Studies on thermo-mechanical properties of chemically treated jute-polyester composite
NASA Astrophysics Data System (ADS)
Chaudhari, Vikas; Chandekar, Harichandra; Saboo, Jayesh; Mascarenhas, Adlete
2018-03-01
The effect of chemical treatments on jute-polyester composites is studied in this paper. The jute fabrics are chemically treated with NaOH and benzoyl chloride and its tensile and visco-elastic properties are compared with untreated jute composite. The NaOH treated jute-polyester composite show superior tensile strength and modulus compared to other jute-polyester composites. The glass transition temperature obtained from DMA shift to higher temperature for composites in comparison to polyester resin, this is due to restriction of mobility in chains due to introduction of jute reinforcement. The DMA results also show favourable results towards NaOH treatment i.e. higher storage modulus and lower tan δ values relative to untreated jute-polyester composite. The benzoyl treated jute-polyester composite however do not show promising results which may be attributed to the fact that the adhesion properties associated with similar ester functional groups in the benzoyl treated jute fabric and polyester resin were not obtained.
Zhang, Liwu; Yuan, Minhang; Tao, Aifen; Xu, Jiantang; Lin, Lihui; Fang, Pingping; Qi, Jianmin
2015-01-01
Population structure and relationship analysis is of great importance in the germplasm utilization and association mapping. Jute, comprised of white jute (C. capsularis L) and dark jute (C. olitorius L), is second to cotton in its commercial significance in the world. Here, we assessed the genetic structure and relationship in a panel of 159 jute accessions from 11 countries and regions using 63 SSRs. The structure analysis divided the 159 jute accessions from white and dark jute into Co and Cc group, further into Co1, Co2, Cc1 and Cc2 subgroups. Out of Cc1 subgroup, 81 accessions were from China and the remaining 10 accessions were from India (2), Japan (5), Thailand, Vietnam (2) and Pakistan (1). Out of Cc2 subgroup, 35 accessions were from China, and the remaining 3 accessions were from India, Pakistan and Thailand respectively. It can be inferred that the genetic background of these jute accessions was not always correlative with their geographical regions. Similar results were found in Co1 and Co2 subgroups. Analysis of molecular variance revealed 81% molecular variation between groups but it was low (19%) within subgroups, which further confirmed the genetic differentiation between the two groups. The genetic relationship analysis showed that the most diverse genotypes were Maliyeshengchangguo and Changguozhongyueyin in dark jute, BZ-2-2, Aidianyehuangma, Yangjuchiyuanguo, Zijinhuangma and Jute 179 in white jute, which could be used as the potential parents in breeding programs for jute improvement. These results would be very useful for association studies and breeding in jute. PMID:26035301
Zhang, Liwu; Yuan, Minhang; Tao, Aifen; Xu, Jiantang; Lin, Lihui; Fang, Pingping; Qi, Jianmin
2015-01-01
Population structure and relationship analysis is of great importance in the germplasm utilization and association mapping. Jute, comprised of white jute (C. capsularis L) and dark jute (C. olitorius L), is second to cotton in its commercial significance in the world. Here, we assessed the genetic structure and relationship in a panel of 159 jute accessions from 11 countries and regions using 63 SSRs. The structure analysis divided the 159 jute accessions from white and dark jute into Co and Cc group, further into Co1, Co2, Cc1 and Cc2 subgroups. Out of Cc1 subgroup, 81 accessions were from China and the remaining 10 accessions were from India (2), Japan (5), Thailand, Vietnam (2) and Pakistan (1). Out of Cc2 subgroup, 35 accessions were from China, and the remaining 3 accessions were from India, Pakistan and Thailand respectively. It can be inferred that the genetic background of these jute accessions was not always correlative with their geographical regions. Similar results were found in Co1 and Co2 subgroups. Analysis of molecular variance revealed 81% molecular variation between groups but it was low (19%) within subgroups, which further confirmed the genetic differentiation between the two groups. The genetic relationship analysis showed that the most diverse genotypes were Maliyeshengchangguo and Changguozhongyueyin in dark jute, BZ-2-2, Aidianyehuangma, Yangjuchiyuanguo, Zijinhuangma and Jute 179 in white jute, which could be used as the potential parents in breeding programs for jute improvement. These results would be very useful for association studies and breeding in jute.
NASA Astrophysics Data System (ADS)
Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar
2017-12-01
Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.
Niu, Xiaoping; Gao, Hong; Qi, Jianmin; Chen, Miancai; Tao, Aifen; Xu, Jiantang; Dai, Zhigang; Su, Jianguang
2016-04-28
Anthracnose, caused by the Colletotrichum species of fungi, is one of the most serious diseases affecting jute in China. The disease causes chlorotic regions with black brown sunken necrotic pits on the surfaces of stems. In late stages of disease, plants undergo defoliation, dieback and blight, which make anthracnose a major threat to jute fiber production and quality in China. In this study, 7 strains of Colletotrichum fungi were isolated from diseased jute stems from Zhejiang, Fujian, Guangxi, and Henan plantations in China. Multi-locus sequence (ACT, TUB2, CAL, GS, GAPDH and ITS) analysis coupled with morphological assessment revealed that C. fructicola, C. siamense and C. corchorum-capsularis sp. nov. were associated with jute anthracnose in southeastern China. C. fructicola and C. siamense were previously not associated with jute anthracnose. C. corchorum-capsularis is a new species formally described here. Pathogenicity tests confirmed that all species can infect jute, causing anthracnose, however the virulence of the 3 species differed. This report is the first associating these three species with jute disease worldwide and is the first description of the pathogens responsible for jute anthracnose in China.
NASA Astrophysics Data System (ADS)
Gupta, Shravan Kumar; Goswami, Kamal Kanti
2018-03-01
Jute is a natural fibre which is used to make different type of products due to low cost, easy availability and eco-friendliness. However, the stiffness and harshness of jute fibre affect the use of jute in many products like pile yarns in hand knotted carpets. In this research, a study has been done on the application of jute pile yarns in Persian hand knotted carpet. Three types of commercial yarns (wool, untreated jute and woollenized jute) as well as three types of chemical treated jute yarns (hydrogen peroxide bleached, softened bleached and woollenized yarns) have been applied as pile yarns in Persian hand knotted carpets. Cost-benefit analysis of hand knotted carpets shows that manufacturing cost of wool carpet is lower than others. The contribution of manpower charges is higher than material cost during carpet manufacturing. Hand knotted carpet shows the lowest pile abrasion loss and highest compression recovery when wool is used as pile. Wool hand knotted carpet shows higher compression than untreated and treated jute carpets.
NASA Astrophysics Data System (ADS)
Gupta, Shravan Kumar; Goswami, Kamal Kanti
2018-06-01
Jute is a natural fibre which is used to make different type of products due to low cost, easy availability and eco-friendliness. However, the stiffness and harshness of jute fibre affect the use of jute in many products like pile yarns in hand knotted carpets. In this research, a study has been done on the application of jute pile yarns in Persian hand knotted carpet. Three types of commercial yarns (wool, untreated jute and woollenized jute) as well as three types of chemical treated jute yarns (hydrogen peroxide bleached, softened bleached and woollenized yarns) have been applied as pile yarns in Persian hand knotted carpets. Cost-benefit analysis of hand knotted carpets shows that manufacturing cost of wool carpet is lower than others. The contribution of manpower charges is higher than material cost during carpet manufacturing. Hand knotted carpet shows the lowest pile abrasion loss and highest compression recovery when wool is used as pile. Wool hand knotted carpet shows higher compression than untreated and treated jute carpets.
A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste
Jo, Byung-Wan; Chakraborty, Sumit
2015-01-01
To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665
NASA Astrophysics Data System (ADS)
Dong, Aixue; Yu, Yuanyuan; Yuan, Jiugang; Wang, Qiang; Fan, Xuerong
2014-05-01
Jute fiber is a lignocellulosic material which could be utilized for reinforcement of composites. To improve the compatibility of hydrophilic jute fiber with hydrophobic resin, surface hydrophobization of the fiber is often needed. In this study, the feasibility of laccase-mediated grafting dodecyl gallate (DG) on the jute fiber was investigated. First, the grafting products were characterized by FT-IR, XPS, SEM and AFM. And then the grafting percentage (Gp) and the DG content of the modified jute were determined in terms of weighting and saponification, respectively. The parameters of the enzymatic grafting process were optimized to the target application. Lastly, the hydrophobicity of the jute fabrics was estimated by means of contact angle and wetting time. The mechanical properties and the fracture section of the jute fabric/polypropylene (PP) composites were studied. The results revealed covalently coupling of DG to the jute substrates mediated by laccase. The enzymatic process reached the maximum grafting rate of 4.16% when the jute fabric was incubated in the 80/20 (v/v, %) pH 3 0.2 M acetate buffer/ethanol medium with 1.0 U/mL laccase and 5 mM DG at 50 °C for 4 h. The jute fabric modified with laccase and DG showed increased contact angle of 111.49° and wetting time of at least 30 min, indicating that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification with hydrophobic DG. The breaking strength of the modified jute fiber/PP composite was also increased and the fracture section became neat and regular due to the laccase-assisted grafting with DG.
Improvement of Life Expectancy of Jute Based Needlepunched Geotextiles Through Bitumen Treatment
NASA Astrophysics Data System (ADS)
Ghosh, S. K.; Ray Gupta, K.; Bhattacharyya, R.; Sahu, R. B.; Mandol, S.
2014-12-01
Geotextiles have witnessed unrivalled growth worldwide in recent years in the field of different civil engineering constructions. The world of Geotextiles includes mainly non-biodegradable synthetic materials which are not environmentally compatible. With the increasing human awareness on environmental pollution aspects, biodegradable Jute Geotextile is increasingly gaining ground over its synthetic non-biodegradable counterpart. Though Jute is advantageous for its complete biodegradability in one hand but on the other hand it is disadvantageous for its poor microbial resistance and quicker biodegradation particularly under moist soil conditions, when applied as Geotextiles under soil. Therefore, it is a great challenge to the present researchers to make jute more microbial resistant (rot resistant) keeping its biodegradability intact during its performance period. Thorough investigation and study regarding the improvement of the durability of natural Jute Geotextile reveals the fact that though several attempts including chemical treatments have been made to enhance the life expectancy of jute fabrics yet these methods were neither found to be suitable nor techno-economically viable. Therefore, in order to accomplish the objective and based on the researchers' report of satisfactory thermal compatibility between hot bitumen and jute nonwoven fabrics, in the present study Bitumen emulsion with essential additives has been applied following a special technique, apart from the conventional method, on the Grey Jute Nonwoven Fabrics in different add on percentages to make a comparative assessment of the performance of both Grey Jute Fabrics and Bituminized Jute Nonwoven Fabrics by Soil Burial Test as per the BIS standard test method. The test results revealed that the durability and performance of the Bituminized Nonwoven Jute Fabrics are much better than that of Grey Jute Nonwoven Fabrics.
Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions
NASA Astrophysics Data System (ADS)
Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.
2017-06-01
Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.
Flexural creep behaviour of jute polypropylene composites
NASA Astrophysics Data System (ADS)
Chandekar, Harichandra; Chaudhari, Vikas
2016-09-01
Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.
Niu, Xiaoping; Gao, Hong; Qi, Jianmin; Chen, Miancai; Tao, Aifen; Xu, Jiantang; Dai, Zhigang; Su, Jianguang
2016-01-01
Anthracnose, caused by the Colletotrichum species of fungi, is one of the most serious diseases affecting jute in China. The disease causes chlorotic regions with black brown sunken necrotic pits on the surfaces of stems. In late stages of disease, plants undergo defoliation, dieback and blight, which make anthracnose a major threat to jute fiber production and quality in China. In this study, 7 strains of Colletotrichum fungi were isolated from diseased jute stems from Zhejiang, Fujian, Guangxi, and Henan plantations in China. Multi-locus sequence (ACT, TUB2, CAL, GS, GAPDH and ITS) analysis coupled with morphological assessment revealed that C. fructicola, C. siamense and C. corchorum-capsularis sp. nov. were associated with jute anthracnose in southeastern China. C. fructicola and C. siamense were previously not associated with jute anthracnose. C. corchorum-capsularis is a new species formally described here. Pathogenicity tests confirmed that all species can infect jute, causing anthracnose, however the virulence of the 3 species differed. This report is the first associating these three species with jute disease worldwide and is the first description of the pathogens responsible for jute anthracnose in China. PMID:27121760
Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites
NASA Astrophysics Data System (ADS)
Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.
2016-11-01
Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.
Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp.)
Zhang, Liwu; Li, Yanru; Tao, Aifen; Fang, Pingping; Qi, Jianmin
2015-01-01
Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively). The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute. PMID:26512891
Effect of jute yarn on the mechanical behavior of concrete composites.
Zakaria, Mohammad; Ahmed, Mashud; Hoque, Md Mozammel; Hannan, Abdul
2015-01-01
The objective of the study is to investigate the effect of introducing jute yarn on the mechanical properties of concrete. Jute fibre is produced abundantly in Bangladesh and hence, very cheap. The investigation on the enhancement of mechanical properties of concrete with jute yarn as reinforcement, if enhanced, will not only explore a way to improve the properties of concrete, it will also explore the use of jute and restrict the utilization of polymer which is environmentally detrimental. To accomplish the objective, an experimental investigation of the compressive, flexural and tensile strengths of Jute Yarn Reinforced Concrete composites (JYRCC) has been conducted. Cylinders, prisms and cubes of standard dimensions have been made to introducing jute yarn varying the mix ratio of the ingredients in concrete, water cement ratio, length and volume of yarn to know the effect of parameters as mentioned. Compressive, flexural and tensile strength tests had been conducted on the prepared samples by appropriate testing apparatus following Standards of tests. Mechanical properties of JYRCC were observed to be enhanced for a particular range of lengths of cut (10, 15, 20 and 25 mm) and volume content of jute yarn (0.1, 0.25, 0.5 and 0.75 %). The maximum increment of compressive, flexural and tensile strengths observed in the investigation are 33, 23 and 38 %, respectively with respect to concrete without jute yarn.
Choudhary, S B; Chowdhury, I; Singh, R K; Pandey, S P; Sharma, H K; Anil Kumar, A; Karmakar, P G; Kumari, N; Souframanien, J; Jambhulkar, S J
2017-11-01
Lignin is a versatile plant metabolite challenging high-end industrial applications of several plant products including jute. Application of developmental mutant in regulation of lignification in jute may open up door for much awaited jute based diversified products. In the present study, a novel dark jute (Corchorus olitorius L.) mutant with low lignin (7.23%) in phloem fibre being compared to wild-type JRO 204 (13.7%) was identified and characterised. Unique morphological features including undulated stem, petiole and leaf vein distinguished the mutant in gamma ray irradiated mutant population. Histological and biochemical analysis revealed reduced lignification of phloem fibre cells of the plant. RT-PCR analysis demonstrated temporal transcriptional regulation of CCoAMT1 gene in the mutant. The mutant was found an extremely useful model to study phloem fibre developmental biology in the crop besides acting as a donor genetic stock for low lignin containing jute fibre in dark jute improvement programme.
Identification and characterization of jute LTR retrotransposons:
Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit
2011-01-01
Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842
DNA fingerprinting of jute germplasm by RAPD.
Hossain, Mohammad Belayat; Haque, Samiul; Khan, Haseena
2002-07-31
The genotype characteristic of cultivars was investigated, along with varieties of both of the jute species, Corchorus olitorius and Corchorus capsularis, in the germplasm collection at the Bangladesh Jute Research Institute (BJRI). DNA fingerprinting was generated for 9 different varieties and 12 accessions of jute cultivars by using random amplified polymorphic DNA (RAPD). A total of 29 arbitrary oligonucleotide primers were screened. Seven primers gave polymorphism within the varieties, and 6 primers detected polymorphism within the accessions that were tested. A dendrogram was engendered from these data, and this gave a distinct clustering of the cultivated species of jute. Therefore, we generated RAPD markers, which are species-specific. These primers can distinguish between C. olitorius and C. capsularis. From the dendrogram that we generated between the various members of these two species, we found the existing genetic classification that agrees with our molecular marking data. A different dendrogram showed that jute accessions could be clustered into three groups. These data will be invaluable in the conservation and utilization of the genetic pool in the germplasm collection.
Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.
Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam
2011-06-01
Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium. Copyright © 2011 Elsevier Ltd. All rights reserved.
Biswas, C; Dey, P; Satpathy, S; Sarkar, S K; Bera, A; Mahapatra, B S
2013-02-01
A simple method was developed for isolating DNA from jute seed, which contains high amounts of mucilage and secondary metabolites, and a PCR protocol was standardized for detecting the seedborne pathogen Macrophomina phaseolina. The cetyl trimethyl ammonium bromide method was modified with increased salt concentration and a simple sodium acetate treatment to extract genomic as well as fungal DNA directly from infected jute seed. The Miniprep was evaluated along with five other methods of DNA isolation in terms of yield and quality of DNA and number of PCR positive samples. The Miniprep consistently recovered high amounts of DNA with good spectral qualities at A260/A280. The DNA isolated from jute seed was found suitable for PCR amplification. Macrophomina phaseolina could be detected by PCR from artificially inoculated as well as naturally infected jute seeds. The limit of PCR-based detection of M. phaseolina in jute seed was determined to be 0·62 × 10(-7) CFU g(-1) seed. © 2012 The Society for Applied Microbiology.
Defluoridation potential of jute fibers grafted with fatty acyl chain
NASA Astrophysics Data System (ADS)
Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam
2015-11-01
Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.
Mycoflora and aflatoxin production in pigeon pea stored in jute sacks and iron bins.
Bankole, S A; Eseigbe, D A; Enikuomehin, O A
The mycoflora, moisture content and aflatoxin contamination of pigeon pea (Cajanus cajan (L.) Millisp) stored in jute sacks and iron bins were determined at monthly intervals for a year. The predominant fungi on freshly harvested seeds were Alternaria spp., Botryodiplodia theobromae, Fusarium spp. and Phoma spp. These fungi gradually disappeared from stored seeds with time and by 5-6 months, most were not isolated. The fungi that succeeded the initially dominant ones were mainly members of the general Aspergillus, Penicillium and Rhizopus. Population of these fungi increased up to the end of one year storage. Higher incidence of mycoflora and Aspergillus flavus were recorded in jute-sack samples throughout the storage period. The moisture content of stored seeds was found to fluctuate with the prevailing weather conditions, being low during the dry season and slightly high during the wet season. The stored seeds were free of aflatoxins for 3 and 5 months in jute sacks and iron bins respectively. The level of aflatoxins detected in jute-sack storage system was considerably higher than that occurring in the iron bin system. Of 196 isolates of A. flavus screened, 48% were toxigenic in liquid culture (54% from jute sacks and 41% from iron bins).
NASA Astrophysics Data System (ADS)
Sahadat Hossain, Md.; Chowdhury, A. M. Sarwaruddin; Khan, Ruhul A.
