Gap junctions in cells of the immune system: structure, regulation and possible functional roles.
Sáez, J C; Brañes, M C; Corvalán, L A; Eugenín, E A; González, H; Martínez, A D; Palisson, F
2000-04-01
Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.
Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less
Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-09-19
Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less
Lee, Kyu Seung; Shim, Jaeho; Lee, Hyunbok; Yim, Sang-Youp; Angadi, Basavaraj; Lim, Byungkwon; Son, Dong Ick
2018-06-08
Hybrid organic-Red-Green-Blue (RGB) color quantum dots were incorporated into consolidated p(polymer)-i(RGB quantum dots)-n(small molecules) junction structures to fabricate a single active layer for a light emitting diode device for white electroluminescence. The semiconductor RGB quantum dots, as an intrinsic material, were electrostatically bonded between functional groups of the p-type polymer organic material core surface and the n-type small molecular organic material shell surface. The ZnCdSe/ZnS and CdSe/ZnS quantum dots distributed uniformly and isotropically surrounding the polymer core which in turn was surrounded by small molecular organic materials. In the present study, we have identified the mechanisms of chemical synthesis and interactions of the p-i-n junction nanocell structure through modeling studies by DFT calculations. We have also investigated optical, structural and electrical properties along with the carrier transport mechanism of the light emitting diodes which have a single active layer of consolidated p-i-n junction nanocells for white electroluminescence.
Compositional grading of InxGa1-xAs/GaAs tunnel junctions enhanced by ErAs nanoparticles
NASA Astrophysics Data System (ADS)
Salas, R.; Krivoy, E. M.; Crook, A. M.; Nair, H. P.; Bank, S. R.
2011-10-01
We investigate the electrical conductivity of GaAs-based tunnel junctions enhanced with semimetallic ErAs nanoparticles. In particular, we examine the effects of digitally-graded InGaAs alloys on the n-type side of the tunnel junction, along with different p-type doping levels. Device characteristics of the graded structures indicate that the n-type Schottky barrier may not be the limiting factor in the tunneling current as initially hypothesized. Moreover, significantly improved forward and reverse bias tunneling currents were observed with increased p-type doping, suggesting p-side limitation.
Pratebha, B; Jaikumar, N D; Sudhakar, R
2014-01-01
The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.
NASA Technical Reports Server (NTRS)
Piotrowski, W. S.; Raue, J. E.
1984-01-01
Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.
Beyer, Eric C; Lipkind, Gregory M; Kyle, John W; Berthoud, Viviana M
2012-08-01
The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Aras, Mehmet; Kılıç, ćetin; Ciraci, S.
2017-02-01
Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.
A four-way junction with triple-helical arms: design, characterization, and stability.
Makube, N; Klump, H H
2000-05-01
The formation of the four-way junction containing four triple-helical arms has been demonstrated using chemical methods (polyacrylamide gel electrophoresis and chemical footprinting using OsO(4) as a probe) and physical methods (UV absorbance melting and DSC). The junction J(T1T3) was assembled from two 20-mer purine strands and two 44-mer pyrimidine strands. To determine the contribution of the different arms to the stability of the complete structure of J(T1T3), the junction was compared to two simplified substructures, J(T1) and J(T3), respectively. Common to these complexes is the underlying double-helical four-way junction Js. Addition of Na(+) had a profound effect on stabilizing and subsequently folding the junctions into the stacked X-structures. The following results support the structure present: (i) The native polyacrylamide electrophoresis exhibits only a single band(s) corresponding to one species present when all four single strands are mixed in equal amounts. (ii) OsO(4) modifications were investigated at pH 5.0 and in the presence of 10 mM Mg(2+) and 100 mM Na(+). There is no cleavage of thymine residues at the branch point and throughout the structure. (iii) The thermal unfolding of J(T1) and J(T3) illustrates that the triple-helical arms are more stable than the double-helical arms which are contained in these junctions and that J(T1T3) with four triple-helical arms is slightly more stable than J(T1) and J(T3). (iv) The calorimetric transition enthalpies determined for the arms of J(T1T3) are comparable to those associated with the unfolding of its corresponding arms in J(T1) and J(T3). The results also illustrate that the formation of the junctions is not restricted by the pH, [Na(+)], sequence composition of the arms, and/or the loop position. Copyright 2000 Academic Press.
Kato, Akira; Nakamura, Korefumi; Kudo, Hisayuki; Tran, Yen Ha; Yamamoto, Yoko; Doi, Hiroyuki; Hirose, Shigehisa
2007-09-01
Novel adhesion junctions have been characterized that are formed at the interface between pillar cells and collagen columns, both of which are essential constituents of the gill lamellae in fish. We termed these junctions the "column junction" and "autocellular junction" and determined their molecular compositions by immunofluorescence microscopy using pufferfish. We visualized collagen columns by concanavalin A staining and found that the components of integrin-mediated cell-matrix adhesion, such as talin, vinculin, paxillin, and fibronectin, were concentrated on plasma membranes surrounding collagen columns (column membranes). This connection is analogous to the focal adhesion of cultured mammalian cells, dense plaque of smooth muscle cells, and myotendinous junction of skeletal muscle cells. We named this connection the "column junction." In the cytoplasm near the column, actin fibers, actinin, and a phosphorylated myosin light chain of 20 kDa are densely located, suggesting the contractile nature of pillar cells. The membrane infoldings surrounding the collagen columns were found to be connected by the autocellular junction, whose components are highly tyrosine-phosphorylated and contain the tight junction protein ZO-1. This study represents the first molecular characterization and fluorescence visualization of the column and autocellular junctions involved in both maintaining structural integrity and the hemodynamics of the branchial lamellae.
Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition
NASA Astrophysics Data System (ADS)
Wang, Y. G.; Wang, T. H.; Lin, X. W.; Dravid, V. P.
2006-12-01
We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction.
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin
Dörfel, Max Johannes; Huber, Otmar
2012-01-01
Tight junctions (TJs) typically represent the most apical contacts in epithelial and endothelial cell layers where they play an essential role in the separation of extracellular or luminal spaces from underlying tissues in the body. Depending on the protein composition, TJs define the barrier characteristics and in addition maintain cell polarity. Two major families of integral membrane proteins form the typical TJ strand network, the tight junction-associated MARVEL protein (TAMP) family members occludin, tricellulin, and MarvelD3 as well as a specific set of claudins. Occludin was the first identified member of these tetraspanins and is now widely accepted as a regulator of TJ assembly and function. Therefore, occludin itself has to be tightly regulated. Phosphorylation of occludin appears to be of central importance in this context. Here we want to summarize current knowledge on the kinases and phosphatases directly modifying occludin, and their role in the regulation of TJ structure, function, and dynamics. PMID:22315516
The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids
NASA Astrophysics Data System (ADS)
Terrones, Jeronimo; Windle, Alan H.; Elliott, James A.
2014-10-01
Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures.
Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application.
Ouyang, An; Cao, Anyuan; Hu, Song; Li, Yanhui; Xu, Ruiqiao; Wei, Jinquan; Zhu, Hongwei; Wu, Dehai
2016-05-04
Graphene aerogels are highly porous materials with many energy and environmental applications; tailoring the structure and composition of pore walls within the aerogel is the key to those applications. Here, by freeze casting the graphene oxide sheets, we directly fabricated freestanding porous graphene beads containing radially oriented through channels from the sphere center to its surface. Furthermore, we introduced pseudopolymer to make reinforced, functional composite beads with a unique pore morphology. We showed that polymer layers can be coated smoothly on both sides of the pore walls, as well as on the junctions between adjacent pores, resulting in uniform polymer-graphene-polymer sandwiched structures (skeletons) throughout the bead. These composite beads significantly improved the electrochemical properties, with specific capacitances up to 669 F/g and good cyclic stability. Our results indicate that controlled fabrication of homogeneous hierarchical structures is a potential route toward high performance composite electrodes for various energy applications.
Subminiature eddy current transducers for studying metal- dielectric junctions
NASA Astrophysics Data System (ADS)
Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.
2016-11-01
Based on an eddy current transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.
McGuire, Jacob D.; Walker, Mary P.; Dusevich, Vladimir; Wang, Yong; Gorski, Jeff P.
2015-01-01
Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200–300 µm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a “foundation” model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel–dentin interface. PMID:25158177
NASA Astrophysics Data System (ADS)
Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.
2014-02-01
The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.
Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.
Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin
2017-06-01
With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; France, Ryan M.; Geisz, John F.
The development of compositionally graded buffer layers (CGBs) with enhanced transparency would enable novel five and six junction solar cells, with efficiencies approaching 50% under high concentration. Here, we demonstrate highly transparent grades between the GaAs and InP lattice constants on both A- and B-miscut GaAs substrates, employing Al xGayIn 1-x-yAs and highly Se-doped Burstein-Moss (BM) shifted Ga xIn 1-xP. Transparency to >810 and >890 nm wavelengths is demonstrated with BM-shifted Ga xIn 1-xP on B-miscut substrates and Al xGayIn 1-x-yAs/Ga xIn 1-xP(Se) combined grades on A-miscut substrates, respectively. 0.74 eV GaInAs solar cells grown on these transparent CGBs exhibitmore » Woc = 0.41 V at mA/ cm 2, performance comparable with the state-of-the-art Ga xIn 1-xP grade employed in the four-junction-inverted metamorphic multijunction (IMM) cell. A GaAs/0.74cV GaInAs tandem cell was grown with a transparent BM-shifted Ga xIn 1-xP CGB to verify the CGB performance in a multijunction device structure. Quantum efficiency measurements indicate that the CGB is completely transparent to photons below the GaAs bandedge, validating its use in 4-6 junction IMM devices with a single-graded buffer. Furthermore, this tandem represents a highly efficient two-junction band gap combination, achieving 29.6% ± 1.2% efficiency under the AM1.5 global spectrum, demonstrating how the additional transparency enables new device structures.« less
Schulte, Kevin L.; France, Ryan M.; Geisz, John F.
2016-11-11
The development of compositionally graded buffer layers (CGBs) with enhanced transparency would enable novel five and six junction solar cells, with efficiencies approaching 50% under high concentration. Here, we demonstrate highly transparent grades between the GaAs and InP lattice constants on both A- and B-miscut GaAs substrates, employing Al xGayIn 1-x-yAs and highly Se-doped Burstein-Moss (BM) shifted Ga xIn 1-xP. Transparency to >810 and >890 nm wavelengths is demonstrated with BM-shifted Ga xIn 1-xP on B-miscut substrates and Al xGayIn 1-x-yAs/Ga xIn 1-xP(Se) combined grades on A-miscut substrates, respectively. 0.74 eV GaInAs solar cells grown on these transparent CGBs exhibitmore » Woc = 0.41 V at mA/ cm 2, performance comparable with the state-of-the-art Ga xIn 1-xP grade employed in the four-junction-inverted metamorphic multijunction (IMM) cell. A GaAs/0.74cV GaInAs tandem cell was grown with a transparent BM-shifted Ga xIn 1-xP CGB to verify the CGB performance in a multijunction device structure. Quantum efficiency measurements indicate that the CGB is completely transparent to photons below the GaAs bandedge, validating its use in 4-6 junction IMM devices with a single-graded buffer. Furthermore, this tandem represents a highly efficient two-junction band gap combination, achieving 29.6% ± 1.2% efficiency under the AM1.5 global spectrum, demonstrating how the additional transparency enables new device structures.« less
George, Sharon A; Faye, N Rokhaya; Murillo-Berlioz, Alejandro; Lee, K Benjamin; Trachiotis, Gregory D; Efimov, Igor R
2017-01-01
The atrioventricular node (AVN) is a complex structure that performs a variety of functions in the heart. The AVN is primarily an electrical gatekeeper between the atria and ventricles and introduces a delay between atrial and ventricular excitation, allowing for efficient ventricular filling. The AVN is composed of several compartments that safely transmit electrical excitation from the atria to the ventricles via the fast or slow pathways. There are many electrophysiological differences between these pathways, including conduction time and electrical refractoriness, that increase the predisposition of the atrioventricular junction to arrhythmias such as atrioventricular nodal re-entrant tachycardia. These varied electrophysiological characteristics of the fast and slow pathways stem from their unique structural and molecular composition (tissue and cellular geometry, ion channels and gap junctions). This review summarises the structural and molecular heterogeneities of the human AVN and how they result in electrophysiological variations and arrhythmias. PMID:29326832
Avitall, Boaz; Lafontaine, Daniel; Rozmus, Grzegorz; Adoni, Naveed; Dehnee, Abed; Urbonas, Arvydas; Le, Khoi M; Aleksonis, Dinas
2005-04-01
The coronary sinus (CS) can provide access to targets across and within the atrioventricular (AV) junction. In 12 dogs (32 +/- 3 Kg), cryo balloons (10-19 mm) were applied to regions of the AV junction for 3 minutes at a temperature of -75.9( composite function) +/- 9(composite function)C (ranging -57 to -83). Electrical activity and pacing within the CS were assessed pre and post ablation and at least 3 months later in 9 dogs. In the 3 other dogs, hearts were examined immediately after cryo ablation. CS and circumflex angiography was performed pre and post ablation. The hearts, CS, and Cx were then examined for structural injury. The AV junction was sectioned and the hearts were immersed in Tetrazolium, and the lesions were inspected for transmurality across the AV groove. In 3/12 dogs the distal CS cryo lesions resulted in inferior ST segment depression that resolved within 5 minutes. There was no arrhythmia or hemodynamic changes. No CS electrical activity was noted post ablation. The pacing threshold increased from 2 +/- 2.3 mA to 7.4 +/- 3.6 mA (p < 0.001). Pathological examination of 3 acute hearts revealed hematomas. There was no pericardial effusion. No evidence of stenosis or thrombosis was seen within the CS and the circumflex artery. After 3 months of recovery, transmural lesions across the AV groove were present in all of the targeted AV regions. Intra-CS cryo balloon ablation is safe and can potentially replace endocardial RF ablation targeting the AV junction and the CS muscular sleeve.
Zhang, Kexiong; Liang, Hongwei; Liu, Yang; Shen, Rensheng; Guo, Wenping; Wang, Dongsheng; Xia, Xiaochuan; Tao, Pengcheng; Yang, Chao; Luo, Yingmin; Du, Guotong
2014-01-01
Low Al-composition p-GaN/Mg-doped Al0.25Ga0.75N/n+-GaN polarization-induced backward tunneling junction (PIBTJ) was grown by metal-organic chemical vapor deposition on sapphire substrate. A self-consistent solution of Poisson-Schrödinger equations combined with polarization-induced theory was used to model PIBTJ structure, energy band diagrams and free carrier concentrations distribution. The PIBTJ displays reliable and reproducible backward tunneling with a current density of 3 A/cm2 at the reverse bias of −1 V. The absence of negative differential resistance behavior of PIBTJ at forward bias can mainly be attributed to the hole compensation centers, including C, H and O impurities, accumulated at the p-GaN/Mg-doped AlGaN heterointerface. PMID:25205042
Zhang, Kexiong; Liang, Hongwei; Liu, Yang; Shen, Rensheng; Guo, Wenping; Wang, Dongsheng; Xia, Xiaochuan; Tao, Pengcheng; Yang, Chao; Luo, Yingmin; Du, Guotong
2014-09-10
Low Al-composition p-GaN/Mg-doped Al0.25Ga0.75N/n(+)-GaN polarization-induced backward tunneling junction (PIBTJ) was grown by metal-organic chemical vapor deposition on sapphire substrate. A self-consistent solution of Poisson-Schrödinger equations combined with polarization-induced theory was used to model PIBTJ structure, energy band diagrams and free carrier concentrations distribution. The PIBTJ displays reliable and reproducible backward tunneling with a current density of 3 A/cm(2) at the reverse bias of -1 V. The absence of negative differential resistance behavior of PIBTJ at forward bias can mainly be attributed to the hole compensation centers, including C, H and O impurities, accumulated at the p-GaN/Mg-doped AlGaN heterointerface.
2012-01-13
abalone shell (Figures 3, 4). Here, we can see that the damage is significantly mitigated in the nacreous regions while cracks formed in the Calcitic...properties. Page 5 / 11 Identifying the crack propagation mechanisms helps to identify new designs for impact resistant materials, so the...human tooth from dentin – dentin/ enamel junction – enamel . It is clear that higher resolution scans are necessary to interrogate local structure
Hetero-junction photovoltaic device and method of fabricating the device
Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur
2014-02-10
A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.
Ultralow-voltage-drop GaN/InGaN/GaN tunnel junctions with 12% indium content
NASA Astrophysics Data System (ADS)
Akyol, Fatih; Zhang, Yuewei; Krishnamoorthy, Sriram; Rajan, Siddharth
2017-12-01
We report a combination of highly doped layers and polarization engineering that achieves highly efficient blue-transparent GaN/InGaN/GaN tunnel junctions (In content = 12%). NPN diode structures with a low voltage drop of 4.04 V at 5 kA/cm2 and a differential resistance of 6.51 × 10-5 Ω·cm2 at 3 kA/cm2 were obtained. The tunnel junction design with n++-GaN (Si: 5 × 1020 cm-3)/3 nm p++-In0.12Ga0.88N (Mg: 1.5 × 1020 cm-3)/p++-GaN (Mg: 5 × 1020 cm-3) showed the best device performance. Device simulations agree well with the experimentally determined optimal design. The combination of low In composition and high doping can facilitate lower tunneling resistance for blue-transparent light-emitting diodes.
Monolithic multi-color light emission/detection device
Wanlass, Mark W.
1995-01-01
A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.
Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roucka, Radek, E-mail: radek@translucentinc.com; Clark, Andrew; Landini, Barbara
2015-09-28
Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction,more » single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.« less
2008-01-01
Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required. PMID:18386043
Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction
NASA Astrophysics Data System (ADS)
Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh
2017-08-01
The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.
Electric polarization switching in an atomically thin binary rock salt structure
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
2018-01-01
Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
Monolithic multi-color light emission/detection device
Wanlass, M.W.
1995-02-21
A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.
Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua
2017-11-01
Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.
Li, Daoran; Liang, Xiaohui; Liu, Wei; Ma, Jianna; Zhang, Yanan; Ji, Guangbin; Meng, Wei
2017-12-01
In this work, the 3-D honeycomb-like FeCo/C nanocomposites were synthesized through the carbon thermal reduction under an inert atmosphere. The enhanced microwave absorption properties of the composites were mainly attributed to the unique three dimensional structure of the FeCo/C nanocomposites, abundant interfaces and junctions, and the appropriate impedance matching. The Cole-Cole semicircles proved the sufficient dielectric relaxation process. The sample calcinated at 600°C for 4h showed the best microwave absorption properties. A maximum reflection loss of -54.6dB was achieved at 10.8GHz with a thickness of 2.3mm and the frequency bandwidth was as large as 5.3GHz. The results showed that the as-prepared FeCo/C nanocomposite could be a potential candidate for microwave absorption. Copyright © 2017 Elsevier Inc. All rights reserved.
Structures with high number density of carbon nanotubes and 3-dimensional distribution
NASA Technical Reports Server (NTRS)
Chen, Zheng (Inventor); Tzeng, Yonhua (Inventor)
2002-01-01
A composite is described having a three dimensional distribution of carbon nanotubes. The critical aspect of such composites is a nonwoven network of randomly oriented fibers connected at their junctions to afford macropores in the spaces between the fibers. A variety of fibers may be employed, including metallic fibers, and especially nickel fibers. The composite has quite desirable properties for cold field electron emission applications, such as a relatively low turn-on electric field, high electric field enhancement factors, and high current densities. The composites of this invention also show favorable properties for other an electrode applications. Several methods, which also have general application in carbon nanotube production, of preparing these composites are described and employ a liquid feedstock of oxyhydrocarbons as carbon nanotube precursors.
Park, Juyoung; Hyun, Byung Gwan; An, Byeong Wan; Im, Hyeon-Gyun; Park, Young-Geun; Jang, Junho; Park, Jang-Ung; Bae, Byeong-Soo
2017-06-21
We report an Ag nanofiber-embedded glass-fabric reinforced hybrimer (AgNF-GFRHybrimer) composite film as a reliable and high-performance flexible transparent conducting film. The continuous AgNF network provides superior optoelectronic properties of the composite film by minimizing transmission loss and junction resistance. In addition, the excellent thermal/chemical stability and mechanical durability of the GFRHybrimer matrix provides enhanced mechanical durability and reliability of the final AgNF-GFRHybrimer composite film. To demonstrate the availability of our AgNF-GFRHybrimer composite as a transparent conducting film, we fabricated a flexible organic light-emitting diode (OLED) device on the AgNF-GFRHybrimer film; the OLED showed stable operation during a flexing.
Tight junctions and the modulation of barrier function in disease
2008-01-01
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease. PMID:18415116
The complex between a four-way DNA junction and T7 endonuclease I
Déclais, Anne-Cécile; Fogg, Jonathan M.; Freeman, Alasdair D.J.; Coste, Franck; Hadden, Jonathan M.; Phillips, Simon E.V.; Lilley, David M.J.
2003-01-01
The junction-resolving enzyme endonuclease I is selective for the structure of the DNA four-way (Holliday) junction. The enzyme binds to a four-way junction in two possible orientations, with a 4:1 ratio, opening the DNA structure at the centre and changing the global structure into a 90° cross of approximately coaxial helices. The nuclease cleaves the continuous strands of the junction in each orientation. Binding leads to pronounced regions of protection of the DNA against hydroxyl radical attack. Using all this information together with the known structure of the enzyme and the structure of the BglI–DNA complex, we have constructed a model of the complex of endonuclease I and a DNA junction. This shows how the enzyme is selective for the structure of a four-way junction, such that both continuous strands can be accommodated into the two active sites so that a productive resolution event is possible. PMID:12628932
Protein myozap--a late addition to the molecular ensembles of various kinds of adherens junctions.
Rickelt, Steffen; Kuhn, Caecilia; Winter-Simanowski, Stefanie; Zimbelmann, Ralf; Frey, Norbert; Franke, Werner Wilhelm
2011-12-01
The protein myozap, a polypeptide of 54 kDa, has recently been identified as a component of the cytoplasmic plaques of the composite junctions (areae compositae) in the myocardiac intercalated disks and of the adherens junctions (AJs) in vascular endothelia. Now we report that using very sensitive new antibodies and drastic localization methods, we have also identified this protein as a component of the AJ plaques in simple and complex epithelia, in the adluminal cell layer of the transitional epithelium of the urinary tract and in certain cell layers of diverse stratified epithelia, including gingiva, tongue, pharynx and esophagus, cervix, vagina and epidermis. Myozap has not been identified in desmosomal and tight junction plaques. We have also detected protein myozap in AJ structures of carcinomas. The discovery of a novel major protein in AJ plaques now calls for re-examinations of molecular interactions in AJ formation and maintenance and also offers a new marker for diagnostic immunocytochemistry. We also discuss the need for progressive unravelling, extractive treatments and buffer rinses of sections and cultured cells to reveal obscured or masked antigens, before definitive negative conclusions in immunohistochemistry can be made.
A history of gap junction structure: hexagonal arrays to atomic resolution.
Grosely, Rosslyn; Sorgen, Paul L
2013-02-01
Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen
2014-10-01
Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sferruzzi-Perri, Amanda N; Macpherson, Anne M; Roberts, Claire T; Robertson, Sarah A
2009-07-01
Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.
Connexin channels and phospholipids: association and modulation
Locke, Darren; Harris, Andrew L
2009-01-01
Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581
Engineering and characterizing nanoscale multilayered structures for magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Yang, J. Joshua
Magnetic tunnel junction (MTJ) has generated considerable attention due to its potential applications in improved magnetic sensors, read heads in HDDs and nonvolatile RAM. The materials issues play a crucial role in the performance of MTJs. In the work described in this thesis, we have engineered some interesting nanoscale multilayered structures mainly via thermodynamics considerations for MTJs. The insulator is usually an ultra-thin (<2nm) oxide, formed by oxidizing a pre-deposited metal, such as Al etc. We have developed novel fabrication approaches for obtaining clean and smooth interfaces between the insulator and the ferromagnets. These approaches include selectively oxidizing the pre-deposited tunnel barrier precursor metal, amorphizing the tunnel barrier precursor metal by alloying it with other elements, and in-situ annealing the bottom ferromagnetic layer. About 72% tunneling magnetoresistance (TMR) has been achieved at room temperature with AlOx and CoFe based MTJs. We have made a systemic study of the TMR vs. the Co1-xFe x electrode composition for AlOx based MTJs. A significant variation of TMR with Fe concentration has been observed. It is well known that the crystal structure of Co1-xFex changes from fcc to bcc with increasing Fe concentration. The concomitant composition change cast doubts on the role played by the crystal structure of the Co1-x Fex electrode on the TMR. By introducing different strains to an epitaxial Co1-xFex layer, we were able to fix its composition but alter its crystalline structure from fcc to bcc and found that the bcc structure resulted in much higher TMR values than found for the fcc structure. This is one of the few direct experimental confirmatory results showing the role of the FM electronic structure on the MTJ properties. Using Ag as a template, different 3d ferromagnets have been epitaxially grown on the Si substrate with hcp, fcc and bcc crystalline structures, respectively. By combining the selective oxidation method with the epitaxial growth technique, we have successfully created a single-crystal-like layer on top of an amorphous layer, which may have broad applications in thin film devices including MTJs.
Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction.
Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J G; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh
2017-08-01
The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Rash, John E; Kamasawa, Naomi; Davidson, Kimberly G V; Yasumura, Thomas; Pereda, Alberto E; Nagy, James I
2012-06-01
Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkadesh, S.; Mandal, P.K.; Gautham, N., E-mail: n_gautham@hotmail.com
Highlights: {yields} This is the first crystal structure of a four-way junction with sticky ends. {yields} Four junction structures bind to each other and form a rhombic cavity. {yields} Each rhombus binds to others to form 'infinite' 2D tiles. {yields} This is an example of bottom-up fabrication of a DNA nano-lattice. -- Abstract: We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind tomore » each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 A. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.« less
NASA Astrophysics Data System (ADS)
Kuperman, Maayan; Peskin, Uri
2017-03-01
It has been known for several decades that the electric current through tunneling junctions is affected by irradiation. In particular, photon-assisted currents by asymmetric irradiation of the two leads was demonstrated and studied extensively in tunneling junctions of different compositions and for different radiation wavelengths. In this work, this phenomenon is revisited in the context of single molecule junctions. Restricting the theoretical discussion to adiabatic periodic driving of one lead with respect to the other within a non-interacting electron formulation, the main features of specific molecules are encoded in the discrete electronic energy levels. The detailed level structure of the molecule is shown to yield new effects in the presence of asymmetric driving of the leads. In particular, when the field-free tunneling process is dominated by a single electronic level, the electric current can be suppressed to zero or flow against the direction of an applied static bias. In the presence of a second electronic level, a directional photo-electric effect is predicted, where not only the magnitude but also the direction of the steady state electric current through the tunneling junction can be changed by a monotonous increase of the field intensity. These effects are analyzed and explained by outlying the relevant theory, using analytic expressions in the wide-band limit, as well as numerical simulations beyond this limit.
NASA Astrophysics Data System (ADS)
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-01
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a
Llewellyn, Sue
2013-12-01
This article argues that rapid eye movement (REM) dreaming is elaborative encoding for episodic memories. Elaborative encoding in REM can, at least partially, be understood through ancient art of memory (AAOM) principles: visualization, bizarre association, organization, narration, embodiment, and location. These principles render recent memories more distinctive through novel and meaningful association with emotionally salient, remote memories. The AAOM optimizes memory performance, suggesting that its principles may predict aspects of how episodic memory is configured in the brain. Integration and segregation are fundamental organizing principles in the cerebral cortex. Episodic memory networks interconnect profusely within the cortex, creating omnidirectional "landmark" junctions. Memories may be integrated at junctions but segregated along connecting network paths that meet at junctions. Episodic junctions may be instantiated during non-rapid eye movement (NREM) sleep after hippocampal associational function during REM dreams. Hippocampal association involves relating, binding, and integrating episodic memories into a mnemonic compositional whole. This often bizarre, composite image has not been present to the senses; it is not "real" because it hyperassociates several memories. During REM sleep, on the phenomenological level, this composite image is experienced as a dream scene. A dream scene may be instantiated as omnidirectional neocortical junction and retained by the hippocampus as an index. On episodic memory retrieval, an external stimulus (or an internal representation) is matched by the hippocampus against its indices. One or more indices then reference the relevant neocortical junctions from which episodic memories can be retrieved. Episodic junctions reach a processing (rather than conscious) level during normal wake to enable retrieval. If this hypothesis is correct, the stuff of dreams is the stuff of memory.
Metamorphic III–V Solar Cells: Recent Progress and Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Ivan; France, Ryan M.; Geisz, John F.
Inverted metamorphic multijunction solar cells have been demonstrated to be a pathway to achieve the highest photovoltaic (PV) conversion efficiencies. Attaining high-quality lattice-mismatched (metamorphic) semiconductor devices is challenging. However, recent improvements to compositionally graded buffer epitaxy and junction structures have led to the achievement of high-quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. For this high material quality, photon recycling is significant, and therefore, the optical environment of the solar cell becomes important. In this paper, we first present recent progress and performance results for 1- and 0.7-eV GaInAs solar cells grown on GaAs substrates. Then, an electroopticalmore » model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that the quality of 1-eV subcells is such that further improving its electronic quality does not produce significant Voc increases in the four-junction inverted metamorphic subcells, unless a back reflector is used to enhance photon recycling, which would significantly complicate the structure. Conversely, improving the electronic quality of the 0.7-eV subcell would lead to significant Voc boosts, driving the progress of four-junction inverted metamorphic solar cells.« less
Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.; ...
2017-03-30
The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.
The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less
Krisch, B
1986-01-01
In the borderline area between the hemal milieu of the choroid plexuses (PC) and the interstitial cerebrospinal-fluid (CSF) compartment, ground substances displaying increased amounts of basal lamina-like material and containing negatively charged sulfated glycosaminoglycans appear to be endowed with selective properties. They may function as a sieve or filtration barrier gradually controlling the passage of substances between the two milieus, depending on their charge and molecular weight. Special structural features and functional properties of ependymal cells are associated with such bordering structures. These ependymal cells are transitional elements between choroid epithelium and ciliated ependymal cells. As judged from experiments with horseradish peroxidase and conventional electron microscopy, occluding junctions at the basal pole of these cells prevent a rapid alteration in the milieu conditions, enabling gradual change from hemal to CSF composition near the bases of these transitional ependymal cells. The borderline structures between the hemal milieu of the PC and the area postrema are established by leptomeningeal cells which face a hemal milieu, are endowed with conspicuous tight junctions, and produce a flocculent substance, the light-microscopic equivalent of which is PAS positive. These structures probably establish an effective barrier between the two milieus of different composition. The functional characteristics and the morphology of the meningeal cells facing the hemal milieu of neurohemal regions resemble closely the neurothelial cells, which are interposed between the CSF milieu and the hemal milieu in the dura mater. The present results suggest that the location between the hemal and the CSF milieu is decisive for the transformation of leptomeningeal cells into "neurothelial" elements.
