmol/L CA had increased transepithelial electrical resistance (TEER) and decreased paracellular intestinal permeability. The beneficial effect of CA on mucosal barrier function was associated with enhanced protein abundance for claudin-4, zonula occludens (ZO)-1, ZO-2, and ZO-3. Immunofluorescence staining showed that 25 μmol/L CA promoted the localization of claudin-1 and claudin-3 to the plasma membrane without affecting the localization of other TJ proteins, including claudin-4, occludin, ZO-1, ZO-2, and ZO-3, compared with the control cells. Moreover, protein abundances for rBAT, xCT and LAT2 in IPEC-1 cells were enhanced by 25 μmol/L CA, while that for EAAT3 was not affected. CA improves  intestinal mucosal barrier function by regulating the distribution of claudin-1 and claudin-3 in enterocytes, as well as enhancing protein abundance for amino acid transporters rBAT, xCT and LAT2 in enterocytes. Supplementation with CA may provide an effective nutritional strategy to improve intestinal integrity and amino acid transport and absorption in piglets.

  4. Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

    PubMed Central

    Schaible, Eva-Verena; Timaru-Kast, Ralph; Hedrich, Jana; Luhmann, Heiko J.; Engelhard, Kristin

    2012-01-01

    Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate adverse or

  5. Arecoline induced disruption of expression and localization of the tight junctional protein ZO-1 is dependent on the HER 2 expression in human endometrial Ishikawa cells.

    PubMed

    Giri, Sarbani; Poindexter, Kevin M; Sundar, Shyam N; Firestone, Gary L

    2010-07-06

    Approximately 600 million people chew Betel nut, making this practice the fourth most popular oral habit in the world. Arecoline, the major alkaloid present in betel nut is one of the causative agents for precancerous lesions and several cancers of mouth among those who chew betel nut. Arecoline can be detected in the human embryonic tissue and is correlated to low birth weight of newborns whose mothers chew betel nut during pregnancy, suggesting that arecoline can induce many systemic effects. However, few reports exist as to the effects of arecoline in human tissues other than oral cancer cell lines. Furthermore, in any system, virtually nothing is known about the cellular effects of arecoline treatment on membrane associated signaling components of human cancer cells. Using the human Ishikawa endometrial cancer cell line, we investigated the effects of arecoline on expression, localization and functional connections between the ZO-1 tight junction protein and the HER2 EGF receptor family member. Treatment of Ishikawa cells with arecoline coordinately down-regulated expression of both ZO-1 and HER2 protein and transcripts in a dose dependent manner. Biochemical fractionation of cells as well as indirect immunofluorescence revealed that arecoline disrupted the localization of ZO-1 to the junctional complex at the cell periphery. Compared to control transfected cells, ectopic expression of exogenous HER2 prevented the arecoline mediated down-regulation of ZO-1 expression and restored the localization of ZO-1 to the cell periphery. Furthermore, treatment with dexamethasone, a synthetic glucocorticoid reported to up-regulate expression of HER2 in Ishikawa cells, precluded arecoline from down-regulating ZO-1 expression and disrupting ZO-1 localization. Arecoline is known to induce precancerous lesions and cancer in the oral cavity of betel nut users. The arecoline down-regulation of ZO-1 expression and subcellular distribution suggests that arecoline potentially

  6. Arecoline induced disruption of expression and localization of the tight junctional protein ZO-1 is dependent on the HER 2 expression in human endometrial Ishikawa cells

    PubMed Central

    2010-01-01

    Background Approximately 600 million people chew Betel nut, making this practice the fourth most popular oral habit in the world. Arecoline, the major alkaloid present in betel nut is one of the causative agents for precancerous lesions and several cancers of mouth among those who chew betel nut. Arecoline can be detected in the human embryonic tissue and is correlated to low birth weight of newborns whose mothers chew betel nut during pregnancy, suggesting that arecoline can induce many systemic effects. However, few reports exist as to the effects of arecoline in human tissues other than oral cancer cell lines. Furthermore, in any system, virtually nothing is known about the cellular effects of arecoline treatment on membrane associated signaling components of human cancer cells. Results Using the human Ishikawa endometrial cancer cell line, we investigated the effects of arecoline on expression, localization and functional connections between the ZO-1 tight junction protein and the HER2 EGF receptor family member. Treatment of Ishikawa cells with arecoline coordinately down-regulated expression of both ZO-1 and HER2 protein and transcripts in a dose dependent manner. Biochemical fractionation of cells as well as indirect immunofluorescence revealed that arecoline disrupted the localization of ZO-1 to the junctional complex at the cell periphery. Compared to control transfected cells, ectopic expression of exogenous HER2 prevented the arecoline mediated down-regulation of ZO-1 expression and restored the localization of ZO-1 to the cell periphery. Furthermore, treatment with dexamethasone, a synthetic glucocorticoid reported to up-regulate expression of HER2 in Ishikawa cells, precluded arecoline from down-regulating ZO-1 expression and disrupting ZO-1 localization. Conclusion Arecoline is known to induce precancerous lesions and cancer in the oral cavity of betel nut users. The arecoline down-regulation of ZO-1 expression and subcellular distribution suggests

  7. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  8. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs.

    PubMed

    Hu, C H; Xiao, K; Luan, Z S; Song, J

    2013-03-01

    Although weaning stress has been reported to impair intestinal barrier function, the mechanisms have not yet been elucidated. In the present study, the intestinal morphology and permeability and mRNA expressions of tight junction proteins and cytokines in the intestine of piglets during the 2 wk after weaning were assessed. The phosphorylated (activated) ratios of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular regulated kinases (ERK1/2) were determined to investigate whether mitogen-activated protein kinase (MAPK) signaling pathways are involved in the early weaning process. A shorter villus and deeper crypt were observed on d 3 and 7 postweaning. Although damaged intestinal morphology recovered to preweaning values on d 14 postweaning, the intestinal mucosal barrier, which was reflected by transepithelial electrical resistance (TER) and paracellular flux of dextran (4 kDa) in the Ussing chamber and tight junction protein expression, was not recovered. Compared with the preweaning stage (d 0), jejunal TER and mRNA expressions of occludin and claudin-1 on d 3, 7, and 14 postweaning and Zonula occludens-1 (ZO-1) mRNA on d 3 and 7 postweaning were reduced, and paracellular flux of dextran on d 3, 7, and 14 postweaning was increased. An increase (P < 0.05) of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA on d 3 and d 7 postweaning and an increase (P < 0.05) of interferon-γ (IFN-γ) mRNA on d 3 postweaning were observed compared with d 0. No significant increase of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) mRNA after weaning was observed. The phosphorylated (activated) ratios of JNK and p38 on d 3 and 7 postweaning and the phosphorylated ratio of ERK1/2 on d 3 postweaning were increased (P < 0.05) compared with d 0. The results indicated that early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory

  9. Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in Shiga toxin independent manner

    PubMed Central

    Roxas, Jennifer Lising; Koutsouris, Athanasia; Bellmeyer, Amy; Tesfay, Samuel; Royan, Sandhya; Falzari, Kanakeshwari; Harris, Antoneicka; Cheng, Hao; Rhee, Ki-Jong; Hecht, Gail

    2010-01-01

    Shiga toxin (Stx) is implicated in the development of hemorrhagic colitis and hemolytic-uremic syndrome, but early symptoms of enterohemorrhagic Escherichia coli (EHEC) infection such as non-bloody diarrhea may be Stx-independent. In this study, we defined the effects of EHEC, in the absence of Stx, on the intestinal epithelium using a murine model. EHEC colonization of intestines from two groups of antibiotic-free and streptomycin-treated C57Bl/6J mice were characterized and compared. EHEC colonized the cecum and colon more efficiently than the ileum in both groups; however, greater amounts of tissue-associated EHEC were detected in streptomycin-pretreated mice. Imaging of intestinal tissues of mice infected with bioluminescent EHEC further confirmed tight association of the bacteria to the cecum and colon. Greater numbers of EHEC were also cultured from stool of streptomycin-pretreated mice, as compared to those that received no antibiotic. Transmission electron microscopy demonstrated that EHEC infection leads to microvillous effacement of mouse colonocytes. Hematoxylin and eosin staining of colonic tissues of infected mice revealed a slight increase in the number of lamina propria polymorphonuclear leukocytes. Transmucosal electrical resistance, a measure of epithelial barrier function, was reduced in colonic tissues of infected animals. Increased mucosal permeability to 4KDa FITC-Dextran was also observed in colonic tissues of infected mice. Immunofluorescence microscopy revealed that EHEC infection resulted in redistribution of the tight junction proteins occludin and claudin-3 and increased expression of claudin-2 while ZO-1 localization remained unaltered. Quantitative real-time PCR revealed that EHEC altered mRNA transcription of Ocln, Cldn2 and Cldn3. Most notably, claudin-2 expression was significantly increased and correlated with increased intestinal permeability. Our data indicate that C57Bl/6J mice serve as an in vivo model to study the physiological

  10. Effects of Soybean Agglutinin on Mechanical Barrier Function and Tight Junction Protein Expression in Intestinal Epithelial Cells from Piglets

    PubMed Central

    Pan, Li; Qin, Guixin; Zhao, Yuan; Wang, Jun; Liu, Feifei; Che, Dongsheng

    2013-01-01

    In this study, we sought to investigate the role of soybean agglutinin (SBA) in mediating membrane permeability and the mechanical barrier function of intestinal epithelial cells. The IPEC-J2 cells were cultured and treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mg/mL SBA. Transepithelial electrical resistance (TEER) and alkaline phosphatase (AP) activity were measured to evaluate membrane permeability. The results showed a significant decrease in TEER values (p < 0.05) in a time- and dose-dependent manner, and a pronounced increase in AP activity (p < 0.05). Cell growth and cell morphology were used to evaluate the cell viability. A significant cell growth inhibition (p < 0.05) and alteration of morphology were observed when the concentration of SBA was increased. The results of western blotting showed that the expression levels of occludin and claudin-3 were decreased by 31% and 64% compared to those of the control, respectively (p < 0.05). In addition, immunofluorescence labeling indicated an obvious decrease in staining of these targets and changes in their localizations. In conclusion, SBA increased the membrane permeability, inhibited the cell viability and reduced the levels of tight junction proteins (occludin and claudin-3), leading to a decrease in mechanical barrier function in intestinal epithelial cells. PMID:24189218

  11. Connexin 35: a gap-junctional protein expressed preferentially in the skate retina.

    PubMed Central

    O'Brien, J; al-Ubaidi, M R; Ripps, H

    1996-01-01

    We have used low stringency hybridization to clone a novel connexin from a skate retinal cDNA library. A rat connexin 32 clone was used to isolate a single partial clone that was subsequently used to isolate seven more overlapping clones of the same cDNA. Two clones containing the entire open reading frame have a consensus sequence of 1456 bp and predict a protein of 302 amino acids length and molecular mass of 35,044 daltons, referred to as connexin 35 or Cx35. Southern blot analysis suggests that the cloned sequence lies in a single gene with one intron. Polymerase chain reaction amplification from genomic DNA and partial sequencing of this intron showed that it was approximately 950 bp in length, and located within the coding region 71 bp after the translation start site. Hydropathy analysis of the predicted protein and alignments with previously cloned connexins indicate that Cx35 has a long cytoplasmic loop and a relatively short carboxyl terminal tail. Multiple sequence alignments show that Cx35 has similarities to both alpha and beta groups of connexins and suggests that its origins may be near the divergence point for the two groups. Consensus sequences consistent with sites for phosphorylation by protein kinase C and by cAMP - or cGMP -dependent protein kinase were identified. Two transcripts were detected in Northern blot analysis: a 1.95-kb primary transcript and a 4.6-kb minor transcript. In RNA samples from 10 tissues, transcripts were detected only in the retina. Images PMID:8688555

  12. Localization and expression pattern of amelotin, odontogenic ameloblast-associated protein and follicular dendritic cell-secreted protein in the junctional epithelium of inflamed gingiva.

    PubMed

    Nakayama, Yohei; Kobayashi, Ryoki; Matsui, Sari; Matsumura, Hiroyoshi; Iwai, Yasunobu; Noda, Keisuke; Yamazaki, Mizuho; Kurita-Ochiai, Tomoko; Yoshimura, Atsutoshi; Shinomura, Tamayuki; Ganss, Bernhard; Ogata, Yorimasa

    2016-11-02

    The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.

  13. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-09

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms.

  14. CD24 regulated gene expression and distribution of tight junction proteins is associated with altered barrier function in oral epithelial monolayers

    PubMed Central

    Ye, Ping; Nadkarni, Mangala A; Simonian, Mary; Hunter, Neil

    2009-01-01

    Background Control of intercellular penetration of microbial products is critical for the barrier function of oral epithelia. We demonstrated that CD24 is selectively and strongly expressed in the cells of the epithelial attachment to the tooth and the epithelial lining of the diseased periodontal pocket and studies in vitro showed that CD24 regulated expression of the epithelial intercellular adhesion protein E-cadherin. Results In the present study, the barrier function of oral epithelial cell monolayers to low molecular weight dextran was assayed as a model for the normal physiological function of the epithelial attachment to limit ingress of microbial products from oral microbial biofilms. Paracellular transfer of low molecular weight dextran across monolayers of oral epithelial cells was specifically decreased following incubation with anti-CD24 peptide antibody whereas passage of dextran across the monolayer was increased following silencing of mRNA for CD24. Changes in barrier function were related to the selective regulation of the genes encoding zonula occludens-1, zonula occludens-2 and occludin, proteins implicated in tight junctions. More particularly, enhanced barrier function was related to relocation of these proteins to the cell periphery, compatible with tight junctions. Conclusion CD24 has the constitutive function of maintaining expression of selected genes encoding tight junction components associated with a marginal barrier function of epithelial monolayers. Activation by binding of an external ligand to CD24 enhances this expression but is also effective in re-deployment of tight junction proteins that is aligned with enhanced intercellular barrier function. These results establish the potential of CD24 to act as a potent regulator of the intercellular barrier function of epithelia in response to local microbial ecology. PMID:19138432

  15. Tight junction proteins: from barrier to tumorigenesis.

    PubMed

    Runkle, E Aaron; Mu, David

    2013-08-28

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis.

  16. Tight Junction Proteins: From Barrier to Tumorigenesis

    PubMed Central

    Runkle, E. Aaron; Mu, David

    2013-01-01

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis. PMID:23743355

  17. Expression of tight junction proteins in epithelium including Ck20-positive M-like cells of human adenoids in vivo and in vitro.

    PubMed

    Takano, Ken-ichi; Kojima, Takashi; Ogasawara, Noriko; Go, Mitsuru; Kikuchi, Shin; Ninomiya, Takafumi; Kurose, Makoto; Koizumi, Jun-ichi; Kamekura, Ryuta; Murata, Masaki; Tanaka, Satoshi; Chiba, Hideki; Himi, Tetsuo; Sawada, Norimasa

    2008-06-01

    The human adenoid epithelium forms a continuous barrier against a wide variety of exogenous antigens. In this study, to elucidate the structures of the epithelial barrier in the human adenoid, including M-cells, we identified M-cells using an anti-cytokeratin 20 (Ck20) antibody and investigated expression of tight junction proteins in human adenoid epithelium in vivo and in vitro. In human adenoid epithelium and primary cultures, mRNAs of occludin, junctional adhesion molecule-A, ZO-1, and claudin-1, -4, -7, and -8 were detected by reverse transcription-polymerase chain reaction, whereas claudin-2 and -9 were expressed in vitro. In the epithelium in vivo, some Ck20-positive cells were randomly observed and indicated pocket-like structures, whereas Ck7 was positive in almost cells. Transmission electron microscopy revealed that Ck20-associated gold particles could be identified in M-like cells which had short microvilli and harboured the lymphocyte in the pocket-like structure. In primary cultures in vitro, Ck20-positive cells were also detected and had a function to take up fluorescent microparticles. In Ck20-positive cells in vivo and in vitro, expression of occludin, ZO-1, claudin-1 and -7 were observed at cell borders. These results indicate that the epithelial barrier of the human adenoid is stably maintained by expression of tight junction proteins in the epithelium including Ck20-positive M-like cells.

  18. ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins.

    PubMed

    Tatari, Marianthi N; De Craene, Bram; Soen, Bieke; Taminau, Joachim; Vermassen, Petra; Goossens, Steven; Haigh, Katharina; Cazzola, Silvia; Lambert, Jo; Huylebroeck, Danny; Haigh, Jody J; Berx, Geert

    2014-09-01

    Epithelial homeostasis within the epidermis is maintained by means of multiple cell-cell adhesion complexes such as adherens junctions, tight junctions, gap junctions, and desmosomes. These complexes co-operate in the formation and the regulation of the epidermal barrier. Disruption of the epidermal barrier through the deregulation of the above complexes is the cause behind a number of skin disorders such as psoriasis, dermatitis, keratosis, and others. During epithelial-to-mesenchymal transition (EMT), epithelial cells lose their adhesive capacities and gain mesenchymal properties. ZEB transcription factors are key inducers of EMT. In order to gain a better understanding of the functional role of ZEB2 in epidermal homeostasis, we generated a mouse model with conditional overexpression of Zeb2 in the epidermis. Our analysis revealed that Zeb2 expression in the epidermis leads to hyperproliferation due to the combined downregulation of different tight junction proteins compromising the epidermal barrier. Using two epidermis-specific in vivo models and in vitro promoter assays, we identified occludin as a new Zeb2 target gene. Immunohistological analysis performed on human skin biopsies covering various pathogeneses revealed ZEB2 expression in the epidermis of pemphigus vulgaris. Collectively, our data support the notion for a potential role of ZEB2 in intracellular signaling of this disease.

  19. Effect of Acute Stress on Immune Cell Counts and the Expression of Tight Junction Proteins in the Duodenal Mucosa of Rats

    PubMed Central

    Lee, Hong Sub; Kim, Dong-Kyu; Kim, Young Bae

    2013-01-01

    Background/Aims Duodenal immune alterations have been reported in a subset of patients with functional dyspepsia (FD). The aim of this study was to investigate the effect of acute stress on immune cell counts and the expression of tight junction proteins in the duodenal mucosa. Methods Twenty-one male rats were divided into the following three experimental groups: 1) the nonstressed, control group, 2) the 2-hour-stressed group, and 3) the 4-hour-stressed group. Eosinophils, mast cells and CD4+ and CD8+ T lymphocytes in the duodenal mucosa were counted. The protein and mRNA expressions of occludin and zonula occludens-1 (ZO-1) were examined. Results Eosinophils, mast cells and CD8+ T lymphocyte counts did not differ between the stressed and control groups. The number of CD4+ T lymphocytes and the protein and mRNA expressions of occludin and ZO-1 were significantly lower in the 4-hour-stressed group compared with the control group. The plasma adrenocorticotrophic hormone and cortisol levels of the 4-hour-stressed group were significantly higher than those of the control group. Conclusions Acute stress reduces the number of CD4+ T lymphocytes and the expression of tight junction proteins in the duodenal mucosa, which might be associated with the duodenal immune alterations found in a subset of FD patients. PMID:23560155

  20. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    PubMed

    Elfers, Kristin; Marr, Isabell; Wilkens, Mirja R; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.

  1. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    PubMed Central

    Wilkens, Mirja R.; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S.

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  2. Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier.

    PubMed

    Rapôso, Catarina; Odorissi, Paulo Alexandre Miranda; Oliveira, Alexandre L R; Aoyama, Hiroshi; Ferreira, Carmen Verissima; Verinaud, Liana; Fontana, Karina; Ruela-de-Sousa, Roberta R; da Cruz-Höfling, Maria Alice

    2012-09-01

    Phoneutria nigriventer spider venom (PNV) contains Ca(2+), K(+) and Na(+) channel-acting peptides that affect neurotransmitter release and causes excitotoxicity in PNS and CNS. It has been demonstrated that PNV causes blood-brain barrier (BBB) breakdown of hippocampal microvessels time-dependently through enhanced microtubule-mediated vesicular transport. Herein, it is hypothesized that PNV can cause BBB breakdown in the hippocampus and cerebellum time-dependently through other molecular mechanisms. The BBB integrity was assessed through the analysis of expression of Poly-glycoprotein (P-gp) efflux transporter protein, laminin from basement membrane and endothelial tight junctional and adhesion junctional (TJ/AJ) proteins. Phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) expression, which are known to have a role in the phosphorylation of junctional proteins and BBB opening, were also investigated. Astrocytes P-gp activity was determined by flow cytometry. The study demonstrated temporary decreased expression of laminin, TJ and AJ proteins (ZO1//occludin//claudin-5//beta-catenin) and P-gp (more prominently in hippocampus), which was completely or partially resolved between 2 and 5 h (and more quickly for cerebellum). PNV inhibited P-gp activity in astrocytes. PP2A phosphorylation, which inhibits the enzyme activity, was increased in both regions (15-45 min); however the phosphorylation level returned to baseline after 2 h. In conclusion, PNV disrupts paracellular transport in the BBB and possesses substrates for the active P-gp efflux transporter located in the BBB complex. Further studies into cellular mechanisms of astrocyte/endothelial interactions, using PNV as tool, may identify how astrocytes regulate the BBB, a characteristic that may be useful for the temporary opening of the BBB.

  3. Slit Diaphragms Contain Tight Junction Proteins

    PubMed Central

    Fukasawa, Hirotaka; Bornheimer, Scott; Kudlicka, Krystyna; Farquhar, Marilyn G.

    2009-01-01

    Slit diaphragms are essential components of the glomerular filtration apparatus, as changes in these junctions are the hallmark of proteinuric diseases. Slit diaphragms, considered specialized adherens junctions, contain both unique membrane proteins (e.g., nephrin, podocin, and Neph1) and typical adherens junction proteins (e.g., P-cadherin, FAT, and catenins). Whether slit diaphragms also contain tight junction proteins is unknown. Here, immunofluorescence, immunogold labeling, and cell fractionation demonstrated that rat slit diaphragms contain the tight junction proteins JAM-A (junctional adhesion molecule A), occludin, and cingulin. We found these proteins in the same protein complexes as nephrin, podocin, CD2AP, ZO-1, and Neph1 by cosedimentation, coimmunoprecipitation, and pull-down assays. PAN nephrosis increased the protein levels of JAM-A, occludin, cingulin, and ZO-1 several-fold in glomeruli and loosened their attachment to the actin cytoskeleton. These data extend current information about the molecular composition of slit diaphragms by demonstrating the presence of tight junction proteins, although slit diaphragms lack the characteristic morphologic features of tight junctions. The contribution of these proteins to the assembly of slit diaphragms and potential signaling cascades requires further investigation. PMID:19478094

  4. Expression of tight junction proteins and transporters for xenobiotic metabolism at the blood-CSF barrier during development in the nonhuman primate (P. hamadryas).

    PubMed

    Ek, C Joakim; D'Angelo, Barbara; Lehner, Christine; Nathanielsz, Peter; Li, Cun; Mallard, Carina

    2015-08-15

    The choroid plexus (CP) is rich in barrier mechanisms including transporters and enzymes which can influence drug disposition between blood and brain. We have limited knowledge of their state in fetus. We have studied barrier mechanisms along with metabolism and transporters influencing xenobiotics, using RNAseq and protein analysis, in the CP during the second-half of gestation in a nonhuman primate (Papio hamadryas). There were no differences in the expression of the tight-junctions at the CP suggesting a well-formed fetal blood-CSF barrier during this period of gestation. Further, the fetal CP express many enzymes for phase I-III metabolisms as well as transporters suggesting that it can greatly influence drug disposition and has a significant machinery to deactivate reactive molecules with only minor gestational changes. In summary, the study suggests that from, at least, midgestation, the CP in the nonhuman primate is restrictive and express most known genes associated with barrier function and transport.

  5. Different Changes in the Expression of Multiple Kinds of Tight-Junction Proteins during Ischemia-Reperfusion Injury of the Rat Ileum

    PubMed Central

    Inoue, Kaori; Oyamada, Masahito; Mitsufuji, Shoji; Okanoue, Takeshi; Takamatsu, Tetsuro

    2006-01-01

    Dysfunction of tight junctions (TJs), located at the most apical part of the intestinal epithelium, is believed to result in various complications in intestinal disease. However, the behaviors of multiple kinds of TJ proteins during ischemia-reperfusion injury are not understood in detail. To determine changes in expression and localization of TJ proteins during intestinal-barrier recovery, we induced intestinal ischemia-reperfusion injury in rats, measured mucosa-to-blood permeability of fluorescein isothiocyanate-dextran-4 kDa, and compared it with spatiotemporal changes of ZO-1, occludin, and claudin-1, -2, -3, -4, and -5 by immunoconfocal microscopy. At 1 hour post-reperfusion, villi were denuded and intestinal-barrier function was lost. From 6 to 24 hours post-reperfusion, villous epithelium was restored by cell migration, and barrier function together with reticular pattern expression of ZO-1, occludin, and claudin-1, -3, and -5, recovered time-dependently. To the contrary, after ischemia-reperfusion injury, the localized expression of claudin-2 and claudin-4 observed in the non-treated control was lost and replaced with broader expression from crypts to villi with increased basolateral claudin-4 expression in epithelial cells. These data demonstrated that recovery of intestinal barrier function is associated with expression of ZO-1, occludin, and claudin-1, -3, and -5, whereas claudin-2 and claudin-4 show unique changes in expression and localization. PMID:17375208

  6. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  7. Ferulate protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in tert-butyl hydroperoxide-induced Caco-2 cells.

    PubMed

    Kim, Hyun Jung; Lee, Eun Kyeong; Park, Min Hi; Ha, Young Mi; Jung, Kyung Jin; Kim, Min-Sun; Kim, Mi Kyung; Yu, Byung Pal; Chung, Hae Young

    2013-03-01

    Epithelial barrier function is determined by both transcellular and paracellular permeability, the latter of which is mainly influenced by tight junctions (TJs) and apoptotic leaks within the epithelium. We investigated the protective effects of ferulate on epithelial barrier integrity by examining permeability, TJ protein expression, and apoptosis in Caco-2 cells treated with tert-butyl hydroperoxide (t-BHP), a strong reactive species inducer. Caco-2 cells pretreated with ferulate (5 or 15 μM) were exposed to t-BHP (100 μM), and ferulate suppressed the t-BHP-mediated increases in reactive species and epithelial permeability in Caco-2 cells. Moreover, ferulate inhibited epithelial cell leakage induced by t-BHP, which was accompanied by decreased expression of the TJ proteins zonula occludens-1 and occludin. In addition, pretreatment with ferulate markedly protected cells against t-BHP-induced apoptosis, as evidenced by decreased nuclear condensation, cytochrome c release, and caspase-3 cleavage and an increased Bax/Bcl-2 ratio. These results suggest that ferulate protects the epithelial barrier of Caco-2 cells against oxidative stress, which results in increased epithelial permeability, decreased TJ protein expression, and increased apoptosis. The most significant finding of our study is the demonstration of protective, ferulate-mediated antioxidant effects on barrier integrity, with a particular focus on intracellular molecular mechanisms.

  8. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats.

    PubMed

    Goodrich, Katheryn M; Fundaro, Gabrielle; Griffin, Laura E; Grant, Ar'quette; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2012-10-01

    Animal studies have demonstrated the potential of grape seed extract (GSE) to prevent metabolic syndrome, obesity, and type 2 diabetes. Recently, metabolic endotoxemia induced by bacterial endotoxins produced in the colon has emerged as a possible factor in the etiology of metabolic syndrome. Improving colonic barrier function may control endotoxemia by reducing endotoxin uptake. However, the impact of GSE on colonic barrier integrity and endotoxin uptake has not been evaluated. We performed a secondary analysis of samples collected from a chronic GSE feeding study with pharmacokinetic end points to examine potential modulation of biomarkers of colonic integrity and endotoxin uptake. We hypothesized that a secondary analysis would indicate that chronic GSE administration increases colonic expression of intestinal tight junction proteins and reduces circulating endotoxin levels, even in the absence of an obesity-promoting stimulus. Wistar Furth rats were administered drinking water containing 0.1% GSE for 21 days. Grape seed extract significantly increased the expression of gut junction protein occludin in the proximal colon and reduced fecal levels of the neutrophil protein calprotectin, compared with control. Grape seed extract did not significantly reduce serum or fecal endotoxin levels compared with control, although the variability in serum levels was widely increased by GSE. These data suggest that the improvement of gut barrier integrity and potential modulation of endotoxemia warrant investigation as a possible mechanism by which GSE prevents metabolic syndrome and associated diseases. Further investigation of this mechanism in high-fat feeding metabolic syndrome and obesity models is therefore justified. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins

    PubMed Central

    Xiao, Lan; Rao, Jaladanki N.; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-01-01

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs. PMID:26680741

  10. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins.

    PubMed

    Xiao, Lan; Rao, Jaladanki N; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-02-15

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.

  11. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4{alpha}-induced epithelial polarization

    SciTech Connect

    Satohisa, Seiro; Chiba, Hideki . E-mail: hidchiba@sapmed.ac.jp; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-10-15

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4{alpha} [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4{alpha} triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4{alpha}-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4{alpha} led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4{alpha} provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization.

  12. [Effects of the combination of musk and olibanum on the expressions of tight junction proteins in the prostate epithelial cells of rats].

    PubMed

    Lin, Qun-fang; Huang, Pei; Tian, Xue-fei; Shang, Xue-jun; Wu, Yang-peng; Han, Ping; Gao, Rui-song; Zhou, Qing

    2015-12-01

    To investigate the effects of the combination of musk and olibanum on the tight junction protein expressions in prostatic epithelial cells of normal and chronic prostatitis (CP) rats. Eighty male SD rats were randomly divided into 8 groups of equal number: normal control, normal musk, normal olibanum, normal musk + olibanum, CP model control, CP model musk, CP model olibanum, and CP model musk + olibanum. At 60 days after modeling, the rats in the control, musk, olibanum, and musk + olibanum groups were treated intragastrically with normal saline, musk (0.021 g per kg body weight per day), olibanum (1.05 g per kg body weight per day), or musk + olibanum respectively, all for 3 days. Then, all the rats were sacrificed and their prostate tissues harvested for detection of the expressions of the tight junction proteins Claudin-1, Claudin-3, Occludin, and ZO-1 in the prostatic epithelial cells by immunohistochemical staining. In the CP models, only the expression of Claudin-1 was significantly increased. In the normal rats, the expression of Claudin-1 was remarkably upregulated after treated with musk (824.6 ± 393.3, P < 0.05), olibanum (982.0 ± 334.0, P < 0.05), and musk + olibanum (1088.1 ± 640.2, P < 0.01); that of Claudin-3 was elevated markedly by olibanum (1 009.5 ± 243.6, P < 0.05) and insignificantly by musk (597.5 ± 80.7), but the increasing effect of olibanum was reduced by musk + olibanum (678.4 ± 255.1). No statistically significant differences were found in the expression of Occludin among the rats treated with musk (693.0 ± 424.8), olibanum (732.1 ± 302.0), and musk + olibanum (560.2 ± 202.3), or in that of ZO-1 in the animals treated with musk (290.0 ± 166.8) and olibanum (419.7 ± 108.1), but the latter was markedly decreased in the musk + olibanum group (197.7 ± 98.2, P < 0.05). In the CP rat models, both the expressions of Claudin-1 (823.0 ± 100.1, P < 0.01) and Occludin (1160.0 ± 32.2, P < 0.05) were significantly increased. The

  13. Expressions of Tight Junction Proteins Occludin and Claudin-1 Are under the Circadian Control in the Mouse Large Intestine: Implications in Intestinal Permeability and Susceptibility to Colitis

    PubMed Central

    Oh-oka, Kyoko; Kono, Hiroshi; Ishimaru, Kayoko; Miyake, Kunio; Kubota, Takeo; Ogawa, Hideoki; Okumura, Ko; Shibata, Shigenobu; Nakao, Atsuhito

    2014-01-01

    Background & Aims The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ) that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. Methods The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2m/m). In addition, the susceptibility to dextran sodium sulfate (DSS)-induced colitis was compared between wild-type mice and mPer2m/m mice. Results The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2m/m mice. mPer2m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. Conclusions Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis. PMID:24845399

  14. The MAPK/ERK-Signaling Pathway Regulates the Expression and Distribution of Tight Junction Proteins in the Mouse Proximal Epididymis1

    PubMed Central

    Kim, Bongki; Breton, Sylvie

    2015-01-01

    The initial segment (IS) in rodents is functionally and structurally distinct from other epididymal segments and plays an important role in sperm maturation. The MAPK/ERK1/2 pathway is maintained active in the IS by testicular luminal factors and plays crucial roles in the maintenance and differentiation of the IS epithelium. Tight junctions (TJs) are constituents of the blood-epididymis barrier, which mediates the paracellular transport of ions, solutes, and water and controls epithelial cell differentiation, thereby contributing to the establishment of a unique luminal environment. We examine here the role of the MAPK/ERK1/2 pathway in the regulation of TJ proteins in the IS. Inhibition of mitogen activated protein kinase kinase (MAPKK or MEK1/2) with PD325901, followed by reduction of ERK1/2 phosphorylation (pERK), decreased zonula occludens (ZO)-2 expression and increased ZO-3 expression in TJs but had no effect on ZO-1 expression. In control mice, in addition to being located in TJs, claudin (Cldn)-1, Cldn-3, and Cldn-4 were detected in the basolateral membrane of epithelial cells, with enriched expression of Cldn-1 and Cldn-4 in basal cells. PD325901 reduced the expression of Cldn-1 and Cldn-4 at all locations without affecting Cldn-3. Occludin was undetectable in the IS of control mice, but PD325901 triggered its expression in TJs. No effect was observed for any of the proteins examined in the other epididymal regions. Our results indicate the participation of the MAPK/ERK1/2 pathway in the regulation of cell-cell events that control the formation and maintenance of the blood-epididymis barrier. PMID:26658708

  15. [Influence of acupuncture of "Changqiang" (GV 1) on learning-memory ability and gap junction-related protein expression in the prefrontal cortex in autism rats].

    PubMed

    Hong, Yu-Zhu; Zhang, Xue-Jun; Hong, Lin; Huang, Qian-Ru; Wu, Qiang

    2014-06-01

    To observe the effect of acupuncture stimulation of "Changqiang" (GV 1) on learning-memory ability and gap junction-related protein expression in the prefrontal cortex in autism rats. Forty Wistar rats were equally randomized into control, model, GV 1 and non-acupoint groups. For establishing autism model, Valproate acid (VPA) sodium (600 mg/kg) was given (i. p.) to pregnancy rats whose intimate filial generation was confirmed to be successful autism by eye-open tests, swimming test and Morris water maze swimming tasks. GV 1 or non-acupoint (the spot below the costal region, i.e., 2 cm superior to the posterior superior iliac spine and about 3 cm lateral to the spine) was punctured and stimulated for about 1 min by using a filiform needle, once daily for 30 days except the weekends. The rats' learning-memory ability was detected by Morris water maze tasks. The expression of gap junction-related proteins connexin 43 (CX 43), CX 32 and CX 36 in the frontal cortex tissue was detected by immunohistochemistry. After modeling, the postnatal rats' eye-open time on day 14, 15 and 16 was significantly later (P < 0.05); and the swimming ability on postnatal day 13 and 15 was obviously lower in comparison with that of the control group (P < 0.05). After acupuncture treatment, the increased escape latency and the decreased swimming velocity of the autism rats were obviously suppressed in the GV 1 group, rather than in the non-acupoint group (P < 0.05). It suggests an improvement of learning-memory ability after acupuncture stimulation of GV 1. In comparison with the control group, the expression levels of cerebral CX 43, CX 32 and CX 36 proteins (mean grey values) were considerably down-regulated in the model group (P < 0.05). While compared to the model group, their expression levels were apparently up-regulated in the GV 1 group (P < 0.05) but not in the non-acupoint group. Acupuncture intervention of GV 1 can improve the learning- memory ability in autism rats, which may be

  16. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice

    PubMed Central

    2013-01-01

    Background Traffic-generated air pollution-exposure is associated with adverse effects in the central nervous system (CNS) in both human exposures and animal models, including neuroinflammation and neurodegeneration. While alterations in the blood brain barrier (BBB) have been implicated as a potential mechanism of air pollution-induced CNS pathologies, pathways involved have not been elucidated. Objectives To determine whether inhalation exposure to mixed vehicle exhaust (MVE) mediates alterations in BBB permeability, activation of matrix metalloproteinases (MMP) -2 and −9, and altered tight junction (TJ) protein expression. Methods Apolipoprotein (Apo) E−/− and C57Bl6 mice were exposed to either MVE (100 μg/m3 PM) or filtered air (FA) for 6 hr/day for 30 days and resulting BBB permeability, expression of ROS, TJ proteins, markers of neuroinflammation, and MMP activity were assessed. Serum from study mice was applied to an in vitro BBB co-culture model and resulting alterations in transport and permeability were quantified. Results MVE-exposed Apo E−/− mice showed increased BBB permeability, elevated ROS and increased MMP-2 and −9 activity, compared to FA controls. Additionally, cerebral vessels from MVE-exposed mice expressed decreased levels of TJ proteins, occludin and claudin-5, and increased levels of inducible nitric oxide synthase (iNOS) and interleukin (IL)-1β in the parenchyma. Serum from MVE-exposed animals also resulted in increased in vitro BBB permeability and altered P-glycoprotein transport activity. Conclusions These data indicate that inhalation exposure to traffic-generated air pollutants promotes increased MMP activity and degradation of TJ proteins in the cerebral vasculature, resulting in altered BBB permeability and expression of neuroinflammatory markers. PMID:24344990

  17. Testosterone Regulates Tight Junction Proteins and Influences Prostatic Autoimmune Responses

    PubMed Central

    Meng, Jing; Mostaghel, Elahe A.; Vakar-Lopez, Funda; Montgomery, Bruce; True, Larry; Nelson, Peter S.

    2015-01-01

    Testosterone and inflammation have been linked to the development of common age-associated diseases affecting the prostate gland including prostate cancer, prostatitis, and benign prostatic hypertrophy. We hypothesized that testosterone regulates components of prostate tight junctions which serve as a barrier to inflammation, thus providing a connection between age- and treatment-associated testosterone declines and prostatic pathology. We examined the expression and distribution of tight junction proteins in prostate biospecimens from mouse models and a clinical study of chemical castration, using transcript profiling, immunohistochemistry and electron microscopy. We determined that low serum testosterone is associated with reduced transcript and protein levels of Claudin 4 and Claudin 8, resulting in defective tight junction ultrastructure in benign prostate glands. Expression of Claudin 4 and Claudin 8 was negatively correlated with the mononuclear inflammatory infiltrate caused by testosterone deprivation. Testosterone suppression also induced an auto-immune humoral response directed toward prostatic proteins. Testosterone supplementation in castrate mice resulted in re-expression of tight junction components in prostate epithelium and significantly reduced prostate inflammatory cell numbers. These data demonstrate that tight junction architecture in the prostate is related to changes in serum testosterone levels, and identify an androgen-regulated mechanism that potentially contributes to the development of prostate inflammation and consequent pathology. PMID:21761342

  18. Specific Deletion of AMP-Activated Protein Kinase (α1AMPK) in Murine Oocytes Alters Junctional Protein Expression and Mitochondrial Physiology

    PubMed Central

    Bertoldo, Michael J.; Guibert, Edith; Faure, Melanie; Ramé, Christelle; Foretz, Marc; Viollet, Benoit; Dupont, Joëlle; Froment, Pascal

    2015-01-01

    Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK), an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO) female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK) involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues). Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed. PMID:25767884

  19. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise.

  20. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet.

    PubMed

    Chen, Liang; Feng, Lin; Jiang, Wei-Dan; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2015-11-01

    This study investigated the effects of riboflavin on intestinal immunity, tight junctions and antioxidant status of young grass carp (Ctenopharyngodon idella). Fish were fed diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme, acid phosphatase, copper/zinc superoxide dismutase, glutathione reductase and glutathione peroxidase activities, and contents of complement component 3 and reduced glutathione in the intestine of fish (P < 0.05). Meanwhile, riboflavin deficiency increased reactive oxygen species, malondialdehyde and protein carbonyl contents and catalase activity (P < 0.05) in the intestine of fish. Furthermore, real-time polymerase chain reaction analysis was used to investigate mRNA expression patterns and found that the mRNA levels of interleukin 10 and transforming growth factor β1, Occludin, zonula occludens 1, Claudin-b and Claudin-c, inhibitor protein κBα, target of rapamycin, ribosomal S6 protein kinase 1 and NF-E2-related factor 2, copper/zinc superoxide dismutase, glutathione peroxidase and glutathione reductase were decreased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of tumor necrosis factor α, interleukin 1β, interleukin 8, nuclear factor kappa B p65, Ikappa B kinase β, Ikappa B kinase γ, Kelch-like-ECH-associated protein 1b, p38 mitogen-activated protein kinase, myosin light chain kinase and Claudin-12 were increased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. In conclusion, riboflavin deficiency decreased immunity and structural integrity of fish intestine. The optimum riboflavin level for intestinal acid phosphatase activity of young grass carp was estimated to be 6.65 mg/kg diet.

  1. Effects of simulated weightlessness on tight junction protein occludin and Zonula Occluden-1 expression levels in the intestinal mucosa of rats.

    PubMed

    Ying, Chen; Chunmin, Yang; Qingsen, Liu; Mingzhou, Guo; Yunsheng, Yang; Gaoping, Mao; Ping, Wang

    2011-02-01

    This study investigated the tight junction (TJ) protein expression of the intestinal mucosa in a rat tail-suspension model under simulated weightlessness. Twenty-four Wistar rats were randomly divided into three groups: CON group (n=8), control; SUS-14 d group (n=8), tail-suspension for 14 days; SUS-21 d group (n=8), tail-suspension for 21 days. Occludin and Zonula Occluden-1 (ZO-1) expression levels were determined by immunohistochemical analysis and mRNA fluorescent quantitative PCR. Plasma levels of diamine oxidase (DAO) and d-lactate were determined using enzymatic spectrophotometry. Immunohistochemical results for occludin and ZO-1 showed disruption of the TJs in the intestinal mucosa in SUS-14 d and SUS-21 d groups. The expression levels of occludin and ZO-1 in SUS-21 d group were lower than those in SUS-14 d group, and significantly lower than those in CON group (Occldin: 0.86±0.02 vs 1.01±0.03 vs 1.63±0.03 and ZO-1: 0.82±0.01 vs 1.00±0.02 vs 1.55±0.01, P<0.01). Moreover, the levels of plasma DAO and d-lactate in SUS-21 d group were higher than those in SUS-14 d group, and significantly higher than those in CON group (DAO: 27.58±0.49 vs 20.74±0.49 vs 12.94±0.21 and d-lactate: 37.86±0.74 vs 28.26±1.01 vs 17.76±0.91, P<0.01). There were significant negative correlations between occludin or ZO-1 expression levels and DAO (r (2)=0.9014, r (2)=0.9355, P<0.01) or d-lactate levels (r (2)=0.8989, r (2)=0.9331, P<0.01). Occludin and Zo-1 were reduced in intestinal mucosa both in mRNA and protein levels in the rat tail-suspension model. The significant negative correlations between expression levels of TJs and plasma levels of DAO or d-lactate support the hypothesis that intestinal permeability is increased due to a decrease in TJ protein expression during tail-suspension from 14 days to 21 days.

  2. Irinotecan disrupts tight junction proteins within the gut

    PubMed Central

    Wardill, Hannah R; Bowen, Joanne M; Al-Dasooqi, Noor; Sultani, Masooma; Bateman, Emma; Stansborough, Romany; Shirren, Joseph; Gibson, Rachel J

    2014-01-01

    Chemotherapy for cancer causes significant gut toxicity, leading to severe clinical manifestations and an increased economic burden. Despite much research, many of the underlying mechanisms remain poorly understood hindering effective treatment options. Recently there has been renewed interest in the role tight junctions play in the pathogenesis of chemotherapy-induced gut toxicity. To delineate the underlying mechanisms of chemotherapy-induced gut toxicity, this study aimed to quantify the molecular changes in key tight junction proteins, ZO-1, claudin-1, and occludin, using a well-established preclinical model of gut toxicity. Female tumor-bearing dark agouti rats received irinotecan or vehicle control and were assessed for validated parameters of gut toxicity including diarrhea and weight loss. Rats were killed at 6, 24, 48, 72, 96, and 120 h post-chemotherapy. Tight junction protein and mRNA expression in the small and large intestines were assessed using semi-quantitative immunohistochemistry and RT-PCR. Significant changes in protein expression of tight junction proteins were seen in both the jejunum and colon, correlating with key histological changes and clinical features. mRNA levels of claudin-1 were significantly decreased early after irinotecan in the small and large intestines. ZO-1 and occludin mRNA levels remained stable across the time-course of gut toxicity. Findings strongly suggest irinotecan causes tight junction defects which lead to mucosal barrier dysfunction and the development of diarrhea. Detailed research is now warranted to investigate posttranslational regulation of tight junction proteins to delineate the underlying pathophysiology of gut toxicity and identify future therapeutic targets. PMID:24316664

  3. Tight junctions and the regulation of gene expression.

    PubMed

    González-Mariscal, Lorenza; Domínguez-Calderón, Alaide; Raya-Sandino, Arturo; Ortega-Olvera, José Mario; Vargas-Sierra, Orlando; Martínez-Revollar, Gabriela

    2014-12-01

    Tight junctions (TJ) regulate the paracellular passage of ions and molecules through the paracellular pathway and maintain plasma membrane polarity in epithelial and endothelial cells. Apart from these canonical functions, several proteins of the TJ have been found in recent years to regulate gene expression. This function is found in proteins that shuttle between the nucleus and TJs, and in integral TJ proteins. In this review, we will describe these proteins and their known mechanisms of gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

    PubMed Central

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-01-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis. PMID:27600198

  5. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  6. Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes.