2017-06-01
The jute fabrics reinforced unsaturated polyester resin (jute/UPR)-based composites were prepared successfully by the hand-lay-up technique. The percentage of jute fabrics was kept constant at 40% fiber (by weight). The disaccharide percentage was also kept constant at 2% (by weight), but at this percentage the mechanical properties were lower than the untreated composites. Gamma radiation dose was varied at 0, 2.5, 5 and 7.5 kGy for jute/UPR-based composites. At 5.0 kGy gamma dose highest TS, TM and Eb were obtained. The jute/UPR-based composites were treated under 30°C, 50°C and -18°C for the measurement of mechanical properties. At low temperature (-18°C), the highest mechanical properties were observed. The water uptake properties were measured for disaccharide-treated and disaccharide-untreated composites up to 10 days, but no water was absorbed by the composites. The soil degradation test was carried out under 12 inch soil containing at least 25% water, but no significant decrease was observed for untreated and sucrose-treated composites. For the functional group analysis, FT-IR was carried out. For the fiber matrix adhesion analysis, the scanning electron microscopic image was taken.
Mondal, N K; Bhaumik, R; Das, C R; Aditya, P; Datta, J K; Banerjee, A; Das, K
2013-09-01
The objective of the present study was to access the pollutant generated from bio-fuels like bamboo sticks, cow dung, paddy straw, carbon dust cake, gobar gas, jute stick, and mustard stick and synthetic fuel like LPG during cooking in rural villages of Burdwan, West Bengal, India and its fluctuation in living room. The average SO2 released from the fuels was found in the following order: bamboo stick > cow dung > paddy straw > carbon cake > gobar gas > jute stick > LPG > mustard stick; NO2 emission was in the following order : mustard stick > carbon dust cake > paddy straw > cow dung cake > LPG, jute stick > gobar gas > bamboo stick > and SPM was obtained in the following sequence: cow dung cake > bamboo stick > carbon dust cake > gobar gas > LPG > mustard stick > paddy straw > jute stick, respectively. The highest living room to kitchen room (L/K) ratio of SO2, NO, and SPM was found in LPG, gobar gas, jute stick respectively in 2009 and followed by bamboo stick > paddy straw > jute stick > cow dung cake, respectively in 2010. Results of this study suggest that different fuels released different amount of air pollutants, but more extensive study is needed to confirm the relationship between fuels and released air pollutants.
NASA Astrophysics Data System (ADS)
Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.
2018-04-01
In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.
Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas
2013-07-01
The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.
Bt Jute Expressing Fused δ-Endotoxin Cry1Ab/Ac for Resistance to Lepidopteran Pests
Majumder, Shuvobrata; Sarkar, Chirabrata; Saha, Prosanta; Gotyal, Bheemanna S.; Satpathy, Subrata; Datta, Karabi; Datta, Swapan K.
2018-01-01
Jute (Corchorus sp.) is naturally occurring, biodegradable, lignocellulosic-long, silky, golden shiny fiber producing plant that has great demands globally. Paper and textile industries are interested in jute because of the easy availability, non-toxicity and high yield of cellulosic biomass produced per acre in cultivation. Jute is the major and most industrially used bast fiber-producing crop in the world and it needs protection from insect pest infestation that decreases its yield and quality. Single locus integration of the synthetically fused cry1Ab/Ac gene of Bacillus thuringiensis (Bt) in Corchorus capsularis (JRC 321) by Agrobacterium tumefaciens-mediated shoot tip transformation provided 5 potent Bt jute lines BT1, BT2, BT4, BT7 and BT8. These lines consistently expressed the Cry1Ab/Ac endotoxin ranging from 0.16 to 0.35 ng/mg of leaf, in the following generations (analyzed upto T4). The effect of Cry1Ab/Ac endotoxin was studied against 3 major Lepidopteran pests of jute- semilooper (Anomis sabulifera Guenee), hairy caterpillar (Spilarctia obliqua Walker) and indigo caterpillar (Spodoptera exigua Hubner) by detached leaf and whole plant insect bioassay on greenhouse-grown transgenic plants. Results confirm that larvae feeding on transgenic plants had lower food consumption, body size, body weight and dry weight of excreta compared to non-transgenic controls. Insect mortality range among transgenic feeders was 66–100% for semilooper and hairy caterpillar and 87.50% for indigo caterpillar. Apart from insect resistance, the transgenic plants were at par with control plants in terms of agronomic parameters and fiber quality. Hence, these Bt jutes in the field would survive Lepidopteran pest infestation, minimize harmful pesticide usage and yield good quality fiber. PMID:29354143
NASA Astrophysics Data System (ADS)
Akram; Hasanuddin, Iskandar; Nazaruddin; Syahril Anwar, M.; Zulfan; Ahmad, Norhafizan
2018-05-01
The Acehnese traditional boat, known as Jalo Kayoh, is a mean of transportation used by Acehnese fishermen. The main constituent of the boat is wood. However, due to the decline of high-quality wood supply and as a preventative measure of illegal logging, fiberglass and jute fiber are used instead of wood. This study compares the strength of the two materials using finite element method. The Jalo Kayoh model plan stands at 4m in length, 0.6 m in width, and 0.4 m in height. A 2500 N static load is applied to the surface, using a C3D10 quadratic tetrahedron 0.02 mesh. The result of the simulation to the fiberglass is a maximum displacement of 7.123 x 10-5m, while the jute fiber has a maximum displacement of 2.255 x 10-4 m. The maximum stress stands at 1.612 x 106 Pa for the fiberglass and 1.523 x 106 Pa for the jute fiber. The maximum strain occurs at 1.654 x 10-5 for the fiberglass and 4.581 x 10-5 for the jute fiber. To conclude, fiber glass has more stress 1.05 % and less strain 2.76 % than jute fiber and both the materials can sustain the load given.
Islam, Md. Tariqul; Ferdous, Ahlan Sabah; Najnin, Rifat Ara; Sarker, Suprovath Kumar; Khan, Haseena
2015-01-01
MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops. PMID:25861616
Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.
Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang
2013-02-15
Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Traoré, Korotimi; Parkouda, Charles; Savadogo, Aly; Ba/Hama, Fatoumata; Kamga, Regine; Traoré, Yves
2017-11-01
The study assessed changes in nutritional content of some commonly consumed traditional vegetables subjected to postharvest processes. Amaranth ( Amaranthus cruentus L.), black nightshade ( Solanum scabrum Mill.) and jute mallow ( Corchorus olitorius L.) leaves used as vegetables were subjected to blanching, boiling and drying. The proximate composition and β-carotene content of fresh and processed leaves were determined. Amaranth, black nightshade and jute mallow leaves had 25.21%, 39.74% and 29.18% of protein, respectively. The β-carotene levels were 16.40, 25.25 and 27.74 mg/100 g for black nightshade amaranth and jute mallow leaves, respectively. The ash content was 10.57% for black nightshade, 12.40% for jute mallow and 16.33% for amaranth. Processing methods caused decreases of β-carotene and crude lipid content. Boiling for 30 min or more resulted in large loss of β-carotene. Drying under shade resulted in less loss of β-carotene than drying in cabinet at 50 and 60°C.
Development of Knitted Warm Garments from Speciality Jute Yarns
NASA Astrophysics Data System (ADS)
Roy, Alok Nath
2013-09-01
Jute-polyester blended core and textured polyester multifilament cover spun-wrapped yarn was produced using existing jute spinning machines. The spun-wrapped yarn so produced show a reduction in hairiness up to 86.1 %, improvement in specific work of rupture up to 9.8 % and specific flexural rigidity up to 23.6 % over ordinary jute-polyester blended yarn. The knitted swatch produced out of these spun-wrapped yarn using seven gauge and nine gauge needle in both single jersey and double jersey knitting machines showed very good dimensional stability even after three washing. The two-ply and three-ply yarn produced from single spun-wrapped yarn can be easily used in knitting machines and also in hand-knitting for the production of sweaters. The thermal insulation value of the sweaters produced with jute-polyester blended spun-wrapped yarn is comparable with thermal insulation value of sweaters made from 100 % acrylic and 100 % wool. However, the hand-knitted sweaters showed higher thermal insulation value than the machine-knitted sweaters due to less packing of yarn in hand knitted structure as compared to machine knitting.
Satya, Pratik; Paswan, Pramod Kumar; Ghosh, Swagata; Majumdar, Snehalata; Ali, Nasim
2016-06-01
Cross-species transferability is a quick and economic method to enrich SSR database, particularly for minor crops where little genomic information is available. However, transferability of SSR markers varies greatly between species, genera and families of plant species. We assessed confamiliar transferability of SSR markers from cotton (Gossypium hirsutum) and jute (Corchorus olitorius) to 22 species distributed in different taxonomic groups of Malvaceae. All the species selected were potential industrial crop species having little or no genomic resources or SSR database. Of the 14 cotton SSR loci tested, 13 (92.86 %) amplified in G. arboreum and 71.43 % exhibited cross-genera transferability. Nine out of 11 jute SSRs (81.81 %) showed cross-transferability across genera. SSRs from both the species exhibited high polymorphism and resolving power in other species. The correlation between transferability of cotton and jute SSRs were highly significant (r = 0.813). The difference in transferability among species was also significant for both the marker groups. High transferability was observed at genus, tribe and subfamily level. At tribe level, transferability of jute SSRs (41.04 %) was higher than that of cotton SSRs (33.74 %). The tribe Byttnerieae exhibited highest SSR transferability (48.7 %). The high level of cross-genera transferability (>50 %) in ten species of Malvaceae, where no SSR resource is available, calls for large scale transferability testing from the enriched SSR databases of cotton and jute.
Ogunkunle, Clement Oluseye; Ziyath, Abdul M; Adewumi, Faderera Esther; Fatoba, Paul Ojo
2015-05-01
Dietary uptake of heavy metals through the consumption of vegetables grown on polluted soil can have serious human health implications. Thus, the study presented in this paper investigated the bioaccumulation and associated dietary risks of Pb, Zn, and Cd present in vegetables widely consumed in Nigeria, namely amaranth and jute mallow, grown on soil irrigated with polluted water from Asa River. The study found that the soil was polluted with Zn, Pb, and Cd with Pb and Cd being contributed by polluted river, while Zn was from geogenic sources. The metal concentration in amaranth and jute mallow varied in the order of Zn > Pb > Cd and Zn > Pb ≈ Cd, respectively. Jute mallow acts as an excluder plant for Pb, Cd, and Zn. Consequently, the metal concentrations in jute mallow were below the toxic threshold levels. Furthermore, non-cancer human health risk of consuming jute mallow from the study site was not significant. In contrast, the concentrations of Pb and Cd in amaranth were found to be above the recommended safe levels and to be posing human health risks. Therefore, further investigation was undertaken to identify the pathways of heavy metals to amaranth. The study found that the primary uptake pathway of Pb and Cd by amaranth is foliar route, while root uptake is the predominant pathway of Zn in amaranth.
Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas
2013-01-01
Background and Aims The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. Methods A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100–500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Key Results Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S–5·8S–25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. Conclusions The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species. PMID:23666888
Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, AE
2018-04-01
Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.
The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, A. E.
2018-04-01
The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.
50 CFR 648.144 - Gear restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Untreated hemp, jute, or cotton string of 3/16 inches (4.8 mm) diameter or smaller; or (ii) Magnesium alloy... following degradable materials: (A) Untreated hemp, jute, or cotton string of 3/16 inches (4.8 mm) diameter...
View of an unknown industrial building in the Dolphin Jute ...
View of an unknown industrial building in the Dolphin Jute Mill Complex, looking southwest. Note Garret Mountain at upper left and historic Dexter-Lambert smokestack. - Dolphin Manufacturing Company, Spruce & Barbour Streets, Paterson, Passaic County, NJ
STORMWATER FILTRATION USING MULCH AND JUTE
This study evaluated the feasibility of using readily available, low-cost natural filter naterials for stormwater (SW) treatment. Generic (hardwood) mulch and processed jute fiber were evaluated for the removal of metallic and organic pollutants from urban SW runoff samples colle...
Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi
2017-04-01
The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.
Richardson, L. T.; Monro, H. A. U.
1962-01-01
In a series of full-scale tests, the effectiveness of various fumigant treatments for the eradication of potato ring rot bacteria from bulk lots of contaminated jute bags was evaluated. Survival of these bacteria on infested sample fibers located at various positions within and around a tightly wired bale was determined quantitatively from the growth lag in a liquid medium as indicated by the rate of turbidity development. Ethylene oxide, though highly toxic to Corynebacterium sepedonicum in laboratory tests, failed to penetrate the jute sufficiently to be effective in the interior of a bale. Methyl bromide showed better penetration, but was not sufficiently toxic at practical dosage levels. A mixture of 5% ethylene oxide and 10% methyl bromide achieved complete eradication throughout a bale in an 18-hr exposure period. On the basis of these results, eradication of ring rot bacteria from contaminated jute bags by fumigation with a combination of these two gases would appear to be feasible under commercial conditions. PMID:13982125
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-29
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-01
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883
[The application of RAPD technology in genetic diversity detection of Jute].
Qi, Jian-Min; Zhou, Dong-Xin; Wu, Wei-Ren; Lin, Li-Hui; Fang, Ping-Ping; Wu, Jian-Mei
2003-10-01
The fingerprints of 10 species including 27 accessions in genus Corchorus were investigated with the technique of RAPD. Twenty-five primers were screened from 119 random primers, and a total of 329 DNA fragments were amplified ranging from 0.3-3.0 kb, 253 (87.78%), which were polymorphic. The average number of DNA band produced by each primer was 13.16. UPGMA cluster analysis and Nei's similarity coefficients were carried out and a dendrogram was constructed using software Biol D++. The results showed as follows: (1) There were abundant genetic diversities among 15 wild species and 12 cultivated species in Corchorus with genetic similarity coefficients ranging from 0.49-0.98. (2) The accessions could be clustered into three groups at cultivated species, and their close wild species were obviously different from wild species genetically. (3) At the level of D = 0.850, 27 accessions of Jute could be classified into ten groups, including C. sestuans, C. tridens, C. fascicularis, C. psendo-olitorius, C. psendo-capsularis, C. tilacutaris, Tian Jute (untitled), C. capsularis, C. olitorius and C. uriticifolius. Among which C. capsularis presented closer relationship with C. olitorius and further relationship with C. uriticifolius. The results matched well with that of the morphologic classification. (4) According to the molecular cluster tree, C. uritifolius, Chinese Tina Jute (untitled) and C. aestuans were at the basic level, revealing that these three species could be the primary wild species of Jute. (5) The tree also showed that C. tilacularis 21C from Africa could be a ecological subspecies of C. tilacularis, whilst niannian cai, ma cai and zhu cai collected different ecological types of C. aestuans, C. capsularis from Hainan was a close wild species of round fruit Jute cultivated species, and three species of C. olitorius collected from zhangpu, Henan and Mali were close wild species of long fruit Jute cultivated species. (6) within two cultivated species, the genetic similarity coefficients in round fruit cultivated species was higher than that of in long fruit cultivated species.
Goswami, S.; Dasgupta, S.; Samanta, A.; Talukdar, G.; Chanda, A.; Ray Karmakar, P.; Bhattacharya, D.
2016-01-01
Introduction. WHO recognizes low back pain as one of the most important ergonomic stressors. Therefore, the present study was designed to find out the magnitude of the problem among jute mill workers in India and identify possible associations. Methodology. This cross-sectional workplace based study was conducted among eight (8) selected jute mills of India. Subjects with self-reported back pain for at least last 12 weeks were included and n = 717 male jute mill workers actively engaged in work entered the study and completed all assessments. Results. Among all participants 55% (n = 392) had current chronic low back pain. Age was an important association with subjects in the age group of 40–59 years more likely to have pain (p = 0.02, OR 1.44). Regarding ergonomic risk factors lifting of load of more than 20 kg (p = 0.04, OR 1.42) and repetitive movements of limbs (p = 0.03, OR 0.67) were significant associations of chronic low back pain. Conclusion. This study identified a significant prevalence of current chronic low back pain among jute mill workers. Regarding ergonomic risk factors the present study has identified two significant associations: lifting of load above 20 kg and repetitive movements of limbs. Therefore, this study has identified need for workplace interventions in this occupational group employing approximately 3,50,000 workers in India. PMID:27563463
Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki
2016-01-01
This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694
Women and work after the Second World War: a case study of the jute industry, circa 1945-1954.
Morelli, Carlo; Tomlinson, Jim
2008-01-01
This article examines the attempts by the Dundee jute industry to recruit women workers in the years circa 1945-1954. It locates its discussion of these attempts in the literature on the impact of the Second World War on the participation of women in the British labour market more generally, and the forces determining that participation. It stresses the peculiarities of jute as a traditional major employer of women operating in very specific market conditions, but suggests that this case study throws light on the broader argument about the impact of war and early post-war conditions on women's participation in paid work.
Gaillard Island Bio-degradable Geotube Test Project, Mobile Bay, Alabama
2016-12-01
and strong threads and is second to cotton as one of the most affordable natural fibers produced. Jute is woven into mats and used for many...burlap is made including cotton , hemp, bamboo, and other fibrous plants; however, all these materials lack the strength of jute and are not available in
ERIC Educational Resources Information Center
Geyer, Patricia
1997-01-01
Examines the process used to develop a lesson plan from an academic research article. Includes a lesson plan developed from an article in the Spring 1997 issue of "The Journal of World History" tracing the history of jute (a substitute for flax) manufacturing in colonial India. (MJP)
Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I
2013-10-15
Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shin, M; Nguyen, T; Ramsay, J
2002-10-01
The ability of Trametes versicolor ATCC 20869 to colonize several natural and synthetic materials (wheat straw, jute, hemp, maple woodchips, and nylon and polyethylene teraphthalate fibers) and to subsequently decolorize amaranth was evaluated. Jute was found to be the best support material as T. versicolor grew well on it without color leaching from the support and without loss of the jute's integrity over a 4 week period. The fungus immobilized on jute, straw and hemp decolorized amaranth (50 mg l(-1)) at a rate of about 5 mg l(-1) h(-1) without glucose being added. When 1 g l(-1) glucose was added, the dye was degraded more quickly (about 8 mg l(-1) h(-1)). Decoloration did not occur in a suspension culture without glucose. As the number of decoloration cycles increased, the rate of decoloration decreased. This rate was restored to its original level after the biomass was incubated in fresh growth medium for 5 days. With all immobilization supports, the toxicity of the medium before and after decoloration was the same or lower.
1992-12-01
Bangladesh is a country of 143,998 sq.km with 116 million inhabitants, of whom 47-22% for males and females, respectively, are literate. Independence was gained on 1971. The terrain consists of mainly flat, alluvial plain, with hills in the Southeast, with a climate which is semi-tropical with monsoons. Bangla and English are spoken by Bengali, nonBengali Muslims, and other ethnic groups who are of mainly Muslim and Hindu faiths. Life expectancy ranges over 52-54 years. GDP is $23 billion, growing at a rate of 3.6%. Per capita income is $198. The country's natural resources include natural gas and water. Rice, jute, tea, sugar, wheat, jute goods, garments, frozen shrimp, textiles, fertilizer, leather, metal reprocessing, pharmaceutical, and newspring are areas of economic production. Capital goods, foodgrains, petroleum, consumer goods, fertilizer, chemicals, vegetable oils, and textiles are imported, and ready-made garments, jute goods, leather, frozen fish, shrimp, raw jute, and tea are exported. In-depth information is also given on the people and history, government and principal officials, political conditions, the economy, defense, foreign relations with the U.S., and names of principal U.S. officials in the country.
Comparative study of lung functions in women working in different fibre industries.