NASA Astrophysics Data System (ADS)
Biswas, Sujit Kumar
Nanoprobes are an extraordinary set of experimental tools that allow fabrication, manipulation, and measurement in nano-scale systems. The primary use of a nanoprobe for imaging tiny objects is supplemented by powerful electrical techniques, namely scanning surface potential microscopy and current sensing atomic force microscopy. They allow us to measure potential, and current in carbon nanotube circuits. Nanoprobes are superior to conventional two- or four-probe measurements because they can provide spatial information of local electronic properties. This makes them highly attractive in studying junctions and contacts with carbon nanotubes. We have studied single-walled carbon nanotube circuits, forming junctions to other nanotubes. The experimental results indicate that these junctions act like potential barriers of about 50 meV that can confine electrons with an effective mass of 0.003 me , within nanotube channels of length 0.5 mum lying in-between two such potential barriers. This leads to quantization of the channel, forming a resonant tunneling structure. We have also found that single-walled nanotubes have phase coherence lengths of the order of 1 mum. This leads to situations where the electron interference effects at scattering centers need to be considered. We have seen direct evidence of this, in the non-linear resistance increase within nanotubes with few defects. Ambipolar transistor behavior was measured in a p-type single-walled nanotube circuit that showed electron injection across the Schottky junction at high positive bias. We have also studied multi-walled carbon nanotube circuits using scanning potential microscopy, and found that a back gate potential can vary the resistance of the channel. Vertical nanotube arrays, suitable for interconnects, were also measured. These hollow multi-walled nanotube channels were about 45 nm in diameter, and 50 mum in length, fabricated in an anodized alumina template. We found that these structures could sustain current densities greater than 105 A/cm2. Conventional use of nanoprobes in imaging aluminum nitride surfaces displayed curious step bunching structures. We have used an innovative analysis technique with which the bulk lattice constant of the crystal was measured to an accuracy of about 4% of X-ray crystallography value of 0.497 nm. In addition, this technique showed that there were regions on the surface that had a larger lattice parameter of 0.64 nm, which we interpreted to be due to a variation in the chemical composition of the surface such as oxide formation. We believe that this technique may prove useful as a study of chemical-composition variations on a surface as well as relaxation of the surface layer.
Brugerolle, G
2004-10-01
This work reports on the flagellate systematics and phylogeny, cytoskeleton, prokaryote-eukaryote cell junction organisation, and epibiotic bacteria identification. It confirms the pioneer 1964 study on Mixotricha paradoxa and supplies new information. Mixotricha paradoxa has a cresta structure specific to devescovinid parabasalid flagellates, a slightly modified recurrent flagellum, and an axostylar tube containing two lamina-shaped parabasal fibres. However, many parabasal profiles are distributed throughout the cell body. There is a conspicuous cortical microfibrillar network whose strands are related to cell junction structures subjacent to epibiotic bacteria. The supposed actin composition of this network could not be demonstrated with anti-actin antibodies or phalloidin labelling. Four types of epibiotic bacteria were described. Bacillus-shaped bacteria with a Gram-negative organisation are nested in alternate rows on most of the surface of the protozoon. They induce a striated calyxlike junction structure beneath the adhesion zone linked to the cortical microfibrillar network. Slender spirochetes are attached by one differentiated end to the plasma membrane of the protozoon, forming knobs on the cell surface. Two very similar long rod-shaped bacteria are also attached on the knobs of the plasma membrane. A large spirochete attributed to the genus Canaleparolina is also attached to the protozoon. Observations on epibiotic bacteria and of their attachments are compared with several described epibiotic bacteria of symbiotic protozoa and with the results of the molecular identification of the epibiotic bacteria of M. paradoxa.
Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik
2015-07-30
Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagano, Yuta; Kohno, Hideo
2017-11-01
Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.
Structures with three dimensional nanofences comprising single crystal segments
Goyal, Amit; Wee, Sung-Hun
2013-08-27
An article includes a substrate having a surface and a nanofence supported by the surface. The nanofence includes a multiplicity of primary nanorods and branch nanorods, each of the primary nanorods being attached to said substrate, and each of the branch nanorods being attached to a primary nanorods and/or another branch nanorod. The primary and branch nanorods are arranged in a three-dimensional, interconnected, interpenetrating, grid-like network defining interstices within the nanofence. The article further includes an enveloping layer supported by the nanofence, disposed in the interstices, and forming a coating on the primary and branch nanorods. The enveloping layer has a different composition from that of the nanofence and includes a radial p-n single junction solar cell photovoltaic material and/or a radial p-n multiple junction solar cell photovoltaic material.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
NASA Astrophysics Data System (ADS)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; Friedman, Daniel J.; France, Ryan M.; Perl, Emmett E.; Norman, Andrew G.; Guthrey, Harvey L.; Steiner, Myles A.
2018-01-01
Photovoltaic conversion efficiencies of 32.6 ± 1.4% under the AM1.5 G173 global spectrum, and 35.5% ± 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (˜1.86/1.41 eV) solar cells. The challenge of growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ˜1 × 106 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ˜0.39 V.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; ...
2018-01-29
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
Hernández-Saz, J; Herrera, M; Delgado, F J; Duguay, S; Philippe, T; Gonzalez, M; Abell, J; Walters, R J; Molina, S I
2016-07-29
The analysis by atom probe tomography (APT) of InAlAsSb layers with applications in triple junction solar cells (TJSCs) has shown the existence of In- and Sb-rich regions in the material. The composition variation found is not evident from the direct observation of the 3D atomic distribution and because of this a statistical analysis has been required. From previous analysis of these samples, it is shown that the small compositional fluctuations determined have a strong effect on the optical properties of the material and ultimately on the performance of TJSCs.
Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA; Wu, Junqiao [Richmond, CA; Schaff, William J [Ithaca, NY
2007-05-15
An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.
InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashem, Islam E.; Zachary Carlin, C.; Hagar, Brandon G.
2016-03-07
Raising the efficiency ceiling of multi-junction solar cells (MJSCs) through the use of more optimal band gap configurations of next-generation MJSC is crucial for concentrator and space systems. Towards this goal, we propose two strain balanced multiple quantum well (SBMQW) structures to tune the bandgap of InGaP-based solar cells. These structures are based on In{sub x}Ga{sub 1−x}As{sub 1−z}P{sub z}/In{sub y}Ga{sub 1−y}P (x > y) and In{sub x}Ga{sub 1−x}P/In{sub y}Ga{sub 1−y}P (x > y) well/barrier combinations, lattice matched to GaAs in a p-i-n solar cell device. The bandgap of In{sub x}Ga{sub 1−x}As{sub 1−z}P{sub z}/In{sub y}Ga{sub 1−y}P can be tuned from 1.82 to 1.65 eV by adjustingmore » the well composition and thickness, which promotes its use as an efficient subcell for next generation five and six junction photovoltaic devices. The thicknesses of wells and barriers are adjusted using a zero net stress balance model to prevent the formation of defects. Thin layers of InGaAsP wells have been grown thermodynamically stable with compositions within the miscibility gap for the bulk alloy. The growth conditions of the two SBMQWs and the individual layers are reported. The structures are characterized and analyzed by optical microscopy, X-ray diffraction, photoluminescence, current-voltage characteristics, and spectral response (external quantum efficiency). The effect of the well number on the excitonic absorption of InGaAsP/InGaP SBMQWs is discussed and analyzed.« less
NASA Astrophysics Data System (ADS)
Gułkowski, Sławomir; Krawczak, Ewelina
2017-10-01
Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.
Mignot, E; Bonakdari, H; Knothe, P; Lipeme Kouyi, G; Bessette, A; Rivière, N; Bertrand-Krajewski, J-L
2012-01-01
Open-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3D, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims (i) to measure and simulate the flow pattern in a junction flow, (ii) to analyse the impact of the junction on the velocity distribution according to the distance from the junction and thus (iii) to evaluate the typical error derived from the computation of the flow rate close to the junction.
Epithelial junctions, cytoskeleton, and polarity.
Pásti, Gabriella; Labouesse, Michel
2014-11-04
A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.
Holliday Junction Thermodynamics and Structure: Coarse-Grained Simulations and Experiments
NASA Astrophysics Data System (ADS)
Wang, Wujie; Nocka, Laura M.; Wiemann, Brianne Z.; Hinckley, Daniel M.; Mukerji, Ishita; Starr, Francis W.
2016-03-01
Holliday junctions play a central role in genetic recombination, DNA repair and other cellular processes. We combine simulations and experiments to evaluate the ability of the 3SPN.2 model, a coarse-grained representation designed to mimic B-DNA, to predict the properties of DNA Holliday junctions. The model reproduces many experimentally determined aspects of junction structure and stability, including the temperature dependence of melting on salt concentration, the bias between open and stacked conformations, the relative populations of conformers at high salt concentration, and the inter-duplex angle (IDA) between arms. We also obtain a close correspondence between the junction structure evaluated by all-atom and coarse-grained simulations. We predict that, for salt concentrations at physiological and higher levels, the populations of the stacked conformers are independent of salt concentration, and directly observe proposed tetrahedral intermediate sub-states implicated in conformational transitions. Our findings demonstrate that the 3SPN.2 model captures junction properties that are inaccessible to all-atom studies, opening the possibility to simulate complex aspects of junction behavior.
CMOS Image Sensor Using SOI-MOS/Photodiode Composite Photodetector Device
NASA Astrophysics Data System (ADS)
Uryu, Yuko; Asano, Tanemasa
2002-04-01
A new photodetector device composed of a lateral junction photodiode and a metal-oxide-semiconductor field-effect-transistor (MOSFET), in which the output of the diode is fed through the body of the MOSFET, has been investigated. It is shown that the silicon-on-insulator (SOI)-MOSFET amplifies the junction photodiode current due to the lateral bipolar action. It is also shown that the presence of the electrically floating gate enhances the current amplification factor of the SOI-MOSFET. The output current of this composite device linearly responds by four orders of illumination intensity. As an application of the composite device, a complementary-metal-oxide-semiconductor (CMOS) line sensor incorporating the composite device is fabricated and its operation is demonstrated. The output signal of the line sensor using the composite device was two times larger than that using the lateral photodiode.
NASA Astrophysics Data System (ADS)
Sannikov, S. P.; Timohovetz, V. D.; Kuzuek, A. Y.
2017-11-01
This article presents the justification of structurally-technological decisions on a junction perfecting on the intersection of Permyakova and Shirotnaya Streets in Tyumen. The authors made a comparative analysis of typical road junctions. Based on the comparison, the engineering decisions were made for an individual type of transport junctions. Several options of individual design were proposed and analyzed and three most suitable types for the road junctions were offered. On the basis of a multilateral studying and evaluation of the developed transport the article further proposed a transport junction with change-side traffic. The use of this type of intersection will increase the road junction capacity, reduce the number of accidents due to conflicting flows reduction which, in its turn, will increase the speed of cars.
Thermoelectric metal comparator determines composition of alloys and metals
NASA Technical Reports Server (NTRS)
Stone, C. C.; Walker, D. E.
1967-01-01
Emf comparing device nondestructively inspects metals and alloys for conformance to a chemical specification. It uses the Seebeck effect to measure the difference in emf produced by the junction of a hot probe and the junction of a cold contact on the surface of an unknown metal.
Staat, Christian; Coisne, Caroline; Dabrowski, Sebastian; Stamatovic, Svetlana M; Andjelkovic, Anuska V; Wolburg, Hartwig; Engelhardt, Britta; Blasig, Ingolf E
2015-06-01
In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Side-wall spacer passivated sub-μm Josephson junction fabrication process
NASA Astrophysics Data System (ADS)
Grönberg, Leif; Kiviranta, Mikko; Vesterinen, Visa; Lehtinen, Janne; Simbierowicz, Slawomir; Luomahaara, Juho; Prunnila, Mika; Hassel, Juha
2017-12-01
We present a structure and a fabrication method for superconducting tunnel junctions down to the dimensions of 200 nm using i-line UV lithography. The key element is a sidewall-passivating spacer structure (SWAPS) which is shaped for smooth crossline contacting and low parasitic capacitance. The SWAPS structure enables formation of junctions with dimensions at or below the lithography-limited linewidth. An additional benefit is avoiding the excessive use of amorphous dielectric materials which is favorable in sub-Kelvin microwave applications often plagued by nonlinear and lossy dielectrics. We apply the structure to niobium trilayer junctions, and provide characterization results yielding evidence on wafer-scale scalability, and critical current density tuning in the range of 0.1-3.0 kA cm-2. We discuss the applicability of the junction process in the context of different applications, such as SQUID magnetometers and Josephson parametric amplifiers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xiaoling; University of Chinese Academy of Sciences, Beijing 100049; Li, Yingxuan, E-mail: yxli@ms.xjb.ac.cn, E-mail: cywang@ms.xjb.ac.cn
2015-10-01
A novel heterojunction structured composite photocatalyst CdS/Au/g-C{sub 3}N{sub 4} has been developed by depositing CdS/Au with a core (Au)-shell (CdS) structure on the surface of g-C{sub 3}N{sub 4}. The photocatalytic hydrogen production activity of the developed photocatalyst was evaluated under visible-light irradiation (λ > 420 nm) using methanol as a sacrificial reagent. As a result, its activity is about 125.8 times higher than that of g-C{sub 3}N{sub 4} and is even much higher than that of Pt/g-C{sub 3}N{sub 4}. The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in themore » CdS/Au/g-C{sub 3}N{sub 4} system.« less
Ahir, Bhavesh K; Pratten, Margaret K
2014-01-01
Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.
Hexadecameric structure of an invertebrate gap junction channel.
Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori
2016-03-27
Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wei, Dacheng; Liu, Yunqi; Cao, Lingchao; Fu, Lei; Li, Xianglong; Wang, Yu; Yu, Gui; Zhu, Daoben
2006-02-01
Here we develop a simple method by using flow fluctuation to synthesize arrays of multi-branched carbon nanotubes (CNTs) that are far more complex than those previously reported. The architectures and compositions can be well controlled, thus avoiding any template or additive. A branching mechanism of fluctuation-promoted coalescence of catalyst particles is proposed. This finding will provide a hopeful approach to the goal of CNT-based integrated circuits and be valuable for applying branched junctions in nanoelectronics and producing branched junctions of other materials.
Tunnel Junction Development Using Hydride Vapor Phase Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.
We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less
Tunnel Junction Development Using Hydride Vapor Phase Epitaxy
Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...
2017-10-18
We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less
Cross reactive arrays of three-way junction sensors for steroid determination
NASA Technical Reports Server (NTRS)
Stojanovic, Milan N. (Inventor); Nikic, Dragan B. (Inventor); Landry, Donald (Inventor)
2008-01-01
This invention provides analyte sensitive oligonucleotide compositions for detecting and analyzing analytes in solution, including complex solutions using cross reactive arrays of analyte sensitive oligonucleotide compositions.
Transport and Junction Physics of Semiconductor-Metal Eutectic Composites
1988-06-01
eutectic junction and includes the method for making contacts as well as current-voltage (I-V), capacitance- voltage (C-V), and electron-beam-induced current...junction was performed with another RTA at 8000C to 9000C for 10 s. This technique also worked well to provide the necessary ohmic contact. The necessary...solid state diffusion of Ta and Si. The diode is well behaved, with an ideality factor n = 1.10 ± 0.05. Deviation from the straight line forward
Breaking into the epithelial apical–junctional complex — news from pathogen hackers
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2012-01-01
The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310
Breaking into the epithelial apical-junctional complex--news from pathogen hackers.
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2004-02-01
The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.
2016-01-01
The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7–10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2–12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography. PMID:27387136
Dilute group III-V nitride intermediate band solar cells with contact blocking layers
Walukiewicz, Wladyslaw; Yu, Kin Man
2015-02-24
An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.
Dilute Group III-V nitride intermediate band solar cells with contact blocking layers
Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA
2012-07-31
An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.
Investigation of fluid-structure interaction with various types of junction coupling
NASA Astrophysics Data System (ADS)
Ahmadi, A.; Keramat, A.
2010-10-01
In this study of water hammer with fluid-structure interaction (FSI) the main aim was the investigation of junction coupling effects. Junction coupling effects were studied in various types of discrete points, such as pumps, valves and branches. The emphasis was placed on an unrestrained pump and branch in the system, and the associated relations were derived for modelling them. Proposed relations were considered as boundary conditions for the numerical modelling which was implemented using the finite element method for the structural equations and the method of characteristics for the hydraulic equations. The results can be used by engineers in finding where junction coupling is significant.
Tunnel junction multiple wavelength light-emitting diodes
Olson, Jerry M.; Kurtz, Sarah R.
1992-01-01
A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.
Recto-anal junction (RAJ) microbiota composition in Escherichia coli O157:H7 shedding cattle
USDA-ARS?s Scientific Manuscript database
Introduction: Cattle are the asymptomatic reservoirs of Escherichia coli O157:H7 (O157) that tend to preferentially colonize the bovine recto-anal junction (RAJ). Therefore, understanding the taxonomic profile, microbial diversity, and microbiota-O157 interactions at the RAJ could give insights into...
NASA Astrophysics Data System (ADS)
Chee, Kuan W. A.; Hu, Yuning
2018-07-01
There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.
Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.
Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio
2014-06-01
Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique
NASA Astrophysics Data System (ADS)
Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing
2017-05-01
Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.
NASA Astrophysics Data System (ADS)
Babayco, Christopher B.; Land, Donald P.; Parikh, Atul N.; Kiehl, Richard A.
2014-09-01
We have devised an infrared spectromicroscopy based experimental configuration to enable structural characterization of buried molecular junctions. Our design utilizes a small mercury drop at the focal point of an infrared microscope to act as a mirror in studying metal-molecule-metal (MmM) junctions. An organic molecular monolayer is formed either directly on the mercury drop or on a thin, infrared (IR) semi-transparent layer of Au deposited onto an IR transparent, undoped silicon substrate. Following the formation of the monolayer, films on either metal can be examined independently using specular reflection spectroscopy. Furthermore, by bringing together the two monolayers, a buried molecular bilayer within the MmM junction can be characterized. Independent examination of each half of the junction prior to junction formation also allows probing any structural and/or conformational changes that occur as a result of forming the bilayer. Because our approach allows assembling and disassembling microscopic junctions by forming and withdrawing Hg drops onto the monolayer covered metal, spatial mapping of junctions can be performed simply by translating the location of the derivatized silicon wafer. Finally, the applicability of this technique for the longer-term studies of changes in molecular structure in the presence of electrical bias is discussed.
A structural and functional comparison of gap junction channels composed of connexins and innexins.
Skerrett, I Martha; Williams, Jamal B
2017-05-01
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017. © 2016 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.
Tunnel junction multiple wavelength light-emitting diodes
Olson, J.M.; Kurtz, S.R.
1992-11-24
A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.
NASA Technical Reports Server (NTRS)
Chi, J. Y.; Gatos, H. C.; Mao, B. Y.
1980-01-01
Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.
NASA Astrophysics Data System (ADS)
Zhang, Kexiong; Liang, Hongwei; Shen, Rensheng; Wang, Dongsheng; Tao, Pengcheng; Liu, Yang; Xia, Xiaochuan; Luo, Yingmin; Du, Guotong
2014-02-01
Negative differential resistance (NDR) behavior was observed in low Al-composition p-GaN/Mg-doped-Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate. The energy band and free carrier concentration of hetero-junction were studied by the model of the self-consistent solution of Schrödinger-Poisson equations combined with polarization engineering theory. At the forward bias of 0.95 V, the NDR effect has a high peak-to-valley current ratio of ˜9 with a peak current of 22.4 mA (˜current density of 11.4 A/cm2). An interesting phenomenon of NDR disappearance after consecutive scans and recurrence after electrical treatment was observed, which was associated with Poole-Frenkel effect.
NASA Astrophysics Data System (ADS)
Velev, Julian P.; Merodio, Pablo; Pollack, Cesar; Kalitsov, Alan; Chshiev, Mairbek; Kioussis, Nicholas
2017-12-01
Using model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e. quench and release the torque. Additionally, we demonstrate that under certain conditions the zero-voltage STT, i.e. the interlayer exchange coupling, can switch sign with polarization reversal, which is equivalent to reversing the magnetic ground state of the tunnel junction. This bias- and polarization-tunability of the STT could be exploited to engineer novel functionalities such as softening/hardening of the bit or increasing the signal-to-noise ratio in magnetic sensors, which can have important implications for magnetic random access memories or for combined memory and logic devices.
Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics.
Solan, Joell L; Lampe, Paul D
2018-01-01
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (<1000Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP 3 ) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.
Luo, Chengzhi; Li, Fangying; Li, Delong; Fu, Qiang; Pan, Chunxu
2016-11-16
Due to its unique hierarchical structure, natural spider silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials. Herein, we design bioinspired spider silk single-walled carbon nanotubes (BISS-SWCNTs) that combine the hierarchical structure of spider silk and the high strength and conductivity of SWCNTs. To imitate the hierarchical structure, Fe nanoparticles are embedded on the surface of directly synthesized SWCNTs skeleton followed by coating an amorphous carbon layer. The carbon layer forms the spider silk-featured skin-core structure with SWCNTs, thus making the tube junction tougher. The embedded Fe nanoparticles act as glue spots for preventing interfacial slippages between the BISS-SWCNTs and the reinforced matrix. With only 2.1 wt % BISS-SWCNTs added, the tensile strength and Young's modulus of the BISS-SWCNTs/PMMA composites can be improved by 300%. More importantly, the BISS-SWCNTs also retain the high conductivity and transmittance of the pristine SWCNTs film. This unique bioinspired material will be of great importance in applications of multifunctional composite materials and has important implications for the future of biomimetic materials.
Ding, Yonghui; Floren, Michael; Tan, Wei
2017-06-01
Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated. For the first time, the results demonstrate that 3D fibrous structure resembling native ECM is a critical endothelium-protective microenvironmental factor by maintaining the stable, quiescent endothelium with strong resistance to proinflammatory stimuli. It is also revealed that matrix stiffening, in concert with chemical compositions resembling diseased ECM, particularly collagen III, could aggravate activation of nuclear factor kappa B, disruption of endothelium integrity, and susceptibility to proinflammatory stimuli. This study elucidates cooperative effects of various microenvironmental factors on endothelial activation and sheds light on new in vitro model for cardiovascular diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie
2017-05-15
B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jiang-Long, E-mail: jlwei@ipp.ac.cn; Li, Jun; Hu, Chun-Dong
A key issue on the development of EAST ion source was the junction design of insulator structure, which consists of three insulators and four supporting flanges of electrode grid. Because the ion source is installed on the vertical plane, the insulator structure has to withstand large bending and shear stress due to the gravity of whole ion source. Through a mechanical analysis, it was calculated that the maximum bending normal stress was 0.34 MPa and shear stress was 0.23 MPa on the insulator structure. Due to the advantages of simplicity and high strength, the adhesive bonding technology was applied tomore » the junction of insulator structure. A tensile testing campaign of different junction designs between insulator and supporting flange was performed, and a junction design of stainless steel and fiber enhanced epoxy resin with epoxy adhesive was determined. The insulator structure based on the determined design can satisfy both the requirements of high-voltage holding and mechanical strength.« less
Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik
2013-01-01
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031
High Aspect Ratio Semiconductor Heterojunction Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redwing, Joan; Mallouk, Tom; Mayer, Theresa
2013-05-17
The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less
Multi-junction solar cell device
Friedman, Daniel J.; Geisz, John F.
2007-12-18
A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.
Kaidoh, T; Inoué, T
2000-05-15
Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.
GaAs quantum dots in a GaP nanowire photodetector
NASA Astrophysics Data System (ADS)
Kuyanov, P.; McNamee, S. A.; LaPierre, R. R.
2018-03-01
We report the structural, optical and electrical properties of GaAs quantum dots (QDs) embedded along GaP nanowires. The GaP nanowires contained p-i-n junctions with 15 consecutively grown GaAs QDs within the intrinsic region. The nanowires were grown by molecular beam epitaxy using the self-assisted vapor-liquid-solid process. The crystal structure of the NWs alternated between twinned ZB and WZ as the composition along the NW alternated between the GaP barriers and the GaAs QDs, respectively, leading to a polytypic structure with a periodic modulation of the NW sidewall facets. Photodetector devices containing QDs showed absorption beyond the bandgap of GaP in comparison to nanowires without QDs. Voltage-dependent measurements suggested a field emission process of carriers from the QDs.
Microrefrigeration by a pair of normal metal/insulator/superconductor junctions
NASA Technical Reports Server (NTRS)
Leivo, M. M.; Pekola, J. P.; Averin, D. V.
1995-01-01
We suggest and demonstrate experimentally that two normal metal/insulator/superconductor (NIS) tunnel junctions combined in series to form a symmetric SINIS structure can operate as an efficient Peltier refrigerator. Specifically, it is shown that the SINIS structure with normal-state junction resistences of 1.0 and 1.1 kOmega is capable of reaching a temperature of about 100 mK starting from 300 mK. We estimate the corresponding cooling power to be 1.5 pW per total junction area of 0.8 micrometers(exp 2) at T = 300 mK. This cooling power density implies that scaling of junction area up to about 1 mm(exp 2) should bring the cooling power into the microW range.
Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property
Wang, Wencai; Zhao, Detao; Yang, Jingna; Nishi, Toshio; Ito, Kohzo; Zhao, Xiuying; Zhang, Liqun
2016-01-01
A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR. PMID:26949077
Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C
2017-02-01
Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyoung Hun; Shim, Kwang Bo
2003-01-15
The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less
Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.
2011-01-01
Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.
2015-01-01
Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...
2015-08-19
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
E-cadherin junction formation involves an active kinetic nucleation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-21
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.
Effect of disorder on longitudinal resistance of a graphene p-n junction in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Chen, Jiang-Chai; Yeung, T. C. Au; Sun, Qing-Feng
2010-06-01
The longitudinal resistances of a six-terminal graphene p-n junction under a perpendicular magnetic field are investigated. Because of the chirality of the Hall edge states, the longitudinal resistances on top and bottom edges of the graphene ribbon are not equal. In the presence of suitable disorder, the top-edge and bottom-edge resistances well show the plateau structures in the both unipolar and bipolar regimes, and the plateau values are determined by the Landau filling factors only. These plateau structures are in excellent agreement with the recent experiment. For the unipolar junction, the resistance plateaus emerge in the absence of impurity and they are destroyed by strong disorder. But for the bipolar junction, the resistances are very large without the plateau structures in the clean junction. The disorder can strongly reduce the resistances and leads the formation of the resistance plateaus due to the mixture of the Hall edge states in virtue of the disorder. In addition, the size effect of the junction on the resistances is studied and some extra resistance plateaus are found in the long graphene junction case. This is explained by the fact that only part of the edge states participate in the full mixing.
A structural and functional comparison of gap junction channels composed of connexins and innexins
Williams, Jamal B.
2016-01-01
ABSTRACT Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre‐chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue‐ and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure–function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin‐based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522–547, 2017 PMID:27582044
Baranwal, Somesh
2015-01-01
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565
Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I
2015-05-01
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Durgun, Engin; Onen, Abdullatif; Kecik, Deniz; Ciraci, Salim
In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately display diversity of electronic properties, that can be tuned by the size of their constituents. In heterostructures, the dimensionality of electrons change from 2D to 1D upon their confinements in wide constituent stripes leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ-doping of one wide stripe by other narrow stripe results in local narrowing or widening of the band gap. The direct-indirect transition of the fundamental band gap of composite structures can be attained depending on the odd or even values of formula unit in the armchair edged heterojunction. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states are reduced from 2D to 0D forming multiple quantum dots in large GaN-cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. These predictions are obtained from first-principles calculations based on density functional theory on single-layer GaN and AlN compound semiconductors which were synthesized recently. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Niu, Pingjuan; Li, Yuqiang; Song, Minghui; Zhang, Jianxin; Ning, Pingfan; Chen, Peizhuan
2017-12-01
Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.
Bile duct epithelial tight junctions and barrier function
Rao, R.K.; Samak, G.
2013-01-01
Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411
Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.
Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V
2016-06-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hybertsen M. S.
Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond themore » specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.« less
Lechuga, Susana; Ivanov, Andrei I
2017-07-01
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Nan; Wang, Yaqi; Ning, Shiqi; Zhao, Wenjing; Qian, Min; Ma, Ying; Wang, Jia; Fan, Lingyun; Guan, Jiunian; Yuan, Xing
2017-12-11
A series of plasmonic Ag-TiO 2 /H 3 PW 12 O 40 composite films were fabricated and immobilized by validated preparation technique. The chemical composition and phase, optical, SPR effect and pore-structure properties together with the morphology of as-prepared composite film are well-characterized. The multi-synergies of as-prepared composite films were gained by combined action of electron-capture action via H 3 PW 12 O 40 , visible-response induced by Ag, and Schottky-junction formed between TiO 2 -Ag. Under simulated sunlight, the maximal K app of o-chlorophenol (o-CP) reached 0.0075 min -1 which was 3.95-fold larger than that of TiO 2 film, while it was restrained obviously under acid condition. In the photocatalytic degradation process, ·OH and ·O 2 - attacked preferentially ortho and para position of o-CP molecule, and accordingly the specific degradation pathways were speculated. The novel composite film exhibited an excellent applicability due to self-regeneration of H 3 PW 12 O 40 , well-protection of metal Ag° and favorable immobilization.
Atomistic simulations of highly conductive molecular transport junctions under realistic conditions
NASA Astrophysics Data System (ADS)
French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.
2013-04-01
We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices.We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00459g
Modeling and Simulation of III-Nitride-Based Solar Cells using NextnanoRTM
NASA Astrophysics Data System (ADS)
Refaei, Malak
Nextnano3 software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as well as the results of the drift-diffusion equations because it is a well-known material in both software tools. After substantiating the capabilities of Nextnano3 for the simulation solar cells, an InGaN single-junction solar cell was simulated. The effects of various indium compositions and device structures on the performance of this InGaN p-n homojunction solar cell was then investigated using Nextnano 3 as a simulation tool. For single-junction devices with varying bandgap, an In0.6Ga0.4N device with a bandgap of 1.44 eV was found to be the optimum. The results of this research demonstrate that the Nextnano3 software can be used to usefully simulate solar cells in general, and III-nitride solar cells specifically, for future study of nanoscale structured devices.
Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy
NASA Technical Reports Server (NTRS)
Chi, J.-Y.; Gatos, H. C.
1977-01-01
A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.
Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.
2014-01-01
While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.
Structural basis for the selective permeability of channels made of communicating junction proteins.
Ek-Vitorin, Jose F; Burt, Janis M
2013-01-01
The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore's limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. Copyright © 2012 Elsevier B.V. All rights reserved.
Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui
2004-05-01
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Martí, A; Luque, A
2015-04-22
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Martí, A.; Luque, A.
2015-01-01
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374
Charge splitters and charge transport junctions based on guanine quadruplexes
NASA Astrophysics Data System (ADS)
Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.
2018-04-01
Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.
Depth profile composition studies of thin film CdS:Cu2S solar cells using XPS and AES
NASA Astrophysics Data System (ADS)
Bhide, V. G.; Salkalachen, S.; Rastogi, A. C.; Rao, C. N. R.; Hegde, M. S.
1981-09-01
Studies of the surface composition and depth profiles of thin film CdS:Cu2S solar cells based on the techniques of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) are reported. Specimens were fabricated by the thermal deposition of polycrystalline CdS films onto silver-backed electrodes predeposited on window glass substrates, followed by texturization in hot HCl and chemical plating in a hot CuCl(I) bath for a few seconds to achieve the topotaxial growth of CuS films. The XPS and AES studies indicate the junction to be fairly diffused in the as-prepared cell, with heat treatment in air at 210 C sharpening the junction, improving the stoichiometry of the Cu2S layer and thus improving cell performance. The top copper sulfide layer is found to contain impurities such as Cd, Cl, O and C, which may be removed by mild Ar(+) ion beam etching. The presence of copper deep in the junction is invariably detected, apparently in the grain boundary region in the form of CuS or Cu(2+) trapped in the lattice. It is also noted that the nominal valence state of copper changes abruptly from Cu(+) to Cu(2+) across the junction.
Structural basis for the selective permeability of channels made of communicating junction proteins
Ek-Vitorin, Jose F.; Burt, Janis M.