    PubMed

    Kasahara, Hideko; Ueyama, Tomomi; Wakimoto, Hiroko; Liu, Margaret K; Maguire, Colin T; Converso, Kimber L; Kang, Peter M; Manning, Warren J; Lawitts, Joel; Paul, David L; Berul, Charles I; Izumo, Seigo

    2003-03-01

    Nkx2.5, an evolutionarily conserved homeodomain containing transcription factor, is one of the earliest cardiogenic markers. Although its expression continues through adulthood, its function in adult cardiomyocytes is not well understood. To examine the effect of Nkx2.5 in terminal differentiated postnatal cardiomyocytes, we generated transgenic mice expressing either wild-type Nkx2.5 (TG-wild), a putative transcriptionally active mutant (carboxyl-terminus deletion mutant: TG-DeltaC) or a DNA non-binding point mutant of Nkx2.5 (TG-I183P) under alpha-myosin heavy chain promoter. Most TG-wild and TG-DeltaC mice died before 4 months of age with heart failure associated with conduction abnormalities. Cardiomyocytes expressing wild-type Nkx2.5 or a putative transcriptionally active mutant (DeltaC) had dramatically reduced expression of connexin 43 and changed sarcomere structure. Wild-type Nkx2.5 adenovirus-infected adult cardiomyocytes demonstrated connexin 43 downregulation as early as 16 h after infection, indicating that connexin 43 downregulation is due to Nkx2.5 overexpression but not due to heart failure phenotype in vivo. These studies indicate that overexpression of Nkx2.5 in terminally differentiated cardiomyocytes dramatically alters cardiac cell structure and function.

  7. Distribution of Tight Junction Proteins in Adult Human Salivary Glands

    PubMed Central

    Maria, Ola M.; Kim, Jung-Wan Martin; Gerstenhaber, Jonathan A.; Baum, Bruce J.; Tran, Simon D.

    2008-01-01

    Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and ∼25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland. (J Histochem Cytochem 56:1093–1098, 2008) PMID:18765838

  8. Developmental Changes in Proximal Tubule Tight Junction Proteins

    PubMed Central

    HADDAD, MAHA; LIN, FANGMING; DWARAKANATH, VANGIPURAM; CORDES, KIMBERLY; BAUM, MICHEL

    2014-01-01

    We demonstrated previously that neonatal proximal tubules have a lower passive paracellular permeability to chloride ions and higher resistance than that of adult proximal tubules. In addition, administration of thyroid hormone to neonates, before the normal maturational increase in serum thyroid hormone levels, prematurely accelerates the developmental increase in chloride permeability to adult levels. To test the hypothesis that there is a maturational change in tight junction proteins and that thyroid hormone mediates these changes, we examined the two known tight junction proteins present in proximal tubules, occludin and claudin 2. Using immunoblot and immunohistochemistry, we demonstrated that claudin 2 has a 4-fold greater abundance in neonatal proximal tubules than in adult tubules. Occludin, however, has a 4-fold greater expression in adult tubules than in neonatal tubules. Administration of thyroid hormone to neonates did not affect claudin 2 expression, occludin expression, or the transepithelial resistance in rat proximal tubule cells in vitro. In conclusion, there are postnatal maturational changes in tight junction proteins. The factors that cause these maturational changes are unknown but unlikely to be due solely to the maturational increase in thyroid hormone. PMID:15585672

  9. Transcription of the gene for the gap junctional protein connexin43 and expression of functional cell-to-cell channels are regulated by cAMP.

    PubMed Central

    Mehta, P P; Yamamoto, M; Rose, B

    1992-01-01

    We investigated the mechanism by which cyclic AMP (cAMP) induces gap junctional communication via cell-to-cell channels in a communication-deficient rat Morris hepatoma cell line. We found that under basal conditions, the cells transcribe cx43 at a low level but do not transcribe cx26 or cx32. Elevation of intracellular cAMP, which induced communication, increased cx43 mRNA 15- to 40-fold and the rate of cx43 transcription 6-fold. Cx43 protein was detected by immunostaining in junctions of only those cells in which communication had been induced. We found the regulation by cAMP also in other cell lines; namely, in those with a low basal level of cx43 mRNA. Images PMID:1327297

  10. Bioengineering a Single-Protein Junction.

    PubMed

    Ruiz, Marta P; Aragones, Albert C; Camarero, Nuria; Vilhena, J G; Ortega, Maria; Zotti, Linda Angela; Perez, Ruben; Cuevas, Juan Carlos; Gorostiza, Pau; Díez-Pérez, Ismael

    2017-10-05

    Bioelectronics moves towards designing nanoscale electronic platforms that allow in vivo determinations. Such devices require interfacing complex biomolecular moieties as the sensing units to an electronic platform for signal transduction. Inevitably, a systematic design goes through a bottom-up understanding of the structurally related electrical signatures of the biomolecular circuit, which will ultimately lead us to tailor its electrical properties. Toward this aim, we show here the first example of bioengineered charge transport in a single-protein electrical contact. The results reveal that a single point-site mutation at the docking hydrophobic patch of a Cu-Azurin causes minor structural distortion of the protein blue Cu site and a dramatic change in the charge transport regime of the single-protein contact, which goes from the classical Cu-mediated 2-step transport in this system to a direct coherent tunneling. Our extensive spectroscopic studies and molecular-dynamics simulations show that the proteins' folding structures are preserved in the single-protein junction. The DFT-computed frontier orbital of the relevant protein segments suggests that the Cu center participation in each protein variant accounts for the different observed charge transport behavior. This work is a direct evidence of charge transport control in a protein backbone through external mutagenesis and a unique nanoscale platform to study structurally related biological electron transfer.

  11. Expression patterns of mRNAs for the gap junction proteins connexin43 and connexin42 suggest their involvement in chick limb morphogenesis and specification of the arterial vasculature.

    PubMed

    Dealy, C N; Beyer, E C; Kosher, R A

    1994-02-01

    Gap junctions which comprise a family of proteins called connexins have been implicated in the morphogenesis of the chick limb bud. We have examined the expression patterns of two members of the connexin family, connexin43 (Cx43) and connexin42 (Cx42), during the early development of the chick limb bud and embryo by in situ hybridization. Cx43 mRNA is expressed in high amounts in the apical ectodermal ridge (AER), which promotes the outgrowth of the mesodermal cells of the limb bud, and in the ectopic AER of the limb buds of polydactylous diplopodia-5 mutant embryos. In contrast, little Cx43 expression is detectable in nonridge limb ectoderm at early stages of limb development. These results suggest that Cx43 gap junctions may integrate the activity of the cells comprising the AER and compartmentalize them into a functionally distinct entity capable of directing limb outgrowth. In addition, Cx43 exhibits high expression in the posterior subridge mesoderm of the early limb bud that is growing out in response to the AER, but little expression in the anterior mesoderm. This graded distribution of Cx43 transcripts correlates with a functional gradient of gap junctional communication along the anteroposterior (AP) axis, and suggests that Cx43 gap junctions may be involved in pattern formation across the AP axis. At later stages of development, Cx43 is transiently expressed in high amounts in the precartilage condensations of the carpals and metacarpals, at a time when critical cell-cell interactions are occurring that trigger cartilage differentiation. In contrast, in the developing limb, Cx42 is expressed exclusively by the central artery. In the remainder of the chick embryo, Cx42 is expressed in high amounts by the vessels comprising the arterial vasculature, but is not expressed by the venous vasculature. Thus, Cx42 gap junctions may be involved in specification of the arterial vasculature of the limb and embryo. Cx42, but not Cx43, is expressed in the ventricle of

  12. Expression of Functional Cell-Cell Channels from Cloned Rat Liver Gap Junction Complementary DNA

    NASA Astrophysics Data System (ADS)

    Dahl, G.; Miller, T.; Paul, D.; Voellmy, R.; Werner, R.

    1987-06-01

    An oocyte expression system was used to test the relation between a complementary DNA (cDNA) clone encoding the liver gap junction protein and cell-cell channels. Total liver polyadenylated messenger RNA injected into oocytes induced cell-cell channels between paired oocytes. This induction was blocked by simultaneous injection of antisense RNA transcribed from the gap junction cDNA. Messenger RNA selected by hybridization to the cDNA clone and translated in oocyte pairs yielded a higher junctional conductance than unselected liver messenger RNA. Cell-cell channels between oocytes were also formed when the cloned cDNA was expressed under the control of a heat-shock promoter. A concentration-dependent induction of channels was observed in response to injection with in vitro transcribed gap junction messenger RNA. Thus, the liver gap junction cDNA encodes a protein that is essential for the formation of functional cell-cell channels.

  13. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation.

    PubMed

    Reglero-Real, Natalia; Colom, Bartomeu; Bodkin, Jennifer Victoria; Nourshargh, Sussan

    2016-10-01

    Endothelial cells line the lumen of all blood vessels and play a critical role in maintaining the barrier function of the vasculature. Sealing of the vessel wall between adjacent endothelial cells is facilitated by interactions involving junctionally expressed transmembrane proteins, including tight junctional molecules, such as members of the junctional adhesion molecule family, components of adherence junctions, such as VE-Cadherin, and other molecules, such as platelet endothelial cell adhesion molecule. Of importance, a growing body of evidence indicates that the expression of these molecules is regulated in a spatiotemporal manner during inflammation: responses that have significant implications for the barrier function of blood vessels against blood-borne macromolecules and transmigrating leukocytes. This review summarizes key aspects of our current understanding of the dynamics and mechanisms that regulate the expression of endothelial cells junctional molecules during inflammation and discusses the associated functional implications of such events in acute and chronic scenarios. © 2016 American Heart Association, Inc.

  14. Role of tight junction proteins in gastroesophageal reflux disease

    PubMed Central

    2012-01-01

    Background Gastroesophageal reflux disease (GERD) is associated with impaired epithelial barrier function that is regulated by cell-cell contacts. The aim of the study was to investigate the expression pattern of selected components involved in the formation of tight junctions in relation to GERD. Methods Eighty-four patients with GERD-related symptoms with endoscopic signs (erosive: n = 47) or without them (non-erosive: n = 37) as well as 26 patients lacking GERD-specific symptoms as controls were included. Endoscopic and histological characterization of esophagitis was performed according to the Los Angeles and adapted Ismeil-Beigi criteria, respectively. Mucosal biopsies from distal esophagus were taken for analysis by histopathology, immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (RT-PCR) of five genes encoding tight junction components [Occludin, Claudin-1, -2, Zona occludens (ZO-1, -2)]. Results Histopathology confirmed GERD-specific alterations as dilated intercellular spaces in the esophageal mucosa of patients with GERD compared to controls (P < 0.05). Claudin-1 and −2 were 2- to 6-fold upregulation on transcript (P < 0.01) and in part on protein level (P < 0.015) in GERD, while subgroup analysis of revealed this upregulation for ERD only. In both erosive and non-erosive reflux disease, expression levels of Occludin and ZO-1,-2 were not significantly affected. Notably, the induced expression of both claudins did not correlate with histopathological parameters (basal cell hyperplasia, dilated intercellular spaces) in patients with GERD. Conclusions Taken together, the missing correlation between the expression of tight junction-related components and histomorphological GERD-specific alterations does not support a major role of the five proteins studied in the pathogenesis of GERD. PMID:22994974

  15. Dietary riboflavin deficiency decreases immunity and antioxidant capacity, and changes tight junction proteins and related signaling molecules mRNA expression in the gills of young grass carp (Ctenopharyngodon idella).

    PubMed

    Chen, Liang; Feng, Lin; Jiang, Wei-Dan; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2015-08-01

    This study investigated the effects of dietary riboflavin on the growth, gill immunity, tight junction proteins, antioxidant system and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme and acid phosphatase activities, and complement component 3 content in the gills of fish (P < 0.05). Moreover, riboflavin deficiency caused oxidative damage, which might be partly due to decrease copper, zinc superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione content in the gills of fish (P < 0.05). Furthermore, the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and Hepcidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1), tight junction proteins (Occludin, zonula occludens 1, Claudin-c and Claudin-3), signaling molecules (inhibitor of κBα, target of rapamycin and NF-E2-related factor 2) and antioxidant enzymes (copper, zinc superoxide dismutase and glutathione reductase) were significantly decreased (P < 0.05) in the gills of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, Kelch-like-ECH-associated protein 1b and myosin light chain kinase) and tight junction protein Claudin-12 were significantly increased (P < 0.05) in the gills of fish fed riboflavin-deficient diet. In addition, this study indicated for the first time that young fish fed a riboflavin-deficient diet exhibited anorexia and poor growth. In conclusion, riboflavin deficiency decreased growth and gill immunity, impaired gill antioxidant system, as

  16. Protein kinase Cζ phosphorylates occludin and promotes assembly of epithelial tight junctions.

    PubMed

    Jain, Suneet; Suzuki, Takuya; Seth, Ankur; Samak, Geetha; Rao, Radhakrishna

    2011-07-15

    Protein kinases play an important role in the regulation of epithelial tight junctions. In the present study, we investigated the role of PKCζ (protein kinase Cζ) in tight junction regulation in Caco-2 and MDCK (Madin-Darby canine kidney) cell monolayers. Inhibition of PKCζ by a specific PKCζ pseudosubstrate peptide results in redistribution of occludin and ZO-1 (zona occludens 1) from the intercellular junctions and disruption of barrier function without affecting cell viability. Reduced expression of PKCζ by antisense oligonucleotide or shRNA (short hairpin RNA) also results in compromised tight junction integrity. Inhibition or knockdown of PKCζ delays calcium-induced assembly of tight junctions. Tight junction disruption by PKCζ pseudosubstrate is associated with the dephosphorylation of occludin and ZO-1 on serine and threonine residues. PKCζ directly binds to the C-terminal domain of occludin and phosphorylates it on threonine residues. Thr403, Thr404, Thr424 and Thr438 in the occludin C-terminal domain are the predominant sites of PKCζ-dependent phosphorylation. A T424A or T438A mutation in full-length occludin delays its assembly into the tight junctions. Inhibition of PKCζ also induces redistribution of occludin and ZO-1 from the tight junctions and dissociates these proteins from the detergent-insoluble fractions in mouse ileum. The present study demonstrates that PKCζ phosphorylates occludin on specific threonine residues and promotes assembly of epithelial tight junctions.

  17. The structural organization and protein composition of lens fiber junctions

    PubMed Central

    1989-01-01

    The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions

  18. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    PubMed

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-02-10

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  19. Regulation and roles for claudin-family tight junction proteins

    PubMed Central

    Findley, Mary K.; Koval, Michael

    2009-01-01

    Transmembrane proteins known as claudins play a critical role in tight junctions by regulating paracellular barrier permeability. The control of claudin assembly into tight junctions requires a complex interplay between several classes of claudins, other transmembrane proteins and scaffold proteins. Claudins are also subject to regulation by post-translational modifications including phosphorylation and palmitoylation. Several human diseases have been linked to claudin mutations, underscoring the physiologic function of these proteins. Roles for claudins in regulating cell phenotype and growth control also are beginning to emerge, suggesting a multifaceted role for claudins in regulation of cells beyond serving as a simple structural element of tight junctions. PMID:19319969

  20. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    PubMed

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  1. Male reproductive toxicity of CrVI: In-utero exposure to CrVI at the critical window of testis differentiation represses the expression of Sertoli cell tight junction proteins and hormone receptors in adult F1 progeny rats.

    PubMed

    Kumar, Kathiresh M; Aruldhas, Mariajoseph Michael; Banu, Sheerin L; Sadasivam, Balaji; Vengatesh, Ganapathy; Ganesh, Karthik M; Navaneethabalakrishnan, Shobana; Navin, Ajith Kumar; Michael, Felicia Mary; Venkatachalam, Sankar; Stanley, Jone A; Ramachandran, Ilangovan; Banu, Sakhila K; Akbarsha, Mohammad Abdulkader

    2017-02-10

    The effect of gestational exposure to CrVI (occupational/environmental pollutant and target to Sertoli cells(SC)) was tested in a rat model during the testicular differentiation from the bipotential gonad may interrupt spermatogenesis by disrupting SC tight junctions(TJ) and it's proteins and hormone receptors. Pregnant Wistar rats were exposed to 50/100/200ppm CrVI through drinking water during embryonic days 9-14. On Postnatal day 120, testes were subjected to ion exchange chromatographic analysis and revealed increased level of CrIII in SCs and germ cells, serum and testicular interstitial fluid(TIF). Microscopic analyses showed seminiferous tubules atrophy and disruption of SC TJ, which also recorded decreased testosterone in TIF. mRNA and Protein expression analyses attested decreased level of Fshr, Ar, occludin and claudin-11 in SCs. Immunofluorescent detection revealed weak signal of TJ proteins. Taken together, we concluded that gestational exposure to CrVI interferes with the expression of SC TJ proteins due to attenuated expression of hormone receptors.

  2. Gap junction proteins in the light-damaged albino rat

    PubMed Central

    Guo, Cindy X.; Tran, Henry; Green, Colin R.; Danesh-Meyer, Helen V.

    2014-01-01

    Purpose Changes in connexin expression are associated with many pathological conditions seen in animal models and in humans. We hypothesized that gap junctions are important mediators in tissue dysfunction and injury processes in the retina, and therefore, we investigated the pattern of connexin protein expression in the light-damaged albino rat eye. Methods Adult Sprague-Dawley rats were exposed to intense light for 24 h. The animals were euthanized, and ocular tissue was harvested at 0 h, 6 h, 24 h, 48 h, and 7 days after light damage. The tissues were processed for immunohistochemistry and western blotting to analyze the expression of the gap junction proteins in the light-damaged condition compared to the non-light-damaged condition. Cell death was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) technique. Results Intense light exposure caused increased TUNEL labeling of photoreceptor cells. Immunocytochemistry revealed that connexin 36 (Cx36) was significantly increased in the inner plexiform layer and Cx45 was significantly decreased in the light-damaged retina. The pattern of Cx36 and Cx45 labeling returned to normal 7 days after light damage. Cx43 significantly increased in the RPE and the choroid in the light-damaged tissue, and decreased but not significantly in the retina. This elevated Cx43 expression in the choroid colocalized with markers of nitration-related oxidative stress (nitrotyrosine) and inflammation (CD45 and ionized calcium-binding adaptor molecule-1) in the choroid. Conclusions The results suggest that connexins are regulated differently in the retina than in the choroid in response to photoreceptor damage. Changes in connexins, including Cx36, Cx43, and Cx45, may contribute to the damage process. Specifically, Cx43 was associated with inflammatory damage. Therefore, connexins may be candidate targets for treatment for ameliorating disease progression. PMID:24883012

  3. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression.

    PubMed

    Lim, Su-Min; Jeong, Jin-Ju; Woo, Kyung Hee; Han, Myung Joo; Kim, Dong-Hyun

    2016-04-01

    A high-fat diet (HFD) induces obesity and the associated increases in blood glucose and inflammation through changes in gut microbiota, endotoxemia, and increased gut permeability. To counteract this, researchers have suggested that the use of probiotics that suppress production of proinflammatory lipopolysaccharide (LPS). Here, we tested whether Lactobacillus sakei OK67, which inhibits gut microbiota LPS production selected from among the lactic acid bacteria isolated from kimchi, exerted antihypoglycemic or anti-inflammatory effects in HFD-fed mice. Mice were randomly divided into 2 groups and fed an HFD or a low-fat diet for 4 weeks. These groups were further subdivided; 1 subgroup was treated with L sakei OK67 and fed the experimental diet for 4.5 weeks, whereas the other subgroup was fed the experimental diet alone. L sakei OK67 treatment lowered HFD-elevated LPS levels in blood and colonic fluid and significantly decreased HFD-elevated fasting blood glucose levels and the area under the curve in an oral glucose tolerance test. L sakei OK67 treatment inhibited HFD-induced body and epididymal fat weight gains, suppressed HFD-induced tumor necrosis factor-α and interleukin-1β expression and nuclear factor-κB activation in the colon, and significantly increased HFD-suppressed interleukin-10 and tight junction protein expression in the colon. Oral administration of L sakei OK67 significantly downregulated HFD-induced expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, and tumor necrosis factor-α in adipose tissue. In addition, L sakei OK67 treatment strongly inhibited nuclear factor-κB activation in LPS-stimulated peritoneal macrophages. We report that L sakei OK67 ameliorates HFD-induced hyperglycemia and obesity by reducing inflammation and increasing the expression of colon tight junction proteins in mice.

  4. Identifying connexin expression and determining gap junction intercellular communication in rainbow trout cells.

    PubMed

    Hooper, Joshua; Poynter, Sarah J; DeWitte-Orr, Stephanie J

    2017-05-01

    Gap junctions are groups of membrane-bound channels that allow the passage of small molecules and ions between cells, permitting cell-cell communication. Because of their importance in cell homeostasis, gap junction presence and function were characterized in three commonly studied rainbow trout cell lines, namely RTgill-W1, RTgutGC, and RTG-2. Firstly, gap junction presence was determined by screening for gap junction protein alpha 7 and alpha 1 (GJA7 and GJA1) presence at the transcript level and GJA7 at the protein level. GJA7 was successfully identified at both the transcript and protein levels, and GJA1 was detected at the transcript level in all three cell lines. This is the first report of a GJA7 full-length transcript sequence in rainbow trout cells. Gap junction function, as determined by gap junction intercellular communication (GJIC), was examined using Lucifer yellow dye migration with the scrape and load technique; visualized by fluorescence microscopy. Phorbol 12-myristate 13-acetate (PMA), a gap junction inhibitor, was used to confirm the presence of functional gap junctions. Effects of serum deprivation on GJIC were also monitored; 24-h serum deprivation resulted in greater dye migration compared with 30-min serum deprivation. Both RTG-2 and RTgill-W1 showed significant dye migration that was inhibited by PMA while RTgutGC did not. Human foreskin fibroblast (HFF-1) cells were used as a positive control for gap junction presence and function. Taken together, our study shows that rainbow trout cells express connexin transcripts and proteins, and RTG-2 and, to a lesser extent, RTgill-W1 cells are able to perform GJIC.

  5. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats.

    PubMed

    dos Santos, Daniele O; Blefari, Valdecir; Prado, Fernanda P; Silva, Carlos A; Fazan, Rubens; Salgado, Helio C; Ramos, Simone G; Prado, Cibele M

    2016-02-01

    Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could

  6. Comparative analysis of the gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions?

    PubMed

    Gros, D B; Nicholson, B J; Revel, J P

    1983-12-01

    Gap junctions have been isolated from both rat heart and liver, tissues where junctions are typical in appearance and physiology. The purity of the fractions obtained was monitored by electron microscopy (thin-sectioning and negative staining) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The myocardial gap junctions are comprised of a single polypeptide of Mr 28,000, apparently derived from a protein of Mr 30,000. Hepatic gap junctions are also comprised of a single native protein of Mr 28,000 as previously reported. Exhaustive trypsin digestion of the isolated junctions cleaves both of these proteins similarly, while leaving their characteristic junctional lattice structures intact. However, comparison of heart and liver junctional proteins by two-dimensional peptide mapping of tryptic and alpha-chymotryptic fragments, followed by high pressure liquid chromatography, reveals no homology between these proteins.

  7. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells

    PubMed Central

    Papadopoulos, Dimitrios; Dietze, Raimund; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-01-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating sulfated steroid considered to be a pro-androgen in mammalian physiology. Here we show that at a physiological concentration (1 μM), DHEAS induces the phosphorylation of the kinase Erk1/2 and of the transcription factors CREB and ATF-1 in the murine Sertoli cell line TM4. This signaling cascade stimulates the expression of the tight junction (TJ) proteins claudin-3 and claudin-5. As a consequence of the increased expression, tight junction connections between neighboring Sertoli cells are augmented, as demonstrated by measurements of transepithelial resistance. Phosphorylation of Erk1/2, CREB, or ATF-1 is not affected by the presence of the steroid sulfatase inhibitor STX64. Erk1/2 phosphorylation was not observed when dehydroepiandrosterone (DHEA) was used instead of DHEAS. Abrogation of androgen receptor (AR) expression by siRNA did not affect DHEAS-stimulated Erk1/2 phosphorylation, nor did it change DHEAS-induced stimulation of claudin-3 and claudin-5 expression. All of the above indicate that desulfation and conversion of DHEAS into a different steroid hormone is not required to trigger the DHEAS-induced signaling cascade. All activating effects of DHEAS, however, are abolished when the expression of the G-protein Gnα11 is suppressed by siRNA, including claudin-3 and -5 expression and TJ formation between neighboring Sertoli cells as indicated by reduced transepithelial resistance. Taken together, these results are consistent with the effects of DHEAS being mediated through a membrane-bound G-protein-coupled receptor interacting with Gnα11 in a signaling pathway that resembles the non-classical signaling pathways of steroid hormones. Considering the fact that DHEAS is produced in reproductive organs, these findings also suggest that DHEAS, by acting as an autonomous steroid hormone and influencing the formation and dynamics of the TJ at the blood-testis barrier, might play a crucial role for the

  8. Characterization of Tight Junction Proteins in Cultured Human Urothelial Cells

    PubMed Central

    Rickard, Alice; Dorokhov, Nikolay; Ryerse, Jan; Klumpp, David J.; McHowat, Jane

    2010-01-01

    Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintainance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immuno-fluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT- PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14 and 16 whereas claudins 2, 8 and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2 and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system. PMID:18553212

  9. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

    PubMed Central

    Feygin, Alex; Ivanov, Andrei I.

    2015-01-01

    Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton. PMID:25809162

  10. Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins, and cytokine production between two pig breeds after challenge with Escherichia coli K88: a comparative study.

    PubMed

    Gao, Y; Han, F; Huang, X; Rong, Y; Yi, H; Wang, Y

    2013-12-01

    This study hypothesized that the gut microbial populations, intestinal morphology, and cytokine production are differentially altered in 2 different pig breeds, namely, Chinese native Jinhua pigs and European Landrace pigs, after orally challenge with enterotoxigenic Escherichia coli (ETEC) K88. A total of 12 Jinhua pigs and 12 Landrace pigs were allocated to either the nonchallenged or the challenged groups (6 pigs per group). The challenged pigs were orally administered ETEC K88, and their nonchallenged counterparts were given sterile Luria-Bertani broth. Selected gut microbial populations, intestinal morphology, mRNA expression of tight junction proteins, and the levels of ileal cytokines and secretory immunoglobulin A (sIgA) production were measured in Jinhua and Landrace pigs. The results showed that the challenged Jinhua pigs exhibited a significantly (P < 0.05) lower incidence of diarrhea compared with their Landrace counterparts. The Escherichia coli (E.coli) population and the percentage of E. coli in the total bacteria population were increased in response to ETEC K88 challenge in both Jinhua and Landrace pigs. The challenged Landrace pigs shed more E. coli (P < 0.05) and had higher percentage of E. coli in the total bacteria population in the colon (P < 0.05) compared with their Jinhua counterparts. Both pig breeds tended to exhibit greater villous atrophy and crypt depth reduction in all of the intestinal segments with challenge. The expression of tight junction proteins decreased in response to ETEC K88 challenge in both pig breeds. The levels of the proinflammatory cytokines interferon (IFN)-γ, tumor necrosis factor-α, and IL-6 and the secretion of sIgA were positively altered whereas the levels of the anti-inflammatory cytokine IL-4 and transforming growth factor (TGF)-β were negatively altered by ETEC K88 challenge in both breeds. Jinhua pigs exhibited significantly higher levels of IFN-γ and TGF-β (P < 0.05) in the challenged group. Our

  11. MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence

    PubMed Central

    Zhuang, Yugang; Peng, Hu; Mastej, Victoria

    2016-01-01

    Cellular junctions play a critical role in structural connection and signal communication between cells in various tissues. Although there are structural and functional varieties, cellular junctions include tight junctions, adherens junctions, focal adhesion junctions, and tissue specific junctions such as PECAM-1 junctions in endothelial cells (EC), desmosomes in epithelial cells, and hemidesmosomes in EC. Cellular junction dysfunction and deterioration are indicative of clinical diseases. MicroRNAs (miRNA) are ~20 nucleotide, noncoding RNAs that play an important role in posttranscriptional regulation for almost all genes. Unsurprisingly, miRNAs regulate junction protein gene expression and control junction structure integrity. In contrast, abnormal miRNA regulation of junction protein gene expression results in abnormal junction structure, causing related diseases. The major components of tight junctions include zonula occluden-1 (ZO-1), claudin-1, claudin-5, and occludin. The miRNA regulation of ZO-1 has been intensively investigated. ZO-1 and other tight junction proteins such as claudin-5 and occludin were positively regulated by miR-126, miR-107, and miR21 in different models. In contrast, ZO-1, claudin-5, and occludin were negatively regulated by miR-181a, miR-98, and miR150. Abnormal tight junction miRNA regulation accompanies cerebral middle artery ischemia, brain trauma, glioma metastasis, and so forth. The major components of adherens junctions include VE-cadherin, β-catenin, plakoglobin, P120, and vinculin. VE-cadherin and β-catenin were regulated by miR-9, miR-99b, miR-181a, and so forth. These regulations directly affect VE-cadherin-β-catenin complex stability and further affect embryo and tumor angiogenesis, vascular development, and so forth. miR-155 and miR-126 have been shown to regulate PECAM-1 and affect neutrophil rolling and EC junction integrity. In focal adhesion junctions, the major components are integrin β4, paxillin, and focal

  12. Tongxinluo Regulates Expression of Tight Junction Proteins and Alleviates Endothelial Cell Monolayer Hyperpermeability via ERK-1/2 Signaling Pathway in Oxidized Low-Density Lipoprotein-Induced Human Umbilical Vein Endothelial Cells

    PubMed Central

    2017-01-01

    Vascular hyperpermeability resulting from distortion of endothelial junctions is associated with a number of cardiovascular diseases. Endothelial tight junction regulates the paracellular permeability of macromolecules, a function of Human Umbilical Vein Endothelial Cells (HUVEC) monolayers that can be regulated by oxidized Low-density Lipoprotein (ox-LDL). However, the understanding of drug regulation of vascular hyperpermeability is so far limited. This study thus aimed to investigate the role of Tongxinluo (TXL) in the maintenance of the vascular endothelial paracellular permeability. Here, changes in permeability were determined by measuring the paracellular flux of FITC-dextran 40000 (FD40), while protein expression and intercellular distribution were examined by western blot and immunofluorescence assay, respectively. We found that TXL alleviated the ox-LDL-induced increase in flux of FD40 and then reduced the hyperpermeability. Moreover, ox-LDL-induced disruptions of ZO-1, occludin, and claudin1 were also restored. This is via the activation of ERK1/2 in the vascular endothelial cells. Our results provide insights into the molecular mechanism by which TXL alleviates ox-LDL-induced hyperpermeability and provide the basis for further investigations of TXL as regulators of vascular barrier function.

  13. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules.

    PubMed

    Feng, Lin; Li, Wen; Liu, Yang; Jiang, Wei-Dan; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P < 0.05). Moreover, zonula occludens-1 (ZO-1), occludin and claudin c mRNA levels were highest in the fish fed the diet containing 11.5 g Phe kg(-1) (P < 0.05). However, claudin 12 and claudin b mRNA levels were not significantly affected by dietary Phe (P > 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish

  14. Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model.

    PubMed

    Zou, Yi; Xiang, Quanhang; Wang, Jun; Peng, Jian; Wei, Hongkui

    2016-01-01

    Oregano essential oil (OEO) has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P < 0.05) endotoxin level in serum and increased (P < 0.05) villus height and expression of occludin and zonula occludens-1 (ZO-1) in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P < 0.05) population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P < 0.05) of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor κB (NF-κB) signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs.

  15. Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model

    PubMed Central

    Zou, Yi; Xiang, Quanhang; Wang, Jun; Peng, Jian; Wei, Hongkui

    2016-01-01

    Oregano essential oil (OEO) has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P < 0.05) endotoxin level in serum and increased (P < 0.05) villus height and expression of occludin and zonula occludens-1 (ZO-1) in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P < 0.05) population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P < 0.05) of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor κB (NF-κB) signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs. PMID:27314026

  16. Connexin 43 expression on peripheral blood eosinophils: role of gap junctions in transendothelial migration.

    PubMed

    Vliagoftis, Harissios; Ebeling, Cory; Ilarraza, Ramses; Mahmudi-Azer, Salahaddin; Abel, Melanie; Adamko, Darryl; Befus, A Dean; Moqbel, Redwan

    2014-01-01

    Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx)43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.

  17. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells

    PubMed Central

    Alvarez, Carina-Shianya; Badia, Josefa; Bosch, Manel; Giménez, Rosa; Baldomà, Laura

    2016-01-01

    The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrier integrity by reducing gut permeability and reinforcing tight junctions. Probiotic Escherichia coli Nissle 1917 (EcN) is a good colonizer of the human gut with proven therapeutic efficacy in the remission of ulcerative colitis in humans. EcN positively modulates the intestinal epithelial barrier through upregulation and redistribution of the tight junction proteins ZO-1, ZO-2 and claudin-14. Upregulation of claudin-14 has been attributed to the secreted protein TcpC. Whether regulation of ZO-1 and ZO-2 is mediated by EcN secreted factors remains unknown. The aim of this study was to explore whether outer membrane vesicles (OMVs) released by EcN strengthen the epithelial barrier. This study includes other E. coli strains of human intestinal origin that contain the tcpC gene, such as ECOR63. Cell-free supernatants collected from the wild-type strains and from the derived tcpC mutants were fractionated into isolated OMVs and soluble secreted factors. The impact of these extracellular fractions on the epithelial barrier was evaluated by measuring transepithelial resistance and expression of several tight junction proteins in T-84 and Caco-2 polarized monolayers. Our results show that the strengthening activity of EcN and ECOR63 does not exclusively depend on TcpC. Both OMVs and soluble factors secreted by these strains promote upregulation of ZO-1 and claudin-14, and down-regulation of claudin-2. The OMVs-mediated effects are TcpC-independent. Soluble secreted TcpC contributes to the upregulation of ZO-1 and claudin-14, but this protein has no effect on the transcriptional

  18. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells.

    PubMed

    Alvarez, Carina-Shianya; Badia, Josefa; Bosch, Manel; Giménez, Rosa; Baldomà, Laura

    2016-01-01

    The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrier integrity by reducing gut permeability and reinforcing tight junctions. Probiotic Escherichia coli Nissle 1917 (EcN) is a good colonizer of the human gut with proven therapeutic efficacy in the remission of ulcerative colitis in humans. EcN positively modulates the intestinal epithelial barrier through upregulation and redistribution of the tight junction proteins ZO-1, ZO-2 and claudin-14. Upregulation of claudin-14 has been attributed to the secreted protein TcpC. Whether regulation of ZO-1 and ZO-2 is mediated by EcN secreted factors remains unknown. The aim of this study was to explore whether outer membrane vesicles (OMVs) released by EcN strengthen the epithelial barrier. This study includes other E. coli strains of human intestinal origin that contain the tcpC gene, such as ECOR63. Cell-free supernatants collected from the wild-type strains and from the derived tcpC mutants were fractionated into isolated OMVs and soluble secreted factors. The impact of these extracellular fractions on the epithelial barrier was evaluated by measuring transepithelial resistance and expression of several tight junction proteins in T-84 and Caco-2 polarized monolayers. Our results show that the strengthening activity of EcN and ECOR63 does not exclusively depend on TcpC. Both OMVs and soluble factors secreted by these strains promote upregulation of ZO-1 and claudin-14, and down-regulation of claudin-2. The OMVs-mediated effects are TcpC-independent. Soluble secreted TcpC contributes to the upregulation of ZO-1 and claudin-14, but this protein has no effect on the transcriptional

  19. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    PubMed Central

    Utech, Markus; Mennigen, Rudolf; Bruewer, Matthias

    2010-01-01

    A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC) consisting of tight junctions (TJs) and adherens junctions (AJs) and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ), induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells. PMID:20011071

  20. Fibrinogen Induces Alterations of Endothelial Cell Tight Junction Proteins

    PubMed Central

    PATIBANDLA, PHANI K.; TYAGI, NEETU; DEAN, WILLIAM L.; TYAGI, SURESH C.; ROBERTS, ANDREW M.; LOMINADZE, DAVID

    2009-01-01

    We previously showed that an elevated content of fibrinogen (Fg) increased formation of filamentous actin and enhanced endothelial layer permeability. In the present work we tested the hypothesis that Fg binding to endothelial cells (ECs) alters expression of actin-associated endothelial tight junction proteins (TJP). Rat cardiac microvascular ECs were grown in gold plated chambers of an electrical cell-substrate impedance system, 8-well chambered, or in 12-well plates. Confluent ECs were treated with Fg (2 or 4 mg/ml), Fg (4 mg/ml) with mitogen-activated protein kinase (MEK) kinase inhibitors (PD98059 or U0126), Fg (4 mg/ml) with anti-ICAM-1 antibody or BQ788 (endothelin type B receptor blocker), endothelin-1, endothelin-1 with BQ788, or medium alone for 24 h. Fg induced a dose-dependent decrease in EC junction integrity as determined by transendothelial electrical resistance (TEER). Western blot analysis and RT-PCR data showed that the higher dose of Fg decreased the contents of TJPs, occludin, zona occluden-1 (ZO-1), and zona occluden-2 (ZO-2) in ECs. Fg-induced decreases in contents of the TJPs were blocked by PD98059, U0126, or anti-ICAM-1 antibody. While BQ788 inhibited endothelin-1-induced decrease in TEER, it did not affect Fg-induced decrease in TEER. These data suggest that Fg increases EC layer permeability via the MEK kinase signaling pathway by affecting occludin, ZO-1, and ZO-2, TJPs, which are bound to actin filaments. Therefore, increased binding of Fg to its major EC receptor, ICAM-1, during cardiovascular diseases may increase microvascular permeability by altering the content and possibly subcellular localization of endothelial TJPs. PMID:19507189

  1. Emerging Multifunctional Roles of Claudin Tight Junction Proteins in Bone

    PubMed Central

    Alshbool, Fatima. Z.

    2014-01-01

    The imbalance between bone formation and resorption during bone remodeling has been documented to be a major factor in the pathogenesis of osteoporosis. Recent evidence suggests a significant role for the tight junction proteins, Claudins (Cldns), in the regulation of bone remodeling processes. In terms of function, whereas Cldns act “canonically” as key determinants of paracellular permeability, there is considerable recent evidence to suggest that Cldns also participate in cell signaling, ie, a “noncanonical function”. To this end, Cldns have been shown to regulate cell proliferation, differentiation, and gene expression in a variety of cell types. The present review will discuss Cldns' structure, their expression profile, regulation of expression, and their canonical and non- canonical functions in general with special emphasis on bone cells. In order to shed light on the noncanonical functions of Cldns in bone, we will highlight the role of Cldn-18 in regulating bone resorption and osteoclast differentiation. Collectively, we hope to provide a framework for guiding future research on understanding how Cldns modulate osteoblast and osteoclast function and overall bone homeostasis. Such studies should provide valuable insights into the pathogenesis of osteoporosis, and may highlight Cldns as novel targets for the diagnosis and therapeutic management of osteoporosis. PMID:24758302

  2. Emerging multifunctional roles of Claudin tight junction proteins in bone.

    PubMed

    Alshbool, Fatima Z; Mohan, Subburaman

    2014-07-01

    The imbalance between bone formation and resorption during bone remodeling has been documented to be a major factor in the pathogenesis of osteoporosis. Recent evidence suggests a significant role for the tight junction proteins, Claudins (Cldns), in the regulation of bone remodeling processes. In terms of function, whereas Cldns act "canonically" as key determinants of paracellular permeability, there is considerable recent evidence to suggest that Cldns also participate in cell signaling, ie, a "noncanonical function". To this end, Cldns have been shown to regulate cell proliferation, differentiation, and gene expression in a variety of cell types. The present review will discuss Cldns' structure, their expression profile, regulation of expression, and their canonical and non- canonical functions in general with special emphasis on bone cells. In order to shed light on the noncanonical functions of Cldns in bone, we will highlight the role of Cldn-18 in regulating bone resorption and osteoclast differentiation. Collectively, we hope to provide a framework for guiding future research on understanding how Cldns modulate osteoblast and osteoclast function and overall bone homeostasis. Such studies should provide valuable insights into the pathogenesis of osteoporosis, and may highlight Cldns as novel targets for the diagnosis and therapeutic management of osteoporosis.

  3. Upregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations.

    PubMed

    Burkhardt, Jan-Karl; Schmidt, Dörthe; Schoenauer, Roman; Brokopp, Chad; Agarkova, Irina; Bozinov, Oliver; Bertalanffy, Helmut; Hoerstrup, Simon P

    2010-09-01

    Cerebral cavernous malformations (CCMs) are among the most prevalent cerebrovascular malformations, and endothelial cells seem to play a major role in the disease. However, the underlying mechanisms, including endothelial intercellular communication, have not yet been fully elucidated. In this article, the authors focus on the endothelial junction proteins CD31, VE-cadherin, and occludin as important factors for functional cell-cell contacts known as vascular adhesion molecules and adherence and tight junctions. Thirteen human CCM specimens and 6 control tissue specimens were cryopreserved and examined for the presence of VE-cadherin, occludin, and CD31 by immunofluorescence staining. Protein quantification was performed by triplicate measurements using western blot analysis. Immunofluorescent analyses of the CCM sections revealed a discontinuous pattern of dilated microvessels and capillaries as well as increased expression of occludin, VE-cadherin, and CD31 in the intima and in the enclosed parenchymal tissue compared with controls. Protein quantification confirmed these findings by showing upregulation of the levels of these proteins up to 2-6 times. A protocol enabling the molecular and morphological examination of the intercellular contact proteins in human CCM was validated. The abnormal and discontinuous pattern in these endothelial cell-contact proteins compared with control tissue explains the loose intercellular junctions that are considered to be one of the causes of CCM-associated bleeding or transendothelial oozing of erythrocytes. Despite the small number of specimens, this study demonstrates for the first time a quantitative analysis of endothelial junction proteins in human CCM.

  4. Irinotecan disrupts tight junction proteins within the gut : implications for chemotherapy-induced gut toxicity.

    PubMed

    Wardill, Hannah R; Bowen, Joanne M; Al-Dasooqi, Noor; Sultani, Masooma; Bateman, Emma; Stansborough, Romany; Shirren, Joseph; Gibson, Rachel J

    2014-02-01

    Chemotherapy for cancer causes significant gut toxicity, leading to severe clinical manifestations and an increased economic burden. Despite much research, many of the underlying mechanisms remain poorly understood hindering effective treatment options. Recently there has been renewed interest in the role tight junctions play in the pathogenesis of chemotherapy-induced gut toxicity. To delineate the underlying mechanisms of chemotherapy-induced gut toxicity, this study aimed to quantify the molecular changes in key tight junction proteins, ZO-1, claudin-1, and occludin, using a well-established preclinical model of gut toxicity. Female tumor-bearing dark agouti rats received irinotecan or vehicle control and were assessed for validated parameters of gut toxicity including diarrhea and weight loss. Rats were killed at 6, 24, 48, 72, 96, and 120 h post-chemotherapy. Tight junction protein and mRNA expression in the small and large intestines were assessed using semi-quantitative immunohistochemistry and RT-PCR. Significant changes in protein expression of tight junction proteins were seen in both the jejunum and colon, correlating with key histological changes and clinical features. mRNA levels of claudin-1 were significantly decreased early after irinotecan in the small and large intestines. ZO-1 and occludin mRNA levels remained stable across the time-course of gut toxicity. Findings strongly suggest irinotecan causes tight junction defects which lead to mucosal barrier dysfunction and the development of diarrhea. Detailed research is now warranted to investigate posttranslational regulation of tight junction proteins to delineate the underlying pathophysiology of gut toxicity and identify future therapeutic targets.