Khanam, F; Islam, N; Hai, M A
2008-07-01
A cross sectional work has been done on Bangladeshi females, working in different fibre industries, to study the effect of exposure to fibre dust on pulmonary functions. The ventilatory capacities were measured by VMI ventilometer in 653 apparently healthy women (160, 162 and 167 were jute, textile and garment industry workers, respectively). For the controls 164 females were recruited who never worked in any fibre industry. The observed FVC, FEV1 and PEFR were lower in all groups of fibre industry workers than those of the control. Among the industry workers, the jute mill workers had the lowest ventilatory capacities and garment industry workers had the highest values. The jute and textile mill workers had also significantly lower FEV1 and PEFR than those of garment industry workers. The FEV1 and PEFR were significantly lower in jute mill workers than those of textile ill workers. The low ventilatory capacities were almost proportionate with the length of service of the workers. Thus, the present study indicates that the fibre dust, on regular exposure for longer duration, may limit the lung functions.
Comparative genomics of two jute species and insight into fibre biogenesis.
Islam, Md Shahidul; Saito, Jennifer A; Emdad, Emdadul Mannan; Ahmed, Borhan; Islam, Mohammad Moinul; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Rasel; Hossain, Md Sabbir; Kabir, Shah Md Tamim; Khan, Md Sarwar Alam; Khan, Md Mursalin; Hasan, Rajnee; Aktar, Nasima; Honi, Ummay; Islam, Rahin; Rashid, Md Mamunur; Wan, Xuehua; Hou, Shaobin; Haque, Taslima; Azam, Muhammad Shafiul; Moosa, Mahdi Muhammad; Elias, Sabrina M; Hasan, A M Mahedi; Mahmood, Niaz; Shafiuddin, Md; Shahid, Saima; Shommu, Nusrat Sharmeen; Jahan, Sharmin; Roy, Saroj; Chowdhury, Amlan; Akhand, Ashikul Islam; Nisho, Golam Morshad; Uddin, Khaled Salah; Rabeya, Taposhi; Hoque, S M Ekramul; Snigdha, Afsana Rahman; Mortoza, Sarowar; Matin, Syed Abdul; Islam, Md Kamrul; Lashkar, M Z H; Zaman, Mahboob; Yuryev, Anton; Uddin, Md Kamal; Rahman, Md Sharifur; Haque, Md Samiul; Alam, Md Monjurul; Khan, Haseena; Alam, Maqsudul
2017-01-30
Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production 1 . Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species 2 in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.
Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang
2017-01-01
High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022
Roger M. Rowell; Harry P. Stout
2007-01-01
Jute is the common name given to the fiber extracted from the stems of plants belonging to the genus Corchorus, family Tiliaceae. whereas kenaf is the name given to a similar fiber obtained from the stems of plants belonging to the genus Hibiscus, family Malvaceae, especially the species H. cannabinus L. Only two species of Corchorus, namely C. capsular L. and C....
Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix
USDA-ARS?s Scientific Manuscript database
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...
James D. Haywood; John A. Youngquist
1991-01-01
In this preliminary study, several mattings, combined with and without fertilizer application, were tested around newly planted loblolly, pine (Pinus taeda L.) seedlings. After 9 months in the field, jute- polyester and jute mats had similar survival rates relitive to controls, but hemlock-po1yvester mats had depressed survival when used in...
NASA Astrophysics Data System (ADS)
Samanta, Ashis Kumar; Bagchi, Arindam
2017-06-01
Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.
Biofuel from jute stick by pyrolysis technology
NASA Astrophysics Data System (ADS)
Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.
2017-06-01
In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.
Sharmin, Sazia; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Sajib, Abu Ashfaqur; Mahmood, Niaz; Hasan, A. M. Mahedi; Ahmed, Razib; Sultana, Kishwar; Khan, Haseena
2012-01-01
Two of the most widely and intensively cultivated jute species, Corchorus capsularis and Corchorus olitorius, suffer severely from a stem rot disease caused by the fungus Macrophomina phaseolina. Wild jute species, C. trilocularis, shows resistance to this pathogenic fungus. In this study, the technique of differential display was applied to identify genes which are differentially expressed, under both infected and un-infected conditions, between C. trilocularis and C. olitorius var O-72. Two xyloglucan endotransglycosylase/hydrolase (XTH) genes designated CoXTH1 (from Corchorus olitorius) and CtXTH1 (from C.trilocularis) were identified from each of the two species which show different expression patterns upon fungal infection. A steady rise in the expression of CtXTH1 in response to infection was observed by quantitative real time PCR whereas the expression of CoXTH1 was found to be downregulated. Full length sequences of these two genes were determined using primer based gene walking and RACE PCR. This study confirms the involvement of XTH in molecular interactions between M. phaseolina and jute. However, it remains to be explored whether XTH is an essential component of the signaling pathway involved in plant-fungal interaction. PMID:23336031
Sharmin, Sazia; Azam, Muhammad Shafiul; Islam, Md Shahidul; Sajib, Abu Ashfaqur; Mahmood, Niaz; Hasan, A M Mahedi; Ahmed, Razib; Sultana, Kishwar; Khan, Haseena
2012-11-01
Two of the most widely and intensively cultivated jute species, Corchorus capsularis and Corchorus olitorius, suffer severely from a stem rot disease caused by the fungus Macrophomina phaseolina. Wild jute species, C. trilocularis, shows resistance to this pathogenic fungus. In this study, the technique of differential display was applied to identify genes which are differentially expressed, under both infected and un-infected conditions, between C. trilocularis and C. olitorius var O-72. Two xyloglucan endotransglycosylase/hydrolase (XTH) genes designated CoXTH1 (from Corchorus olitorius) and CtXTH1 (from C.trilocularis) were identified from each of the two species which show different expression patterns upon fungal infection. A steady rise in the expression of CtXTH1 in response to infection was observed by quantitative real time PCR whereas the expression of CoXTH1 was found to be downregulated. Full length sequences of these two genes were determined using primer based gene walking and RACE PCR. This study confirms the involvement of XTH in molecular interactions between M. phaseolina and jute. However, it remains to be explored whether XTH is an essential component of the signaling pathway involved in plant-fungal interaction.
Laskar, S; Majumdar, S G; Basak, B; Dey, C D
1986-01-01
The effect of protein, isolated from Jute (Corchorus olitorius) seed was studied upon albino rats with respect to some of their serum, liver and intestinal enzymes and liver lipids. An increase in the body weight (including the weight of the liver) was noted in test animals after feeding with a Jute seed protein enriched diet. It was also observed that AST, ALT and total lipid of liver increased significantly whereas AST and ALT of serum were decreased. An increase in the concentration of lipids in the liver was found and this may be due to excess of the seed protein in the diet. An overall observation reveals that there is slight fatty infiltration in the liver of test animals.
Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing
2017-05-08
Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F 8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F 8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F 8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.
Das, Avizit; Ahmed, Oly; Baten, A. K. M. Abdul; Bushra, Samira; Islam, M. Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul
2017-01-01
ABSTRACT Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. PMID:28818909
NASA Astrophysics Data System (ADS)
Sharma, Ankush; Patnaik, Amar
2018-03-01
The present investigation evaluates the effects of waste marble dust, collected from the marble industries of Rajasthan, India, on the mechanical properties of needle-punched nonwoven jute fiber/epoxy composites. The composites with varying filler contents from 0 wt.% to 30 wt.% marble dust were prepared using vacuum-assisted resin-transfer molding. The influences of the filler material on the void content, tensile strength, flexural strength, interlaminar shear strength (ILSS), and thermal conductivity of the hybrid composites have been analyzed experimentally under the desired optimal conditions. The addition of marble dust up to 30 wt.% increases the flexural strength, ILSS, and thermal conductivity, but decreases the tensile strength. Subsequently, the fractured surfaces of the particulate-filled jute/epoxy composites were analyzed microstructurally by field-emission scanning electron microscopy.
Das, Avizit; Ahmed, Oly; Baten, A K M Abdul; Bushra, Samira; Islam, M Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena
2017-08-17
Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. Copyright © 2017 Das et al.
EFFECT OF RADIOACTIVE ISOTOPE ON THE FLOWERING BEHAVIOUR OF JUTE (CORCHORUS OLITORIUS LINN.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, A.; Choudhury, A.K.R.
1962-03-01
Following irradiation with S/sup 35/, the dispersion of the flowering time of jute was increased in the first generation. The genetic variability of the treated population in the second generation was found to be greater than that of control population by two and a half times. But owing to the largeness of environmental variation, poor heritability of the flowering time was noticed. (auth)
NASA Astrophysics Data System (ADS)
Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.
2017-12-01
Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.
Sett, Moumita; Sahu, Subhashis
2012-01-01
Work-related problems, many of which could be prevented with proper ergonomic techniques are particularly common in developing countries. The aim of this study was to evaluate the work stress and the development of the work-related musculoskeletal disorders (WRMSDs) of workers employed in the jute mills of India. About 219 male workers engaged in different departments of three jute industries in 24-Parganas (North) and Hooghly districts of West Bengal, India volunteered for this study. Questionnaires along with direct observation of work postures were conducted. Physical parameters such as body weight, height; physiological parameters like heart rate response, blood pressure and psycho-physiological parameters such as perceived exertion rating were studied during different tasks performed by them. It was observed that the 'hacklers' are mostly stressed. Analyses of working postures (OWAS) suggested that their adopted awkward postures were very stressful. A large number of hacklers (92.5% suffer from intense pain in different body parts as compared to workers in other departments of the jute industries. Workers report that the pain even lasts many hours after work. Since most of the workers perform repetitive tasks, so both the workplace as well as the work-rest schedule must be reorganized.
Natural fibres actuators for smart bio-inspired hygromorph biocomposites
NASA Astrophysics Data System (ADS)
Le Duigou, Antoine; Requile, Samuel; Beaugrand, Johnny; Scarpa, Fabrizio; Castro, Mickael
2017-12-01
Hygromorph biocomposite (HBC) actuators make use of the transport properties of plant fibres to generate an out-of-plane displacement when a moisture gradient is present. HBC actuators possess a design based on the bilayer configuration of natural hygromorph actuators (like pine cone, wheat awn, Selaginella lepidophyll). In this work we present a series of design guidelines for HBCs with improved performance, low environmental footprints and high durability in severe environments. We develop a theoretical actuating response (curvature) formulation of maleic anhydride polypropylene (MAPP)/plant fibres based on bimetallic actuators theory. The actuation response is evaluated as a function of the fibre type (flax, jute, kenaf and coir). We demonstrate that the actuation is directly related to the fibre microstructure and its biochemical composition. The jute and flax fibres appear to be the best candidates for use in HBCs. Flax/MAPP and jute/MAPP HBCs exhibit similar actuating behaviours during the sorption phase (amplitude and speed), but different desorption characteristics due to the combined effect of the lumen size, fibre division and biochemical composition on the desorption mechanism. During hygromechanical fatigue tests the jute/MAPP HBCs exhibit a drastic improvement in durability compared to their flax counterparts. We also provide a demonstration on how HBCs can be used to trigger deployment of more complex structures based on Origami and Kirigami designs.
Yang, Zemao; Dai, Zhigang; Lu, Ruike; Wu, Bibo; Tang, Qing; Xu, Ying; Cheng, Chaohua; Su, Jianguang
2017-11-29
Drought stress results in significant crop yield losses. Comparative transcriptome analysis between tolerant and sensitive species can provide insights into drought tolerance mechanisms in jute. We present a comprehensive study on drought tolerance in two jute species-a drought tolerant species (Corchorus olitorius L., GF) and a drought sensitive species (Corchorus capsularis L., YY). In total, 45,831 non-redundant unigenes with average sequence length of 1421 bp were identified. Higher numbers of differentially expressed genes (DEGs) were discovered in YY (794) than in GF (39), implying that YY was relatively more vulnerable or hyper-responsive to drought stress at the molecular level; the two main pathways, phenylpropanoid biosynthesis and peroxisome pathway, significantly involved in scavenging of reactive oxygen species (ROS) and 14 unigenes in the two pathways presented a significant differential expression in response to increase of superoxide. Our classification analysis showed that 1769 transcription factors can be grouped into 81 families and 948 protein kinases (PKs) into 122 families. In YY, we identified 34 TF DEGs from and 23 PK DEGs, including 19 receptor-like kinases (RLKs). Most of these RLKs were downregulated during drought stress, implying their role as negative regulators of the drought tolerance mechanism in jute.
SENGUPTA, GARGI; PALIT, P.
2004-01-01
• Background and Aims High lignin content of lignocellulose jute fibre does not favour its utilization in making finer fabrics and other value‐added products. To aid the development of low‐lignin jute fibre, this study aimed to identify a phloem fibre mutant with reduced lignin. • Methods An x‐ray‐induced mutant line (CMU) of jute (Corchorus capsularis) was morphologically evaluated and the accession (CMU 013) with the most undulated phenotype was compared with its normal parent (JRC 212) for its growth, secondary fibre development and lignification of the fibre cell wall. • Key Results The normal and mutant plants showed similar leaf photosynthetic rates. The mutant grew more slowly, had shorter internodes and yielded much less fibre after retting. The fibre of the mutant contained 50 % less lignin but comparatively more cellulose than that of the normal type. Differentiation of primary and secondary vascular tissues throughout the CMU 013 stem was regular but it did not have secondary phloem fibre bundles as in JRC 212. Instead, a few thin‐walled, less lignified fibre cells formed uni‐ or biseriate radial rows within the phloem wedges of the middle stem. The lower and earliest developed part of the mutant stem had no lignified fibre cells. This developmental deficiency in lignification of fibre cells was correlated to a similar deficiency in phenylalanine ammonia lyase activity, but not peroxidase activity, in the bark tissue along the stem axis. In spite of severe reduction in lignin synthesis in the phloem cells this mutant functioned normally and bred true. • Conclusions In view of the observations made, the mutant is designated as deficient lignified phloem fibre (dlpf). This mutant may be utilized to engineer low‐lignin jute fibre strains and may also serve as a model to study the positional information that coordinates secondary wall thickening of fibre cells. PMID:14707004
Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation
Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu
2016-01-01
We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites. PMID:26965201
Thomas, Martin George; Abraham, Eldho; Jyotishkumar, P; Maria, Hanna J; Pothen, Laly A; Thomas, Sabu
2015-11-01
Nanocellulose fibers having an average diameter of 50nm were isolated from raw jute fibers by steam explosion process. The isolation of nanocellulose from jute fibers by this extraction process is proved by SEM, XRD, FTIR, birefringence and TEM characterizations. This nanocellulose was used as the reinforcing agent in natural rubber (NR) latex along with crosslinking agents to prepare crosslinked nanocomposite films. The effects of nanocellulose loading on the morphology and mechanics of the nanocomposites have been carefully analyzed. Significant improvements in the Young's modulus and tensile strength of the nanocomposite were observed because of the reinforcing ability of the nanocellulose in the rubber matrix. A mechanism is suggested for the formation of the Zn-cellulose complex. The three-dimensional network of cellulose nanofibers (cellulose/cellulose network and Zn/cellulose network) in the NR matrix plays a major role in improving the properties of the crosslinked nanocomposites. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites
NASA Astrophysics Data System (ADS)
Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.
2018-04-01
In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.
Multi-layer structures with thermal and acoustic properties for building rehabilitation
NASA Astrophysics Data System (ADS)
Bessa, J.; Mota, C.; Cunha, F.; Merino, F.; Fangueiro, R.
2017-10-01
This work compares the use of different sustainable materials in the design of multilayer structures for the rehabilitation of buildings in terms of thermal and acoustic properties. These structures were obtained by compression moulding and thermal and acoustic tests were further carried out for the quantification of the respective insulation properties of composite materials obtained. The experimental results show that the use of polyurethane (PUR) foams and jute fabric reinforcing biocomposites promotes interesting properties of thermal and acoustic insulation. A multi-layer structure composed by PUR foam on the intermediate layer revealed thermal resistances until 0.272 m2 K W-1. On the other hand, the use of jute fabric reinforcing biocomposites on exterior layer promoted a noise reduction at 500 Hz until 8.3 dB. These results allow to conclude that the use of PUR foams and jute fabric reinforcing biocomposites can be used successfully in rehabilitation of buildings, when the thermal and acoustic insulation is looked for.
Woven Hybrid Composites - Tensile and Flexural Properties of Jute Mat Fibres with Epoxy Composites
NASA Astrophysics Data System (ADS)
Gopal, P.; Bupesh Raja, V. K.; Chandrasekaran, M.; Dhanasekaran, C.
2017-03-01
The jute mat fibers are fabricated with several layers of fiber with opposite orientation in addition with coconut shell powder and resins. In current trends, metallic components are replaced by natural fibers because of the inherent properties such as light in weight, easy to fabricate, less cost and easy availability. This material has high strength and withstands the load. In this investigation the plates are made without stitching the fiber. The result of tensile strength and flexural strength are compared with nano material (coconut shell powder).
Creep Behavior of Poly(lactic acid) Based Biocomposites
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-01-01
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755
Creep Behavior of Poly(lactic acid) Based Biocomposites.
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-04-08
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.
The draft genome of Corchorus olitorius cv. JRO-524 (Navin).
Sarkar, Debabrata; Mahato, Ajay Kumar; Satya, Pratik; Kundu, Avijit; Singh, Sangeeta; Jayaswal, Pawan Kumar; Singh, Akshay; Bahadur, Kaushlendra; Pattnaik, Sasmita; Singh, Nisha; Chakraborty, Avrajit; Mandal, Nur Alam; Das, Debajeet; Basu, Tista; Sevanthi, Amitha Mithra; Saha, Dipnarayan; Datta, Subhojit; Kar, Chandan Sourav; Mitra, Jiban; Datta, Karabi; Karmakar, Pran Gobinda; Sharma, Tilak Raj; Mohapatra, Trilochan; Singh, Nagendra Kumar
2017-06-01
Here, we present the draft genome (377.3 Mbp) of Corchorus olitorious cv. JRO-524 (Navin), which is a leading dark jute variety developed from a cross between African (cv. Sudan Green) and indigenous (cv. JRO-632) types. We predicted from the draft genome a total of 57,087 protein-coding genes with annotated functions. We identified a large number of 1765 disease resistance-like and defense response genes in the jute genome. The annotated genes showed the highest sequence similarities with that of Theobroma cacao followed by Gossypium raimondii . Seven chromosome-scale genetically anchored pseudomolecules were constructed with a total size of 8.53 Mbp and used for synteny analyses with the cocoa and cotton genomes. Like other plant species, gypsy and copia retrotransposons were the most abundant classes of repeat elements in jute. The raw data of our study are available in SRA database of NCBI with accession number SRX1506532. The genome sequence has been deposited at DDBJ/EMBL/GenBank under the accession LLWS00000000, and the version described in this paper will be the first version (LLWS01000000).
NASA Astrophysics Data System (ADS)
Wen, Zuoqiang; Zou, Linbo; Wang, Weiming
2018-03-01
Tetraacetylethylenediamine (TAED) activated hydrogen peroxide system had been applied for bleaching of crude cellulose extracted from jute fiber. Comparing with conventional hydrogen peroxide bleaching system, those results showed that bleaching temperature and time could be effectively reduced, and a preferable whiteness could be produced under faint alkaline condition. And the optimum conditions for activated bleaching system could be summarized as molar ratio of H2O2/TAED 1:0.7, pH 8, pure hydrogen peroxide 0.09 mol/L, temperature 70 °C and time 60min.