2012-01-01
The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore’s limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. PMID:22342665
Miller, Phillip W; Pokutta, Sabine; Mitchell, Jennyfer M; Chodaparambil, Jayanth V; Clarke, D Nathaniel; Nelson, William; Weis, William I; Nichols, Scott A
2018-06-07
The evolution of cell adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei ( Op ). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Tunnel junction based memristors as artificial synapses
Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta
2015-01-01
We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173
Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.
Cubero, Elena; Luque, F Javier; Orozco, Modesto
2006-02-01
A series of d (AT)(n) oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation.
Theoretical Study of the Hoogsteen–Watson-Crick Junctions in DNA
Cubero, Elena; Luque, F. Javier; Orozco, Modesto
2006-01-01
A series of d (AT)n oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation. PMID:16287814
Functional analysis of tight junction organization.
DiBona, D R
1985-01-01
The functional basis of tight junction design has been examined from the point of view that this rate-limiting barrier to paracellular transport is a multicompartment system. Review of the osmotic sensitivity of these structures points to the need for this sort of analysis for meaningful correlation of structure and function under a range of conditions. A similar conclusion is drawn with respect to results from voltage-clamping protocols where reversal of spontaneous transmural potential difference elicits parallel changes in both structure and function in much the same way as does reversal of naturally occurring osmotic gradients. In each case, it becomes necessary to regard the junction as a functionally polarized structure to account for observations of its rectifying properties. Lastly, the details of experimentally-induced junction deformation are examined in light of current theories of its organization; arguments are presented in favor of the view that the primary components of intramembranous organization (as viewed with freeze-fracture techniques) are lipidic rather than proteinaceous.
Ultrastructure and regulation of lateralized connexin43 in the failing heart.
Hesketh, Geoffrey G; Shah, Manish H; Halperin, Victoria L; Cooke, Carol A; Akar, Fadi G; Yen, Timothy E; Kass, David A; Machamer, Carolyn E; Van Eyk, Jennifer E; Tomaselli, Gordon F
2010-04-02
Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.
Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K
2006-12-08
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes.
Phelan, P; Stebbings, L A; Baines, R A; Bacon, J P; Davies, J A; Ford, C
1998-01-08
In most multicellular organisms direct cell-cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins. shaking-B and eat-5 are required for the formation of functional gap junctions. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.
Ayas, Selçuk; Bayraktar, Mesut; Gürbüz, Ayşe; Alkan, Akif; Eren, Sadiye
2012-01-01
Objective: We aimed to evaluate uterine junctional zone thickness, cervical length and bioelectrical impedance analysis of body composition in women with endometriosis. Material and Methods: This is a prospective study conducted in a tertiary teaching hospital. A total of 73 patients were included in the study. Endometriosis was surgically diagnosed in 36 patients (study group). The control group included 37 patients. Main outcome measure(s): Bioelectrical impedance analysis was used to measure body composition. Uterine junctional zone thickness and cervical length were measured by transvaginal ultrasonography. Results: Patients’ characteristics (age, gravida, parity, live baby, age of menarche, lengths of menstrual cycle, percentage of patients with dysmenorrhea, positive family history), body mass index (BMI) (kg/m2), amount of body fat (kg), percentage of body fat were not statistically different between the two groups (p>0.05). The length of menstruation and cervical length were longer in women with endometriosis. Similarly, the inner myometrium was thicker in women with endometriosis than the control group. Conclusion: The relation between endometriosis and demographic features such as age, gravida, parity, gravida, BMI, lengths of the menstrual cycle, age of menarche are controversial. Longer cervical length and thicker inner myometrial layer may be important in the etiopathogenesis of endometriosis. PMID:25207044
NASA Astrophysics Data System (ADS)
Bershtein, V.; Fainleib, A.; Kirilenko, D.; Yakushev, P.; Gusakova, K.; Lavrenyuk, N.; Ryzhov, V.
2016-05-01
A series of Cyanate Ester Resins (CER)-based composites containing 0.01-10 wt. % silica, introduced by sol-gel method, was synthesized using tetraethoxysilane (TEOS) and γ-aminopropyltrimethoxysilane (APTMS), and their nanostructure and properties were characterized by means of STEM/EDXS, Far-IR spectroscopy, DMA and DSC methods. It was revealed that the most substantial positive impact on CER dynamics, thermal and mechanical properties is attained at ultra-low silica contents, e.g., at 0.1 wt. % silica where Tg and modulus increase, respectively, by 50° and 60%. In this case, silica nanoclusters are absent in the composite, and only chemically incorporated silica junctions of subnanometric size in the densely-crosslinked CER network could be implied. These composites can be designated as "polymer subnanocomposites". Contrarily, formation of silica nanoclusters and especially their aggregates of hundreds nanometers in size at silica contents of 2-10 wt. % led to the distinct negative impact on the matrix properties.
Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam
2018-02-07
We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.
Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E.
2014-01-01
Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties. PMID:25360082
Structural stabilization of CNS synapses during postnatal development in rat cortex.
Khaing, Zin Z; Fidler, Lazar; Nandy, Nina; Phillips, Greg R
2006-07-01
CNS synapses are produced rapidly upon pre- and post-synaptic recruitment. However, their composition is known to change during development and we reasoned that this may be reflected in the gross biochemical properties of synapses. We found synaptic structure in adult cortical synaptosomes to be resistant to digestion with trypsin in the presence and absence of calcium ions, contrasting with previous observations. We evaluated the divalent cation dependence and trypsin sensitivities of synapses using synaptosomes from different developmental stages. In contrast to adult synapses, at postnatal day (P) 10 EDTA treatment eliminated approximately 60% of the synapses, and trypsin and EDTA, together, eliminated all junctions. Trypsinization in the presence of calcium eliminated approximately 60% of the junctions at P10. By P35, all synapses were calcium independent, whereas full trypsin resistance was not attained until P49. To compare the calcium dependence and trypsin sensitivity of synapses in another region of the adult brain, we examined synapses from adult (P50) hippocampus. Adult hippocampus maintained a population of synapses that resembled that of P35 cortex. Our results show that synapses are modified over a long time period in the developing cortex. We propose a model in which the addition of synergistic calcium-dependent and -independent adhesive systems stabilize synapses.
Anisotropic-Scale Junction Detection and Matching for Indoor Images.
Xue, Nan; Xia, Gui-Song; Bai, Xiang; Zhang, Liangpei; Shen, Weiming
Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.
Claudins and the Modulation of Tight Junction Permeability
Günzel, Dorothee
2013-01-01
Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions. PMID:23589827
Electronic and mechanical characteristics of stacked dimer molecular junctions.
Magyarkuti, András; Adak, Olgun; Halbritter, Andras; Venkataraman, Latha
2018-02-15
Break-junction measurements are typically aimed at characterizing electronic properties of single molecules bound between two metal electrodes. Although these measurements have provided structure-function relationships for such devices, there is little work that studies the impact of molecule-molecule interactions on junction characteristics. Here, we use a scanning tunneling microscope based break-junction technique to study pi-stacked dimer junctions formed with two amine-terminated conjugated molecules. We show that the conductance, force and flicker noise of such dimers differ dramatically when compared with the corresponding monomer junctions and discuss the implications of these results on intra- and inter-molecular charge transport.
Series array of highly hysteretic Josephson junctions coupled to a microstrip resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costabile, G.; Andreone, D.; Lacquaniti, V.
1985-07-15
We have tested a new device based on a 12 junction array coupled to a resonator. We have explored the feasibility of the phase lock for all the junctions at the same biasing current, which yields voltage quantization across each junction, eliminating the need to individually bias the junctions. The whole rf structure has been realized by stripline technology. The resonator is fed by a 50-..cap omega.. line and is decoupled from the dc circuit by elliptical low-pass filters inserted in the bias leads.
Naturally formed graded junction for organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Shao, Yan; Yang, Yang
2003-09-01
In this letter, we report naturally-formed graded junctions (NFGJ) for organic light-emitting diodes (OLEDs). These junctions are fabricated using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. Upon heating, materials sublimate sequentially according to their vaporizing temperatures forming the graded junction. Two kinds of graded structures, sharp and shallow graded junctions, can be formed based on the thermal properties of the selected materials. The NFGJ OLEDs have shown excellent performance in both brightness and lifetime compared with heterojunction devices.
Conserved tetramer junction in the kinetochore Ndc80 complex
Valverde, Roberto; Ingram, Jessica; Harrison, Stephen C.
2016-01-01
Summary The heterotetrameric Ndc80 complex establishes connectivity along the principal longitudinal axis of a kinetochore. Its two heterodimeric subcomplexes, each with a globular end and a coiled-coil shaft, connect end-to-end to create a ∼600 Å long rod spanning the gap from centromere-proximal structures to spindle microtubules. Neither subcomplex has a known function on its own, but the heterotetrameric organization and the characteristics of the junction are conserved from yeast to man. We have determined crystal structures of two shortened (“dwarf”) Ndc80 complexes that contain the full tetramer junction and both globular ends. The junction connects two α-helical coiled coils through regions of four-chain and three-chain overlap. The complexity of its structure depends on interactions among conserved amino-acid residues, suggesting a binding site for additional cellular factor(s) not yet identified. PMID:27851957
Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan
2015-11-18
Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hissar-Alai and the Pamirs: Junction and Position in the System of Mobile Belts of Central Asia
NASA Astrophysics Data System (ADS)
Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.
2018-01-01
The position of the Pamirs and the Hissar-Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar-Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine-Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan-Tajik blocks. The junction zone of these two "hard" crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar-Alai (systems of the Tarim, Alai, and Afghan-Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir-Punjab syntax on Hissar-Alai structures.
Impact of the structural integrity of the three-way junction of adenovirus VAI RNA on PKR inhibition
Dzananovic, Edis; Astha; Chojnowski, Grzegorz; Deo, Soumya; Booy, Evan P.; Padilla-Meier, Pauline; McEleney, Kevin; Bujnicki, Janusz M.; McKenna, Sean A.
2017-01-01
Highly structured RNA derived from viral genomes is a key cellular indicator of viral infection. In response, cells produce the interferon inducible RNA-dependent protein kinase (PKR) that, when bound to viral dsRNA, phosphorylates eukaryotic initiation factor 2α and attenuates viral protein translation. Adenovirus can evade this line of defence through transcription of a non-coding RNA, VAI, an inhibitor of PKR. VAI consists of three base-paired regions that meet at a three-way junction; an apical stem responsible for the interaction with PKR, a central stem required for inhibition, and a terminal stem. Recent studies have highlighted the potential importance of the tertiary structure of the three-way junction to PKR inhibition by enabling interaction between regions of the central and terminal stems. To further investigate the role of the three-way junction, we characterized the binding affinity and inhibitory potential of central stem mutants designed to introduce subtle alterations. These results were then correlated with small-angle X-ray scattering solution studies and computational tertiary structural models. Our results demonstrate that while mutations to the central stem have no observable effect on binding affinity to PKR, mutations that appear to disrupt the structure of the three-way junction prevent inhibition of PKR. Therefore, we propose that instead of simply sequestering PKR, a specific structural conformation of the PKR-VAI complex may be required for inhibition. PMID:29053745
Proteins in Load-Bearing Junctions: The Histidine-Rich Metal-Binding Protein of Mussel Byssus†,‡
Zhao, Hua; Waite, J. Herbert
2007-01-01
Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-L-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins. PMID:17115717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Jasmine M.; Abrams, Cameron F.; Deserno, Markus
We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting usmore » to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes.« less
Luo, Dan; Zhao, Jia; Rong, Jianhui
2016-12-01
The integrity and functions of blood-brain barrier (BBB) are regulated by the expression and organization of tight junction proteins. The present study was designed to explore whether plant-derived triterpenoid celastrol could regulate tight junction integrity in murine brain endothelial bEnd3 cells. We disrupted the tight junctions between endothelial bEnd3 cells by oxygen glucose deprivation (OGD). We investigated the effects of celastrol on the permeability of endothelial monolayers by measuring transepithelial electrical resistance (TEER). To clarify the tight junction composition, we analyzed the expression of tight junction proteins by RT-PCR and Western blotting techniques. We found that celastrol recovered OGD-induced TEER loss in a concentration-dependent manner. Celastrol induced occludin, claudin-5 and zonula occludens-1 (ZO-1) in endothelial cells. As a result, celastrol effectively maintained tight junction integrity and inhibited macrophage migration through endothelial monolayers against OGD challenge. Further mechanistic studies revealed that celastrol induced the expression of occludin and ZO-1) via activating MAPKs and PI3K/Akt/mTOR pathway. We also observed that celastrol regulated claudin-5 expression through different mechanisms. The present study demonstrated that celastrol effectively protected tight junction integrity against OGD-induced damage. Thus, celastrol could be a drug candidate for the treatment of BBB dysfunction in various diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.
A Computer-Automated Temperature Control System for Semiconductor Measurements.
1979-11-01
Engineer: Jerry Silverman (RADC/ESE) temperature controller silicon devices data acquisition system mini-computer control application semiconductor dovice...characterization semiconductor materijals characterization silicon .’ AtlI EAC T 1 -fI I,,’-, *- s t ---v,.1.,,~ - d,f101h ir- IA i lr A computer...depends on the composition of the metals and the temperature of the junction. As the temperature of the junction increases so does the voltage at the
Device Modeling and Characterization for CIGS Solar Cells
NASA Astrophysics Data System (ADS)
Song, Sang Ho
We studied the way to achieve high efficiency and low cost of CuIn1-xGaxSe2 (CIGS) solar cells. The Fowler-Nordheim (F-N) tunneling currents at low bias decreased the shunt resistances and degraded the fill factor and efficiency. The activation energies of majority traps were directly related with F-N tunneling currents by the energy barriers. Air anneals decreased the efficiency from 7.74% to 5.18% after a 150 °C, 1000 hour anneal. The decrease of shunt resistance due to F-N tunneling and the increase of series resistance degrade the efficiencies of solar cells. Air anneal reduces the free carrier densities by the newly generated Cu interstitial defects (Cui). Mobile Cui defects induce the metastability in CIGS solar cell. Since oxygen atoms are preferred to passivate the Se vacancies thus Cu interstitial defects explains well metastability of CIGS solar cells. Lattice mismatch and misfit stress between layers in CIGS solar cells can explain the particular effects of CIGS solar cells. The misfits of 35.08° rotated (220/204) CIGS to r-plane (102) MoSe2 layers are 1% ˜ -4% lower than other orientation and the lattice constants of two layers in short direction are matched at Ga composition x=0.35. This explains well the preferred orientation and the maximum efficiency of Ga composition effects. Misfit between CIGS and CdS generated the dislocations in CdS layer as the interface traps. Thermionic emission currents due to interface traps limit the open circuit voltage at high Ga composition. The trap densities were calculated by critical thickness and dislocation spacing and the numerical device simulation results were well matched with the experimental results. A metal oxide broken-gap p-n heterojunction is suggested for tunnel junction for multi-junction polycrystalline solar cells and we examined the characteristics of broken-gap tunnel junction by numerical simulation. Ballistic transport mechanism explains well I-V characteristics of broken-gap junction. P-type Cu2O and n-type In2O3 broken-gap heterojunction is effective with the CIGS tandem solar cells. The junction has linear I-V characteristics with moderate carrier concentration (2x1017 cm-3) and the resistance is lower than GaAs tunnel junction. The efficiency of a CGS/CIS tandem solar cells was 24.1% with buffer layers. And no significant degradations are expected due to broken gap junction.
Adaptive properties of human cementum and cementum dentin junction with age
Jang, Andrew T.; Lin, Jeremy D.; Choi, Ryan M.; Choi, Erin M.; Seto, Melanie L.; Ryder, Mark I.; Gansky, Stuart A.; Curtis, Donald A.; Ho, Sunita P.
2014-01-01
Objectives The objective of this study was to evaluate age related changes age related changes in physical (structure/mechanical properties) and chemical (elemental/inorganic mineral content) properties of cementum layers interfacing dentin. Methods Human mandibular molars (N=43) were collected and sorted by age (younger = 19–39, middle = 40–60, older = 61–81 years). The structures of primary and secondary cementum (PC, SC) types were evaluated using light and atomic force microscopy (AFM) techniques. Chemical composition of cementum layers were characterized through gravimetric analysis by estimating ash weight and concentrations of Ca, Mn, and Zn trace elements in the analytes through inductively coupled plasma mass spectroscopy. The hardness of PC and SC was determined using microindentation and site-specific reduced elastic modulus properties were determined using nanoindentation techniques. Results PC contained fibrous, 1–3 µm wide hygroscopic radial PDL-inserts. SC illustrated PC-like structure adjacent to a multilayered architecture composing of regions that contained mineral dominant lamellae. The width of cementum dentin junction (CDJ) decreased as measured from cementum enamel junction (CEJ) to the tooth apex (49–21µm), and significantly decreased with age (44–23µm; p<0.05). The inorganic ratio defined as the ratio of post-burn to pre-burn increased with age within primary cementum (PC) and secondary cementum (SC). Cementum showed an increase in hardness with age (PC (0.40–0.46GPa), SC (0.37–0.43GPa)), while dentin showed a decreasing trend (coronal dentin (0.70–0.72GPa); apical dentin (0.63 – 0.73 GPa)). Significance The observed physicochemical changes are indicative of an increased mineralization of cementum and CDJ over time. Changes in tissue properties of the teeth can alter overall tooth biomechanics, and in turn the entire bone-tooth complex including the periodontal ligament. This study provides baseline information about the changes in physicochemical properties of cementum with age, which can be identified as adaptive in nature. PMID:25133753
Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte
2004-12-28
The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.
Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter
2003-01-01
The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.
Structure activity relationship of synaptic and junctional neurotransmission.
Goyal, Raj K; Chaudhury, Arun
2013-06-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. Published by Elsevier B.V.
Structure activity relationship of synaptic and junctional neurotransmission
Goyal, Raj K; Chaudhury, Arun
2013-01-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
Rucker-Martin, Catherine; Milliez, Paul; Tan, Sisareuth; Decrouy, Xavier; Recouvreur, Michel; Vranckx, Roger; Delcayre, Claude; Renaud, Jean-François; Dunia, Irene; Segretain, Dominique; Hatem, Stéphane N
2006-10-01
The expression and distribution of connexins is abnormal in a number of cardiac diseases, including atrial fibrillation, and is believed to favor conduction slowing and arrhythmia. Here, we studied the role of atrial structural remodeling in the disorganization of gap junctions and whether redistributed connexins can form new functional junction channels. Expression of connexin-43 (Cx43) was characterized by immunoblotting and immunohistochemistry in human right atrial specimens and in rat atria after myocardial infarction (MI). Gap junctions were studied by electron and 3-D microscopy, and myocyte-myocyte coupling was determined by Lucifer yellow dye transfer. In both chronically hemodynamically overloaded human atria in sinus rhythm and in dilated atria from MI-rats, Cx43 were dephosphorylated and redistributed from the intercalated disc to the lateral cell membranes as observed during atrial fibrillation. In MI-rats, the gap junctions at the intercalated disc were smaller (20% decrease) and contained very little Cx43 (0 or 1 gold particle vs. 42 to 98 in sham-operated rats). In the lateral membranes of myocytes, numerous connexon aggregates comprising non-phosphorylated Cx43 were observed. These connexon aggregates were in no case assembled into gap junction plaque-like structures. However, N-cadherin was well organized in the intercalated disc. There was very little myocyte-myocyte coupling in MI-rat atria and no myocyte-fibroblast coupling. Regression of the atrial remodeling was associated with the normalization of Cx43 localization. Structural alteration of the atrial myocardium is an important factor in the disorganization of connexins and gap junction. Moreover, redistributed Cx43 do not form junction channels.
Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels.
Liu, Guohua; Du, Kang; Haussener, Sophia; Wang, Kaiying
2016-10-20
Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jang, Heeun; Levy, Sagi; Flavell, Steven W; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I
2017-02-14
A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9 -based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.
Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans
Jang, Heeun; Levy, Sagi; Flavell, Steven W.; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I.
2017-01-01
A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9–containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9–based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits. PMID:28143932
Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
NASA Technical Reports Server (NTRS)
Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)
1992-01-01
An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.
Modeling single molecule junction mechanics as a probe of interface bonding
NASA Astrophysics Data System (ADS)
Hybertsen, Mark S.
2017-03-01
Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. The results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.
Modeling single molecule junction mechanics as a probe of interface bonding
Hybertsen, Mark S.
2017-03-07
Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less
Modeling single molecule junction mechanics as a probe of interface bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hybertsen, Mark S.
Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less
In-Situ Grown P-N Junctions in MERCURY(1-X) Cadmium(x) Telluride for IR Detectors.
NASA Astrophysics Data System (ADS)
Rao, Vithal Rajaram
In-situ grown p-n junctions in mercury cadmium telluride (Hg_{1-x}Cd _{x}Te with x between 0.2-0.3) were fabricated and characterized in this study. Fabrication of these junctions involved the growth of p-n structures at 370^circC on CdTe substrates by Organometallic Vapor Phase Epitaxy. P-type doping with arsenic was achieved by using tertiarybutylarsine as the precursor. N-type doping was obtained either with indium, using trimethylindium as the precursor or by leaving the layer undoped. These p-n structures were processed to fabricate photodiodes. Their electrical performance was evaluated and conclusions regarding current mechanisms which determine their behavior were drawn. By varying the Hg pressure between 0.07-0.13 atm, p-type doping level in the 10^{16 }/cm^3-rm2times10 ^{17}/cm^3 range was achieved. At higher values of Hg pressure, the arsenic doping level in the layer increased significantly. This is possibly due to an increase in Te vacancies, allowing arsenic to occupy more group VI sites where they behave as acceptors. The activation efficiency of arsenic in the layers was measured to be equal to 50%. A high temperature anneal at 415 ^circC for 15 minutes did not result in any increase in the activation efficiency, possibly indicating the presence of stable As-complexes in the layer. Growth of p^+n structures was carried out in a single run. The acceptor concentration in the p-type cap layer was 5-rm10times10 ^{16}/cm^3. Indium doped n-type base layers had a carrier concentration of 1- rm2times10^{16}/cm^3 , while undoped layers had a n-type background carrier concentration of 4-rm6times10^ {14}/cm^3. The cap layer was 3 μm thick with x = 0.30, while the base layer was 8mum thick with x = 0.26. Under the growth conditions, arsenic showed a diffusion coefficient of rm2times10 ^{13}cm^2/s, which was higher than the interdiffusion coefficient of the alloy junction. This resulted in placement of the p-n junction in the lower bandgap base layer, which is necessary for high quantum efficiency devices. Photodiodes showed a cutoff wavelength of 7.5 mum, which correlates with the alloy composition of the base layer. Measured R_0 A of these diodes varied between 1-100 ohm-cm ^2. In the lower R_0A diodes, reverse bias was dominated by surface currents, possibly due to degradation of the passivating layer. Diodes with higher R_0A showed under reverse bias that trap assisted tunneling current dominated their performance. The origin of these traps is process related and could correspond to the presence of inactivated arsenic close to the p-n junction. Forward bias was dominated by diffusion and recombination currents, while the presence of additional leakage currents was evident.
A high efficiency dual-junction solar cell implemented as a nanowire array.
Yu, Shuqing; Witzigmann, Bernd
2013-01-14
In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.
Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.
Roxas, Jennifer Lising; Viswanathan, V K
2018-03-25
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
P-n junction diodes with polarization induced p-type graded InxGa1-xN layer
NASA Astrophysics Data System (ADS)
Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.
2017-10-01
In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.
NASA Astrophysics Data System (ADS)
Geethu, R.; Jacob, R.; Sreenivasan, P. V.; Shripathi, T.; S, Okram G.; Philip, R. R.
2015-02-01
A novel configuration ITO/n-OVC CuIn3Se5/p-CIS/In solar cell has been fabricated by multisource vacuum co-evaporation technique on soda lime glass substrates. The pn junction is formed with ordered vacancy compound as the n counter part for the p type CuInSe2. The structural, compositional, hall coefficient, optical and electrical properties of the p and n layers have been studied respectively by X-ray diffraction, Energy Dispersive Analysis of X rays, optical absorbance and conductivity measurements. Current density-Voltage measurements enabled the determination of efficiency of the device.
Ultrastructural study of the semicircular canal cells of the frog Rana esculenta.
Oudar, O; Ferrary, E; Feldmann, G
1988-03-01
The ultrastructure of the nonsensory cells (dark cells, transitional cells, and undifferentiated cells) of the frog semicircular canal was studied by using transmission electron microscopy in an attempt to correlate the structure with the functions of these epithelial cells. All the nonsensory cells were linked by tight junctions and desmosomes; this suggested that there is little paracellular ionic transport from perilymph to endolymph. In the dark cell epithelium, the apical intercellular spaces were dilated; in the basal part, numerous basolateral plasma membrane infoldings, containing mitochondria, delimited electron-lucent spaces. The undifferentiated cells and the transitional cells were devoid of any basal membrane infolding. Surrounding the semicircular canal, very flattened and interdigitated mesothelial cells constituted a thin multilayer tissue which limited the perilymphatic space. The morphological aspect of the dark cells suggests that they may play a role in the secretion and/or in the reabsorption of endolymph, which bathes the apical pole of these cells. The undifferentiated and transitional cells can play a role in the maintenance of the endolymphatic ionic composition because of their apical tight junctions and desmosomes.
NASA Astrophysics Data System (ADS)
Rahbardar Mojaver, Hassan; Manouchehri, Farzin; Valizadeh, Pouya
2016-04-01
The two dimensional electron gas (2DEG) characteristics of gated metal-face wurtzite AlInGaN/GaN hetero-junctions including positions of subband energy levels, fermi energy level, and the 2DEG concentration as functions of physical and compositional properties of the hetero-junction (i.e., barrier thickness and metal mole-fractions) are theoretically evaluated using the variational method. The calculated values of the 2DEG concentration are in good agreement with the sparsely available experimental data reported in the literature. According to our simulation results, a considerable shift in the positive direction of threshold voltage of AlInGaN/GaN hetero-junction field-effect transistors can be achieved by engineering both the spontaneous and the piezoelectric polarizations using a quaternary AlInGaN barrier-layer of appropriate mole-fractions.
Cascaded Ga1-xAlxAs/GaAs solar cell with graded i-region
NASA Astrophysics Data System (ADS)
Mil'shtein, Sam; Halilov, Samed
2018-02-01
In current study we designed p-i-n junction with extended intrinsic layer, where linearly graded Alx Ga1-x As presents variable energy gap so needed for effective harvesting of sun radiation. The design realization involves two regions of compositional structure in the stacking direction. The top AlxGa1-xAs layer of 1 um total thickness has stoichiometric structure x=0.3-0.2d, where depth d runs from 0 to 1 um, topmost 200 nm of which is Be-doped. Bottom AlxGa1-xAs layer of 3 um total thickness has a variable composition of x=0.133-0.033d, d runs from 1 to 4 um, the very bottom of which with 10 nm thickness is Si-doped. On the top surface, there is a 50 nm layer of p+ doped GaAs as a spacer for growing AuGe/Ni anode electrode of 20% surface area, the bottom is coated with AuGe/Ni cathode electrode. The designed cell demonstrates 89% fill factor and 30% conversion efficiency without anti-reflection coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagos, M. J.; Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP; Autreto, P. A. S.
2015-03-07
We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfacesmore » that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.« less
NASA Technical Reports Server (NTRS)
Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving
1991-01-01
Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.
Understanding charge transport in molecular electronics.
Kushmerick, J J; Pollack, S K; Yang, J C; Naciri, J; Holt, D B; Ratner, M A; Shashidhar, R
2003-12-01
For molecular electronics to become a viable technology the factors that control charge transport across a metal-molecule-metal junction need to be elucidated. We use an experimentally simple crossed-wire tunnel junction to interrogate how factors such as metal-molecule coupling, molecular structure, and the choice of metal electrode influence the current-voltage characteristics of a molecular junction.
Specific Cx43 phosphorylation events regulate gap junction turnover in vivo
Solan, Joell L.; Lampe, Paul D.
2014-01-01
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin. PMID:24508467
p -n Junction Rectifying Characteristics of Purely n -Type GaN-Based Structures
NASA Astrophysics Data System (ADS)
Zuo, P.; Jiang, Y.; Ma, Z. G.; Wang, L.; Zhao, B.; Li, Y. F.; Yue, G.; Wu, H. Y.; Yan, H. J.; Jia, H. Q.; Wang, W. X.; Zhou, J. M.; Sun, Q.; Liu, W. M.; Ji, An-Chun; Chen, H.
2017-08-01
The GaN-based p -n junction rectifications are important in the development of high-power electronics. Here, we demonstrate that p -n junction rectifying characteristics can be realized with pure n -type structures by inserting an (In,Ga)N quantum well into the GaN /(Al ,Ga )N /GaN double heterostructures. Unlike the usual barriers, the insertion of an (In,Ga)N quantum well, which has an opposite polarization field to that of the (Al,Ga)N barrier, tailors significantly the energy bands of the system. The lifted energy level of the GaN spacer and the formation of the (In ,Ga )N /GaN interface barrier can improve the reverse threshold voltage and reduce the forward threshold voltage simultaneously, forming the p -n junction rectifying characteristics.
Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain
Rash, John E.; Kamasawa, Naomi; Vanderpool, Kimberly G.; Yasumura, Thomas; O'Brien, John; Nannapaneni, Srikant; Pereda, Alberto E.; Nagy, James I.