  5. Molecular cloning of cDNA for rat liver gap junction protein

    PubMed Central

    1986-01-01

    An affinity-purified antibody directed against the 27-kD protein associated with isolated rat liver gap junctions was produced. Light and electron microscopic immunocytochemistry showed that this antigen was localized specifically to the cytoplasmic surfaces of gap junctions. The antibody was used to select cDNA from a rat liver library in the expression vector lambda gt11. The largest cDNA selected contained 1,494 bp and coded for a protein with a calculated molecular mass of 32,007 daltons. Northern blot analysis indicated that brain, kidney, and stomach express an mRNA with similar size and homology to that expressed in liver, but that heart and lens express differently sized, less homologous mRNA. PMID:3013898

  6. Voltage-dependent gap junction channels are formed by connexin32, the major gap junction protein of rat liver.

    PubMed Central

    Moreno, A P; de Carvalho, A C; Verselis, V; Eghbali, B; Spray, D C

    1991-01-01

    We report here experiments undertaken in pairs of hepatocytes that demonstrate a marked voltage sensivity of junctional conductance and, thus, contradict earlier findings reported by this laboratory (Spray, D.C., R.D.ginzberg, E.A., E. A. Morales, Z. Gatmaitan and I.M. Arias, 1986, J. Cell Biol. 101:135-144; Spray C.D. R.L. White, A.C. Campos de Carvalho, and M.V.L. Bennett. 1984. Biophys. J. 45:219-230) and by others (Dahl, G., T. Moller, D. Paul, R. Voellmy, and R. Werner. 1987. Science [Wash. DC] 236:1290-1293; Riverdin, E.C., and R. Weingart. 1988. Am. J. Physiol. 254:C226-C234). Expression in exogenous systems, lipid bilayers in which fragments of isolated gap junction membranes were incorporated (Young, J.D.-E., Z. Cohn, and N.B. Gilula. 1987. Cell. 48:733-743.) and noncommunicating cells transfected with connexin32 cDNA (Eghbali, B., J.A. Kessler, and D.C. Spray. 1990. Proc. Natl. Acad. Sci. USA. 87:1328-1331), support these findings and indicate that the voltage-dependent channel is composed of connexin32, the major gap junction protein of rat liver (Paul, D. 1986. J. Cell Biol. 103:123-134). PMID:1648416

  7. Alteration in synaptic junction proteins following traumatic brain injury.

    PubMed

    Merlo, Lucia; Cimino, Francesco; Angileri, Filippo Flavio; La Torre, Domenico; Conti, Alfredo; Cardali, Salvatore Massimiliano; Saija, Antonella; Germanò, Antonino

    2014-08-15

    Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.

  8. Two Drosophila Innexins Are Expressed in Overlapping Domains and Cooperate to Form Gap-Junction Channels

    PubMed Central

    Stebbings, Lucy A.; Todman, Martin G.; Phelan, Pauline; Bacon, Jonathan P.; Davies, Jane A.

    2000-01-01

    Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes, Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In paired Xenopus oocytes, the injection of Dm-inx2 mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression of Dm-inx2 in vivo has limited effects on the viability of Drosophila, and animals ectopically expressing Dm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels. PMID:10888681

  9. Cell-Cell Interaction Proteins (Gap Junctions, Tight Junctions, and Desmosomes) and Water Transporter Aquaporin 4 in Meningothelial Cells of the Human Optic Nerve.

    PubMed

    Zeleny, Thi Ngoc Co; Kohler, Corina; Neutzner, Albert; Killer, Hanspeter E; Meyer, Peter

    2017-01-01

    Meningothelial cells (MECs) play a central role in the maintenance of cerebrospinal fluid (CSF) homeostasis and in physiological and pathophysiological processes within the subarachnoid space (SAS) linking them to optic nerve (ON) pathologies. Still, not much is known about their structural properties that might enable MECs to perform specific functions within the ON microenvironment. For closer characterization of the structural properties of the human MEC layer in the arachnoid, we performed immunohistological analyses to evaluate the presence of cell-cell interaction markers, namely, markers for tight junctions (JAM1, Occludin, and Claudin 5), gap junctions (Connexin 26 and 43), and desmosomes (Desmoplakin) as well as for water channel marker aquaporin 4 (AQP4) in retrobulbar, midorbital, and intracanalicular human ON sections. MECs displayed immunopositivity for markers of tight junctions (JAM1, Occludin, and Claudin 5) and gap junctions (Connexin 26 and 43) as well as for AQP4 water channels. However, no immunopositivity was found for Desmoplakin. MECs are connected via tight junctions and gap junctions, and they possess AQP4 water channels. The presence of these proteins emphasizes the important function of MECs within the ON microenvironment as part of the meningeal barrier. Beyond this barrier function, the expression of these proteins by MECs supports a broader role of these cells in signal transduction and CSF clearance pathways within the ON microenvironment.

  10. Transitions of protein traffic from cardiac ER to junctional SR.

    PubMed

    Sleiman, Naama H; McFarland, Timothy P; Jones, Larry R; Cala, Steven E

    2015-04-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca(2+) release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQ-DsRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed ((del)TRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and (del)TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic.

  11. Protein expression-yeast.

    PubMed

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.

  12. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles.

    PubMed

    Mora, Jocelyn M; Fenwick, Mark A; Castle, Laura; Baithun, Marianne; Ryder, Timothy A; Mobberley, Margaret; Carzaniga, Raffaella; Franks, Stephen; Hardy, Kate

    2012-05-01

    In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.

  13. Hedgehog signaling regulates E-cadherin expression for the maintenance of the actin cytoskeleton and tight junctions

    PubMed Central

    Xiao, Chang; Ogle, Sally A.; Schumacher, Michael A.; Schilling, Neal; Tokhunts, Robert A.; Orr-Asman, Melissa A.; Miller, Marian L.; Robbins, David J.; Hollande, Frederic

    2010-01-01

    In the stomach, strictly regulated cell adherens junctions are crucial in determining epithelial cell differentiation. Sonic Hedgehog (Shh) regulates epithelial cell differentiation in the adult stomach. We sought to identify whether Shh plays a role in regulating adherens junction protein E-cadherin as a mechanism for epithelial cell differentiation. Mouse nontumorigenic gastric epithelial (IMGE-5) cells treated with Hedgehog signaling inhibitor cyclopamine and anti-Shh 5E1 antibody or transduced with short hairpin RNA against Skinny Hedgehog (IMGE-5Ski) were cultured. A mouse model expressing a parietal cell-specific deletion of Shh (HKCre/ShhKO) was used to identify further changes in adherens and tight junctions. Inhibition of Hedgehog signaling in IMGE-5 cells caused loss of E-cadherin expression accompanied by disruption of F-actin cortical expression and relocalization of zonula occludens-1 (ZO-1). Loss of E-cadherin was also associated with increased proliferation in IMGE-5Ski cells and increased expression of the mucous neck cell lineage marker MUC6. Compared with membrane-expressed E-cadherin and ZO-1 protein in controls, dissociation of E-cadherin/β-catenin and ZO-1/occludin protein complexes was observed in HKCre/ShhKO mice. In conclusion, we demonstrate that Hedgehog signaling regulates E-cadherin expression that is required for the maintenance of F-actin cortical expression and stability of tight junction protein ZO-1. PMID:20847300

  14. Phenobarbital specifically reduces gap junction protein mRNA level in rat liver.

    PubMed

    Mesnil, M; Fitzgerald, D J; Yamasaki, H

    1988-01-01

    The gene expression of liver major gap junction (GJ) protein was studied in rats systemically administered phenobarbital, a rat liver tumor promoter. Using a GJ protein cDNA and northern blot analysis, the level of GJ protein mRNA in liver was observed to be markedly reduced at 4 and 11 wk of phenobarbital exposure (0.1% in drinking water). However, the level of GJ protein mRNA was not altered in kidney at 11 wk of exposure. In liver, phenobarbital did not induce expression of the neoplasm-associated marker genes glutathione S-transferase (placental form) and gamma-glutamyltranspeptidase, while in kidney the observed expression of these genes was not changed. These in vivo results indicate that phenobarbital reduces GJ protein gene expression specifically in rat liver without altering expression of genes often altered during liver carcinogenesis, and they support assigning a role for the impairment of gap junctional intercellular communication in phenobarbital-mediated liver tumor promotion.

  15. C-reactive protein, sodium azide, and endothelial connexin43 gap junctions.

    PubMed

    Wang, Hsueh-Hsiao; Yeh, Hung-I; Wang, Chi-Young; Su, Cheng-Huang; Wu, Yih-Jer; Tseng, Yuen-Yi; Lin, Yi-Chun; Tsai, Cheng-Ho

    2010-04-01

    We investigated the effect of C-reactive protein (CRP) and sodium azide (NaN(3)) on endothelial Cx43 gap junctions. Human aortic endothelial cells (HAEC) were treated with (a) detoxified CRP, (b) detoxified dialyzed CRP, (c) detoxified dialyzed CRP plus NaN(3), (d) NaN(3), or (e) dialyzed NaN(3). The concentration of CRP in all preparations was fixed to 25 microg/ml and that of NaN(3) in the preparations of (c) to (e) was equivalent to that contained in the 25 microg/ml CRP purchased commercially. The results showed that both the expression of Cx43 protein and gap junctional communication function post-48-h incubation were reduced and inhibited by the detoxified CRP, NaN(3), or detoxified dialyzed CRP plus NaN(3), but not by the detoxified dialyzed CRP or dialyzed NaN(3). Reverse transcription-polymerase chain reaction analysis of cells treated for 72 h also showed a pattern of transcriptional regulation essentially the same as that for the proteins. We concluded that CRP does not have a significant effect on Cx43 gap junctions of HAEC, but NaN(3) inhibited the viability of cells and downregulate their junctions.

  16. Connexin43 gap junction protein plays an essential role in morphogenesis of the embryonic chick face.

    PubMed

    McGonnell, I M; Green, C R; Tickle, C; Becker, D L

    2001-11-01

    Normal outgrowth and fusion of facial primordia during vertebrate development require interaction of diverse tissues and co-ordination of many different signalling pathways. Gap junction channels, made up of subunits consisting of connexin proteins, facilitate communication between cells and are implicated in embryonic development. Here we describe the distribution of connexin43 and connexin32 gap junction proteins in the developing chick face. To test the function of connexin43 protein, we applied antisense oligodeoxynucleotides that specifically reduced levels of connexin43 protein in cells of early chick facial primordia. This resulted in stunting of primordia outgrowth and led to facial defects. Furthermore, cell proliferation in regions of facial primordia that normally express high levels of connexin43 protein was reduced and this was associated with lower levels of Msx-1 expression. Facial defects arise when retinoic acid is applied to the face of chick embryos at later stages. This treatment also resulted in significant reduction in connexin43 protein, while connexin32 protein expression was unaffected. Taken together, these results indicate that connexin43 plays an essential role during early morphogenesis and subsequent outgrowth of the developing chick face.

  17. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Nusrat, Asma

    2013-01-01

    Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed. PMID:24665393

  18. Barley malt increases hindgut and portal butyric acid, modulates gene expression of gut tight junction proteins and Toll-like receptors in rats fed high-fat diets, but high advanced glycation end-products partially attenuate the effects.

    PubMed

    Zhong, Yadong; Teixeira, Cristina; Marungruang, Nittaya; Sae-Lim, Watina; Tareke, Eden; Andersson, Roger; Fåk, Frida; Nyman, Margareta

    2015-09-01

    Barley malt, a product of controlled germination, has been shown to produce high levels of butyric acid in the cecum and portal serum of rats and may therefore have anti-inflammatory effects. The aim of the study was to investigate how four barley malts, caramelized and colored malts, 50-malt and 350-malt, differing in functional characteristics concerning beta-glucan content and color, affect short-chain fatty acids (SCFA), barrier function and inflammation in the hindgut of rats fed high-fat diets. Male Wistar rats were given malt-supplemented high-fat diets for four weeks. Low and high-fat diets containing microcrystalline cellulose were incorporated as controls. All diets contained 70 g kg(-1) dietary fiber. The malt-fed groups were found to have had induced higher amounts of butyric and propionic acids in the hindgut and portal serum compared with controls, while cecal succinic acid only increased to a small extent. Fat increased the mRNA expression of tight junction proteins and Toll-like receptors (TLR) in the small intestine and distal colon of the rats, as well as the concentration of some amino acids in the portal plasma, but malt seemed to counteract these adverse effects to some extent. However, the high content of advanced glycation end-products (AGE) in caramelized malt tended to prohibit the positive effects on occludin in the small intestine and plasma amino acids seen with the other malt products. In conclusion, malting seems to be an interesting process for producing foods with positive health effects, but part of these effects may be destroyed if the malt contains a high content of AGE.

  19. Tight junctions of the proximal tubule and their channel proteins.

    PubMed

    Fromm, Michael; Piontek, Jörg; Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M

    2017-08-01

    The renal proximal tubule achieves the majority of renal water and solute reabsorption with the help of paracellular channels which lead through the tight junction. The proteins forming such channels in the proximal tubule are claudin-2, claudin-10a, and possibly claudin-17. Claudin-2 forms paracellular channels selective for small cations like Na(+) and K(+). Independently of each other, claudin-10a and claudin-17 form anion-selective channels. The claudins form the paracellular "pore pathway" and are integrated, together with purely sealing claudins and other tight junction proteins, in the belt of tight junction strands surrounding the tubular epithelial cells. In most species, the proximal tubular tight junction consists of only 1-2 (pars convoluta) to 3-5 (pars recta) horizontal strands. Even so, they seal the tubule very effectively against leak passage of nutrients and larger molecules. Remarkably, claudin-2 channels are also permeable to water so that 20-25% of proximal water absorption may occur paracellularly. Although the exact structure of the claudin-2 channel is still unknown, it is clear that Na(+) and water share the same pore. Already solved claudin crystal structures reveal a characteristic β-sheet, comprising β-strands from both extracellular loops, which is anchored to a left-handed four-transmembrane helix bundle. This allowed homology modeling of channel-forming claudins present in the proximal tubule. The surface of cation- and anion-selective claudins differ in electrostatic potentials in the area of the proposed ion channel, resulting in the opposite charge selectivity of these claudins. Presently, while models of the molecular structure of the claudin-based oligomeric channels have been proposed, its full understanding has only started.

  20. Density-enhanced Phosphatase 1 Regulates Phosphorylation of Tight Junction Proteins and Enhances Barrier Function of Epithelial Cells*

    PubMed Central

    Sallee, Jennifer L.; Burridge, Keith

    2009-01-01

    Cell-cell adhesion is a dynamic process that can activate multiple signaling pathways. These signaling pathways can be regulated through reversible tyrosine phosphorylation events. The level of tyrosine phosphorylation of junctional proteins reflects the balance between protein-tyrosine kinase and protein-tyrosine phosphatase activity. The receptor-tyrosine phosphatase DEP-1 (CD148/PTP-η) has been implicated in cell growth and differentiation as well as in regulating phosphorylation of junctional proteins. However, the role of DEP-1 in regulating tight junction phosphorylation and the integrity of cell-cell junctions is still under investigation. In this study, we used a catalytically dead substrate-trapping mutant of DEP-1 to identify potential substrates at cell-cell junctions. We have shown that in epithelial cells the trapping mutant of DEP-1 interacts with the tight junction proteins occludin and ZO-1 in a tyrosine phosphorylation-dependent manner. In contrast, PTP-PEST, Shp2, and PTPμ did not interact with these proteins, suggesting that the interaction of DEP-1 with occludin and ZO-1 is specific. In addition, occludin and ZO-1 were dephosphorylated by DEP-1 but not these other phosphatases in vitro. Overexpression of DEP-1 increased barrier function as measured by transepithelial electrical resistance and also reduced paracellular flux of fluorescein isothiocyanate-dextran following a calcium switch. Reduced DEP-1 expression by small interfering RNA had a small but significant increase in junction permeability. These data suggest that DEP-1 can modify the phosphorylation state of tight junction proteins and play a role in regulating permeability. PMID:19332538

  1. They Must Hold Tight: Junction Proteins, Microbiota And Immunity In Intestinal Mucosa.

    PubMed

    Castoldi, Angela; Favero de Aguiar, Cristhiane; Moraes-Vieira, Pedro Manoel; Olsen Saraiva Câmara, Niels

    2015-01-01

    Homeostasis of the immune system depends on several factors. The gastrointestinal tract plays an important role in maintaining our immune system. With this aim, the intestinal immune system interacts with epithelial barrier molecules, especially tight junction proteins, that are key molecules involved in controlling paracellular permeability to increase the protection barrier against external antigens or possibly to respond to commensal microorganisms. During intestinal inflammatory diseases, the expression of innate immune receptors in intestinal epithelial cells and infiltration of immune cells are related, but it is still unclear how the immune system induces modulation of paracellular permeability. In this review, we provide an overview of the understanding of how the immune system modulates the expression of tight junctions to maintain the mucosal immune system.

  2. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. © FASEB.

  3. Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases.

    PubMed

    Freund-Michel, Véronique; Muller, Bernard; Marthan, Roger; Savineau, Jean-Pierre; Guibert, Christelle

    2016-08-01

    Connexins are transmembrane proteins that can generate intercellular communication channels known as gap junctions. They contribute to the direct movement of ions and larger cytoplasmic solutes between various cell types. In the lung, connexins participate in a variety of physiological functions, such as tissue homeostasis and host defence. In addition, emerging evidence supports a role for connexins in various pulmonary inflammatory diseases, such as asthma, pulmonary hypertension, acute lung injury, lung fibrosis or cystic fibrosis. In these diseases, the altered expression of connexins leads to disruption of normal intercellular communication pathways, thus contributing to various pathophysiological aspects, such as inflammation or tissue altered reactivity and remodeling. The present review describes connexin structure and organization in gap junctions. It focuses on connexins in the lung, including pulmonary bronchial and arterial beds, by looking at their expression, regulation and physiological functions. This work also addresses the issue of connexin expression alteration in various pulmonary inflammatory diseases and describes how targeting connexin-based gap junctions with pharmacological tools, synthetic blocking peptides or genetic approaches, may open new therapeutic perspectives in the treatment of these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The abnormal expression of oxytocin receptors in the uterine junctional zone in women with endometriosis.

    PubMed

    Huang, Miaomaio; Li, Xuqing; Guo, Peipei; Yu, Zhaojuan; Xu, Yuting; Wei, Zhaolian

    2017-01-03

    The junctional zone (JZ), also called as the endometrial-myometrial junction, is related to peristaltic-like movements in the non-pregnant uterus. Hyperperistalsis and dysperistalsis of uterus constructions might underlie many important disorders such as dysmenorrhea, infertility, endometriosis, implantation failure. The major proteins for uterine contraction of the non-pregnant uterus may be Oxytocin (OT) and oxytocin receptor (OTR). The objective of this study was to inspect the expression of OTR in isthmic and mid-fundal parts of the uterine junctional zone at different stages of the follicular cycle in patients with and without endometriosis. Uterine biopsies containing endometrium and junctional zone were collected from the isthmic and mid-fundal parts of the anterior wall after hysterectomy. The OTR expression was evaluated by immunohistochemistry. In the control uterus, OTR expression in the isthmic region was significantly higher than in the fundal region in the proliferative phase (p < 0.05) but significantly lower in the secretory phase (p < 0.05). And the expression of OTR in the proliferative phase was significantly higher than that in the secretory phase in both isthmic and fundal regions (p = 0.000 and 0.049, respectively). However, in endometriosis uteri, OTR expression in the isthmic region showed no significant difference with that in the fundal region in both proliferative and secretory phases (p = 0.597 and 0.736, respectively). In both isthmic and fundal regions, OTR expression was not significantly different between the proliferative phase and secretory phase (p = 0.084 and 0.222, respectively). OTR expression in fundal regions of revised ASRM I and II endometriosis were lower than that of revised ASRM III and IV (p = 0.049). In the fundal region of JZ, the expression of OTR in ovarian endometriosis was significantly lower than that in deep infiltrating endometriosis (p = 0.046). The expression level of OTR in the

  5. Nested transcripts of gap junction gene have distinct expression patterns.

    PubMed

    Zhang, Z; Curtin, K D; Sun, Y A; Wyman, R J

    1999-09-05

    The shaking B locus (shakB, or Passover) codes for structural molecules of gap junctions in Drosophila. This report describes the complex set of transcripts from the shakB locus. A nested set of five transcripts is described. The transcripts share 3' exons, but each has its own 5' exon. The transcripts are arrayed as a series in the genomic DNA stretching over 60 kb. The 5' end of each successive transcript lies further proximal on the chromosome. Each new transcript shares all the 3' exons with the one preceding it, but adds one or two more 5' exons. The different transcripts are expressed in a wide variety of locations in the nervous system and in non-neural tissues. Some tissues express more than one transcript, and the expression pattern of each is developmentally regulated. Within the adult central nervous system (CNS), these transcripts have an expression pattern that is restricted to the giant fiber system (GFS). The GFS is a small set of neurons which mediates the visually induced escape jump. shakB is required for function of the GFS electrical synapses. The transcript previously defined as active in the giant fiber is not, in fact, expressed in that cell. Instead, we find that another transcript, shakB(N3), and perhaps shakB(N4) as well, is expressed in the GFS; this transcript is not expressed elsewhere in the adult CNS. Two other transcripts, shakB(N1) and shakB(N2), are expressed in the optic lamina but not elsewhere in the CNS. This expression pattern explains the neurophysiological and behavioral defects in escape exhibited in mutants of shakB.

  6. Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: a review.

    PubMed

    Chasiotis, Helen; Kolosov, Dennis; Bui, Phuong; Kelly, Scott P

    2012-12-01

    Paracellular permeability characteristics of the fish gill epithelium are broadly accepted to play a key role in piscine salt and water balance. This is typically associated with differences between gill epithelia of teleost fishes residing in seawater versus those in freshwater. In the former, the gill is 'leaky' to facilitate Na(+) secretion and in the latter, the gill is 'tight' to limit passive ion loss. However, studies in freshwater fishes also suggest that varying epithelial 'tightness' can impact ionoregulatory homeostasis. Paracellular permeability of vertebrate epithelia is largely controlled by the tight junction (TJ) complex, and the fish gill is no exception. In turn, the TJ complex is composed of TJ proteins, the abundance and properties of which determine the magnitude of paracellular solute movement. This review provides consolidated information on TJs in fish gills and summarizes recent progress in research that seeks to understand the molecular composition of fish gill TJ complexes and what environmental and systemic factors influence those components.

  7. Gap junction proteins: master regulators of the planarian stem cell response to tissue maintenance and injury.

    PubMed

    Peiris, T Harshani; Oviedo, Néstor J

    2013-01-01

    Gap junction (GJ) proteins are crucial mediators of cell-cell communication during embryogenesis, tissue regeneration and disease. GJ proteins form plasma membrane channels that facilitate passage of small molecules across cells and modulate signaling pathways and cellular behavior in different tissues. These properties have been conserved throughout evolution, and in most invertebrates GJ proteins are known as innexins. Despite their critical relevance for physiology and disease, the mechanisms by which GJ proteins modulate cell behavior are poorly understood. This review summarizes findings from recent work that uses planarian flatworms as a paradigm to analyze GJ proteins in the complexity of the whole organism. The planarian model allows access to a large pool of adult somatic stem cells (known as neoblasts) that support physiological cell turnover and tissue regeneration. Innexin proteins are present in planarians and play a fundamental role in controlling neoblast behavior. We discuss the possibility that GJ proteins participate as cellular sensors that inform neoblasts about local and systemic physiological demands. We believe that functional analyses of GJ proteins will bring a complementary perspective to studies that focus on the temporal expression of genes. Finally, integrating functional studies along with molecular genetics and epigenetic approaches would expand our understanding of cellular regulation in vivo and greatly enhance the possibilities for rationally modulating stem cell behavior in their natural environment. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. [Relationship between tight junction proteins and Helicobacter pylori-associated gastric diseases].

    PubMed

    Li, Wei; Jiang, Mi-Zu

    2014-03-01

    Helicobacter pylori (Hp) infection is an important cause of chronic gastritis and peptic ulcer, but their pathogenesis is unclear. The role of gastric mucosal barrier dysfunction induced by impaired structure and function of tight junction in the pathogenesis of Hp-associated gastric diseases has received considerable attention in recent years. Tight junction is composed of a variety of proteins and molecules, including 3 integral membrane proteins (occludin, claudins, and junctional adhesion molecules) and a cytoplasmic protein (zonula occludens). This paper mainly describes the composition and function of various tight junction proteins, changes in tight junction protein function induced by Hp infection and their relationship with the incidence of gastric diseases, and the significance of enhancing the tight junction protein function in the prevention and treatment of Hp-associated gastric diseases.

  9. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells.

    PubMed

    Cheng, B; Zhao, S; Luo, J; Sprague, E; Bonewald, L F; Jiang, J X

    2001-02-01

    Osteocytes are thought to be mechanosensory cells that respond to mechanical stress by sending signals to other bone cells to initiate bone remodeling. An osteocyte-like cell line MLO-Y4 provides a model system to examine whether gap junctions participate in the regulation of osteocyte function and signaling by mechanical stress. In this study, we show that MLO-Y4 cells are coupled and that gap junction channels mediate this coupling. Biochemical analyses show that connexin 43 (Cx43) is a major gap junction protein expressed in MLO-Y4 cells and approximately 5% of Cx43 protein is phosphorylated. MLO-Y4 cells were exposed to mechanical stress using a parallel plate flow chamber to model bone fluid flow shear stress. Fluid flow increased significantly the length of the dendritic processes, a morphological characteristic of osteocytes. A redistribution of the gap junction protein, Cx43 also was observed from a location circling the nucleus to punctate spots in the cytoplasm and in the dendritic processes. "Scrape-loading" dye transfer analyses showed that fluid flow increased intercellular coupling and increased the number of cells coupled immediately after fluid flow treatment, in direct proportion to shear stress magnitude. Although intercellular coupling continued to increase, stimulation of Cx43 protein expression during the poststress period was found to be biphasic. Cx43 protein was elevated 30 minutes after application of stress but decreased at 24 h poststress. Pulsating fluid flow had a similar stimulatory effect as steady fluid flow on gap junctions. However, this stimulatory effect in osteocyte-like cells was not observed in osteoblast-like 2T3 cells. Together, these results show that fluid flow has stimulatory effects on osteocyte-like MLO-Y4 cells with early effects on cellular morphology, opening of gap junctions, and redistribution of Cx43 protein and delayed effects on Cx43 protein expression. The high expression of Cx43 and its location in the

  10. Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle

    SciTech Connect

    Damiani, E.; Margreth, A. )

    1990-11-15

    Minor protein components of triads and of sarcoplasmic reticulum (SR) terminal cisternae (TC), i.e. 47 and 37 kDa peptides and 31-30 kDa and 26-25 kDa peptide doublets, were identified from their ability to bind {sup 125}I calsequestrin (CS) in the presence of EGTA. The CS-binding peptides are specifically associated with the junctional membrane of TC, since they could not be detected in junctional transverse tubules and in longitudinal SR fragments. The 31-30 kDa peptide doublet, exclusively, did not bind CS in the presence of Ca{sup 2+}. Thus, different types of protein-protein interactions appear to be involved in selective binding of CS to junctional TC.

  11. Increased ICAM-1 expression causes endothelial cell leakiness, cytoskeletal reorganization and junctional alterations.

    PubMed

    Clark, Paul R; Manes, Thomas D; Pober, Jordan S; Kluger, Martin S

    2007-04-01

    Tumor necrosis factor (TNF)-induced ICAM-1 in endothelial cells (EC) promotes leukocyte adhesion. Here we report that ICAM-1 also effects EC barrier function. Control- or E-selectin-transduced human dermal microvascular EC (HDMEC) form a barrier to flux of proteins and to passage of current (measured as transendothelial electrical resistance or TEER). HDMEC transduced with ICAM-1 at levels comparable to that induced by TNF show reduced TEER, but do so without overtly changing their cell junctions, cell shape, or cytoskeleton organization. Higher levels of ICAM-1 further reduce TEER, increase F/G-actin ratios, rearrange the actin cytoskeleton to cause cell elongation, and alter junctional zona occludens 1 and vascular endothelial-cadherin staining. Transducing with ICAM-1 lacking an intracellular region also reduces TEER. TNF-induced changes in TEER and shape follow a similar time course as ICAM-1 induction; however, the fall in TEER occurs at lower TNF concentrations. Inhibiting NF-kappaB activation blocks ICAM-1 induction; TEER reduction, and shape change. Specific small-interfering RNA knockdown of ICAM-1 partially inhibits TNF-induced shape change. We conclude that moderately elevated ICAM-1 expression reduces EC barrier function and that expressing higher levels of ICAM-1 affects cell junctions and the cytoskeleton. Induction of ICAM-1 may contribute to but does not fully account for TNF-induced vascular leak and EC shape change.

  12. Rad54 protein promotes branch migration of Holliday junctions.

    PubMed

    Bugreev, Dmitry V; Mazina, Olga M; Mazin, Alexander V

    2006-08-03

    Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.

  13. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-03

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth.

  14. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities

    PubMed Central

    Huang, Wen; Eum, Sung Yong; András, Ibolya E; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)α or PPARγ attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARγ agonists and silencing of PPARα or PPARγ, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.—Huang, W., Eum, S. Y., András, I. E., Hennig, B., Toborek, M. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. PMID:19141539

  15. Specificity of Interaction between Clostridium perfringens Enterotoxin and Claudin-Family Tight Junction Proteins

    PubMed Central

    Mitchell, Leslie A.; Koval, Michael

    2010-01-01

    Clostridium perfringens enterotoxin (CPE), a major cause of food poisoning, forms physical pores in the plasma membrane of intestinal epithelial cells. The ability of CPE to recognize the epithelium is due to the C-terminal binding domain, which binds to a specific motif on the second extracellular loop of tight junction proteins known as claudins. The interaction between claudins and CPE plays a key role in mediating CPE toxicity by facilitating pore formation and by promoting tight junction disassembly. Recently, the ability of CPE to distinguish between specific claudins has been used to develop tools for studying roles for claudins in epithelial barrier function. Moreover, the high affinity of CPE to selected claudins makes CPE a useful platform for targeted drug delivery to tumors expressing these claudins. PMID:22069652

  16. Junction-mediating and regulatory protein (JMY) is essential for early porcine embryonic development.

    PubMed

    Lin, Zi Li; Cui, Xiang-Shun; Namgoong, Suk; Kim, Nam-Hyung

    2015-01-01

    Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. JMY is a critical nucleation-promoting factor (NPF); however, its role in the development of mammalian embryos is poorly understood. In the current study, we investigated the functional roles of the NPF JMY in porcine embryos. Porcine embryos expressed JMY mRNA and protein, and JMY protein moved from the cytoplasm to the nucleus at later embryonic developmental stages. Knockdown of JMY by RNA interference markedly decreased the rate of blastocyst development, validating its role in the development of porcine embryos. Furthermore, injection of JMY dsRNA also impaired actin and Arp2 expression, and co-injection of actin and Arp2 mRNA partially rescued blastocyst development. Taken together, our results show that the NPF JMY is involved in the development of porcine embryos by regulating the NPF-Arp2-actin pathway.

  17. Junction-mediating and regulatory protein (JMY) is essential for early porcine embryonic development

    PubMed Central

    LIN, Zi Li; CUI, Xiang-Shun; NAMGOONG, Suk; KIM, Nam-Hyung

    2015-01-01

    Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. JMY is a critical nucleation-promoting factor (NPF); however, its role in the development of mammalian embryos is poorly understood. In the current study, we investigated the functional roles of the NPF JMY in porcine embryos. Porcine embryos expressed JMY mRNA and protein, and JMY protein moved from the cytoplasm to the nucleus at later embryonic developmental stages. Knockdown of JMY by RNA interference markedly decreased the rate of blastocyst development, validating its role in the development of porcine embryos. Furthermore, injection of JMY dsRNA also impaired actin and Arp2 expression, and co-injection of actin and Arp2 mRNA partially rescued blastocyst development. Taken together, our results show that the NPF JMY is involved in the development of porcine embryos by regulating the NPF-Arp2-actin pathway. PMID:26052154

  18. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    PubMed Central

    Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNFα), interleukin- (IL-) 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ), IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

  19. Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro

    PubMed Central

    Lehmann, Andrea D; Blank, Fabian; Baum, Oliver; Gehr, Peter; Rothen-Rutishauser, Barbara M

    2009-01-01

    Background Using an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 μg/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types. Results Only the highest dose of DEP (125 μg/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations. Conclusion We concluded that high concentrations of DEP (125 μg/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells. PMID:19814802

  20. EMP-1 is a junctional protein in a liver stem cell line and in the liver.

    PubMed

    Lee, Hsuan-Shu; Sherley, James L; Chen, Jeremy J W; Chiu, Chien-Chang; Chiou, Ling-Ling; Liang, Ja-Der; Yang, Pan-Chyr; Huang, Guan-Tarn; Sheu, Jin-Chuan

    2005-09-09

    In an attempt to discover cell markers for liver stem cells, a cDNA microarray analysis was carried out to compare the gene expression profiles between an adult liver stem cell line, Lig-8, and mature hepatocytes. Several genes in the categories of extracellular matrix, cell membrane, cell adhesion, transcription factor, signal molecule, transporter, and metabolic enzyme were shown to be differentially expressed in Lig-8 cells. Among them, epithelial membrane protein (EMP)-1 has been previously implicated with stem cell phenotypes. Antiserum to EMP-1 was produced to localize its expression. On monolayers of Lig-8 cells, EMP-1 was expressed along the intercellular border. In the liver harboring proliferating oval cells, the liver progenitors, EMP-1 was localized as ribbon bands, a staining pattern for epithelial junctions, all the way through bile duct epithelia, oval cell ductules, and into peri-hepatocytic regions. These peri-hepatocytic regions were proved to be bile canaliculi by co-localization of EMP-1 and dipeptidyl peptidase IV, an enzyme located on bile canaliculi. This report is the first to indicate EMP-1 to be a junctional protein in the liver.

  1. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

    PubMed

    Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; Schneider-Daum, Nicole; Lehr, Claus-Michael

    2016-01-01

    This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.

  2. A General Method for Insertion of Functional Proteins within Proteins via Combinatorial Selection of Permissive Junctions.

    PubMed

    Peng, Yingjie; Zeng, Wenwen; Ye, Hui; Han, Kyung Ho; Dharmarajan, Venkatasubramanian; Novick, Scott; Wilson, Ian A; Griffin, Patrick R; Friedman, Jeffrey M; Lerner, Richard A

    2015-08-20

    A major goal of modern protein chemistry is to create new proteins with different functions. One approach is to amalgamate secondary and tertiary structures from different proteins. This is difficult for several reasons, not the least of which is the fact that the junctions between secondary and tertiary structures are not degenerate and usually affect the function and folding of the entire complex. Here, we offer a solution to this problem by coupling a large combinatorial library of about 10(7) different N- and C-terminal junctions to a powerful system that selects for function. Using this approach, the entire Leptin and follicle-stimulating hormone (FSH) were inserted into an antibody. Complexes with full retention of function in vivo and in vitro, although rare, were found easily by using an autocrine selection system to search for hormonal activity. Such large diversity systems, when coupled to robust selection systems, should enable construction of novel therapeutic proteins.

  3. CONNEXIN 43 AND BONE: NOT JUST A GAP JUNCTION PROTEIN

    PubMed Central

    Plotkin, Lilian I.

    2012-01-01

    Connexins are essential for the communication of cells among themselves and with their environment. Connexin hexamers assemble at the plasma membrane to form hemichannels that allow the exchange of cellular contents with the extracellular milieu. In addition, hemichannels expressed in neighboring cells align to form gap junction channels that mediate the exchange of contents among cells. Connexin 43 (Cx43) is the most abundant connexin expressed in bone cells and its deletion in all tissues leads to osteoblast dysfunction, as evidenced by reduced expression of osteoblast markers and delayed ossification. Moreover, Cx43 is essential for the survival of osteocytes; and mice lacking Cx43 in these cells exhibit increased prevalence of osteocyte apoptosis and empty lacunae in cortical bone. Work of several groups for the past few years has unveiled the role of Cx43 on the response of bone cells to a variety of stimuli. Thus, the preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo. This survival effect does not require cell-to-cell communication and is mediated by unopposed hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes induced by mechanical stimulation in vitro. More recent evidence showed that the cAMP-mediated survival effect of parathyroid hormone (PTH) also requires Cx43 expression. Moreover, the hormone does not increase bone mineral content in mice haploinsufficient for Cx43 or lacking Cx43 in osteoblastic cells. Since inhibition of osteoblast apoptosis contributes, at least in part, to bone anabolism by PTH, the lack of response to the hormone might be due to the requirement of Cx43 for the effect of PTH on osteoblast survival. In summary, mounting evidence indicate that Cx43 is a key component of the intracellular machinery responsible for the transduction of signals in the skeleton in response to

  4. Expression of major gap junction connexin types in the working myocardium of eight chordates.

    PubMed

    Becker, D L; Cook, J E; Davies, C S; Evans, W H; Gourdie, R G

    1998-01-01

    The alpha1 connexin (connexin43) is regarded as the major gap junction protein of the myocardium because it predominates there in mammals. Here, we show that it is not the major connexin of the working myocardium in non-mammalian vertebrates, which instead express beta1-like connexins homologous to mammalian connexin32. A phylogenetic series of hearts was immunostained with seven antibodies raised against peptide sequences specific for three distinct members of the gap junction connexin family: alpha1, beta1 and alpha5 (mammalian connexin40/avian connexin42). Working myocardium from two ascidian chordates (Ciona and Mogula), a teleost (Carassius), a frog (Xenopus) and two reptiles (Anolis and Alligator) was found to express a beta1-like connexin, rather than an alpha1-like connexin. An alpha1-like connexin was nevertheless often detected in other cardiac tissues. In the chicken (by ancestry a reptile), the developing myocardium expressed a beta1-like connexin strongly on embryonic day 6 but less strongly at hatching, and minimally in the adult. Myocardial expression of alpha5 connexin increased during development, but remained strongest in the coronary vascular endothelial and cardiac conduction tissues. The arteriolar smooth muscle of the chicken expressed alpha1 connexin throughout development, but its myocardium did not. In contrast, the working myocardium of a marsupial mammal (the opossum Trichosurus) strongly expressed an alpha1 connexin just like placental mammals. These results imply that a shift from beta1 to alpha1 connexin expression in the heart occurred prior to the evolution of the opossums. The beta and alpha connexin subfamilies have different permeabilities and gating properties, and we discuss factors that might have made this shift beneficial.

  5. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    SciTech Connect

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  6. Interleukin-34 Restores Blood–Brain Barrier Integrity by Upregulating Tight Junction Proteins in Endothelial Cells

    PubMed Central

    Jin, Shijie; Sonobe, Yoshifumi; Kawanokuchi, Jun; Horiuchi, Hiroshi; Cheng, Yi; Wang, Yue; Mizuno, Tetsuya; Takeuchi, Hideyuki; Suzumura, Akio

    2014-01-01

    Interleukin-34 (IL-34) is a newly discovered cytokine as an additional ligand for colony stimulating factor-1 receptor (CSF1R), and its functions are expected to overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We have previously shown that the IL-34 is primarily produced by neurons in the central nervous system (CNS) and induces proliferation and neuroprotective properties of microglia which express CSF1R. However, the functions of IL-34 in the CNS are still elucidative. Here we show that CNS capillary endothelial cells also express CSF1R. IL-34 protected blood–brain barrier integrity by restored expression levels of tight junction proteins, which were downregulated by pro-inflammatory cytokines. The novel function of IL-34 on the blood–brain barrier may give us a clue for new therapeutic strategies in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. PMID:25535736

  7. Interleukin-34 restores blood-brain barrier integrity by upregulating tight junction proteins in endothelial cells.

    PubMed

    Jin, Shijie; Sonobe, Yoshifumi; Kawanokuchi, Jun; Horiuchi, Hiroshi; Cheng, Yi; Wang, Yue; Mizuno, Tetsuya; Takeuchi, Hideyuki; Suzumura, Akio

    2014-01-01

    Interleukin-34 (IL-34) is a newly discovered cytokine as an additional ligand for colony stimulating factor-1 receptor (CSF1R), and its functions are expected to overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We have previously shown that the IL-34 is primarily produced by neurons in the central nervous system (CNS) and induces proliferation and neuroprotective properties of microglia which express CSF1R. However, the functions of IL-34 in the CNS are still elucidative. Here we show that CNS capillary endothelial cells also express CSF1R. IL-34 protected blood-brain barrier integrity by restored expression levels of tight junction proteins, which were downregulated by pro-inflammatory cytokines. The novel function of IL-34 on the blood-brain barrier may give us a clue for new therapeutic strategies in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease.

  8. Tissue Restricted Splice Junctions Originate Not Only from Tissue-Specific Gene Loci, but Gene Loci with a Broad Pattern of Expression

    PubMed Central

    Hestand, Matthew S.; Zeng, Zheng; Coleman, Stephen J.; Liu, Jinze; MacLeod, James N.

    2015-01-01

    Cellular mechanisms that achieve protein diversity in eukaryotes are multifaceted, including transcriptional components such as RNA splicing. Through alternative splicing, a single protein-coding gene can generate multiple mRNA transcripts and protein isoforms, some of which are tissue-specific. We have conducted qualitative and quantitative analyses of the Bodymap 2.0 messenger RNA-sequencing data from 16 human tissue samples and identified 209,363 splice junctions. Of these, 22,231 (10.6%) were not previously annotated and 21,650 (10.3%) were expressed in a tissue-restricted pattern. Tissue-restricted alternative splicing was found to be widespread, with approximately 65% of expressed multi-exon genes containing at least one tissue-specific splice junction. Interestingly, we observed many tissue-specific splice junctions not only in genes expressed in one or a few tissues, but also from gene loci with a broad pattern of expression. PMID:26713731

  9. Autoinduction of Protein Expression

    PubMed Central

    Fox, Brian G.; Blommel, Paul G.

    2017-01-01

    This unit contains protocols for the use of lactose-derived autoinduction in Escherichia coli. The protocols allow for reproducible expression trials to be undertaken with minimal user intervention. A basic protocol covers production of unlabeled proteins for functional studies. Alternate protocols for selenomethionine labeling for X-ray structural studies, and multi-well plate growth for screening and optimization are also included. PMID:19365792

  10. Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing.

    PubMed

    Volksdorf, Thomas; Heilmann, Janina; Eming, Sabine A; Schawjinski, Kathrin; Zorn-Kruppa, Michaela; Ueck, Christopher; Vidal-Y-Sy, Sabine; Windhorst, Sabine; Jücker, Manfred; Moll, Ingrid; Brandner, Johanna M

    2017-06-01

    Tight junction (TJ) proteins are known to be involved in proliferation and differentiation. These processes are essential for normal skin wound healing. Here, we investigated the TJ proteins claudin-1 and occludin in ex vivo skin wound healing models and tissue samples of acute and chronic human wounds and observed major differences in localization/expression of these proteins, with chronic wounds often showing a loss of the proteins at the wound margins and/or in the regenerating epidermis. Knockdown experiments in primary human keratinocytes showed that decreased claudin-1 expression resulted in significantly impaired scratch wound healing, with delayed migration and reduced proliferation. Activation of AKT pathway was significantly attenuated after claudin-1 knockdown, and protein levels of extracellular signal-related kinase 1/2 were reduced. For occludin, down-regulation had no impact on wound healing in normal scratch assays, but after subjecting the cells to mechanical stress, which is normally present in wounds, wound healing was impaired. For both proteins we show that most of these actions are independent from the formation of barrier-forming TJ structures, thus demonstrating nonbarrier-related functions of TJ proteins in the skin. However, for claudin-1 effects on scratch wound healing were more pronounced when TJs could form. Together, our findings provide evidence for a role of claudin-1 and occludin in epidermal regeneration with potential clinical importance. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Expression of frequenin at the frog (Rana) neuromuscular junction, muscle spindle and nerve.

    PubMed

    Werle, M J; Roder, J; Jeromin, A

    2000-04-21

    Frequenin is a calcium binding protein previously implicated in the regulation of neurotransmission in Drosophila and Xenopus. We have used the frog (Rana pipiens) to study the localization and regulation of expression of frequenin-like molecules in the vertebrate peripheral nervous system. Affinity purified antibodies to frequenin recognize molecules in the neuromuscular junction, axons in the peripheral nerve, and neuronal processes in muscle spindles. Western blots of endplate regions, peripheral nerve, and brain, resulted in the labelling of a single 24 kDa band, which is the expected size for frequenin. These results suggest that frequenin expression is high in the frog peripheral nervous system, and may reflect a function for frequenin in synaptic transmission in vertebrates.

  12. Plant-derived triterpene celastrol ameliorates oxygen glucose deprivation-induced disruption of endothelial barrier assembly via inducing tight junction proteins.