Application of Multi-Criteria Decision Making (MCDM) Technique for Gradation of Jute Fibres
NASA Astrophysics Data System (ADS)
Choudhuri, P. K.
2014-12-01
Multi-Criteria Decision Making is a branch of Operation Research (OR) having a comparatively short history of about 40 years. It is being popularly used in the field of engineering, banking, fixing policy matters etc. It can also be applied for taking decisions in daily life like selecting a car to purchase, selecting bride or groom and many others. Various MCDM methods namely Weighted Sum Model (WSM), Weighted Product Model (WPM), Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) and Elimination and Choice Translating Reality (ELECTRE) are there to solve many decision making problems, each having its own limitations. However it is very difficult to decide which MCDM method is the best. MCDM methods are prospective quantitative approaches for solving decision problems involving finite number of alternatives and criteria. Very few research works in textiles have been carried out with the help of this technique particularly where decision taking among several alternatives becomes the major problem based on some criteria which are conflicting in nature. Gradation of jute fibres on the basis of the criteria like strength, root content, defects, colour, density, fineness etc. is an important task to perform. The MCDM technique provides enough scope to be applied for the gradation of jute fibres or ranking among several varieties keeping in view a particular object and on the basis of some selection criteria and their relative weightage. The present paper is an attempt to explore the scope of applying the multiplicative AHP method of multi-criteria decision making technique to determine the quality values of selected jute fibres on the basis of some above stated important criteria and ranking them accordingly. A good agreement in ranking is observed between the existing Bureau of Indian Standards (BIS) grading and proposed method.
Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata
2015-04-01
The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.
Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat
NASA Astrophysics Data System (ADS)
Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa
2016-04-01
Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.
Modification of Monolignol Biosynthetic Pathway in Jute: Different Gene, Different Consequence
Shafrin, Farhana; Ferdous, Ahlan Sabah; Sarkar, Suprovath Kumar; Ahmed, Rajib; Amin, Al-; Hossain, Kawsar; Sarker, Mrinmoy; Rencoret, Jorge; Gutiérrez, Ana; del Rio, Jose C.; Sanan-Mishra, Neeti; Khan, Haseena
2017-01-01
Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16–25% reduction in acid insoluble lignin for the whole stem and ~13–14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition. PMID:28051165
Broissin-Vargas, L M; Snell-Castro, R; Godon, J J; González-Ríos, O; Suárez-Quiroz, M L
2018-02-01
The purpose of this study was to evaluate the effect of warehouse storage conditions on the composition of the fungal community of green coffee beans (GCB) that were stored in jute sacks for 1 year. Molecular characterization of the fungal community composition and population dynamics obtained by Q-PCR, CE-SSCP (Simpson's diversity index D) and Illumina MiSeq sequencing indicated that Saccharomycetales dominated during the first 6 months of storage period with species as Meyerozyma guilliermondii and Pichia kluyveri. However, after 6 months of storage, the filamentous genus Wallemia became dominant. Principal components analysis correlated this fungal dynamic with storage conditions and other variables as chromaticity (colour), water activity, moisture content, reducing sugars concentration, fungal infection and ochratoxin A production. This study demonstrated that GCB stored in jute sacks after 6 months of storage lead to fungal population dynamics, decreased chromaticity in GCB by bleaching and, then, affected overall quality. Storage plays an important role in the quality evolution during the handling of the GCB. In this context, the composition of the microbial community could be considered a marker to assess the trade value of the coffee beans. © 2017 The Society for Applied Microbiology.
Mandal, Aninda; Datta, Animesh K
2014-01-01
A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding.
Condon, Lea; Pyke, David A.
2016-01-01
Biological soil crusts contribute to ecosystem functions and occupy space that could be available to invasive annual grasses. Given disturbances in the semiarid shrub steppe communities, we embarked on a set of studies to investigate restoration potential of mosses in sagebrush steppe ecosystems. We examined establishment and growth of two moss species common to the Great Basin, USA: Bryum argenteum and Syntrichia ruralis from two environmental settings (warm dry vs. cool moist). Moss fragments were inoculated into a third warm dry setting, on bare soil in spring and fall, both with and without a jute net and with and without spring irrigation. Moss cover was monitored in spring seasons of three consecutive years. Both moss species increased in cover over the winter. When Bryum received spring irrigation that was out of sync with natural precipitation patterns, moss cover increased and then crashed, taking two seasons to recover. Syntrichia did not respond to the irrigation treatment. The addition of jute net increased moss cover under all conditions, except Syntrichia following fall inoculation, which required a second winter to increase in cover. The warm dry population of Bryum combined with jute achieved on average 60% cover compared to the cool moist population that achieved only 28% cover by the end of the study. Differences were less pronounced for Syntrichia where moss from the warm dry population with jute achieved on average 51% cover compared to the cool moist population that achieved 43% cover by the end of the study. Restoration of arid land mosses may quickly protect soils from erosion while occupying sites before invasive plants. We show that higher moss cover will be achieved quickly with the addition of organic matter and when moss fragments originate from sites with a climate that is similar to that of the restoration site.
NASA Astrophysics Data System (ADS)
Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath
2015-07-01
The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.
X-ray induced mutations in jute (Corchorus capsularis L. and Corchorus olitorius L.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, D.P.; Sharma, B.K.; Banerjee, S.C.
1973-09-30
Dry dormant seeds of three varieties of jute (C. capsularis & b. olitorius), which yield commercial fibers, were irradiated with different doses of x-rays ranging from 10 kR to 100 kR at 10 kR intervals. The percentage of germination, survival rates, the resulting morphological abnormalities in different generations, the total abnormalities, the total mutation frequency including chlorophyll mutations, and the complete, mutation spectrum are described in detail. Mutations were classified into different groups and each mutant was briefly described. Several directly useful mutations were observed with emphasis on the fiber yield. Interesting results were obtained after crossing mutants, where themore » first high yielding hybrid was evolved by the senior author. (auth)« less
Mandal, Aninda; Datta, Animesh K.
2014-01-01
A “thick stem” mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that “thick stem” mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding. PMID:24860822
Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K
2013-01-01
We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.22 Definitions. The following definitions apply in this subpart: Brattice cloth. A curtain of jute, plastic, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.22 Definitions. The following definitions apply in this subpart: Brattice cloth. A curtain of jute, plastic, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.22 Definitions. The following definitions apply in this subpart: Brattice cloth. A curtain of jute, plastic, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.22 Definitions. The following definitions apply in this subpart: Brattice cloth. A curtain of jute, plastic, or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshua, D.C.; Thakare, R.G.; Rao, N.S.
1972-11-01
The differential effects of fast and thermal neutrons and gamma rays on diploid ond autotetraploid of C. olitorius cv JRO 632 were studied. The frequency and spectrum of lethal chlorophyll mutations were studied in the diploid variety. (auth)
Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites
NASA Astrophysics Data System (ADS)
Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.
2016-10-01
Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.
Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S
2017-04-01
In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, H NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and H NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Da-Wen; Hu, Qi; Pan, Hongyu; Jiang, Jiping; Wang, Peng
2015-10-01
Pyromellitic dianhydride (PMDA) modified jute fiber (MJF) were prepared with microwave treatment to generate a biosorbent for aniline removal. The characterization of the biosorbent was investigated by SEM, BET and FT-IR analysis to discuss the adsorption mechanism. The studies of various factors influencing the adsorption behavior indicated that the optimum dosage for aniline adsorption was 3g/L, the maximum adsorption capacity was observed at pH 7.0 and the adsorption process is spontaneous and endothermic. The aniline adsorption follows the pseudo second order kinetic model and Langmuir isotherm model. Moreover, the biosorbent could be regenerated through the desorption of aniline by using 0.5M HCl solution, and the adsorption capacity after regeneration is even higher than that of virgin MJF. All these results prove MJF is a promising adsorbent for aniline removal in wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study of the structural and thermal properties of plasma treated jute fibre
NASA Astrophysics Data System (ADS)
Sinha, E.; Rout, S. K.; Barhai, P. K.
2008-08-01
Jute fibres ( Corchorus olitorius), were treated with argon cold plasma for 5, 10 and 15 min. Structural macromolecular parameters of untreated and plasma treated fibres were investigated using small angle X-ray scattering (SAXS), and the crystallinity parameters of the same fibres were determined by using X-ray diffraction (XRD). Differential scanning calorimetry (DSC) was used to study the thermal behavior of the untreated and treated fibres. Comparison and analysis of the results confirmed the changes in the macromolecular structure after plasma treatment. This is due to the swelling of cellulosic particles constituting the fibres, caused by the bombardment of high energetic ions onto the fibre surface. Differential scanning calorimetry data demonstrated the thermal instability of the fibre after cold plasma treatment, as the thermal degradation temperature of hemicelluloses and cellulose was found lowered than that of raw fibre after plasma treatment.
Roy, Aparna; Chakraborty, Sumit; Kundu, Sarada Prasad; Majumder, Subhasish Basu; Adhikari, Basudam
2013-02-15
The present work is an endeavor to prepare lignocellulosic biomass based adsorbent, suitable for removal of organic and inorganic pollutants from industrial effluents. Lignocellulosic Corchorus olitorius fibre (jute fibre) surface was grafted with naturally available polyphenol, tannin, preceded by the epoxy-activation of fibre surface with epichlorohydrin under mild condition in an aqueous suspension. The reaction parameters for the modification, viz., concentration of epichlorohydrin and tannin, time, and temperature were optimized. The successful occurrence of surface modification of jute fibre (JF) was characterized and estimated from weight gain percent, elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron and atomic force microscopy, and thermogravimetric analysis. An extensive analysis of deconvoluted FTIR spectra using the Voigt model was utilized to ensure the surface grafting. The microbiological susceptibility study revealed high persistency of JF towards biodegradation after efficient grafting with tannin. Copyright © 2012 Elsevier Ltd. All rights reserved.
A non-destructive selection criterion for fibre content in jute : II. Regression approach.
Arunachalam, V; Iyer, R D
1974-01-01
An experiment with ten populations of jute, comprising varieties and mutants of the two species Corchorus olitorius and C.capsularis was conducted at two different locations with the object of evolving an effective criterion for selecting superior single plants for fibre yield. At Delhi, variation existed only between varieties as a group and mutants as a group, while at Pusa variation also existed among the mutant populations of C. capsularis.A multiple regression approach was used to find the optimum combination of characters for prediction of fibre yield. A process of successive elimination of characters based on the coefficient of determination provided by individual regression equations was employed to arrive at the optimal set of characters for predicting fibre yield. It was found that plant height, basal and mid-diameters and basal and mid-dry fibre weights would provide such an optimal set.
Chromosome-specific physical localisation of expressed sequence tag loci in Corchorus olitorius L.
Joshi, A; Das, S K; Samanta, P; Paria, P; Sen, S K; Basu, A
2014-11-01
Jute (Corchorus spp.), as a natural fibre-producing species, ranks next only to cotton. Inadequate understanding of its genetic architecture is a major lacuna for genetic improvement of this crop in terms of yield and quality. Establishment of a physical map provides a genomic tool that helps in positional cloning of valuable genes. In this report, an attempt was initiated to study association and localisation of single copy expressed sequence tag (EST) loci in the genome of Corchorus olitorius. The chromosome-specific association of EST was determined based on the appearance of an extra signal for a single copy cDNA probe in mitotic interphase nuclei of specific trisomic(s) for fluorescence in situ hybridisation, and validated using a cDNA fragment of the 26S rRNA gene (600 bp) as molecular probe. The probe exhibited three signals in meiotic interphase nuclei of trisomic 5, instead of two as observed in diploids and other trisomics, indicating its association with chromosome 5. Subsequent hybridisation of the same probe on the pachytene chromosomes of diploids confirmed that 26S rRNA occupies the terminal end of the short arm of chromosome 5 in C. olitorius. Subsequently, chromosome-specific association of 63 single copy EST and their physical localisation were determined on chromosomes 2, 4, 5 and 7. The study describes chromosome-specific physical localisation of genes in jute. The approach used here could be a step towards construction of genome-wide physical maps for any recalcitrant plant species like jute. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
50 CFR 622.40 - Limitations on traps and pots.
Code of Federal Regulations, 2012 CFR
2012-10-01
... limited to tyre palm, hemp, jute, cotton, wool, or silk. (B) Ungalvanized or uncoated iron wire with a... plastic, used or possessed in the EEZ, must have a minimum mesh size of 2.0 inches (5.1 cm) in the...
Wool, Jute and Flax Industry Training Board
ERIC Educational Resources Information Center
Industrial Training International, 1974
1974-01-01
Early achievement in the textile industry training program focused on operative training, followed by emphasis on management development. Recruitment efforts have been increased. As Assessment of Training scheme provides standards, assistance, and recognition for individual companies in maintaining adequate training programs. (MW)
TREATMENT OF STORMWATER BY NATURAL ORGANIC MATERIALS
The overall objective of this study was to evaluate the feasibility of using low-cost natural filter materials for stormwater (SW) treatment. Generic mulch, pine bark mulch, and processed jute were evaluated for metal and organic pollutant removal from actual SW samples collected...
USE OF NATURAL FILTER MEDIA FOR STORMWATER TREATMENT
The overall objective of this study was to evaluate the feasibility of using low-cost natural filter materials for stormwater (SW) treatment. Generic mulch, pine bark mulch, and processed jute were evaluated for metal and organic pollutant removal from actual SW samples collected...
1990-11-15
painting thrice weekly for 15 weeks with a non-carcinogenic batch of Jute oil induced benign papillomas, keratoacanthoinas and fibrosarcomas . Agarw;l et...granulomas and pneumonias, following 91a13o5repeated nasal administration of food or medicinal grade mineral oils. *, ,3 3 Scattered case reports
Lv, Na; Wang, Xiaoli; Peng, Shitao; Zhang, Huaqin; Luo, Lei
2018-05-12
A new kind of hydrophobic and oil sorbent based on jute fiber was successfully prepared by the integration of silica onto a fiber surface via the sol-gel method and subsequent hydrophobic modification with octadecyltrichlorosilane (OTS). Compared with the hydrophilic raw fiber, the modified fiber had a water contact angle (CA) of 136.2°, suggesting that the material has good hydrophobicity. Furthermore, the ability of oil in the oil/water system (taking diesel for example) to absorb was revealed by the kinetics, the isotherm equation, and the thermodynamic parameters. Adsorption behavior was kinetically investigated using pseudo first-order and pseudo second-order models. The data mostly correlated with the pseudo first-order model. The equilibrium adsorption at 298 K was assessed by using the Langmuir and Freundlich isotherm models. The Freundlich model had greater consistency with the experimental data. The obtained thermodynamic parameters demonstrate that the adsorption of diesel is spontaneous, favorable, and exothermic.
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass.
Sharma, Priyanka R; Joshi, Ritika; Sharma, Sunil K; Hsiao, Benjamin S
2017-08-14
A simple approach was developed to prepare carboxycellulose nanofibers directly from untreated biomass using nitric acid or nitric acid-sodium nitrite mixtures. Experiments indicated that this approach greatly reduced the need for multichemicals, and offered significant benefits in lowering the consumption of water and electric energy, when compared with conventional multiple-step processes at bench scale (e.g., TEMPO oxidation). Additionally, the effluent produced by this approach could be efficaciously neutralized using base to produce nitrogen-rich salts as fertilizers. TEM measurements of resulting nanofibers from different biomasses, possessed dimensions in the range of 190-370 and 4-5 nm, having PDI = 0.29-0.38. These nanofibers exhibited lower crystallinity than untreated jute fibers as determined by TEM diffraction, WAXD and 13 C CPMAS NMR (e.g., WAXD crystallinity index was ∼35% for nanofibers vs 62% for jute). Nanofibers with low crystallinity were found to be effective for removal of heavy metal ions for drinking water purification.
Panda, Gopal C; Das, Sujoy K; Guha, Arun K
2009-05-15
Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.
Haidar, Badrul; Ferdous, Mahbuba; Fatema, Babry; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena
2018-03-01
Endophytes are bacterial or fungal organisms associated with plants in an obligate or facultative manner. In order to maintain a stable symbiosis, many of the endophytes produce compounds that promote plant growth and help them adapt better to the environment. This study was conducted to explore the potential of jute bacterial endophytes for their growth promotion ability in direct and indirect ways. A total of 27 different bacterial species were identified from different varieties of a jute plant (Corchorus olitorius) and different parts of the plant (leaf, root, seed, and seedling) based on 16S rRNA gene sequence. Two of the isolates showed ACC deaminase activity with Staphylococcus pasteuri strain MBL_B3 and Ralstonia solanacearum strain MBL_B6 producing 18.1 and 8.08 μM mg -1 h -1 α-ketobutyrate respectively while eighteen had the ACC deaminase gene (acdS). Fourteen were positive for siderophore activity while Kocuria sp. strain MBL_B19 (133.36 μg/ml) and Bacillus sp. strain MBL_B17 (124.72 μg/ml) showed high IAA production ability. Seven bacterial strains were able to fix nitrogen with only one testing positive for nifH gene. Five isolates exhibited phosphorus utilization ability with Bacillus sp. strain MBL_B17 producing 218.47 μg P/ml. Three bacteria were able to inhibit the growth of a phytopathogen, Macrophomina phaseolina and among them Bacillus subtilis strain MBL_B4 was found to be the most effective, having 82% and 53% of relative inhibition ratio (RIR) and percent growth inhibition (PGI) values respectively. Nine bacteria were tested for their in vivo growth promotion ability and most of these isolates increased seed germination potential and vigour index significantly. Bacillus subtilis strain MBL_B13 showed 26.8% more vigour index than the control in which no bacterial inoculum was used. All inoculants were found to increase the dry weight of jute seedlings in comparison to the control plants and the most increase in fresh weight was found for Staphylococcus saprophyticus strain MBL_B9. Staphylococcus pasteuri strain MBL_B3 exhibited diverse in vitro growth promotion activity and significant growth promoting effect in in vivo pot experiments. These bacterial strains with plant growth enhancing abilities have the potential to be used as bioinoculants. Copyright © 2018 Elsevier GmbH. All rights reserved.
Continuity and Change in India’s Foreign Policy: The Next Five Years,
1984-01-01
mainly of food products (tea, coffee, rice, cashews , pepper), tobacco, leather goods, cotton textiles, jute products, light engineering goods, and...industrial fasteners ( nuts and bolts), for example, have drawn strong Indian protests, and the protectionist mood in the United States, as reflected in
The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...
Geotextiles : a specific application of biofibers
B. W. English
1995-01-01
Geotextiles are any textile like material used to enhance soil structural performance. Biobased geotextiles are used for short term (6 months to 10 year) applications where biodegradability is a positive attribute, such as mulching and erosion control. Fiber options for biobased geotextiles include cereal straws, coir, jute, kenaf, flax, sisal, hemp, cotton, woodfiber...
Effectiveness of the ZeroFly® storage bag fabric against stored-product insects
USDA-ARS?s Scientific Manuscript database
The ZeroFly® Storage Bag is a polypropylene bag (PP) which has deltamethrin incorporated in its fibers, and represents a novel approach to reducing stored-product insect pest-related postharvest losses. Fabric samples from ZeroFly bags, polypropylene (PP) bags, jute bags, malathion-treated PP bags, ...