2014-01-01
Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at “large myelinated club ending” synapses on Mauthner cells of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical “pre-potentials” immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified “mixed” (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with Cx35 restricted to axon terminal hemiplaques and Cx34.7 restricted to apposing Mauthner cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of Cx36 on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins. PMID:25451276
Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model
Cheng, C Yan
2014-01-01
There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions. PMID:26413399
Understanding the Conductance of Single-Molecule Junctions from First Principles
NASA Astrophysics Data System (ADS)
Quek, Su Ying
2008-03-01
Discovering the anatomy of single-molecule junctions, in order to exploit their transport behavior, poses fundamental challenges to nanoscience. First-principles calculations based on density-functional theory (DFT) can, together with experiment, provide detailed atomic-scale insights into the transport properties, and their relation to junction structure and electronic properties. Here, a DFT scattering state approach [1] is used to explore the single-molecule conductance of two prototypical junctions as a function of junction geometry, in the context of recent experiments. First, the computed conductance of 15 distinct benzene-diamine-Au junctions is compared to a large robust experimental data set [2]. The amine-gold bonding is shown to be highly selective, but flexible, resulting in a conductance that is insensitive to other details of the junction structure. The range of computed conductance corresponds well to the narrow distribution in experiment, although the average calculated conductance is approximately 7 times larger. This discrepancy is attributed to the absence of many-electron corrections in the DFT molecular orbital energies; a simple physically-motivated estimate for the self-energy corrections results in a conductance that is much closer to experiment [3]. Second, similar first-principles techniques are applied to a range of bipyridine-Au junctions. The extent to which Au-pyridine link bonding is affected by the constraints of forming bipyridine-Au junctions is investigated. In some contrast to the amine case, the computed conductance shows a strong sensitivity to the tilt of the bipyridine rings relative to the Au surfaces. Experiments probing the conductance of bipyridine-Au junctions are discussed in the context of these findings. [1] H. J. Choi et al, Phys Rev B, 76, 155420 (2007) [2] L. Venkataraman et al, Nano Lett 6, 458 (2006) [3] S. Y. Quek et al, Nano Lett. 7, 3477 (2007)
MYONEURAL JUNCTIONS OF TWO ULTRASTRUCTURALLY DISTINCT TYPES IN EARTHWORM BODY WALL MUSCLE
Rosenbluth, Jack
1972-01-01
The longitudinal muscle of the earthworm body wall is innervated by nerve bundles containing axons of two types which form two corresponding types of myoneural junction with the muscle fibers Type I junctions resemble cholinergic neuromuscular junctions of vertebrate skeletal muscle and are characterized by three features: (a) The nerve terminals contain large numbers of spherical, clear, ∼500 A vesicles plus a small number of larger dense-cored vesicles (b) The junctional gap is relatively wide (∼900 A), and it contains a basement membrane-like material, (c) The postjunctional membrane, although not folded, displays prominent specializations on both its external and internal surfaces The cytoplasmic surface is covered by a dense matrix ∼200 A thick which appears to be the site of insertion of fine obliquely oriented cytoplasmic filaments The external surface exhibits rows of projections ∼200 A long whose bases consist of hexagonally arrayed granules seated in the outer dense layer of the plasma membrane The concentration of these hexagonally disposed elements corresponds to the estimated concentration of both receptor sites and acetylcholinesterase sites at cholinergic junctions elsewhere. Type II junctions resemble the adrenergic junctions in vertebrate smooth muscle and exhibit the following structural characteristics: (a) The nerve fibers contain predominantly dense-cored vesicles ∼1000 A in diameter (b) The junctional gap is relatively narrow (∼150 A) and contains no basement membrane-like material, (c) Postjunctional membrane specialization is minimal. It is proposed that the structural differences between the two types of myoneural junction reflect differences in the respective transmitters and corresponding differences in the mechanisms of transmitter action and/or inactivation. PMID:5044759
Jakubinek, Michael B; O'Neill, Catherine; Felix, Chris; Price, Richard B; White, Mary Anne
2008-11-01
Excessive heat produced during the curing of light-activated dental restorations may injure the dental pulp. The maximum temperature excursion at the pulp-dentin junction provides a means to assess the risk of thermal injury. In this investigation we develop and evaluate a model to simulate temperature increases during light-curing of dental restorations and use it to investigate the influence of several factors on the maximum temperature excursion along the pulp-dentin junction. Finite element method modeling, using COMSOL 3.3a, was employed to simulate temperature distributions in a 2D, axisymmetric model tooth. The necessary parameters were determined from a combination of literature reports and our measurements of enthalpy of polymerization, heat capacity, density, thermal conductivity and reflectance for several dental composites. Results of the model were validated using in vitro experiments. Comparisons with in vitro experiments indicate that the model provides a good approximation of the actual temperature increases. The intensity of the curing light, the curing time and the enthalpy of polymerization of the resin composite were the most important factors. The composite is a good insulator and the greatest risk occurs when using the light to cure the thin layer of bonding resin or in deep restorations that do not have a liner to act as a thermal barrier. The results show the importance of considering temperature increases when developing curing protocols. Furthermore, we suggest methods to minimize the temperature increase and hence the risk of thermal injury. The physical properties measured for several commercial composites may be useful in other studies.
Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T
2015-11-10
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-11-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
Edge mixing dynamics in graphene p–n junctions in the quantum Hall regime
Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke
2015-01-01
Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p–n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p–n junction. PMID:26337445
Molecular electronics: some views on transport junctions and beyond.
Joachim, Christian; Ratner, Mark A
2005-06-21
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.
Molecular electronics: Some views on transport junctions and beyond
Joachim, Christian; Ratner, Mark A.
2005-01-01
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192
Barik, Sailen
2008-01-01
The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the α-helices and β-strands of proteins than within the more flexible linker regions (‘turns’ and ‘loops’) connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the α-helix and the β-strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures. PMID:15381847
Barik, Sailen
2004-09-01
The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the alpha-helices and beta-strands of proteins than within the more flexible linker regions ('turns' and 'loops') connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the alpha-helix and the beta-strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures.
Quantification of gap junction selectivity.
Ek-Vitorín, Jose F; Burt, Janis M
2005-12-01
Gap junctions, which are essential for functional coordination and homeostasis within tissues, permit the direct intercellular exchange of small molecules. The abundance and diversity of this exchange depends on the number and selectivity of the comprising channels and on the transjunctional gradient for and chemical character of the permeant molecules. Limited knowledge of functionally significant permeants and poor detectability of those few that are known have made it difficult to define channel selectivity. Presented herein is a multifaceted approach to the quantification of gap junction selectivity that includes determination of the rate constant for intercellular diffusion of a fluorescent probe (k2-DYE) and junctional conductance (gj) for each junction studied, such that the selective permeability (k2-DYE/gj) for dyes with differing chemical characteristics or junctions with differing connexin (Cx) compositions (or treatment conditions) can be compared. In addition, selective permeability can be correlated using single-channel conductance when this parameter is also measured. Our measurement strategy is capable of detecting 1) rate constants and selective permeabilities that differ across three orders of magnitude and 2) acute changes in that rate constant. Using this strategy, we have shown that 1) the selective permeability of Cx43 junctions to a small cationic dye varied across two orders of magnitude, consistent with the hypothesis that the various channel configurations adopted by Cx43 display different selective permeabilities; and 2) the selective permeability of Cx37 vs. Cx43 junctions was consistently and significantly lower.
The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates
NASA Astrophysics Data System (ADS)
Brummer, Gordon
Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers and introduce sub-bandgap absorption, making them undesirable in the n-AlGaN layers. n-Al0.60Ga 0.40N grown under stoichiometric Ga flux and an In surfactant reduced the Stokes shift (compared to n-AlGaN grown without In) by 150 meV. However, even under these growth modes, some compositional inhomogeneity persisted which is speculatively attributed to the vicinal substrate. Device epitaxial layer stacks utilizing the optimum growth conditions were fabricated into prototype vertical UV LEDs which emit from 295-320 nm. In order to increase light extraction efficiency, UV distributed Bragg reflectors (DBRs) based on compositionally graded AlGaN alloys were designed using the transfer matrix method (TMM) and grown by MBE. DBRs were formed from repeated compositionally graded AlGaN alloys. This structure utilized the polarization doping and index of refraction variation of graded composition AlGaN. DBRs with square wave, sinusoidal, triangular, and sawtooth compositional profiles were realized, with reflectivity peaks over 50%, centered at 280 nm.
NASA Astrophysics Data System (ADS)
Jeong, Inho; Song, Hyunwook
2017-11-01
In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.
Design issues for optimum solar cell configuration
NASA Astrophysics Data System (ADS)
Kumar, Atul; Thakur, Ajay D.
2018-05-01
A computer based simulation of solar cell structure is performed to study the optimization of pn junction configuration for photovoltaic action. The fundamental aspects of photovoltaic action viz, absorption, separation collection, and their dependence on material properties and deatails of device structures is discussed. Using SCAPS 1D we have simulated the ideal pn junction and shown the effect of band offset and carrier densities on solar cell performance. The optimum configuration can be achieved by optimizing transport of carriers in pn junction under effect of field dependent recombination (tunneling) and density dependent recombination (SRH, Auger) mechanisms.
Transverse junction vertical-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Schaus, C. F.; Torres, A. J.; Cheng, Julian; Sun, S.; Hains, C.
1991-04-01
An all-epitaxial, transverse-junction GaAs/AlGaAs vertical-cavity surface-emitting laser (TJ-VCSEL) incorporating wavelength-resonant periodic gain is reported. Metalorganic chemical vapor deposition is used for epitaxial growth of a structure containing five GaAs quantum wells. The simple p(+)-p-n(+) transverse junction is fabricated using reactive ion etching and diffusion techniques. Contacts are situated on the wafer surface resulting in a nearly planar structure. The device exhibits a room-temperature threshold of 48 mA (pulsed) and a resolution-limited spectral width of 0.11 nm at an 855.8-nm lasing wavelength.
Yang, Hongfang; Yu, Paula K; Cringle, Stephen J; Sun, Xinghuai; Yu, Dao-Yi
2015-11-01
Recently we reported studies of the iris microvasculature and its endothelial cells using intra-luminal micro-perfusion, fixation, and silver staining, suggesting that the iris vascular endothelium may be crucial for maintaining homeostasis in the ocular anterior segment. Here we present information regarding the intracellular structure and cell junctions of the iris endothelium. Thirty-seven porcine eyes were used for this study. The temporal long posterior ciliary artery was cannulated to assess the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining with phalloidin for intracellular cytoskeleton f-actin, and with antibodies against claudin-5 and VE-cadherin for junction proteins. Nuclei were counterstained with Hoechst. The iris was flat-mounted for confocal imaging. The iris microvasculature was studied for its distribution, branch orders and endothelial morphometrics with endothelial cell length measured for each vessel order. Our results showed that morphometrics of the iris microvasculature was comparable with our previous silver staining. Abundant stress fibres and peripheral border staining were seen within the endothelial cells in larger arteries. An obvious decrease in cytoplasmic stress fibres was evident further downstream in the smaller arterioles, and they tended to be absent from capillaries and veins. Endothelial intercellular junctions throughout the iris vasculature were VE-cadherin and claudin-5 immuno-positive, indicating the presence of both adherent junctions and tight junctions between vascular endothelial cells throughout the iris microvasculature. Unevenness of claudin-5 staining was noted along the endothelial cell borders in almost every order of vessels, especially in veins and small arterioles. Our results suggest that significant heterogeneity of intracellular structure and junction proteins is present in different orders of the iris vasculature in addition to vascular diameter and shape of the endothelia. Detailed information of the topography and intracellular structure and junction proteins of the endothelium of the iris microvasculature combined with unique structural features of the iris may help us to further understand the physiological and pathogenic roles of the iris vasculature in relevant ocular diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, K. W.; Dasika, V. D.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.
2012-06-01
We have used conductive atomic force microscopy to investigate the influence of growth temperature on local current flow in GaAs pn junctions with embedded ErAs nanoparticles grown by molecular beam epitaxy. Three sets of samples, one with 1 ML ErAs deposited at different growth temperatures and two grown at 530 °C and 575 °C with varying ErAs depositions, were characterized. Statistical analysis of local current images suggests that the structures grown at 575 °C have about 3 times thicker ErAs nanoparticles than structures grown at 530 °C, resulting in degradation of conductivity due to reduced ErAs coverage. These findings explain previous studies of macroscopic tunnel junctions.
Branchpoint expansion in a fully complementary three-way DNA junction.
Sabir, Tara; Toulmin, Anita; Ma, Long; Jones, Anita C; McGlynn, Peter; Schröder, Gunnar F; Magennis, Steven W
2012-04-11
Branched nucleic acid molecules serve as key intermediates in DNA replication, recombination, and repair; architectural elements in RNA; and building blocks and functional components for nanoscience applications. Using a combination of high-resolution single-molecule FRET, time-resolved spectroscopy, and molecular modeling, we have probed the local and global structure of a DNA three-way junction (3WJ) in solution. We found that it adopts a Y-shaped, pyramidal structure, in which the bases adjacent to the branchpoint are unpaired, despite the full Watson-Crick complementarity of the molecule. The unpairing allows a nanoscale cavity to form at the junction center. Our structure accounts for earlier observations made of the structure, flexibility, and reactivity of 3WJs. We anticipate that these results will guide the development of new DNA-based supramolecular receptors and nanosystems. © 2012 American Chemical Society
Observing Holliday junction branch migration one step at a time
NASA Astrophysics Data System (ADS)
Ha, Taekjip
2004-03-01
During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.
Excimer laser annealing for low-voltage power MOSFET
NASA Astrophysics Data System (ADS)
Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim
2016-08-01
Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.
On simulation of local fluxes in molecular junctions
NASA Astrophysics Data System (ADS)
Cabra, Gabriel; Jensen, Anders; Galperin, Michael
2018-05-01
We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.
2018-01-18
to a variety solar energy markets. For instance, micro-cracks have been shown to cause decreased power output in single- and multi-crystalline Si PV ...fingers in silicon wafer solar cells and PV modules," Solar Energy Materials and Solar Cells, vol. 108, pp. 78-81, 1// 2013. [4] T. H. Reijenga and H...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0125 TR-2017-0125 ENHANCED CONTACTS FOR INVERTED METAMORPHIC MULTI-JUNCTION SOLAR CELLS USING CARBON NANOTUBE METAL
NASA Technical Reports Server (NTRS)
Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.
2002-01-01
Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.
Ferré, J C; Chevalier, C; Robert, R; Degrez, J; Le Cloarec, A Y; Legoux, R; Orio, E; Barbin, J Y
1989-01-01
Using thick sections of the base of the skull and face their mechanical structure is viewed from the engineering aspect and the anatomic solutions evolved are compared with those selected by Aerospatiale engineers for the concept and development of the Airbus. It is concluded that the anterior and middle cranial fossae, together with the face, constitute an inseparable mechanical assembly each of whose component units participate in the rigidity of the others. Since this mechanical assembly must provide maximal rigidity for minimal weight, this suggests that aeronautical solutions should throw much light on the detail of construction of the skull and face. Indeed, the rigidity and lightness of the latter are obtained by means of solutions familiar in aeronautics: the reliance on thin-shelled beams with a honeycomb filling, the diploe analogous to a preconstrained composite or sandwich structure, a system of frames, struts and stiffeners, and the use of fillets at the sites of junction of struts.
Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xiaodong; Li, Wenjun; Islam, S. M.
By the insertion of thin In{sub x}Ga{sub 1−x}N layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.
Tight junction physiology of pleural mesothelium
Markov, Alexander G.; Amasheh, Salah
2014-01-01
Pleura consists of visceral and parietal cell layers, producing a fluid, which is necessary for lubrication of the pleural space. Function of both mesothelial cell layers is necessary for the regulation of a constant pleural fluid volume and composition to facilitate lung movement during breathing. Recent studies have demonstrated that pleural mesothelial cells show a distinct expression pattern of tight junction proteins which are known to ubiquitously determine paracellular permeability. Most tight junction proteins provide a sealing function to epithelia, but some have been shown to have a paracellular channel function or ambiguous properties. Here we provide an in-depth review of the current knowledge concerning specific functional contribution of these proteins determining transport and barrier function of pleural mesothelium. PMID:25009499
Li, X; Lynn, B D; Nagy, J I
2012-01-01
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei
2003-09-01
Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.
Electro-refractive photonic device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Watts, Michael R.
2015-06-09
The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive indexmore » enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.« less
Electrochemical characterization of bilayer lipid membrane-semiconductor junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiao Kang; Baral, S.; Fendler, J.H.
Three different systems of glyceryl monooleate (GMO), bilayer lipid membrane (BLM) supported semiconductor particles have been prepared and characterized. A single composition of particulate semiconductor deposited only on one side of the BLM constituted system A, two different compositions of particulate semiconductors sequentially deposited on the same side of the BLM represented system B, and two different compositions of particulate semiconductors deposited on the opposite sides of the BLM made up system C.
Some factors affecting efficiencies of n-CdS/p-CdTe thin film solar cells
NASA Astrophysics Data System (ADS)
Morris, G. C.; Das, S. K.; Tanner, P. G.
1992-02-01
Electrodeposited CdS and CdTe thin films have been fabricated into solar cells with a CdS/CdTe heterojunction. The CdTe films were made by varying two parameters, viz. the concentration of tellurium ions in the deposition solution and the quasi-rest potential (QRP) of the deposit. The properties of the completed cells were examined as a function of those preparation variables. Cell efficiency varied with both QRP and tellurium ion concentration. Whilst chemical analytic methods showed no compositional variation between cells, morphological studies showed that the most efficient cells had the largest grain size. Electrical and capacitance measurements were used to show that the density of interband states and of junction interface states increased with structural imperfection. The major losses in the solar cell parameters increased with increased polycrystalline structure.
Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures
NASA Astrophysics Data System (ADS)
Iwasaki, Yuhei; Tsuruta, Kenji; Ishikawa, Atsushi
2016-07-01
Based on a heterostructured plate consisting of piezoelectric-ceramic/epoxy-resin composites with different periodicities, we design a novel acoustic diode for the symmetrical/asymmetrical (S/A) mode of Lamb wave at audible ranges. The acoustic diode is constructed with two parts, i.e., the mode conversion part and the mode selection part, and the mode conversion mechanism at the interface is applied to the mode hybridization from S to S+A and for the mode conversion from A to S. The phonon band structures for each part are calculated and optimized so that the mode selection is realized for a specific mode at the junction. Finite-element simulations prove that the proposed acoustic diode achieves efficient rectification at audio frequency ranges for both S and A mode incidences of the Lamb wave.
Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction.
Jeon, Youngeun; Jung, Sungchul; Jin, Hanbyul; Mo, Kyuhyung; Kim, Kyung Rok; Park, Wook-Ki; Han, Seong-Tae; Park, Kibog
2017-12-04
Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (~2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area.
Roche, John P.; Alsharif, Peter; Graf, Ethan R.
2015-01-01
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2016-03-01
On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.
Intestinal barrier: A gentlemen’s agreement between microbiota and immunity
Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva
2014-01-01
Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host’s adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier. PMID:24891972
GaAs nanowire array solar cells with axial p-i-n junctions.
Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu
2014-06-11
Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.
First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions
NASA Astrophysics Data System (ADS)
Wang, Qiang; Li, Jian-Wei; Wang, Bin; Nie, Yi-Hang
2018-06-01
Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [ Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T( E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T( E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. I-V curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.
Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei
2013-01-23
The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.
Mustoe, Anthony M.; Bailor, Maximillian H.; Teixeira, Robert M.; Brooks, Charles L.; Al-Hashimi, Hashim M.
2012-01-01
Recent studies have shown that topological constraints encoded at the RNA secondary structure level involving basic steric and stereochemical forces can significantly restrict the orientations sampled by helices across two-way RNA junctions. Here, we formulate these topological constraints in greater quantitative detail and use this topological framework to rationalize long-standing but poorly understood observations regarding the basic behavior of RNA two-way junctions. Notably, we show that the asymmetric nature of the A-form helix and the finite length of a bulge provide a physical basis for the experimentally observed directionality and bulge-length amplitude dependence of bulge induced inter-helical bends. We also find that the topologically allowed space can be modulated by variations in sequence, particularly with the addition of non-canonical GU base pairs at the junction, and, surprisingly, by the length of the 5′ and 3′ helices. A survey of two-way RNA junctions in the protein data bank confirms that junction residues have a strong preference to adopt looped-in, non-canonically base-paired conformations, providing a route for extending our bulge-directed framework to internal loop motifs and implying a simplified link between secondary and tertiary structure. Finally, our results uncover a new simple mechanism for coupling junction-induced topological constraints with tertiary interactions. PMID:21937512
Semiconductor tunnel junction with enhancement layer
Klem, John F.; Zolper, John C.
1997-01-01
The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.
High rate capability of a BaTiO3-decorated LiCoO2 cathode prepared via metal organic decomposition
NASA Astrophysics Data System (ADS)
Teranishi, Takashi; Katsuji, Naoto; Yoshikawa, Yumi; Yoneda, Mika; Hayashi, Hidetaka; Kishimoto, Akira; Yoda, Koji; Motobayashi, Hidefumi; Tasaki, Yuzo
2016-10-01
Metal organic decomposition (MOD) using octylic acid salts was applied to synthesize a BaTiO3-LiCoO2 (BT-LC) composite powder. The Ba and Ti octylates were utilized as metal precursors, in an attempt to synthesize homogeneous BT nanoparticles on the LC matrix. The BT-LC composite, having a phase-separated composite structure without any impurity phase, was successfully obtained by optimizing the MOD procedure. The composite prepared using octylate precursors exhibited a sharper distribution and better dispersibility of decorated BT particles. Additionally, the average particle size of the decorated BTs using metal octylate was reduced to 23.3 nm, compared to 44.4 nm from conventional processes using Ba acetate as well as Ti alkoxide as precursors. The composite cathode displayed better cell performance than its conventional counterpart; the discharge capacity of the metal octylate-derived specimen was 55.6 mAh/g at a 50C rate, corresponding to 173% of the capacity of the conventional specimen (32.2 mAh/g). The notable improvement in high rate capability obtained in this study, compared with the conventional route, was attributed to the higher density of the triple junction formed by the BT-LC-electrolyte interface.
Mikulecky, Peter J.; Takach, Jennifer C.; Feig, Andrew L.
2008-01-01
Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. PMID:15134461
Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.
Hakker, Lauren; Marchi, Alexandria N; Harris, Kimberly A; LaBean, Thomas H; Agris, Paul F
2014-01-01
DNA Holliday junctions are important natural strand-exchange structures that form during homologous recombination. Immobile four-arm junctions, analogs to Holliday junctions, have been designed to self-assemble into cross-tile structures by maximizing Watson-Crick base pairing and fixed crossover points. The cross-tiles, self-assembled from base pair recognition between designed single-stranded DNAs, form higher order lattice structures through cohesion of self-associating sticky ends. These cross-tiles have 16 unpaired nucleosides in the central loop at the junction of the four duplex stems. The importance of the centralized unpaired nucleosides to the structure's thermodynamic stability and self-assembly is unknown. Cross-tile DNA nanostructures were designed and constructed from nine single-stranded DNAs with four shell strands, four arms, and a central loop containing 16 unpaired bases. The 16 unpaired bases were either 2'-deoxyribothymidines, 2'-O-methylribouridines, or abasic 1',2'-dideoxyribonucleosides. Thermodynamic profiles and structural base-stacking contributions were assessed using UV absorption spectroscopy during thermal denaturation and circular dichroism spectroscopy, respectively, and the resulting structures were observed by atomic force microscopy. There were surprisingly significant changes in the thermodynamic and structural properties of lattice formation as a result of altering only the 16 unpaired, centralized nucleosides. The 16 unpaired 2'-O-methyluridines were stabilizing and produced uniform tubular structures. In contrast, the abasic nucleosides were destabilizing producing a mixture of structures. These results strongly indicate the importance of a small number of centrally located unpaired nucleosides within the structures. Since minor modifications lead to palpable changes in lattice formation, DNA cross-tiles present an easily manipulated structure convenient for applications in biomedical and biosensing devices.
Ferroelectric tunnel junctions with multi-quantum well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062
Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.
Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei M.; Hybertsen M.; Aradhya S.V.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less
Toet, Daniel; Sigmon, Thomas W.
2004-12-07
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2005-08-23
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2003-01-01
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier
NASA Astrophysics Data System (ADS)
Althammer, Matthias; Mishra, Rohan; Borisevich, Albina J.; Singh, Amit Vikam; Keshavarz, Sahar; Yurtisigi, Mehmet Kenan; Leclair, Patrick; Gupta, Arunava
We experimentally investigate the structural, magnetic and electrical transport properties of La0.67Sr0.33MnO3 based magnetic tunnel junctions with a SrSnO3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier the observed tunnel magnetoresistance is comparable to tunnel junctions with a better lattice matched SrTiO3 barrier, reaching values of up to 350 % at T = 5 K . Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease of the TMR with increasing bias voltage. Our results suggest that by reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future. We gratefully acknowledge financial support via NSF-ECCS Grant No. 1509875.
A role for recombination junctions in the segregation of mitochondrial DNA in yeast.
Lockshon, D; Zweifel, S G; Freeman-Cook, L L; Lorimer, H E; Brewer, B J; Fangman, W L
1995-06-16
In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.
Pair-breaking mechanisms in superconductor—normal-metal—superconductor junctions
NASA Astrophysics Data System (ADS)
Yang, H. C.; Finnemore, D. K.
1984-08-01
The critical current density Jc has been measured for superconductor—normal-metal—superconductor (S-N-S) junctions over a wide range of temperature and composition in order to determine the depairing effects of magnetic impurities. Junctions, which are in a sandwich geometry with the N layer typically 600 nm thick, show well-defined diffraction patterns indicating that the junctions are of high quality. Below 4.2 K, the temperature dependence of Jc is found to follow a modified bridge theory based on the work of Makeev et al.
Graphitic carbon nitride based nanocomposites: a review
NASA Astrophysics Data System (ADS)
Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan
2014-11-01
Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-01-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-10-26
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less
Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin; Dai, Ying
2017-08-01
C60/g-C3N4 composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C3N4 monolayers with adsorbing and removing fullerene C60 are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C60 prefers to stay upon the ;junction nitrogen; with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C60 can lead to an irreversible structure distortion for g-C3N4 from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C60 modified g-C3N4.
Semiconductor tunnel junction with enhancement layer
Klem, J.F.; Zolper, J.C.
1997-10-21
The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.
Franke, Werner W; Heid, Hans; Zimbelmann, Ralf; Kuhn, Caecilia; Winter-Simanowski, Stefanie; Dörflinger, Yvette; Grund, Christine; Rickelt, Steffen
2013-07-01
Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions ("tessellate junctions"), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker.
Shrestha, Prakash; Emura, Tomoko; Koirala, Deepak; Cui, Yunxi; Hidaka, Kumi; Maximuck, William J; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin
2016-01-01
DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10–35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as ‘mechanophores’ that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators. PMID:27387283
Resolving metal-molecule interfaces at single-molecule junctions
NASA Astrophysics Data System (ADS)
Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu
2016-05-01
Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT.
Structure for implementation of back-illuminated CMOS or CCD imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)
2009-01-01
A structure for implementation of back-illuminated CMOS or CCD imagers. An epitaxial silicon layer is connected with a passivation layer, acting as a junction anode. The epitaxial silicon layer converts light passing through the passivation layer and collected by the imaging structure to photoelectrons. A semiconductor well is also provided, located opposite the passivation layer with respect to the epitaxial silicon layer, acting as a junction cathode. Prior to detection, light does not pass through a dielectric separating interconnection metal layers.
Structural and functional diversity of cadherin at the adherens junction
2011-01-01
Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell–cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals. PMID:21708975
Current-driven thermo-magnetic switching in magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.
2017-12-01
We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.
Oxford, Eva M.; Danko, Charles G.; Kornreich, Bruce G.; Maass, Karen; Hemsley, Shari A.; Raskolnikov, Dima; Fox, Philip R.; Delmar, Mario; Moïse, N. Sydney
2011-01-01
Objectives We sought to quantify the number and length of desmosomes, gap junctions, and adherens junctions in arrhythmogenic right ventricular cardiomyopathy (ARVC) and non-ARVC dogs, and to determine if ultrastructural changes existed. Animals Hearts from 8 boxer dogs afflicted with histopathologically confirmed ARVC and 6 dogs without ARVC were studied. Methods Quantitative transmission electron microscopy (TEM) and Western blot semi-quantification of α-actinin were used to study the intercalated disc and sarcomere of the right and left ventricles. Results When ARVC dogs were compared to non-ARVC dogs reductions in the number of desmosomes (P = 0.04), adherens junctions (P = 0.04) and gap junctions (P = 0.02) were found. The number of gap junctions (P = 0.04) and adherens junctions (P = 0.04) also were reduced in the left ventricle, while the number of desmosomes was not (P = 0.88). A decrease in the length of desmosomal complexes within LV samples (P=0.04) was found. These findings suggested disruption of proteins providing attachment of the cytoskeleton to the intercalated disc. Immunoblotting did not demonstrate a quantitative reduction in the amount of α-actinin in ARVC afflicted samples. All boxers with ARVC demonstrated the presence of electron dense material originating from the Z band and extending into the sarcomere, apparently at the expense of the cytoskeletal structure. Conclusions These results emphasize the importance of structural integrity of the intercalated disc in the pathogenesis of ARVC. In addition, observed abnormalities in sarcomeric structure suggest a novel link between ARVC and the actin-myosin contractile apparatus. PMID:21636338
Some Aspects of Self-Field Effects in Large Vanadium-Based Josephson Junctions
NASA Astrophysics Data System (ADS)
Cristiano, R.; Russo, M.; Di Chiara, A.; Huang, Hesheng; Peluso, G.
1984-03-01
Experiments concerning large V-VxOy-Pb Josephson junctions have been performed. Structures having an overlap-type geometry have been considered. Preliminary experimental results are justified in the framework of the linearized current-phase model.
High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells
NASA Technical Reports Server (NTRS)
Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)
1986-01-01
A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.
NASA Astrophysics Data System (ADS)
Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey
2010-10-01
The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.
Planar-type ferromagnetic tunnel junctions fabricated by SPM local oxidation
NASA Astrophysics Data System (ADS)
Tomoda, Y.; Kayashima, S.; Ogino, T.; Motoyama, M.; Takemura, Y.; Shirakashi, J.
Nanometer-scale oxide wires were fabricated by local oxidation nanolithography using scanning probe microscope (SPM). This technique was applied to the fabrication of planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. In order to induce magnetic shape anisotropy, asymmetrical channel structure was patterned by conventional photolithography and wet etching processes. The magnetoresistance (MR) characteristics were clearly shown in the planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. MR ratio of above 100% was obtained at 17 K. This result suggests that the local oxidation nanolithography using SPM is useful for the application to planar-type ferromagnetic tunnel junctions.
Anderson, J. M.; Glade, J. L.; Stevenson, B. R.; Boyer, J. L.; Mooseker, M. S.
1989-01-01
Structural alterations in hepatocyte tight junctions accompanying cholestasis were investigated using immunolocalization of ZO-1, the first known protein component of the tight junction. Disruption in the paracellular barrier function of the tight junction has been proposed to allow reflux of bile into the blood. Cholestasis was induced in 210 to 235 g male Sprague-Dawley rats either by five consecutive daily subcutaneous injections of 17-alpha-ethinyl estradiol (0.5 mg/kg/d in propylene glycol) or ligation of the common bile duct for 72 hours. The structural organization of the tight junction was assessed in each model by indirect immunofluorescent and immunoperoxidase staining for ZO-1 on frozen sections of liver and compared with controls. In control, sham-operated, and estradiol-injected animals, ZO-1 localizes in a uniform continuous manner along the margins of the canaliculi. In contrast, bile duct ligation results in the appearance of numerous discontinuities in ZO-1 staining accompanied by dilation or collapse of the lumenal space. Tissue content of the ZO-1 protein, as determined by quantitative immunoblotting, was unaffected in either cholestatic model compared with controls. These findings indicate that the molecular organization of the tight junction can be assessed from immunostaining patterns of ZO-1 in frozen sections of cholestatic livers. Under these experimental conditions, the organization of the tight junction at the level of the ZO-1 protein is altered by bile duct obstruction but not by ethinyl estradiol. Images Figure 1 Figure 2 PMID:2719075
The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind.
Vetrano, Stefania; Danese, Silvio
2009-05-01
Tight junctions (TJ) are junctional proteins whose function is to maintain an intact intestinal epithelial barrier and regulate the paracellular movement of water and solutes. Altered TJ structure and epithelial permeability are observed in inflammatory bowel disease and seem to have an important role in the pathogenesis of these diseases. Junctional adhesion molecule-A (JAM-A) is a protein expressed at tight junctions of epithelial and endothelial cells, as well as on circulating leukocytes. Its function at tight junctions appears to be crucial as an extracellular adhesive molecule in the direct regulation of intestinal barrier function. This review focuses on the role of JAM-A in controlling mucosal homeostasis by regulating the integrity and permeability of epithelial barrier function.
Electrostatics of Nanowire Radial p-n Heterojunctions
NASA Astrophysics Data System (ADS)
Borblik, Vitalii
2018-04-01
The electrostatics of a nanowire radial heterostructure p-n junction is considered theoretically. It is shown that when the radius of the core-shell interface decreases, depletion width of the core increases, but depletion width of the shell, on the contrary, decreases. This is the consequence of cylindrical symmetry of the structure. Thereby, the relative contribution from the constituent materials into performance characteristics of the devices, which use a heterostructure p-n junction, changes substantially. Values of the depletion widths in the heterostructure p-n junction prove to be intermediate between those in radial homostructure p-n junctions made of the constituent materials at the same doping levels. An analogous situation takes place for a barrier capacitance of the radial heterostructure p-n junction.