    PubMed

    Luo, Dan; Zhao, Jia; Rong, Jianhui

    2016-12-01

    The integrity and functions of blood-brain barrier (BBB) are regulated by the expression and organization of tight junction proteins. The present study was designed to explore whether plant-derived triterpenoid celastrol could regulate tight junction integrity in murine brain endothelial bEnd3 cells. We disrupted the tight junctions between endothelial bEnd3 cells by oxygen glucose deprivation (OGD). We investigated the effects of celastrol on the permeability of endothelial monolayers by measuring transepithelial electrical resistance (TEER). To clarify the tight junction composition, we analyzed the expression of tight junction proteins by RT-PCR and Western blotting techniques. We found that celastrol recovered OGD-induced TEER loss in a concentration-dependent manner. Celastrol induced occludin, claudin-5 and zonula occludens-1 (ZO-1) in endothelial cells. As a result, celastrol effectively maintained tight junction integrity and inhibited macrophage migration through endothelial monolayers against OGD challenge. Further mechanistic studies revealed that celastrol induced the expression of occludin and ZO-1) via activating MAPKs and PI3K/Akt/mTOR pathway. We also observed that celastrol regulated claudin-5 expression through different mechanisms. The present study demonstrated that celastrol effectively protected tight junction integrity against OGD-induced damage. Thus, celastrol could be a drug candidate for the treatment of BBB dysfunction in various diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Diurnal Variation of Tight Junction Integrity Associates Inversely with Matrix Metalloproteinase Expression in Xenopus laevis Corneal Epithelium: Implications for Circadian Regulation of Homeostatic Surface Cell Desquamation

    PubMed Central

    Wiechmann, Allan F.; Ceresa, Brian P.; Howard, Eric W.

    2014-01-01

    Background and Objectives The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs) are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium. Methodology/Principal Findings Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2), membrane type 1-MMP (MT1-MMP) and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime. Conclusions/Significance MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and

  14. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    PubMed

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A; Dilly, Suzanne J; James, Sean; Dimitri, Wade; Ladwa, Sweta R; Taylor, Paul C; Singer, Donald R J

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  15. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

    PubMed

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-03-15

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.

  16. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    PubMed Central

    Zuhl, Micah N.; Moseley, Pope L.

    2015-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485

  17. Garlic (Allium sativum) feeding impairs Sertoli cell junctional proteins in male Wistar rat testis: microscopy study.

    PubMed

    Hammami, I; Nahdi, A; Atig, F; El May, A; El May, M V

    2016-12-01

    Sertoli cell junctions, such as adhesion junction (AJ), gap junction (GJ) and tight junction (TJ), are important for maintaining spermatogenesis. In previous studies, we showed the inhibitory effect of crude garlic (Allium sativum, As) on spermatogenesis and steroidogenesis. The aim of this work was to complete our investigation on the impact of this plant, especially on Sertoli cell junctional proteins (SCJPs). During 1 month, 24 male rats were divided into groups: group control (0% of As) and treated groups fed 5%, 10% and 15% of As. Light and electron microscopy observations were performed to localise junctional proteins: connexin-43, Zona Occluding-1 and N-cadherin (immunohistochemistry) and to describe junctions. We showed that the specific cells involved in the localisation of the SCJP were similar in both control and treated groups, but with different immunoreactivity intensity between them. The electron microscopy observation focused on TJs between Sertoli cells, constituting the blood-testis barrier, showed ultrastructural changes such as fragmentation of TJs between adjacent Sertoli cell membranes and dilatation of rough endoplasmic reticulum saccules giving an aspect of scale to these junctions. We concluded that crude garlic consumption during 1 month induces perturbations on Sertoli cell junctions. These alterations can explain apoptosis in testicular germ cells previously showed.

  18. Tight Junction Proteins Claudin-1 and Occludin Control Hepatitis C Virus Entry and Are Downregulated during Infection To Prevent Superinfection ▿ §

    PubMed Central

    Liu, Shufeng; Yang, Wei; Shen, Le; Turner, Jerrold R.; Coyne, Carolyn B.; Wang, Tianyi

    2009-01-01

    A tight junction (TJ) protein, claudin-1 (CLDN1), was identified recently as a key factor for hepatitis C virus (HCV) entry. Here, we show that another TJ protein, occludin, is also required for HCV entry. Mutational study of CLDN1 revealed that its tight junctional distribution plays an important role in mediating viral entry. Together, these data support the model in which HCV enters liver cells from the TJ. Interestingly, HCV infection of Huh-7 hepatoma cells downregulated the expression of CLDN1 and occludin, preventing superinfection. The altered TJ protein expression may contribute to the morphological and functional changes observed in HCV-infected hepatocytes. PMID:19052094

  19. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  20. Protein expression in liposomes.

    PubMed

    Oberholzer, T; Nierhaus, K H; Luisi, P L

    1999-08-02

    Compartmentalization is one of the key steps in the evolution of cellular structures and, so far, only few attempts have been made to model this kind of "compartmentalized chemistry" using liposomes. The present work shows that even such complex reactions as the ribosomal synthesis of polypeptides can be carried out in liposomes. A method is described for incorporating into 1-palmitoyl-2-oleoyl-sn-3-phosphocholine (POPC) liposomes the ribosomal complex together with the other components necessary for protein expression. Synthesis of poly(Phe) in the liposomes is monitored by trichloroacetic acid of the (14)C-labelled products. Control experiments carried out in the absence of one of the ribosomal subunits show by contrast no significant polypeptide expression. This methodology opens up the possibility of using liposomes as minimal cell bioreactors with growing degree of synthetic complexity, which may be relevant for the field of origin of life as well as for biotechnological applications. Copyright 1999 Academic Press.

  1. The Tight Junction Proteins Claudin-1, -6, and -9 Are Entry Cofactors for Hepatitis C Virus▿

    PubMed Central

    Meertens, Laurent; Bertaux, Claire; Cukierman, Lisa; Cormier, Emmanuel; Lavillette, Dimitri; Cosset, François-Loïc; Dragic, Tatjana

    2008-01-01

    Hepatitis C virus (HCV) is a major cause of liver disease in humans. The CD81 tetraspanin is necessary but not sufficient for HCV penetration into hepatocytes, and it was recently reported that the tight junction protein claudin-1 is a critical HCV entry cofactor. Here, we confirm the role of claudin-1 in HCV entry. In addition, we show that claudin-6 and claudin-9 expressed in CD81+ cells also enable the entry of HCV pseudoparticles derived from six of the major genotypes. Whereas claudin-1, -6, and -9 function equally well as entry cofactors in endothelial cells, claudin-1 is more efficient in hepatoma cells. This suggests that additional cellular factors modulate the ability of claudins to function as HCV entry cofactors. Our work has generated novel and essential means to investigate the mechanism of HCV penetration into hepatocytes and the role of the claudin protein family in HCV dissemination, replication, and pathogenesis. PMID:18234789

  2. Effects of fumaric acid esters on blood-brain barrier tight junction proteins.

    PubMed

    Bénardais, Karelle; Pul, Refik; Singh, Vikramjeet; Skripuletz, Thomas; Lee, De-Hyung; Linker, Ralf A; Gudi, Viktoria; Stangel, Martin

    2013-10-25

    The blood-brain barrier (BBB) is composed of a network of tight junctions (TJ) which interconnect cerebral endothelial cells (EC). Alterations in the TJ proteins are common in inflammatory diseases of the central nervous system (CNS) like multiple sclerosis (MS). Modulation of the BBB could thus represent a therapeutic mechanism. One pathway to modulate BBB integrity could be the induction of nuclear-factor (erythroid derived 2) related factor-2 (Nrf2) mediated oxidative stress responses which are targeted by fumaric acid esters (FAE). Here we analyze effects of FAE on the expression of TJ proteins in the human cerebral endothelial cell line hCMEC/D3 and experimental autoimmune encephalomyelitis (EAE). We show that dimethylfumarate (DMF) and its primary metabolite monomethylfumarate (MMF) induce the expression of the Nrf2/NQO1 pathway in endothelial cells. Neither MMF nor DMF had a consistent modulatory effect on the expression of TJ molecules in hCMEC/D3 cells. Tumor necrosis factor (TNFα)-induced downregulation of TJ proteins was at least partially reversed by treatment with FAE. However, DMF had no effect on claudin-5 expression in EAE, despite its effect on the clinical score and infiltration of immune cells. These data suggest that the modulation of the BBB is not a major mechanism of action of FAE in inflammatory demyelinating diseases of the CNS.

  3. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions.

    PubMed

    Cichon, Christoph; Sabharwal, Harshana; Rüter, Christian; Schmidt, M Alexander

    2014-01-01

    Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the 'apical junctional complex-AJC' with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the 'Junctional Adhesion Molecules' (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers.

  4. Giardia disrupts the arrangement of tight, adherens and desmosomal junction proteins of intestinal cells.

    PubMed

    Maia-Brigagão, C; Morgado-Díaz, J A; De Souza, W

    2012-06-01

    Giardia duodenalis is a parasitic protozoan that causes diarrhea and other symptoms which together constitute a disease known as giardiasis. Although the disease has been well defined, the mechanisms involving the establishment of the infection have not yet been fully elucidated. In this study, we show that after 24h of interaction between parasites and intestinal Caco-2 cells, there was an alteration of the paracellular permeability, as observed by an approximate 42% of reduction in the transepithelial electrical resistance and permeation to ruthenium red, which was concomitant with ultrastructural changes. Nevertheless, epithelium viability was not affected. We also demonstrate that there was no change in expression of junctional proteins (tight and adherens) but that the distribution of these proteins in Caco-2 cells after parasite adhesion was significantly altered, as observed via laser scanning confocal microscopy 3D reconstruction. The present work shows that adhesion of Giardia duodenalis trophozoites to intestinal cells in vitro induces disturbances of the tight, adherens and desmosomal junctions.

  5. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells.

    PubMed

    Kato, Tatsuya; Sato, Nagato; Hayama, Satoshi; Yamabuki, Takumi; Ito, Tomoo; Miyamoto, Masaki; Kondo, Satoshi; Nakamura, Yusuke; Daigo, Yataro

    2007-09-15

    We identified a novel gene HJURP (Holliday junction-recognizing protein) whose activation seemed to play a pivotal role in the immortality of cancer cells. HJURP was considered a possible downstream target for ataxia telangiectasia mutated signaling, and its expression was increased by DNA double-strand breaks (DSB). HJURP was involved in the homologous recombination pathway in the DSB repair process through interaction with hMSH5 and NBS1, which is a part of the MRN protein complex. HJURP formed nuclear foci in cells at S phase and those subjected to DNA damage. In vitro assays implied that HJURP bound directly to the Holliday junction and rDNA arrays. Treatment of cancer cells with small interfering RNA (siRNA) against HJURP caused abnormal chromosomal fusions and led to genomic instability and senescence. In addition, HJURP overexpression was observed in a majority of lung cancers and was associated with poor prognosis as well. We suggest that HJURP is an indispensable factor for chromosomal stability in immortalized cancer cells and is a potential novel therapeutic target for the development of anticancer drugs.

  6. Tight junctions as regulators of tissue remodelling.

    PubMed

    Balda, Maria S; Matter, Karl

    2016-10-01

    Formation of tissue barriers by epithelial and endothelial cells requires neighbouring cells to interact via intercellular junctions, which includes tight junctions. Tight junctions form a semipermeable paracellular diffusion barrier and act as signalling hubs that guide cell behaviour and differentiation. Components of tight junctions are also expressed in cell types not forming tight junctions, such as cardiomyocytes, where they associate with facia adherens and/or gap junctions. This review will focus on tight junction proteins and their importance in tissue homeostasis and remodelling with a particular emphasis on what we have learned from animal models and human diseases. Copyright © 2016. Published by Elsevier Ltd.

  7. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity.

    PubMed

    Kang, Hyuno; Tian, Le; Son, Young-Jin; Zuo, Yi; Procaccino, Diane; Love, Flora; Hayworth, Christopher; Trachtenberg, Joshua; Mikesh, Michelle; Sutton, Lee; Ponomareva, Olga; Mignone, John; Enikolopov, Grigori; Rimer, Mendell; Thompson, Wesley

    2007-05-30

    The intermediate filament nestin is localized postsynaptically at rodent neuromuscular junctions. The protein forms a filamentous network beneath and between the synaptic gutters, surrounds myofiber nuclei, and is associated with Z-discs adjacent to the junction. In situ hybridization shows that nestin mRNA is synthesized selectively by synaptic myonuclei. Although weak immunoreactivity is present in myelinating Schwann cells that wrap the preterminal axon, nestin is not detected in the terminal Schwann cells (tSCs) that cover the nerve terminal branches. However, after denervation of muscle, nestin is upregulated in tSCs and in SCs within the nerve distal to the lesion site. In contrast, immunoreactivity is strongly downregulated in the muscle fiber. Transgenic mice in which the nestin neural enhancer drives expression of a green fluorescent protein (GFP) reporter show that the regulation in SCs is transcriptional. However, the postsynaptic expression occurs through enhancer elements distinct from those responsible for regulation in SCs. Application of botulinum toxin shows that the upregulation in tSCs and the loss of immunoreactivity in muscle fibers occurs with blockade of transmitter release. Extrinsic stimulation of denervated muscle maintains the postsynaptic expression of nestin but does not affect the upregulation in SCs. Thus, a nestin-containing cytoskeleton is promoted in the postsynaptic muscle fiber by nerve-evoked muscle activity but suppressed in tSCs by transmitter release. Nestin antibodies and GFP driven by nestin promoter elements serve as excellent markers for the reactive state of SCs. Vital imaging of GFP shows that SCs grow a dynamic set of processes after denervation.

  8. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease

    PubMed Central

    Briskey, David; Heritage, Mandy; Jaskowski, Lesley-Anne; Peake, Jonathan; Gobe, Glenda; Subramaniam, V. Nathan; Crawford, Darrell; Campbell, Catherine; Vitetta, Luis

    2016-01-01

    Background: We have investigated the effects of a multispecies probiotic preparation containing a combination of probiotic bacterial genera that included Bifidobacteria, Lactobacilli and a Streptococcus in a mouse model of high-fat diet or obesity-induced liver steatosis. Methods: Three groups of C57B1/6J mice were fed either a standard chow or a high-fat diet for 20 weeks, while a third group was fed a high-fat diet for 10 weeks and then concomitantly administered probiotics for a further 10 weeks. Serum, liver and large bowel samples were collected for analysis. Results: The expression of the tight-junction proteins ZO-1 and ZO-2 was reduced (p < 0.05) in high-fat diet-fed mice compared to chow-fed mice. Probiotic supplementation helped to maintain tight ZO-1 and ZO-2 expression compared with the high-fat diet group (p < 0.05), but did not restore ZO-1 or ZO-2 expression compared with chow-fed mice. Mice fed a high-fat diet ± probiotics had significant steatosis development compared with chow-fed mice (p < 0.05); steatosis was less severe in the probiotics group compared with the high-fat diet group. Hepatic triglyceride concentration was higher in mice fed a high-fat diet ± probiotics compared with the chow group (p < 0.05), and was lower in the probiotics group compared with the high-fat diet group (p < 0.05). Compared with chow-fed mice, serum glucose, cholesterol concentration and the activity of alanine transaminase were higher (p < 0.05), whereas serum triglyceride concentration was lower (p < 0.05) in mice fed a high-fat diet ± probiotics. Conclusions: Supplementation with a multispecies probiotic formulation helped to maintain tight-junction proteins ZO-1 and ZO-2, and reduced hepatic triglyceride concentration compared with a high-fat diet alone. PMID:27366215

  9. The Drosophila tricellular junction protein Gliotactin regulates its own mRNA levels through BMP-mediated induction of miR-184

    PubMed Central

    Sharifkhodaei, Zohreh; Padash-Barmchi, Mojgan; Gilbert, Mary M.; Samarasekera, Gayathri; Fulga, Tudor A.; Van Vactor, David; Auld, Vanessa J.

    2016-01-01

    ABSTRACT Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at the Drosophila tricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3′UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184. PMID:26906422

  10. Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma

    PubMed Central

    Süren, Dinç; Yıldırım, Mustafa; Kaya, Vildan; Alikanoğlu, Arsenal Sezgin; Bülbüller, Nurullah; Yıldız, Mustafa; Sezer, Cem

    2014-01-01

    Background Tight junction proteins in the cell organize paracellular permeability and they play a critical role in apical cell-to-cell adhesion and epithelial polarity. Claudins are major integral membrane proteins of tight junctions, especially Claudin 1, 4, and 7, which are known as the impermeability Claudins. In this study, we investigated the importance of loss of Claudin 1, 4, and 7 expression, and their relation to tumor progression in colorectal cancer patients. Material/Methods Loss of Claudin 1, 4, and 7 expression was examined by immunohistochemical method in 70 patients diagnosed with colorectal cancer. Cases with loss of Claudin expression in <1/3 of tumor cells were classified as mild loss, whereas cases with loss of Claudin expression ≥1/3 of tumor cells were classified as moderate-to-marked loss in order to evaluate the relation between loss of Claudin 1, 4, and 7 expression and clinicopathologic data. Results The severe suppression of Claudin 1, 4, and 7 expression was found to be significantly related to the depth of tumor invasion, positive regional lymph nodes, histological grade, lymphovascular invasion, perineural invasion, and lymphocytic response. Additionally, severity of loss in Claudin 4 expression was found to have a relation with distant metastasis. Conclusions Claudin 1, 4, and 7 are important building blocks of paracellular adhesion molecules. Their decreased expression in colorectal cancer seems to have critical effects on cell proliferation, motility, invasion, and immune response against the tumor. PMID:25038829

  11. Internalization of adhesion junction proteins and their association with recycling endosome marker proteins in rat seminiferous epithelium.

    PubMed

    Young, J'Nelle S; Takai, Yoshimi; Kojic, Katarina L; Vogl, A Wayne

    2012-03-01

    Tubulobulbar complexes (TBCs) are elaborate cytoskeleton-related structures that are formed in association with intercellular junctions in the seminiferous epithelium. They consist of a cylindrical double-membrane core composed of the plasma membranes of the two attached cells, cuffed by a dendritic network of actin filaments. TBCs are proposed to be subcellular machines that internalize intercellular junctions during the extensive junction remodeling that occurs during spermatogenesis. At the apical sites of attachment between Sertoli cells and spermatids, junction disassembly is part of the sperm release mechanism. In this study, we used immunological probes to explore junction internalization and recycling at apical TBCs in the rat seminiferous epithelium. We demonstrate that β1-integrin and nectin 2 were concentrated at the ends of TBCs and for the first time show that the early endosome marker RAB5A was also distinctly localized at the ends of TBCs that appear to be the 'bulbar' regions of the complexes. Significantly, we also demonstrate that the 'long-loop' recycling endosome marker RAB11A was co-distributed with nectin 2 at junctions with early spermatids deeper in the epithelium. Our results are consistent with the hypothesis that TBCs associated with late spermatids internalize adhesion junctions and also indicate that some of the internalized junction proteins may be recycled to form junctions with the next generation of spermatids.

  12. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction

    PubMed Central

    Stamatovic, Svetlana M; Johnson, Allison M; Keep, Richard F; Andjelkovic, Anuska V

    2016-01-01

    abstract The blood-brain barrier (BBB) is a highly complex and dynamic barrier. It is formed by an interdependent network of brain capillary endothelial cells, endowed with barrier properties, and perivascular cells (astrocytes and pericytes) responsible for inducing and maintaining those properties. One of the primary properties of the BBB is a strict regulation of paracellular permeability due to the presence of junctional complexes (tight, adherens and gap junctions) between the endothelial cells. Alterations in junction assembly and function significantly affect BBB properties, particularly barrier permeability. However, such alterations are also involved in remodeling the brain endothelial cell surface and regulating brain endothelial cell phenotype. This review summarizes the characteristics of brain endothelial tight, adherens and gap junctions and highlights structural and functional alterations in junctional proteins that may contribute to BBB dysfunction. PMID:27141427

  13. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions.

    PubMed

    Raleigh, David R; Marchiando, Amanda M; Zhang, Yong; Shen, Le; Sasaki, Hiroyuki; Wang, Yingmin; Long, Manyuan; Turner, Jerrold R

    2010-04-01

    In vitro studies have demonstrated that occludin and tricellulin are important for tight junction barrier function, but in vivo data suggest that loss of these proteins can be overcome. The presence of a heretofore unknown, yet related, protein could explain these observations. Here, we report marvelD3, a novel tight junction protein that, like occludin and tricellulin, contains a conserved four-transmembrane MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain. Phylogenetic tree reconstruction; analysis of RNA and protein tissue distribution; immunofluorescent and electron microscopic examination of subcellular localization; characterization of intracellular trafficking, protein interactions, dynamic behavior, and siRNA knockdown effects; and description of remodeling after in vivo immune activation show that marvelD3, occludin, and tricellulin have distinct but overlapping functions at the tight junction. Although marvelD3 is able to partially compensate for occludin or tricellulin loss, it cannot fully restore function. We conclude that marvelD3, occludin, and tricellulin define the tight junction-associated MARVEL protein family. The data further suggest that these proteins are best considered as a group with both redundant and unique contributions to epithelial function and tight junction regulation.

  14. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  15. Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies.

    PubMed Central

    Yahalom, A; Warmbrodt, R D; Laird, D W; Traub, O; Revel, J P; Willecke, K; Epel, B L

    1991-01-01

    Polypeptide present in various cell fractions obtained from homogenized maize mesocotyls were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotted, and screened for cross-reactivity with antibodies against three synthetic polypeptides spanning different regions of the rat heart gap junctional protein connexin43 and the whole mouse liver gap junctional protein connexin32. An antibody raised against a cytoplasmic loop region of connexin43 cross-reacted strongly with a cell wall-associated polypeptide (possibly a doublet) of 26 kilodaltons. Indirect immunogold labeling of thin sections of mesocotyl tissue with this antibody labeled the plasmodesmata of cortical cells along the entire length of the plasmodesmata, including the neck region and the cytoplasmic annulus. Sections labeled with control preimmune serum were essentially free of colloidal gold. An antibody against connexin32 cross-reacted with a 27-kilodalton polypeptide that was present in the cell wall and membrane fractions. Indirect immunogold labeling of thin sections with this antibody labeled the plasmodesmata mainly in the neck region. It is suggested that maize mesocotyl plasmodesmata contain at least two different proteins that have homologous domains with connexin proteins. PMID:1668654

  16. Alteration of Tight Junction Gene Expression by Calciumand Vitamin D-Deficient Diet in the Duodenum of Calbindin-Null Mice

    PubMed Central

    Hwang, Inho; Yang, Hyun; Kang, Hong-Seok; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Jeung, Eui-Bae

    2013-01-01

    Calcium absorption is regulated by both active (transcellular) and passive (paracellular) pathways. Although each pathway has been studied, correlations between the two pathways have not been well elucidated. In previous investigations, the critical transcellular proteins, calbindin-D9k (CaBP-9k) and -D28k (CaBP-28k), were shown to affect other transcellular pathways by buffering intracellular calcium concentrations. The rate of paracellular calcium transport in the duodenum is generally determined by the expression of tight junction genes. In the present study, the effect of dietary calcium and/or vitamin D supplementation on the expression of tight junction genes (occludin, ZO-1 and claudin 2, 10b, 12 and 15) in the duodenum of CaBP-9k- and/or -28k-deficient mice was examined. With a normal diet, the expression of most tight junction genes in the duodenum was significantly increased in CaBP-9k knockout (KO) mice compared to wild-type (WT) animals. With a calcium- and vitamin D-deficient diet, tight junction gene expression was significantly decreased in the duodenum of the CaBP-9k KO mice. These findings suggest that expression of paracellular tight junction genes is regulated by transcellular CaBP proteins, suggesting that active and passive calcium transport pathways may function cooperatively. PMID:24264043

  17. Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins.

    PubMed

    Markov, Alexander G; Falchuk, Evgeny L; Kruglova, Natalia M; Rybalchenko, Oksana V; Fromm, Michael; Amasheh, Salah

    2014-11-01

    Claudin tight junction proteins have been identified to primarily determine intestinal epithelial barrier properties. While functional contribution of single claudins has been characterized in detail, information on the interplay with secretory mechanisms in native intestinal epithelium is scarce. Therefore, effects of cholera toxin and theophylline on rat colon were analyzed, including detection of sealing claudins. Tissue specimens were stripped off submucosal tissue layers and mounted in Ussing chambers, and short-circuit current (ISC) and transepithelial resistance (TER) were recorded. In parallel, expression and localization of claudins was analyzed and histological studies were performed employing hematoxylin-eosin staining and light and electron microscopy. Theophylline induced a strong increase of ISC in colon tissue specimens. In parallel, a decrease of TER was observed. In contrast, cholera toxin did not induce a significant increase of ISC, whereas an increase of TER was detected after 120 min. Western blots of membrane fractions revealed an increase of claudin-3 and -4 after incubation with cholera toxin, and theophylline induced an increase of claudin-4. In accordance, confocal laser-scanning microscopy exhibited increased signals of claudin-3 and -4 after incubation with cholera toxin, and increased signals of claudin-4 after incubation with theophylline, within tight junction complexes. Morphological analyses revealed no general changes of tight junction complexes, but intercellular spaces were markedly widened after incubation with cholera toxin and theophylline. We conclude that cholera toxin and theophylline have different effects on sealing tight junction proteins in native colon preparations, which may synergistically contribute to transport functions, in vitro.

  18. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation

    PubMed Central

    2010-01-01

    Background Intestinal barrier function is important for preserving health, as a compromised barrier allows antigen entry and can induce inflammatory diseases. Probiotic bacteria can play a role in enhancing intestinal barrier function; however, the mechanisms are not fully understood. Existing studies have focused on the ability of probiotics to prevent alterations to tight junctions in disease models, and have been restricted to a few tight junction bridging proteins. No studies have previously investigated the effect of probiotic bacteria on healthy intestinal epithelial cell genes involved in the whole tight junction signalling pathway, including those encoding for bridging, plaque and dual location tight junction proteins. Alteration of tight junction signalling in healthy humans is a potential mechanism that could lead to the strengthening of the intestinal barrier, resulting in limiting the ability of antigens to enter the body and potentially triggering undesirable immune responses. Results The effect of Lactobacillus plantarum MB452 on tight junction integrity was determined by measuring trans-epithelial electrical resistance (TEER) across Caco-2 cell layers. L. plantarum MB452 caused a dose-dependent TEER increase across Caco-2 cell monolayers compared to control medium. Gene expression was compared in Caco-2 cells untreated or treated with L. plantarum MB452 for 10 hours. Caco-2 cell RNA was hybridised to human oligonucleotide arrays. Data was analysed using linear models and differently expressed genes were examined using pathway analysis tools. Nineteen tight junction-related genes had altered expression levels in response to L. plantarum MB452 (modified-P < 0.05, fold-change > 1.2), including those encoding occludin and its associated plaque proteins that anchor it to the cytoskeleton. L. plantarum MB452 also caused changes in tubulin and proteasome gene expression levels which may be linked to intestinal barrier function. Caco-2 tight junctions were

  19. Effect of High Dietary Tryptophan on Intestinal Morphology and Tight Junction Protein of Weaned Pig

    PubMed Central

    Tossou, Myrlene Carine B.; Bai, Miaomiao; Chen, Shuai; Cai, Yinghua; Duraipandiyan, Veeramuthu; Liu, Hongbin; Adebowale, Tolulope O.; Al-Dhabi, Naif Abdullah; Long, Lina; Tarique, Hussain; Oso, Abimbola O.; Liu, Gang; Yin, Yulong

    2016-01-01

    Tryptophan (Trp) plays an essential role in pig behavior and growth performances. However, little is known about Trp's effects on tight junction barrier and intestinal health in weaned pigs. In the present study, twenty-four (24) weaned pigs were randomly assigned to one of the three treatments with 8 piglets/treatments. The piglets were fed different amounts of L-tryptophan (L-Trp) as follows: 0.0%, 0.15, and 0.75%, respectively, named zero Trp (ZTS), low Trp (LTS), and high Trp (HTS), respectively. No significant differences were observed in average daily gain (ADG), average daily feed intake (ADFI), and gain: feed (G/F) ratio between the groups. After 21 days of the feeding trial, results showed that dietary Trp significantly increased (P < 0.05) crypt depth and significantly decreased (P < 0.05) villus height to crypt depth ratio (VH/CD) in the jejunum of pig fed HTS. In addition, pig fed HTS had higher (P < 0.05) serum diamine oxidase (DAO) and D-lactate. Furthermore, pig fed HTS significantly decreased mRNA expression of tight junction proteins occludin and ZO-1 but not claudin-1 in the jejunum. The number of intraepithelial lymphocytes and goblet cells were not significantly different (P > 0.05) between the groups. Collectively, these data suggest that dietary Trp supplementation at a certain level (0.75%) may negatively affect the small intestinal structure in weaned pig. PMID:27366740

  20. Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1.

    PubMed

    Zimmerli, Simone C; Hauser, Conrad

    2007-10-01

    Claudin-1 is a critical structural component of tight junctions that have an important role in adhesive properties, barrier function, and paracellular transport of epithelia and other nonhematopoietic tissues. We found claudin-1 in murine CD207+ Langerhans cells (LC) residing in epidermis. Claudin-1 was not detected in other skin dendritic cells (DC). LC expressed claudin-1 in steady state and inflamed skin. Claudin-1 was demonstrated further in lymph node LC under steady state and inflammatory conditions, including after direct tracking with tetramethylrhodamine-isothiocyanate (TRITC). All subsets of skin draining lymph node DC defined by CD205, CD11b, CD11c, and CD8, including a presumably blood-borne lymph node resident CD8+CD207+ LC population, were claudin-1+. TRITC tracking demonstrated claudin-1 in CD207- skin migrant DC in the lymph node, suggesting upregulation of this molecule during migration or once arrived in the lymph node. Claudin-1 expression in CD207+ cells was confirmed at the protein and mRNA levels. Transforming growth factor-beta, a factor critical for the induction of LC in vitro and in vivo, stimulated the accumulation of claudin-1 mRNA and protein when added to bone marrow cells cultured with GM-CSF and IL-4. Claudin-1 may thus have an important function in adhesion and/or migration of LC.

  1. Expression and Alternative Splicing of Classical and Nonclassical MHCI Genes in the Hippocampus and Neuromuscular Junction

    PubMed Central

    Tetruashvily, Mazell M.; Melson, John W.; Park, Joseph J.; Peng, Xiaoyu; Boulanger, Lisa M.

    2016-01-01

    The major histocompatibility complex class I (MHCI) is a large gene family, with over 30 members in mouse. Some MHCIs are well-known for their critical roles in the immune response. Studies in mice which lack stable cell-surface expression of many MHCI proteins suggest that one or more MHCIs also play unexpected, essential roles in the establishment, function, and modification of neuronal synapses in the central nervous system (CNS). However, there is little information about which genes mediate MHCI’s effects in neurons. In this study, RT-PCR was used to simultaneously assess transcription of many MHCI genes in regions of the central and peripheral nervous system where MHCI has a known or suspected role. In the hippocampus, a part of the CNS where MHCI regulates synapse density, synaptic transmission, and plasticity, we found that more than a dozen MHCI genes are transcribed. Single-cell RT-PCR revealed that individual hippocampal neurons can express more than one MHCI gene, and that the MHCI gene expression profile of CA1 pyramidal neurons differs significantly from that of CA3 pyramidal neurons or granule cells of the dentate gyrus. MHCI gene expression was also assessed at the neuromuscular junction (NMJ), a part of the peripheral nervous system (PNS) where MHCI plays a role in neuronal regeneration, and could potentially influence developmental synapse elimination. Four MHCI genes are expressed at the NMJ at an age when synapse elimination is occurring in three different muscles. Several MHCI mRNA splice variants were detected in hippocampus, but not at the NMJ. Together, these results establish the first profile of MHCI gene expression at the developing NMJ, and demonstrate that MHCI gene expression is under tight spatial and temporal regulation in the nervous system. They also identify more than a dozen MHCIs that could play important roles in synaptic transmission and plasticity in the central and peripheral nervous systems. PMID:26802536

  2. Alterations in junctional proteins, inflammatory mediators and extracellular matrix molecules in eosinophilic esophagitis.

    PubMed

    Abdulnour-Nakhoul, Solange M; Al-Tawil, Youhanna; Gyftopoulos, Alex A; Brown, Karen L; Hansen, Molly; Butcher, Kathy F; Eidelwein, Alexandra P; Noel, Robert A; Rabon, Edd; Posta, Allison; Nakhoul, Nazih L

    2013-08-01

    Eosinophilic esophagitis (EoE), an inflammatory atopic disease of the esophagus, causes massive eosinophil infiltration, basal cell hyperplasia, and sub-epithelial fibrosis. To elucidate cellular and molecular factors involved in esophageal tissue damage and remodeling, we examined pinch biopsies from EoE and normal pediatric patients. An inflammation gene array confirmed that eotaxin-3, its receptor CCR3 and interleukins IL-13 and IL-5 were upregulated. An extracellular matrix (ECM) gene array revealed upregulation of CD44 & CD54, and of ECM proteases (ADAMTS1 & MMP14). A cytokine antibody array showed a marked decrease in IL-1α and IL-1 receptor antagonist and an increase in eotaxin-2 and epidermal growth factor. Western analysis indicated reduced expression of intercellular junction proteins, E-cadherin and claudin-1 and increased expression of occludin and vimentin. We have identified a number of novel genes and proteins whose expression is altered in EoE. These findings provide new insights into the molecular mechanisms of the disease.

  3. Leptospira Protein Expression During Infection

    USDA-ARS?s Scientific Manuscript database

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  4. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    PubMed Central

    2012-01-01

    Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ). We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD)1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs. PMID:22974368

  5. Transcriptional Control of Tight Junction Proteins via a Protein Kinase C Signal Pathway in Human Telomerase Reverse Transcriptase-Transfected Human Pancreatic Duct Epithelial Cells

    PubMed Central

    Yamaguchi, Hiroshi; Kojima, Takashi; Ito, Tatsuya; Kimura, Yasutoshi; Imamura, Masafumi; Son, Seiichi; Koizumi, Jun-ichi; Murata, Masaki; Nagayama, Minoru; Nobuoka, Takayuki; Tanaka, Satoshi; Hirata, Koichi; Sawada, Norimasa

    2010-01-01

    In human pancreatic cancer, integral membrane proteins of tight junction claudins are abnormally regulated, making these proteins promising molecular diagnostic and therapeutic targets. However, the regulation of claudin-based tight junctions remains unknown not only in the pancreatic cancer cells but also in normal human pancreatic duct epithelial (HPDE) cells. To investigate the regulation of tight junction molecules including claudins in normal HPDE cells, we introduced the human telomerase reverse transcriptase (hTERT) gene into HPDE cells in primary culture. The hTERT-transfected HPDE (hTERT-HPDE) cells were positive for the pancreatic duct epithelial markers such as CK7, CK19, and carbonic anhydrase isozyme 2 and expressed epithelial tight junction molecules claudin-1, -4, -7 and, -18, occludin, JAM-A, ZO-1, ZO-2, and tricellulin. By treatment with fetal bovine serum or 12-O-tetradecanoylphorbol 13-acetate (TPA), the tight junction molecules were up-regulated at the transcriptional level via a protein kinase C (PKC) signal pathway. A PKC-α inhibitor, Gö6976, prevented up-regulation of claudin-4 by TPA. Furthermore, a PKC-δ inhibitor, rottlerin, prevented up-regulation of claudin-7, occludin, ZO-1, and ZO-2 by TPA. By GeneChip analysis, up-regulation of the transcription factor ELF3 was observed in both fetal bovine serum- and TPA-treated cells. Treatment with small interfering RNAs of ELF3 prevented up-regulation of claudin-7 by TPA. These data suggest that tight junctions of normal HPDE cells were at least in part regulated via a PKC signal pathway by transcriptional control. PMID:20566751

  6. Splicing regulation and dysregulation of cholinergic genes expressed at the neuromuscular junction.

    PubMed

    Ohno, Kinji; Rahman, Mohammad Alinoor; Nazim, Mohammad; Nasrin, Farhana; Lin, Yingni; Takeda, Jun-Ichi; Masuda, Akio

    2017-08-01

    We humans have evolved by acquiring diversity of alternative RNA metabolisms including alternative means of splicing and transcribing non-coding genes, and not by acquiring new coding genes. Tissue-specific and developmental stage-specific alternative RNA splicing is achieved by tightly regulated spatiotemporal regulation of expressions and activations of RNA-binding proteins that recognize their cognate splicing cis-elements on nascent RNA transcripts. Genes expressed at the neuromuscular junction are also alternatively spliced. In addition, germline mutations provoke aberrant splicing by compromising binding of RNA-binding proteins, and cause congenital myasthenic syndromes (CMS). We present physiological splicing mechanisms of genes for agrin (AGRN), acetylcholinesterase (ACHE), MuSK (MUSK), acetylcholine receptor (AChR) α1 subunit (CHRNA1), and collagen Q (COLQ) in human, and their aberration in diseases. Splicing isoforms of AChET , AChEH , and AChER are generated by hnRNP H/F. Skipping of MUSK exon 10 makes a Wnt-insensitive MuSK isoform, which is unique to human. Skipping of exon 10 is achieved by coordinated binding of hnRNP C, YB-1, and hnRNP L to exon 10. Exon P3A of CHRNA1 is alternatively included to generate a non-functional AChR α1 subunit in human. Molecular dissection of splicing mutations in patients with CMS reveals that exon P3A is alternatively skipped by hnRNP H, polypyrimidine tract-binding protein 1, and hnRNP L. Similarly, analysis of an exonic mutation in COLQ exon 16 in a CMS patient discloses that constitutive splicing of exon 16 requires binding of serine arginine-rich splicing factor 1. Intronic and exonic splicing mutations in CMS enable us to dissect molecular mechanisms underlying alternative and constitutive splicing of genes expressed at the neuromuscular junction. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  7. Tight junction protein claudin 4 in gastric carcinoma and its relation to lymphangiogenic activity.

    PubMed

    Shareef, Mohamed Moustafa; Radi, Dina Mohammed Adel; Eid, Asmaa Mustafa Mohammed

    2015-01-01

    Gastric cancer is the second most common cause of cancer-related death worldwide. Claudins are a family of tight junction proteins that are biologically relevant in many cancer progression steps. This study aimed to investigate the expression of the intestinal claudin (claudin 4) in gastric carcinoma and to evaluate its relation to the different clinicopathologic prognostic parameters, especially lymphangiogenesis (production of new lymphatic vessels, measured by lymphovascular density (LVD)) and lymphovascular invasion (LVI). Fifty-five gastric carcinoma specimens were immunohistochemically stained for claudin 4 and D2-40 (for detection of lymphatic vessel endothelium). High expression of claudin 4 was detected in 26 of 55 (47.3%) cases. Low expression of claudin 4 was related to poorly differentiated type (p=0.001), non-intestinal (diffuse) type (p=0.001), deeper tumour invasion (p<0.001), lymph node metastasis (p=0.001), and higher stage (p=0.001). In addition, higher LVD was related to poorly differentiated types (p=0.001), non-intestinal type (p=0.001), lymph node metastasis (p=0.015), and higher tumour, node, metastasis (TNM) stage (p=0.001). LVI was related to lymph node metastasis (p=0.025), higher TNM stage (p=0.001), and LVD (p=0.001). Claudin 4 significantly correlated with both LVD (p=0.009) and LVI (p=0.009). High expression of claudin 4 was associated with the more differentiated intestinal-type gastric carcinoma and lost in poorly differentiated diffuse type. So, claudin 4 may be used as one of the differentiating markers between the two major types of gastric carcinoma (intestinal vs. diffuse). LVD and LVI were related to higher incidence of lymph node metastasis and therefore could be used as predictive markers for lymph node metastasis in limited specimens during early gastric carcinoma to determine the need for more invasive surgery. Low expression of claudin 4 was related to lymphangiogenesis. This may shed light on the relation of tight

  8. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins.

    PubMed

    Strutt, Helen; Searle, Elizabeth; Thomas-Macarthur, Victoria; Brookfield, Rosalind; Strutt, David

    2013-04-01

    The asymmetric localisation of core planar polarity proteins at apicolateral junctions is required to specify cell polarity in the plane of epithelia. This asymmetric distribution of the core proteins is proposed to require amplification of an initial asymmetry by feedback loops. In addition, generation of asymmetry appears to require the regulation of core protein levels, but the importance of such regulation and the underlying mechanisms is unknown. Here we show that ubiquitylation acts through more than one mechanism to control core protein levels in Drosophila, and that without this regulation cellular asymmetry is compromised. Levels of Dishevelled at junctions are regulated by a Cullin-3-Diablo/Kelch ubiquitin ligase complex, the activity of which is most likely controlled by neddylation. Furthermore, activity of the deubiquitylating enzyme Fat facets is required to maintain Flamingo levels at junctions. Notably, ubiquitylation does not alter the total cellular levels of Dishevelled or Flamingo, but only that of the junctional population. When junctional core protein levels are either increased or decreased by disruption of the ubiquitylation machinery, their asymmetric localisation is reduced and this leads to disruption of planar polarity at the tissue level. Loss of asymmetry by altered core protein levels can be explained by reference to feedback models for amplification of asymmetry.

  9. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins

    PubMed Central

    Strutt, Helen; Searle, Elizabeth; Thomas-MacArthur, Victoria; Brookfield, Rosalind; Strutt, David

    2013-01-01

    The asymmetric localisation of core planar polarity proteins at apicolateral junctions is required to specify cell polarity in the plane of epithelia. This asymmetric distribution of the core proteins is proposed to require amplification of an initial asymmetry by feedback loops. In addition, generation of asymmetry appears to require the regulation of core protein levels, but the importance of such regulation and the underlying mechanisms is unknown. Here we show that ubiquitylation acts through more than one mechanism to control core protein levels in Drosophila, and that without this regulation cellular asymmetry is compromised. Levels of Dishevelled at junctions are regulated by a Cullin-3-Diablo/Kelch ubiquitin ligase complex, the activity of which is most likely controlled by neddylation. Furthermore, activity of the deubiquitylating enzyme Fat facets is required to maintain Flamingo levels at junctions. Notably, ubiquitylation does not alter the total cellular levels of Dishevelled or Flamingo, but only that of the junctional population. When junctional core protein levels are either increased or decreased by disruption of the ubiquitylation machinery, their asymmetric localisation is reduced and this leads to disruption of planar polarity at the tissue level. Loss of asymmetry by altered core protein levels can be explained by reference to feedback models for amplification of asymmetry. PMID:23487316

  10. The expression of gingival epithelial junctions in response to subgingival biofilms.

    PubMed

    Belibasakis, Georgios N; Kast, Jeannette I; Thurnheer, Thomas; Akdis, Cezmi A; Bostanci, Nagihan

    2015-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting tissues. It is caused by the formation of subgingival biofilms on the surface of the tooth. Characteristic bacteria associated with subgingival biofilms are the Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, collectively known as the "red complex" species. Inter-epithelial junctions ensure the barrier integrity of the gingival epithelium. This may however be disrupted by the biofilm challenge. The aim of this in vitro study was to investigate the effect of subgingival biofilms on the expression of inter-epithelial junctions by gingival epithelia, and evaluate the relative role of the red complex. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its variant without the red complex, for 3 h and 24 h. A low-density array microfluidic card platform was then used for analyzing the expression of 62 genes encoding for tight junctions, gap junctions, adherens junctions, and desmosomes. Although there was a limited effect of the biofilms on the expression of tight, adherens and gap junctions, the expression of a number of desmosomal components was affected. In particular, Desmoglein-1 displayed a limited and transient up-regulation in response to the biofilm. In contrast, Desmocollin-2, Desmoplakin and Plakoglobin were down-regulated equally by both biofilm variants, after 24 h. In conclusion, this subgingival biofilm model may down-regulate selected desmosomal junctions in the gingival epithelium, irrespective of the presence of the "red complex." In turn, this could compromise the structural integrity of the gingival tissue, favoring bacterial invasion and chronic infection.