USDA-ARS?s Scientific Manuscript database
Kenaf, hemp, and jute have been used for cordage and fiber production since prehistory. To obtain the fibers, harvested plants are soaked in ponds where indigenous microflora digests pectins and other heteropolysaccharides, releasing fibers in a process called retting. Renewed interest in “green” ...
Khan, Salah Uddin; Gurley, Emily S.; Hossain, M. Jahangir; Nahar, Nazmun; Sharker, M. A. Yushuf; Luby, Stephen P.
2012-01-01
Background Drinking raw date palm sap is a risk factor for human Nipah virus (NiV) infection. Fruit bats, the natural reservoir of NiV, commonly contaminate raw sap with saliva by licking date palm’s sap producing surface. We evaluated four types of physical barriers that may prevent bats from contacting sap. Methods During 2009, we used a crossover design and randomly selected 20 date palm sap producing trees and observed each tree for 2 nights: one night with a bamboo skirt intervention applied and one night without the intervention. During 2010, we selected 120 trees and randomly assigned four types of interventions to 15 trees each: bamboo, dhoincha (local plant), jute stick and polythene skirts covering the shaved part, sap stream, tap and collection pot. We enrolled the remaining 60 trees as controls. We used motion sensor activated infrared cameras to examine bat contact with sap. Results During 2009 bats contacted date palm sap in 85% of observation nights when no intervention was used compared with 35% of nights when the intervention was used [p<0.001]. Bats were able to contact the sap when the skirt did not entirely cover the sap producing surface. Therefore, in 2010 we requested the sap harvesters to use larger skirts. During 2010 bats contacted date palm sap [2% vs. 83%, p<0.001] less frequently in trees protected with skirts compared to control trees. No bats contacted sap in trees with bamboo (p<0.001 compared to control), dhoincha skirt (p<0.001) or polythene covering (p<0.001), but bats did contact sap during one night (7%) with the jute stick skirt (p<0.001). Conclusion Bamboo, dhoincha, jute stick and polythene skirts covering the sap producing areas of a tree effectively prevented bat-sap contact. Community interventions should promote applying these skirts to prevent occasional Nipah spillovers to human. PMID:22905160
USDA-ARS?s Scientific Manuscript database
Harnessing natural fibers to produce polymer composites requires processing of fibers from harvest to the dried state, which can then be dispersed in the polymer resin. Bast fibers are found in the bark layer of fibrous plants such as kenaf (Hibiscus cannabinus), jute (Corchorus olitorius), and flax...
Melt rheological properties of natural fiber-reinforced polypropylene
Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield
2000-01-01
The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 sâ1...
NASA Astrophysics Data System (ADS)
Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra
2017-11-01
The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.
De novo transcriptome sequencing of two cultivated jute species under salinity stress.
Yang, Zemao; Yan, An; Lu, Ruike; Dai, Zhigang; Tang, Qing; Cheng, Chaohua; Xu, Ying; Su, Jianguang
2017-01-01
Soil salinity, a major environmental stress, reduces agricultural productivity by restricting plant development and growth. Jute (Corchorus spp.), a commercially important bast fiber crop, includes two commercially cultivated species, Corchorus capsularis and Corchorus olitorius. We conducted high-throughput transcriptome sequencing of 24 C. capsularis and C. olitorius samples under salt stress and found 127 common differentially expressed genes (DEGs); additionally, 4489 and 492 common DEGs were identified in the root and leaf tissues, respectively, of both Corchorus species. Further, 32, 196, and 11 common differentially expressed transcription factors (DTFs) were detected in the leaf, root, or both tissues, respectively. Several Gene Ontology (GO) terms were enriched in NY and YY. A Kyoto Encyclopedia of Genes and Genomes analysis revealed numerous DEGs in both species. Abscisic acid and cytokinin signal pathways enriched respectively about 20 DEGs in leaves and roots of both NY and YY. The Ca2+, mitogen-activated protein kinase signaling and oxidative phosphorylation pathways were also found to be related to the plant response to salt stress, as evidenced by the DEGs in the roots of both species. These results provide insight into salt stress response mechanisms in plants as well as a basis for future breeding of salt-tolerant cultivars.
Njoumi, Sondos; Bellagha, Sihem; Icard-Vernière, Christèle; Picq, Christian; Amiot, Marie Josèphe; Mouquet-Rivier, Claire
2018-03-01
Traditional Mediterranean plant-based dishes could allow tackling malnutrition while preserving the cultural heritage. To determine the effect of the cooking method on mineral bioavailability, the content in minerals and chelators of Mloukhiya, a Mediterranean dish based on jute leaves (Corchorus olitorius) that contains also meat, was monitored during the whole cooking process. Mineral bioaccessibility was assessed by measuring in vitro dialyzability. Model equation was also used to estimate mineral bioavailability. Comparison of Mloukhiya samples collected at different cooking time points showed that the dish total mineral content did not change despite the exchanges between sauce and meat during cooking. However, iron bioavailability decreased, because 58% of heme iron was degraded after 5h of cooking and non-heme iron showed poor bioaccessibility (1.2%), mainly due to its high content of phenolic compounds. The bioaccessibility of other minerals (zinc, calcium, magnesium and potassium) was high, indicating that the food matrix had no or little effect. The mineral bioavailability values predicted by using mathematical models were of the same order of magnitude as the bioaccessibility values. Copyright © 2017 Elsevier Ltd. All rights reserved.
1985-06-13
industry problems and the increasing use of High Fructose Corn Syrup (HFCS), had convinced Caricom states of the necessity of carefully monitoring the...arrangements included a selection of high priority commodities pro’duction!3Ś "^ *" Caribbean* as wel1 as Protective measures^forTegional The ministers...such as paper, printing machinery, peaches preserved in syrup , and other items. The way was cleared for trade in jute cloth and concentrated grape
NASA Astrophysics Data System (ADS)
Reddy, K. S.; Singla, Hitesh
2017-07-01
In the present work, structural analysis of 5.77m × 4m woven jute (J)/glass (G) fibre-reinforced polyester hybrid composite solar parabolic trough is carried out based on trough parameters to obtain the minimum RMS local slope deviation, termed as SDx value under gravity loading. The optimization is done by varying parameters viz. direction and size of reinforced conduits, stacking number and sequence of hybrid trough laminate at fibre orientation of Δθ=45° and Δθ=60° amongst the layers at 0° collector angle. The analysis revealed that the configuration in which the conduits are placed in both X and Y directions is preferred over other configurations to scale down the effect of wind loads. Furthermore it has been observed that laminate of the order [0°G/45°G/-45°J/90°J]s undergoes minimum surface deformation amongst all the other configurations at conduit reinforcement in both X and Y directions for a conduit thickness of 0.75 mm and radius of 10 mm and obtains the overall SDx value of 1.3492 mrad. The results shows that proposed trough model is very promising and evolves a cost effective system.
De novo transcriptome sequencing of two cultivated jute species under salinity stress
Dai, Zhigang; Tang, Qing; Cheng, Chaohua; Xu, Ying
2017-01-01
Soil salinity, a major environmental stress, reduces agricultural productivity by restricting plant development and growth. Jute (Corchorus spp.), a commercially important bast fiber crop, includes two commercially cultivated species, Corchorus capsularis and Corchorus olitorius. We conducted high-throughput transcriptome sequencing of 24 C. capsularis and C. olitorius samples under salt stress and found 127 common differentially expressed genes (DEGs); additionally, 4489 and 492 common DEGs were identified in the root and leaf tissues, respectively, of both Corchorus species. Further, 32, 196, and 11 common differentially expressed transcription factors (DTFs) were detected in the leaf, root, or both tissues, respectively. Several Gene Ontology (GO) terms were enriched in NY and YY. A Kyoto Encyclopedia of Genes and Genomes analysis revealed numerous DEGs in both species. Abscisic acid and cytokinin signal pathways enriched respectively about 20 DEGs in leaves and roots of both NY and YY. The Ca2+, mitogen-activated protein kinase signaling and oxidative phosphorylation pathways were also found to be related to the plant response to salt stress, as evidenced by the DEGs in the roots of both species. These results provide insight into salt stress response mechanisms in plants as well as a basis for future breeding of salt-tolerant cultivars. PMID:29059212
Das, Avizit; Rahman, Mohammad Imtiazur; Ferdous, Ahlan Sabah; Amin, Al-; Rahman, Mohammad Mahbubur; Nahar, Nilufar; Uddin, Md. Aftab; Islam, Mohammad Riazul; Khan, Haseena
2017-01-01
Grammothele lineata, an endophyte isolated in our laboratory from jute (Corchorus olitorius acc. 2015) was found to be a substantial paclitaxel producer. Taxol and its related compounds, produced by this endophyte were extracted by growing the fungus in simple nutrient media (potato dextrose broth, PDB). Taxol was identified and characterized by different analytical techniques (TLC, HPLC, FTIR, LC-ESI-MS/MS) following its extraction by ethyl acetate. In PDB media, this fungus was found to produce 382.2 μgL-1 of taxol which is about 7.6 x103 fold higher than the first reported endophytic fungi, Taxomyces andreanae. The extracted taxol exhibited cytotoxic activity in an in vitro culture of HeLa cancer cell line. The fungal extract also exhibited antifungal and antibacterial activities against different pathogenic strains. This is the first report of a jute endophytic fungus harboring the capacity to produce taxol and also the first reported taxol producing species that belongs to the Basidiomycota phylum, so far unknown to be a taxol producer. These findings suggest that the fungal endophyte, Grammothele lineata can be an excellent source of taxol and can also serve as a potential species for chemical and genetic engineering to enhance further the production of taxol. PMID:28636663
Das, Avizit; Rahman, Mohammad Imtiazur; Ferdous, Ahlan Sabah; Amin, Al-; Rahman, Mohammad Mahbubur; Nahar, Nilufar; Uddin, Md Aftab; Islam, Mohammad Riazul; Khan, Haseena
2017-01-01
Grammothele lineata, an endophyte isolated in our laboratory from jute (Corchorus olitorius acc. 2015) was found to be a substantial paclitaxel producer. Taxol and its related compounds, produced by this endophyte were extracted by growing the fungus in simple nutrient media (potato dextrose broth, PDB). Taxol was identified and characterized by different analytical techniques (TLC, HPLC, FTIR, LC-ESI-MS/MS) following its extraction by ethyl acetate. In PDB media, this fungus was found to produce 382.2 μgL-1 of taxol which is about 7.6 x103 fold higher than the first reported endophytic fungi, Taxomyces andreanae. The extracted taxol exhibited cytotoxic activity in an in vitro culture of HeLa cancer cell line. The fungal extract also exhibited antifungal and antibacterial activities against different pathogenic strains. This is the first report of a jute endophytic fungus harboring the capacity to produce taxol and also the first reported taxol producing species that belongs to the Basidiomycota phylum, so far unknown to be a taxol producer. These findings suggest that the fungal endophyte, Grammothele lineata can be an excellent source of taxol and can also serve as a potential species for chemical and genetic engineering to enhance further the production of taxol.
Desynapsis and spontaneous trisomy in jute (Corchorus olitorius L.).
Basak, S L; Paria, P
1980-11-01
Cytological studies in desynaptic plants, isolated at the F6 generation of an intervarietal cross of Corchorus olitorius L., have shown variable numbers of bivalents and univalents in the PMC's at metaphase I, resulting in irregular distribution of chromosomes at anaphase I. The progenies of the desynaptic plants consisted of 9.24 percent of all possible primary trisomies except trisomie 6. The desynaptic condition is controlled by a pair of simple recessive genes.
Southeast Asia, Report No. 1298.
1983-06-10
the state to increase the tea area to 800 hectares. That is an outstanding goal with many bold, practi- cal measures which the party organization ... increased its prodcution of the various kinds of export rugs made from such agricultural products. Its output of thin jute rugs increased by 82,000 square...NHAN DAN, 2 Apr 831 6 Ho Chi Minh City 11th Precinct Improves Security, Social Order (Hoang Lan; CHINH NGHIA, 17 Apr 83l 10 Hanoi People’s Organ
Dewanjee, Saikat; Gangopadhyay, Moumita; Sahu, Ranabir; Karmakar, Sarmila
2013-10-01
The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves (AECO) against CdCl₂ intoxication. In vitro bioassay on isolated mice hepatocytes confirmed dose dependent cytoprotective effect of AECO. The CdCl₂ (30 μM) exhibited a significantly increased levels of lipid peroxidation, protein carbonylation along with the reduction of antioxidant enzymes and reduced glutathione levels in hepatocytes. AECO (200 and 400 μg/ml) + CdCl₂ (30 μM) could significantly restore the aforementioned oxidation parameters in hepatocytes. Beside this, AECO could significantly reduce Cd-induced increase in Bad/Bcl-2 ratio and the over-expression of NF-κB, caspase 3 and caspase 9. In in vivo assay, CdCl₂ (4 mg/kg body weight, for 6 days) treated rats exhibited a significantly increased intracellular Cd accumulation, oxidative stress and DNA fragmentation in the organs. In addition, the haematological parameters were significantly altered in the CdCl₂ treated rats. Simultaneous administration of AECO (50 and 100 mg/kg body weight), could significantly restore the biochemical, antioxidant and haematological parameters near to the normal status. Histological studies of the organs supported the protective role of jute leaves. Presence of substantial quantity of phenolic compounds and flavonoids in extract may be responsible for overall protective effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
1982-09-01
Engineering News-Record 1977). The concept is that of a composite soil-membrane system with tensile and flexural strengths greater than soil alone can...uniformity 2 Mean diameter 0.5 mm Sandbags 31. Sandbags used in this project were 14 x 26 in. in size and were made of jute or kenaf burlap...support 4. Converted airfield index penetrometer readings for the upper 6 in. of foundation soil indicated similar relative strengths at the base of
FT Raman microscopy of untreated natural plant fibres
NASA Astrophysics Data System (ADS)
Edwards, H. G. M.; Farwell, D. W.; Webster, D.
1997-11-01
The application of FT-Raman microscopy to the non-destructive analysis of natural plant fibres is demonstrated with samples of flax, jute, ramie, cotton, kapok, sisal and coconut fibre. Vibrational assignments are proposed and characteristic features of each material are presented. Samples were not pre-treated chemically before analysis and were used directly from their respective storage collection; the adaptation of the Raman microscopic technique to the identification of specimens of natural fibres in archaeological burial sites is explored for its forensic potential.
Enzymes in bast fibrous plant processing.
Kozlowski, Ryszard; Batog, Jolanta; Konczewicz, Wanda; Mackiewicz-Talarczyk, Maria; Muzyczek, Malgorzata; Sedelnik, Natalia; Tanska, Bogumila
2006-05-01
The program COST Action 847 Textile Quality and Biotechnology (2000-2005) has given an excellent chance to review the possibilities of the research, aiming at development of the industrial application of enzymes for bast fibrous plant degumming and primary processing. The recent advancements in enzymatic processing of bast fibrous plants (flax, hemp, jute, ramie and alike plants) and related textiles are given. The performance of enzymes in degumming, modification of bast fibres, roving, yarn, related fabrics as well as enzymatic bonding of lignocellulosic composites is provided.
Niu, Xiaoping; Qi, Jianmin; Zhang, Gaoyang; Xu, Jiantang; Tao, Aifen; Fang, Pingping; Su, Jianguang
2015-01-01
To accurately measure gene expression using quantitative reverse transcription PCR (qRT-PCR), reliable reference gene(s) are required for data normalization. Corchorus capsularis, an annual herbaceous fiber crop with predominant biodegradability and renewability, has not been investigated for the stability of reference genes with qRT-PCR. In this study, 11 candidate reference genes were selected and their expression levels were assessed using qRT-PCR. To account for the influence of experimental approach and tissue type, 22 different jute samples were selected from abiotic and biotic stress conditions as well as three different tissue types. The stability of the candidate reference genes was evaluated using geNorm, NormFinder, and BestKeeper programs, and the comprehensive rankings of gene stability were generated by aggregate analysis. For the biotic stress and NaCl stress subsets, ACT7 and RAN were suitable as stable reference genes for gene expression normalization. For the PEG stress subset, UBC, and DnaJ were sufficient for accurate normalization. For the tissues subset, four reference genes TUBβ, UBI, EF1α, and RAN were sufficient for accurate normalization. The selected genes were further validated by comparing expression profiles of WRKY15 in various samples, and two stable reference genes were recommended for accurate normalization of qRT-PCR data. Our results provide researchers with appropriate reference genes for qRT-PCR in C. capsularis, and will facilitate gene expression study under these conditions. PMID:26528312
Pressure Vessel with Impact and Fire Resistant Coating and Method of Making Same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2005-01-01
An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and hear absorption.
Pressure vessel with impact and fire resistant coating and method of making same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2005-01-01
An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and heat absorption.
1974-02-01
II I~ x p:1 ns ion P roc cuurc Longitudin:-11 Section, Container Mod·c Configuration r Ex p :m s i on Pro c c d u r e Longitudinal Section...No . I II. I I I. IV. v. VI. VII. VIII. IX. X . XI. XII. XIII. XIV. XV . XVI. XVII . XVIII . XIX. XX. XXI. XXII . XXI II. XXIV...mat e rial s and examples from these categories . Glass Fibers Glass Mi c r os pheres As bestos Carbon Graphite Ce llulose Cotton Jute Rayo n
Teklay, A; Gebeyehu, G; Getachew, T; Yaynshet, T; Sastry, T P
2017-10-01
Presently, the leftovers from leather product industries are discarded as waste in Ethiopia. The objective of the present study was therefore, to prepare composite sheets by incorporating various plant fibers like enset (Ensete ventricosum), hibiscus (Hibiscus cannabinus), jute (Corchorus trilocularis L.), palm (Phoenix dactylifera) and sisal (Agave sisal) in various proportions into the leather waste. Resin binder (RB) and natural rubber latex (NRL) were used as binding agents for the preparation of the composite sheets. The composite sheets prepared were characterized for their physicochemical properties (tensile strength, elongation at break, stitch tear strength, water absorption, water desorption and flexing strength). Composite sheets prepared using RB having 10% hibiscus, 20% palm and 40% sisal fibers showed better mechanical properties than their respective controls. In composite sheets prepared using NRL having 30% jute fiber exhibited better mechanical properties than its control. Most of the plant fibers used in this study played a role in increasing the performance of the sheets. However, as seen from the results, the contribution of these plant fibers on performance of the composite sheets prepared is dependent on the ratio used and the nature of binder. The SEM studies have exhibited the composite nature of the sheets and FTIR studies have shown the functional groups of collagen protein, cellulose and binders. The prepared sheets were used as raw materials for preparation of items like stiff hand bags, ladies' purse, keychain, chappal upper, wallet, wall cover, mouse pad and other interior decorating products. By preparing such value added products, we can reduce solid waste; minimize environmental pollution and thereby securing environmental sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Di Gioia, Francesco; De Bellis, Palmira; Mininni, Carlo; Santamaria, Pietro; Serio, Francesco
2017-03-01
Peat-based mixes and synthetic mats are the main substrates used for microgreens production. However, both are expensive and non-renewable. Recycled fibrous materials may represent low-cost and renewable alternative substrates. Recycled textile-fiber (TF; polyester, cotton and polyurethane traces) and jute-kenaf-fiber (JKF; 85% jute, 15% kenaf-fibers) mats were characterized and compared with peat and Sure to Grow® (Sure to Grow, Beachwood, OH, USA; http://suretogrow.com) (STG; 100% polyethylene-terephthalate) for the production of rapini (Brassica rapa L.; Broccoletto group) microgreens. All substrates had suitable physicochemical properties for the production of microgreens. On average, microgreens fresh yield was 1502 g m -2 in peat, TF and JKF, and was 13.1% lower with STG. Peat-grown microgreen shoots had a higher concentration of K + and SO 4 2 - and a two-fold higher NO 3 - concentration [1959 versus 940 mg kg -1 fresh weight (FW)] than those grown on STG, TF and JKF. At harvest, substrates did not influence microgreens aerobic bacterial populations (log 6.48 CFU g -1 FW). Peat- and JKF-grown microgreens had higher yeast-mould counts than TF- and STG microgreens (log 2.64 versus 1.80 CFU g -1 FW). Peat-grown microgreens had the highest population of Enterobacteriaceae (log 5.46 ± 0.82 CFU g -1 ) and Escherichia coli (log 1.46 ± 0.15 CFU g -1 ). Escherichia coli was not detected in microgreens grown on other media. TF and JKF may be valid alternatives to peat and STG because both ensured a competitive yield, low nitrate content and a similar or higher microbiological quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers
NASA Astrophysics Data System (ADS)
Maity, J.; Chattopadhyay, B. C.; Mukherjee, S. P.