Magnetic domain wall engineering in a nanoscale permalloy junction
NASA Astrophysics Data System (ADS)
Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing
2017-08-01
Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
Valley dependent transport in graphene L junction
NASA Astrophysics Data System (ADS)
Chan, K. S.
2018-05-01
We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.
Current–phase relations of few-mode InAs nanowire Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, Φ, across the junction is called the current–phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. Here, we measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunablemore » junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.« less
Current–phase relations of few-mode InAs nanowire Josephson junctions
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius; ...
2017-08-14
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, Φ, across the junction is called the current–phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. Here, we measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunablemore » junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.« less
Crystal structure of RuvC resolvase in complex with Holliday junction substrate
Górecka, Karolina M.; Komorowska, Weronika; Nowotny, Marcin
2013-01-01
The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein–DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site. PMID:23980027
An accurate two-dimensional LBIC solution for bipolar transistors
NASA Astrophysics Data System (ADS)
Benarab, A.; Baudrand, H.; Lescure, M.; Boucher, J.
1988-05-01
A complete solution of the diffusion problem of carriers generated by a located light beam in the emitter and base region of a bipolar structure is presented. Green's function method and moment method are used to solve the 2-D diffusion equation in these regions. From the Green's functions solution of these equations, the light beam induced currents (LBIC) in the different junctions of the structure due to an extended generation represented by a rectangular light spot; are thus decided. The equations of these currents depend both on the parameters which characterise the structure, surface states, dimensions of the emitter and the base region, and the characteristics of the light spot, that is to say, the width and the wavelength. Curves illustrating the variation of the various LBIC in the base region junctions as a function of the impact point of the light beam ( x0) for different values of these parameters are discussed. In particular, the study of the base-emitter currents when the light beam is swept right across the sample illustrates clearly a good geometrical definition of the emitter region up to base end of the emitter-base space-charge areas and a "whirl" lateral diffusion beneath this region, (i.e. the diffusion of the generated carriers near the surface towards the horizontal base-emitter junction and those created beneath this junction towards the lateral (B-E) junctions).
Structure–property relationships in atomic-scale junctions: Histograms and beyond
Mark S. Hybertsen; Venkataraman, Latha
2016-03-03
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
Structure–property relationships in atomic-scale junctions: Histograms and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark S. Hybertsen; Venkataraman, Latha
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
On the self-association potential of transmembrane tight junction proteins.
Blasig, I E; Winkler, L; Lassowski, B; Mueller, S L; Zuleger, N; Krause, E; Krause, G; Gast, K; Kolbe, M; Piontek, J
2006-02-01
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported.
Entropy Flow Through Near-Critical Quantum Junctions
NASA Astrophysics Data System (ADS)
Friedan, Daniel
2017-05-01
This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.
STIM proteins and the endoplasmic reticulum-plasma membrane junctions.
Carrasco, Silvia; Meyer, Tobias
2011-01-01
Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.
Chen, Luan; Shi, Ke; Yin, Zhiqi; Aihara, Hideki
2013-01-07
Holliday junction (HJ) resolvases are structure-specific endonucleases that cleave four-way DNA junctions (HJs) generated during DNA recombination and repair. Bacterial RuvC, a prototypical HJ resolvase, functions as homodimer and nicks DNA strands precisely across the junction point. To gain insights into the mechanisms underlying symmetrical strand cleavages by RuvC, we performed crystallographic and biochemical analyses of RuvC from Thermus thermophilus (T.th. RuvC). The crystal structure of T.th. RuvC shows an overall protein fold similar to that of Escherichia coli RuvC, but T.th. RuvC has a more tightly associated dimer interface possibly reflecting its thermostability. The binding mode of a HJ-DNA substrate can be inferred from the shape/charge complementarity between the T.th. RuvC dimer and HJ-DNA, as well as positions of sulfate ions bound on the protein surface. Unexpectedly, the structure of T.th. RuvC homodimer refined at 1.28 Å resolution shows distinct asymmetry near the dimer interface, in the region harboring catalytically important aromatic residues. The observation suggests that the T.th. RuvC homodimer interconverts between two asymmetric conformations, with alternating subunits switched on for DNA strand cleavage. This model provides a structural basis for the 'nick-counter-nick' mechanism in HJ resolution, a mode of HJ processing shared by prokaryotic and eukaryotic HJ resolvases.
Multi-Quantum Well Structures to Improve the Performance of Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Samberg, Joshua Paul
Current, lattice matched triple junction solar cell efficiency is approximately 44% at a solar concentration of 942x. Higher efficiency for such cells can be realized with the development of a 1eV bandgap material lattice matched to Ge. One of the more promising materials for this application is that of the InGaAs/GaAsP multi-quantum well (MQW) structure. By inserting a stress/strain-balanced InGaAs/GaAsP MQW structure into the iregion of a GaAs p-i-n diode, the absorption edge of the p-i-n diode can be red shifted with respect to that of a standard GaAs p-n diode. Compressive stress in the InGaAs wells are balanced via GaAsP barriers subjected to tensile stress. Individually, the InGaAs and GaAsP layers are grown below their critical layer thickness to prevent the formation of misfit and threading dislocations. Until recently InGaAs/GaAsP MQWs have been somewhat hindered by their usage of low phosphorus-GaAsP barriers. Presented within is the development of a high-P composition GaAsP and the merits for using such a high composition of phosphorus are discussed. It is believed that these barriers represent the highest phosphorus content to date in such a structure. By using high composition GaAsP the carriers are collected via tunneling (for barriers .30A) as opposed to thermionic emission. Thus, by utilizing thin, high content GaAsP barriers one can increase the percentage of the intrinsic region in a p-i-n structure that is comprised of the InGaAs well in addition to increasing the number of periods that can be grown for a given depletion width. However, standard MQWs of this type inherently possess undesirable compressive strain and quantum size effects (QSE) that cause the optical absorption of the InGaAs wells to blue shift. To circumvent these deleterious QSEs stress balanced, pseudomorphic InGaAs/GaAsP staggered MQWs were developed. Tunneling is still a viable mode for carrier transport in the staggered MQW structures. GaAs interfacial layers within the multi-quantum well have been found to be critical in producing quality multi-quantum well structures. The effect of the GaAs interfacial layers has been investigated. It was determined that a phosphorus carry-over had a profound effect on the absorption edge of the InGaAs wells. It was shown that the phosphorus carry-over can be prevented with sufficiently thick GaAs transition layers. Preliminary results for GaAs p-in solar cells utilizing the improved MQWs are presented. In addition to investigating the utilization of quantum wells in the i-region of a GaAs p-i-n diode to improve the efficiency of multijunction solar cells, an investigation into the effect a single GaAs:Te doped quantum well has on the performance of high bandgap InxGa1- xP:Te/Al0.6Ga 0.4As:C tunnel junctions was investigated. The insertion of 30A of GaAs:Te at the junction interface resulted in a peak current of 1000A/cm2 and a voltage drop of ~3mV for 30A/cm2 (2000x concentration). The presence of this GaAs interfacial layer also improved the uniformity across the wafer. This architecture could be used within multijunction solar cells to extend the range of usable solar concentration with minimal voltage drop.
Frame junction vibration transmission with a modified frame deformation model.
Moore, J A
1990-12-01
A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.
van Gool, Alain J.; Hajibagheri, Nasser M.A.; Stasiak, Andrzej; West, Stephen C.
1999-01-01
Genetic recombination can lead to the formation of intermediates in which DNA molecules are linked by Holliday junctions. Movement of a junction along DNA, by a process known as branch migration, leads to heteroduplex formation, whereas resolution of a junction completes the recombination process. Holliday junctions can be resolved in either of two ways, yielding products in which there has, or has not, been an exchange of flanking markers. The ratio of these products is thought to be determined by the frequency with which the two isomeric forms (conformers) of the Holliday junction are cleaved. Recent studies with enzymes that process Holliday junctions in Escherichia coli, the RuvABC proteins, however, indicate that protein binding causes the junction to adopt an open square-planar configuration. Within such a structure, DNA isomerization can have little role in determining the orientation of resolution. To determine the role that junction-specific protein assembly has in determining resolution bias, a defined in vitro system was developed in which we were able to direct the assembly of the RuvABC resolvasome. We found that the bias toward resolution in one orientation or the other was determined simply by the way in which the Ruv proteins were positioned on the junction. Additionally, we provide evidence that supports current models on RuvABC action in which Holliday junction resolution occurs as the resolvasome promotes branch migration. PMID:10421637
NASA Astrophysics Data System (ADS)
Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.
2018-01-01
Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.
1971-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.
Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.
1972-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.
Multiple roles of the Rho GEF ephexin1 in synapse remodeling
Shi, Lei; Fu, Amy KY
2010-01-01
Synapse remodeling, which involves changes in the synaptic structure and their molecular composition, is required for the maturation and refinement of neural circuits. Although synapse remodeling is known to be tightly dependent on the assembly of local actin cytoskeleton, how actin directs the structural changes of synapse and targeting of synaptic proteins are not fully understood. Recently, we identified ephexin1, a Rho guanine nucleotide exchange factor (GEF) that regulates actin dynamics, to play an essential role in the maturation and functioning of the mammalian neuromuscular junction (NMJ). We showed that ephexin1 regulates the synaptic organization of the neurotransmitter receptor acetylcholine receptor (AChR) clusters through RhoA-dependent actin reorganization. Interestingly, ephexin1 has been implicated in the regulation of postsynaptic structure as well as the presynaptic vesicle release at various types of synapses. Our findings thus establish a novel function of ephexin1 in synapse remodeling through regulating the synaptic targeting of neurotransmitter receptors, revealing a versatile role of ephexin1 at synapses. PMID:21331259
Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions
NASA Astrophysics Data System (ADS)
Emamipour, Hamidreza
2016-06-01
We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.
"V-junction": a novel structure for high-speed generation of bespoke droplet flows.
Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew
2015-01-21
We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.
Compositional Determinants of Mechanical Properties of Enamel
Baldassarri, M.; Margolis, H.C.; Beniash, E.
2008-01-01
Dental enamel is comprised primarily of carbonated apatite, with less than 1% w/w organic matter and 4-5% w/w water. To determine the influence of each component on the microhardness and fracture toughness of rat incisor enamel, we mechanically tested specimens in which water and organic matrix were selectively removed. Tests were performed in mid-sagittal and transverse orientations to assess the effect of the structural organization on enamel micromechanical properties. While removal of organic matrix resulted in up to a 23% increase in microhardness, and as much as a 46% decrease in fracture toughness, water had a significantly lesser effect on these properties. Moreover, removal of organic matrix dramatically weakened the dentino-enamel junction (DEJ). Analysis of our data also showed that the structural organization of enamel affects its micromechanical properties. We anticipate that these findings will help guide the development of bio-inspired nanostructured materials for mineralized tissue repair and regeneration. PMID:18573984
Overview of the carbon fiber problem
NASA Technical Reports Server (NTRS)
1979-01-01
Carbon fibers (CF) composite structures are being utilized more as alternatives to metals in both civilian and military applications. They are valued for their light weight and high strength as well as for their ease of designing structures with specific shapes and sizes. However, a problem may exist due to the high conductivity of CF. CF are manufactured from a precursor material which is subjected to great stress and heat treatment causing a change in the physical and electrical properties. The fibers are bound together by a matrix of epoxy. In the event of fire (aircraft accident) the epoxy would burn away releasing these fibers into the atmosphere. When these fibers come in contact with electronic equipment, they might cause damage to by settling on electrical junctions. An overview is given of the objectives for a study, and the approach and methodology developed for determination of risk profiles.
Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation.
Gardiner, D M; Grey, R D
1983-04-01
We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.
Force and Conductance Spectroscopy of Single Molecule Junctions
NASA Astrophysics Data System (ADS)
Frei, Michael
Investigation of mechanical properties of single molecule junctions is crucial to develop an understanding and enable control of single molecular junctions. This work presents an experimental and analytical approach that enables the statistical evaluation of force and simultaneous conductance data of metallic atomic point contacts and molecular junctions. A conductive atomic force microscope based break junction technique is developed to form single molecular junctions and collect conductance and force data simultaneously. Improvements of the optical components have been achieved through the use of a super-luminescent diode, enabling tremendous increases in force resolution. An experimental procedure to collect data for various molecular junctions has been developed and includes deposition, calibration, and analysis methods. For the statistical analysis of force, novel approaches based on two dimensional histograms and a direct force identification method are presented. The two dimensional method allows for an unbiased evaluation of force events that are identified using corresponding conductance signatures. This is not always possible however, and in these situations, the force based identification of junction rearrangement events is an attractive alternative method. This combined experimental and analytical approach is then applied to three studies: First, the impact of molecular backbones to the mechanical behavior of single molecule junctions is investigated and it is found that junctions formed with identical linkers but different backbone structure result in junctions with varying breaking forces. All molecules used show a clear molecular signature and force data can be evaluated using the 2D method. Second, the effects of the linker group used to attach molecules to gold electrodes are investigated. A study of four alkane molecules with different linkers finds a drastic difference in the evolution of donor-acceptor and covalently bonded molecules respectively. In fact, the covalent bond is found to significantly distort the metal electrode rearrangement such that junction rearrangement events can no longer be identified with a clean and well defined conductance signature. For this case, the force based identification process is used. Third, results for break junction measurements with different metals are presented. It is found that silver and palladium junctions rupture with forces different from those of gold contacts. In the case of silver experiments in ambient conditions, we can also identify oxygen impurities in the silver contact formation process, leading to force and conductance measurements of silver-oxygen structures. For the future, this work provides an experimental and analytical foundation that will enable insights into single molecule systems not previously accessible.
Tunneling studies of compositionally modulated PB/Fe films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawro, A.; Witek, A.; Majewski, J.
1988-01-01
Preliminary results of preparation and investigation of compositionally modulated Pb/Fe films are reported. These films have been used as electrodes in Al/Al/sub 2/O/sub 3//{kappa}(Pb/Fe) tunnel junctions and the tunnelling characteristics I-V, dV/dI and d/sup 2/V/d/I/sup 2/ vs V have been studied in dependence on the modulation period.
Gardner, Qurra-tul-Ann Afza; Younas, Hooria; Akhtar, Muhammad
2013-01-01
Human M-proinsulin was cleaved by trypsin at the R(31)R(32)-E(33) and K(64)R(65)-G(66) bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K(59)R(60)-G(61) bond but at the B/C junction cleavage occurred at the R(31)R(32)-E(33) as well as the R(31)-R(32)E(33) bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the k(cat.)/K(m) values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02±0.08×10(5)s(-1)M(-1)) and the cleavage of the K(29)-T(30) bond of M-insulin-RR (1.3±0.07×10(5)s(-1)M(-1)). However, the K(29)-T(30) bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (k(cat.)/K(m) values around 1000s(-1)M(-1)). Hence, as the biosynthetic path follows the sequence; proinsulin→insulin-RR→insulin, the K(29)-T(30) bond becomes shielded, exposed then shielded again respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Kamasawa, N; Furman, C S; Davidson, K G V; Sampson, J A; Magnie, A R; Gebhardt, B R; Kamasawa, M; Yasumura, T; Zumbrunnen, J R; Pickard, G E; Nagy, J I; Rash, J E
2006-11-03
Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under "baseline" conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline "plaques" (71% and 3%), plus unusual "string" (14%), "ribbon" (7%) and "reticular" (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina.
The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator
NASA Technical Reports Server (NTRS)
ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.
2002-01-01
A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.
An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels
Bennett, Brad C.; Purdy, Michael D.; Baker, Kent A.; Acharya, Chayan; McIntire, William E.; Stevens, Raymond C.; Zhang, Qinghai; Harris, Andrew L.; Abagyan, Ruben; Yeager, Mark
2016-01-01
Gap junction channels mediate intercellular signalling that is crucial in tissue development, homeostasis and pathologic states such as cardiac arrhythmias, cancer and trauma. To explore the mechanism by which Ca2+ blocks intercellular communication during tissue injury, we determined the X-ray crystal structures of the human Cx26 gap junction channel with and without bound Ca2+. The two structures were nearly identical, ruling out both a large-scale structural change and a local steric constriction of the pore. Ca2+ coordination sites reside at the interfaces between adjacent subunits, near the entrance to the extracellular gap, where local, side chain conformational rearrangements enable Ca2+chelation. Computational analysis revealed that Ca2+-binding generates a positive electrostatic barrier that substantially inhibits permeation of cations such as K+ into the pore. Our results provide structural evidence for a unique mechanism of channel regulation: ionic conduction block via an electrostatic barrier rather than steric occlusion of the channel pore. PMID:26753910
Shot noise and electronic properties in the inversion-symmetric Weyl semimetal resonant structure
NASA Astrophysics Data System (ADS)
Yang, Yanling; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong
2018-02-01
Using the transfer matrix method, the authors combine the analytical formula with numerical calculation to explore the shot noise and conductance of massless Weyl fermions in the Weyl semimetal resonant junction. By varying the barrier strength, the structure of the junction, the Fermi energy, and the crystallographic angle, the shot noise and conductance can be tuned efficiently. For a quasiperiodic superlattice, in complete contrast to the conventional junction case, the effect of the disorder strength on the shot noise and conductance depends on the competition of classical tunneling and Klein tunneling. Moreover, the delta barrier structure is also vital in determining the shot noise and conductance. In particular, a universal Fano factor has been found in a single delta potential case, whereas the resonant structure of the Fano factor perfectly matches with the number of barriers in a delta potential superlattice. These results are crucial for engineering nanoelectronic devices based on this topological semimetal material.
Rudolf, Mareike; Tetik, Nalan; Ramos-León, Félix; Flinner, Nadine; Ngo, Giang; Stevanovic, Mara; Burnat, Mireia; Pernil, Rafael; Flores, Enrique; Schleiff, Enrico
2015-06-30
Filamentous, heterocyst-forming cyanobacteria exchange nutrients and regulators between cells for diazotrophic growth. Two alternative modes of exchange have been discussed involving transport either through the periplasm or through septal junctions linking adjacent cells. Septal junctions and channels in the septal peptidoglycan are likely filled with septal junction complexes. While possible proteinaceous factors involved in septal junction formation, SepJ (FraG), FraC, and FraD, have been identified, little is known about peptidoglycan channel formation and septal junction complex anchoring to the peptidoglycan. We describe a factor, SjcF1, involved in regulation of septal junction channel formation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. SjcF1 interacts with the peptidoglycan layer through two peptidoglycan-binding domains and is localized throughout the cell periphery but at higher levels in the intercellular septa. A strain with an insertion in sjcF1 was not affected in peptidoglycan synthesis but showed an altered morphology of the septal peptidoglycan channels, which were significantly wider in the mutant than in the wild type. The mutant was impaired in intercellular exchange of a fluorescent probe to a similar extent as a sepJ deletion mutant. SjcF1 additionally bears an SH3 domain for protein-protein interactions. SH3 binding domains were identified in SepJ and FraC, and evidence for interaction of SjcF1 with both SepJ and FraC was obtained. SjcF1 represents a novel protein involved in structuring the peptidoglycan layer, which links peptidoglycan channel formation to septal junction complex function in multicellular cyanobacteria. Nonetheless, based on its subcellular distribution, this might not be the only function of SjcF1. Cell-cell communication is central not only for eukaryotic but also for multicellular prokaryotic systems. Principles of intercellular communication are well established for eukaryotes, but the mechanisms and components involved in bacteria are just emerging. Filamentous heterocyst-forming cyanobacteria behave as multicellular organisms and represent an excellent model to study prokaryotic cell-cell communication. A path for intercellular metabolite exchange appears to involve transfer through molecular structures termed septal junctions. They are reminiscent of metazoan gap junctions that directly link adjacent cells. In cyanobacteria, such structures need to traverse the peptidoglycan layers in the intercellular septa of the filament. Here we describe a factor involved in the formation of channels across the septal peptidoglycan layers, thus contributing to the multicellular behavior of these organisms. Copyright © 2015 Rudolf et al.
Biswas, Sondip K; Lo, Woo-Kuen
2007-03-09
To determine the possible changes in the distribution of cholesterol in gap junction plaques during fiber cell differentiation and maturation in the embryonic chicken lens. The possible mechanism by which cholesterol is removed from gap junction plaques is also investigated. Filipin cytochemistry in conjunction with freeze-fracture TEM was used to visualize cholesterol, as represented by filipin-cholesterol complexes (FCCs) in gap junction plaques. Quantitative analysis on the heterogeneous distribution of cholesterol in gap junction plaques was conducted from outer and inner cortical regions. A novel technique combining filipin cytochemistry with freeze-fracture replica immunogold labeling (FRIL) was used to label Cx45.6 and Cx56 antibodies in cholesterol-containing gap junctions. Filipin cytochemistry and freeze-fracture TEM and thin-section TEM were used to examine the appearance and nature of the cholesterol-containing vesicular structures associated with gap junction plaques. Chicken lens fibers contain cholesterol-rich, cholesterol-intermediate and cholesterol-free gap junction populations in both outer and inner cortical regions. Filipin cytochemistry and FRIL studies confirmed that cholesterol-containing junctions were gap junctions. Quantitative analysis showed that approximately 86% of gap junctions in the outer cortical zone were cholesterol-rich gap junctions, whereas approximately 81% of gap junctions in the inner cortical zone were cholesterol-free gap junctions. A number of pleiomorphic cholesterol-rich vesicles of varying sizes were often observed in the gap junction plaques. They appear to be involved in the removal of cholesterol from gap junction plaques through endocytosis. Gap junctions in the young fibers are enriched with cholesterol because they are assembled in the unique cholesterol-rich cell membranes in the lens. A majority of cholesterol-rich gap junctions in the outer young fibers are transformed into cholesterol-free ones in the inner mature fibers during fiber cell maturation. A distinct endocytotic process appears to be involved in removing cholesterol from the cholesterol-containing gap junctions, and it may play a major role in the transformation of cholesterol-rich gap junctions into cholesterol-free ones during fiber cell maturation.
Shin, Hong-Sik; Oh, Se-Kyung; Kang, Min-Ho; Li, Shi-Guang; Lee, Ga-Won; Lee, Hi-Deok
2011-07-01
In this paper, a novel Ni silicide with Yb interlayer (Yb/Ni/TiN) on a boron cluster (B18H22) implanted source/drain junction is proposed for the first time, and its thermal stability characteristics are analyzed in depth. The proposed Ni-silicide exhibits a wider RTP temperature window for uniform sheet resistance, surface roughness and better thermal stability than the conventional structure (Ni/TiN). In addition, the cross-sectional profile of the proposed Ni-silicide showed less agglomeration despite the high temperature post-silicidation annealing, and it can be said that the proposed structure was little dependence on the temperature post-silicidation annealing. The improvement of Ni silicide properties is analyzed and found to be due to the formation of the rare earth metal--NiSi (YbNi2Si2), whose peaks were confirmed by XRD. The junction leakage current of the p + -n junction with Yb/Ni/TiN and B18H22 implantation is smaller than that with Ni/TiN by almost one order of magnitude as well as improving the thermal stability of ultra shallow junction.
Shrestha, Prakash; Emura, Tomoko; Koirala, Deepak; Cui, Yunxi; Hidaka, Kumi; Maximuck, William J; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin
2016-08-19
DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10-35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as 'mechanophores' that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui
2017-02-01
We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.
Anatomy of lower eyelid and eyelid-cheek junction.
Mojallal, A; Cotofana, S
2017-10-01
Understanding the anatomy of the lower eyelid and the lid-cheek junction is important for surgical and non-surgical approaches. It is important to understand the correlation between the clinical presentation and the individual anatomy to direct an adequate treatment. A review of the literature based on the authors experience combined with anatomical dissections was conducted to reveal the current concepts of the surgical and non-surgical anatomy. The various anatomical structures important for the understanding of the symptoms and the proposed treatment are described in this article. The anatomy of the lower eyelid and the lid-cheek junction has to be understood as a unit. Structures are continuous from the eyelid to the cheek influencing each other during aging. The concept of superficial, i.e. superficial to the orbicularis oculi muscle and deep facial fat compartments, i.e. deep to the orbicularis oculi muscle has to be applied in order to understand the relevant anatomy regarding the ligaments, fat compartments, muscular and tarsal structures and the vascularization. The understanding of the layered arrangement of the lower eyelid and eyelid-cheek junction anatomy enables practitioners to perform safe and effective surgical and non-surgical procedures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakhidov, A.A.; Yoshino, K.
Composites of fullerene C{sub 60} with conjugated polymers (CP) like polyalkylthiophene (PAT) and polyphenylene vinylene derivative (OO-PPV) have earlier demonstrated intensive charge transfer upon photoexcitation. Doping of CP/C{sub 60} composites by A metal vapors (A=K,Rb) is aimed at C{sub 60} induced SC, in which electrons of CP chains may participate in SC pairing, induced via hybridization with C{sub 60} molecules. We have found an SC phase experimentally both in PAT. (C{sub 60}) {sub y}K{sub x} and OO.PPV (C{sub 60}){sub y}K{sub x} by a sensitive method of low field microwave absorption (LFMA), and proved by SQUID. The SCT{sub c} ranges frommore » 12 to 17 K, depending on y and x. This SC phase shows a granular behavior in LFMA, and thus originates from SC A{sub 3}C{sub 60} clusters weakly linked by Josephson junctions. True C{sub 60} induced SC might be masked by granular A{sub 3}C{sub 60}. Anomalous LFMA and paramagnetic Meissner effects observed in SQUID, indicate the existence of Josephson {pi}-junctions. CP is apparently involved in SC via spin carrying polarons P in CP chains, which play a role of {pi}-junctions. Strategies for further search of C{sub 60} induced SC are discussed.« less
Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon
2013-02-26
The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.
Role of interface layers on Tunneling Magnetoresistance
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.
2002-03-01
Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.
Shared Resistance to Aging and ALS in Neuromuscular Junctions of Specific Muscles
Valdez, Gregorio; Tapia, Juan C.; Lichtman, Jeff W.; Fox, Michael A.; Sanes, Joshua R.
2012-01-01
Normal aging and neurodegenerative diseases both lead to structural and functional alterations in synapses. Comparison of synapses that are generally similar but respond differently to insults could provide the basis for discovering mechanisms that underlie susceptibility or resistance to damage. Here, we analyzed skeletal neuromuscular junctions (NMJs) in 16 mouse muscles to seek such differences. We find that muscles respond in one of three ways to aging. In some, including most limb and trunk muscles, age-related alterations to NMJs are progressive and extensive during the second postnatal year. NMJs in other muscles, such as extraocular muscles, are strikingly resistant to change. A third set of muscles, including several muscles of facial expression and the external anal sphinter, succumb to aging but not until the third postnatal year. We asked whether susceptible and resistant muscles differed in rostrocaudal or proximodistal position, source of innervation, motor unit size, or fiber type composition. Of these factors, muscle innervation by brainstem motor neurons correlated best with resistance to age-related decline. Finally, we compared synaptic alterations in normally aging muscles to those in a mouse model of amyotrophic lateral sclerosis (ALS). Patterns of resistance and susceptibility were strikingly correlated in the two conditions. Moreover, damage to NMJs in aged muscles correlated with altered expression and distribution of CRMP4a and TDP-43, which are both altered in motor neurons affected by ALS. Together, these results reveal novel structural, regional and molecular parallels between aging and ALS. PMID:22485182
NASA Astrophysics Data System (ADS)
Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.
2015-09-01
This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.
A novel reduced symmetry oxide (Mg3B2O6) for magnetic tunnel junctions based on FeCo or Fe leads
NASA Astrophysics Data System (ADS)
Stewart, Derek
2010-03-01
Magnetic tunnel junctions with high TMR values, such as FeMgOFe, capitalize on spin filtering in the oxide due to the band symmetry of incident electrons. However, these structures rely on magnetic leads and oxide regions of the same cubic symmetry class. This raises the question of whether reducing the oxide symmetry can enhance spin filtering. A new magnetic tunnel junction (FeCoMg3B2O6FeCo) is presented that uses a reduced symmetry oxide region (orthorhombic) to filter spins between two cubic magnetic leads. Symmetry analysis of coupling between states in the cubic leads and the orthorhombic oxide indicates that majority carrier tunneling through the oxide should be favored over minority carriers. Complex band structure analysis of Mg3B2O6 shows that the relevant evanescent states in the band gap are due to boron p states and that there is sufficient difference in the decay rates of the imaginary bands for spin filtering to occur. Electronic transport calculations through a FeMg3B2O6Fe magnetic tunnel junction are also performed to address the possible influence of interface states. Some recent experimental studies of FeCoBMgOFeCoB junctions, with B diffusion into the MgO region, indicate that this new type of junction may have already been fabricated. The prospect of developing a general class of magnetic tunnel junctions based on reduced symmetry oxides is also examined.
Liang, Liying; Liu, Haimei; Yang, Wensheng
2013-02-07
The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.
NASA Astrophysics Data System (ADS)
Bhusal, Lekhnath
Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.
Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit
In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less
Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier
Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit; ...
2016-12-16
In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less
Thin SOI lateral IGBT with band-to-band tunneling mechanism
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong
2017-06-01
In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly
1994-01-01
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level. PMID:7806568
Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure
NASA Astrophysics Data System (ADS)
Shen, Haoting
The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance was compared. A series of p-type c-Si wafers with varying resistivity/doping density were used for this study in order to evaluate the effect of carrier diffusion length on device performance. The saturation current densities (J0) of the radial junction devices were consistently larger than that of the planar devices as a result of the larger junction area. Despite the increased leakage currents, the radial junction HIT cells exhibited similar Voc compared to the planar cells. In addition, at high doping densities (5˜1018 cm-3), the J sc (16.7mA/cm2) and collection efficiency (6.3%) of the radial junction devices was higher than that of comparable planar cells (J sc 12.7 mA/cm2 and efficiency 5.2%), demonstrating improved collection of photogenerated carriers in this geometry.
Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R
2013-01-01
The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.
NASA Astrophysics Data System (ADS)
Tang, Yuanzheng; Zhang, Meng; Wu, Zhengying; Chen, Zhigang; Liu, Chengbao; Lin, Yun; Chen, Feng
2018-04-01
CeO2, Co3O4, and Co3O4/CeO2 composites are successfully synthesized by a simple coprecipitation method. X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) results indicate that the CeO2, Co3O4, and Co3O4/CeO2 precursors sintered at 500 °C has good crystallization. The cerium nitrate introduced into cobalt nitrate precursor solution improved the surface morphology and photocatalytic activity of Co3O4 significantly. The photo-degradation of methylene blue (MB), xylenol orange (XO), methyl orange (MO), and methyl red (MR) catalyzed by prepared nanocomposites were studied under visible light irradiation. Photocatalytic experiment results indicate that the photocatalytic activity of Co3O4/CeO2 composites for degradation of various dyes highly depend on pH value. The optimum conditions for the photocatalytic experiments of Co3O4/CeO2 composites were determined to be as follows: dye concentration, 50 mg L‑1, and catalyst concentration, 50 mg L‑1. The excellent photocatalytic activity of the p–n junction Co3O4/CeO2 composites can be ascribed to the ·O2‑ radicals and h+.
Poteser, Michael; Leitinger, Gerd; Pritz, Elisabeth; Platzer, Dieter; Frischauf, Irene; Romanin, Christoph; Groschner, Klaus
2016-10-19
Nanometer-spaced appositions between endoplasmic reticulum and plasma membrane (ER-PM junctions) stabilized by membrane-joining protein complexes are critically involved in cellular Ca 2+ -handling and lipid trafficking. ER-PM junctional architecture and plasticity associated with inter-membrane communication are as yet barely understood. Here, we introduce a method to precisely characterize ER-PM junction morphology and dynamics with high temporal resolution and minimal disturbance of junctional intermembrane communication. We show that expression of soluble cytosolic fluorophores in combination with TIRFM enables to delineate ER and PM distance in the range of 10-150 nm. Live-cell imaging of sub-plasmalemmal structures in RBL-2H3 mast cells by this method, designated as fluorescence density mapping (FDM), revealed profound dynamics of ER-PM contact sites in response to store-depletion. We report the existence of a Ca 2+ -dependent process that expands the junctional ER to enlarge its contact surface with the PM, thereby promoting and stabilizing STIM1-Orai1 competent ER-PM junctions.