  11. The expression of gingival epithelial junctions in response to subgingival biofilms

    PubMed Central

    Belibasakis, Georgios N; Kast, Jeannette I; Thurnheer, Thomas; Akdis, Cezmi A; Bostanci, Nagihan

    2015-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting tissues. It is caused by the formation of subgingival biofilms on the surface of the tooth. Characteristic bacteria associated with subgingival biofilms are the Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, collectively known as the “red complex” species. Inter-epithelial junctions ensure the barrier integrity of the gingival epithelium. This may however be disrupted by the biofilm challenge. The aim of this in vitro study was to investigate the effect of subgingival biofilms on the expression of inter-epithelial junctions by gingival epithelia, and evaluate the relative role of the red complex. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its variant without the red complex, for 3 h and 24 h. A low-density array microfluidic card platform was then used for analyzing the expression of 62 genes encoding for tight junctions, gap junctions, adherens junctions, and desmosomes. Although there was a limited effect of the biofilms on the expression of tight, adherens and gap junctions, the expression of a number of desmosomal components was affected. In particular, Desmoglein-1 displayed a limited and transient up-regulation in response to the biofilm. In contrast, Desmocollin-2, Desmoplakin and Plakoglobin were down-regulated equally by both biofilm variants, after 24 h. In conclusion, this subgingival biofilm model may down-regulate selected desmosomal junctions in the gingival epithelium, irrespective of the presence of the “red complex.” In turn, this could compromise the structural integrity of the gingival tissue, favoring bacterial invasion and chronic infection. PMID:26305580

  12. Altered distribution of tight junction proteins after intestinal ischaemia/reperfusion injury in rats

    PubMed Central

    Li, Qiurong; Zhang, Qiang; Wang, Chenyang; Liu, Xiaoxiang; Qu, Linlin; Gu, Lili; Li, Ning; Li, Jieshou

    2009-01-01

    Tight junction (TJ) disruptions have been demonstrated both in vitro and more recently in vivo in infection. However, the molecular basis for changes of TJ during ischaemia-reperfusion (I/R) injury is poorly understood. In the present study, intestinal damage was induced by I/R in an animal model. As assessed by TUNEL and propidium iodide uptake, we showed that I/R injury induced apoptosis as well as necrosis in rat colon, and the frequency of apoptotic and necrotic cells reached the maximum at 5 hrs of reperfusion. Immunofluorescence microscopy revealed that claudins 1, 3 and 5 are strongly expressed in the surface epithelial cells of the colon; however, labelling of all three proteins was present diffusely within cells and no longer focused at the lateral cell boundaries after I/R. Using Western blot analysis, we found that distribution of TJ proteins in membrane microdomains of TJ was markedly affected in I/R injury rats. Occludin, ZO-1, claudin-1 and claudin-3 were completely displaced from TX-100 insoluble fractions to TX-100 soluble fractions, and claudin-5 was partly displaced. The distribution of lipid raft marker protein caveolin-1 was also changed after I/R. I/R injury results in the disruption of TJs, which characterized by relocalization of the claudins 1, 3 and 5 and an increase in intestinal permeability using molecular tracer measurement. I/R injury altered distribution of TJ proteins in vivo that was associated with functional TJ deficiencies. PMID:19929946

  13. Phosphorylation of the Tight Junction Protein Occludin Regulates Epithelial Monolayer Proliferation and Maturation

    NASA Astrophysics Data System (ADS)

    Bolinger, Mark Thomas

    Barriers against the external environment are crucial for sustaining life in multicellular organisms, and form following convergent growth and development of cell-cell junctions. At least four types of epithelial cell-cell junctions exist, the most apical of which is known as the tight junction (TJ). A specific transmembrane protein known as occludin is highly phosphorylated on its C-terminal coiled-coil, and certain sites have been found to regulate specific aspects of TJ function, including the response to certain cytokines. Previously, our lab discovered a novel phosphosite at serine 471 that is located at a contact site with an important central organizer of the TJ, zonula occludens-1. Phosphoinhibitory, serine to alanine (S471A) occludin point mutant MDCK cell lines demonstrate that S471A monolayers are poorly organized compared to WT occludin (WT Occ) or phosphomimetic, serine to aspartic acid (S471D) lines. Additionally, S471A monolayers are composed of fewer, larger cells than controls, and exhibit proliferative arrest almost immediately following confluency, in contrast to control lines, which go through at least one additional round of proliferation. This phenotype can be recapitulated with a cell cycle inhibitor, demonstrating that confluent proliferation or cell packing is necessary for barrier maturation. G-protein coupled receptor kinase (GRK) was confirmed to be an S471 kinase by inhibitor experiments from a bioinformatically compiled candidate kinase list, and GRK inhibitors were able to recapitulate the phenotype of S471A lines. Finally, S471A expression perturbed purified coiled-coil stability as determined by NMR. Modeling of inter-coil interactions identified several possible hydrogen bonds that differ between the phosphorylated and non-phosphorylated forms. Expression of S471N (asparagine) transgenic occludin in vitro demonstrated highly organized border organization despite the lack of a negative charge at the S471 position. This result

  14. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    PubMed Central

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A.; Dilly, Suzanne J.; James, Sean; Dimitri, Wade; Ladwa, Sweta R.; Taylor, Paul C.; Singer, Donald R. J.

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  15. Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization.

    PubMed

    Chkourko, Halina S; Guerrero-Serna, Guadalupe; Lin, Xianming; Darwish, Nedal; Pohlmann, Joshua R; Cook, Keith E; Martens, Jeffrey R; Rothenberg, Eli; Musa, Hassan; Delmar, Mario

    2012-07-01

    Desmosomes and adherens junctions provide mechanical continuity between cardiac cells, whereas gap junctions allow for cell-cell electrical/metabolic coupling. These structures reside at the cardiac intercalated disc (ID). Also at the ID is the voltage-gated sodium channel (VGSC) complex. Functional interactions between desmosomes, gap junctions, and VGSC have been demonstrated. Separate studies show, under various conditions, reduced presence of gap junctions at the ID and redistribution of connexin43 (Cx43) to plaques oriented parallel to fiber direction (gap junction "lateralization"). To determine the mechanisms of Cx43 lateralization, and the fate of desmosomal and sodium channel molecules in the setting of Cx43 remodeling. Adult sheep were subjected to right ventricular pressure overload (pulmonary hypertension). Tissue was analyzed by quantitative confocal microscopy and by transmission electron microscopy. Ionic currents were measured using conventional patch clamp. Quantitative confocal microscopy demonstrated lateralization of immunoreactive junctional molecules. Desmosomes and gap junctions in lateral membranes were demonstrable by electron microscopy. Cx43/desmosomal remodeling was accompanied by lateralization of 2 microtubule-associated proteins relevant for Cx43 trafficking: EB1 and kinesin protein Kif5b. In contrast, molecules of the VGSC failed to reorganize in plaques discernable by confocal microscopy. Patch-clamp studies demonstrated change in amplitude and kinetics of sodium current and a small reduction in electrical coupling between cells. Cx43 lateralization is part of a complex remodeling that includes mechanical and gap junctions but may exclude components of the VGSC. We speculate that lateralization results from redirectionality of microtubule-mediated forward trafficking. Remodeling of junctional complexes may preserve electrical synchrony under conditions that disrupt ID integrity. Copyright © 2012 Heart Rhythm Society. Published by

  16. Hepatic immunohistochemical localization of the tight junction protein ZO-1 in rat models of cholestasis.

    PubMed Central

    Anderson, J. M.; Glade, J. L.; Stevenson, B. R.; Boyer, J. L.; Mooseker, M. S.

    1989-01-01

    Structural alterations in hepatocyte tight junctions accompanying cholestasis were investigated using immunolocalization of ZO-1, the first known protein component of the tight junction. Disruption in the paracellular barrier function of the tight junction has been proposed to allow reflux of bile into the blood. Cholestasis was induced in 210 to 235 g male Sprague-Dawley rats either by five consecutive daily subcutaneous injections of 17-alpha-ethinyl estradiol (0.5 mg/kg/d in propylene glycol) or ligation of the common bile duct for 72 hours. The structural organization of the tight junction was assessed in each model by indirect immunofluorescent and immunoperoxidase staining for ZO-1 on frozen sections of liver and compared with controls. In control, sham-operated, and estradiol-injected animals, ZO-1 localizes in a uniform continuous manner along the margins of the canaliculi. In contrast, bile duct ligation results in the appearance of numerous discontinuities in ZO-1 staining accompanied by dilation or collapse of the lumenal space. Tissue content of the ZO-1 protein, as determined by quantitative immunoblotting, was unaffected in either cholestatic model compared with controls. These findings indicate that the molecular organization of the tight junction can be assessed from immunostaining patterns of ZO-1 in frozen sections of cholestatic livers. Under these experimental conditions, the organization of the tight junction at the level of the ZO-1 protein is altered by bile duct obstruction but not by ethinyl estradiol. Images Figure 1 Figure 2 PMID:2719075

  17. ZO-2, a tight junction scaffold protein involved in the regulation of cell proliferation and apoptosis.

    PubMed

    Gonzalez-Mariscal, Lorenza; Bautista, Pablo; Lechuga, Susana; Quiros, Miguel

    2012-06-01

    ZO-2 is a membrane-associated guanylate kinase homologue (MAGUK) tight protein associated with the cytoplasmic surface of tight junctions. Here, we describe how ZO-2 is a multidomain molecule that binds to a variety of cell signaling proteins, to the actin cytoskeleton, and to gap, tight, and adherens junction proteins. In sparse cultures, ZO-2 is present at the nucleus and associates with molecules active in gene transcription and pre-mRNA processing. ZO-2 inhibits the Wnt signaling pathway, reduces cell proliferation, and promotes apoptosis; its absence, mutation, or overexpression is present in various human diseases, including deafness and cancer. © 2012 New York Academy of Sciences.

  18. Inactivation of hepatocyte nuclear factor-4α mediates alcohol-induced downregulation of intestinal tight junction proteins

    PubMed Central

    Zhong, Wei; Zhao, Yantao; McClain, Craig J.; Kang, Y. James

    2010-01-01

    Chronic alcohol exposure has been shown to increase the gut permeability in the distal intestine, in part, through induction of zinc deficiency. The present study evaluated the molecular mechanisms whereby zinc deficiency mediates alcohol-induced intestinal barrier dysfunction. Examination of zinc finger transcription factors in the gastrointestinal tract of mice revealed a prominent distribution of hepatocyte nuclear factor-4α (HNF-4α). HNF-4α exclusively localizes in the epithelial nuclei and exhibited an increased abundance in mRNA and protein levels in the distal intestine. Chronic alcohol exposure to mice repressed the HNF-4α gene expression in the ileum and reduced the protein level and DNA binding activity of HNF-4α in all of the intestinal segments with the most remarkable changes in the ileum. Chronic alcohol exposure also decreased the mRNA levels of tight junction proteins, particularly in the ileum. Caco-2 cell culture studies were conducted to determine the role of HNF-4α in regulation of the epithelial tight junction and barrier function. Knockdown of HNF-4α in Caco-2 cells decreased the mRNA and protein levels of tight junction proteins in association with disruption of the epithelial barrier. Alcohol treatment inactivated HNF-4α, which was prevented by N-acetyl-cysteine or zinc. The link between zinc and HNF-4α function was confirmed by zinc deprivation, which inhibited HNF-4α DNA binding activity. These results indicate that inactivation of HNF-4α due to oxidative stress and zinc deficiency is likely a novel mechanism contributing to the deleterious effects of alcohol on the tight junctions and the intestinal barrier function. PMID:20576917

  19. LRP6 acts as a scaffold protein in cardiac gap junction assembly

    PubMed Central

    Li, Jun; Li, Changming; Liang, Dandan; Lv, Fei; Yuan, Tianyou; The, Erlinda; Ma, Xiue; Wu, Yahan; Zhen, Lixiao; Xie, Duanyang; Wang, Shiyi; Liu, Yuan; Huang, Jian; Shi, Jingyi; Liu, Yi; Shi, Dan; Xu, Liang; Lin, Li; Peng, Luying; Cui, Jianmin; Zhu, Weidong; Chen, Yi-Han

    2016-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor in the canonical Wnt/β-catenin signalling. Here, we report the scaffold function of LRP6 in gap junction formation of cardiomyocytes. Cardiac LRP6 is spatially restricted to intercalated discs and binds to gap junction protein connexin 43 (Cx43). A deficiency in LRP6 disrupts Cx43 gap junction formation and thereby impairs the cell-to-cell coupling, which is independent of Wnt/β-catenin signalling. The defect in Cx43 gap junction resulting from LRP6 reduction is attributable to the defective traffic of de novo Cx43 proteins from the endoplasmic reticulum to the Golgi apparatus, leading to the lysosomal degradation of Cx43 proteins. Accordingly, the hearts of conditional cardiac-specific Lrp6-knockout mice consistently exhibit overt reduction of Cx43 gap junction plaques without any abnormality in Wnt signalling and are predisposed to lethal arrhythmias. These findings uncover a distinct role of LRP6 as a platform for intracellular protein trafficking. PMID:27250245

  20. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells

    PubMed Central

    2009-01-01

    Background It is increasingly recognized that Lactobacillus plantarum (L. plantarum) has the ability to protect against Enteropathogenic Escherichia coli (EPEC)-induced damage of the epithelial monolayer barrier function by preventing changes in host cell morphology, attaching/effacing (A/E) lesion formation, monolayer resistance, and macromolecular permeability. However, the cellular mechanism involved in this protective effect still remained to be clarified. Methods This study was to investigate the effect of L. plantarum on the changes of Caco-2 cells responding to Enteroinvasive Escherichia coli (EIEC), the permeability of cell monolayer and the transmissivity of dextran, and the distribution and expression of the tight junction (TJ) proteins, such as Claudin-1, Occludin, JAM-1 and ZO-1 were examined when infected with EIEC or adhesived of L. plantarum after infection by confocal laser scanning microscopy (CLSM), immunohistochemistry and Western blotting, the cytoskeleton protein F-actin were observed with FITC-phalloidin. Results This study demonstrated that the transepithelial electrical resistance (TER) step down and dextran integrated intensity (DII) step up with time after infected with EIEC, but after treating with L. plantarum, the changes of TER and DII were improved as compared with EIEC group. L. plantarum prevented the damage of expression and rearrangement of Claudin-1, Occludin, JAM-1 and ZO-1 proteins induced by EIEC, and could ameliorate the injury of cytoskeleton protein F-actin infected with EIEC. Conclusion L. plantarum exerted a protective effect against the damage to integrity of Caco-2 monolayer cells and the structure and distribution of TJ proteins by EIEC infection. PMID:19331693

  1. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    SciTech Connect

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret; Kusch, Angelika; Korenbaum, Elena; Haller, Hermann; Dumler, Inna

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  2. Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients.

    PubMed

    Riz, Irene; Hawley, Robert G

    2017-07-01

    Tight junction protein 1 (TJP1) has recently been proposed as a biomarker to identify multiple myeloma (MM) patients most likely to respond to bortezomib- and carfilzomib-based proteasome inhibitor regimens. Herein we report increased expression of TJP1 during the adaptive response mediating carfilzomib resistance in the LP-1/Cfz MM cell line. Moreover, increased TJP1 expression delineated a subset of relapsed/refractory MM patients on bortezomib-based therapy sharing an LP-1/Cfz-like phenotype characterized by activation of interacting transcriptional effectors of the Hippo signaling cascade (TAZ and TEAD1) and an adult tissue stem cell signature. siRNA-mediated knockdown of TJP1 or TAZ/TEAD1 partially sensitized LP-1/Cfz cells to carfilzomib. Connectivity Map analysis identified translation inhibitors as candidate therapeutic agents targeting this molecular phenotype. We confirmed this prediction by showing that homoharringtonine (omacetaxine mepesuccinate) - the first translation inhibitor to be approved by the U.S. Food and Drug Administration - displayed potent cytotoxic activity on LP-1/Cfz cells. Homoharringtonine treatment reduced the levels of TAZ and TEAD1 as well as the MM-protective proteins Nrf2 and MCL1. Thus, our data suggest the importance of further studies evaluating translation inhibitors in relapsed/refractory MM. On the other hand, use of TJP1 as a MM biomarker for proteasome inhibitor sensitivity requires careful consideration.

  3. Protein-RNA Dynamics in the Central Junction Control 30S Ribosome Assembly.

    PubMed

    Baker, Kris Ann; Lamichhane, Rajan; Lamichhane, Tek; Rueda, David; Cunningham, Philip R

    2016-09-11

    Interactions between ribosomal proteins (rproteins) and ribosomal RNA (rRNA) facilitate the formation of functional ribosomes. S15 is a central domain primary binding protein that has been shown to trigger a cascade of conformational changes in 16S rRNA, forming the functional structure of the central domain. Previous biochemical and structural studies in vitro have revealed that S15 binds a three-way junction of helices 20, 21, and 22, including nucleotides 652-654 and 752-754. All junction nucleotides except 653 are highly conserved among the Bacteria. To identify functionally important motifs within the junction, we subjected nucleotides 652-654 and 752-754 to saturation mutagenesis and selected and analyzed functional mutants. Only 64 mutants with greater than 10% ribosome function in vivo were isolated. S15 overexpression complemented mutations in the junction loop in each of the partially active mutants, although mutations that produced inactive ribosomes were not complemented by overexpression of S15. Single-molecule Förster or fluorescence resonance energy transfer (smFRET) was used to study the Mg(2+)- and S15-induced conformational dynamics of selected junction mutants. Comparison of the structural dynamics of these mutants with the wild type in the presence and absence of S15 revealed specific sequence and structural motifs in the central junction that are important in ribosome function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions

    PubMed Central

    Baranwal, Somesh

    2015-01-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565

  5. Prognostic Importance and Therapeutic Implications of PAK1, a Drugable Protein Kinase, in Gastroesophageal Junction Adenocarcinoma

    PubMed Central

    Xie, Liangxi; Dong, Hongmei; Chen, Yuping; Liu, Qing; Wu, Xiao; Zhou, David; Tan, Dongfeng; Zhang, Hao

    2013-01-01

    Gastroesophageal junction (GEJ) adenocarcinoma is a lethal cancer with rising incidence, yet the molecular biomarkers that have strong prognostic impact and also hold great therapeutic promise remain elusive. We used a data mining approach and identified the p21 protein-activated kinase 1 (PAK1), an oncogene and drugable protein kinase, to be among the most promising targets for GEJ adenocarcinoma. Immunoblot analysis and data mining demonstrated that PAK1 protein and mRNA were upregulated in cancer tissues compared to the noncancerous tissues. Immunohistochemistry revealed PAK1 overexpression in 72.6% of primary GEJ adenocarcinomas (n = 113). A step-wise increase in PAK1 levels was noted from paired normal epithelium, to atypical hyperplasia and adenocarcinoma. PAK1 overexpression in tumor was associated with lymph node (LN) metastasis (P<0.001), advanced tumor stage (P<0.001), large tumor size (P = 0.006), residual surgical margin (P = 0.033), and unfavorable overall survival (P<0.001). Multivariate analysis showed PAK1 overexpression is an independent high-risk prognostic predictor (P<0.001). Collectively, PAK1 is overexpressed during tumorigenic progression and its upregulation correlates with malignant properties mainly relevant to invasion and metastasis. PAK1 expression could serve as a prognostic predictor that holds therapeutic promise for GEJ adenocarcinoma. PMID:24236193

  6. A functional interaction between the MAGUK protein hDlg and the gap junction protein connexin 43 in cervical tumour cells.

    PubMed

    Macdonald, Alasdair I; Sun, Peng; Hernandez-Lopez, Hegel; Aasen, Trond; Hodgins, Malcolm B; Edward, Michael; Roberts, Sally; Massimi, Paola; Thomas, Miranda; Banks, Lawrence; Graham, Sheila V

    2012-08-15

    Gap junctions, composed of Cxs (connexins), allow direct intercellular communication. Gap junctions are often lost during the development of malignancy, although the processes behind this are not fully understood. Cx43 is a widely expressed Cx with a long cytoplasmic C-terminal tail that contains several potential protein-interaction domains. Previously, in a model of cervical carcinogenesis, we showed that the loss of gap junctional communication correlated with relocalization of Cx43 to the cytoplasm late in tumorigenesis. In the present study, we demonstrate a similar pattern of altered expression for the hDlg (human discs large) MAGUK (membrane-associated guanylate kinase) family tumour suppressor protein in cervical tumour cells, with partial co-localization of Cx43 and hDlg in an endosomal/lysosomal compartment. Relocalization of these proteins is not due to a general disruption of cell membrane integrity or Cx targeting. Cx43 (via its C-terminus) and hDlg interact directly in vitro and can form a complex in cells. This novel interaction requires the N- and C-termini of hDlg. hDlg is not required for Cx43 internalization in W12GPXY cells. Instead, hDlg appears to have a role in maintaining a cytoplasmic pool of Cx43. These results demonstrate that hDlg is a physiologically relevant regulator of Cx43 in transformed epithelial cells.

  7. Tight Junction Proteins Claudin-3 and Claudin-4 Control Tumor Growth and Metastases12

    PubMed Central

    Shang, Xiying; Lin, Xinjian; Alvarez, Edwin; Manorek, Gerald; Howell, Stephen B

    2012-01-01

    The extent of tight junction (TJ) formation is one of many factors that regulate motility, invasion, and metastasis. Claudins are required for the formation and maintenance of TJs. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are highly expressed in the majority of ovarian cancers. We report here that CLDN3 and CLDN4 each serve to constrain the growth of human 2008 cancer xenografts and limit metastatic potential. Knockdown of CLDN3 increased in vivo growth rate by 2.3-fold and knockdown of CLDN4 by 3.7-fold in the absence of significant change in in vitro growth rate. Both types of tumors exhibited increase in birth rate as measured by Ki67 staining and decrease in death rate as reflected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Knockdown of either claudin did not alter expression of other TJ protein but did reduce TJ formation as measured by transepithelial resistance and paracellular flux of dextran, enhance migration and invasion in in vitro assays, and increase lung colonization following intravenous injection. Knockdown of CLDN3 and CLDN4 increased total lung metastatic burden by 1.7-fold and 2.4-fold, respectively. Loss of either CLDN3 or CLDN4 resulted in down-regulation of E-cadherin mRNA and protein, increased inhibitory phosphorylation of glycogen synthase kinase-3β (GSK-3β), and activation of β-catenin pathway signaling as evidenced by increases in nuclear β-catenin, the dephosphorylated form of the protein, and transcriptional activity of β-catenin/T-cell factor (TCF). We conclude that both CLDN3 and CLDN4 mediate interactions with other cells in vivo that restrain growth and metastatic potential by sustaining expression of E-cadherin and limiting β-catenin signaling. PMID:23097631

  8. Recombinant protein expression in Nicotiana.

    PubMed

    Matoba, Nobuyuki; Davis, Keith R; Palmer, Kenneth E

    2011-01-01

    Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

  9. Septate Junction Proteins Play Essential Roles in Morphogenesis Throughout Embryonic Development in Drosophila

    PubMed Central

    Hall, Sonia; Ward, Robert E.

    2016-01-01

    The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004

  10. Morphological adaptation and protein modulation of myotendinous junction following moderate aerobic training.

    PubMed

    Curzi, Davide; Baldassarri, Valentina; De Matteis, Rita; Salamanna, Francesca; Bolotta, Alessandra; Frizziero, Antonio; Fini, Milena; Marini, Marina; Falcieri, Elisabetta

    2015-04-01

    Myotendinous junction is the muscle-tendon interface through which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training. For this reason, talin, vinculin and type IV collagen amount and spatial distribution were investigated by immunohistochemistry and confocal microscopy. The images were then digitally analyzed by evaluating fluorescence intensity. Morphometric analysis revealed a significant increased thickening of muscle basal lamina in the trained group (53.1 ± 0.4 nm) with respect to the control group (43.9 ± 0.3 nm), and morphological observation showed the presence of an electron-dense area in the exercised muscles, close to the myotendinous junction. Protein concentrations appeared significantly increased in the trained group (talin +22.2%; vinculin +22.8% and type IV collagen +11.8%) with respect to the control group. Therefore, our findings suggest that moderate aerobic training induces/causes morphological changes at the myotendinous junction, correlated to the synthesis of structural proteins of the muscular basal lamina and of the cytoskeleton.

  11. Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70.

    PubMed Central

    White, T W; Bruzzone, R; Goodenough, D A; Paul, D L

    1992-01-01

    The crystalline lens is an attractive system to study the biology of intercellular communication; however, the identity of the structural components of gap junctions in the lens has been controversial. We have cloned a novel member of the connexin family of gap junction proteins, Cx50, and have shown that it is likely to correspond to the previously described lens fiber protein MP70. The N-terminal amino acid sequence of MP70 closely matches the sequence predicted by the clone. Cx50 mRNA is detected only in the lens, among the 12 organs tested, and this distribution is indistinguishable from that of MP70 protein. A monoclonal antibody directed against MP70 and an anti-Cx50 antibody produced against a synthetic peptide identify the same proteins on western blots and produce identical patterns of immunofluorescence on frozen sections of rodent lens. We also show that expression of Cx50 in paired Xenopus oocytes induces high levels of voltage-dependent conductance. This indicates that Cx50 is a functional member of the connexin family with unique physiological properties. With the cloning of Cx50, all known participants in gap junction formation between various cell types in the lens are available for study and reconstitution in experimental systems. Images PMID:1325220

  12. Short communication: Glucagon-like peptide-2 and coccidiosis alter tight junction gene expression in the gastrointestinal tract of dairy calves.

    PubMed

    Walker, M P; Evock-Clover, C M; Elsasser, T H; Connor, E E

    2015-05-01

    Tight junction (TJ) proteins are integral factors involved in gut barrier function, and therapy with glucagon-like peptide-2 (GLP-2) enhances gut integrity. Our aim was to assess effects of GLP-2 treatment on mRNA expression of 8 TJ complex proteins in the intestine of dairy calves not infected or infected with Eimeria bovis at 11±3d of age. Mucosal epithelium from jejunum, ileum, and cecum was collected at slaughter from Holstein bull calves assigned to 4 groups: noninfected, buffer-treated (n=5); noninfected, GLP-2 treated (n=4); E. bovis-infected, buffer-treated (n=5); and E. bovis-infected, GLP-2-treated (n=4). Infected calves were orally dosed with 100,000 to 200,000 sporulated E. bovis oocysts on d 0; GLP-2-treated calves received 50 µg of GLP-2/kg of body weight subcutaneously twice daily for 10d beginning on d 18; and buffer-treated calves received an equal injection volume of 0.01 M Na bicarbonate buffer. All calves were killed on d 28. The mRNA expression of coxsackie and adenovirus receptor (CXADR), claudins 1, 2, and 4 (CLDN1, CLDN2, and CLDN4), F11 receptor (F11R), junction adhesion molecule 2 (JAM2), occludin (OCLN), and tight junction protein ZO-1 (TJP1) was determined by real-time quantitative PCR. In jejunum and ileum, an interaction of E. bovis infection and GLP-2 treatment on gene expression was noted. In jejunum of noninfected calves, GLP-2 increased CXADR, CLDN2, OCLN, and TJP1 mRNA expression but had no effect on mRNA expression in infected calves. Treatment with GLP-2 also increased tight junction protein ZO-1 protein expression in jejunum of noninfected calves as determined by immunohistochemistry. In ileum, E. bovis decreased expression of JAM2, OCLN, and TJP1 in buffer-treated calves, and GLP-2 increased TJP1 expression in infected calves. In cecum, E. bovis infection reduced expression of CXADR, CLDN4, F11R, and OCLN, and GLP-2 therapy increased expression of CLDN4, F11R, OCLN, and TJP1. Results are consistent with studies in

  13. Protein Kinase A Mediates Regulation of Gap Junctions Containing Connexin35 Through a Complex Pathway

    PubMed Central

    Ouyang, Xiaosen; Winbow, Virginia M.; Patel, Leena S.; Burr, Gary S.; Mitchell, Cheryl K.; O’Brien, John

    2008-01-01

    Connexin 35 (Cx35) is a major component of electrical synapses in the central nervous system. Many gap junctions containing Cx35 are regulated by dopamine receptor pathways that involve protein kinase A (PKA). To study the mechanism of PKA regulation, we analyzed direct phosphorylation of Cx35 by PKA in vitro, and studied the regulation of Neurobiotin tracer coupling in HeLa cells expressing Cx35 or Cx35 mutants that lack phosphorylation sites. In Cx35-transfected cells, application of the PKA activator Sp-8-cpt-cAMPS caused a significant decline in coupling, while a PKA inhibitor, Rp-8-cpt-cAMPS, significantly increased tracer coupling. In vitro phosphorylation and mutagenic analysis showed that PKA phosphorylates Cx35 directly at two major sites, Ser110 in the intracellular loop and Ser276 in the carboxyl terminus. In addition, a minor phosphorylation site in the C-terminus was identified by truncation of the last 7 amino acids at Ser298. The mutations Ser110Ala or Ser276Ala significantly reduced regulation of coupling by the PKA activator, while a combination of the two eliminated regulation. Truncation at Ser298 reversed the regulation such that the PKA activator significantly increased and the PKA inhibitor significantly decreased coupling. The activation was eliminated in the S110A,S276A,S298ter triple mutant. We conclude that PKA regulates Cx35 coupling in a complex manner that requires both major phosphorylation sites. Furthermore, the tip of the C-terminus acts as a “switch” that determines whether phosphorylation will inhibit or enhance coupling. Reliance on the combined states of three sites provides fine control over the degree of coupling through Cx35 gap junctions. PMID:15857663

  14. Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins.

    PubMed

    Yoon, Ki-Jun; Song, Guang; Qian, Xuyu; Pan, Jianbo; Xu, Dan; Rho, Hee-Sool; Kim, Nam-Shik; Habela, Christa; Zheng, Lily; Jacob, Fadi; Zhang, Feiran; Lee, Emily M; Huang, Wei-Kai; Ringeling, Francisca Rojas; Vissers, Caroline; Li, Cui; Yuan, Ling; Kang, Koeun; Kim, Sunghan; Yeo, Junghoon; Cheng, Yichen; Liu, Sheng; Wen, Zhexing; Qin, Cheng-Feng; Wu, Qingfeng; Christian, Kimberly M; Tang, Hengli; Jin, Peng; Xu, Zhiheng; Qian, Jiang; Zhu, Heng; Song, Hongjun; Ming, Guo-Li

    2017-09-07

    Zika virus (ZIKV) directly infects neural progenitors and impairs their proliferation. How ZIKV interacts with the host molecular machinery to impact neurogenesis in vivo is not well understood. Here, by systematically introducing individual proteins encoded by ZIKV into the embryonic mouse cortex, we show that expression of ZIKV-NS2A, but not Dengue virus (DENV)-NS2A, leads to reduced proliferation and premature differentiation of radial glial cells and aberrant positioning of newborn neurons. Mechanistically, in vitro mapping of protein-interactomes and biochemical analysis suggest interactions between ZIKA-NS2A and multiple adherens junction complex (AJ) components. Functionally, ZIKV-NS2A, but not DENV-NS2A, destabilizes the AJ complex, resulting in impaired AJ formation and aberrant radial glial fiber scaffolding in the embryonic mouse cortex. Similarly, ZIKA-NS2A, but not DENV-NS2A, reduces radial glial cell proliferation and causes AJ deficits in human forebrain organoids. Together, our results reveal pathogenic mechanisms underlying ZIKV infection in the developing mammalian brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Role of Aquaporin and Tight Junction Proteins in the Regulation of Water Movement in Larval Zebrafish (Danio rerio)

    PubMed Central

    Kwong, Raymond W. M.; Kumai, Yusuke; Perry, Steve F.

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased. PMID:23967101

  16. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio).

    PubMed

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (K(u)) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H⁺-ATPase-rich cells or Na⁺/K⁺-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca²⁺-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased.

  17. Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function.

    PubMed

    Usatyuk, Peter V; Natarajan, Viswanathan

    2012-01-01

    Lipid peroxidation of polyunsaturated fatty acids generates bioactive aldehydes, which exhibit pro- and anti-inflammatory effects in cells and tissues. Accumulating evidence indicates that 4-hydroxynonenal (4-HNE), a major aldehyde derived from lipid peroxidation of n-6 polyunsaturated fatty acids trigger signals that modulates focal adhesion and adherens junction proteins thereby inducing endothelial barrier dysfunction. Similarly, oxidized phospholipids (Ox-PLs) generated by lipid peroxidation of phospholipids with polyunsaturated fatty acids have been implicated in atherogenesis, inflammation and gene expression. Interestingly, physiological concentration of Ox-PLs is anti-inflammatory and protect against endotoxin- and ventilator-associated acute lung injury. Thus, excess generation of bioactive hydroxyalkenals and Ox-PLs during oxidative stress contributes to pathophysiology of various diseases by modulating signaling pathways that regulate pro- and anti-inflammatory responses and barrier regulation. This review summarizes the role of 4-HNE and Ox-PLs affecting cell signaling pathways and endothelial barrier dysfunction through modulation of the activities of proteins/enzymes by Michael adducts formation, enhancing the level of protein tyrosine phosphorylation of the target proteins, and by reorganization of cytoskeletal, focal adhesion, and adherens junction proteins. A better understanding of molecular mechanisms of hydroxyalkenals- and Ox-PLs-mediated pro-and anti-inflammatory responses and barrier function may lead to development of novel therapies to ameliorate oxidative stress related cardio-pulmonary disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions

    PubMed Central

    Cichon, Christoph; Sabharwal, Harshana; Rüter, Christian; Schmidt, M Alexander

    2014-01-01

    Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the ‘apical junctional complex—AJC’ with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the ‘Junctional Adhesion Molecules’ (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers. PMID:25610754

  19. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans

    PubMed Central

    Mancuso, Vincent P.; Parry, Jean M.; Storer, Luke; Poggioli, Corey; Nguyen, Ken C. Q.; Hall, David H.; Sundaram, Meera V.

    2012-01-01

    Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations. PMID:22278925

  20. Characterization of discontinuous buffer junctions using pH indicators in capillary electrophoresis for protein preconcentration.

    PubMed

    Jurcic, Kristina; Nesbitt, Chandra A; Yeung, Ken K-C

    2006-11-17

    An effective sample preconcentration technique for proteins and peptides was recently developed using capillary electrophoresis (CE) with discontinuous buffers [C.A. Nesbitt, J.T.-M. Lo, K.K.-C. Yeung, J. Chromatogr. A 1073 (2005) 175]. Two buffers of different pH created a junction to trap the sample molecules at their isoelectric points and resulted in over 1000-fold preconcentration for myoglobin within 30 min. To study the formation of pH junctions in CE, a pH indicator, bromothymol blue, is used in this work to reveal the pH changes at the discontinuous buffer boundary. Bromothymol blue (BTB) exhibits a drastic change in its visible absorption spectrum (300-600 nm) going from the acidic to basic pH conditions, and is therefore ideal for visualizing the changes in pH at the junctions created by various buffer combinations. Preconcentration of myoglobin was performed in discontinuous buffers containing BTB. Major differences in the BTB absorption profiles were identified from buffer systems that differ significantly in preconcentration performance, which in turn, allowed for the identification of ideal buffers for sample preconcentration. Up to 2000-fold preconcentrations of myoglobin were achieved in the buffer systems studied in this work. In addition, the role of the electroosmotic flow (EOF) on the preconcentration performance was investigated. A low EOF was found to be desirable, as the pH junction could stay longer in the capillary for accumulation of proteins. The pH junction also displayed characteristics to resist bandbroadening. Potential laminar flow resulted from the mismatched residual EOFs under the two pH conditions within the discontinuous buffers appeared to have minimal effect on the preconcentration. In fact, external applied pressure can be used to control the migration of the pH junction without compromising the protein preconcentration.

  1. Inhibition of Autophagic Degradation Process Contributes to Claudin-2 Expression Increase and Epithelial Tight Junction Dysfunction in TNF-α Treated Cell Monolayers

    PubMed Central

    Zhang, Cong; Yan, Junkai; Xiao, Yongtao; Shen, Yujie; Wang, Jiazheng; Ge, Wensong; Chen, Yingwei

    2017-01-01

    Tight junction dysfunction plays a vital role in some chronic inflammatory diseases. Pro-inflammatory cytokines, especially tumor necrosis factor alpha (TNF-α), act as important factors in intestinal epithelial tight junction dysfunction during inflammatory conditions. Autophagy has also been shown to be crucial in tight junction function and claudin-2 expression, but whether autophagy has an effect on the change of claudin-2 expression and tight junction function induced by TNF-α is still unknown. To answer this question, we examined the expression of claudin-2 protein, transepithelial electrical resistance (TER), and permeability of cell monolayers, autophagy flux change, and lysosomal pH after TNF-α with or without PP242 treatment. Our study showed that claudin-2 expression, intestinal permeability, microtubule-associated protein 1 light chain 3B II (LC3B-II) and sequestosome 1 (P62) expression largely increased while TER values decreased in TNF-α treated cell monolayers. Further research using 3-methyladenine (3-MA), bafilomycin A1, and ad-mCherry-GFP-LC3B adenovirus demonstrated that LC3B-II increase induced by TNF-α was attributed to the inhibition of autophagic degradation. Moreover, both qualitative and quantitative method confirmed the increase of lysosomal pH, and mammalian target of rapamycin (mTOR) inhibitor PP242 treatment relieved this elevation. Moreover, PP242 treatment also alleviated the change of autophagy flux, TER, and claudin-2 expression induced by TNF-α. Therefore, we conclude that increase of claudin-2 levels and intestinal epithelial tight junction dysfunction are partly caused by the inhibition of autophagic degradation in TNF-α treated cell monolayers. PMID:28106723

  2. Involvement of the helix-loop-helix protein Id-1 in the glucocorticoid regulation of tight junctions in mammary epithelial cells.

    PubMed

    Woo, P L; Cercek, A; Desprez, P Y; Firestone, G L

    2000-09-15

    Mammary epithelial cell-cell junctions undergo morphological and structural differentiation during pregnancy and lactation, but little is known about the transcriptional regulators that are involved in this process. In Con8 mammary epithelial tumor cells, we have previously documented that the synthetic glucocorticoid, dexamethasone, induces the reorganization of the tight junction and adherens junction and stimulates the monolayer transepithelial electrical resistance (TER), a reliable in vitro measurement of tight junction sealing. Western blots demonstrated that dexamethasone treatment rapidly and strongly stimulated the level of the Id-1 protein, which is a serum-inducible helix-loop-helix transcriptional repressor. The steroid induction of Id-1 was robust by 4 h of treatment and maintained over a 24-h period. Isopropyl-1-thio-beta-d-galactopyranoside-inducible expression of exogenous Id-1 in Con8 cells was shown to strongly facilitate the dexamethasone induction of TER in the absence of serum without altering the dexamethasone-dependent reorganization of ZO-1, beta-catenin, or F-actin. Ectopic overexpression of Id-1 in the SCp2 nontumorigenic mammary epithelial cells, which does not undergo complete dexamethasone-dependent tight junction reorganization, enhanced the dexamethasone-induced ZO-1 tight junction localization and stimulated the monolayer TER. Moreover, antisense reduction of Id-1 protein in SCp2 cells prevented the apical junction reorganization and dexamethasone-stimulated TER. Our results implicate Id-1 as acting as a critical regulator of mammary epithelial cell-cell interactions at an early step in the glucocorticoid-dependent signaling pathway that controls tight junction integrity.

  3. Optimization of an immunohistochemical method to assess distribution of tight junction proteins in canine epidermis and adnexae.

    PubMed

    Roussel, A J J; Knol, A C; Bourdeau, P J; Bruet, V

    2014-01-01

    Epidermal tight junctions (TJs) have been well characterized in human medicine. Abnormality of these structures is involved in skin diseases such as atopic dermatitis. There is little information about the expression and distribution of TJ proteins in the canine skin. The aim of this study was to develop an optimal immunohistochemical method for assessment of the expression of TJ proteins in the skin of healthy dogs. Formalin-fixed and paraffin wax-embedded skin biopsy samples from healthy human and canine patients were used. Canine skin samples were from the inguinal region and the nasal planum. Immunohistochemistry was used to study the expression of zonula occludens-1 (ZO-1), occludin and claudin-1, -4 and -7. Heat-induced antigen retrieval with EDTA (pH 9.0) yielded the best labelling of TJ proteins. ZO-1 and occludin were expressed in the cytoplasm and along the keratinocyte membrane, while claudin-1 and -4 were mainly membrane in distribution. ZO-1, occludin and claudin-1 were detected in all epidermal layers with the exception of the stratum corneum, while claudin-4 expression was restricted to the stratum granulosum. Expression of claudin-7 was difficult to evaluate. There was no difference in labelling pattern between inguinal and nasal planum skin.

  4. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels.

    PubMed

    Alstrom, Jette Skov; Stroemlund, Line Waring; Nielsen, Morten Schak; MacAulay, Nanna

    2015-06-01

    Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results.

  5. Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions.

    PubMed

    Parsons, C A; Tsaneva, I; Lloyd, R G; West, S C

    1992-06-15

    The RuvA, RuvB, and RuvC proteins of Escherichia coli are required for the recombinational repair of ultraviolet light- or chemical-induced DNA damage. In vitro, RuvC protein interacts with Holliday junctions in DNA and promotes their resolution by endonucleolytic cleavage. In this paper, we investigate the interaction of RuvA and RuvB proteins with model Holliday junctions. Using band-shift assays, we show that RuvA binds synthetic Holliday structures to form specific protein-DNA complexes. Moreover, in the presence of ATP, the RuvA and RuvB proteins act in concert to promote dissociation of the synthetic Holliday structures. The dissociation reaction requires both RuvA and RuvB and a nucleotide cofactor (ATP or dATP) and is rapid (40% of DNA molecules dissociate within 1 min). The reaction does not occur when ATP is replaced by either ADP or the nonhydrolyzable analog of ATP, adenosine 5'-[gamma-thio]triphosphate. We suggest that the RuvA and RuvB proteins play a specific role in the branch migration of Holliday junctions during postreplication repair of DNA damage in E. coli.

  6. Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1.

    PubMed

    Moiseeva, E D; Bazhulina, N P; Gursky, Y G; Grokhovsky, S L; Surovaya, A N; Gursky, G V

    2017-03-01

    In the present paper, the interactions of the origin binding protein (OBP) of herpes simplex virus type 1 (HSV1) with synthetic four-way Holliday junctions (HJs) were studied using electrophoresis mobility shift assay and the FRET method and compared with the interactions of the protein with duplex and single-stranded DNAs. It has been found that OBP exhibits a strong preference for binding to four-way and three-way DNA junctions and possesses much lower affinities to duplex and single-stranded DNAs. The protein forms three types of complexes with HJs. It forms complexes I and II which are reminiscent of the tetramer and octamer complexes with four-way junction of HJ-specific protein RuvA of Escherichia coli. The binding approaches saturation level when two OBP dimers are bound per junction. In the presence of Mg(2+) ions (≥2 mM) OBP also interacts with HJ in the stacked arm form (complex III). In the presence of 5 mM ATP and 10 mM Mg(2+) ions OBP catalyzes processing of the HJ in which one of the annealed oligonucleotides has a 3'-terminal tail containing 20 unpaired thymine residues. The observed preference of OBP for binding to the four-way DNA junctions provides a basis for suggestion that OBP induces large DNA structural changes upon binding to Box I and Box II sites in OriS. These changes involve the bending and partial melting of the DNA at A+T-rich spacer and also include the formation of HJ containing Box I and Box II inverted repeats and flanking DNA sequences.

  7. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.

    PubMed

    Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

    2011-08-01

    Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.

  8. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation.

    PubMed

    Kolosov, Dennis; Bui, Phuong; Donini, Andrew; Wilkie, Mike P; Kelly, Scott P

    2017-08-10

    This study reports on tight junction-associated MARVEL proteins of larval sea lamprey (Petromyzon marinus) and their potential role in ammocoete osmoregulation. Two Occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln, ocln-a, and tric were broadly expressed in larval lamprey, with greatest abundance of ocln in gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins respectively while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na(+)] and [Cl(-)] reduced, but not [Ca(++)], and carcass moisture content increased. In association, Ocln abundance increased in skin and kidney, but reduced in gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln, ocln-a and tric mRNA abundance was also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate. © 2017. Published by The Company of Biologists Ltd.

  9. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    PubMed

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  10. The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus Entry and Infection▿

    PubMed Central

    Benedicto, Ignacio; Molina-Jiménez, Francisca; Bartosch, Birke; Cosset, François-Loïc; Lavillette, Dimitri; Prieto, Jesús; Moreno-Otero, Ricardo; Valenzuela-Fernández, Agustín; Aldabe, Rafael; López-Cabrera, Manuel; Majano, Pedro L.

    2009-01-01

    The precise mechanisms regulating hepatitis C virus (HCV) entry into hepatic cells remain unknown. However, several cell surface proteins have been identified as entry factors for this virus. Of these molecules, claudin-1, a tight junction (TJ) component, is considered a coreceptor required for HCV entry. Recently, we have demonstrated that HCV envelope glycoproteins (HCVgp) promote structural and functional TJ alterations. Additionally, we have shown that the intracellular interaction between viral E2 glycoprotein and occludin, another TJ-associated protein, could be the cause of the mislocalization of TJ proteins. Herein we demonstrated, by using cell culture-derived HCV particles (HCVcc), that interference of occludin expression markedly reduced HCV infection. Furthermore, our results with HCV pseudotyped particles indicated that occludin, but not other TJ-associated proteins, such as junctional adhesion molecule A or zonula occludens protein 1, was required for HCV entry. Using HCVcc, we demonstrated that occludin did not play an essential role in the initial attachment of HCV to target cells. Surface protein labeling experiments showed that both expression levels and cell surface localization of HCV (co)receptors CD81, scavenger receptor class B type I, and claudin-1 were not affected upon occludin knockdown. In addition, immunofluorescence confocal analysis showed that occludin interference did not affect subcellular distribution of the HCV (co)receptors analyzed. However, HCVgp fusion-associated events were altered after occludin silencing. In summary, we propose that occludin plays an essential role in HCV infection and probably affects late entry events. This observation may provide new insights into HCV infection and related pathogenesis. PMID:19515778

  11. Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy.