2017-11-01
In subgrade construction for flexible road pavement, properties of clayey soils available locally can be improved by providing randomly distributed fibers in the soil. The fibers added in subgrade constructions are expected to provide better compact interlocking system between the fiber and the soil grain, greater resistance to deformation and quicker dissipation of pore water pressure, thus helping consolidation and strengthening. Many natural fibers like jute, coir, sabai grass etc. which are economical and eco-friendly, are grown in abundance in India. If suitable they can be used as additive material in the subgrade soil to result in increase in strength and decrease in deformability. Such application will also reduce the cost of construction of roads, by providing lesser thickness of pavement layer. In this paper, the efficacy of using natural jute, coir or sabai grass fibers with locally available clayey soil has been studied. A series of Standard Proctor test, Soaked and Unsoaked California Bearing Ratio (CBR) test, and Unconfined Compressive Strength test were done on locally available clayey soil mixed with different types of natural fiber for various length and proportion to study the improvement of strength properties of fiber-soil composites placed at optimum moisture content. From the test results, it was observed that there was a substantial increase in CBR value for the clayey soil when mixed with increasing percentage of all three types of randomly distributed natural fibers up to 2% of the dry weight of soil. The CBR attains maximum value when the length for all types of fibers mixed with the clay taken in this study, attains a value of 10 mm.
İşeri, Özlem Darcansoy; Yurtcu, Erkan; Sahin, Feride Iffet; Haberal, Mehmet
2013-06-01
Corchorus olitorius L. (Malvaceae) has industrial importance in world jute production and is a widely cultivated and consumed crop in Cyprus and in some Arabic countries. The present study investigated cytotoxic and genotoxic effects of leaf extracts (LE) and seed extracts (SE) of the C. olitorius on the multiple myeloma-derived ARH-77 cells. The extracts were also evaluated for their total phenol content (TPC) and free radical scavenging activity (FRSA). C. olitorius was collected from Nicosia, Cyprus. TPC and FRSA were measured by Folin-Ciocalteu and DPPH free radical methods, respectively. Cytotoxicity was evaluated by the MTT assay (4-2048 µg/mL range), and DNA damage (at IC50 and ½IC50) was measured by the comet assay. The LE had significantly higher total phenol (78 mg GAE/g extract) than the SE (2 mg GAE/g extract) with significantly higher FRSA (IC50 LE: 23 µg/mL and IC50 SE: 10 401 µg/mL). Both LE and SE exerted cytotoxic effects on cells after 48 h. The IC50 of SE (17 µg/mL) was lower than LE (151 µg/mL), which demonstrates its higher cytotoxicity on cells. The extracts were applied at 150 and 75 µg/mL for LE and at 17 and 8.5 µg/mL for SE, and the results of the comet assay revealed that the extracts induced genotoxic damage on ARH-77 cells. In both 48 h leaf and seed extract treatments, genotoxic damage significantly increased with increasing concentrations at relevant cytotoxic concentrations. To our knowledge, this is the first report demonstrating the high cytotoxic potential of C. olitorius SE and the genotoxic potential of LE and SE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.S.
Kenaf`s story is now being told in the fields of South Texas and Southern Louisiana as new fiber processing operation are responding to the public`s demand for more environmentally sound sources of fiber and farmer`s desperate pleas for additional production options. Despite the title, this paper focuses primarily on the {open_quotes}demand{close_quotes} pull from the market place that brings the new crop production/processing system together. Kenaf, an annual hibiscus crop, has been cultivated for several centuries in Asia and Africa, mostly as a substitute for jute fiber in the world`s cordage industry. The crop was first seriously considered in the Americasmore » when jute supplies from Asia were cut off by the War in the Pacific. In the 1960s the US Department of Agriculture selected kenaf as the most promising annual crop source of fiber for the pulp and paper industry. Industry took a look but it wasn`t their priority and the initial USDA effort ceased in the late 1970s. However, almost at the same time some newspaper publishers, who had been following the USDA work, intervened to keep things going. Kenaf International was formed in 1981 as system-oriented company determined to finally put things together on a commercial basis. The company focused on both ends (market and production), hoping to fill in the middle as it went forward. The primary objective at first was to introduce kenaf as an annually renewable fiber source for newsprint manufacturers. That eventually proved to be a very big bite for a small organization to chew, and Kenaf International (and its associates) soon {open_quotes}discovered{close_quotes} other aspects of kenaf`s potential as it pursued its goals. This is where we join The Kenaf Story {open_quotes}in progress.{close_quotes}« less
Decoloration of a carpet dye effluent using Trametes versicolor.
Ramsay, Juliana A; Goode, Chris
2004-02-01
Although a non-sterile, undiluted carpet dye effluent (containing two anthraquinone dyes) did not support growth of Trametes versicolor, the pre-grown fungus removed 95% of its color in shake-flasks after 10 h of incubation. After decoloration, the COD of the cell-free supernatant increased and the toxicity was unchanged as determined by the Microtox assay using Vibrio fischeri. Decoloration rates decreased when either glucose alone or Mn2+ and glucose were added. T. versicolor, immobilized on jute twine in a rotating biological contacting reactor, also decolorized four successive batches of the effluent. There was no decoloration in any of the uninoculated, non-sterile controls.
The toxicity of jute (Corchorus olitorius) seed to pigs.
Johnson, S J; Toleman, M A
1982-06-01
Finely ground Corchorus olitorius seed was administered as a daily drench to 1 pig at 100mg/kg body weight and as a single drench to 2 pigs at 500 mg/kg body weight. The latter 2 died within 48 hours, and the former was killed on the 7th day as it approached a moribund state. Clinical signs observed were anorexia, vomiting and dysentery. Autopsy revealed severe haemorrhagic enteritis. The seed was also fed to pigs at levels of 0.05%, 0.1% and 0.5% by weight of the ration for 4 weeks. Levels of 0.05% of greater caused reductions in voluntary feed intake and weight gain.
Green technologies in natural and synthetic surfaces use for dumps reclamation
NASA Astrophysics Data System (ADS)
Klimkina, Iryna; Fedotov, Viacheslav; Heilmeier, Hermann
2016-04-01
Last 50 years coal dumps reclamation in Ukraine was based on two- or three-layer models. These models use a fertile substratum underneath a black soil (chernozem) layer 0.5 m thick (Model 1) or 0.70-1 m thick (Model 2). Model 3 has 3 layers. The deepest layer is a substrate which is phytotoxic or unfavourable for crop growth (coal-bearing substrates with a high content of pyrite, saline substrates). The second layers acts as a protective shield and consist of loess (0.5 m). The third is the layer of fertile chernozem (0.3-0.8 m). However, due to the situation of a shortage of fertile soils, a lack of nutrient elements in the waste rock, and a moisture deficit with strong rock acidification, it is considered important to develop new non-traditional reclamation methods based on the geo-synthetic materials used in conjunction with sowing lawn grasses or grass seeds inside. The geogrids and biogeotextiles made from natural materials such as hemp, flax, jute, coconut and other plant biopolymer fibers are recommended for bioremediation. The biodegradable carcass of reclamation covering materials stabilises the slopes, effectively restraints the soil particles from leaching and blowing, and prevents wash-out of the plant seeds, as well as protecting them from being eaten by animals. The research object of the presented work was the coal dumps of sulfide rocks in Western Donbass (Ukraine). These rocks are characterized by low level of the maximum hygroscopic moisture (4.3%) and moisture content not available for plant growth (5-6%). Also the rock has an average level of salinity, mainly of the sulphate type. The main goal of the study was to justify the use of some non-traditional materials such as burlap (jute cloth), agricultural fibers (light non-woven material from polypropylene fiber of spun-bond type) and a padding of polyester in the capacity of a geosynthetic substrate as a basis for the mixed grass crop that enable a reduction in the bioremediation costs (in comparison with traditional methods of covering by fertile soil layer) and the arrangement of lawn roll. A mixture of grass crops was used that included three types of grass seeds which were sown in the condition of hydroponics with settled tap water in a floating poly-foam frame on the one- and two-layer (with grass seeds inside) substrates of the above-mentioned materials. The best results, in terms of seed germination, root and above-ground parts of the plants length, were obtained with a single layer of jute burlap on which practically all germinated seeds reached a high degree of seedlings mass and root productivity similar to indices of growth mixtures in greenhouses. As a mulch of organic ingredients a wide range of crop residues, namely wheat straw, corn stalks, sunflower stalks and husks, and others, can be used.
Water absorption behaviour of hybrid interwoven cellulosic fibre composites
NASA Astrophysics Data System (ADS)
Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.
2017-10-01
The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.
Manna, Koushik; Kundu, Manik Chandra; Saha, Biplab; Ghosh, Goutam Kumar
2018-01-16
A field experiment was conducted in winter season of 2015-2016 in the dry lateritic soil of Eastern India to study the effect of different thicknesses of nonwoven jute agrotextile mulches (NJATM) along with other mulches on soil health, growth and productivity of broccoli (Brassica oleracea L.). The experiment was conducted in randomized block design with six treatments viz., T 1 (control, i.e. no mulching), T 2 (300 gsm NJATM), T 3 (350 gsm NJATM), T 4 (400 gsm NJATM), T 5 (rice straw) and T 6 (black polythene mulch), each of which was replicated four times. The highest average curd weight (355.25 g) and yield (8.53 t ha -1 ) of broccoli were recorded in T 3 treatment. The lowest density of broad leaved weed, sedges and grasses were recorded in T 6 treatment which was statistically at par with T 4 . All the treatments composing of NJATM increased the population of all the soil microbes except bacteria in the root rhizosphere of broccoli from their initial population. On average, the highest population of fungi (54.0 × 10 3 cfu per g) and actinomycetes (134.75 × 10 3 cfu per g) was recorded with T 3 and T 4 treatments respectively in the post-harvest soil. The soil moisture was conserved in all treatments compared to control showing highest moisture content in T 4 treatment. Organic carbon and available N, P and K contents of soil were increased in all mulch treated plots compared to control, and their initial value and their highest value were recorded in T 3 . The NJATM of 350 gsm thickness was very effective compared to other mulches in increasing the growth and productivity of broccoli by suppressing weeds, increasing moisture, microbial population and nutrient content of the lateritic soil.
Oboh, G; Raddatz, H; Henle, T
2009-01-01
Corchorus olitorius (jute) is a native plant of tropical Africa and Asia, and has since spread to Australia, South America and some parts of Europe. Its leafy vegetable is popularly used in soup preparation and folk medicine for the treatment of fever, chronic cystitis, cold and tumours. A comparative study of the antioxidant properties of hydrophilic extract (HE) and lipophilic extract (LE) constituents of the leafy vegetable has been assessed. HE and LE of the leaf were prepared using water and hexane, respectively and their antioxidant properties were determined. HE had a significantly higher (P<0.05) 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability (aqueous, 9.6-84.4%; hexane, 2.0-20.4%), reducing power (aqueous, 0.67 mmol ascorbic acid equivalent/g; hexane, 0.49 mmol ascorbic acid equivalent/g) and trolox equivalent antioxidant capacity (aqueous, 2.3 mmol/g; hexane, 1.1 mmol/g) than LE; conversely, LE had a significantly higher (P<0.05) OH. scavenging activity (44.5-46.2%) than HE (11.6-32.3%), while there was no significant difference (P>0.05) in their Fe(II) chelating ability (HE, 57.7-66.7%; LE, 56.4-61.1%). The higher 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, reducing power and trolox equivalent antioxidant capacity of the hydrophilic extract may be due to its significantly higher (P<0.05) total phenol (630.8 mg/100 g), total flavonoid (227.8 mg/100 g) and non-flavonoid polyphenols (403.0 mg/100 g), and its high ascorbic acid content (32.6 mg/100 g). While the higher OH. scavenging ability of LE may be due to its high total carotenoid content (42.5 mg/100 g). Therefore, the additive/synergistic antioxidant activities of the hydrophilic and lipophilic constituents may contribute to the medicinal properties of C. olitorius leaf.
Significant aspects on thermal degradation of hybrid biocomposite material
NASA Astrophysics Data System (ADS)
Bavan, D. Saravana; Kumar, G. C. Mohan
2013-06-01
Interest in use of bio fibers is increasing rapidly in structural and automotive applications because of few important properties such as low density, mechanical properties, renewability, biodegradation and sustainability. The present work is focused on fabricating a hybrid bio-composite material processed through compression molding technique. Natural fibers of maize and jute with bio polymeric resin of epoxidized soya bean oil are used as a matrix in obtaining a hybrid bio composite material. Thermal degradation of the prepared material is studied through Thermal gravimetric analyzer. Chemical treatment of the fibers was performed to have a better adhesion between the fibers and the matrix. The work is also surveyed on various parameters influencing the thermal properties and other aspects for a hybrid bio composite material.
Easy preparation of dietary fiber with the high water-holding capacity from food sources.
Yamazaki, Eiji; Murakami, Kazumi; Kurita, Osamu
2005-03-01
Dietary fibers were prepared as alkali- and acid-insoluble fractions with chemical phosphorylation from Tossa jute (Corchorus olitorius), defatted soybean (Glycine max), and Shiitake (Lentinula edodes). The dietary fiber fractions treated with alkaline solution containing sodium metaphosphate had the lower protein content and higher total dietary fiber content than those of the preparations without phosphorylation. Alkaline extraction followed by phosphorylation led to a 1.5-fold increase in the water holding capacity of dietary fiber compared with no phosphorylation, whereas the binding capacity to bile acids of dietary fiber was almost the same. The alkali- and acid-insoluble extraction with phosphorylation provided an efficient preparation of water-insoluble dietary fiber with high-water holding capacity from various food sources.
Impact analysis of natural fiber and synthetic fiber reinforced polymer composite
NASA Astrophysics Data System (ADS)
Sangamesh, Ravishankar, K. S.; Kulkarni, S. M.
2018-05-01
Impact analysis of the composite structure is essential for many fields like automotive, aerospace and naval structure which practically difficult to characterize. In the present study impact analysis of carbon-epoxy (CE) and jute-epoxy (JE) laminates were studied for three different thicknesses. The 3D finite element model was adopted to study the impact forces experienced, energy absorption and fracture behavior of the laminated composites. These laminated composites modeled as a 3D deformable solid element and an impactor at a constant velocity were modeled as a discrete rigid element. The energy absorption and fracture behaviors for various material combinations and thickness were studied. The fracture behavior of these composite showed progressive damage with matrix failure at the initial stage followed by complete fiber breakage.
NASA Astrophysics Data System (ADS)
Kim, Sok Won; Park, K.; Lee, S. H.; Kang, J. S.; Kang, K. H.
2007-06-01
Since the restrictions for environmental protection being strengthened, thermoplastics reinforced with natural fibers (NF’s), such as jute, kenaf, flax, etc. have appeared as alternatives to chemical plastics for automobile interior materials. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composed of 50% polypropylene (PP) and 50% natural fiber (NF) irradiated by an electron beam (energy: 0.5 MeV, dose: 0 20 kGy) were measured. The length and thickness of PP and NF are 80 ± 10 mm and 40 120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum, when the dose of the electron beam was 10 kGy. However, the effect of the dose on the deformation was not clear.
Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V
2006-09-01
The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.
NASA Astrophysics Data System (ADS)
Kumar, S. C. Ramesh; Shivanand, H. K.; Vidayasagar, H. N.; Nagabhushan, V.
2018-04-01
The polymer composites are developed with natural fibers and fillers as a alternate material for some of the engineering applications in the field of automobiles and domestic purposes are being investigated. The natural fiber composites such as banana, sisal, jute, coir, kenaf and hemp polymer composites appear more effective due to their lightweight, higher specific strength, biodegradable and cost is low. The main objective is to prepare the Kenaf/Glass fiber hybrid composite filled with graphene as nano filler and to investigate the mechanical properties of hybrid composites. The different types of hybrid composites laminates are fabricated without filler, 0.5, 1 & 1.5Wt % of graphene by using kenaf and glass fiber as reinforcing material with epoxy resin. The specimen were prepared as per the ASTM standards and results shows that the mixing of graphene in epoxy resin improves the mechanical properties of hybrid composites.
Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites
NASA Astrophysics Data System (ADS)
Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md
2018-05-01
Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.
Some Pharmacological Actions of Cotton Dust and Other Vegetable Dusts
Nicholls, P. J.
1962-01-01
Aqueous extracts of cotton and other vegetable dusts cause contraction of the isolated ileum and tracheal muscle of the guinea-pig, and of isolated human bronchial muscle. The levels of this contractor activity place the dusts of cotton, flax, and jute in the order of the probable incidence of byssinosis occurring in the mills spinning these fibres. Extracts of cotton dust possess a histamine-liberating activity and contain a permeability-increasing component. These actions are of plant origin and are found in the pericarp and bracts of the cotton boll. Histamine and 5-hydroxytryptamine have also been found in some cotton dust samples. The formation of histamine by bacterial action in cotton dust does not take place under conditions found in cotton mills. The smooth muscle contractor substance is organic in nature, relatively heat-stable, and dialysable. The relevance of these results to the symptoms of byssinosis is discussed. PMID:14479451
RADIATION-INDUCED CRINKLED LEAVES IN JUTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, R.K.
1963-01-01
Crinkled leaf chimeras appeared regularly, as phenocopies, in the X/sub 1/ and P/sub 1/ generations of three varieties of Corchorus olitorius L. The S/ sub 1/ populations were devoid of this abnormality. These plants were also characterized by late flowering and reduction in the number of flowers per plant. The frequency of crinaled leaf chimeras increased with increase in dosages of x rays and /sup 23/P beta rays. Inheritance studies revealed no immediate genetic background of these abnormal plants. However, mutations showing crinkled leaves were isolnted in some X/sub 3/ and P/sub 2/ lines and their segregation in later generationsmore » was found to be disturbed. Chromosomal abnormalities during metosis were considered as one of the factors responsible for the disturbed segregation. Crinkled leaf mutations also showed variable manifestation of the mutant characteristic in different years. (auth)« less
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
NASA Astrophysics Data System (ADS)
Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.