2014-01-01
The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways. PMID:25071420
Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.
Parsons, C A; Murchie, A I; Lilley, D M; West, S C
1989-01-01
The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810
Verma, Vandana; Larsen, Bjarne Due; Coombs, Wanda; Lin, Xianming; Sarrou, Eliana; Taffet, Steven M.; Delmar, Mario
2010-01-01
Background Gap junctions are potential targets for pharmacological intervention. We have previously developed a series of peptide sequences that prevent closure of Cx43 channels, bind to cardiac Cx43 and prevent acidification-induced uncoupling of cardiac gap junctions. Objective We aimed to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif. Based on that information, we sought to generate a peptidomimetic molecule that acts on the chemical regulation of Cx43 channels. Methods Experiments were based on a combination of biochemical, spectroscopic and electrophysiological techniques, as well as molecular modeling of active pharmacophores with Cx43 activity. Results Molecular modeling analysis indicated that the functional elements of the side chains in the motif RRXY form a triangular structure. Experimental data revealed that compounds containing such a structure bind to Cx43 and prevent Cx43 chemical gating. These results provided us with the first platform for drug design targeted to the carboxyl terminal of Cx43. Using that platform, we designed and validated a peptidomimetic compound (ZP2519; molecular weight 619 Da) that prevented octanol-induced uncoupling of Cx43 channels, and pH gating of cardiac gap junctions. Conclusion Structure-based drug design can be applied to the development of pharmacophores that act directly on Cx43. Small molecules containing these pharmacophores can serve as tools to determine the role of gap junction regulation in the control of cardiac rhythm. Future studies will determine whether these compounds can function as pharmacological agents for the treatment of a selected subset of cardiac arrhythmias. PMID:20601149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi
2014-10-15
Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less
Geodynamical simulation of the RRF triple junction
NASA Astrophysics Data System (ADS)
Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.
2017-12-01
Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.
Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M
2006-08-01
The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.
Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling
NASA Technical Reports Server (NTRS)
Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.
1984-01-01
The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.
Ramp-edge structured tunneling devices using ferromagnet electrodes
Kwon, Chuhee [Long Beach, CA; Jia, Quanxi [Los Alamos, NM
2002-09-03
The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.
Imaging of current distributions in superconducting thin film structures
NASA Astrophysics Data System (ADS)
Dönitz, Dietmar
2006-10-01
Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tübingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices (SQUIDs) could be developed. It is based on vortex imaging by LTSEM that had been established several years ago. The vortex signals can be used as local detectors for the vortex-free circulating sheet-current distribution J. Compared to previous inversion methods that infer J from the measured magnetic field, this method gives a more direct measurement of the current distribution. The experimental results were in very good agreement with numerical calculations of J. The presented investigations show how versatile and useful Low Temperature Scanning Electron Microscopy can be for studying superconducting thin film structures. Thus one may expect that many more important results can be obtained with this method.
Akazawa, Naoki; Okawa, Naomi; Kishi, Masaki; Nakatani, Kiyoshi; Nishikawa, Katsuya; Tokumura, Daichi; Matsui, Yuji; Moriyama, Hideki
2016-09-01
The purpose of this study was to examine the effect of long-term self-massage at the musculotendinous junction on hamstring extensibility, stiffness, stretch tolerance, and structural indices. Single-blind, randomized, controlled trial. Laboratory. Thirty-seven healthy men. The right or left leg of each participant was randomly assigned to the massage group, and the other leg was assigned to the control group. The participants conducted self-massage at the musculotendinous junction for 3 min daily, five times per week, for 12 weeks. Hamstring extensibility, stiffness, stretch tolerance, and structural indices were measured by a blinded examiner prior to the massage intervention and after 6 and 12 weeks of intervention. The maximum hip flexion angle (HFA) and the maximum passive pressure after 6 and 12 weeks of intervention in the massage group were significantly higher than prior to intervention. The visual analog scale (for pain perception) at maximum HFA, the stiffness of the hamstring, and the structural indices did not differ in either group over the 12 week period. Our results suggest that long-term self-massage at the musculotendinous junction increases hamstring extensibility by improving stretch tolerance. However, this intervention does not change hamstring stiffness. University Hospital Medical Information Network registration number UMIN000011233. Copyright © 2016 Elsevier Ltd. All rights reserved.
The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.
Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P
2014-08-01
In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function. © IMechE 2014.
Lin, Li; Xu, Xiang; Yin, Jianbo; Sun, Jingyu; Tan, Zhenjun; Koh, Ai Leen; Wang, Huan; Peng, Hailin; Chen, Yulin; Liu, Zhongfan
2016-07-13
Being atomically thin, graphene-based p-n junctions hold great promise for applications in ultrasmall high-efficiency photodetectors. It is well-known that the efficiency of such photodetectors can be improved by optimizing the chemical potential difference of the graphene p-n junction. However, to date, such tuning has been limited to a few hundred millielectronvolts. To improve this critical parameter, here we report that using a temperature-controlled chemical vapor deposition process, we successfully achieved modulation-doped growth of an alternately nitrogen- and boron-doped graphene p-n junction with a tunable chemical potential difference up to 1 eV. Furthermore, such p-n junction structure can be prepared on a large scale with stable, uniform, and substitutional doping and exhibits a single-crystalline nature. This work provides a feasible method for synthesizing low-cost, large-scale, high efficiency graphene p-n junctions, thus facilitating their applications in optoelectronic and energy conversion devices.
Thermo-electric modular structure and method of making same
Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.
1974-01-29
A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)
Qiu, Xi-Zhen; Zhang, Fang-Hui
2013-01-01
The high-power white LED was prepared based on the high thermal conductivity aluminum, blue chips and YAG phosphor. By studying the spectral of different junction temperature, we found that the radiation spectrum of white LED has a minimum at 485 nm. The radiation intensity at this wavelength and the junction temperature show a good linear relationship. The LED junction temperature was measured based on the formula of relative spectral intensity and junction temperature. The result measured by radiation intensity method was compared with the forward voltage method and spectral method. The experiment results reveal that the junction temperature measured by this method was no more than 2 degrees C compared with the forward voltage method. It maintains the accuracy of the forward voltage method and overcomes the small spectral shift of spectral method, which brings the shortcoming on the results. It also had the advantages of practical, efficient and intuitive, noncontact measurement, and non-destruction to the lamp structure.
Single-molecule junction of an overcrowded ethylene with binary conductance states
NASA Astrophysics Data System (ADS)
Koike, Masato; Fujii, Shintaro; Cho, Haruna; Shoji, Yoshiaki; Nishino, Tomoaki; Fukushima, Takanori; Kiguchi, Manabu
2018-03-01
Overcrowded ethylene 1 shows mechanochromic behavior with contrasting color change between yellow and violet arising from its conformational isomerization, which should also be accompanied by the change in the electronic structure. Here, we report a single-molecule electronic study of 1 using scanning tunneling microcopy (STM) and STM-based break junction techniques. The single-molecule junction of 1 sandwiched by Au electrodes showed two distinct high- and low-conductance states with the conductance values of 0.003 and 0.0002 G 0. The high-conductance state is one order of magnitude more conductive than the low-conductance state. The two states can be ascribed to two conformational isomers of 1 in the junction.
Large thermoelectric efficiency of doped polythiophene junction: A density functional study
NASA Astrophysics Data System (ADS)
Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid
2018-06-01
The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.
Kwon, J.; Bowers, M. L.; Brandes, M. C.; ...
2015-02-26
In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations inmore » the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to deterministic, bulk-like behavior in sub-micron Mo-alloy pillars may therefore be related to an increasing number of multiple a(1 1 1) dislocation systems within the Mo fibers with increasing pre-strain, considering that the bulk-like behavior is governed by the forest hardening of these junctions.« less
Gonzalez, Franklin N.; Neugroschel, Arnost
1984-02-14
A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.
KAMASAWA, N.; FURMAN, C. S.; DAVIDSON, K. G. V.; SAMPSON, J. A.; MAGNIE, A. R.; GEBHARDT, B. R.; KAMASAWA, M.; YASUMURA, T.; ZUMBRUNNEN, J. R.; PICKARD, G. E.; NAGY, J. I.; RASH, J. E.
2007-01-01
Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under “baseline” conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline “plaques” (71% and 3%), plus unusual “string” (14%), “ribbon” (7%) and “reticular” (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina. PMID:17010526
Dusevich, Vladimir; Xu, Changqi; Wang, Yong; Walker, Mary P.; Gorski, Jeff P.
2012-01-01
Objective To investigate the ultrastructure and chemical composition of the dentin-enamel junction and adjacent enamel of minimally processed third molar tooth sections. Design Undecalcified human third molar erupted teeth were sectioned and etched with 4% EDTA or 37% phosphoric acid prior to visualization by scanning electron microscopy. Confocal Raman spectroscopy was carried out at 50 μm and more than 400 μm away from the dentin-enamel junction before and after mild etching. Results A novel organic protein-containing enamel matrix layer was identified for the first time using scanning electron microscopy of etched bucco-lingual sections of crowns. This layer resembles a three-dimensional fibrous meshwork that is visually distinct from enamel “tufts”. Previous studies have generally used harsher solvent conditions which likely removed this layer and precluded its prior characterization. The shape of the organic enamel layer generally reflected that of sheath regions of enamel rods and extended from the dentin-enamel junction about 100–400 μm into the cuspal enamel. This layer exhibited a Raman C—H stretching peak at ~2931 cm−1 characteristic of proteins and this signal correlated directly with the presence and location of the matrix layer as identified by scanning electron microscopy. Conclusions The enamel protein layer was most prominent close to the dentin-enamel junction and was largely absent in cuspal enamel >400 μm away from the dentin enamel junction. We hypothesize that this protein containing matrix layer could provide an important biomechanical linkage between the enamel and the dentin-enamel junction and by extension, with the dentin, of the adult tooth. PMID:22609172
Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.
2012-01-01
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172
Peng, Shaomin; Adelman, Ron A.
2010-01-01
Purpose. Bevacizumab and ranibizumab are currently used to treat age-related macular degeneration by neutralizing vascular endothelial growth factor (VEGF). In this study, the potential side effects on the outer blood–retinal barrier were examined. Methods. Human fetal RPE (hfRPE) cells were used because they are highly differentiated in culture. The claudin composition of RPE tight junctions was determined by RT-PCR, immunoblot analysis, and immunofluorescence. ELISA assays monitored the secretion and trafficking of VEGF and a fluid-phase marker, methylpolyethylene glycol (mPEG). Tight junction functions were assessed by the conductance of K+ and Na+ (derived from the transepithelial electrical resistance, TER) and the flux of NaCl and mPEG. Results. Claudin-3, claudin-10, and claudin-19 were detected in RPE tight junctions. VEGF was secreted in equal amounts across the apical and basolateral membranes, but the apical membrane was more active in endocytosing and degrading VEGF. Exogenous VEGF and mPEG crossed the RPE monolayer by transcytosis, predominantly in the apical-to-basal direction. RPE tight junctions were selective for K+, but did not discriminate between Na+ and Cl−. VEGF, bevacizumab, and ranibizumab had minimal effects on TER, permeation of mPEG, and selectivity for K+, Na+, and Cl−. They had minimal effects on the expression and distribution of the claudins. Conclusions. RPE has mechanisms for maintaining low concentrations of VEGF in the subretinal space that include endocytosis and degradation and fluid-phase transcytosis in the apical-to-basal direction. RPE tight junctions are selective for K+ over Na+ and Cl−. Permeability and selectivity of the junctions are not affected by VEGF, bevacizumab, or ranibizumab. PMID:20042644
NASA Astrophysics Data System (ADS)
Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.
2017-12-01
Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.
Kuhn, G C S; Teo, C H; Schwarzacher, T; Heslop-Harrison, J S
2009-05-01
Satellite DNA (satDNA) is a major component of genomes but relatively little is known about the fine-scale organization of unrelated satDNAs residing at the same chromosome location, and the sequence structure and dynamics of satDNA junctions. We studied the organization and sequence junctions of two nonhomologous satDNAs, pBuM and DBC-150, in three species from the neotropical Drosophila buzzatii cluster (repleta group). In situ hybridization to microchromosomes, interphase nuclei and extended DNA fibers showed frequent interspersion of the two satellites in D. gouveai, D. antonietae and, to a lesser extent, D. seriema. We isolated by PCR six pBuM x DBC-150 junctions: four are exclusive to D. gouveai and two are exclusive to D. antonietae. The six junction breakpoints occur at different positions within monomers, suggesting independent origin. Four junctions showed abrupt transitions between the two satellites, whereas two junctions showed a distinct 10 bp tandem duplication before the junction. Unlike pBuM, DBC-150 junction repeats are more variable than randomly cloned monomers and showed diagnostic features in common to a 3-monomer higher-order repeat seen in the sister species D. serido. The high levels of interspersion between pBuM and DBC-150 repeats suggest extensive rearrangements between the two satellites, maybe favored by specific features of the microchromosomes. Our interpretation is that the junctions evolved by multiples events of illegitimate recombination between nonhomologous satDNA repeats, with subsequent rounds of unequal crossing-over expanding the copy number of some of the junctions.
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-01-01
Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-11-20
Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.
Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions
NASA Astrophysics Data System (ADS)
Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.
Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.
Switching and Rectification in Carbon-Nanotube Junctions
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid
2003-01-01
Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.
NASA Astrophysics Data System (ADS)
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2018-01-01
Temperature dependences of current-voltage characteristics of the photoelectric converter with an antireflective film of porous silicon and an n + -p-junction formed by thermal diffusion of phosphorus from a porous film is studied. The porous silicon film was saturated with phosphorus during its growing by electrochemical method. It is shown that the current flow processes in the structure under study are significantly influenced by traps.
Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells
NASA Astrophysics Data System (ADS)
Johnson, Forrest
Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.
Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo
2016-01-01
Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.
Beckmann, Anja; Schubert, Madline; Hainz, Nadine; Haase, Alexandra; Martin, Ulrich; Tschernig, Thomas; Meier, Carola
2016-11-01
Gap junction proteins are essential for direct intercellular communication but also influence cellular differentiation and migration. The expression of various connexin gap junction proteins has been demonstrated in embryonic stem cells, with Cx43 being the most intensely studied. As Cx43 is the most prominent gap junction protein in the heart, cardiomyocyte-differentiated stem cells have been studied intensely. To date, however, little is known about the expression and the subcellular distribution of Cx43 in undifferentiated stem cells or about the structural arrangement of channels. We, therefore, here investigate expression of Cx43 in undifferentiated human cord-blood-derived induced pluripotent stem cells (hCBiPS2). For this purpose, we carried out quantitative real-time PCR and immunohistochemistry. For analysis of Cx43 ultrastructure and protein assembly, we performed freeze-fracture replica immunogold labeling (FRIL). Cx43 expression was detected at mRNA and protein level in hCBIPS2 cells. For the first time, ultrastructural data are presented on gap junction morphology in induced pluripotent stem (iPS) cells from cord blood: Our FRIL and electron microscopical analysis revealed the occurrence of gap junction plaques in undifferentiated iPS cells. In addition, these gap junctions were shown to contain the gap junction protein Cx43.
Gas selectivity of SILAR grown CdS nano-bulk junction
NASA Astrophysics Data System (ADS)
Jayakrishnan, R.; Nair, Varun G.; Anand, Akhil M.; Venugopal, Meera
2018-03-01
Nano-particles of cadmium sulphide were deposited on cleaned copper substrate by an automated sequential ionic layer adsorption reaction (SILAR) system. The grown nano-bulk junction exhibits Schottky diode behavior. The response of the nano-bulk junction was investigated under oxygen and hydrogen atmospheric conditions. The gas response ratio was found to be 198% for Oxygen and 34% for Hydrogen at room temperature. An increase in the operating temperature of the nano-bulk junction resulted in a decrease in their gas response ratio. A logarithmic dependence on the oxygen partial pressure to the junction response was observed, indicating a Temkin isothermal behavior. Work function measurements using a Kelvin probe demonstrate that the exposure to an oxygen atmosphere fails to effectively separate the charges due to the built-in electric field at the interface. Based on the benefits like simple structure, ease of fabrication and response ratio the studied device is a promising candidate for gas detection applications.
Design optimization of GaAs betavoltaic batteries
NASA Astrophysics Data System (ADS)
Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan
2011-06-01
GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.
NASA Astrophysics Data System (ADS)
Yuan, Li; Wang, Lejia; Garrigues, Alvar R.; Jiang, Li; Annadata, Harshini Venkata; Anguera Antonana, Marta; Barco, Enrique; Nijhuis, Christian A.
2018-04-01
Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.
High thermopower of mechanically stretched single-molecule junctions
Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide
2015-01-01
Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999
Enhanced Andreev reflection in gapped graphene
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Zareyan, Malek
2012-08-01
We theoretically demonstrate unusual features of superconducting proximity effect in gapped graphene that presents a pseudospin symmetry-broken ferromagnet with a net pseudomagnetization. We find that the presence of a band gap makes the Andreev conductance of graphene superconductor/pseudoferromagnet (S/PF) junction to behave similar to that of a graphene ferromagnet-superconductor junction. The energy gap ΔN can enhance the pseudospin inverted Andreev conductance of S/PF junction to reach a limiting maximum value for ΔN≫μ, which depending on the bias voltage can be larger than the value for the corresponding junction with no energy gap. We further demonstrate a damped-oscillatory behavior for the local density of states of the PF region of S/PF junction and a long-range crossed Andreev reflection process in PF/S/PF structure with antiparallel alignment of pseudomagnetizations of PFs, which confirm that, in this respect, the gapped normal graphene behaves like a ferromagnetic graphene.
Band-pass Fabry-Pèrot magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Tulapurkar, Ashwin. A.; Muralidharan, Bhaskaran
2018-05-01
We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Pèrot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Pèrot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (≈5 × 104%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.
Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions.
Zhang, Qian; Liu, Longlong; Tao, Shuhui; Wang, Congyi; Zhao, Cezhou; González, César; Dappe, Yannick J; Nichols, Richard J; Yang, Li
2016-10-12
We have measured the single-molecule conductance of 1,n-alkanedithiol molecular bridges (n = 4, 6, 8, 10, 12) on a graphene substrate using scanning tunneling microscopy (STM)-formed electrical junctions. The conductance values of this homologous series ranged from 2.3 nS (n = 12) to 53 nS (n = 4), with a decay constant β n of 0.40 per methylene (-CH 2 ) group. This result is explained by a combination of density functional theory (DFT) and Keldysh-Green function calculations. The obtained decay, which is much lower than the one obtained for symmetric gold junctions, is related to the weak coupling at the molecule-graphene interface and the electronic structure of graphene. As a consequence, we show that using graphene nonsymmetric junctions and appropriate anchoring groups may lead to a much-lower decay constant and more-conductive molecular junctions at longer lengths.
Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...
2016-11-17
In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less
2015-01-01
One-dimensional (1D) boron nitride nanotube (BNNT) and 2D hexagonal BN (h-BN) are attractive for demonstrating fundamental physics and promising applications in nano-/microscale devices. However, there is a high anisotropy associated with these BN allotropes as their excellent properties are either along the tube axis or in-plane directions, posing an obstacle in their widespread use in technological and industrial applications. Herein, we report a series of 3D BN prototypes, namely, pillared boron nitride (PBN), by fusing single-wall BNNT and monolayer h-BN aimed at filling this gap. We use density functional theory and molecular dynamics simulations to probe the diverse mechano-mutable properties of PBN prototypes. Our results demonstrate that the synergistic effect of the tubes, junctions, and sheets imparts cooperative deformation mechanisms, which overcome the intrinsic limitations of the PBN constituents and provide a number of superior characteristics including 3D balance of strength and toughness, emergence of negative Poisson’s ratio, and elimination of strain softening along the armchair orientation. These features, combined with the ultrahigh surface area and lightweight structure, render PBN as a 3D multifunctional template for applications in graphene-based nanoelectronics, optoelectronics, gas storage, and functional composites with fascinating in-plane and out-of-plane tailorable properties. PMID:25289114
Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles.
Lara, Giovanna Gomes; Cipreste, Marcelo Fernandes; Andrade, Gracielle Ferreira; Silva, Wellington Marcos da; Sousa, Edésia Martins Barros de
2018-01-09
Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium-iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones.
Modeling of Branched (L, T and Y) Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Han, Jie; Jaffe, Richard; Saini, Subhash (Technical Monitor)
1998-01-01
Models for connecting two or three carbon nanotubes (CNT) using topological defects (i.e., pentagons and heptagons) are presented for the characterization of experimentally observed L, T and Y CNT junctions. The effects of the separation and orientation of the topological defects on the structures and energetics of these junctions are investigated using the nonlocal density function theory (DFT) and semi-empirical molecular orbital (AM1) calculations, and the Brenner empirical potential molecular mechanics simulations. The potential applications of L, Y and T CNT junctions in nanoelectronic devices are also discussed.
McCrory, P.A.
2000-01-01
Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.
Josephson current in ballistic graphene Corbino disk
NASA Astrophysics Data System (ADS)
Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina
2018-06-01
We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.
Analysis of long-channel nanotube field-effect-transistors (NT FETs)
NASA Technical Reports Server (NTRS)
Toshishige, Yamada; Kwak, Dochan (Technical Monitor)
2001-01-01
This viewgraph presentation provides an analysis of long-channel nanotube (NT) field effect transistors (FET) from NASA's Ames Research Center. The structure of such a transistor including the electrode contact, 1D junction, and the planar junction is outlined. Also mentioned are various characteristics of a nanotube tip-equipped scanning tunnel microscope (STM).
Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li
2016-04-27
The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.
Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li
2016-01-01
The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4–0.7 eV to 0.2–0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature. PMID:28773440
Enhancing light absorption within the carrier transport length in quantum junction solar cells.
Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene
2015-09-10
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31 mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.
Ultra-low specific on-resistance 700V LDMOS with a buried super junction layer
NASA Astrophysics Data System (ADS)
Wang, Hai-Shi; Li, Zhi-you; Li, Ke; Qiao, Ming
2018-01-01
An ultra-low specific on-resistance 700 V lateral double-diffused MOSFET (LDMOS) with a buried super junction (BSJ) layer is proposed. [1-9] Buried P-pillars in the LDMOS can be depleted by neighboring N-pillars, overlying and underlying N-drift regions simultaneously, thus allowing a higher doping concentration. Consequently, the doping concentration of either the N-drift regions or N-pillars, or both, may also be increased therewith to compensate the surplus charges in the P-pillars. Compared with conventional surface super junction (SSJ) LDMOS, in which the super junction layer is implemented at the upper surface of the drift region, and P-pillars can only be depleted by the adjacent N-pillars and the N-drift regions beneath, the proposed novel LDMOS structure may have a lower specific on-resistance (Ron,sp) while maintain the same breakdown voltage (BV). Simulation results indicate that the Ron,sp of the novel structure is only 80.5 mΩ cm2 with a high BV of 750 V, which is reduced by 17% in comparison with the Ron,sp of a conventional SSJ LDMOS.
Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas.
Alaga, Katanya C; Crawford, Melissa; Dagnino, Lina; Laird, Dale W
2017-01-01
At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures.
Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas
Alaga, Katanya C.; Crawford, Melissa; Dagnino, Lina; Laird, Dale W.
2017-01-01
At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures. PMID:28607585
Peltier cooling in molecular junctions
NASA Astrophysics Data System (ADS)
Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2018-02-01
The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.
Gadani, Keval; Keshvani, M J; Rajyaguru, Bhargav; Dhruv, Davit; Kataria, B R; Joshi, A D; Asokan, K; Shah, N A; Solanki, P S
2017-11-08
In this communication, we report results of the electrical transport properties across the interface of composites consisting of n-type LaMnO 3-δ (LMO) and p-type La 0.7 Ca 0.3 MnO 3 (LCMO) manganites grown on LaAlO 3 (LAO) single crystalline substrates using low cost wet chemical solution deposition (CSD) and sophisticated, well-controlled dry chemical vapor deposition (CVD) chemical techniques. The XRD ϕ-scan studies reveal the single crystalline nature of both bilayered composites, with parallel epitaxial growth of LMO and LCMO layers onto the LAO substrate. The valence states of Mn ions in both layers of both composites were identified by performing X-ray photoelectron spectroscopy (XPS). The I-V characteristics of the LMO/LCMO interfaces show strong backward diode-like behavior at higher applied voltages well above the crossover voltage (V NB ). Below V NB , the interfaces demonstrate normal diode-like characteristics throughout the studied temperature range. The electric field-induced modulation of the LMO/LCMO junction resistance of the interfaces has been observed. Electric field-dependent electroresistance (ER) modifications at different temperatures have also been studied. The electrical transport properties have been discussed in the context of various mechanisms, such as charge injection, tunneling, depletion region modification and thermal processes across the interface. The effects of structurally and chemically developed sharp interfaces between the LMO and LCMO layers on the transport properties of the presently studied bilayered thin film composites have been discussed on the basis of correlation between the physicochemical characterization and charge transport behavior. A comparison of different aspects of the transport properties has been presented in the context of the structural strain and crystallinity of the composites grown using both wet and dry chemical techniques.
Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector
NASA Astrophysics Data System (ADS)
Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki
2000-06-01
We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.
Current rectification in a single molecule diode: the role of electrode coupling.
Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás
2015-07-24
We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.
Current rectification in a single molecule diode: the role of electrode coupling
NASA Astrophysics Data System (ADS)
Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás
2015-07-01
We demonstrate large rectification ratios (\\gt 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 105 A cm-2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant rolesmore » in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.« less
Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara
2005-01-01
NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.
Oktem, G; Bilir, A; Ayla, S; Yavasoglu, A; Goksel, G; Saydam, G; Uysal, A
2006-01-01
Tumor heterogeneity is an important feature that is especially involved in tumor aggressiveness. Multicellular tumor spheroids (MTS) may provide some benefits in different steps for investigation of the aggregation, organization, differentiation, and network formation of tumor cells in 3D space. This model offers a unique opportunity for improvements in the capability of a current strategy to detect the effect of an appropriate anticancer agent. The aim of this study was to investigate the cellular interactions and morphological changes following chemotherapy in a 3D breast cancer spheroid model. Distribution of the gap junction protein "connexin-43" and the tight junction protein "occludin" was investigated by immunohistochemistry. Cellular interactions were examined by using transmission and scanning electron microscopies as well as light microscopy with Giemsa staining after treating cells with doxorubicin, docetaxel, and doxorubicin/docetaxel combination. Statistical analyses showed significant changes and various alterations that were observed in all groups; however, the most prominent effect was detected in the doxorubicin/docetaxel combination group. Distinct composition as a vessel-like structure and a pseudoglandular pattern of control spheroids were detected in drug-administered groups. Immunohistochemical results were consistent with the ultrastructural changes. In conclusion, doxorubicin/docetaxel combination may be more effective than the single drug usage as shown in a 3D model. The MTS model has been found to be an appropriate and reliable method for the detection of the changes in the expression of cellular junction proteins as well as other cellular proteins occurring after chemotherapy. The MTS model can be used to validate the effects of various combinations or new chemotherapeutic agents as well as documentation of possible mechanisms of new drugs.
Evolution of the northern Main Ethiopian rift: birth of a triple junction
NASA Astrophysics Data System (ADS)
Wolfenden, Ellen; Ebinger, Cynthia; Yirgu, Gezahegn; Deino, Alan; Ayalew, Dereje
2004-07-01
Models for the formation of the archetypal rift-rift-rift triple junction in the Afar depression have assumed the synchronous development of the Red Sea-Aden-East African rift systems soon after flood basaltic magmatism at 31 Ma, but the timing of intial rifting in the northern sector of the East African rift system had been poorly constrained. The aims of our field, geochronology, and remote sensing studies were to determine the timing and kinematics of rifting in the 3rd arm, the Main Ethiopian rift (MER), near its intersection with the southern Red Sea rift. New structural data and 10 new SCLF 40Ar/39Ar dates show that extension in the northern Main Ethiopian rift commenced after 11 Ma, more than 17 My after initial rifting in the southern Red Sea and Gulf of Aden. The triple junction, therefore, could have developed only during the past 11 My, or 20 My after the flood basaltic magmatism. Thus, the flood basaltic magmatism and separation of Arabia from Africa are widely separated in time from the opening of the Main Ethiopian rift, which marks the incipient Nubia-Somalia plate boundary; triple junction formation is not a primary feature of breakup above the Afar mantle plume. The East African rift system appears to have propagated northward from the Mesozoic Anza rift system into the Afar depression to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden, in response to global plate reorganisations. Structural patterns reveal a change from 130°E-directed extension to 105°E-directed extension sometime in the interval 6.6 to 3 Ma, consistent with predictions from global plate kinematic studies. The along-axis propagation of rifting in each of the three arms of the triple junction has led to a NE-migration of the triple junction since 11 Ma.
Visible light electroluminescent diodes of indium-gallium phosphide
NASA Technical Reports Server (NTRS)
Clough, R.; Richman, D.; Tietjen, J.
1970-01-01
Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.
Computational Nanotechnology Molecular Electronics, Materials and Machines
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrenkiel, Phil
The primary objective of the project was to develop Ga0.82In0.18As (GaInAs) solar cells grown on epilayers of elemental Al. At this composition, GaInAs has a nearly optimal bandgap (1.16 eV) for a single-junction photovoltaic device. However, GaInAs lacks a convenient, lattice-matched substrate, restricting most investigations to metamorphic structures. The metal Al is, in fact, precisely lattice-matched to GaInAs in the orientation GaInAs (001)[100]||Al(001)[110]. At present, however, epi-ready Al substrates are not readily available commercially and are subject to oxidation. However, epitaxial Al buffer layers could enable control of defect generation, thermal and light management, and rapid epitaxial lift-off for ultrathinmore » devices.« less
Ab initio studies of electronic transport through amine-Au-linked junctions of photoactive molecules
NASA Astrophysics Data System (ADS)
Strubbe, David A.; Quek, Su Ying; Venkataraman, Latha; Choi, Hyoung Joon; Neaton, J. B.; Louie, Steven G.
2008-03-01
Molecules linked to Au electrodes via amine groups have been shown to result in reproducible molecular conductance values for a wide range of single-molecule junctions [1,2]. Recent calculations have shown that these linkages result in a junction conductance relatively insensitive to atomic structure [3]. Here we exploit these well-defined linkages to study the effect of isomerization on conductance for the photoactive molecule 4,4'-diaminoazobenzene. We use a first-principles scattering-state method based on density-functional theory to explore structure and transport properties of the cis and trans isomers of the molecule, and we discuss implications for experiment. [1] L Venkataraman et al., Nature 442, 904-907 (2006); [2] L Venkataraman et al., Nano Lett. 6, 458-462 (2006); [3] SY Quek et al., Nano Lett. 7, 3477-3482 (2007).
Piezo-tunnel effect in Al/Al2O3/Al junctions elaborated by atomic layer deposition
NASA Astrophysics Data System (ADS)
Rafael, R.; Puyoo, E.; Malhaire, C.