    PubMed

    Yun, Jang-Hyuk; Park, Sung Wook; Kim, Kyung-Jin; Bae, Jong-Sup; Lee, Eun Hui; Paek, Sun Ha; Kim, Seung U; Ye, Sangkyu; Kim, Jeong-Hun; Cho, Chung-Hyun

    2017-05-01

    Vascular inflammation is characteristic feature of diabetic retinopathy. In diabetic retina, a variety of the pro-inflammatory cytokines are elevated and involved in endothelial dysfunction. STAT3 transcription factor has been implicated in mediating cytokine signaling during vascular inflammation. However, whether and how STAT3 is involved in the direct regulation of the endothelial permeability is currently undefined. Our studies revealed that IL-6-induced STAT3 activation increases retinal endothelial permeability and vascular leakage in retinas of mice through the reduced expression of the tight junction proteins ZO-1 and occludin. In a co-culture model with microglia and endothelial cells under a high glucose condition, the microglia-derived IL-6 induced STAT3 activation in the retinal endothelial cells, leading to increasing endothelial permeability. In addition, IL-6-induced STAT3 activation was independent of ROS generation in the retinal endothelial cells. Moreover, we demonstrated that STAT3 activation downregulates the ZO-1 and occludin levels and increases the endothelial permeability through the induction of VEGF production in retinal endothelial cells. These results suggest the potential importance of IL-6/STAT3 signaling in regulating endothelial permeability and provide a therapeutic target to prevent the pathology of diabetic retinopathy. J. Cell. Physiol. 232: 1123-1134, 2017. © 2016 Wiley Periodicals, Inc.

  12. Modulation of connexin expression and gap junction communication in astrocytes by the gram-positive bacterium S. aureus.

    PubMed

    Esen, Nilufer; Shuffield, Debbie; Syed, Mohsin M D; Kielian, Tammy

    2007-01-01

    Gap junctions establish direct intercellular conduits between adjacent cells and are formed by the hexameric organization of protein subunits called connexins (Cx). It is unknown whether the proinflammatory milieu that ensues during CNS infection with S. aureus, one of the main etiologic agents of brain abscess in humans, is capable of eliciting regional changes in astrocyte homocellular gap junction communication (GJC) and, by extension, influencing neuron homeostasis at sites distant from the primary focus of infection. Here we investigated the effects of S. aureus and its cell wall product peptidoglycan (PGN) on Cx43, Cx30, and Cx26 expression, the main Cx isoforms found in astrocytes. Both bacterial stimuli led to a time-dependent decrease in Cx43 and Cx30 expression; however, Cx26 levels were elevated following bacterial exposure. Functional examination of dye coupling, as revealed by single-cell microinjections of Lucifer yellow, demonstrated that both S. aureus and PGN inhibited astrocyte GJC. Inhibition of protein synthesis with cyclohexamide (CHX) revealed that S. aureus directly modulates, in part, Cx43 and Cx30 expression, whereas Cx26 levels appear to be regulated by a factor(s) that requires de novo protein production; however, CHX did not alter the inhibitory effects of S. aureus on astrocyte GJC. The p38 MAPK inhibitor SB202190 was capable of partially restoring the S. aureus-mediated decrease in astrocyte GJC to that of unstimulated cells, suggesting the involvement of p38 MAPK-dependent pathway(s). These findings could have important implications for limiting the long-term detrimental effects of abscess formation in the brain which may include seizures and cognitive deficits. Copyright 2006 Wiley-Liss, Inc.

  13. Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice

    SciTech Connect

    Chen Xi; Zhang Cheng; Wang Hua; Xu Juan; Duan Zihao; Zhang Ying; Yu Tao; Wei Wei; Xu Dexiang Xu Jianming

    2009-10-01

    Rifampicin is a well-known hepatotoxicant, but little is known about the mechanism of rifampicin-induced hepatotoxicity. The aim of this study was to characterize the expression and localization of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Cholestasis was induced by administration of rifampicin (200 mg/kg) for 7 consecutive days or treatment with a single dose of rifampicin (200 mg/kg) by gastric intubation. The expression of mRNA for hepatic zonula occludens (ZO)-1, ZO-2, ZO-3, occludin and claudin-1 was determined using RT-PCR. Localization of ZO-1 and occludin was detected using immunofluorescence. Results showed that there was an 82-fold increase in the conjugated bilirubin in serum in rifampicin-treated mice. In addition, an 8-fold increase in total bile acid in serum was observed after a seven-day administration of rifampicin. The integrity of hepatocyte ZO-1 and occludin was altered by a seven-day administration of rifampicin. Importantly, the integrity and intensity of hepatocyte tight junctions were altered as early as 30 min after a single dose of rifampicin. The expression of hepatic ZO-1 and ZO-2 mRNA was significantly decreased, beginning as early as 30 min and remaining a lower level 12 h after a single dose of rifampicin. Taken together, these results suggest that the altered integrity and internalization of hepatocyte tight junctions are associated with rifampicin-induced cholestasis.

  14. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5

    DOE PAGES

    Huang, Li -Yun; Stuart, Christine; Takeda, Kazuyo; ...

    2016-08-09

    Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelialmonolayer permeability with a corresponding dose- and time-dependent decrease in themore » expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Altogether, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies.« less

  15. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5

    SciTech Connect

    Huang, Li -Yun; Stuart, Christine; Takeda, Kazuyo; D’Agnillo, Felice; Golding, Basil; Deli, Mária A.

    2016-08-09

    Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelialmonolayer permeability with a corresponding dose- and time-dependent decrease in the expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Altogether, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies.

  16. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  17. Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature.

    PubMed

    Yang, Hongfang; Yu, Paula K; Cringle, Stephen J; Sun, Xinghuai; Yu, Dao-Yi

    2015-11-01

    Recently we reported studies of the iris microvasculature and its endothelial cells using intra-luminal micro-perfusion, fixation, and silver staining, suggesting that the iris vascular endothelium may be crucial for maintaining homeostasis in the ocular anterior segment. Here we present information regarding the intracellular structure and cell junctions of the iris endothelium. Thirty-seven porcine eyes were used for this study. The temporal long posterior ciliary artery was cannulated to assess the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining with phalloidin for intracellular cytoskeleton f-actin, and with antibodies against claudin-5 and VE-cadherin for junction proteins. Nuclei were counterstained with Hoechst. The iris was flat-mounted for confocal imaging. The iris microvasculature was studied for its distribution, branch orders and endothelial morphometrics with endothelial cell length measured for each vessel order. Our results showed that morphometrics of the iris microvasculature was comparable with our previous silver staining. Abundant stress fibres and peripheral border staining were seen within the endothelial cells in larger arteries. An obvious decrease in cytoplasmic stress fibres was evident further downstream in the smaller arterioles, and they tended to be absent from capillaries and veins. Endothelial intercellular junctions throughout the iris vasculature were VE-cadherin and claudin-5 immuno-positive, indicating the presence of both adherent junctions and tight junctions between vascular endothelial cells throughout the iris microvasculature. Unevenness of claudin-5 staining was noted along the endothelial cell borders in almost every order of vessels, especially in veins and small arterioles. Our results suggest that significant heterogeneity of intracellular structure and junction proteins is present in different orders of the iris vasculature in addition to vascular diameter

  18. Protein kinase Cδ-mediated phosphorylation of Connexin43 gap junction channels causes movement within gap junctions followed by vesicle internalization and protein degradation.

    PubMed

    Cone, Angela C; Cavin, Gabriel; Ambrosi, Cinzia; Hakozaki, Hiroyuki; Wu-Zhang, Alyssa X; Kunkel, Maya T; Newton, Alexandra C; Sosinsky, Gina E

    2014-03-28

    Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.

  19. Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis

    PubMed Central

    Traub, Otto; Drüge, Petra Maria; Willecke, Klaus

    1983-01-01

    Changes in the total amount of the gap junction protein (Mr 26,000) after partial hepatectomy or bile duct ligation and recanalization were investigated in rat liver membranes by quantitative immunoblot with rabbit antiserum to the Mr 26,000 protein. The loss and reappearance of the Mr 26,000 protein roughly paralleled loss and reappearance of gap junction plaques analyzed previously under similar physiological conditions by freeze-fracture of hepatocyte surfaces. The total amount of the hepatic Mr 26,000 protein in liver plasma membranes and the total area of the hepatocyte surface occupied by gap junction plaques appeared to be proportional under these conditions. However, at the minimum, 28-35 hr after partial hepatectomy we still find about 15% of the Mr 26,000 protein, in contrast to <1% of gap junction plaques, determined by morphometric analysis. This discrepancy is probably due to the fact that very small gap junction plaques, single connexons, and free Mr 26,000 gap junction subunits are missed by the morphometric analysis. At the times of the minimal amount of the Mr 26,000 protein in hepatic plasma membranes after partial hepatectomy or bile duct ligation we found that crude hepatic lysosomal membranes of these rats contained less Mr 26,000 protein than lysosomal membranes of nonoperated control animals. Thus, we conclude that the decrease and increase of the total amount of the Mr 26,000 protein cannot be explained only by dispersal and reuse of gap junction subunits but are largely due to degradation and resynthesis of the Mr 26,000 protein. No significant change in the amount of the Mr 21,000 protein that had been isolated with gap junction plaques was observed in liver plasma membranes after partial hepatectomy. This confirms our previous conclusion that the Mr 26,000 and Mr 21,000 proteins are independent of each other. Images PMID:6298773

  20. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice.

    PubMed

    Xie, Wanli; Wang, Huiqing; Wang, Lei; Yao, Chengye; Yuan, Ruixia; Wu, Qingping

    2013-09-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary permeability with high mortality. Resolvin D1 (RvD1), which has potent anti-inflammatory and pro-resolving activity, can attenuate pulmonary edema in the animal model of ALI. However, the mechanism underlying the protection of RvD1 on pulmonary edema is still unknown. Here we explore the effects and mechanism of RvD1 on the disruption of tight junction protein that results in the permeability edema in a model of lipopolysaccharide (LPS)-induced ALI. The severity of pulmonary edema was assessed by wet-to-dry rate and Evans blue infiltration; expressions of tight junction (TJ) proteins occludin and zona occludin-1 (ZO-1) were examined by immunofluorescence staining and western blot; mRNA in lung tissue was studied by real time-PCR; the TUNEL kit was performed for the detection of apoptosis of pulmonary barrier. Twenty-four hours after LPS inhalation by mice, wet-to-dry rate and Evans blue infiltration indicated that pretreatment with RvD1 relieved the pulmonary edema and pulmonary capillary permeability. Moreover, RvD1 attenuated the LPS-induced deterioration of TJ protein ZO-1 and occludin significantly. And we found that RvD1 increased heme oxygenase-1 (HO-1) expression contributed to the protection on the deterioration of TJs. In addition, we found that RvD1 could reduce pulmonary cellular apoptosis in LPS-induced mice. In conclusion, RvD1 possesses the ability that relieves the pulmonary edema and restores pulmonary capillary permeability and reduces disruption of TJs in LPS-induced ALI of mice, at least in part, by upregulating HO-1 expression.

  1. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. PMID:25447408

  2. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice.

    PubMed

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14days and ovaries collected 3days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P<0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P<0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P<0.05) by obesity while total CX37 protein was reduced (P<0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P<0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P<0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P<0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Endogenous protein phosphatase 1 runs down gap junctional communication of rat ventricular myocytes.

    PubMed

    Duthe, F; Plaisance, I; Sarrouilhe, D; Hervé, J C

    2001-11-01

    Gap junctional channels are essential for normal cardiac impulse propagation. In ventricular myocytes of newborn rats, channel opening requires the presence of ATP to allow protein kinase activities; otherwise, channels are rapidly deactivated by the action of endogenous protein phosphatases (PPs). The lack of influence of Mg(2+) and of selective PP2B inhibition is not in favor of the involvements of Mg(2+)-dependent PP2C and PP2B, respectively, in the loss of channel activity. Okadaic acid (1 microM) and calyculin A (100 nM), both inhibitors of PP1 and PP2A activities, significantly retarded the loss of channel activity. However, a better preservation was obtained in the presence of selective PP1 inhibitors heparin (100 microg/ml) or protein phosphatase inhibitor 2 (I2; 100 nM). Conversely, the stimulation of endogenous PP1 activity by p-nitrophenyl phosphate, in the presence of ATP, led to a progressive fading of junctional currents unless I2 was simultaneously added. Together, these results suggest that a basal phosphorylation-dephosphorylation turnover regulates gap junctional communication which is rapidly deactivated by PP1 activity when the phosphorylation pathway is hindered.

  4. Novel Effects of Azithromycin on Tight Junction Proteins in Human Airway Epithelia

    PubMed Central

    Asgrimsson, Valthor; Gudjonsson, Thorarinn; Gudmundsson, Gudmundur Hrafn; Baldursson, Olafur

    2006-01-01

    The macrolide antibiotic azithromycin improves lung function and prognosis among patients with cystic fibrosis or diffuse panbronchiolitis, independently of bacterial eradication. Anti-inflammatory effects have been implicated, but data from in vivo studies are scarce, and the link between abnormal electrolyte content in airway surface liquid and bronchial infections remains uncertain. In the present study, we treated human airway epithelia on filter supports with azithromycin and monitored transepithelial electrical resistance. We found that azithromycin increased transepithelial electrical resistance of airway epithelia in a dose-dependent manner. Immunocytochemistry and Western blotting showed that addition of azithromycin changed the locations of proteins in cell cultures and induced processing of the tight junction proteins claudin-1 and claudin-4, occludin, and junctional adhesion molecule-A. These effects were reversible, and no effect was seen when cells were treated with penicillin or erythromycin. The data indicate that azithromycin increases the transepithelial electrical resistance of human airway epithelia by changing the processing of tight junction proteins. The results are novel and may help explain the beneficial effects of azithromycin in patients with cystic fibrosis, diffuse panbronchiolitis, and community-acquired pneumonia. PMID:16641453

  5. Digestion of epithelial tight junction proteins by the commensal Clostridium perfringens.

    PubMed

    Pruteanu, Mihaela; Shanahan, Fergus

    2013-11-15

    The enteric microbiota contributes to the pathogenesis of inflammatory bowel disease, but the pathways involved and bacterial participants may vary in different hosts. We previously reported that some components of the human commensal microbiota, particularly Clostridium perfringens (C. perfringens), have the proteolytic capacity for host matrix degradation and reduce transepithelial resistance. Here, we examined the C. perfringens-derived proteolytic activity against epithelial tight junction proteins using human intestinal epithelial cell lines. We showed that the protein levels of E-cadherin, occludin, and junctional adhesion molecule 1 decrease in colonic cells treated with C. perfringens culture supernatant. E-cadherin ectodomain shedding in C. perfringens-stimulated intestinal epithelial cells was detected with antibodies against the extracellular domain of E-cadherin, and we demonstrate that this process occurs in a time- and dose-dependent manner. In addition, we showed that the filtered sterile culture supernatant of C. perfringens has no cytotoxic activity on the human intestinal cells at the concentrations used in this study. The direct cleavage of E-cadherin by the proteases from the C. perfringens culture supernatant was confirmed by C. perfringens supernatant-induced in vitro degradation of the human recombinant E-cadherin. We conclude that C. perfringens culture supernatant mediates digestion of epithelial cell junctional proteins, which is likely to enable access to the extracellular matrix components by the paracellular pathway.

  6. Resolution of Holliday junction recombination intermediates by wild-type and mutant IntDOT proteins.

    PubMed

    Kim, Seyeun; Gardner, Jeffrey F

    2011-03-01

    CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.

  7. Hypoxia/Aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline.

    PubMed

    Ma, Xiaotang; Zhang, Huiting; Pan, Qunwen; Zhao, Yuhui; Chen, Ji; Zhao, Bin; Chen, Yanfang

    2013-01-01

    This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.

  8. Tight Junction Proteins Claudin-2 and -12 Are Critical for Vitamin D-dependent Ca2+ Absorption between Enterocytes

    PubMed Central

    Fujita, Hiroki; Sugimoto, Kotaro; Inatomi, Shuichiro; Maeda, Toshihiro; Osanai, Makoto; Uchiyama, Yasushi; Yamamoto, Yoko; Wada, Takuro; Kojima, Takashi; Yokozaki, Hiroshi; Yamashita, Toshihiko; Kato, Shigeaki; Sawada, Norimasa

    2008-01-01

    Ca2+ is absorbed across intestinal epithelial monolayers via transcellular and paracellular pathways, and an active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], is known to promote intestinal Ca2+ absorption. However, the molecules driving the paracellular Ca2+ absorption and its vitamin D dependency remain obscure. Because the tight junction proteins claudins are suggested to form paracellular channels for selective ions between neighboring cells, we hypothesized that specific intestinal claudins might facilitate paracellular Ca2+ transport and that expression of these claudins could be induced by 1α,25(OH)2D3. Herein, we show, by using RNA interference and overexpression strategies, that claudin-2 and claudin-12 contribute to Ca2+ absorption in intestinal epithelial cells. We also provide evidence showing that expression of claudins-2 and -12 is up-regulated in enterocytes in vitro and in vivo by 1α,25(OH)2D3 through the vitamin D receptor. These findings strongly suggest that claudin-2- and/or claudin-12-based tight junctions form paracellular Ca2+ channels in intestinal epithelia, and they highlight a novel mechanism behind vitamin D-dependent calcium homeostasis. PMID:18287530

  9. Cytokine Effects on Gap Junction Communication and Connexin Expression in Human Bladder Smooth Muscle Cells and Suburothelial Myofibroblasts

    PubMed Central

    Heinrich, Marco; Oberbach, Andreas; Schlichting, Nadine; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2011-01-01

    Background The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC) and overactive bladder syndrome (OAB). Gap junctional intercellular communication (GJIC) is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx) 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC) and suburothelial myofibroblasts (hsMF). Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL) 4, IL6, IL10, tumor necrosis factor-alpha (TNFα) and transforming growth factor-beta1 (TGFβ1) on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC) and human suburothelial myofibroblasts (hsMF). Methodology/Principal Findings HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP). Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC. Conclusions/Significance Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that connexin

  10. FAM129B/MINERVA, a novel adherens junction-associated protein, suppresses apoptosis in HeLa cells.

    PubMed

    Chen, Song; Evans, Hedeel Guy; Evans, David R

    2011-03-25

    A recent proteomics study identified FAM129B or MINERVA as a target of the MAP kinase (Erk1/2) signaling cascade in human melanoma cells. Phosphorylation of the protein was found to promote cell invasion and the dissociation of the protein from the cell-cell junctions. Suppression of apoptosis during metastasis is a prerequisite for the survival and spread of cancer cells. During apoptosis, the adherens junctions are disassembled as the dying cell retracts, and new contacts are formed between normal neighboring cells. In this study, we show that FAM129B was cytosolic in exponentially growing HeLa cells but was translocated to the adherens junctions where it colocalized with β-catenin whenever contact between two or more cells was established. Silencing the FAM129B gene expression by specific siRNAs did not induce apoptosis or inhibit the growth of HeLa cells. However, when apoptosis was induced by exposure to TNFα/cycloheximide or other apoptotic signaling molecules, the onset of apoptosis was accelerated 3-4-fold when FAM129B was depleted. Annexin V binding, the inactivation of the DNA repair enzyme, poly(ADP-ribose) polymerase, and the activation of the caspases occurred more rapidly in the cells lacking FAM129B. The rapid induction of apoptosis in FAM129B knockdown cells was reversed by co-transfection with recombinant FAM129B, indicating that its effect on apoptosis was specific. As apoptosis proceeded, FAM129B was degraded and disappeared from the plasma membrane. Thus, one crucial facet of the mechanism by which FAM129B promotes cancer cell invasion is likely to be the suppression of apoptosis.

  11. Deoxynivalenol Impairs Hepatic and Intestinal Gene Expression of Selected Oxidative Stress, Tight Junction and Inflammation Proteins in Broiler Chickens, but Addition of an Adsorbing Agent Shifts the Effects to the Distal Parts of the Small Intestine

    PubMed Central

    Osselaere, Ann; Santos, Regiane; Hautekiet, Veerle; De Backer, Patrick; Chiers, Koen; Ducatelle, Richard; Croubels, Siska

    2013-01-01

    Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON. PMID:23922676

  12. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine.

    PubMed

    Osselaere, Ann; Santos, Regiane; Hautekiet, Veerle; De Backer, Patrick; Chiers, Koen; Ducatelle, Richard; Croubels, Siska

    2013-01-01

    Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON.

  13. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS.

  14. Expression analysis of the TGF-β/SMAD target genes in adenocarcinoma of esophagogastric junction

    PubMed Central

    Peng, Defeng; Fu, Lin

    2016-01-01

    Abstract The TGF-β/SMAD signaling pathway is found to play pivotal roles in cell growth, differentiation and tumorigenesis. Its target genes are closely related to the biological behaviors of some malignancies. The aim of this study was to analyze the expression of the target genes of this pathway, including growth-related c-myc, p21, p15, and metastasis-related Snail, ZEB1 and Twist1 in the adenocarcinomas of esophagogastric junction (AEJ) tissues. Clinical esophagogastric junction tissues from 25 cases of AEJ patients and 10 cases of non-tumorous tissues from the same site were collected. Quantitative real-time poly chain reactions were carried out to analyze the expression of the above referred target genes of TGF-β/SMAD pathway. A notable up-regulation in the mRNA expression of p15, Snail, ZEB1, down-regulation of c-myc, was found whereas there were no significant change of p21 and Twist1. The findings suggests that the TGF-β/SMAD pathway might be abnormally activated in AEJ since most of the target genes of this pathway exhibited altered expression at mRNA level.

  15. ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation.

    PubMed

    Verrecchia, F; Duthe, F; Duval, S; Duchatelle, I; Sarrouilhe, D; Herve, J C

    1999-04-15

    1. The degree of cell-to-cell coupling between ventricular myocytes of neonatal rats appeared well preserved when studied in the perforated version of the patch clamp technique or, in double whole-cell conditions, when ATP was present in the patch pipette solution. In contrast, when ATP was omitted, the amplitude of junctional current rapidly declined (rundown). 2. To examine the mechanism(s) of ATP action, an 'internal perfusion technique' was adapted to dual patch clamp conditions, and reintroduction of ATP partially reversed the rundown of junctional channels. 3. Cell-to-cell communication was not preserved by a non-hydrolysable ATP analogue (5'-adenylimidodiphosphate, AMP-PNP), indicating that the effect most probably did not involve direct interaction of ATP with the channel-forming proteins. 4. An ATP analogue supporting protein phosphorylation but not active transport processes (adenosine 5'-O-(3-thiotriphosphate), ATPgammaS) maintained normal intercellular communication, suggesting that the effect was due to kinase activity rather than to altered intracellular Ca2+. 5. A broad spectrum inhibitor of endogenous serine/threonine protein kinases (H7) reversibly reduced the intercellular coupling. A non-specific exogenous protein phosphatase (alkaline phosphatase) mimicked the effects of ATP deprivation. The non-specific inhibition of endogenous protein phosphatases resulted in the preservation of substantial cell-to-cell communication in ATP-free conditions. 6. The activity of gap junctional channels appears to require both the presence of ATP and protein kinase activity to counteract the tonic activity of endogenous phosphatase(s).

  16. Alteration of Tight Junction Proteins Is an Early Event in Psoriasis

    PubMed Central

    Kirschner, Nina; Poetzl, Claudia; von den Driesch, Peter; Wladykowski, Ewa; Moll, Ingrid; Behne, Martin J.; Brandner, Johanna M.

    2009-01-01

    Psoriasis is an inflammatory skin disease characterized by hyperproliferation of keratinocytes, impaired barrier function, and pronounced infiltration of inflammatory cells. Tight junctions (TJs) are cell-cell junctions that form paracellular barriers for solutes and inflammatory cells. Altered localization of TJ proteins in the epidermis was described in plaque-type psoriasis. Here we show that localization of TJ proteins is already altered in early-stage psoriasis. Occludin, ZO-1, and claudin-4 are found in more layers than in normal epidermis, and claudin-1 and -7 are down-regulated in the basal and in the uppermost layers. In plaque-type psoriasis, the staining patterns of occludin and ZO-1 do not change, whereas the claudins are further down-regulated. Near transmigrating granulocytes, all TJ proteins except for junctional adhesion molecule-A are down-regulated. Treatment of cultured keratinocytes with interleukin-1β and tumor necrosis factor-α, which are present at elevated levels in psoriatic skin, results in an increase of transepithelial resistance at early time points and a decrease at later time points. Injection of interleukin-1β into an ex vivo skin model leads to an up-regulation of occludin and ZO-1, resembling TJ protein alteration in early psoriasis. Our results show for the first time that alteration of TJ proteins is an early event in psoriasis and is not the consequence of the more profound changes found in plaque-type psoriasis. Our data indicate that cytokines are involved in alterations of TJ proteins observed in psoriasis. PMID:19661441

  17. Oligomeric Structure and Functional Characterization of Caenorhabditis elegans Innexin-6 Gap Junction Protein*

    PubMed Central

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-01-01

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640

  18. Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3.

    PubMed

    Milatz, Susanne; Piontek, Jörg; Schulzke, Jörg-Dieter; Blasig, Ingolf E; Fromm, Michael; Günzel, Dorothee

    2015-06-15

    Claudins form a large family of TJ (tight junction) proteins featuring four transmembrane segments (TM1-TM4), two extracellular loops, one intracellular loop and intracellular N- and C-termini. They form continuous and branched TJ strands by homo- or heterophilic interaction within the same membrane (cis-interaction) and with claudins of the opposing lateral cell membrane (trans-interaction). In order to clarify the molecular organization of TJ strand formation, we investigated the cis-interaction of two abundant prototypic claudins. Human claudin-1 and claudin-3, fused to ECFP or EYFP at the N- or C-terminus, were expressed in the TJ-free cell line HEK (human embryonic kidney)-293. Using FRET analysis, the proximity of claudin N- and C-termini integrated in homopolymeric strands composed of claudin-3 or of heteropolymeric strands composed of claudin-1 and claudin-3 were determined. The main results are that (i) within homo- and heteropolymers, the average distance between the cytoplasmic ends of the TM1s of cis-interacting claudin molecules is shorter than the average distance between their TM4s, and (ii) TM1 segments of neighbouring claudins are oriented towards each other as the cytoplasmic end of TM1 is in close proximity to more other TM1 segments than TM4 is to other TM4 segments. The results indicate at least two different cis-interaction interfaces within claudin-3 homopolymers as well as within claudin-1/claudin-3 heteropolymers. The data provide novel insight into the molecular TJ architecture consistent with a model with an antiparallel double-row cis-arrangement of classic claudin protomers within strands.

  19. Gap junctions, pannexins and pain.

    PubMed

    Spray, David C; Hanani, Menachem

    2017-06-22

    Enhanced expression and function of gap junctions and pannexin (Panx) channels have been associated with both peripheral and central mechanisms of pain sensitization. At the level of the sensory ganglia, evidence includes augmented gap junction and pannexin1 expression in glial cells and neurons in inflammatory and neuropathic pain models and increased synchrony and enhanced cross-excitation among sensory neurons by gap junction-mediated coupling. In spinal cord and in suprapinal areas, evidence is largely limited to increased expression of relevant proteins, although in several rodent pain models, hypersensitivity is reduced by treatment with gap junction/Panx1 channel blocking compounds. Moreover, targeted modulation of Cx43 expression was shown to modulate pain thresholds, albeit in somewhat contradictory ways, and mice lacking Panx1 expression globally or in specific cell types show depressed hyperalgesia. We here review the evidence for involvement of gap junctions and Panx channels in a variety of animal pain studies and then discuss ways in which gap junctions and Panx channels may mediate their action in pain processing. This discussion focusses on spread of signals among satellite glial cells, in particular intercellular Ca(2+) waves, which are propagated through both gap junction and Panx1-dependent routes and have been associated with the phenomenon of spreading depression and the malady of migraine headache with aura. Copyright © 2017. Published by Elsevier B.V.

  20. Gap Junctions Couple Astrocytes and Oligodendrocytes

    PubMed Central

    Orthmann-Murphy, Jennifer L.; Abrams, Charles K.; Scherer, Steven S.

    2009-01-01

    In vertebrates, a family of related proteins called connexins form gap junctions (GJs), which are intercellular channels. In the central nervous system (CNS), GJs couple oligodendrocytes and astrocytes (O/A junctions) and adjacent astrocytes (A/A junctions), but not adjacent oligodendrocytes, forming a “glial syncytium.” Oligodendrocytes and astrocytes each express different connexins. Mutations of these connexin genes demonstrate that the proper functioning of myelin and oligodendrocytes requires the expression of these connexins. The physiological function of O/A and A/A junctions, however, remains to be illuminated. PMID:18236012

  1. Role of Extracellular Matrix Proteins and Their Receptors in the Development of the Vertebrate Neuromuscular Junction

    PubMed Central

    Singhal, Neha; Martin, Paul T.

    2012-01-01

    The vertebrate neuromuscular junction remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the neuromuscular junction, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins has been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic extracellular matrix proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability and transmission. PMID:21766463

  2. Loss of occludin expression and impairment of blood-testis barrier permeability in rats with autoimmune orchitis: effect of interleukin 6 on Sertoli cell tight junctions.

    PubMed

    Pérez, Cecilia Valeria; Sobarzo, Cristian Marcelo; Jacobo, Patricia Verónica; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Denduchis, Berta; Lustig, Livia

    2012-11-01

    Inflammation of the male reproductive tract is accepted as being an important etiological factor of infertility. Experimental autoimmune orchitis (EAO) is characterized by interstitial lymphomononuclear cell infiltration and severe damage of seminiferous tubules with germ cells that undergo apoptosis and sloughing. Because the blood-testis barrier (BTB) is relevant for the protection of haploid germ cells against immune attack, the aim of this study was to analyze BTB permeability and the expression of tight junction proteins (occludin, claudin 11, and tight junction protein 1 [TJP1]) in rats during development of autoimmune orchitis. The role of IL6 as modulator of tight junction dynamics was also evaluated because intratesticular content of this cytokine is increased in EAO rats. Orchitis was induced in Sprague-Dawley adult rats by active immunization with testicular homogenate and adjuvants. Control rats (C) were injected with saline solution and adjuvants. Untreated (N) rats were also studied. Concomitant with early signs of germ cell sloughing, a reduced expression of occludin and delocalization of claudin 11 and TJP1 were detected in the testes of rats with EAO compared to C and N groups. The use of tracers showed increased BTB permeability in EAO rats. Intratesticular injection of IL6 induced focal testicular inflammation, which is associated with damaged seminiferous tubules. Rat Sertoli cells cultured in the presence of IL6 exhibited a redistribution of tight junction proteins and reduced transepithelial electrical resistance. These data indicate the possibility that IL6 might be involved in the downregulation of occludin expression and in the modulation of BTB permeability that occur in rats undergoing autoimmune orchitis.

  3. Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells.

    PubMed

    Bulldan, Ahmed; Dietze, Raimund; Shihan, Mazen; Scheiner-Bobis, Georgios

    2016-08-01

    In the classical signaling pathway, testosterone regulates gene expression by activating the cytosolic/nuclear androgen receptor. In the non-classical pathway, testosterone activates cytosolic signaling cascades that are normally triggered by growth factors. The nature of the receptor involved in this signaling pathway is a source of controversy. In the Sertoli cell line 93RS2, which lacks the classical AR, we determined that testosterone stimulates the non-classical signaling pathway, characterized by the phosphorylation of Erk1/2 and transcription factors CREB and ATF-1. We also demonstrated that testosterone increases the expression of the tight junction (TJ) proteins claudin-1 and claudin-5. Both of these proteins are known to be essential constituents of TJs between Sertoli cells, and as a consequence of their increased expression transepithelial resistance across Sertoli cell monolayers is increased. ZIP9 is a Zn(2+)transporter that was recently shown to be a membrane-bound testosterone receptor. Silencing its expression in 93RS2 Sertoli cells by siRNA completely prevents Erk1/2, CREB, and ATF-1 phosphorylation as well the stimulation of claudin-1 and -5 expression and TJ formation between neighboring cells. The study presented here demonstrates for the first time that in Sertoli cells testosterone acts through the receptor ZIP9 to trigger the non-classical signaling cascade, resulting in increased claudin expression and TJ formation. Since TJ formation is a prerequisite for the maintenance of the blood-testis barrier, the testosterone/ZIP9 effects might be significant for male physiology. Further assessment of these interactions will help to supplement our knowledge concerning the mechanism by which testosterone plays a role in male fertility.

  4. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice.

    PubMed

    Yu, Q; Wang, Y; Chang, Q; Wang, J; Gong, S; Li, H; Lin, X

    2014-01-01

    Mutations in GJB2, which codes for the gap junction (GJ) protein connexin26 (Cx26), are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral (AAV) vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous Cx26 expression. We found extensive virally expressed Cx26 in cells lining the scala media, and intercellular GJ network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic Cx26 expression neither formed ectopic GJs nor affected normal hearing thresholds in wild-type (WT) mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously expressed Cx26 and govern the functional manifestation of them. Functional recovery of GJ-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally mediated gene therapy restored extensive GJ intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice.

  5. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    PubMed Central

    2012-01-01

    Background Exposure to particulate matter (PM) is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC) barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER) in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm). Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1) relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin). N-acetyl-cysteine (NAC, 5 mM) reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2), in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes. PMID:22931549

  6. Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater.

    PubMed

    Bagherie-Lachidan, Mazdak; Wright, Stephen I; Kelly, Scott P

    2009-05-01

    Genes encoding for claudin-8 and -27 tight junction proteins in the euryhaline puffer fish (Tetraodon nigroviridis) were identified using its recently sequenced genome. Phylogenetic analysis indicated that multiple genes encoding for claudin-8 proteins (designated Tncldn8a, Tncldn8b, Tncldn8c and Tncldn8d) arose by tandem gene duplication. In contrast, both tandem and whole genome duplication events appear to have generated genes encoding for claudin-27 proteins (designated Tncldn27a, Tncldn27b, Tncldn27c and Tncldn27d). Tncldn8 and Tncldn27 mRNA were widely distributed in Tetraodon, suggesting involvement in various physiological processes. All Tncldn8 and Tncldn27 genes were expressed in gill and skin tissue (i.e., epithelia exposed directly to the external environment). A potential role for claudin-8 and -27 proteins in the regulation of hydromineral balance in Tetraodon was investigated by examining alterations in mRNA abundance in select ionoregulatory tissue of fish acclimated to freshwater (FW) and seawater (SW). In FW or SW, Tetraodon exhibited alterations in Na(+)-K(+)-ATPase activity (a correlate of transcellular transport) typical of a euryhaline teleost fish. Simultaneously, tissue and gene specific alterations in Tncldn8 and Tncldn27 transcript abundance occurred. These data provide some insight into the duplication history of cldn8 and cldn27 genes in fishes and suggest a possible role for claudin-8 and -27 proteins in the osmoregulatory strategies of euryhaline teleosts.

  7. Phosphorylation of Connexin 50 by Protein Kinase A Enhances Gap Junction and Hemichannel Function*

    PubMed Central

    Liu, Jialu; Ek Vitorin, Jose F.; Weintraub, Susan T.; Gu, Sumin; Shi, Qian; Burt, Janis M.; Jiang, Jean X.

    2011-01-01

    Phosphorylation of connexins is an important mechanism regulating gap junction channels. However, the role(s) of connexin (Cx) phosphorylation in vivo are largely unknown. Here, we showed by mass spectrometry that Ser-395 in the C terminus of chicken Cx50 was phosphorylated in the lens. Ser-395 is located within a PKA consensus site. Analyses of Cx50 phosphorylation by two-dimensional thin layer chromatography tryptic phosphopeptide profiles suggested that Ser-395 was targeted by PKA in vivo. PKA activation increased both gap junction dye coupling and hemichannel dye uptake in a manner not involving increases in total Cx50 expression or relocation to the cell surface or gap junctional plaques. Single channel recordings indicated PKA enhanced transitions between the closed and ∼200-pS open state while simultaneously reducing transitions between this open state and a ∼65-pS subconductance state. The mutation of Ser-395 to alanine significantly attenuated PKA-induced increases in dye coupling and uptake by Cx50. However, channel records indicated that phosphorylation at this site was unnecessary for enhanced transitions between the closed and ∼200-pS conductance state. Together, these results suggest that Cx50 is phosphorylated in vivo by PKA at Ser-395 and that this event, although unnecessary for PKA-induced alterations in channel conductance, promotes increased dye permeability of Cx50 channels, which plays an important role in metabolic coupling and transport in lens fibers. PMID:21454606

  8. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    PubMed

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  9. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    PubMed Central

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2010-01-01

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains. PMID:19679145

  10. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    SciTech Connect

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  11. Interplay between tight junctions & adherens junctions.

    PubMed

    Campbell, Hannah K; Maiers, Jessica L; DeMali, Kris A

    2017-09-01

    Cell-cell adhesions are critical for the development and maintenance of tissues. Present at sites of cell-cell contact are the adherens junctions and tight junctions. The adherens junctions mediate cell-cell adhesion via the actions of nectins and cadherins. The tight junctions regulate passage of ions and small molecules between cells and establish cell polarity. Historically, the adherens and tight junctions have been thought of as discrete complexes. However, it is now clear that a high level of interdependency exists between the two junctional complexes. The adherens junctions and tight junctions are physically linked, by the zonula occludens proteins, and linked via signaling molecules including several polarity complexes and actin cytoskeletal modifiers. This review will first describe the individual components of both the adherens and tight junctions and then discuss the coupling of the two complexes with an emphasis on the signaling links and physical interactions between the two junctional complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  13. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  14. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis.

    PubMed

    Khan, Zahidul; Yaiw, Koon-Chu; Wilhelmi, Vanessa; Lam, Hoyin; Rahbar, Afsar; Stragliotto, Giuseppe; Söderberg-Nauclér, Cecilia

    2014-01-01

    A lack of gap junctional intercellular communication (GJIC) is common in cancer. Many oncogenic viruses have been shown to downregulate the junctional protein connexin 43 (Cx43) and reduce GJIC. Human cytomegalovirus (HCMV) is a ubiquitous, species-specific betaherpesvirus that establishes life-long latency after primary infection. It encodes two viral gene products, immediate early (IE) proteins IE1 and IE2, which are crucial in viral replication and pathogenesis of many diseases. Emerging evidence demonstrates that HCMV DNA and proteins are highly prevalent in glioblastoma multiforme (GBM) and in other tumors, but HCMV's role in tumorigenesis remains obscure. In the present study, we examined the effects of HCMV infection on Cx43 expression and GJIC as well as the viral mechanism mediating the effects in human GBM cells and tissue samples. We found that HCMV downregulated Cx43 protein, resulting in disruption of functional GJIC as assayed by fluorescent dye transfer assay. We show that both HCMV-IE72 and IE86 mediate downregulation of Cx43 by silencing RNA targeting either IE72 or IE86 coupled with ganciclovir. This finding was further validated by transfection with expression vectors encoding IE72 or IE86, and we show that viral-mediated Cx43 depletion involved proteasomal degradation. Importantly, we also observed that the Cx43 protein levels and IE staining correlated inversely in 10 human GBM tissue specimens. Thus, HCMV regulates Cx43 expression and GJIC, which may contribute to gliomagenesis.

  15. Analytic expression for the giant fieldlike spin torque in spin-filter magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Huang, Z.-W.; Huang, B.-H.

    2017-08-01

    We propose analytic expressions for fieldlike, T⊥, and spin-transfer, T∥, spin torque components in the spin-filter-based magnetic tunnel junction (SFMTJ), by using the single-band tight-binding model with the nonequilibrium Keldysh formalism. In consideration of multireflection processes between noncollinear magnetization of the spin-filter (SF) barrier and the ferromagnetic (FM) electrode, the central spin-selective SF barrier plays an active role in the striking discovery T⊥≫T∥ , which can be further identified by the unusual barrier thickness dependence of giant T⊥. Our general expressions reveal the sinusoidal angular dependence of both spin torque components, even in the presence of the SF barrier.

  16. CK2-dependent phosphorylation of occludin regulates the interaction with ZO-proteins and tight junction integrity.

    PubMed

    Dörfel, Max J; Westphal, Julie K; Bellmann, Christian; Krug, Susanne M; Cording, Jimmi; Mittag, Sonnhild; Tauber, Rudolf; Fromm, Michael; Blasig, Ingolf E; Huber, Otmar

    2013-06-10

    Casein kinase 2 (CK2) is a ubiquitously expressed Ser/Thr kinase with multiple functions in the regulation of cell proliferation and transformation. In targeting adherens and tight junctions (TJs), CK2 modulates the strength and dynamics of epithelial cell-cell contacts. Occludin previously was identified as a substrate of CK2, however the functional consequences of CK2-dependent occludin phosphorylation on TJ function were unknown. Here, we present evidence that phosphorylation of a Thr400-XXX-Thr404-XXX-Ser408 motif in the C-terminal cytoplasmic tail of human occludin regulates assembly/disassembly and barrier properties of TJs. In contrast to wildtype and T400A/T404A/S408A-mutated occludin, a phospho-mimetic Occ-T400E/T404E/S408E construct was impaired in binding to ZO-2. Interestingly, pre-phosphorylation of a GST-Occ C-terminal domain fusion protein attenuated binding to ZO-2, whereas, binding to ZO-1 was not affected. Moreover, Occ-T400E/T404E/S408E showed delayed reassembly into TJs in Ca2+-switch experiments. Stable expression of Occ-T400E/T404E/S408E in MDCK C11 cells augments barrier properties in enhancing paracellular resistance in two-path impedance spectroscopy, whereas expression of wildtype and Occ-T400A/T404A/S408A did not affect transepithelial resistance. These results suggest an important role of CK2 in epithelial tight junction regulation. The occludin sequence motif at amino acids 400-408 apparently represents a hotspot for Ser/Thr-kinase phosphorylation and depending on the residue(s) which are phosphorylated it differentially modulates the functional properties of the TJ.

  17. Molecular cloning and amino acid sequence of human plakoglobin, the common junctional plaque protein

    SciTech Connect

    Franke, W.W.; Goldschmidt, M.D.; Zimbelmann, R.; Mueller, H.M.; Schiller, D.L.; Cowin, P. )

    1989-06-01

    Plakoglobin is a major cytoplasmic protein that occurs in a soluble and a membrane-associated form and is the only known constituent common to the submembranous plaques of both kinds of adhering junctions, the desmosomes and the intermediate junctions. Using a partial cDNA clone for bovine plakoglobin, the authors isolated cDNAs encoding human plakoglobin, determined its nucleotide sequence, and deduced the complete amino acid sequence. The polypeptide encoded by the cDNA was synthesized by in vitro transcription and translation and identified by its comigration with authentic plakoglobin in two-dimensional gel electrophoresis. The identity was further confirmed by comparison of the deduced sequence with the directly determined amino acid sequence of two fragments from bovine plakoglobin. Analysis of the plakoglobin sequence showed the protein to be unrelated to any other known proteins, highly conserved between human and bovine tissues, and characterized by numerous changes between hydrophilic and hydrophobic sections. Only one kind of plakoglobin mRNA was found in most tissues, but an additional mRNA was detected in certain human tumor cell lines. This longer mRNA may be represented by a second type of plakoglobin cDNA, which contains an insertion of 297 nucleotides in the 3{prime} noncoding region.

  18. Nuclear localization of the tight junction protein ZO-2 in epithelial cells.

    PubMed

    Islas, Socorro; Vega, Jesús; Ponce, Lissette; González-Mariscal, Lorenza

    2002-03-10

    The tight junction constitutes the major barrier to solute and water flow through the paracellular space of epithelia and endothelia. It is formed by transmembrane proteins and submembranous molecules such as the MAGUKs ZOs. We have previously found that several MAGUKs, including those of the tight (ZO-1, ZO-2, and ZO-3) and septate junction (tamou and Dlg), contain one or two nuclear sorting signals located at their first PDZ and GK domains. Now we show that these proteins also contain a nuclear export signal and focus our study on the nuclear membrane shuttling of ZO-2. In sparse cultures this molecule concentrates at the nucleus in clusters, where it partially colocalizes with splicing factor SC35. Nuclear staining diminishes as the monolayer acquires confluence through a process sensitive to the nuclear export inhibitor leptomycin B. Nuclear localization can be induced by impairing cell-cell contacts, by mechanical injury. ZO-2 that shuttles from the cell periphery into the nucleus is not newly synthesized but originates from a preexistent pool. The movement of this protein is mediated by the actin cytoskeleton.

  19. Endocytosis of Epithelial Apical Junctional Proteins by a Clathrin-mediated Pathway into a Unique Storage Compartment

    PubMed Central

    Ivanov, Andrei I.; Nusrat, Asma; Parkos, Charles A.

    2004-01-01

    The adherens junction (AJ) and tight junction (TJ) are key regulators of epithelial polarity and barrier function. Loss of epithelial phenotype is accompanied by endocytosis of AJs and TJs via unknown mechanisms. Using a model of calcium depletion, we defined the pathway of internalization of AJ and TJ proteins (E-cadherin, p120 and β-catenins, occludin, JAM-1, claudins 1 and 4, and ZO-1) in T84 epithelial cells. Proteinase protection assay and immunocytochemistry revealed orchestrated internalization of AJs and TJs into a subapical cytoplasmic compartment. Disruption of caveolae/lipid rafts did not prevent endocytosis, nor did caveolin-1 colocalize with internalized junctional proteins. Furthermore, AJ and TJ proteins did not colocalize with the macropinocytosis marker dextran. Inhibitors of clathrin-mediated endocytosis blocked internalization of AJs and TJs, and junctional proteins colocalized with clathrin and α-adaptin. AJ and TJ proteins were observed to enter early endosomes followed by movement to organelles that stained with syntaxin-4 but not with markers of late and recycling endosomes, lysosomes, or Golgi. These results indicate that endocytosis of junctional proteins is a clathrin-mediated process leading into a unique storage compartment. Such mechanisms may mediate the disruption of intercellular contacts during normal tissue remodeling and in pathology. PMID:14528017

  20. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  1. An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction.