2017-03-01
Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.
Dhuique-Mayer, Claudie; Servent, Adrien; Descalzo, Adriana; Mouquet-Rivier, Claire; Amiot, Marie-Josèphe; Achir, Nawel
2016-11-01
This study was carried out to assess the impact of heat processing of a complex emulsion on the behavior of fat soluble micronutrients (FSM) in a traditional Tunisian dish. A simplified recipe involved, dried mucilage-rich jute leaves, tomato paste and olive oil, followed by a cooking treatment (150min). Hydrothermal pattern and viscosity were monitored along with the changes of FSM content and the bioaccessibility (called micellarization, using an in vitro digestion model). Partitioning of carotenoids differed according to their lipophilicity: lycopene, β-carotene and lutein diffused to the oil phase (100%, 70% and 10% respectively). In contrast with the poor carotenes/tocopherol bioaccessibility (0.9-1%), the highest micellarization was observed for lutein (57%) and it increased with heating time and viscosity change. Domestic culinary cooking practices probably increase the bioavailability of carotenes mainly by their diffusion to the oil phase, facilitating their in vivo transfer into micelles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantitative studies on the mating system of jute (Corchorus olitorius L.).
Basak, S L; Gupta, S
1972-01-01
More than 100,000 individuals of C. olitorius were scored for selfing versus outcrossing in various populations, at several locations, over a number of years and seasons. Different marker loci, such as A (d) /a (0), Sh/sh, Cr/cr and Pl/pl, were used to determine the male gametes which had effected fertilization. The results showed that the frequency of outcrossing was extremely variable among loci, crosses and samples within a single locus. The outcrossing parameter, α, was found to differ with years, locations and seasons within years. It was also found that outcrossing, in general, was nonrandom. Nonrandomness was also independent of flowering dates. The amount of outcrossing was directly associated with the frequency of F 2 plants flowering at different dates. A recalculated outcrossing parameter from different authors' reported data, representing different years and locations, has been found to be nonrandom. It was observed that the propensity to outcross was not a simple function of changing gene frequency but was associated with the genotype of individual selected.
NASA Astrophysics Data System (ADS)
Kim, Sok Won; Oh, Seungmin; Lee, Kyuse
2007-11-01
With restrictions for environmental protection being strengthened, the thermoplastics reinforced with natural fibers (NFs) such as jute, kenaf, flax, etc., appeared as an automobile interior material instead of the chemical plastics. Regardless of many advantages, one shortcoming is the deformation after being formed in high temperature of about 200 °C, caused by the poor adhesion between the natural fibers and thermoplastics. Also, the energy saving in connection with car air-conditioning becomes very important. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composing of 50% polypropylene (PP) and 50% natural fiber irradiated by the electron beam (energy: 0.5 MeV, dose: 0-20 kGy) were measured. The length and thickness of PP and NF are 80±10 mm and 40-120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum when the dose of electron beam is 10 kGy, and the deformation after the thermal cycle were reduced by the electron beam.
Camerlink, Irene; Ursinus, Winanda W; Bijma, Piter; Kemp, Bas; Bolhuis, J Elizabeth
2015-01-01
Indirect genetic effects (IGEs) are heritable effects of an individual on phenotypic values of others, and may result from social interactions. We determined the behavioural consequences of selection for IGEs for growth (IGEg) in pigs in a G × E treatment design. Pigs (n = 480) were selected for high versus low IGEg with a contrast of 14 g average daily gain and were housed in either barren or straw-enriched pens (n = 80). High IGEg pigs showed from 8 to 23 weeks age 40% less aggressive biting (P = 0.006), 27% less ear biting (P = 0.03), and 40% less biting on enrichment material (P = 0.005). High IGEg pigs had a lower tail damage score (high 2.0; low 2.2; P = 0.004), and consumed 30 % less jute sacks (P = 0.002). Selection on high IGEg reduced biting behaviours additive to the, generally much larger, effects of straw-bedding (P < 0.01), with no G × E interactions. These results show opportunities to reduce harmful biting behaviours in pigs.
Dewanjee, Saikat; Sahu, Ranabir; Karmakar, Sarmila; Gangopadhyay, Moumita
2013-05-01
Lead (Pb) is considered to be a multi-target toxicant. The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves against Pb-acetate induced toxic manifestation in blood, liver, kidney, brain and heart of Wistar rats. The Pb-acetate (5mg/kg body weight) treated rats exhibited a significant inhibition of co-enzymes Q, antioxidant enzymes and reduced glutathione levels in the tissues. In addition, the extent of lipid peroxidation, DNA fragmentation and haematological parameters were significantly altered in the Pb-acetate treated rats as compared to control. Simultaneous administration of test extract (25, 50 and 100mg/kg body weight), could significantly restore the biochemical and haematological parameters near to the normal status through antioxidant activity and/or by preventing bioaccumulation of Pb within the tissues of experimental rats. Presence of substantial quantity of phenolics and flavonoids in the extract may be responsible for the observed protective role against Pb-intoxication. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polylactide-based renewable green composites from agricultural residues and their hybrids.
Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri
2010-06-14
Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.
Mineral oil hydrocarbons in food - a review.
Grob, Koni
2018-06-12
Work on mineral oil hydrocarbons (MOH) contaminating food is reviewed up to about 2010, when the subject received broad publicity. It covers the period of the main discoveries and elimination or reduction of the dominant sources: release agents used in industrial bakeries, spraying of rice, additions to animal feed, contamination of edible oils from various sources and migration from paperboard packaging. In most cases highly refined ("white") oils were involved, but also technical oils, e.g. from the environment, and more or less crude oil fractions from jute and sisal bags. There were numerous unexpected sources, and there might still be more of those. The exposure of the consumers to MOH must have been markedly reduced in the meantime. Environmental influx may have become dominant, particularly when taking into account that these MOH go through several degradation processes which might enrich the species resisting metabolic elimination. Major gaps are in the systematic investigation of sources and the largely unavoidable levels from environmental contamination, but also in the toxicological evaluation of the various types of hydrocarbons. A regulation is overdue that avoids the present discrepancy between the low tolerance to MOH perceived as contaminants and the very high legal limits for some applications - the MOH are largely the same.
A Comparative Study of Labour Participation in Three Wetland Regions of West Bengal, India
NASA Astrophysics Data System (ADS)
Roy, Malabika Biswas; Roy, Pankaj Kumar; Samal, Nihar Ranjan; Mazumdar, Asis
2016-06-01
Wetlands are invaluable components of the environment, ecology, resource potential and biodiversity in India. In the Gangetic flood plain of West Bengal, wetlands are used for multiple purposes, and have significant role in the livelihoods of the local people. Thus an awareness of the importance of wetland is raised from few decades, because Government authorities and private organizations are started to realize the fact that wetlands are complex ecological systems, whose structure provides numerous goods and various services, including food storage, water quality sustenance, agriculture production, fisheries and recreation. The objective of this work is to analyze the conditions of unemployed people through labour participation and to evolve an adaptation for the sustainable use of wetlands, emphasizing the economic upliftment for the selected floodplain region. It may be concluded that as some of the floodplain wetlands serves as bird sanctuaries, national parks and reserves of biodiversity, it results in several environmental issues to mitigate and are also used for irrigation, jute retting, collection of edible aquatic plants and animals as well as birds. Thus a plan for floodplain wetlands may be developed to integrate the various uses of the water body with a holistic approach.
Investigation of Structure and Property of Indian Cocos nucifera L. Fibre
NASA Astrophysics Data System (ADS)
Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar
2017-12-01
Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.
NASA Astrophysics Data System (ADS)
Harikumar, M.; Sankar, N.; Chandrakaran, S.
2015-09-01
Since 1969, when the concept of earth reinforcing was brought about by Henry Vidal, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibres, coir and jute fibres etc. have been widely added to soil mass randomly or in a regular, oriented manner. The conventional reinforcements in use were two dimensional or planar, in the form of strips with negligible widths or in the form of sheets. In this investigation, a novel concept of multi oriented plastic reinforcement (hexa-pods) is discussed. Direct shear tests were conducted on unreinforced and reinforced dry fine, medium and coarse sands. Detailed parametric studies with respect to the effective grain size of soil (d10), normal stress (σ) and the volume ratio of hexa-pods (Vr) were performed. It was noticed that addition of hexa-pods resulted in increase in the shear strength parameters viz. peak deviatoric stresses and increased angle of internal friction. The hexa-pods also changed the brittle behaviour of unreinforced sand samples to ductile ones. Although the peak shear stress did not show a considerable improvement, the angle of internal friction improved noticeably. Addition of a single layer of reinforcement along the shear plane also reduced the post peak loss of strength and changed the soil behavior from brittle to a ductile one.
Effect of storage conditions on microbiological and physicochemical quality of shea butter.
Honfo, Fernande; Hell, Kerstin; Akissoé, Noël; Coulibaly, Ousmane; Fandohan, Pascal; Hounhouigan, Joseph
2011-06-01
Storage conditions are key constraints for quality assurance of the shea (Vitellaria paradoxa Gaertner) butter. In the Sudan savannah Africa, storage conditions of butter produced by women vary across and among processors, traders and consumers. These conditions could impact the quality of the products and reduced their access to international market. The present study attempted to investigate the effect of storage duration and packaging materials on microbiological and physicochemical characteristics of shea butter under tropical climatic conditions. Five packaging materials traditionally used in shea butter value chain were tested for their efficacy in storing shea butter freshly produced. Total germs, yeasts and mould varied with packaging materials and storage duration. After 2 months of storage, moisture content of butter remained constant (5%) whereas acid value increased from 3.3 to 5.4 mg KOH/g, peroxide value from 8.1 to 10.1 meq O2/kg and iodine value dropped from 48.8 to 46.2 mg I2/100 g in shea butter irrespectively to the storage materials used. The basket papered with jute bag was the less effective in ensuring the quality of butter during storage while plastic containers and plastic bags seemed to be the best packaging materials.
GENETICS OF X-RAY INDUCED PIGMENTATION IN JUTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarma, M.S.; Ghosh, K.
1961-03-01
A full-green strain of Corchorus capsularis having the constitution ccAARR for the anthocyanin factors was treated with x rays. In the X/sub 2/ generation of a bifurcated but otherwise normal looking selection from the 45 Kvp, 40,000 r treatment, a pigmented type was obtained as a recessive segregant. The pigmented mutant is indistinguishable from full-green in the early stages; at later stages the stem is dark-coppery-red and the integuments of ovules are pink even at the flowering stage. Although the embryos of seeds of the mutant are normal, the endosperm is imperfectiy developed; this results in extremely poor germination. Crossesmore » of the pigmented mutant with cAR, CAR and CA/sup D/r showed one, two, and four factor differences, respectively. On the basis of this evidence, it is concluded that the induced change is at a newly identified locus, Pi, and is recessive to the normal state; the action of pi is dependent on the presence of two doses of R; pi is epistatic over C; Pi or at least one dose of r is essential for the normal functioning of C; and in the absence of C-controlled anthocyamin, A and A/sup D/, the two alleles of A tested, have no recognizable action. (auth)« less
DIFFERENTIAL KILLING EFFECT IN JUTE BY X-RAYS AND RADIOISOTOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, R.K.
1962-01-01
Treatments with x rays and BETA rays from P/sup 32/ and S/sup 35/ on dry and pure line seeds of three varieties of Corchorus olitorius L. and two varieties of C. capsularis L. produced differential killing effect. 0ver the range of dosages applied treatments with P/sup 32/ and S/sup 35/ showed lesser killing effect than treatments with x rays. From the counts of survivals at maturity, the LD/sub 50/with x rays was found to lie between 64000 and r0000 r for the varieties of C. olitorius and between 80000 and 90000 r for the varieties of C. capsularis. While themore » usual relationship of decrease in survival with increase in dosage was established with x rays, treatments with P/sup 32/ and S/ sup 35/ often showed increased survival compared to the control. The differential killing effect of the three mutagens is discussed as a consequence of difference in ion density. The obscure effects of radioisotopes may be due to production of substances reacting in the form of stimulation or protective agents. The differential radiosensitivity of the two species may be due to difference in factors like seed size and thickness of seed coat, which influence the non- genetical effects of irradiation. (auth)« less
Application of photocuring technique on wood surface and its prospects in Bangladesh
NASA Astrophysics Data System (ADS)
Bhattcacharia, S. K.; Khan, Mubarak A.
2005-07-01
Photocuring technique has unveiled a new horizon in polymer science. Application of photocuring technique on wood surface has enhanced the use of low grade wood. As Bangladesh is an overpopulated country, necessity of good quality wood is increasing day by day. So low grade wood, like Simul or Partex, locally produced particleboard, would come out with great use. As Partex board, produced from Jute sticks and various types of indigenous low grade wood and particle board are abundant in Bangladesh, so photocuring could play a major role to improve the quality of low grade wood and serve the nation. Already, a lot of research works were carried out by the local scientists to improve the wood surface using UV curing method. Different formulations were also developed by the local scientists using various oligomer, monomer and different types of additives. The used oligomers are epoxy, polyester, urethane, etc. and monomers of different functionalities and used additives are acrylic monomer, CaCO3, sand, MgSiO3, talc, etc. Thin films were prepared on glass plate with different formulations using UV radiation and different characteristics properties (pendulum hardness, abrasion, gloss (60° and 20°), microscratch hardness, weathering effect, adhesion strength, etc.) were studied. Now, a Pilot Plant has already been established with the financial assistance by the government of Bangladesh, worth US 3.5 million.
Hoefer, D; Handel, M; Müller, K-M; Hammer, T R
2016-11-01
Neurophysiologic data on reactions of the human brain towards tactile stimuli evoked by fabrics moved on the skin are scarce. Furthermore, evaluation of fabrics' pleasantness using questionnaires suffers subjective biases. That is why we used a 64-channel electroencephalography (EEG) to objectively evaluate real-time brain reactions to fabric-skin interactions. Tactile stimuli were triggered by selected fabrics of different qualities, i.e. modal/polyamide single jersey, cotton double rib and a jute fabric, applied hidden to either the palm or forearm of 24 subjects via a custom-made fabric-to-skin applicator called SOFIA. One-way anova analysis was carried out to verify the EEG data. The modal/polyamide fabric applied to the forearm and palm led to slightly stronger emotional valence scores in the brain than the conventional or baseline fabric. Furthermore, the single jersey elicits significant higher event-related potential (ERP) signals in all subjects when applied to the forearm, suggesting less distraction and better cognitive resources during the fabric/skin interaction. The brain thus reacts with instantaneous ERP to tactile stimulation of fabrics and is able to discriminate different qualities via implicit preferences. The test procedure described here may be a tool to evaluate the fabric feel with the exclusion of subjective biases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In-Depth Analysis of the Structure and Properties of Two Varieties of Natural Luffa Sponge Fibers
Chen, Yuxia; Su, Na; Zhang, Kaiting; Zhu, Shiliu; Zhao, Lei; Fang, Fei; Ren, Linyan; Guo, Yong
2017-01-01
The advancement in science and technology has led to luffa sponge (LS) being widely used as a natural material in industrial application because of its polyporous structure and light texture. To enhance the utility of LS fibers as the reinforcement of lightweight composite materials, the current study investigates their water absorption, mechanical properties, anatomical characteristics and thermal performance. Hence, moisture regain and tensile properties of LS fiber bundles were measured in accordance with American Society for Testing and Materials (ASTM) standards while their structural characteristics were investigated via microscopic observation. Scanning electron microscopy (SEM) was used to observe the surface morphology and fractured surface of fiber bundles. The test results show that the special structure where the phloem tissues degenerate to cavities had a significant influence on the mechanical properties of LS fiber bundles. Additionally, the transverse sectional area occupied by fibers in a fiber bundle (SF), wall thickness, ratio of wall to lumen of fiber cell, and crystallinity of cellulose had substantial impact on the mechanical properties of LS fiber bundles. Furthermore, the density of fiber bundles of LS ranged within 385.46–468.70 kg/m3, significantly less than that of jute (1360.40 kg/m3) and Arenga engleri (950.20 kg/m3). However, LS fiber bundles demonstrated superior specific modulus than Arenga engleri. PMID:28772838
1987-04-01
The population of Bangladesh was 104 million in 1986, with an annual growth rate of 2.6%. The country's infant mortality rate is 12.1%, and life expectancy stands at 54 years. The literacy rate is 29%. The work force of 34.1 million is distributed among agriculture (74%), industry (11%), and services (15%). The gross domestic product (GDP) is US$15.3 billion, with a real annual growth rate of 3.6% and a per capita GDP of $151. As one of the world's poorest and most densely populated countries, Bangladesh must struggle to produce domestically and import enough food to feed its rapidly increasing population. The country's transportation, communications, and power infrastructure is relatively poorly developed. Since 1971, an emphasis has been placed on developing new industrial capacity and rehabilitating the economy. The statist economic model, including nationalization of the key jute industry, had resulted in inefficiency and economic stagnation. At present, rapid population growth, inefficiency in the public sector, and restricted natural resources and capital continue to impede economic development. On the other hand, economic policies aimed at encouraging private enterprise and investment, denationalizing public industries, reinstating budgetary discipline, and mobilizing domestic resources are beginning to have an impact. Underemployment remains a serious problem, and there are growing concerns regarding the ability of the agricultural sector to absorb additional manpower. To reach the goal of 10% annual industrial growth for the 1986-89 period, the government is aggressively seeking foreign investment.
Arsenic-induced myocardial injury: protective role of Corchorus olitorius leaves.
Das, Anup K; Sahu, Ranabir; Dua, Tarun K; Bag, Sujit; Gangopadhyay, Moumita; Sinha, Mohit K; Dewanjee, Saikat
2010-05-01
Groundwater arsenic contamination in Bangladesh and its adjoining part of West Bengal (India) is reported to be the biggest arsenic calamity in the world in terms of the affected population. Tossa jute, Corchorus olitorius is a popular crop of this arsenic prone population. The present study was undertaken to evaluate the protective effect of aqueous extract of C. olitorius leaves (AECO) against sodium arsenite (NaAsO(2)) induced cardiotoxicity in experimental rats. The animals exposed to NaAsO(2) (10mg/kg, p.o.) for 10days exhibited a significant inhibition (p<0.01) of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase and reduced glutathione level in myocardial tissues of rats. In addition, it significantly increased (p<0.01) oxidized glutathione, malondialdehyde and protein carbonyl content in myocardial tissue. Treatment with AECO (50 and 100mg/kg, p.o.) for 15days prior to NaAsO(2)-intoxication significantly protected cardiac tissue against arsenic-induced oxidative impairment. In addition, AECO pretreatment significantly prevented NaAsO(2) induced hyperlipidemia, cardiac arsenic content and DNA fragmentation in experimental rats. Histological studies of myocardial tissue supported the protective activity of the AECO. The results concluded that the treatment with AECO prior to arsenic intoxication has significant protecting effect against arsenic-induced myocardial injury. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Investigation on Suitability of Natural Fibre as Replacement Material for Table Tennis Blade
NASA Astrophysics Data System (ADS)
Arifin, A. M. T.; Fahrul Hassan, M.; Ismail, A. E.; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Haq, R. H. Abdul; Rahman, M. N. A.; Yunos, M. Z.; Amin, M. H. M.