2017-11-01
In this work, the electrical transport in Al/Al2O3/Al junctions under mechanical stress is investigated in the perspective to use them as strain sensors. The metal/insulator/metal junctions are elaborated with a low temperature process (≤200 °C) fully compatible with CMOS back-end-of-line. The conduction mechanism in the structure is found to be Fowler-Nordheim tunneling, and efforts are made to extract the relevant physical parameters. Gauge factors up to -32.5 were found in the fabricated devices under tensile stress. Finally, theoretical mechanical considerations give strong evidence that strain sensitivity in Al/Al2O3/Al structures originates not only from geometrical deformations but also from the variation of interface barrier height and/or effective electronic mass in the tunneling oxide layer.
Ischemic preconditioning enhances integrity of coronary endothelial tight junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhao; Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu
2012-08-31
Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiacmore » TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.« less
NASA Astrophysics Data System (ADS)
Unni, Vineet; Sankara Narayanan, E. M.
2017-04-01
This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.
NASA Astrophysics Data System (ADS)
Kwon, Hyuk-Jun; Shim, HongShik; Kim, Sunkook; Choi, Woong; Chun, Youngtea; Kee, InSeo; Lee, SangYoon
2011-04-01
We report a mechanically and optically robust folding structure to realize a foldable active matrix organic-light-emitting-diode (AMOLED) display without a visible crease at the junction. A nonlinear stress analysis, based on a finite element method, provided an optimized design. The folding-unfolding test on the structure exhibited negligible deterioration of the relative brightness at the junction of the individual panels up to 105 cycles at a folding radius of 1 mm, indicating highly reliable mechanical and optical tolerances. These results demonstrate the feasibility of seamless foldable AMOLED displays, with potentially important technical implications on fabricating large size flexible displays.
Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C
2017-03-01
This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.
Enhancing phonon flow through one-dimensional interfaces by impedance matching
NASA Astrophysics Data System (ADS)
Polanco, Carlos A.; Ghosh, Avik W.
2014-08-01
We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.
Ramos, Cathy I.; Igiesuorobo, Oghomwen; Wang, Qi; Serpe, Mihaela
2015-01-01
The molecular mechanisms controlling the subunit composition of glutamate receptors are crucial for the formation of neural circuits and for the long-term plasticity underlying learning and memory. Here we use the Drosophila neuromuscular junction (NMJ) to examine how specific receptor subtypes are recruited and stabilized at synaptic locations. In flies, clustering of ionotropic glutamate receptors (iGluRs) requires Neto (Neuropillin and Tolloid-like), a highly conserved auxiliary subunit that is essential for NMJ assembly and development. Drosophila neto encodes two isoforms, Neto-α and Neto-β, with common extracellular parts and distinct cytoplasmic domains. Mutations that specifically eliminate Neto-β or its intracellular domain were generated. When Neto-β is missing or is truncated, the larval NMJs show profound changes in the subtype composition of iGluRs due to reduced synaptic accumulation of the GluRIIA subunit. Furthermore, neto-β mutant NMJs fail to accumulate p21-activated kinase (PAK), a critical postsynaptic component implicated in the synaptic stabilization of GluRIIA. Muscle expression of either Neto-α or Neto-β rescued the synaptic transmission at neto null NMJs, indicating that Neto conserved domains mediate iGluRs clustering. However, only Neto-β restored PAK synaptic accumulation at neto null NMJs. Thus, Neto engages in intracellular interactions that regulate the iGluR subtype composition by preferentially recruiting and/or stabilizing selective receptor subtypes. PMID:25905467
NASA Astrophysics Data System (ADS)
Hamdipour, Mohammad
2018-04-01
We study an array of coupled Josephson junction of superconductor/insulator/superconductor type (SIS junction) as a model for high temperature superconductors with layered structure. In the current-voltage characteristics of this system there is a breakpoint region in which a net electric charge appear on superconducting layers, S-layers, of junctions which motivate us to study the charge dynamics in this region. In this paper first of all we show a current voltage characteristics (CVC) of Intrinsic Josephson Junctions (IJJs) with N=3 Junctions, then we show the breakpoint region in that CVC, then we try to investigate the chaos in this region. We will see that at the end of the breakpoint region, behavior of the system is chaotic and Lyapunov exponent become positive. We also study the route by which the system become chaotic and will see this route is bifurcation. Next goal of this paper is to show the self similarity in the bifurcation diagram of the system and detailed analysis of bifurcation diagram.
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Electron tomographic analysis of gap junctions in lateral giant fibers of crayfish.
Ohta, Yasumi; Nishikawa, Kouki; Hiroaki, Yoko; Fujiyoshi, Yoshinori
2011-07-01
Innexin-gap junctions in crayfish lateral giant fibers (LGFs) have an important role in escape behavior as a key component of rapid signal transduction. Knowledge of the structure and function of characteristic vesicles on the both sides of the gap junction, however, is limited. We used electron tomography to analyze the three-dimensional structure of crayfish gap junctions and gap junctional vesicles (GJVs). Tomographic analyses showed that some vesicles were anchored to innexons and almost all vesicles were connected by thin filaments. High densities inside the GJVs and projecting densities on the GJV membranes were observed in fixed and stained samples. Because the densities inside synaptic vesicles were dependent on the fixative conditions, different fixative conditions were used to elucidate the molecules included in the GJVs. The projecting densities on the GJVs were studied by immunoelectron microscopy with anti-vesicular monoamine transporter (anti-VMAT) and anti-vesicular nucleotide transporter (anti-VNUT) antibodies. Some of the projecting densities were labeled by anti-VNUT, but not anti-VMAT. Three-dimensional analyses of GJVs and excitatory chemical synaptic vesicles (CSVs) revealed clear differences in their sizes and central densities. Furthermore, the imaging data obtained under different fixative conditions and the immunolabeling results, in which GJVs were positively labeled for anti-VNUT but excitatory CSVs were not, support our model that GJVs contain nucleotides and excitatory CSVs do not. We propose a model in which characteristic GJVs containing nucleotides play an important role in the signal processing in gap junctions of crayfish LGFs. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Basant Lal
2018-05-01
Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the "defect" there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.
Zhong, Yu; Smart, Eric J.; Weksler, Babette; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal
2009-01-01
The blood-brain barrier (BBB) is the critical structure for preventing HIV trafficking into the brain. Specific HIV proteins, such as Tat protein, can contribute to the dysfunction of tight junctions at the BBB and HIV entry into the brain. Tat is released by HIV-1 infected cells and can interact with a variety of cell surface receptors activating several signal transduction pathways, including those localized in caveolae. The present study focused on the mechanisms of Tat-induced caveolae-associated Ras signaling at the level of the BBB. Treatment with Tat activated the Ras pathway in human brain microvascular endothelial cells (HBMEC). However, caveolin-1 silencing markedly attenuated these effects. Because the integrity of the brain endothelium is regulated by intercellular tight junctions, these structural elements of the BBB were also evaluated in the present study. Exposure to Tat diminished the expression of several tight junction proteins, namely, occludin, zonula occludens (ZO)-1, and ZO-2 in the caveolar fraction of HBMEC. These effects were effectively protected by pharmacological inhibition of the Ras signaling and by silencing of caveolin-1. The present data indicate the importance of caveolae-associated signaling in the disruption of tight junctions upon Tat exposure. They also demonstrate that caveolin-1 may constitute an early and critical modulator that controls signaling pathways leading to the disruption of tight junction proteins. Thus, caveolin-1 may provide an effective target to protect against Tat-induced HBMEC dysfunction and the disruption of the BBB in HIV-1-infected patients. PMID:18667611
Nanoparticle-assisted photo-Fenton reaction for photo-decomposition of humic acid
NASA Astrophysics Data System (ADS)
Banik, Jhuma; Basumallick, Srijita
2017-11-01
We report here the synthesis of CuO-doped ZnO composite nanomaterials (NMs) by chemical route and demonstrated for the first time that these NMs are efficient catalysts for H2O2-assisted photo-decomposition (photo-Fenton type catalyst) of humic acid, a natural pollutant of surface water by solar irradiation. This has been explained by faster electron transfer to OH radical at the p-n hetero-junction of this composite catalyst. Application of this composite catalyst in decomposing humus substances of local pond water by solar energy has been demonstrated.
Anken, Ralf H
2006-12-01
Stato- or otoliths are calcified structures in the organ of balance and equilibrium of vertebrates, the inner ear, where they enhance its sensitivity to gravity. The compact otoliths of fish are composed of the calcium carbonate polymorph aragonite and a small fraction of organic molecules. The latter form a protein skeleton which determines the morphology of an otolith as well as its crystal lattice structure. This short review addresses findings according to which the brain obviously plays a prominent role in regulating the mineralisation of fish otoliths and depends on the gravity vector. Overall, otolith mineralisation has thus been identified to be a unique, neuronally guided biomineralisation process. The following is a hypothetical model for regulation of calcification by efferent vestibular neurons: (1) release of calcium at tight junctions in the macular epithelia, (2) macular carbonic anhydrase activity (which in turn is responsible for carbonate deposition), (3) chemical composition of matrix proteins. The rationale and evidence that support this model are discussed.
Flexible all-carbon photovoltaics with improved thermal stability
NASA Astrophysics Data System (ADS)
Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.
2015-04-01
The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C60s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C60s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that "lock up" the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C60s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C60s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current-voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C60:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests.
Carbon Nanotube Based Molecular Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash; Menon, Madhu
1998-01-01
Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.
Humidity dependence of molecular tunnel junctions with an AlOx/COOH- interface
NASA Astrophysics Data System (ADS)
Zhang, Xiaohang; McGill, Stephen; Xiong, Peng
2006-03-01
We have studied the electron transport in planar tunneling junctions with aluminum oxide and an organic self-assembled monolayer (SAM) as the tunnel barrier. The structure of the junctions is Al/AlOx/SAM/(Au, Pb) with a junction area of ˜ 0.4mm^2. The organic molecules investigated include mercaptohexadecanoic acid (MHA), hexadecanoic acid (HDA), and octadecyltrichlorosilane (OTS); all of which form ordered SAMs on top of aluminum oxide. The use of a superconducting electrode (Al) enables us to determine unambiguously that these are high-quality tunnel junctions. For junctions incorporating MHA, the transport behavior is found to be strongly humidity dependent. The resistance of these junctions drops more than 50% when placed in dry nitrogen and recovers when returned into the ambient. The same drop also occurs when the sample is placed into a vacuum, and backfilling the vacuum with either dry N2 or O2 has negligible effect on the resistance. For comparison, junctions with HDA show the same humidity dependence, while OTS samples do not. Since both MHA and HDA have carboxylic groups and OTS does not, the results suggest that water molecules at the AlOx/COOH- interface play the central role in the observed behavior. Inelastic tunneling spectroscopy (IETS) has also been performed to understand the role of water. This work was supported by a FSU Research Foundation PEG grant.
Tight junctions of the proximal tubule and their channel proteins.
Fromm, Michael; Piontek, Jörg; Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M
2017-08-01
The renal proximal tubule achieves the majority of renal water and solute reabsorption with the help of paracellular channels which lead through the tight junction. The proteins forming such channels in the proximal tubule are claudin-2, claudin-10a, and possibly claudin-17. Claudin-2 forms paracellular channels selective for small cations like Na + and K + . Independently of each other, claudin-10a and claudin-17 form anion-selective channels. The claudins form the paracellular "pore pathway" and are integrated, together with purely sealing claudins and other tight junction proteins, in the belt of tight junction strands surrounding the tubular epithelial cells. In most species, the proximal tubular tight junction consists of only 1-2 (pars convoluta) to 3-5 (pars recta) horizontal strands. Even so, they seal the tubule very effectively against leak passage of nutrients and larger molecules. Remarkably, claudin-2 channels are also permeable to water so that 20-25% of proximal water absorption may occur paracellularly. Although the exact structure of the claudin-2 channel is still unknown, it is clear that Na + and water share the same pore. Already solved claudin crystal structures reveal a characteristic β-sheet, comprising β-strands from both extracellular loops, which is anchored to a left-handed four-transmembrane helix bundle. This allowed homology modeling of channel-forming claudins present in the proximal tubule. The surface of cation- and anion-selective claudins differ in electrostatic potentials in the area of the proposed ion channel, resulting in the opposite charge selectivity of these claudins. Presently, while models of the molecular structure of the claudin-based oligomeric channels have been proposed, its full understanding has only started.
STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA
LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.
2009-01-01
Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660
Junction-based field emission structure for field emission display
Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.
2002-01-01
A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.
Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian
2017-01-01
Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments. PMID:29259875
Alberini, Giulio; Benfenati, Fabio
2017-01-01
Tight-junctions between epithelial cells of biological barriers are specialized molecular structures that regulate the flux of solutes across the barrier, parallel to cell walls. The tight-junction backbone is made of strands of transmembrane proteins from the claudin family, but the molecular mechanism of its function is still not completely understood. Recently, the crystal structure of a mammalian claudin-15 was reported, displaying for the first time the detailed features of transmembrane and extracellular domains. Successively, a structural model of claudin-15-based paracellular channels has been proposed, suggesting a putative assembly that illustrates how claudins associate in the same cell (via cis interactions) and across adjacent cells (via trans interactions). Although very promising, the model offers only a static conformation, with residues missing in the most important extracellular regions and potential steric clashes. Here we present detailed atomic models of paracellular single and double pore architectures, obtained from the putative assembly and refined via structural modeling and all-atom molecular dynamics simulations in double membrane bilayer and water environment. Our results show an overall stable configuration of the complex with a fluctuating pore size. Extracellular residue loops in trans interaction are able to form stable contacts and regulate the size of the pore, which displays a stationary radius of 2.5–3.0 Å at the narrowest region. The side-by-side interactions of the cis configuration are preserved via stable hydrogen bonds, already predicted by cysteine crosslinking experiments. Overall, this work introduces an improved version of the claudin-15-based paracellular channel model that strengthens its validity and that can be used in further computational studies to understand the structural features of tight-junctions regulation. PMID:28863193
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)
2002-01-01
Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
Manifestation of resonance-related chaos in coupled Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Structure and composition of pulmonary arteries, capillaries and veins
2013-01-01
The pulmonary vasculature is comprised of three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although in general this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered. This review is multifaceted, bringing together information regarding 1) classification of pulmonary vessels, 2) branching geometry in the pulmonary vascular tree, 3) a quantitative view of structure based on morphometry of the vascular wall, 4) the relationship of nerves, a variety of interstitial cells, matrix proteins, and striated myocytes to smooth muscle and endothelium in the vascular wall, 5) heterogeneity within cell populations and between vascular compartments, 6) homo- and heterotypic cell-cell junctional complexes, and 7) the relation of the pulmonary vasculature to that of airways. These issues for pulmonary vascular structure are compared, when data is available, across species from human to mouse and shrew. Data from studies utilizing vascular casting, light and electron microscopy, as well as models developed from those data, are discussed. Finally, the need for rigorous quantitative approaches to study of vascular structure in lung is highlighted. PMID:23606929
Detecting water in aviation honeycomb structures by using transient infrared thermographic NDT
NASA Astrophysics Data System (ADS)
Vavilov, Vladimir P.; Klimov, Alexey G.; Nesteruk, Dmitry; Shiryaev, Vladimir V.
2003-04-01
A lot of structural key elements of many modern civilian and military airplanes, such as flaps, keel, etc., are made of honeycomb structures. Honeycombs involve a combination of some materials including aluminum, Nomex, glass and graphite epoxy composites. During exploitation, atmosphere water could penetrate these structures due to possible imperfections in various junctions, and, thus, deteriorate airplane durability. In Russia, water in honeycombs is typically detected by using the X ray and ultrasonic technique. However, the X ray equipment is hardly accepted by commercial airlines because of the safety reason, and the point-by-point ultrasonic inspection is low-productive. Since 2002, we develop the IR thermographic method of detecting water by thermally stimulating aviation panels under test. Unlike the technique accepted by Airbus Industry, Inc., that uses 'a warm blanket', we use a powerful optical heater assembled with an IR camera into a single set. The first stage of research included modeling the detection process and optimizing the experimental procedure. As a result, we have demonstrated that, due to the high heat capacity of water, a temperature signal over moist areas evolves in time during a relatively long period that relaxes the requirements to the test protocol. Thus, even aluminum panels can be thermally stimulated during few seconds with a delay time being also in a few second range. A similar protocol can be applied to the inspection of composite honeycombs where the image quality resembles that obtained by X rays. The paper will describe all stages of the research starting from modeling and finishing with the preliminary experimental results obtained in situ on civilian airplanes.
Ganot, Philippe; Zoccola, Didier; Tambutté, Eric; Voolstra, Christian R; Aranda, Manuel; Allemand, Denis; Tambutté, Sylvie
2015-01-01
Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin
2016-03-01
The evolution of the atomic structure and the vibrational and electronic transport properties of gold atomic junctions incorporating molecular and atomic hydrogen upon elongation have been investigated with the nonequilibrium Green's function formalism combined with density functional theory. Our calculations show that for the case of gold junctions doped with a single H2 molecule the low-bias conductance drops rapidly with the electrodes' separation, while it remains almost constant if a single H atom replaces the molecule. In contrast, when one considers two H atoms adsorbed on a gold monatomic chain forming an Au-H-Au-H-Au double-bridge structure, the low-bias conductance increases first and then shows a plateau upon stretching the junction, in perfect agreement with experiments on gold nanocontacts in hydrogen environment. Furthermore, also the distribution of the calculated vibrational energies of the two H atoms is consistent with the experimental result in the low-conductance region, demonstrating clear evidence that hydrogen molecules can dissociate on stretched gold monatomic chains. These findings are helpful to improve our understanding of the structure-property relation of gold nanocontacts and also provide a new prospect for gold nanowires being used as chemical sensors and catalysts.
NASA Astrophysics Data System (ADS)
Mailian, Aram; Mailian, Manvel; Shmavonyan, Gagik
2014-03-01
An easy method of obtaining graphene and graphene-based electronic components and circuits by drawing lines or repeatedly rubbing any type of graphite rod along the same path directly on paper and other insulating substrates is suggested. The structure containing rubbed-off layers behaves like a semiconducting material. The surface of the structure demonstrates ordered and oriented character containing few layer graphene. The carrier mobility is anisotropic through the thickness of the structure with the highest value of ~ 104 cm2/V .sec at the surface. Raman spectra of the structures in the near IR at excitation wavelength of 976 nm (1.27 eV) are registered. The observed phenomenon is universal, does not depend on the material of the substrate and could find a widespread application. For example, the junction between two rubbed off layers with different mobilities exhibits a non-Ohmic behavior. I-V characteristic of the junction is symmetrically curved with respect to 0 V. The greater is the difference between the carrier mobility, the higher is the curvature. The dynamic accumulation of the carriers in both sides of the junction creates a barrier responsible for non-Ohmic behavior.
Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.
Tintignac, Lionel A; Brenner, Hans-Rudolf; Rüegg, Markus A
2015-07-01
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Tripathy, Srijeet; Bhattacharyya, Tarun Kanti
2016-09-01
Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.
Characterization of crocodile teeth: correlation of composition, microstructure, and hardness.
Enax, Joachim; Fabritius, Helge-Otto; Rack, Alexander; Prymak, Oleg; Raabe, Dierk; Epple, Matthias
2013-11-01
Structure and composition of teeth of the saltwater crocodile Crocodylus porosus were characterized by several high-resolution analytical techniques. X-ray diffraction in combination with elemental analysis and infrared spectroscopy showed that the mineral phase of the teeth is a carbonated calcium-deficient nanocrystalline hydroxyapatite in all three tooth-constituting tissues: Dentin, enamel, and cementum. The fluoride content in the three tissues is very low (<0.1 wt.%) and comparable to that in human teeth. The mineral content of dentin, enamel, and cementum as determined by thermogravimetry is 71.3, 80.5, and 66.8 wt.%, respectively. Synchrotron X-ray microtomography showed the internal structure and allowed to visualize the degree of mineralization in dentin, enamel, and cementum. Virtual sections through the tooth and scanning electron micrographs showed that the enamel layer is comparably thin (100-200 μm). The crystallites in the enamel are oriented perpendicularly to the tooth surface. At the dentin-enamel-junction, the packing density of crystallites decreases, and the crystallites do not display an ordered structure as in the enamel. The microhardness was 0.60±0.05 GPa for dentin, 3.15±0.15 GPa for enamel, 0.26±0.08 GPa for cementum close to the crown, and 0.31±0.04 GPa for cementum close to the root margin. This can be explained with the different degree of mineralization of the different tissue types and is comparable with human teeth. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Choudhary, Pankaj; Varshney, Dinesh
2018-05-01
Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x < 0.2) give rise to a low-frequency semicircle as evidenced from the complex impedance analysis. The low dielectric loss and high ac conductivity of Co2+ doped Mg-Zn spinel chromites are suitable for power transformer applications at high frequencies.
Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B
2017-05-01
We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.
Chemical control of electrical contact to sp² carbon atoms.
Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume
2014-04-16
Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.
Chemical control of electrical contact to sp2 carbon atoms
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume
2014-04-01
Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.
Epitaxial solar cells fabrication
NASA Technical Reports Server (NTRS)
Daiello, R. V.; Robinson, P. H.; Kressel, H.
1975-01-01
Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.
The physical analysis on electrical junction of junctionless FET
NASA Astrophysics Data System (ADS)
Chen, Lun-Chun; Yeh, Mu-Shih; Lin, Yu-Ru; Lin, Ko-Wei; Wu, Min-Hsin; Thirunavukkarasu, Vasanthan; Wu, Yung-Chun
2017-02-01
We propose the concept of the electrical junction in a junctionless (JL) field-effect-transistor (FET) to illustrate the transfer characteristics of the JL FET. In this work, nanowire (NW) junctionless poly-Si thin-film transistors are used to demonstrate this conception of the electrical junction. Though the dopant and the dosage of the source, of the drain, and of the channel are exactly the same in the JL FET, the transfer characteristics of the JL FET is similar to these of the conventional inversion-mode FET rather than these of a resistor, which is because of the electrical junction at the boundary of the gate and the drain in the JL FET. The electrical junction helps us to understand the JL FET, and also to explain the superior transfer characteristic of the JL FET with the gated raised S/D (Gout structure) which reveals low drain-induced-barrier-lowering (DIBL) and low breakdown voltage of ion impact ionization.
A graphene/single GaAs nanowire Schottky junction photovoltaic device.
Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin
2018-05-17
A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.
Yang, Li; Li, Shanshan; Liu, Jixiao; Cheng, Jingmeng
2018-02-01
To explore and utilize the advantages of droplet-based microfluidics, hydrodynamics, and mixing process within droplets traveling though the T junction channel and convergent-divergent sinusoidal microchannels are studied by numerical simulations and experiments, respectively. In the T junction channel, the mixing efficiency is significantly influenced by the twirling effect, which controls the initial distributions of the mixture during the droplet formation stage. Therefore, the internal recirculating flow can create a convection mechanism, thus improving mixing. The twirling effect is noticeably influenced by the velocity of the continuous phase; in the sinusoidal channel, the Dean vortices and droplet deformation are induced by centrifugal force and alternative velocity gradient, thus enhancing the mixing efficiency. The best mixing occurred when the droplet size is comparable with the channel width. Finally, we propose a unique optimized structure, which includes a T junction inlet joined to a sinusoidal channel. In this structure, the mixing of fluids in the droplets follows two routes: One is the twirling effect and symmetric recirculation flow in the straight channel. The other is the asymmetric recirculation and droplet deformation in the winding and variable cross-section. Among the three structures, the optimized structure has the best mixing efficiency at the shortest mixing time (0.25 ms). The combination of the twirling effect, variable cross-section effect, and Dean vortices greatly intensifies the chaotic flow. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oh, Hyun-Woo; Campusano, Jorge M; Hilgenberg, Lutz G W; Sun, Xicui; Smith, Martin A; O'Dowd, Diane K
2008-02-15
Dissociated cultures from many species have been important tools for exploring factors that regulate structure and function of central neuronal synapses. We have previously shown that cells harvested from brains of late stage Drosophila pupae can regenerate their processes in vitro. Electrophysiological recordings demonstrate the formation of functional synaptic connections as early as 3 days in vitro (DIV), but no information about synapse structure is available. Here, we report that antibodies against pre-synaptic proteins Synapsin and Bruchpilot result in punctate staining of regenerating neurites. Puncta density increases as neuritic plexuses develop over the first 4 DIV. Electron microscopy reveals that closely apposed neurites can form chemical synapses with both pre- and postsynaptic specializations characteristic of many inter-neuronal synapses in the adult brain. Chemical synapses in culture are restricted to neuritic processes and some neurite pairs form reciprocal synapses. GABAergic synapses have a significantly higher percentage of clear core versus granular vesicles than non-GABA synapses. Gap junction profiles, some adjacent to chemical synapses, suggest that neurons in culture can form purely electrical as well as mixed synapses, as they do in the brain. However, unlike adult brain, gap junctions in culture form between neuronal somata as well as neurites, suggesting soma ensheathing glia, largely absent in culture, regulate gap junction location in vivo. Thus pupal brain cultures, which support formation of interneuronal synapses with structural features similar to synapses in adult brain, are a useful model system for identifying intrinsic and extrinsic regulators of central synapse structure as well as function.
Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions.
Memaran, Shahriar; Pradhan, Nihar R; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel M; Smirnov, Dmitry; Fernández-Domínguez, Antonio I; García-Vidal, Francisco J; Balicas, Luis
2015-11-11
Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η ≤ 1% extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated PN-junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~70%. Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs.
High-efficiency p-n junction oxide photoelectrodes for photoelectrochemical water splitting.
Liu, Zhifeng; Yan, Lu
2016-11-16
Development of all oxide p-n junctions makes a significant advancement in photoelectrode catalysis functional materials. In this article, we report the preparation of TiO 2 nanorod (NR)/Cu 2 O photoanodes via a simple hydrothermal method followed by an electrochemical deposition process. This facile synthesis route can simultaneously achieve uniform TiO 2 NR/Cu 2 O composite nanostructures and obtain varied amounts of Cu 2 O by controlling the deposition time. The photocurrent density of TiO 2 NR/Cu 2 O heterojunction photoanodes enhanced the photocatalytic activity with a photocurrent density of 5.25 mA cm -2 at 1.23 V versus RHE compared to pristine TiO 2 NR photoanodes under the same conditions. It is demonstrated that the presence of Cu 2 O has played an important role in expanding the spectral response region and reducing the photogenerated charge recombination rate. More importantly, the results provide new insights into the performance of all oxide p-n junctions as photoanodes for PEC water splitting.
Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold
NASA Astrophysics Data System (ADS)
Yoon, Ina
Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of intermediates, and provided a new regioisomer that was not observed in the previous synthesis. Through this investigation, we discovered new high-affinity lead compounds towards a d(CAG)·(CTG) trinucleotide repeat junction. In addition, we turned our attention to sigma 32 mRNA, which contains a RNA three-way junction in E. coli. We demonstrated that triptycene-based small molecules can modulate the heat shock response in E. coli..
NASA Astrophysics Data System (ADS)
Chang, Feng-Ming; Wu, Zong-Zhe; Lin, Yen-Fu; Kao, Li-Chi; Wu, Cheng-Ta; JangJian, Shiu-Ko; Chen, Yuan-Nian; Lo, Kuang Yao
2018-03-01
The condition of the beam current in the implantation process is a key issue in the damage rate and structural evolution in the sequent annealing process, especially for ultra-shallow layers. In this work, we develop a compensative optical method combined with UV Raman, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near edge spectroscopy (XANES) to inspect the influence of the beam current in the implantation process. The optima condition of the beam current in the implantation process is determined by higher effective Si-B bond portion in UV Raman spectra and less the peak of B-B bond in XPS spectra which is caused by B cluster defects. Results of XANES indicate that the B oxide layer is formed on the surface of the ultra-shallow junction. The defects in the ultra-shallow junction after annealing are analyzed by novel optical analyses, which cannot be inspected by a traditional thermal wave and resistance measurement. This work exhibits the structural variation of the ultra-shallow junction via a variant beam current and provides a valuable metrology in examining the chemical states and the effective activation in the implantation technology.
Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3O(x) grain boundary weak-links
NASA Technical Reports Server (NTRS)
Wu, K. H.; Fu, C. M.; Jeng, W. J.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.
1995-01-01
The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa2Cu3O(x) bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealing processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e with x = 7.0 in YBa2Cu3O(x) stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g with x = 6.9 in YBa2Cu3O(x) stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.
Correlation of doping, structure, and carrier dynamics in a single GaN nanorod
NASA Astrophysics Data System (ADS)
Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Gwo, Shangjr; Gradečak, Silvija
2013-06-01
We report the nanoscale optical investigation of a single GaN p-n junction nanorod by cathodoluminescence (CL) in a scanning transmission electron microscope. CL emission characteristic of dopant-related transitions was correlated to doping and structural defect in the nanorod, and used to determine p-n junction position and minority carrier diffusion lengths of 650 nm and 165 nm for electrons and holes, respectively. Temperature-dependent CL study reveals an activation energy of 19 meV for non-radiative recombination in Mg-doped GaN nanorods. These results directly correlate doping, structure, carrier dynamics, and optical properties of GaN nanostructure, and provide insights for device design and fabrication.
How hormones influence composition and physiological function of the brain-blood barrier.
Hampl, R; Bičíková, M; Sosvorová, L
2015-01-01
Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.
Anomalous reversal of transverse thermoelectric voltage in CoδFe100-δ /YIG junction
NASA Astrophysics Data System (ADS)
Ramos, R.; Wongjom, P.; Iguchi, R.; Yagmur, A.; Qiu, Z.; Pinitsoontorn, S.; Uchida, K.; Saitoh, E.
2018-02-01
We have studied thermoelectric conversion in all-ferromagnetic CoδFe100-δ /YIG bilayer junctions as a function of the chemical composition δ . We performed measurements of the transverse thermoelectric voltage upon application of a magnetic field. The voltage measured in the longitudinal spin Seebeck effect configuration shows a sign reversal at δ = 40%, which cannot be explained by the conventional electronic transport, such as the anomalous Nernst and Hall effects in the CoδFe100-δ layer. Our results suggest a possible role of the sd-type exchange interaction between Co40Fe60 and YIG at the interface as a possible origin for the observed behavior.
Honeycomb-like PLGA- b-PEG Structure Creation with T-Junction Microdroplets.
Gultekinoglu, Merve; Jiang, Xinyue; Bayram, Cem; Ulubayram, Kezban; Edirisinghe, Mohan
2018-06-04
Amphiphilic block copolymers are widely used in science owing to their versatile properties. In this study, amphiphilic block copolymer poly(lactic- co-glycolic acid)- block-poly(ethylene glycol) (PLGA- b-PEG) was used to create microdroplets in a T-junction microfluidic device with a well-defined geometry. To compare interfacial characteristics of microdroplets, dichloromethane (DCM) and chloroform were used to prepare PLGA- b-PEG solution as an oil phase. In the T-junction device, water and oil phases were manipulated at variable flow rates from 50 to 300 μL/min by increments of 50 μL/min. Fabricated microdroplets were directly collected on a glass slide. After a drying period, porous two-dimensional and three-dimensional structures were obtained as honeycomb-like structure. Pore sizes were increased according to increased water/oil flow rate for both DCM and chloroform solutions. Also, it was shown that increasing polymer concentration decreased the pore size of honeycomb-like structures at a constant water/oil flow rate (50:50 μL/min). Additionally, PLGA- b-PEG nanoparticles were also obtained on the struts of honeycomb-like structures according to the water solubility, volatility, and viscosity properties of oil phases, by the aid of Marangoni flow. The resulting structures have a great potential to be used in biomedical applications, especially in drug delivery-related studies, with nanoparticle forming ability and cellular responses in different surface morphologies.