    PubMed

    Winther, Åsa M E; Vorontsova, Olga; Rees, Kathryn A; Näreoja, Tuomas; Sopova, Elena; Jiao, Wei; Shupliakov, Oleg

    2015-11-04

    Many endocytic proteins accumulate in the reserve pool of synaptic vesicles (SVs) in synapses and relocalize to the endocytic periactive zone during neurotransmitter release. Currently little is known about their functions outside the periactive zone. Here we show that in the Drosophila neuromuscular junction (NMJ), the endocytic scaffolding protein Dap160 colocalizes during the SV cycle and forms a functional complex with the SV-associated phosphoprotein synapsin, previously implicated in SV clustering. This direct interaction is strongly enhanced under phosphorylation-promoting conditions and is essential for proper localization of synapsin at NMJs. In a dap160 rescue mutant lacking the interaction between Dap160 and synapsin, perturbed reclustering of SVs during synaptic activity is observed. Our data indicate that in addition to the function in endocytosis, Dap160 is a component of a network of protein-protein interactions that serves for clustering of SVs in conjunction with synapsin. During the SV cycle, Dap160 interacts with synapsin dispersed from SVs and helps direct synapsin back to vesicles. The proteins function in synergy to achieve efficient clustering of SVs in the reserve pool. We provide the first evidence for the function of the SH3 domain interaction in synaptic vesicle (SV) organization at the synaptic active zone. Using Drosophila neuromuscular junction as a model synapse, we describe the molecular mechanism that enables the protein implicated in SV clustering, synapsin, to return to the pool of vesicles during neurotransmitter release. We also identify the endocytic scaffolding complex that includes Dap160 as a regulator of the events linking exocytosis and endocytosis in synapses. Copyright © 2015 the authors 0270-6474/15/3514756-15$15.00/0.

  2. Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression.

    PubMed

    Peng, Shaomin; Wang, Shao-Bin; Singh, Deepti; Zhao, Peter Y C; Davis, Katherine; Chen, Bo; Adelman, Ron A; Rizzolo, Lawrence J

    2016-10-01

    Mutations of claudin-19 cause severe ocular deficits that are not easily reconciled with its role in regulating the outer blood retinal barrier. ARPE-19 is a widely used culture model of the retinal pigment epithelium (RPE). ARPE-19 is unique among epithelial cell lines, because it expresses all tight junction proteins except claudin family members. ARPE-19 also loses aspects of the RPE phenotype with cell passage. This study asks whether exogenous expression of the main RPE claudins, claudin-3 and claudin-19, would restore RPE phenotype, and whether these claudins have distinct roles in RPE. An Ussing chamber was used to measure the transepithelial electrical resistance and transepithelial electrical potential. These measurements were used to estimate the permeability co-efficients of ions. The transepithelial diffusion of polyethylene glycols were used to examine the leak pathway of tight junctions. Wound-healing, quantitative RT-PCR and immunoblotting examined diverse aspects of the RPE phenotype. Over-expression of either claudin decreased the permeability of small ions and polyethylene glycol. Both claudins were slightly cation-specific, but claudin-3 was less permeable to large solutes. Claudin expression widely affected gene expression to partially restore RPE phenotype. Claudins redistributed filamentous actin from stress fibers to circumferential bands associated with tight junctions, and made wound-healing more epithelial-like. Both claudins increased the expression of genes related to RPE core functions and increased steady-state levels of phosphorylated-AKT. In conclusion, claudin-3 and claudin-19 formed general permeability barriers and affected cell morphology, proliferation, migration, AKT signaling, and gene expression. When claudins are exogenously expressed, ARPE-19 more closely model native RPE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Aberrant expression of Cx43 is associated with the peritoneal metastasis of gastric cancer and Cx43-mediated gap junction enhances gastric cancer cell diapedesis from peritoneal mesothelium.

    PubMed

    Tang, Bo; Peng, Zhi-hong; Yu, Pei-wu; Yu, Ge; Qian, Feng; Zeng, Dong-zhu; Zhao, Yong-liang; Shi, Yan; Hao, Ying-xue; Luo, Hua-xing

    2013-01-01

    The process of peritoneal metastasis involves the diapedesis of intra-abdominal exfoliated gastric cancer cells through the mesothelial cell monolayers; however, the related molecular mechanisms for this process are still unclear. Heterocellular gap-junctional intercellular communication (GJIC) between gastric cancer cells and mesothelial cells may play an active role during diapedesis. In this study we detected the expression of connexin 43 (Cx43) in primary gastric cancer tissues, intra-abdominal exfoliated cancer cells, and matched metastatic peritoneal tissues. We found that the expression of Cx43 in primary gastric cancer tissues was significantly decreased; the intra-abdominal exfoliated cancer cells and matched metastatic peritoneal tissues exhibited increasing expression compared with primary gastric cancer tissues. BGC-823 and SGC-7901 human gastric cancer cells were engineered to express Cx43 or Cx43T154A (a mutant protein that only couples gap junctions but provides no intercellular communication) and were co-cultured with human peritoneal mesothelial cells (HPMCs). Heterocellular GJIC and diapedesis through HPMC monolayers on matrigel-coated coverslips were investigated. We found that BGC-823 and SGC-7901 gastric cancer cells expressing Cx43 formed functional heterocellular gap junctions with HPMC monolayers within one hour. A significant increase in diapedesis was observed in engineered Cx43-expressing cells compared with Cx43T154A and control group cells, which suggested that the observed upregulation of diapedesis in Cx43-expressing cells required heterocellular GJIC. Further study revealed that the gastric cancer cells transmigrated through the intercellular space between the mesothelial cells via a paracellular route. Our results suggest that the abnormal expression of Cx43 plays an essential role in peritoneal metastasis and that Cx43-mediated heterocellular GJIC between gastric cancer cells and mesothelial cells may be an important regulatory

  4. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma

    PubMed Central

    Naz, Anam; Obaid, Ayesha; Awan, Faryal M.; Ikram, Aqsa; Ahmad, Jamil; Ali, Amjad

    2017-01-01

    Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells. PMID:28932213

  5. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma.

    PubMed

    Naz, Anam; Obaid, Ayesha; Awan, Faryal M; Ikram, Aqsa; Ahmad, Jamil; Ali, Amjad

    2017-01-01

    Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

  6. Utilizing Ultrasound to Transiently Increase Blood-Brain Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter Cytoskeletal Structure.

    PubMed

    Bae, Mi Jung; Lee, Young Mi; Kim, Yeoun Hee; Han, Hyung Soo; Lee, Hak Jong

    2015-01-01

    The central nervous system is protected by the blood-brain barrier (BBB). The tight junction (TJ) proteins claudin-5 and zonula occludens-1 (ZO-1) as well as the cytoskeletal component F-actin play key roles in maintaining homeostasis of the BBB. Increases in BBB permeability may be beneficial for the delivery of pharmacological substances into the brain. Therefore, here, we assessed the use of ultrasound to induce transient enhancement of BBB permeability. We used fluorescein isothiocyanate (FITC)-dextran 40 to detect changes in the membrane permeability of bEnd.3 cells during ultrasound treatment. Ultrasound increased FITC-dextran 40 uptake into bEnd.3 cells for 2-6 h after treatment; however, normal levels returned after 24 h. An insignificant increase in lactate dehydrogenase (LDH) leakage also occurred 3 and 6 h after ultrasound treatment, whereas at 24 h, LDH leakage was indistinguishable between the control and treatment groups. Expression of claudin-5, ZO-1, and F-actin at the messenger RNA (mRNA) and protein levels was assessed with real-time polymerase chain reaction and western blotting. Ultrasound induced a transient decrease in claudin-5 mRNA and protein expression within 2 h of treatment; however, no significant changes in ZO-1 and F-actin expression were observed. Claudin-5, ZO-1, and F-actin immunofluorescence demonstrated that the cellular structures incorporating these proteins were transiently impaired by ultrasound. In conclusion, our ultrasound technique can temporarily increase BBB permeability without cytotoxicity to exposed cells, and the method can be exploited in the delivery of drugs to the brain with minimal damage.

  7. Enhanced expression of Cx43 and gap junction communication in vascular smooth muscle cells of spontaneously hypertensive rats

    PubMed Central

    Wang, Li-Jie; Liu, Wei-Dong; Zhang, Liang; Ma, Ke-Tao; Zhao, Lei; Shi, Wen-Yan; Zhang, Wen-Wen; Wang, Ying-Zi; Li, Li; Si, Jun-Qiang

    2016-01-01

    Niflumic acid (NFA) is a novel gap junction (GJ) inhibitor. The aim of the present study was to investigate the effect of NFA on GJ communication and the expression of connexin (Cx) in vascular smooth muscle cells (VSMCs) of mesenteric arterioles of spontaneously hypertensive rats (SHR). Whole-cell patch clamp recording demonstrated that NFA at 1×10–4 M significantly inhibited the inward current and its effect was reversible. The time for charging and discharging of cell membrane capacitance (Cinput) reduced from 9.73 to 0.48 ms (P<0.05; n=6). Pressure myograph measurement showed that NFA at 3×10-4 M fully neutralized the contraction caused by phenylephrine. The relaxation responses of normotensive control Wistar Kyoto (WKY) rats were significantly higher, compared with those of the SHRs (P<0.05; n=6). Western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the mRNA and protein expression levels of Cx43 of the third-level branch of mesenteric arterioles of the SHRs and WKY rats were higher, compared with those of the first-level branch. The mRNA and protein expression levels of Cx43 of the primary and third-level branches of the mesenteric arterioles in the SHRs were higher, compared with those in the WKY rats (P<0.05; n=6). The mRNA levels of Cx43 in the mesenteric arterioles were significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). The protein levels of Cx43 in primary cultured VSMCs isolated from the mesenteric arterioles were also significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). These results showed that the vasorelaxatory effects of GJ inhibitors were reduced in the SHRs, which was associated with a higher protein expression level of Cx43 in the mesenteric arterioles of the SHRs. NFA also relaxed the mesenteric arterioles by reducing the expression of Cx43, which decreased blood pressure. Therefore, regulation of the expression of GJs may be a

  8. Localization of dystrophin and dystrophin-related protein at the electromotor synapse and neuromuscular junction in Torpedo marmorata.

    PubMed

    Cartaud, A; Ludosky, M A; Tomé, F M; Collin, H; Stetzkowski-Marden, F; Khurana, T S; Kunkel, L M; Fardeau, M; Changeux, J P; Cartaud, J

    1992-06-01

    The immunological identification of dystrophin isoforms at the neuromuscular junction and Torpedo marmorata electromotor synapse was attempted using various antibodies. A polyclonal antibody raised against electrophoretically purified dystrophin from T. marmorata electrocyte has been thoroughly investigated. This antibody recognized dystrophin in the electric tissue as well as sarcolemmal and synaptic neuromuscular junction dystrophin in all studies species (T. marmorata, rat, mice and human) at serum dilutions as high as 1:10,000. At variance, no staining of either the sarcolemma or neuromuscular junction was observed in Duchenne muscular dystrophy or mdx mice skeletal muscles. In these muscles, other members of the dystrophin superfamily, in particular the dystrophin-related protein(s) encoded by autosomal genes are present. These data thus demonstrate the specificity of our antibodies for dystrophin. Anti-dystrophin-related protein antibodies [Khurana et al. (1991) Neuromusc. Disorders 1, 185-194] which gave a strong immunostaining of the neuromuscular junction in various species, including T. marmorata, cross-reacted weakly with the postsynaptic membrane of the electrocyte. Taken together, these observations are in favor of the existence of a protein very homologous to dystrophin at the electromotor synapse in T. marmorata, whereas both dystrophin and dystrophin-related protein co-localize at the neuromuscular junction as in all species studied. The electrocyte thus offers the unique opportunity to study the interaction of dystrophin with components of the postsynaptic membrane.

  9. Expression of Tight Junction Components in Hepatocyte-Like Cells Differentiated from Human Embryonic Stem Cells.

    PubMed

    Erdélyi-Belle, Boglárka; Török, György; Apáti, Ágota; Sarkadi, Balázs; Schaff, Zsuzsa; Kiss, András; Homolya, László

    2015-09-01

    Human embryonic stem cells can be differentiated in vitro into a wide variety of progeny cells by addition of different morphogens and growth factors. Our aim was to monitor the expression pattern of tight junction (TJ) components and various cellular markers during differentiation of stem cell lines toward the hepatic lineage. Human embryonic stem cell lines (HUES1, HUES9) were differentiated into endoderm-like cells, and further differentiated to hepatocyte-like cells. Gene expressions of Oct3/4, Nanog, alpha-fetoprotein, albumin, cytokeratins (CK-7, CK-8, CK-18, CK-19), ATP-binding cassette (ABC) transporters (ABCC2, ABCC7, ABCG2), and various TJ components, including claudin-1, claudin-4, claudin-5, claudin-7, and tricellulin, as well as an extracellular matrix component, agrin were monitored during hepatic differentiation by real-time quantitative PCR. The differentiated cells exhibit epithelial morphology and functional assessments similar to that of hepatocytes. The expression level of stem cell marker genes (Oct3/4 and Nanog) significantly and gradually decreased, while liver-associated genes (alpha-fetoprotein, albumin) reached their highest expression at the end of the differentiation. The endoderm-like cells expressed claudin-1, which declined eventually. The expression levels of cholangiocyte markers including claudin-4, CK-7, CK-19, and agrin gradually increased and reached their highest level at the final stage of differentiation. In contrast, these cells did not express notable level of claudin-7, CK-8 and tricellulin. The marker set used for monitoring differentiation revealed both hepatocyte and cholangiocyte characteristics of the differentiated cells at the final stage. This is the first report describing the expression level changes of various TJ components, and underlining their importance in hepatic differentiation.

  10. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells.

    PubMed

    Kudva, Indira T; Griffin, Robert W; Krastins, Bryan; Sarracino, David A; Calderwood, Stephen B; John, Manohar

    2012-06-12

    In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new targets for more efficacious anti

  11. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

    PubMed Central

    2012-01-01

    Background In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. Results Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. Conclusion Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new

  12. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions.

    PubMed

    Krivega, M; Geens, M; Van de Velde, H

    2014-11-01

    Coxsackie virus and adenovirus receptor, CXADR (CAR), is present during embryogenesis and is involved in tissue regeneration, cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells, from the cleavage stage up to the precursor epiblast, and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane, involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells, and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts, CAR was reduced in the membrane and concentrated in the nucleus, which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus, corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage, the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types, such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.

  13. Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Drosophila melanogaster

    PubMed Central

    Choudhury, Subhendu Roy; Singh, Anand K; McLeod, Tina; Blanchette, Marco; Jang, Boyun; Badenhorst, Paul; Kanhere, Aditi; Brogna, Saverio

    2016-01-01

    Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on Drosophila polytene chromosomes. Additionally, Y14 ChIP-seq demonstrates that association with transcribed genes is also splicing-independent in Drosophila S2 cells. The association of the EJC proteins with nascent transcripts does not require CWC22 and that of Y14 and MAGO is independent of eIF4AIII. We also show that eIF4AIII associates with both polysomal and monosomal RNA in S2 cell extracts, whereas Y14 and MAGO fractionate separately. Cumulatively, our data indicate a global role of eIF4AIII in gene expression, which would be independent of Y14 and MAGO, splicing, and of the EJC, as currently understood. DOI: http://dx.doi.org/10.7554/eLife.19881.001 PMID:27879206

  14. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions.

    PubMed

    Cejka, Petr; Kowalczykowski, Stephen C

    2010-03-12

    The highly conserved RecQ family of DNA helicases has multiple roles in the maintenance of genome stability. Sgs1, the single RecQ homologue in Saccharomyces cerevisiae, acts both early and late during homologous recombination. Here we present the expression, purification, and biochemical analysis of full-length Sgs1. Unlike the truncated form of Sgs1 characterized previously, full-length Sgs1 binds diverse single-stranded and double-stranded DNA substrates, including DNA duplexes with 5'- and 3'-single-stranded DNA overhangs. Similarly, Sgs1 unwinds a variety of DNA substrates, including blunt-ended duplex DNA. Significantly, a substrate containing a Holliday junction is unwound most efficiently. DNA unwinding is catalytic, requires ATP, and is stimulated by replication protein A. Unlike RecQ homologues from multicellular organisms, Sgs1 is remarkably active at picomolar concentrations and can efficiently unwind duplex DNA molecules as long as 23,000 base pairs. Our analysis shows that Sgs1 resembles Escherichia coli RecQ protein more than any of the human RecQ homologues with regard to its helicase activity. The full-length recombinant protein will be invaluable for further investigation of Sgs1 biochemistry.

  15. Clostridium difficile Toxins Disrupt Epithelial Barrier Function by Altering Membrane Microdomain Localization of Tight Junction Proteins

    PubMed Central

    Nusrat, A.; von Eichel-Streiber, C.; Turner, J. R.; Verkade, P.; Madara, J. L.; Parkos, C. A.

    2001-01-01

    The anaerobic bacterium Clostridium difficile is the etiologic agent of pseudomembranous colitis. C. difficile toxins TcdA and TcdB are UDP-glucosyltransferases that monoglucosylate and thereby inactivate the Rho family of GTPases (W. P. Ciesla, Jr., and D. A. Bobak, J. Biol. Chem. 273:16021–16026, 1998). We utilized purified reference toxins of C. difficile, TcdA-10463 (TcdA) and TcdB-10463 (TcdB), and a model intestinal epithelial cell line to characterize their influence on tight-junction (TJ) organization and hence to analyze the mechanisms by which they contribute to the enhanced paracellular permeability and disease pathophysiology of pseudomembranous colitis. The increase in paracellular permeability induced by TcdA and TcdB was associated with disorganization of apical and basal F-actin. F-actin restructuring was paralleled by dissociation of occludin, ZO-1, and ZO-2 from the lateral TJ membrane without influencing the subjacent adherens junction protein, E-cadherin. In addition, we observed decreased association of actin with the TJ cytoplasmic plaque protein ZO-1. Differential detergent extraction and fractionation in sucrose density gradients revealed TcdB-induced redistribution of occludin and ZO-1 from detergent-insoluble fractions constituting “raft-like” membrane microdomains, suggesting an important role of Rho proteins in maintaining the association of TJ proteins with such microdomains. These toxin-mediated effects on actin and TJ structure provide a mechanism for early events in the pathophysiology of pseudomembranous colitis. PMID:11179295

  16. Claudins and the Modulation of Tight Junction Permeability

    PubMed Central

    Günzel, Dorothee

    2013-01-01

    Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions. PMID:23589827

  17. A Gap Junction Protein, Inx2, Modulates Calcium Flux to Specify Border Cell Fate during Drosophila oogenesis.

    PubMed

    Sahu, Aresh; Ghosh, Ritabrata; Deshpande, Girish; Prasad, Mohit

    2017-01-01

    Intercellular communication mediated by gap junction (GJ) proteins is indispensable during embryogenesis, tissue regeneration and wound healing. Here we report functional analysis of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogenesis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs), a migratory cell type, whose identity is determined by the cell autonomous STAT activity. We show that Inx2 influences BC fate specification by modulating STAT activity via Domeless receptor endocytosis. Furthermore, detailed experimental analysis has uncovered that Inx2 also regulates a calcium flux that transmits across the follicle cells. We propose that Inx2 mediated calcium flux in the follicle cells stimulates endocytosis by altering Dynamin (Shibire) distribution which is in turn critical for careful calibration of STAT activation and, thus for BC specification. Together our data provide unprecedented molecular insights into how gap junction proteins can regulate cell-type specification.

  18. A Gap Junction Protein, Inx2, Modulates Calcium Flux to Specify Border Cell Fate during Drosophila oogenesis

    PubMed Central

    Ghosh, Ritabrata; Deshpande, Girish

    2017-01-01

    Intercellular communication mediated by gap junction (GJ) proteins is indispensable during embryogenesis, tissue regeneration and wound healing. Here we report functional analysis of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogenesis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs), a migratory cell type, whose identity is determined by the cell autonomous STAT activity. We show that Inx2 influences BC fate specification by modulating STAT activity via Domeless receptor endocytosis. Furthermore, detailed experimental analysis has uncovered that Inx2 also regulates a calcium flux that transmits across the follicle cells. We propose that Inx2 mediated calcium flux in the follicle cells stimulates endocytosis by altering Dynamin (Shibire) distribution which is in turn critical for careful calibration of STAT activation and, thus for BC specification. Together our data provide unprecedented molecular insights into how gap junction proteins can regulate cell-type specification. PMID:28114410

  19. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model

    PubMed Central

    2011-01-01

    Background Hematopoietic stem cell transplantation is increasingly performed for hematologic diseases. As a major side effect, acute graft versus host disease (GvHD) with serious gastrointestinal symptoms including diarrhea, gastrointestinal bleeding and high mortality can be observed. Because surveillance and biopsies of human gastrointestinal GvHD are difficult to perform, rare information of the alterations of the gastrointestinal barrier exists resulting in a need for systematic animal models. Methods To investigate the effects of GvHD on the intestinal barrier of the small intestine we utilized an established acute semi allogenic GvHD in C57BL/6 and B6D2F1 mice. Results By assessing the differential uptake of lactulose and mannitol in the jejunum, we observed an increased paracellular permeability as a likely mechanism for disturbed intestinal barrier function. Electron microscopy, immunohistochemistry and PCR analysis indicated profound changes of the tight-junction complex, characterized by downregulation of the tight junction protein occludin without any changes in ZO-1. Furthermore TNF-α expression was significantly upregulated. Conclusions This analysis in a murine model of GvHD of the small intestine demonstrates serious impairment of intestinal barrier function in the jejunum, with an increased permeability and morphological changes through downregulation and localization shift of the tight junction protein occludin. PMID:21977944

  20. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone.

    PubMed

    Balla, Peter; Maros, Mate Elod; Barna, Gabor; Antal, Imre; Papp, Gergo; Sapi, Zoltan; Athanasou, Nicholas Anthony; Benassi, Maria Serena; Picci, Pierro; Krenacs, Tibor

    2015-01-01

    Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in

  1. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice.

    PubMed

    Oguro, K; Jover, T; Tanaka, H; Lin, Y; Kojima, T; Oguro, N; Grooms, S Y; Bennett, M V; Zukin, R S

    2001-10-01

    Gap junctions are conductive channels that connect the interiors of coupled cells. In the hippocampus, GABA-containing hippocampal interneurons are interconnected by gap junctions, which mediate electrical coupling and synchronous firing and thereby promote inhibitory transmission. The present study was undertaken to examine the hypothesis that the gap junctional proteins connexin 32 (Cx32; expressed by oligodendrocytes, interneurons, or both), Cx36 (expressed by interneurons), and Cx43 (expressed by astrocytes) play a role in defining cell-specific patterns of neuronal death in hippocampus after global ischemia in mice. Global ischemia did not significantly alter Cx32 and Cx36 mRNA expression and slightly increased Cx43 mRNA expression in the vulnerable CA1, as assessed by Northern blot analysis and in situ hybridization. Global ischemia induced a selective increase in Cx32 and Cx36 but not Cx43 protein abundance in CA1 before onset of neuronal death, as assessed by Western blot analysis. The increase in Cx32 and Cx36 expression was intense and specific to parvalbumin-positive inhibitory interneurons of CA1, as assessed by double immunofluorescence. Protein abundance was unchanged in CA3 and dentate gyrus. The finding of increase in connexin protein without increase in mRNA suggests regulation of Cx32 and Cx36 expression at the translational or post-translational level. Cx32(Y/-) null mice exhibited enhanced vulnerability to brief ischemic insults, consistent with a role for Cx32 gap junctions in neuronal survival. These findings suggest that Cx32 and Cx36 gap junctions may contribute to the survival and resistance of GABAergic interneurons, thereby defining cell-specific patterns of global ischemia-induced neuronal death.

  2. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain

    PubMed Central

    Mullier, Amandine; Bouret, Sébastien G.; Prevot, Vincent; Dehouck, Bénédicte

    2010-01-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we report on our use of immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1 and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties. PMID:20127760

  3. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain.

    PubMed

    Mullier, Amandine; Bouret, Sebastien G; Prevot, Vincent; Dehouck, Bénédicte

    2010-04-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties.

  4. The gap junctional protein INX-14 functions in oocyte precursors to promote C. elegans sperm guidance

    PubMed Central

    Edmonds, Johnathan W.; McKinney, Shauna L.; Prasain, Jeevan K.; Miller, Michael A.

    2011-01-01

    Innexins are the subunits of invertebrate gap junctions. Here we show that the innexin INX-14 promotes sperm guidance to the fertilization site in the C. elegans hermaphrodite reproductive tract. inx-14 loss causes cell nonautonomous defects in sperm migration velocity and directional velocity. Results from genetic and immunocytochemical analyses provide strong evidence that INX-14 acts in transcriptionally active oocyte precursors in the distal gonad, not in transcriptionally inactive oocytes that synthesize prostaglandin sperm-attracting cues. Somatic gonadal sheath cell interaction is necessary for INX-14 function, likely via INX-8 and INX-9 expressed in sheath cells. However, electron microscopy has not identified gap junctions in oocyte precursors, suggesting that INX-14 acts in a channel-independent manner or INX-14 channels are difficult to document. INX-14 promotes prostaglandin signaling to sperm at a step after F-series prostaglandin synthesis in oocytes. Taken together, our results support the model that INX-14 functions in a somatic gonad/germ cell signaling mechanism essential for sperm function. We propose that this mechanism regulates the transcription of a factor(s) that modulates prostaglandin metabolism, transport, or activity in the reproductive tract. PMID:21889935

  5. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction

    PubMed Central

    Van Itallie, Christina M.; Tietgens, Amber Jean; Krystofiak, Evan; Kachar, Bechara; Anderson, James M.

    2015-01-01

    Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin. PMID:26063734

  6. Effect of FCCP on tight junction permeability and cellular distribution of ZO-1 protein in epithelial (MDCK) cells.

    PubMed

    Li, C X; Poznansky, M J

    1990-12-14

    The effect of the uncoupler of oxidative phosphorylation, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), on the tight junction of Madin-Darby canine kidney cells was examined. FCCP induced an abrupt decrease in the transepithelial electrical resistance of the confluent monolayers over a period of 20 s. When FCCP was withdrawn from the incubation medium, the monolayer resistance recovered to close to the original level in less than 2 h. Staining of the tight junction-associated protein ZO-1 showed that the changes in transepithelial electrical resistance were accompanied by a diffusing of the protein away from cell peripheries and a reconcentration to the tight junction areas following resistance recovery. Intracellular pH was decreased by FCCP on a similar time-scale with no obvious changes in ATP levels over this time-course. These data suggest that the uncoupler FCCP has a profound effect on tight junction permeability and cellular distribution of the tight junction protein ZO-1 in the epithelial cells and that it probably acts by breaking down proton gradients and altering intracellular pH.

  7. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  8. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1

    PubMed Central

    Deng, Xiao; Zhang, Jun; Liu, Yan; Chen, Linmu; Yu, Chao

    2017-01-01

    Endothelial dysfunction and monocyte adhesion to vascular endothelial cells are two critical steps in atherosclerosis development, and emerging evidence suggests that protein sialylation is involved in these processes. However, the mechanism underlying this phenomenon remains incompletely elucidated. In this study, we demonstrated that treatment with the proinflammatory cytokine TNF-α disrupted vascular endothelial cell-cell tight junctions and promoted monocyte endothelial cell adhesion. Western blotting and Sambucus nigra lectin (SNA) blotting analyses revealed that TNF-α treatment decreased α-2, 6-sialic acid transferase 1 (ST6Gal-I) levels and downregulated VE-Cadherin α-2, 6 sialylation. Further analysis demonstrated that TNF-α treatment upregulated β-site amyloid precursor protein enzyme 1 (BACE1) expression, thus resulting in sequential ST6Gal-I proteolytic degradation. Furthermore, our results revealed that PKC signaling cascades were involved in TNF-α-induced BACE1 upregulation. Together, these results indicated that the proinflammatory cytokine TNF-α impairs endothelial tight junctions and promotes monocyte-endothelial cell adhesion by upregulating BACE1 expression through activating PKC signaling and sequentially cleaving ST6Gal-I. Thus, inhibition of BACE1 expression may be a new approach for treating atherosclerosis. PMID:28091531

  9. Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos.

    PubMed Central

    Ben Aziz-Aloya, R; Seidman, S; Timberg, R; Sternfeld, M; Zakut, H; Soreq, H

    1993-01-01

    We have employed Xenopus embryos to express human acetylcholinesterase (AcChoEase; EC 3.1.1.7) in developing synapses. Transcription of AcChoEase mRNA was driven by a 2.2-kb sequence upstream from the initiator AUG in the ACHE gene encoding AcChoEase, with multiple potential sites for binding universal and tissue-specific transcription factors. These included clustered MyoD elements, E-box, SP1, EGR1, AP-2, and the development-related GAGA motif. A DNA construct composed of this sequence linked to a 2.1-kb sequence encoding human AcChoEase was designated human AcChoEase promoter-reporter (HpACHE). HpACHE but none of its several 5'-truncated derivatives was transcriptionally active in developing Xenopus embryos. Furthermore, PCR analysis using chimeric PCR primers revealed usage of the same 1.5-kb intron and 74-bp exon within the HpACHE sequence in microinjected embryos and various human tissues. Cytochemical staining revealed conspicuous accumulation of overexpressed AcChoEase in neuromuscular junctions and within muscle fibers of apparently normal 2-day Xenopus embryos injected with HpACHE. The same reporter driven by the cytomegalovirus promoter was similarly efficient in directing the heterologous human enzyme toward neuromuscular junctions, attributing the evolutionary conservation of AcChoEase targeting to the coding sequence. Our findings demonstrate that a short DNA sequence is sufficient to promote the exogenous transcription and faithful splicing of human AcChoEase mRNA in developing Xenopus embryos and foreshadow their use for integrative studies of cholinergic signaling and synapse formation. Images Fig. 2 Fig. 3 Fig. 4 PMID:8460160

  10. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation

    PubMed Central

    Kariya, Shingo; Obis, Teresa; Garone, Caterina; Akay, Turgay; Sera, Fusako; Iwata, Shinichi; Homma, Shunichi; Monani, Umrao R.

    2014-01-01

    Spinal muscular atrophy is a common motor neuron disease caused by low survival motoneuron (SMN), a key protein in the proper splicing of genes. Restoring the protein is therefore a promising therapeutic strategy. Implementation of this strategy, however, depends on defining the temporal requirements for SMN. Here, we used controlled knockdown of SMN in transgenic mice to determine the precise postnatal stage requirements for this protein. Reducing SMN in neonatal mice resulted in a classic SMA-like phenotype. Unexpectedly, depletion of SMN in adults had relatively little effect. Insensitivity to low SMN emerged abruptly at postnatal day 17, which coincided with establishment of the fully mature neuromuscular junction (NMJ). Mature animals depleted of SMN eventually exhibited evidence of selective neuromuscular pathology that was made worse by traumatic injury. The ability to regenerate the mature NMJ in aged or injured SMN-depleted mice was grossly impaired, a likely consequence of the inability to meet the surge in demand for motoneuronal SMN that was seen in controls. Our results demonstrate that relative maturity of the NMJ determines the temporal requirement for the SMN protein. These observations suggest that the use of potent but potentially deleterious SMN-enhancing agents could be tapered in human patients once the neuromuscular system matures and reintroduced as needed to enhance SMN for remodeling aged or injured NMJs. PMID:24463453

  11. Connexin Type and Fluorescent Protein Fusion Tag Determine Structural Stability of Gap Junction Plaques*

    PubMed Central

    Stout, Randy F.; Snapp, Erik Lee; Spray, David C.

    2015-01-01

    Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes. PMID:26265468

  12. Microtubule-assisted altered trafficking of astrocytic gap junction protein connexin 43 is associated with depletion of connexin 47 during mouse hepatitis virus infection.

    PubMed

    Basu, Rahul; Bose, Abhishek; Thomas, Deepthi; Das Sarma, Jayasri

    2017-09-08

    Gap junctions (GJs) are important for maintenance of CNS homeostasis. GJ proteins, connexin 43 (Cx43) and connexin 47 (Cx47), play a crucial role in production and maintenance of CNS myelin. Cx43 is mainly expressed by astrocytes in the CNS and forms gap junction intercellular communications between astrocytes-astrocytes (Cx43-Cx43) and between astrocytes-oligodendrocytes (Cx43-Cx47). Mutations of these connexin (Cx) proteins cause dysmyelinating diseases in humans. Previously, it has been shown that Cx43 localization and expression is altered due to mouse hepatitis virus (MHV)-A59 infection both in vivo and in vitro; however, its mechanism and association with loss of myelin protein was not elaborated. Thus, we explored potential mechanisms by which MHV-A59 infection alters Cx43 localization and examined the effects of viral infection on Cx47 expression and its association with loss of the myelin marker proteolipid protein. Immunofluorescence and total internal reflection fluorescence microscopy confirmed that MHV-A59 used microtubules (MTs) as a conduit to reach the cell surface and restricted MT-mediated Cx43 delivery to the cell membrane. Co-immunoprecipitation experiments demonstrated that Cx43-β-tubulin molecular interaction was depleted due to protein-protein interaction between viral particles and MTs. During acute MHV-A59 infection, oligodendrocytic Cx47, which is mainly stabilized by Cx43 in vivo, was down-regulated, and its characteristic staining remained disrupted even at chronic phase. The loss of Cx47 was associated with loss of proteolipid protein at the chronic stage of MHV-A59 infection. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Long-range Neural and Gap Junction Protein-mediated Cues Control Polarity During Planarian Regeneration

    PubMed Central

    Oviedo, Néstor J.; Morokuma, Junji; Walentek, Peter; Kema, Ido P.; Gu, Man Bock; Ahn, Joo-Myung; Hwang, Jung Shan; Gojobori, Takashi; Levin, Michael

    2010-01-01

    SUMMARY Having the ability to coordinate the behavior of stem cells to induce regeneration of specific large-scale structures would have far reaching consequences in the treatment of degenerative diseases, acute injury, and aging. Thus, identifying and learning to manipulate the sequential steps that determine the fate of new tissue within the overall morphogenetic program of the organism is fundamental. We identified novel early signals, mediated by the central nervous system and 3 innexin proteins, which determine the fate and axial polarity of regenerated tissue in planarians. Modulation of gap junction-dependent and neural signals specifically induces ectopic anterior regeneration blastemas in posterior and lateral wounds. These ectopic anterior blastemas differentiate new brains that establish permanent primary axes re-established during subsequent rounds of unperturbed regeneration. These data reveal powerful novel controls of pattern formation and suggest a constructive model linking nervous inputs and polarity determination in early stages of regeneration. PMID:20026026

  14. Protein structure protection commits gene expression patterns.

    PubMed

    Chen, Jianping; Liang, Han; Fernández, Ariel

    2008-01-01

    Gene co-expressions often determine module-defining spatial and temporal concurrences of proteins. Yet, little effort has been devoted to tracing coordinating signals for expression correlations to the three-dimensional structures of gene products. We performed a global structure-based analysis of the yeast and human proteomes and contrasted this information against their respective transcriptome organizations obtained from comprehensive microarray data. We show that protein vulnerability quantifies dosage sensitivity for metabolic adaptation phases and tissue-specific patterns of mRNA expression, determining the extent of co-expression similarity of binding partners. The role of protein intrinsic disorder in transcriptome organization is also delineated by interrelating vulnerability, disorder propensity and co-expression patterns. Extremely vulnerable human proteins are shown to be subject to severe post-transcriptional regulation of their expression through significant micro-RNA targeting, making mRNA levels poor surrogates for protein-expression levels. By contrast, in yeast the expression of extremely under-wrapped proteins is likely regulated through protein aggregation. Thus, the 85 most vulnerable proteins in yeast include the five confirmed prions, while in human, the genes encoding extremely vulnerable proteins are predicted to be targeted by microRNAs. Hence, in both vastly different organisms protein vulnerability emerges as a structure-encoded signal for post-transcriptional regulation. Vulnerability of protein structure and the concurrent need to maintain structural integrity are shown to quantify dosage sensitivity, compelling gene expression patterns across tissue types and temporal adaptation phases in a quantifiable manner. Extremely vulnerable proteins impose additional constraints on gene expression: They are subject to high levels of regulation at the post-transcriptional level.

  15. Tight junction protein ZO-1 controls organic cation/carnitine transporter OCTN2 (SLC22A5) in a protein kinase C-dependent way.

    PubMed

    Jurkiewicz, Dominika; Michalec, Katarzyna; Skowronek, Krzysztof; Nałęcz, Katarzyna A

    2017-05-01

    OCTN2 (SLC22A5) is an organic cation/carnitine transporter belonging to the solute carrier transporters (SLC) family. OCTN2 is ubiquitously expressed and its presence was shown in various brain cells, including the endothelial cells forming blood-brain barrier, where it was mainly detected at abluminal membrane and in proximity of tight junctions (TJ). Since OCTN2 contains a PDZ-binding domain, the present study was focused on a possible role of transporter interaction with a TJ-associated protein ZO-1, containing PDZ domains and detected in rat Octn2 proteome. We showed previously that activation of protein kinase C (PKC) in rat astrocytes regulates Octn2 surface presence and activity. Regulation of a wild type Octn2 and its deletion mutant without a PDZ binding motif were studied in heterologous expression system in HEK293 cells. Plasma membrane presence of overexpressed Octn2 did not depend on either PKC activation or presence of PDZ-binding motif, anyhow, as assayed in proximity ligation assay, the truncation of PDZ binding motif resulted in a strongly diminished Octn2/ZO-1 interaction and in a decreased transporter activity. The same effects on Octn2 activity were detected upon PKC activation, what correlated with ZO-1 phosphorylation. It is postulated that ZO-1, when not phosphorylated by PKC, keeps Octn2 in an active state, while elimination of this binding in ΔPDZ mutant or after ZO-1 phosphorylation leads to diminution of Octn2 activity.

  16. FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions

    PubMed Central

    Brieher, William M.

    2013-01-01

    By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell–cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell–cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity. PMID:24322428

  17. FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions.

    PubMed

    Tang, Vivian W; Brieher, William M

    2013-12-09

    By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell-cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell-cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity.

  18. Persistent Borna Disease Virus infection changes expression and function of astroglial gap junctions in vivo and in vitro.

    PubMed

    Köster-Patzlaff, Christiane; Hosseini, Seyed Mehdi; Reuss, Bernhard

    2007-12-12

    Neonatal Borna Disease Virus (BDV) infection of the Lewis rat brain leads to dentate gyrus (DG) degeneration, underlying mechanisms are not fully understood. Since astroglial gap junction (GJ) coupling is known to influence neurodegenerative processes, the question arose whether persistent BDV infection influences astroglial connexins (Cx) Cx43 and Cx30 in the hippocampal formation (HiF) of Lewis rats. RT-PCR and Western blot analysis of forebrain (FB) samples revealed a virus dependent reduction of both Cx types 8 but not 4 weeks post infection (p.i.). Immunohistochemistry revealed an increase of Cx43 in the DG and a decrease in the CA3 region 4 and 8 weeks p.i. Cx30, which was detectable only 8 weeks p.i., revealed a BDV dependent increase in DG and CA3 regions. BDV dependent astrogliosis as revealed by immunodetection of glial fibrillary acidic protein (GFAP) correlated not with astroglial connexin expression. With regard to functional coupling as revealed by scrape loading, BDV infection resulted in increased spreading of the GJ permeant dye Lucifer yellow in primary hippocampal astroglial cultures, and in increased expression of Cx43 and Cx30 as revealed by immunocytochemistry. In conclusion, persistent BDV infection of the Lewis rat brain leads to changes in astroglial Cx expression both in vivo and in vitro and of functional coupling in vitro. Distribution and time course of these changes suggest them to be a direct result of neurodegeneration in the DG and an indirect effect of neuronal deafferentiation in the CA3 region.

  19. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  20. The degradation of airway tight junction protein under acidic conditions is probably mediated by transient receptor potential vanilloid 1 receptor.

    PubMed

    Xu, Rui; Li, Qi; Zhou, Jia; Zhou, Xiang-dong; Perelman, Juliy M; Kolosov, Victor P

    2013-10-31

    Acidic airway microenvironment is one of the representative pathophysiological features of chronic inflammatory respiratory diseases. Epithelial barrier function is maintained by TJs (tight junctions), which act as the first physical barrier against the inhaled substances and pathogens of airway. As previous studies described, acid stress caused impaired epithelial barriers and led the hyperpermeability of epithelium. However, the specific mechanism is still unclear. We have showed previously the existence of TRPV (transient receptor potential vanilloid) 1 channel in airway epithelium, as well as its activation by acidic stress in 16HBE cells. In this study, we explored the acidic stress on airway barrier function and TJ proteins in vitro with 16HBE cell lines. Airway epithelial barrier function was determined by measuring by TER (trans-epithelial electrical resistance). TJ-related protein [claudin-1, claudin-3, claudin-4, claudin-5, claudin-7 and ZO-1 (zonula occluden 1)] expression was examined by western blotting of insoluble fractions of cell extraction. The localization of TJ proteins were visualized by immunofluorescent staining. Interestingly, stimulation by pH 6.0 for 8 h slightly increased the epithelial resistance in 16HBE cells insignificantly. However, higher concentration of hydrochloric acid (lower than pH 5.0) did reduce the airway epithelial TER of 16HBE cells. The decline of epithelial barrier function induced by acidic stress exhibited a TRPV1-[Ca2+]i-dependent pathway. Of the TJ proteins, claudin-3 and claudin-4 seemed to be sensitive to acidic stress. The degradation of claudin-3 and claudin-4 induced by acidic stress could be attenuated by the specific TRPV1 blocker or intracellular Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)].

  1. Diabetes and exposure to peritoneal dialysis solutions alter tight junction proteins and glucose transporters of rat peritoneal mesothelial cells.

    PubMed

    Debray-García, Yazmin; Sánchez, Elsa I; Rodríguez-Muñoz, Rafael; Venegas, Miguel A; Velazquez, Josue; Reyes, José L

    2016-09-15

    To evaluate alterations in tight junction (TJ) proteins and glucose transporters in rat peritoneal mesothelial cells (RPMC) from diabetic rats and after treatment with peritoneal dialysis solutions (PDS) in vitro. Diabetes was induced in female Wistar rats by streptozotocin (STZ)-injection. Twenty-one days after STZ-injection, peritoneal thickness and mesothelial cell morphology were studied by light microscopy and microvilli length and density by atomic force microscopy. RPMC were obtained from healthy and diabetic rats. Mesothelial phenotype, evaluated by cytokeratin and pan-cadherin, epithelial to mesenchymal transition (EMT), evaluated by alpha-smooth muscle action (α-SMA) and vimentin, TJ proteins, claudins-1 and -2, and occludin, and glucose transporters, sodium and glucose co-transporters (SGLT) -1 and -2 and facilitative glucose transporters (GLUT) -1 and -2 were analyzed. Also, transepithelial electrical resistance (TER) was measured. Oxidative stress was estimated by measuring reactive oxygen species production, and protein carbonylation, receptor for advanced glycation end products (RAGE), nuclear factor erythroid related factor-2 (Nrf-2), and expression of antioxidant enzymes. Peritoneal damage was present 21days after STZ-injection. Diabetes induced changes in TJ and glucose transporters in RPMC together with decreased TER. RPMC from diabetic rats showed oxidative stress, which was enhanced by exposure to PDS. In addition, RPMC from diabetic rats showed early EMT. To our knowledge, this is the first study that shows changes in TJ proteins and glucose transporters of RPMC from diabetic rats. All these alterations might explain the increased peritoneal permeability observed in diabetic patients undergoing peritoneal dialysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Eya1 protein phosphatase regulates tight junction formation in lung distal epithelium.