Bai, Donglin
2016-02-01
A gap junction (GJ) channel is formed by docking of two GJ hemichannels and each of these hemichannels is a hexamer of connexins. All connexin genes have been identified in human, mouse, and rat genomes and their homologous genes in many other vertebrates are available in public databases. The protein sequences of these connexins align well with high sequence identity in the same connexin across different species. Domains in closely related connexins and several residues in all known connexins are also well-conserved. These conserved residues form signatures (also known as sequence logos) in these domains and are likely to play important biological functions. In this review, the sequence logos of individual connexins, groups of connexins with common ancestors, and all connexins are analyzed to visualize natural evolutionary variations and the hot spots for human disease-linked mutations. Several gap junction domains are homologous, likely forming similar structures essential for their function. The availability of a high resolution Cx26 GJ structure and the subsequently-derived homology structure models for other connexin GJ channels elevated our understanding of sequence logos at the three-dimensional GJ structure level, thus facilitating the understanding of how disease-linked connexin mutants might impair GJ structure and function. This knowledge will enable the design of complementary variants to rescue disease-linked mutants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhanced numerical analysis of three-color HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-04-01
The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
Numerical analysis of three-colour HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-12-01
The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn
2016-01-21
The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less
Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori
2013-04-12
Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.
Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori
2013-01-01
Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640
Optimization design of LED heat dissipation structure based on strip fins
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Wan, Wenbin; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
To solve the heat dissipation problem of LED, a radiator structure based on strip fins is designed and the method to optimize the structure parameters of strip fins is proposed in this paper. The combination of RBF neural networks and particle swarm optimization (PSO) algorithm is used for modeling and optimization respectively. During the experiment, the 150 datasets of LED junction temperature when structure parameters of number of strip fins, length, width and height of the fins have different values are obtained by ANSYS software. Then RBF neural network is applied to build the non-linear regression model and the parameters optimization of structure based on particle swarm optimization algorithm is performed with this model. The experimental results show that the lowest LED junction temperature reaches 43.88 degrees when the number of hidden layer nodes in RBF neural network is 10, the two learning factors in particle swarm optimization algorithm are 0.5, 0.5 respectively, the inertia factor is 1 and the maximum number of iterations is 100, and now the number of fins is 64, the distribution structure is 8*8, and the length, width and height of fins are 4.3mm, 4.48mm and 55.3mm respectively. To compare the modeling and optimization results, LED junction temperature at the optimized structure parameters was simulated and the result is 43.592°C which approximately equals to the optimal result. Compared with the ordinary plate-fin-type radiator structure whose temperature is 56.38°C, the structure greatly enhances heat dissipation performance of the structure.
Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S
2012-12-13
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Lattice-free prediction of three-dimensional structure of programmed DNA assemblies
Pan, Keyao; Kim, Do-Nyun; Zhang, Fei; Adendorff, Matthew R.; Yan, Hao; Bathe, Mark
2014-01-01
DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. PMID:25470497
Freeman, Alasdair D J; Liu, Yijin; Déclais, Anne-Cécile; Gartner, Anton; Lilley, David M J
2014-12-12
Processing of Holliday junctions is essential in recombination. We have identified the gene for the junction-resolving enzyme GEN1 from the thermophilic fungus Chaetomium thermophilum and expressed the N-terminal 487-amino-acid section. The protein is a nuclease that is highly selective for four-way DNA junctions, cleaving 1nt 3' to the point of strand exchange on two strands symmetrically disposed about a diagonal axis. CtGEN1 binds to DNA junctions as a discrete homodimer with nanomolar affinity. Analysis of the kinetics of cruciform cleavage shows that cleavage of the second strand occurs an order of magnitude faster than the first cleavage so as to generate a productive resolution event. All these properties are closely similar to those described for bacterial, phage and mitochondrial junction-resolving enzymes. CtGEN1 is also similar in properties to the human enzyme but lacks the problems with aggregation that currently prevent detailed analysis of the latter protein. CtGEN1 is thus an excellent enzyme with which to engage in biophysical and structural analysis of eukaryotic GEN1. Copyright © 2014. Published by Elsevier Ltd.
Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A
2016-02-01
The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Electrical Characterization of Graphite/InP Schottky Diodes by I-V-T and C-V Methods
NASA Astrophysics Data System (ADS)
Tiagulskyi, Stanislav; Yatskiv, Roman; Grym, Jan
2018-02-01
A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I-V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current-voltage and capacitance-voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.
Studies of silicon PN junction solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1975-01-01
Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.
NASA Astrophysics Data System (ADS)
Chauhan, Manvendra Singh; Chauhan, R. K.
2018-04-01
This paper demonstrates a Junction-less Double Gate n-p-n Impact ionization MOS transistor (JLDG n-IMOS) on a very light doped p-type silicon body. Device structure proposed in the paper is based on charge plasma concept. There is no metallurgical junctions in the proposed device and does not need any impurity doping to create the drain and source regions. Due to doping-less nature, the fabrication process is simple for JLDG n-IMOS. The double gate engineering in proposed device leads to reduction in avalanche breakdown via impact ionization, generating large number of carriers in drain-body junction, resulting high ION current, small IOFF current and great improvement in ION/IOFF ratio. The simulation and examination of the proposed device have been performed on ATLAS device simulatorsoftware.
Traumatic Tear of the Latissimus Dorsi Myotendinous Junction
Friedman, Michael V.; Stensby, J. Derek; Hillen, Travis J.; Demertzis, Jennifer L.; Keener, Jay D.
2015-01-01
A case of a latissimus dorsi myotendinous junction strain in an avid CrossFit athlete is presented. The patient developed acute onset right axillary burning and swelling and subsequent palpable pop with weakness while performing a “muscle up.” Magnetic resonance imaging examination demonstrated a high-grade tear of the right latissimus dorsi myotendinous junction approximately 9 cm proximal to its intact humeral insertion. There were no other injuries to the adjacent shoulder girdle structures. Isolated strain of the latissimus dorsi myotendinous junction is a very rare injury with a scarcity of information available regarding its imaging appearance and preferred treatment. This patient was treated conservatively and was able to resume active CrossFit training within 3 months. At 6 months postinjury, he had only a mild residual functional deficit compared with his preinjury level. PMID:26502450
Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes
NASA Astrophysics Data System (ADS)
Chen, Changping; Wang, Han; Jiang, Zhenyu; Jin, Xiangliang; Luo, Jun
2014-12-01
Two silicon-based ultraviolet (UV) and blue-extended photodiodes are presented, which were fabricated for light detection in the ultraviolet/blue spectral range. Stripe-shaped and octagon-ring-shaped structures were designed to verify parameters of the UV-responsivity, UV-selectivity, breakdown voltage, and response time. The ultra-shallow lateral pn junction had been successfully realized in a standard 0.5-μm complementary metal oxide semiconductor (CMOS) process to enlarge the pn junction area, enhance the absorption of UV light, and improve the responsivity and quantum efficiency. The test results illustrated that the stripe-shaped structure has the lower breakdown voltage, higher UV-responsicity, and higher UV-selectivity. But the octagon-ring-shaped structure has the lower dark current. The response time of both structures was almost the same.
Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure
NASA Astrophysics Data System (ADS)
Nematpour, Abedin; Nikoufard, Mahmoud; Mehragha, Rouholla
2018-06-01
In this paper, a graphene/InP thin-film Schottky-junction solar cell with a periodic array of plasmonic back-reflector is proposed. In this structure, a single-layer graphene sheet is deposited on the surface of the InP to form a Schottky junction. Then, the layer stack of the proposed solar-cell is optimized to have a maximum optical absorption of 〈A W〉 = 0.985 (98.5%) and short-circuit current density of J sc = 33.01 mA cm‑2.
Superstructures and multijunction cells for high efficiency energy conversion
NASA Technical Reports Server (NTRS)
Wagner, M.; Leburton, J. P.
1985-01-01
Potential applications of superlattices to photovoltaic structures are discussed. A single-bandgap, multijunction cell with selective electrodes for lateral transport of collected carriers is proposed. The concept is based on similar doping superlattice (NIPI) structures. Computer simulations show that by reducing bulk recombination losses, the spectral response of such cells is enhanced, particularly for poor quality materials with short diffusion lengths. Dark current contributions of additional junctions result in a trade-off between short-circuit current and open-circuit voltage as the number of layers is increased. One or two extra junctions appear to be optimal.
NASA Astrophysics Data System (ADS)
Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Zhang, Shuai; Yamanaka, Shoji
2014-05-01
The layered superconductors β-MNCl with the critical temperatures Tc = 14 K (M = Zr) - 25 K (M = Hf) were investigated by means of scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy. The STM/STS was used to investigate the surface electronic structures in nanometer length scale, while the BJTS was employed to precisely determine the gap characteristics. Both techniques consistently clarified the unusually large size of the superconducting gap. Wide gap distributions with large-scale maximum gap values were also revealed in α-KyTiNCl with a different crystal structure.
A parallel input composite transimpedance amplifier.
Kim, D J; Kim, C
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
A parallel input composite transimpedance amplifier
NASA Astrophysics Data System (ADS)
Kim, D. J.; Kim, C.
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
AlInAsSb for GaSb-based multi-junction solar cells
NASA Astrophysics Data System (ADS)
Tournet, J.; Rouillard, Y.; Tournié, E.
2018-02-01
Bandgap engineering, by means of alloying or inserting nanostructures, is the bedrock of high efficiency photovoltaics. III-V quaternary alloys in particular enable bandgap tailoring of a multi-junction subcell while conserving a single lattice parameter. Among the possible candidates, AlInAsSb could in theory reach the widest range of bandgap energies while being lattice-matched to InP or GaSb. Although these material systems are still emerging photovoltaic segments, they do offer advantages for multi-junction design. GaSbbased structures in particular can make use of highly efficient GaSb/InAs tunnel junctions to connect the subcells. There has been only little information concerning GaSb-lattice matched AlInAsSb in the literature. The alloy's miscibility gap can be circumvented by the use of non-equilibrium techniques. Nevertheless, appropriate growth conditions remain to be found in order to produce a stable alloy. Furthermore, the abnormally low bandgap energies reported for the material need to be confirmed and interpreted with a multi-junction perspective. In this work, we propose a tandem structure made of an AlInAsSb top cell and a GaSb bottom cell. An epitaxy study of the AlInAsSb alloy lattice-matched to GaSb was first performed. The subcells were then grown and processed. The GaSb subcell yielded an efficiency of 5.9% under 1 sun and the tandem cell is under optimization. Preliminary results are presented in this document.
Nayak, Dhananjaya; Siller, Sylvester; Guo, Qing; Sousa, Rui
2008-02-15
The T7RNA polymerase (RNAP) elongation complex (EC) pauses and is destabilized at a unique 8 nucleotide (nt) sequence found at the junction of the head-to-tail concatemers of T7 genomic DNA generated during T7 DNA replication. The paused EC may recruit the T7 DNA processing machinery, which cleaves the concatemerized DNA within this 8 nt concatemer junction (CJ). Pausing of the EC at the CJ involves structural changes in both the RNAP and transcription bubble. However, these structural changes have not been fully defined, nor is it understood how the CJ sequence itself causes the EC to change its structure, to pause, and to become less stable. Here we use solution and RNAP-tethered chemical nucleases to probe the CJ transcript and changes in the EC structure as the polymerase pauses and terminates at the CJ. Together with extensive mutational scanning of regions of the polymerase that are likely to be involved in recognition of the CJ, we are able to develop a description of the events that occur as the EC transcribes through the CJ and subsequently pauses. In this process, a local change in the structure of the transcription bubble drives a large change in the architecture of the EC. This altered EC structure may then serve as the signal that recruits the processing machinery to the CJ.
Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.
2017-08-01
CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.
Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials
NASA Astrophysics Data System (ADS)
Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.
2017-09-01
Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.
Carbon Nanotubes: Molecular Electronic Components
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash; Menon, Madhu
1997-01-01
The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.
Seeing and believing: recent advances in imaging cell-cell interactions
Yap, Alpha S.; Michael, Magdalene; Parton, Robert G.
2015-01-01
Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions. PMID:26543555
Seeing and believing: recent advances in imaging cell-cell interactions.
Yap, Alpha S; Michael, Magdalene; Parton, Robert G
2015-01-01
Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions.
Murray, Christopher S.; Wilt, David M.
2000-01-01
An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.
Global-Local Finite Element Analysis of Bonded Single-Lap Joints
NASA Technical Reports Server (NTRS)
Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.
2004-01-01
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.
A gallium phosphide high-temperature bipolar junction transistor
NASA Technical Reports Server (NTRS)
Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.
1981-01-01
Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.
Results of the Air Force high efficiency cascaded multiple bandgap solar cell programs
NASA Technical Reports Server (NTRS)
Rahilly, W. P.
1980-01-01
The III-V semiconductor materials system that was selected for continued cascade cell development was the AlGaAs cell on GaAs cell structure. The tunnel junction used as transparent ohmic contact between the top cell and the bottom cell continued to be the central difficulty in achieving the program objective of 25 percent AMO efficiency at 25 C. During the tunnel junction and top cell developments it became apparent that the AlGaAs cell has potential for independent development as a single junction converter and is a logical extension of the present GaAs heteroface technology.
Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions
NASA Astrophysics Data System (ADS)
Müller, Clemens; Guan, Shengwei; Vogt, Nicolas; Cole, Jared H.; Stace, Thomas M.
2018-05-01
We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realizations, based on Josephson junctions (JJs) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides an effective symmetry breaking field, and no microwave or rf bias is required. We show that this design offers high isolation, robustness against fabrication imperfections and bias fluctuations, and a bandwidth in excess of 500 MHz for realistic device parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonergan, Mark
Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less
Electrical Properties of a p-n Heterojunction of Li-Doped NiO and Al-Doped ZnO for Thermoelectrics
NASA Astrophysics Data System (ADS)
Desissa, Temesgen D.; Schrade, Matthias; Norby, Truls
2018-06-01
The electrical properties of a p-n heterojunction of polycrystalline p-type Ni0.98Li0.02O and n-type Zn0.98Al0.02O have been investigated for potential applications in high-temperature oxide-based thermoelectric generators without metallic interconnects. Current-voltage characteristics of the junction were measured in a two-electrode setup in ambient air at 500-1000°C. The resistance and rectification of the junction decreased with increasing temperature. A non-ideal Shockley diode model was used to fit the measured current-voltage data in order to extract characteristic parameters of the junction, such as area-specific series resistance R s and parallel shunt resistance R p, non-ideality factor, and the saturation current density. R s and R p decreased exponentially with temperature, with activation energies of 0.4 ± 0.1 eV and 1.1 ± 0.2 eV, respectively. The interface resistance of the direct p-n junction studied here is as such too high for practical applications in thermoelectrics. However, it is demonstrated that it can be reduced by an order of magnitude by using a composite of the individual materials at the interface, yielding a large effective contact area.
Streets, Andrew J.; Wagner, Bart E.; Harris, Peter C.; Ward, Christopher J.; Ong, Albert C. M.
2009-01-01
Summary Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited human renal disease and is caused by mutations in two genes, PKD1 (85%) and PKD2 (15%). Cyst epithelial cells are characterised by a complex cellular phenotype including changes in proliferation, apoptosis, basement membrane composition and apicobasal polarity. Since polycystin 1 (PC1), the PKD1 protein, has been located in the basolateral membrane of kidney epithelial cells, we hypothesised that it might have a key role in mediating or stabilising cell-cell interactions. In non-ciliated L929 cells, stable or transient surface expression of the PC1 extracellular domain was sufficient to confer an adhesive phenotype and stimulate junction formation. In MDCK cells, we found that PC1 was recruited to the lateral membranes coincident with E-cadherin within 30 minutes after a `calcium switch'. Recruitment of both proteins was significantly delayed when cells were treated with a PC1 blocking antibody raised to the PKD domains. Finally, PC1 and E-cadherin could be coimmunoprecipitated together from MDCK cells. We conclude that PC1 has a key role in initiating junction formation via initial homophilic interactions and facilitates junction assembly and the establishment of apicobasal polarity by E-cadherin recruitment. PMID:19351715
Photovoltaic devices comprising zinc stannate buffer layer and method for making
Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.
2001-01-01
A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.
Single molecule junction conductance and binding geometry
NASA Astrophysics Data System (ADS)
Kamenetska, Maria
This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the case of pyridine-linked molecules, conductance can be reliably switched between two distinct conductance states using sub-nanometer mechanical manipulation. Using a methyl sulfide linker attached to an oligoene backbone, we are able to create a 3-nm-long molecular potentiometer, whose resistance can be tuned exponentially with Angstom-scale modulations in metal-molecule configuration. These experiments points to a new paradigm for attaining reproducible electrical characteristics of metal-organic devices which involves controlling linker-metal chemistry rather than fabricating identically structured metal-molecule interfaces. By choosing a linker group which is either insensitive to or responds reproducibly to changes in metal-molecule configuration, one can design single molecule devices with functionality more complex than a simple resistor. These ambient temperature experiments were combined with UHV conductance measurements performed in a commercial STM on amine-terminated benzene derivatives which conduct through a non-resonant tunneling mechanism, at temperatures varying from 5 to 300 Kelvin. Our results indicate that while amine-gold binding remains selective irrespective of environment, conductance is not temperature independent, in contrast to what is expected for a tunneling mechanism. Furthermore, using temperature-dependent measurements in ambient conditions we find that HOMO-conducting amines and LUMO-conducting pyridines show opposite dependence of conductance on temperature. These results indicate that energy-level alignment between the molecule and the electrodes changes as a result of varying electrode structure at different temperatures. We find that temperature can serve as a knob with which to tune transport properties of single molecule-metal junctions.
Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles
Lara, Giovanna Gomes; Andrade, Gracielle Ferreira; da Silva, Wellington Marcos
2018-01-01
Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium–iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones. PMID:29315235
NASA Astrophysics Data System (ADS)
Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi
2013-09-01
An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.
Spin Josephson effect in topological superconductor-ferromagnet junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn
2014-03-21
The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less
Breen, Kevin J.; Revesz, Kinga; Baldassare, Fred J.; McAuley, Steven D.
2007-01-01
In January 2001, State oil and gas inspectors noted bubbles of natural gas in well water during a complaint investigation near Tioga Junction, Tioga County, north-central Pa. By 2004, the gas occurrence in ground water and accumulation in homes was a safety concern; inspectors were taking action to plug abandoned gas wells and collect gas samples. The origins of the natural-gas problems in ground water were investigated by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, in wells throughout an area of about 50 mi2, using compositional and isotopic characteristics of methane and ethane in gas and water wells. This report presents the results for gas-well and water-well samples collected from October 2004 to September 2005. Ground water for rural-domestic supply and other uses near Tioga Junction is from two aquifer systems in and adjacent to the Tioga River valley. An unconsolidated aquifer of outwash sand and gravel of Quaternary age underlies the main river valley and extends into the valleys of tributaries. Fine-grained lacustrine sediments separate shallow and deep water-bearing zones of the outwash. Outwash-aquifer wells are seldom deeper than 100 ft. The river-valley sediments and uplands adjacent to the valley are underlain by a fractured-bedrock aquifer in siliciclastic rocks of Paleozoic age. Most bedrock-aquifer wells produce water from the Lock Haven Formation at depths of 250 ft or less. A review of previous geologic investigations was used to establish the structural framework and identify four plausible origins for natural gas. The Sabinsville Anticline, trending southwest to northeast, is the major structural feature in the Devonian bedrock. The anticline, a structural trap for a reservoir of deep native gas in the Oriskany Sandstone (Devonian) (origin 1) at depths of about 3,900 ft, was explored and tapped by numerous wells from 1930-60. The gas reservoir in the vicinity of Tioga Junction, depleted of native gas, was converted to the Tioga gas-storage field for injection and withdrawal of non-native gases (origin 2). Devonian shale gas (shallow native gas) also has been reported in the area (origin 3). Gas might also originate from microbial degradation of buried organic material in the outwash deposits (origin 4). An inventory of combustible-gas concentrations in headspaces of water samples from 91 wells showed 49 wells had water containing combustible gases at volume fractions of 0.1 percent or more. Well depth was a factor in the observed occurrence of combustible gas for the 62 bedrock wells inventoried. As well-depth range increased from less than 50 ft to 51-150 ft to greater than 151 ft, the percentage of bedrock-aquifer wells with combustible gas increased. Wells with high concentrations of combustible gas occurred in clusters; the largest cluster was near the eastern boundary of the gas-storage field. A subsequent detailed gas-sampling effort focused on 39 water wells with the highest concentrations of combustible gas (12 representing the outwash aquifer and 27 from the bedrock aquifer) and 8 selected gas wells. Three wells producing native gas from the Oriskany Sandstone and five wells (two observation wells and three injection/withdrawal wells) with non-native gas from the gas-storage field were sampled twice. Chemical composition, stable carbon and hydrogen isotopes of methane (13CCH4 and DCH4), and stable carbon isotopes of ethane (13CC2H6) were analyzed. No samples could be collected to document the composition of microbial gas originating in the outwash deposits (outwash or 'drift' gas) or of native natural gas originating solely in Devonian shale at depths shallower than the Oriskany Sandstone, although two of the storage-field observation wells sampled reportedly yielded some Devonian shale gas. Literature values for outwash or 'drift' gas and Devonian shale gases were used to supplement the data collection. Non-native gases fr
1992-01-01
To investigate the structural and genetic basis of the T cell response to defined peptide/major histocompatibility (MHC) class II complexes in humans, we established a large panel of T cell clones (61) from donors of different HLA-DR haplotypes and reactive with a tetanus toxin- derived peptide (tt830-844) recognized in association with most DR molecules (universal peptide). By using a bacterial enterotoxin-based proliferation assay and cDNA sequencing, we found preferential use of a particular V beta region gene segment, V beta 2.1, in three of the individuals studied (64%, n = 58), irrespective of whether the peptide was presented by the DR6wcI, DR4w4, or DRw11.1 and DRw11.2 alleles, demonstrating that shared MHC class II antigens are not required for shared V beta gene use by T cell receptors (TCRs) specific for this peptide. V alpha gene use was more heterogeneous, with at least seven different V alpha segments derived from five distinct families encoding alpha chains able to pair with V beta 2.1 chains to form a tt830-844/DR- specific binding site. Several cases were found of clones restricted to different DR alleles that expressed identical V beta and (or very closely related) V alpha gene segments and that differed only in their junctional sequences. Thus, changes in the putative complementary determining region 3 (CDR3) of the TCR may, in certain cases, alter MHC specificity and maintain peptide reactivity. Finally, in contrast to what has been observed in other defined peptide/MHC systems, a striking heterogeneity was found in the junctional regions of both alpha and beta chains, even for TCRs with identical V alpha and/or V beta gene segments and the same restriction. Among 14 anti-tt830-844 clones using the V beta 2.1 gene segment, 14 unique V beta-D-J beta junctions were found, with no evident conservation in length and/or amino acid composition. One interpretation for this apparent lack of coselection of specific junctional sequences in the context of a common V element, V beta 2.1, is that this V region plays a dominant role in the recognition of the tt830-844/DR complex. PMID:1371303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna
2012-02-08
The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and servesmore » as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.« less
Fast, clash-free RNA conformational morphing using molecular junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heliou, Amelie; Budday, Dominik; Fonseca, Rasmus
Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groupsmore » of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.« less
Lu, Jing; Tu, Xinglong; Yin, Guilin; Wang, Hui; He, Dannong
2017-11-09
In this work, a spot laser modulated resistance switching (RS) effect is firstly observed on n-type Mn-doped ZnO/SiO 2 /Si structure by growing n-type Mn-doped ZnO film on Si wafer covered with a 1.2 nm native SiO 2 , which has a resistivity in the range of 50-80 Ω∙cm. The I-V curve obtained in dark condition evidences the structure a rectifying junction, which is further confirmed by placing external bias. Compared to the resistance state modulated by electric field only in dark (without illumination), the switching voltage driving the resistance state of the structure from one state to the other, shows clear shift under a spot laser illumination. Remarkably, the switching voltage shift shows a dual dependence on the illumination position and power of the spot laser. We ascribe this dual dependence to the electric filed produced by the redistribution of photo-generated carriers, which enhance the internal barrier of the hetero-junction. A complete theoretical analysis based on junction current and diffusion equation is presented. The dependence of the switching voltage on spot laser illumination makes the n-type Mn-doped ZnO/SiO 2 /Si structure sensitive to light, which thus allows for the integration of an extra functionality in the ZnO-based photoelectric device.
Fast, clash-free RNA conformational morphing using molecular junctions
Heliou, Amelie; Budday, Dominik; Fonseca, Rasmus; ...
2017-03-13
Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groupsmore » of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.« less
Loss, Leandro A.; Bebis, George; Parvin, Bahram
2012-01-01
In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is applied to delineation of adherens junctions imaged through fluorescence microscopy. This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates. PMID:21421432
Structural evolution of the Ural-Tian Shan junction: A view from Karatau ridge, South Kazakhstan
NASA Astrophysics Data System (ADS)
Alexeiev, Dmitriy V.; Cook, Harry E.; Buvtyshkin, Vasiliy M.; Golub, Lyudmila Y.
2009-02-01
The deformation history of the Late Palaeozoic Ural-Tian Shan junction is discussed for the example of the Karatau ridge in southern Kazakhstan. Three deformation events are recognized. The Late Carboniferous D1 event is characterized by Laramide-style thrust-and-fold structures on the southern margin of Kazakhstan with shortening in a NE-SW direction. The Latest Permian and Triassic D2 event is controlled by compression in an east-west direction, which reflects collisional deformation in the Urals. The main structures are submeridional folds and north-west-striking sinistral strike-slip faults. The Triassic D3 event with shortening in a north-south direction reflects collision of the Turan microcontinent against the southern margin of Kazakhstan. The main structures are north-west-striking dextral strike-slip faults. Our new data provides important clues for the reconstruction of pre-Cretaceous structures between the Urals and the Tian Shan.
Color tunable monolithic InGaN/GaN LED having a multi-junction structure.
Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon
2016-03-21
In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.
NASA Astrophysics Data System (ADS)
Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.
2006-06-01
The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.
NASA Astrophysics Data System (ADS)
Huang, Wenchao; Xia, Hui; Wang, Shaowei; Deng, Honghai; Wei, Peng; Li, Lu; Liu, Fengqi; Li, Zhifeng; Li, Tianxin
2011-12-01
Scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) both are capable of mapping the 2-demensional carrier distribution in semiconductor device structures, which is essential in determining their electrical and optoelectronic performances. In this work, cross-sectional SCM1,2 is used to study the InGaAs/InP P-i-N junctions prepared by area-selective p-type diffusion. The diffusion lengths in the depth as well as the lateral directions are obtained for junctions under different window sizes in mask, which imply that narrow windows may result in shallow p-n junctions. The analysis is beneficial to design and fabricate focal plane array of near infrared photodetectors with high duty-cycle and quantum efficiency. On the other hand, SSRM provides unparalleled spatial resolution (<10 nm) in electrical characterization3 that is demanded for studying low-dimensional structures. However, to derive the carrier density from the measured local conductance in individual quantum structures, reliable model for SSRM is necessary but still not well established. Based on the carrier concentration related transport mechanisms, i.e. thermionic emission and thermionic field emission4,5, we developed a numerical model for the tip-sample Schottky contact4. The calculation is confronted with SSRM study on the dose-calibrated quantum wells (QWs).
Nanes, Benjamin A.; Kowalczyk, Andrew P.
2014-01-01
Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073
CHRONIC PERIPHERAL NERVE COMPRESSION DISRUPTS PARANODAL AXOGLIAL JUNCTIONS
Otani, Yoshinori; Yermakov, Leonid M.; Dupree, Jeffrey L.; Susuki, Keiichiro
2016-01-01
Introduction Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. Methods We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. Results Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed with frequent overlap with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. Discussion Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. PMID:27463510
Friedman, Michael V; Stensby, J Derek; Hillen, Travis J; Demertzis, Jennifer L; Keener, Jay D
2015-01-01
A case of a latissimus dorsi myotendinous junction strain in an avid CrossFit athlete is presented. The patient developed acute onset right axillary burning and swelling and subsequent palpable pop with weakness while performing a "muscle up." Magnetic resonance imaging examination demonstrated a high-grade tear of the right latissimus dorsi myotendinous junction approximately 9 cm proximal to its intact humeral insertion. There were no other injuries to the adjacent shoulder girdle structures. Isolated strain of the latissimus dorsi myotendinous junction is a very rare injury with a scarcity of information available regarding its imaging appearance and preferred treatment. This patient was treated conservatively and was able to resume active CrossFit training within 3 months. At 6 months postinjury, he had only a mild residual functional deficit compared with his preinjury level. © 2015 The Author(s).
Computational Approach to Explore the B/A Junction Free Energy in DNA.
Kulkarni, Mandar; Mukherjee, Arnab
2016-01-04
Protein-DNA interactions induce conformational changes in DNA such as B- to A-form transitions at a local level. Such transitions are associated with a junction free energy cost at the boundary of two different conformations in a DNA molecule. In this study, we performed umbrella sampling simulations to find the free energy values of the B-A transition at the dinucleotide and trinucleotide level of DNA. Using a combination of dinucleotide and trinucleotide free energy costs obtained from simulations, we calculated the B/A junction free energy. Our study shows that the B/A junction free energy is 0.52 kcal mol(-1) for the A-philic GG step and 1.59 kcal mol(-1) for the B-philic AA step. This observation is in agreement with experimentally derived values. After excluding junction effects, we obtained an absolute free energy cost for the B- to A-form conversion for all the dinucleotide steps. These absolute free energies may be used for predicting the propensity of structural transitions in DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics.
Wang, Zhenxing; Wang, Feng; Yin, Lei; Huang, Yun; Xu, Kai; Wang, Fengmei; Zhan, Xueying; He, Jun
2016-07-21
Because of their ultimate thickness, layered structure and high flexibility, pn junctions based on layered two-dimensional semiconductors have been attracting increasing attention recently. In this study, for the first time, we fabricated lateral pn junctions (LPNJs) based on ultrathin MoTe2 by introducing two separated electrostatic back gates, and investigated their electronic and photovoltaic performance. Pn, np, nn, and pp junctions can be easily realized by modulating the conductive channel type using gate voltages with different polarities. Strong rectification effects were observed in the pn and np junctions and the rectification ratio reached ∼5 × 10(4). Importantly, we find a unique phenomenon that the parameters for MoTe2 LPNJs experience abrupt changes during the transition from p to n or n to p. Furthermore, a high performance photovoltaic device with a filling factor of above 51% and electrical conversion efficiency (η) of around 0.5% is achieved. Our findings are of importance to comprehensively understand the electronic and optoelectronic properties of MoTe2 and may further open up novel electronic and optoelectronic device applications.
Vabbina, Phani Kiran; Sinha, Raju; Ahmadivand, Arash; Karabiyik, Mustafa; Gerislioglu, Burak; Awadallah, Osama; Pala, Nezih
2017-06-14
We report for the first time on the growth of a homogeneous radial p-n junction in the ZnO core-shell configuration with a p-doped ZnO nanoshell structure grown around a high-quality unintentionally n-doped ZnO nanorod using sonochemistry. The simultaneous decomposition of phosphorous (P), zinc (Zn), and oxygen (O) from their respective precursors during sonication allows for the successful incorporation of P atoms into the ZnO lattice. The as-formed p-n junction shows a rectifying current-voltage characteristic that is consistent with a p-n junction with a threshold voltage of 1.3 V and an ideality factor of 33. The concentration of doping was estimated to be N A = 6.7 × 10 17 cm -3 on the p side from the capacitance-voltage measurements. The fabricated radial p-n junction demonstrated a record optical responsivity of 9.64 A/W and a noise equivalent power of 0.573 pW/√Hz under ultraviolet illumination, which is the highest for ZnO p-n junction devices.