    PubMed

    El-Hashash, Ahmed H K; Turcatel, Gianluca; Varma, Saaket; Berika, Mohamed; Al Alam, Denise; Warburton, David

    2012-09-01

    Little is known about the regulatory mechanisms underlying lung epithelial tight junction (TJ) assembly, which is inextricably linked to the preservation of epithelial polarity, and is highly coordinated by proteins that regulate epithelial cell polarity, such as aPKCζ. We recently reported that Eya1 phosphatase functions through aPKCζ-Notch1 signaling to control cell polarity in the lung epithelium. Here, we have extended these observations to TJ formation to demonstrate that Eya1 is crucial for the maintenance of TJ protein assembly in the lung epithelium, probably by controlling aPKCζ phosphorylation levels, aPKCζ-mediated TJ protein phosphorylation and Notch1-Cdc42 activity. Thus, TJs are disassembled after interfering with Eya1 function in vivo or during calcium-induced TJ assembly in vitro. These effects are reversed by reintroduction of wild-type Eya1 or partially inhibiting aPKCζ in Eya1siRNA cells. Moreover, genetic activation of Notch1 rescues Eya1(-/-) lung epithelial TJ defects. These findings uncover novel functions for the Eya1-aPKCζ-Notch1-Cdc42 pathway as a crucial regulatory mechanism of TJ assembly and polarity of the lung epithelium, providing a conceptual framework for future mechanistic and translational studies in this area.

  3. The tight junction protein Z O-2 has several functional nuclear export signals

    SciTech Connect

    Gonzalez-Mariscal, Lorenza . E-mail: lorenza@fisio.cinvestav.mx; Ponce, Arturo; Alarcon, Lourdes; Jaramillo, Blanca Estela

    2006-10-15

    The tight junction (TJ) protein ZO-2 changes its subcellular distribution according to the state of confluency of the culture. Thus in confluent monolayers, it localizes at the TJ region whereas in sparse cultures it concentrates at the nucleus. The canine sequence of ZO-2 displays four putative nuclear export signals (NES), two at the second PDZ domain (NES-0 and NES-1) and the rest at the GK region (NES-2 and NES-3). The functionality of NES-0 and NES-3 was unknown, hence here we have explored it with a nuclear export assay, injecting into the nucleus of MDCK cells peptides corresponding to the ZO-2 NES sequences chemically coupled to ovalbumin. We show that both NES-0 and NES-3 are functional and sensitive to leptomycin B. We also demonstrate that NES-1, previously characterized as a non functional NES, is rendered capable of nuclear export upon the acquisition of a negative charge at its Ser369 residue. Experiments performed injecting at the nucleus WT and mutated ZO-2-GST fusion proteins revealed the need of both NES-0 and NES-1, and NES-2 and NES-3 for attaining an efficient nuclear exit of the respective amino and middle segments of ZO-2. Moreover, the transfection of MDCK cells with full-length ZO-2 revealed that the mutation of any of the NES present in the molecule was sufficient to induce nuclear accumulation of the protein.

  4. TRAF4 Is a Novel Phosphoinositide-Binding Protein Modulating Tight Junctions and Favoring Cell Migration

    PubMed Central

    Rousseau, Adrien; McEwen, Alastair G.; Poussin-Courmontagne, Pierre; Rognan, Didier; Nominé, Yves; Rio, Marie-Christine; Tomasetto, Catherine; Alpy, Fabien

    2013-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration. PMID:24311986

  5. HER3 Expression Is a Marker of Tumor Progression in Premalignant Lesions of the Gastroesophageal Junction

    PubMed Central

    Zhang, Paul J.; Furth, Emma E.; Ginsberg, Gregory G.; McMillan, Matthew T.; Datta, Jashodeep; Czerniecki, Brian J.; Roses, Robert E.

    2016-01-01

    Overexpression of receptor tyrosine kinases (RTK), including members of the HER family, has prognostic and therapeutic significance in invasive esophagogastric carcinoma. RTK expression in premalignant gastroesophageal lesions has not been extensively explored. Formalin-fixed paraffin-embedded tissue samples of esophageal biopsy specimens from 73 patients with Barrett’s esophagus with either low-grade dysplasia (LGD) (n = 32) or high-grade dysplasia (HGD) (n = 59) were analyzed for HER1, HER2, HER3 and CMET expression by immunohistochemistry (IHC). Immunophenotype was correlated with histologic and clinical features. High-grade dysplasia (HGD) was associated with overexpression of HER1 (20.7% vs. 3.1%, p = 0.023), HER2 (5.3% vs. 0.0%, p = 0.187) and HER3 (47.4% vs. 9.4%, p<0.001) compared to low-grade dysplasia (LGD). There was a significant association of HER2 (20.0% vs. 2.1%, p = 0.022) and HER3 (80.0% vs. 40.4%, p = 0.023) overexpression in HGD lesions associated with foci of invasive carcinoma compared to those without invasive foci. Overexpression of CMET was observed in 42.9% of specimens, was increasingly observed with HGD compared to LGD (58.3% vs. 36.7%, p = 0.200), and was most often co-expressed with HER3 (62.5% of HER3-positive specimens vs. 38.2% of HER3-negative specimens, p = 0.212). In summary, HER3 is frequently overexpressed in high-grade dysplastic lesions of the gastroesophageal junction and may be a marker of invasive progression. These data provide rationale for targeting HER2 and HER3 pathways in an early disease setting to prevent disease progression. PMID:27559738

  6. Ouabain induces endocytosis and degradation of tight junction proteins through ERK1/2-dependent pathways.

    PubMed

    Rincon-Heredia, Ruth; Flores-Benitez, David; Flores-Maldonado, Catalina; Bonilla-Delgado, José; García-Hernández, Vicky; Verdejo-Torres, Odette; Castillo, Aida M; Larré, Isabel; Poot-Hernández, Augusto C; Franco, Martha; Gariglio, Patricio; Reyes, José L; Contreras, Rubén G

    2014-01-01

    In addition to being a very well-known ion pump, Na(+), K(+)-ATPase is a cell-cell adhesion molecule and the receptor of digitalis, which transduces regulatory signals for cell adhesion, growth, apoptosis, motility and differentiation. Prolonged ouabain (OUA) blockage of activity of Na(+), K(+)-ATPase leads to cell detachment from one another and from substrates. Here, we investigated the cellular mechanisms involved in tight junction (TJ) disassembly upon exposure to toxic levels of OUA (≥300 nM) in epithelial renal canine cells (MDCK). OUA induces a progressive decrease in the transepithelial electrical resistance (TER); inhibitors of the epidermal growth factor receptor (EGFR, PD153035), cSrc (SU6656 and PP2) and ERK1/2 kinases (PD98059) delay this decrease. We have determined that the TER decrease depends upon internalization and degradation of the TJs proteins claudin (CLDN) 2, CLDN-4, occludin (OCLN) and zonula occludens-1 (ZO-1). OUA-induced degradation of proteins is either sensitive (CLDN-4, OCLN and ZO-1) or insensitive (CLDN-2) to ERK1/2 inhibition. In agreement with the protein degradation findings, OUA decreases the cellular content of ZO-1 and CLDN-2 mRNAs but surprisingly, increases the mRNA of CLDN-4 and OCLN. Changes in the mRNA levels are sensitive (CLDN-4, OCLN and ZO-1) or insensitive (CLDN-2) to ERK1/2 inhibition as well. Thus, toxic levels of OUA activate the EGFR-cSrc-ERK1/2 pathway to induce endocytosis, internalization and degradation of TJ proteins. We also observed decreases in the levels of CLDN-2 protein and mRNA, which were independent of the EGFR-cSrc-ERK1/2 pathway.

  7. AMP-18 protects barrier function of colonic epithelial cells: role of tight junction proteins

    PubMed Central

    Walsh-Reitz, Margaret M.; Huang, Erick F.; Musch, Mark W.; Chang, Eugene B.; Martin, Terence E.; Kartha, Sreedharan; Toback, F. Gary

    2005-01-01

    AMP-18, a novel gastric antrum mucosal protein, and a synthetic peptide of amino acids 77-97, have mitogenic and motogenic properties for epithelial cells. The possibility that AMP-18 is also protective was evaluated in the colonic mucosa of mice and monolayer cultures of human colonic epithelial Caco2/bbe (C2) cells. Administration of AMP peptide to mice with dextran sulfate sodium (DSS)-induced colonic injury delayed the onset of bloody diarrhea, and reduced weight loss. Treatment of C2 cells with AMP peptide protected monolayers against decreases in transepithelial electrical resistance (TER) induced by the oxidant monochloramine, indomethacin, or DSS. A molecular mechanism for these barrier-protective effects was sought by asking if AMP peptide acted on specific tight junction (TJ) proteins. Immunoblots of detergent-insoluble fractions of C2 cells treated with AMP peptide exhibited increased accumulation of specific TJ proteins. Occludin immunoreactivity was also increased in detergent-insoluble fractions obtained from colonic mucosal cells of mice injected with AMP peptide. Laser scanning confocal microscopy (CF) supported the capacity of AMP peptide to enhance accumulation of occludin and ZO-1 in TJ domains of C2 cell monolayers, and together with immunoblot analysis showed that the peptide protected against loss of these TJ proteins following oxidant injury. AMP peptide also protected against a fall in TER during disruption of actin filaments by cytochalasin D, and stabilized perijunctional actin during oxidant injury when assessed by CF. These findings suggest that AMP-18 could protect the intestinal mucosal barrier by acting on specific TJ proteins and stabilizing perijunctional actin. PMID:15961882

  8. Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus.

    PubMed

    Zhao, Hua; Waite, J Herbert

    2006-11-28

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of approximately 93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-l-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including approximately 36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins.

  9. THE WERNER AND BLOOM SYNDROME PROTEINS HELP RESOLVE REPLICATION BLOCKAGE BY CONVERTING (REGRESSED) HOLLIDAY JUNCTIONS TO FUNCTIONAL REPLICATION FORKS

    PubMed Central

    Machwe, Amrita; Karale, Rajashree; Xu, Xioahua; Liu, Yilun; Orren, David K.

    2011-01-01

    Cells cope with blockage of replication fork progression in a manner so that DNA synthesis can be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and postulated to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examined the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction is optimal in low MgCl2, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells. PMID:21736299

  10. Poly-L-arginine-Induced internalization of tight junction proteins increases the paracellular permeability of the Caco-2 cell monolayer to hydrophilic macromolecules.

    PubMed

    Yamaki, Tsutomu; Ohtake, Kazuo; Ichikawa, Keiko; Uchida, Masaki; Uchida, Hiroyuki; Oshima, Shinji; Ohshima, Shinji; Juni, Kazuhiko; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2013-01-01

    We investigated whether poly-L-arginine (PLA) enhances the paracellular permeability of the Caco-2 monolayer to hydrophilic macromolecules and clarified the disposition of tight junction (TJ) proteins. The transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran (FD-4) permeation were determined after treatment with PLA. TJ proteins were visualized using immunofluorescence microscopy after PLA exposure and depletion, and their expression levels were determined. The barrier function of TJs was also evaluated by measuring the alterations in the TEER and in the localization of TJ proteins. PLA induced an increase in hydrophilic macromolecule, FD-4, permeation through Caco-2 cell monolayers and a decrease in the TEER in a concentration-dependent manner, without any significant impact on the cell viability. This increased paracellular permeability induced by PLA was found to be internalized of claudin-4, ZO-1, tricellulin and mainly occludin from cell-cell junction to the subcellular space. ZO-1 appeared to play an important role in the reconstitution of TJ strand structures following PLA depletion. These results indicate that the PLA led to the internalization of TJ proteins to the subcellular space, subsequently increasing the permeability of the Caco-2 cell monolayer to FD-4 via a paracellular route.

  11. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins

    PubMed Central

    Bernadskaya, Yelena Y.; Patel, Falshruti B.; Hsu, Hsiao-Ting; Soto, Martha C.

    2011-01-01

    It has been proposed that Arp2/3, which promotes nucleation of branched actin, is needed for epithelial junction initiation but is less important as junctions mature. We focus here on how Arp2/3 contributes to the Caenorhabditis elegans intestinal epithelium and find important roles for Arp2/3 in the maturation and maintenance of junctions in embryos and adults. Electron microscope studies show that embryos depleted of Arp2/3 form apical actin-rich microvilli and electron-dense apical junctions. However, whereas apical/basal polarity initiates, apical maturation is defective, including decreased apical F-actin enrichment, aberrant lumen morphology, and reduced accumulation of some apical junctional proteins, including DLG-1. Depletion of Arp2/3 in adult animals leads to similar intestinal defects. The DLG-1/AJM-1 apical junction proteins, and the ezrin–radixin–moesin homologue ERM-1, a protein that connects F-actin to membranes, are required along with Arp2/3 for apical F-actin enrichment in embryos, whereas cadherin junction proteins are not. Arp2/3 affects the subcellular distribution of DLG-1 and ERM-1. Loss of Arp2/3 shifts both ERM-1 and DLG-1 from pellet fractions to supernatant fractions, suggesting a role for Arp2/3 in the distribution of membrane-associated proteins. Thus, Arp2/3 is required as junctions mature to maintain apical proteins associated with the correct membranes. PMID:21697505

  12. AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin.

    PubMed

    Aznar, Nicolas; Patel, Arjun; Rohena, Cristina C; Dunkel, Ying; Joosen, Linda P; Taupin, Vanessa; Kufareva, Irina; Farquhar, Marilyn G; Ghosh, Pradipta

    2016-11-04

    Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here, we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells to evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin.

  13. PHD3 Stabilizes the Tight Junction Protein Occludin and Protects Intestinal Epithelial Barrier Function*

    PubMed Central

    Chen, Ying; Zhang, Hai-Sheng; Fong, Guo-Hua; Xi, Qiu-Lei; Wu, Guo-Hao; Bai, Chen-Guang; Ling, Zhi-Qiang; Fan, Li; Xu, Yi-Ming; Qin, Yan-Qing; Yuan, Tang-Long; Sun, Heng; Fang, Jing

    2015-01-01

    Prolyl hydroxylase domain proteins (PHDs) control cellular adaptation to hypoxia. PHDs are found involved in inflammatory bowel disease (IBD); however, the exact role of PHD3, a member of the PHD family, in IBD remains unknown. We show here that PHD3 plays a critical role in maintaining intestinal epithelial barrier function. We found that genetic ablation of Phd3 in intestinal epithelial cells led to spontaneous colitis in mice. Deletion of PHD3 decreases the level of tight junction protein occludin, leading to a failure of intestinal epithelial barrier function. Further studies indicate that PHD3 stabilizes occludin by preventing the interaction between the E3 ligase Itch and occludin, in a hydroxylase-independent manner. Examination of biopsy of human ulcerative colitis patients indicates that PHD3 is decreased with disease severity, indicating that PHD3 down-regulation is associated with progression of this disease. We show that PHD3 protects intestinal epithelial barrier function and reveal a hydroxylase-independent function of PHD3 in stabilizing occludin. These findings may help open avenues for developing a therapeutic strategy for IBD. PMID:26124271

  14. The RecA/RAD51 protein drives migration of Holliday junctions via polymerization on DNA.

    PubMed

    Rossi, Matthew J; Mazina, Olga M; Bugreev, Dmitry V; Mazin, Alexander V

    2011-04-19

    The Holliday junction (HJ), a cross-shaped structure that physically links the two DNA helices, is a key intermediate in homologous recombination, DNA repair, and replication. Several helicase-like proteins are known to bind HJs and promote their branch migration (BM) by translocating along DNA at the expense of ATP hydrolysis. Surprisingly, the bacterial recombinase protein RecA and its eukaryotic homologue Rad51 also promote BM of HJs despite the fact they do not bind HJs preferentially and do not translocate along DNA. RecA/Rad51 plays a key role in DNA double-stranded break repair and homologous recombination. RecA/Rad51 binds to ssDNA and forms contiguous filaments that promote the search for homologous DNA sequences and DNA strand exchange. The mechanism of BM promoted by RecA/RAD51 is unknown. Here, we demonstrate that cycles of RecA/Rad51 polymerization and dissociation coupled with ATP hydrolysis drives the BM of HJs.

  15. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.

  16. The Nuclear and Adherent Junction Complex Component Protein Ubinuclein Negatively Regulates the Productive Cycle of Epstein-Barr Virus in Epithelial Cells▿

    PubMed Central

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus. PMID:21084479

  17. The nuclear and adherent junction complex component protein ubinuclein negatively regulates the productive cycle of Epstein-Barr virus in epithelial cells.

    PubMed

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus.

  18. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella).

    PubMed

    Jiang, Wei-Dan; Qu, Biao; Feng, Lin; Jiang, Jun; Kuang, Sheng-Yao; Wu, Pei; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2016-01-01

    Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.

  19. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)

    PubMed Central

    Feng, Lin; Jiang, Jun; Kuang, Sheng-Yao; Wu, Pei; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2016-01-01

    Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet. PMID:27280406

  20. Intracellular Transport, Assembly, and Degradation of Wild-Type and Disease-linked Mutant Gap Junction Proteins

    PubMed Central

    VanSlyke, Judy K.; Deschenes, Suzanne M.; Musil, Linda S.

    2000-01-01

    More than 130 different mutations in the gap junction integral plasma membrane protein connexin32 (Cx32) have been linked to the human peripheral neuropathy X-linked Charcot–Marie–Tooth disease (CMTX). How these various mutants are processed by the cell and the mechanism(s) by which they cause CMTX are unknown. To address these issues, we have studied the intracellular transport, assembly, and degradation of three CMTX-linked Cx32 mutants stably expressed in PC12 cells. Each mutant had a distinct fate: E208K Cx32 appeared to be retained in the endoplasmic reticulum (ER), whereas both the E186K and R142W mutants were transported to perinuclear compartments from which they trafficked either to lysosomes (R142W Cx32) or back to the ER (E186K Cx32). Despite these differences, each mutant was soluble in nonionic detergent but unable to assemble into homomeric connexons. Degradation of both mutant and wild-type connexins was rapid (t1/2 < 3 h) and took place at least in part in the ER by a process sensitive to proteasome inhibitors. The mutants studied are therefore unlikely to cause disease by accumulating in degradation-resistant aggregates but instead are efficiently cleared from the cell by quality control processes that prevent abnormal connexin molecules from traversing the secretory pathway. PMID:10848620

  1. Electroacupuncture Treatment Improves Neurological Function Associated with Regulation of Tight Junction Proteins in Rats with Cerebral Ischemia Reperfusion Injury

    PubMed Central

    Zhang, Ya-min; Xu, Hong; Sun, Hua; Chen, Su-hui; Wang, Fu-ming

    2014-01-01

    Strategies to develop effective neuroprotective therapy to reduce brain damage and related behavioral deficits in stroke patients are of great significance. Electroacupuncture (EA), which derives from traditional Chinese medicine, may be effective as a complementary and alternative method for promoting recovery of neurological function and quality of life. Adult Sprague-Dawley rats were randomly divided into 3 groups: (1) sham, (2) middle cerebral artery occlusion (MCAO) model groups of 2 h MCAO followed by 1, 3, 5, or 7 d of reperfusion, and (3) EA groups of 2 h MCAO followed by 1, 3, 5, or 7 d of reperfusion. EA groups received EA therapy by needling at GV20 and left ST36. The results show that EA therapy improved the neurological function and reduced infarct volume, confirmed by modified neurological severity scores and TTC staining. Real-time PCR, immunohistochemistry, and western blot assay verified that EA upregulated the expression of tight junction (TJ) claudin-5, occludin, and zonula occluding-1 from 1 to 7 d after reperfusion. Our findings suggest that EA reduces brain damage and related behavioral deficits via upregulation of the TJ proteins. PMID:25009574

  2. Electroacupuncture treatment improves neurological function associated with regulation of tight junction proteins in rats with cerebral ischemia reperfusion injury.

    PubMed

    Zhang, Ya-Min; Xu, Hong; Sun, Hua; Chen, Su-Hui; Wang, Fu-Ming

    2014-01-01

    Strategies to develop effective neuroprotective therapy to reduce brain damage and related behavioral deficits in stroke patients are of great significance. Electroacupuncture (EA), which derives from traditional Chinese medicine, may be effective as a complementary and alternative method for promoting recovery of neurological function and quality of life. Adult Sprague-Dawley rats were randomly divided into 3 groups: (1) sham, (2) middle cerebral artery occlusion (MCAO) model groups of 2 h MCAO followed by 1, 3, 5, or 7 d of reperfusion, and (3) EA groups of 2 h MCAO followed by 1, 3, 5, or 7 d of reperfusion. EA groups received EA therapy by needling at GV20 and left ST36. The results show that EA therapy improved the neurological function and reduced infarct volume, confirmed by modified neurological severity scores and TTC staining. Real-time PCR, immunohistochemistry, and western blot assay verified that EA upregulated the expression of tight junction (TJ) claudin-5, occludin, and zonula occluding-1 from 1 to 7 d after reperfusion. Our findings suggest that EA reduces brain damage and related behavioral deficits via upregulation of the TJ proteins.

  3. The moving junction protein RON4, although not critical, facilitates host cell invasion and stabilizes MJ members.

    PubMed

    Wang, Ming; Cao, Shinuo; DU, Nali; Fu, Jiawen; Li, Zhaoran; Jia, Honglin; Song, Mingxin

    2017-09-01

    Toxoplasma gondii is an obligate intracellular parasite of phylum Apicomplexa. To facilitate high-efficiency invasion of host cells, T. gondii secretes various proteins related to the moving junction (MJ) complex from rhoptries and micronemes into the interface between the parasite and host. AMA1/RON2/4/5/8 is an important MJ complex, but its mechanism of assembly remains unclear. In this study, we used the CRISPR-Cas9 system to generate a derivative of T. gondii strain RH with a null mutation in TgRON4, thought to be an essential MJ component. Deficiency of TgRON4 moderately decreased invasion ability relative to that of the wild-type parasite. In addition, expression of the endogenous N-terminal fragment of RON5 decreased in the mutant. Together, the results improve our understanding of the assembly mechanism of the MJ complex of T. gondii and raise the possibility of developing new therapeutic drugs that target this complex.

  4. Crystal structure of the Holliday junction migration motor protein RuvB from Thermus thermophilus HB8

    PubMed Central

    Yamada, Kazuhiro; Kunishima, Naoki; Mayanagi, Kouta; Ohnishi, Takayuki; Nishino, Tatsuya; Iwasaki, Hiroshi; Shinagawa, Hideo; Morikawa, Kosuke

    2001-01-01

    We report here the crystal structure of the RuvB motor protein from Thermus thermophilus HB8, which drives branch migration of the Holliday junction during homologous recombination. RuvB has a crescent-like architecture consisting of three consecutive domains, the first two of which are involved in ATP binding and hydrolysis. DNA is likely to interact with a large basic cleft, which encompasses the ATP-binding pocket and domain boundaries, whereas the junction-recognition protein RuvA may bind a flexible β-hairpin protruding from the N-terminal domain. The structures of two subunits, related by a noncrystallographic pseudo-2-fold axis, imply that conformational changes of motor protein coupled with ATP hydrolysis may reflect motility essential for its translocation around double-stranded DNA. PMID:11171970

  5. Heterologous and cell free protein expression systems.

    PubMed

    Farrokhi, Naser; Hrmova, Maria; Burton, Rachel A; Fincher, Geoffrey B

    2009-01-01

    In recognition of the fact that a relatively small percentage of 'named' genes in databases have any experimental proof for their annotation, attention is shifting towards the more accurate assignment of functions to individual genes in a genome. The central objective will be to reduce our reliance on nucleotide or amino acid sequence similarities as a means to define the functions of genes and to annotate genome sequences. There are many unsolved technical difficulties associated with the purification of specific proteins from extracts of biological material, especially where the protein is present in low abundance, has multiple isoforms or is found in multiple post-translationally modified forms. The relative ease with which cDNAs can be cloned has led to the development of methods through which cDNAs from essentially any source can be expressed in a limited range of suitable host organisms, so that sufficient levels of the encoded proteins can be generated for functional analysis. Recently, these heterologous expression systems have been supplemented by more robust prokaryotic and eukaryotic cell-free protein synthesis systems. In this chapter, common host systems for heterologous expression are reviewed and the current status of cell-free expression systems will be presented. New approaches to overcoming the special problems encountered during the expression of membrane-associated proteins will also be addressed. Methodological considerations, including the characteristics of codon usage in the expressed DNA, peptide tags that facilitate subsequent purification of the expressed proteins and the role of post-translational modifications, are examined.

  6. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions

    PubMed Central

    Dorland, Yvonne L.; Malinova, Tsveta S.; van Stalborch, Anne-Marieke D.; Grieve, Adam G.; van Geemen, Daphne; Jansen, Nicolette S.; de Kreuk, Bart-Jan; Nawaz, Kalim; Kole, Jeroen; Geerts, Dirk; Musters, René J. P.; de Rooij, Johan; Hordijk, Peter L.; Huveneers, Stephan

    2016-01-01

    Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell–cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue. PMID:27417273

  7. Cellular and Molecular Mechanisms of Heat Stress-Induced Up-Regulation of Occludin Protein Expression

    PubMed Central

    Dokladny, Karol; Ye, Dongmei; Kennedy, John C.; Moseley, Pope L.; Ma, Thomas Y.

    2008-01-01

    The heat stress (HS)-induced increase in occludin protein expression has been postulated to be a protective response against HS-induced disruption of the intestinal epithelial tight junction barrier. The aim of this study was to elucidate the cellular and molecular processes that mediate the HS-induced up-regulation of occludin expression in Caco-2 cells. Exposure to HS (39°C or 41°C) resulted in increased expression of occludin protein; this was preceded by an increase in occludin mRNA transcription and promoter activity. HS-induced activation of heat shock factor-1 (HSF-1) resulted in cytoplasmic-to-nuclear translocation of HSF-1 and binding to its binding motif in the occludin promoter region. HSF-1 activation was associated with an increase in occludin promoter activity, mRNA transcription, and protein expression; which were abolished by the HSF-1 inhibitor quercetin. Targeted HSF-1 knock-down by siRNA transfection inhibited the HSF-1-induced increase in occulin expression and junctional localization of occulin protein. Site-directed mutagenesis of the HSF-1 binding motif in the occludin promoter region inhibited HS-induced binding of HSF-1 to the occludin promoter region and subsequent promoter activity. In conclusion, our data show for the first time that the HS-induced increase in occludin protein expression is mediated by HSF-1 activation and subsequent binding of HSF-1 to the occludin promoter, which initiates a series of molecular and cellular events culminating in increased junctional localization of occludin protein. PMID:18276783

  8. Expression of tight junction molecule "claudins" in the lower oviductal segments and their changes with egg-laying phase and gonadal steroid stimulation in hens.

    PubMed

    Ariyadi, Bambang; Isobe, Naoki; Yoshimura, Yukinori

    2013-01-15

    Tight junctions in the mucosal epithelium have essential roles as a mucosal barrier to prevent invasion of microbes into the hen oviduct tissue. The aim of this study was to determine the effects of the egg-laying phase and estradiol on the expression of tight junction molecule "claudins" in the lower oviductal segments in hens. White Leghorn laying and molting hens were used. Molting hens were given either sesame oil (vehicle) or estradiol benzoate (N = 5 per group) via injection. The lower segments of oviduct (isthmus, uterus, and vagina) of these birds were collected. Gene expression of claudin-1, -3, -5, lipopolysaccharide-induced TNFα factor (LITAF), and IFN(γ) was analyzed by quantitative reverse transcription polymerase chain reaction, and localization of claudin-1 was examined by immunohistochemistry. Permeability in the mucosal epithelium was assessed by intrauterine injection of fluorescein isothiocyanate-dextran. Expression of claudin-1, -3, and -5 genes and density of claudin-1 protein in the lower oviductal segments were higher in laying hens than in molting hens (P < 0.01); their expression was upregulated by estradiol (P < 0.01). Expression of LITAF and IFN(γ) genes was higher in molting hens than in laying hens. More fluorescein isothiocyanate-dextran infiltrated into the intercellular space of the uterus mucosal epithelium in molting hens than in laying hens and estradiol-treated molting hens. In conclusion, we inferred that barrier functions of the mucosal epithelium in the lower oviductal segments might be disrupted because of reduced claudin expression in molting hens, which might increase the susceptibility of mucosal tissue during the molting phase.

  9. Aging decreases collagen IV expression in vivo in the dermo-epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF-β1.

    PubMed

    Feru, Jezabel; Delobbe, Etienne; Ramont, Laurent; Brassart, Bertrand; Terryn, Christine; Dupont-Deshorgue, Aurelie; Garbar, Christian; Monboisse, Jean-Claude; Maquart, Francois-Xavier; Brassart-Pasco, Sylvie

    2016-08-01

    Collagen IV is a major component of the dermo-epidermal junction (DEJ). To study expression of collagen IV upon aging in the DEJ and dermal fibroblasts isolated from the same patients. A model of senescent fibroblasts was developed in order to identify biological compounds that might restore the level of collagen IV. Skin fragments of women (30 to 70 years old) were collected. Localisation of collagen IV expression in the DEJ was studied by immunofluorescence. Fibroblast collagen IV expression was studied by real-time PCR, ELISA, and western blotting. Premature senescence was simulated by exposing fibroblasts to subcytotoxic H2O2 concentrations. Collagen IV decreased in the DEJ and fibroblasts relative to age. TGF-β1 treatment significantly increased collagen IV gene and protein expression in fibroblasts and restored expression in the model of senescence. Addition of TGF-β1-neutralizing antibody to fibroblast cultures decreased collagen IV expression. Taken together, the results suggest that the decrease in collagen IV in the DEJ, relative to age, could be due to a decrease in collagen IV expression by senescent dermal fibroblasts and may involve TGF-β1 signalling.

  10. The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

    PubMed Central

    Krizak, Jakub; Frimmel, Karel; Bernatova, Iveta; Navarova, Jana; Sotnikova, Ruzena; Okruhlicova, Ludmila

    2016-01-01

    Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of adult Wistar rats after a single dose of bacterial lipopolysaccharide (LPS, Escherichia coli, 1 mg/kg). The ultrastructure of TJs after LPS administration was also investigated. We measured plasma levels of C-reactive protein (CRP), Malondialdehyde (MDA) and CD68 expression and determined the total activity of NO synthase (NOS) in the aortic tissue. Results: LPS induced a significant decrease of occludin expression accompanied by structural alterations of TJs. Levels of CRP, MDA, CD68 and NOS activity were elevated after LPS injection compared to controls indicating presence of moderate inflammation. Ω-3 PUFA supplementation did not affect occludin expression in treated inflammatory group. However they reduced CRP and MDA concentration and CD68 expression, but conversely, they increased NOS activity compared to inflammatory group. Conclusion: Our results indicate that a single dose of LPS could have a long-term impact on occludin expression and thus contribute to endothelial barrier dysfunction. 10-day administration of Ω-3 PUFA had partial anti-inflammatory effects on health of rats without any effect on occludin expression. PMID:27114799

  11. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart.

    PubMed

    Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique

    2015-11-01

    The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331. © 2015 by

  12. Current trends in salivary gland tight junctions

    PubMed Central

    Baker, Olga J.

    2016-01-01

    ABSTRACT Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  13. Circulating tight junction proteins mirror blood-brain barrier integrity in leukaemia central nervous system metastasis.

    PubMed

    Zhu, Jing-Cheng; Si, Meng-Ya; Li, Ya-Zhen; Chen, Huan-Zhu; Fan, Zhi-Cheng; Xie, Qing-Dong; Jiao, Xiao-Yang

    2017-09-01

    The aim of this study was to evaluate the clinical significance of circulating tight junction (TJ) proteins as biomarkers reflecting of leukaemia central nervous system (CNS) metastasis. TJs [claudin5 (CLDN5), occludin (OCLN) and ZO-1] concentrations were measured in serum and cerebrospinal fluid (CSF) samples obtained from 45 leukaemia patients. Serum ZO-1 was significantly higher (p < 0.05), but CSF ZO-1 levels were not significantly higher in the CNS leukaemia (CNSL) compared to the non-CNSL. The CNSL patients also had a lower CLDN5/ZO1 ratio in both serum and CSF than in non-CNSL patients (p < 0.05). The TJ index was negatively associated with WBCCSF , ALBCSF and BBB values in leukaemia patients. Among all of the parameters studied, CLDN5CSF had the highest specificity in discriminating between CNSL and non-CNSL patients. Therefore, analysing serum and CSF levels of CLDN5, OCLN and the CLDN5/ZO1 ratio is valuable in evaluating the potential of leukaemia CNS metastasis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. The Role of Circulating Tight Junction Proteins in Evaluating Blood Brain Barrier Disruption following Intracranial Hemorrhage.

    PubMed

    Jiao, Xiaoyang; He, Ping; Li, Yazhen; Fan, Zhicheng; Si, Mengya; Xie, Qingdong; Chang, Xiaolan; Huang, Dongyang

    2015-01-01

    Brain injury after intracranial hemorrhage (ICH) results in significant morbidity and mortality. Blood brain barrier (BBB) disruption is a hallmark of ICH-induced brain injury; however, data mirroring BBB disruption in human ICH are scarce. The aim of this study was to assess the significance of circulating biomarkers in evaluating BBB disruption after ICH. Twenty-two patients with ICH were recruited in this study. Concentrations of the tight junction proteins (TJs) Claudin-5 (CLDN5), Occludin (OCLN), and zonula occludens 1 (ZO-1) and vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were measured by using enzyme-linked immunosorbent assay in serum and cerebrospinal fluid (CSF) samples obtained from patients with ICH. The white blood cell (WBC) count in blood and CSF, albumin (ALB) levels in the CSF (ALBCSF), and the BBB ratio were significantly higher in the ICH than in controls (p < 0.05). Significantly higher levels of CLDN5, OCLN, ZO-1, MMP-9, and VEGF in CSF were observed in the ICH group; these biomarkers were also positively associated with BBB ratio (p < 0.05). Our data revealed that circulating TJs could be considered the potential biomarkers reflecting the integrity of the BBB in ICH.

  15. The Role of Circulating Tight Junction Proteins in Evaluating Blood Brain Barrier Disruption following Intracranial Hemorrhage

    PubMed Central

    Jiao, Xiaoyang; He, Ping; Li, Yazhen; Fan, Zhicheng; Si, Mengya; Xie, Qingdong; Chang, Xiaolan; Huang, Dongyang

    2015-01-01

    Brain injury after intracranial hemorrhage (ICH) results in significant morbidity and mortality. Blood brain barrier (BBB) disruption is a hallmark of ICH-induced brain injury; however, data mirroring BBB disruption in human ICH are scarce. The aim of this study was to assess the significance of circulating biomarkers in evaluating BBB disruption after ICH. Twenty-two patients with ICH were recruited in this study. Concentrations of the tight junction proteins (TJs) Claudin-5 (CLDN5), Occludin (OCLN), and zonula occludens 1 (ZO-1) and vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were measured by using enzyme-linked immunosorbent assay in serum and cerebrospinal fluid (CSF) samples obtained from patients with ICH. The white blood cell (WBC) count in blood and CSF, albumin (ALB) levels in the CSF (ALBCSF), and the BBB ratio were significantly higher in the ICH than in controls (p < 0.05). Significantly higher levels of CLDN5, OCLN, ZO-1, MMP-9, and VEGF in CSF were observed in the ICH group; these biomarkers were also positively associated with BBB ratio (p < 0.05). Our data revealed that circulating TJs could be considered the potential biomarkers reflecting the integrity of the BBB in ICH. PMID:26586924

  16. Tight junctions in differentiating ameloblasts and odontoblasts differentially express ZO-1, occludin, and claudin-1 in early odontogenesis of rat molars.

    PubMed

    João, Silvia M A; Arana-Chavez, Victor E

    2004-04-01

    Little is known about the expression of associated proteins during the assembly of tight junctions (TJs). We studied the distribution of ZO-1, occludin, and claudin-1 between differentiating ameloblasts and odontoblasts in molar tooth germs from 1- to 3-day-old rats by confocal laser scanning microscopy. Immunoreactivity for ZO-1 was strong at proximal and distal junctional complexes of differentiating ameloblasts, while it was weak and punctuate at the distal region of differentiating odontoblasts. Occludin was immunoreactive at distal and proximal complexes of early differentiating ameloblasts and at distal regions of differentiating odontoblasts. However, in more advanced stages, occludin was only evident at the proximal complex of ameloblasts. Claudin-1 was strongly detected at the proximal complex but it was weak at distal complex of late differentiating ameloblasts. Thus, our results showed that ZO-1, occludin, and claudin-1 are differentially expressed as TJs assemble for regulating polarity and/or paracellular permeability in differentiating ameloblasts and odontoblasts. Copyright 2004 Wiley-Liss, Inc.

  17. Double gene deletion reveals the lack of cooperation between claudin 11 and claudin 14 tight junction proteins

    PubMed Central

    Elkouby-Naor, Liron; Abassi, Zaid; Lagziel, Ayala; Gow, Alexander; Ben-Yosef, Tamar

    2010-01-01

    Summary Members of the claudin family of proteins are the main components of tight junctions (TJs), the major selective barrier of the paracellular pathway between epithelial cells. Selectivity and specificity of TJ strands are determined by the type of claudins present. It is thus important to understand the cooperation between different claudins in various tissues. To study the possible cooperation between claudin 11 and claudin 14 we generated claudin11/claudin 14 double deficient mice. These mice exhibit a combination of the phenotypes found in each of the singly deficient mutants, including deafness, neurological deficits and male sterility. In the kidney we found that these two claudins have distinct and partially overlapping expression patterns. Claudin 11 is located in both the proximal and the distal convoluted tubules, while claudin 14 is located in both the thin descending and the thick ascending limbs of the loop of Henle, as well as in the proximal convoluted tubules. Although daily urinary excretion of Mg++, and to a lesser extent of Ca++, tended to be higher in claudin11/claudin 14 double mutants, these changes did not reach statistical significance comparing to wt animals. These findings suggest that under normal conditions co-deletion of claudin11 and claudin 14 does not affect kidney function or ion balance. Our data demonstrate that despite the importance of each of these claudins, there is probably no functional cooperation between them. Generation of additional mouse models in which different claudins are abolished will provide further insight into the complex interactions between claudin proteins in various physiological systems. PMID:18663477

  18. Build them up and break them down: Tight junctions of cell lines expressing typical hepatocyte polarity with a varied repertoire of claudins.

    PubMed

    Grosse, Brigitte; Degrouard, Jeril; Jaillard, Danielle; Cassio, Doris

    2013-10-01

    Tight junctions (TJs) of cells expressing simple epithelial polarity have been extensively studied, but less is known about TJs of cells expressing complex polarity. In this paper we analyzed, TJs of four different lines, that form bile canaliculi (BC) and express typical hepatocyte polarity; WIF-B9, 11-3, Can 3-1, Can 10. Striking differences were observed in claudin expression. None of the cell lines produced claudin-1. WIF-B9 and 11-3 expressed only claudin-2 while Can 3-1 and Can 10 expressed claudin-2,-3,-4,-5. TJs of these two classes of lines differed in their ultra-stucture, paracellular permeability, and robustness. Lines expressing a large claudin repertoire, especially Can 10, had complex and efficient TJs, that were maintained when cells were depleted in calcium. Inversely, TJs of WIF-B9 and 11-3 were leaky, permissive and dismantled by calcium depletion. Interestingly, we found that during the polarization process, TJ proteins expressed by all lines were sequentially settled in a specific order: first occludin, ZO-1 and cingulin, then JAM-A and ZO-2, finally claudin-2. Claudins expressed only in Can lines were also sequentially settled: claudin-3 was the first settled. Inhibition of claudin-3 expression delayed BC formation in Can10 and induced the expression of simple epithelial polarity. These results highlight the role of claudins in the settlement and the efficiency of TJs in lines expressing typical hepatocyte polarity. Can 10 seems to be the most promising of these lines because of its claudin repertoire near that of hepatocytes and its capacity to form extended tubular BC sealed by efficient TJs.

  19. Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells

    PubMed Central

    1981-01-01

    The localization of pp60src within adhesion structures of epithelioid rat kidney cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus was compared to the organization of actin, alpha-actinin, vinculin (a 130,000-dalton protein), tubulin, and the 58,000-dalton intermediate filament protein. The adhesion structures included both adhesion plaques and previously uncharacterized adhesive regions formed at cell-cell junctions. We have termed these latter structures "adhesion junctions." Both adhesion plaques and adhesion junctions were identified by interference-reflection microscopy and compared to the location of pp60src and the various cytoskeletal proteins by double fluorescence. The results demonstrated that the src gene product was found within both adhesion plaques and the adhesion junctions. In addition, actin, alpha-actinin, and vinculin were also localized within the same pp60src-containing adhesion structures. In contrast, tubulin and the 58,000-dalton intermediate filament protein were not associated with either adhesion plaques or adhesion junctions. Both adhesion plaques and adhesion junctions were isolated as substratum-bound structures and characterized by scanning electron microscopy. Immunofluorescence revealed that pp60src, actin, alpha-actinin, and vinculin were organized within specific regions of the adhesion junctions. Heavy accumulations of actin and alpha-actinin were found on both sides of the junctions with a narrow gap of unstained material at the midline, whereas pp60src stain was more intense in this central region. Antibody to vinculin stained double narrow lines defining the periphery of the junctional complexes but was excluded from the intervening region. In addition, the distribution of vinculin relative to pp60src within adhesion plaques suggested an inverse relationship between the presence of these two proteins. Overall, these results establish a close link between the src gene product and components of the

  20. Flexible and efficient eletrokinetic stacking of DNA and proteins at an HF etched porous junction on a fused silica capillary.

    PubMed

    Wu, Zhi-Yong; Fang, Fang; He, Yan-Qin; Li, Ting-Ting; Li, Jing-Jing; Tian, Li

    2012-08-21

    Better understanding of the mechanism is important for exploring the potentials of a preconcentration method. In this work, we show for the first time that the HF etched porous junction on a fused silica capillary behaves not only as a filter but also as an integrated nanofluidic interface. This junction exhibits an obvious ion concentration polarization (CP) effect, with which highly efficient electrokinetic stacking (ES) inside the capillary can be achieved without molecular size or charge type limitation. Two major types of CP based ES were proposed, and an autostop etching principle was presented for avoiding overetching. The ES can be performed in a broad range of pH and buffer concentration. Over a billion times of concentration was demonstrated by a fluorescein probe with laser induced fluorescent (LIF) detection. ES of fluorescently labeled and native DNA and protein were characterized by charge-coupled device (CCD) imaging and online capillary gel electrophoresis (CGE) with ultraviolet (UV) absorption detections, respectively. With this junction, highly efficient ES can be performed easily by voltage manipulation without any mechanical operation. We may foresee that the performance of capillary-based conventional and chip electrophoresis could be greatly enhanced with this junction in the analysis of low abundance biomolecules.

  1. Discovery of a junctional epitope antibody that stabilizes IL-6 and gp80 protein:protein interaction and modulates its downstream signaling

    PubMed Central

    Adams, Ralph; Burnley, Rebecca J.; Valenzano, Chiara R.; Qureshi, Omar; Doyle, Carl; Lumb, Simon; del Carmen Lopez, Maria; Griffin, Robert; McMillan, David; Taylor, Richard D.; Meier, Chris; Mori, Prashant; Griffin, Laura M.; Wernery, Ulrich; Kinne, Jörg; Rapecki, Stephen; Baker, Terry S.; Lawson, Alastair D. G.; Wright, Michael; Ettorre, Anna

    2017-01-01

    Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the “junctional epitope” nature of VHH6, a camelid single domain antibody recognizing the IL-6–gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions. PMID:28134246

  2. Effect of neoadjuvant chemotherapy on HER-2 expression in surgically treated gastric and oesophagogastric junction carcinoma: a multicentre Italian study.

    PubMed

    Chiari, Damiano; Orsenigo, Elena; Guarneri, Giovanni; Baiocchi, Gian Luca; Mazza, Elena; Albarello, Luca; Bissolati, Massimiliano; Molfino, Sarah; Staudacher, Carlo

    2017-03-01

    Predictors of response to neoadjuvant chemotherapy are not available for gastric and oesophago-gastric junction carcinoma. HER-2 over-expression in breast cancer correlates with poor prognosis and high incidence of recurrence. First aim of this study was to evaluate if the HER-2 expression/amplification is predictive of response to neoadjuvant chemotherapy in terms of pathologic regression. Secondary aim was to evaluate if HER-2 expression varies after neoadjuvant treatment. Thirty-five patients with locally advanced gastric or oesophago-gastric junction carcinoma underwent preoperative chemotherapy and surgical resection at San Raffaele Scientific Institute and Spedali Civili of Brescia. HER-2 expression/amplification was evaluated on every biopsy at diagnosis time and on every surgical sample after neoadjuvant chemotherapy. Pathologic response to chemotherapy was evaluated according to TNM classification (ypT status and ypN status) and Mandard's tumour regression grade classification. In our series 10 patients (28.6%) showed a reduction in HER-2 overexpression and in 6 of them (17.1%) HER-2 expression completely disappeared. Only three of the six patients with HER-2 disappearance had a complete pathological response to neoadjuvant chemotherapy. There was a strong correlation between HER-2 negativity on biopsy and absence of lymph node metastasis in surgical samples after neoadjuvant chemotherapy, irrespective of nodal status before chemotherapy. A direct correlation between HER-2 reduction after neoadjuvant chemotherapy and pathologic regression (primary tumour and lymph nodes) in surgical samples was found. HER-2 negativity may represent a predictor of pathologic response to neoadjuvant chemotherapy for gastric and oesophago-gastric junction adenocarcinoma. Neoadjuvant treatment can reduce HER-2 overexpression.

  3. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cel