2017-08-01
This paper presents an investigation of suitability natural fibre as replacement material for table tennis blade, due to low cost, lightweight and apparently environmentally. Nowadays, natural fibre are one of the materials often used in replaced the main material on manufacturing sector, such as automotive, and construction. The objective of this study is to investigate and evaluate the suitability natural fiber materials to replace wood as a structure on table tennis blade. The mechanical properties of the different natural fibre material were examined, and correlated with characteristic of table tennis blade. The natural fibre selected for the study are kenaf (Hibiscus Cannabinus), jute, hemp, sisal (Agave Sisalana) and ramie. A further comparison was made with the corresponding properties of each type of natural fiber using Quality Function Deployment (QFD) and Theory of Inventive Problem Solving (TRIZ). TRIZ has been used to determine the most appropriate solution in producing table tennis blade. The results showed the most appropriate solution in producing table tennis blade using natural fibre is kenaf natural fibre. The selected on suitability natural fibre used as main structure on table tennis blade are based on the characteristics need for good performance of table tennis blade, such as energy absorption, lightweight, strength and hardness. Therefore, it shows an opportunity for replacing existing materials with a higher strength, lower cost alternative that is environmentally friendly.
Adak, Subhas; Adhikari, Kalyan; Brahmachari, Koushik
2016-09-01
Fly ash exhaust from Kolaghat thermal power plant, West Bengal, India,?? affects the areas within the radius of 3 - 4 km. Land information system indicated that surface texture within 4 km was silty loam and clay content increased with increase of distance. Soil pH was alkaline (7.58-8.01) in affected circles, whereas soil was acidic (5.95-6.41) in rest of block. Organic carbon (OC) is roving from 0.36 to 0.64% in the nearer circles which is lesser from others. The present Crop suitability analysis revealed that 96.98 % area was suitable (S1) for maize, sesame, jute, whereas these were cultivated in less than 1% of land. Flowers are the best suitable (S1) in 88.9 % but it was grown in 6.02 % area.? The present rice area within 4 km of KTPP is showing moderately suitable (S2) and S1 for the rest. Wheat is moderately suitable (S2) in the almost all the circles.? Cultivation of vegetable crops is limited in the affected circles while the highly suitable (S1) comprises 67.49 % for the remaining areas though it covered only 6.01 % of the block.? This evaluation precisely improves more than 300% from the earlier cropping intensity of 177.95 %. Suitability based land use allocation serves as stepping stone to promote agricultural sustainability. Geographic information system (GIS) model has been developed to assess site specific crop suitability for sustainable agricultural planning.
Characterization of wood polymer composite and design of root trainer
NASA Astrophysics Data System (ADS)
Chitra, K. N.; Abhilash, R. M.; Chauhan, Shakti Singh; Venkatesh, G. S.; Shivkumar, N. D.
2018-04-01
Biopolymers have received much attention of researchers due to concerns over disposal of plastics, greenhouse gas emission and environmental problems associated with it. Polylactic Acid (PLA) is one of the thermoplastic biopolymer made from lactic acid by using agricultural resources. PLA has received significant interest due to its competitive properties when compared to commodity plastics such as Polyethylene, Polypropylene and Polystyrene. PLA has interesting properties such as high stiffness, UV stability, clear and glossy finish. However, application of PLA is restricted due to its brittle nature. Engineering and thermal properties of PLA can be improved by reinforcing fibres and fillers. Lignocelluloses or natural fibres such as Jute, Hemp, Bamboo, Sisal and Wood fibres can be used as reinforcement. By using natural fibres, a very bio-compostable composite can be produced. In the present study, short fibres from Melia Dubia wood were extracted and used as reinforcement to PLA Bio-Polymer matrix. Characterization of developed composite was obtained using tensile and flexural tests. Tensile test simulation of composite was performed using Altair Hypermesh, a Finite Element (FE) preprocessor and LS-Dyna an explicit FE solver. MAT_01, an elastic material model in LS-Dyna was used to model the behaviour. Further, the design of Root Trainer using developed composite has been explored. A Root Trainer is an aid to the cultivation of seedlings in nurseries. Root Trainer made by using developed composite has advantage of biodegradability and eco-friendly nature.
Egyptian plant species as new ozone indicators.
Madkour, Samia A; Laurence, J A
2002-01-01
The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).
Radwan, Asma; Zaid, Abdel Naser; Jaradat, Nidal; Odeh, Yousef
2017-04-01
The clinical implications of food-drug interactions may have to be taken seriously into account with oral drugs administration in order to minimize variations in drug bioavailability. Food intake may alter physiological changes in the pH and viscosity of the gastrointestinal lumen, which could affect the oral absorption of drugs. The aim of the present study was to have an insight on the effect of media parameters: viscosity and pHon the oral absorption of ciprofloxacin HCl from solid formulations using a model food: Corchorus olitorius (Jute) Soup. In vitro disintegration and dissolution rates of ciprofloxacin tablet were evaluated using compendia buffer media in the presence/absence of C. olitorius leaves. These in vitro data were then input to GastroPlus™ to predict ciprofloxacin absorption profiles under fasted and fed states. The present study demonstrated the significance of luminal pH and viscosity on the dissolution and disintegration of solid formulations following postprandial ingestion of the viscous soup. The tablets showed prolonged disintegration times and reduced dissolution rates in this soup, which could be attributed to the postprandial elevation in media viscosity and reduced solubility at elevated gastricpH. The predicted model under fed state showed no impact on AUC but prolonged T max and a decrease in C max . Concomitant intake of C. olitorius soup with ciprofloxacin might have negative effect on the rate of drug release from conventional immediate release tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of degumming time on silkworm silk fibre for biodegradable polymer composites
NASA Astrophysics Data System (ADS)
Ho, Mei-po; Wang, Hao; Lau, Kin-tak
2012-02-01
Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, Z. M.
2010-11-01
A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.
Comparative study of the germination of Ulva prolifera gametes on various substrates
NASA Astrophysics Data System (ADS)
Geng, Huixia; Yan, Tian; Zhou, Mingjiang; Liu, Qing
2015-09-01
Since 2007, massive green tides have occurred every summer in the southern Yellow Sea (YS), China. They have caused severe ecological consequences and huge economic losses. Ulva prolifera originated from Subei Shoal of the YS was confirmed as causative species of the green tides. The Porphyra yezoensis aquaculture rafts in the Subei Shoal have been highly suspected to be the "seed bed" of the green tides, because U. prolifera abundantly fouled the Porphyra yezoensis aquaculture facilities. Besides, various habitats of aquaculture ponds along the Jiangsu coastline and mudflat in the Subei Shoal were proposed to be possible sources of green tides. To understand the "seed" of the green tides in the southern YS and mitigate the original biomass of the green tide, various materials used as substrates for the germination of U. prolifera gametes were tested in this study. Culture experiments showed the following: 1) materials used in the P. yezoensis rafts (plastic, bamboo, jute rope, plastic rope, nylon netting, and plastic netting) displayed a significantly higher germination rate than those associated with mudflats and aquaculture ponds (mud, sand and rock); 2) plastics were the best substrates for the germination of U. prolifera gametes; 3) poor germination was found on old fronds of U. prolifera,, and rubber showed inhibitory effect on germination. The success in germination on P. yezoensis rafts related materials supports the notion that these mariculture structures may be involved in acting as a seed bed for green tide macroalgae. The lack of germination on rubber surfaces may suggest one way to limit the proliferation of early stages of U. prolifera.
NASA Astrophysics Data System (ADS)
Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.
2013-05-01
Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.
NASA Astrophysics Data System (ADS)
Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.
2018-01-01
The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.
The Pharmacological Activity of Extracts of Cotton Dust
Davenport, Anne; Paton, W. D. M.
1962-01-01
Aqueous extracts prepared from dust collected in the card-rooms of several cotton mills have been prepared and found to contain activity which contracts the smooth muscle of guinea-pig ileum, guinea-pig trachea, rat stomach strip, and rat duodenum. The extracts contained an unknown contractor substance which was dialysable, resistant to boiling for one hour, and not destroyed by the action of proteolytic enzymes. They also contained a small amount of 5-hydroxytryptamine. One of the dust samples also contained histamine, but it could not be detected in the other samples, one of which was known to possess bronchoconstrictor properties in man. The particulate material, even after repeated washing, was found to have some stimulant action on guinea-pig ileum. There was no evidence for the release of histamine by the extracts in either cats or guinea-pigs, although a very small amount was released in rats. Jute dust is much less active than cotton dust, and the activity differs qualitatively. Cotton dust extracts were found to have pyrogenic activity but it is unlikely that pyrogens were responsible for the smooth-muscle contractor properties. Experiments with whole animals suggest that although smooth-muscle contracting substances were present in the extracts, it is possible that the symptoms of byssinosis are caused by the release of some other active bronchoconstrictor substance in the tissues. The mechanism of the release is not known; it may be caused by a soluble principle in the extract or due to the presence of particulate matter in the dust. Images PMID:13883719
NASA Astrophysics Data System (ADS)
Pandey, Apoorva; Sadavarte, Pankaj; Rao, Anand B.; Venkataraman, Chandra
2014-12-01
Dispersed traditional combustion technologies, characterized by inefficient combustion and significant emissions, are widely used in residential cooking and "informal industries" including brick production, food and agricultural product processing operations like drying and cooking operations related to sugarcane juice, milk, food-grain, jute, silk, tea and coffee. In addition, seasonal agricultural residue burning in field is a discontinuous source of significant emissions. Here we estimate fuel consumption in these sectors and agricultural residue burned using detailed technology divisions and survey-based primary data for 2010 and projected between 1996 and 2015. In the residential sector, a decline in the fraction of solid biomass users for cooking from 79% in 1996 to 65% in 2010 was offset by a growing population, leading to a nearly constant population of solid biomass users, with a corresponding increase in the population of LPG users. Emissions from agriculture followed the growth in agricultural production and diesel use by tractors and pumps. Trends in emissions from the informal industries sector followed those in coal combustion in brick kilns. Residential biomass cooking stoves were the largest contributors to emissions of PM2.5, OC, CO, NMVOC and CH4. Highest emitting technologies of BC were residential kerosene wick lamps. Emissions of SO2 were largely from coal combustion in Bull's trench kilns and other brick manufacturing technologies. Diesel use in tractors was the major source of NOx emissions. Uncertainties in emission estimates were principally from highly uncertain emission factors, particularly for technologies in the informal industries.
Hangman's fracture: a historical and biomechanical perspective.
Rayes, Mahmoud; Mittal, Monika; Rengachary, Setti S; Mittal, Sandeep
2011-02-01
The execution technique of hanging, introduced by the Angle, Saxon, and Jute Germanic tribes during their invasions of the Roman Empire and Britain in the 5th century, has remained largely unchanged over time. The earliest form of a gallows was a tree on which prisoners were hanged. Despite the introduction of several modifications such as a trap door, the main mechanism of death remained asphyxiation. This created the opportunity for attempted revival after the execution, and indeed several well-known cases of survival following judicial hanging have been reported. It was not until the introduction of the standard drop by Dr. Samuel Haughton in 1866, and the so-called long drop by William Marwood in 1872 that hanging became a standard, humane means to achieve instantaneous death. Hangmen, however, fearing knot slippage, started substituting the subaural knot for the traditional submental knot. Subaural knots were not as effective, and cases of decapitation were recorded. Standardization of the long drop was further propagated by John Berry, an executioner who used mathematical calculations to estimate the correct drop length for each individual to be hanged. A British committee on capital sentences, led by Lord Aberdare, studied the execution method, and advocated for the submental knot. However, it was not until Frederic Wood-Jones published his seminal work in 1913 that cervical fractures were identified as the main mechanism of death following hanging in which the long drop and a submental knot were used. Schneider introduced the term "hangman's fracture" in 1965, and reported on the biomechanics and other similarities of the cervical fractures seen following judicial hangings and those caused by motor vehicle accidents.
NASA Astrophysics Data System (ADS)
Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.
2015-07-01
In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.
MULCHES AND OTHER COVER MATERIALS TO REDUCE WEED GROWTH IN CONTAINER-GROWN NURSERY STOCK.
Rys, F; Van Wesemael, D; Van Haecke, D; Mechant, E; Gobin, B
2014-01-01
Due to the recent EU-wide implementation of Integrated Pest Management (IPM), alternative methods to reduce weed growth in container-grown nursery stock are needed to cut back the use of herbicides. Covering the upper layer of the substrate is known as a potential method to prevent or reduce weed growth in plant containers. As a high variety of mulches and other cover materials are on the market, however, it is no longer clear for growers which cover material is most efficient for use in containers. Therefore, we examined the effect on weed growth of different mulches and other cover materials, including Pinus maritima, P. sylvestris, Bio-Top Basic, Bio-Top Excellent, coco chips fine, hemp fibres, straw pellets, coco disk 180LD and jute disk. Cover materials were applied immediately after repotting of Ligustrum ovalifolium or planting of Fagus sylvatica. At regular times, both weed growth and side effects (e.g., plant growth, water status of the substrate, occurrence of mushrooms, foraging of birds, complete cover of the substrate and fixation) were assessed. All examined mulches or other cover materials were able to reduce weed growth on the containers during the whole growing season. Weed suppression was even better than that of a chemical treated control. Although all materials showed some side effects, the impact on plant growth is most important to the grower and depends not only on material characteristics (e.g., biodegradation, nutrient leaching and N-immobilisation) but also on container size and climatic conditions. In conclusion, mulches and other cover materials can be a valuable tool within IPM to lower herbicide use. To enable a deliberate choice of which cover material is best used in a specific situation more research is needed on lifespan and stability as well as on economic characteristics of the materials.
Firework injuries: a ten-year study.
Puri, Vinita; Mahendru, Sanjay; Rana, Roshani; Deshpande, Manish
2009-09-01
Fireworks are used worldwide to celebrate popular events (e.g. festivals, official celebrations, weddings). The festival of lights (Diwali) is celebrated with fireworks in India. During this period, many patients from all age groups present to hospital with injuries due to fireworks. Prevalence, period of occurrence, sex and age variation, adult supervision, causative fireworks, mode of lighting, age groups prone to injury, patterns of injury caused by individual fireworks, and the body parts injured were studied. One hundred and fifty-seven cases (92 retrospective, 65 prospective) with injury due to fireworks presenting to the Department of Plastic Surgery at KEM Hospital between 1997 and 2006 were studied. The prevalence of injuries has decreased steadily over the last 10 years (41 cases in 1997, 3 cases in 2006). The maximum number of injuries (35%) was seen in the age group 5-14 years; 92% of these children were unsupervised. The commonest cause of injury was firework misuse (41% of cases), followed by device failure (35%). Device failure was commonest with flares/fountains (ground firework emitting sparks upwards) and aerial devices. Flare/fountains caused most injury (39%), sparklers the least (0.6%). Flare/fountains, ground spinners, sparklers, and gunpowder (explosive material from cracker, obtained by tearing paper wrapper and obtaining chemicals) caused only soft tissue burns; stringbombs (high-intensity fire cracker made by wrapping chemicals with jute strings/coir in layers) and rockets (aerial device that zooms upwards and bursts) caused blast injuries, leading to soft tissue disruption and bony injuries. Emergency surgery was done if indicated: tendon and/or neurovascular repair, fracture fixation, flap cover or amputation. Superficial burns were treated with dressings. Certain wounds needed only thorough cleansing of the wound and primary suturing. We concluded that, over a 10-year period, the prevalence of firework injury decreased due to increased awareness in the community. Aggressive awareness campaigns by government and non-government organisations was the cause. We can minimise the number and severity of accidents by raising awareness regarding safety precautions, encouraging professional displays and motivating manufacturers to adhere to strict quality control.
NASA Astrophysics Data System (ADS)
Backus, L.; Giordanengo, J.; Sacatoro, I.
2013-12-01
The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., < 40%) is severe and often associated with roads, water supply systems, and loss of native cloud forests followed by burning and cultivation of food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working as planned. For comparison of techniques, we will consider installing check dams in comparable gullies. The October 2013 project will also focus on training the community how to conduct erosion control site assessments, design site-appropriate structures, and implement erosion control and revegetation plans. Following the training, the community will teach these skills to adjacent villages.
NASA Astrophysics Data System (ADS)
Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.
2010-03-01
This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source contributions to OC when different biomass profiles were used. The majority of OC was unapportioned to primary sources and was estimated to be of secondary origin, while biomass combustion was the next-largest source of OC. The CMB apportionment of EC to primary sources was unstable due to the diversity of biomass burning conditions in the region. The model results suggested that biomass burning and fossil fuel were important contributors to EC, but could not reconcile their relative contributions.
Islam, Qazi Shafayetul; Islam, Md Akramul; Islam, Shayla; Ahmed, Syed Masud
2015-12-24
The National Tuberculosis (TB) Control Programme (NTP) of Bangladesh succeeded in achieving the dual targets of 70 % case detection and 85 % treatment completion as set by the World Health Organization. However, TB prevention and control in work places remained largely an uncharted area for NTP. There is dearth of information regarding manufacturing workers' current knowledge, attitudes and practices (KAP) on pulmonary TB which is essential for designing a TB prevention and control programme in the workplaces. This study aimed to fill-in this knowledge gap. This cross-sectional survey was done in multiple workplaces like garment factories, jute mills, bidi/tobacco factories, flour mills, and steel mills using a multi-stage sampling procedure. Data on workers' KAP related to pulmonary TB were collected from 4800 workers in face-to-face interview. The workers were quite knowledgeable about symptoms of pulmonary TB (72 %) and free- of-cost sputum test (86 %) and drug treatment (88 %), but possessed superficial knowledge regarding causation (4 %) and mode of transmission (48 %). Only 11 % knew about preventive measures e.g., taking BCG vaccine and/or refraining from spitting here and there. Knowledge about treatment duration (43 %) and consequences of incomplete treatment (11 %) was poor. Thirty-one percent were afraid of the disease, 21 % would feel embarrassed (and less dignified) if they would have TB, and 50 % were afraid of isolation if neighbours would come to know about it. Workers with formal education (AOR 1.92; 95 % CI 1.61, 2.29) and exposure to community health workers (CHW) (AOR 31.60; 95 % CI 18.75, 53.35) were more likely to have TB knowledge score ≥ mean. Workers with knowledge score ≥ mean (AOR = 1.91; 95 % CI:1.44, 2.53) and exposure to CHWs either alone (AOR = 42.4; 95 % CI: 9.94, 180.5) or in combination with print media (AOR = 37.35; 95 % CI: 9.1, 180.5) were more likely to go to DOTS centre for treatment . Only around 43 % had sputum examination despite having chronic cough of ≥ 3 weeks duration. The workers had inadequate knowledge regarding its causation, transmission and prevention which may interfere with appropriate treatment-seeking for chronic cough including sputum test. NTP needs to be cognizant of these factors while designing a workplace TB prevention and control programme for Bangladesh.
[Tuscany mesothelioma registry (1988-2000): evaluation of asbestos exposure].
Gorini, G; Silvestri, S; Merler, E; Chellini, E; Cacciarini, V; Seniori Costantini, A Seniori
2002-01-01
The Tuscany Mesothelioma Register (ARTMM) records pleural malignant mesothelioma cases of Tuscany residents, diagnosed by histological, cytological, or clinical (radiography or computerized tomography) examinations. The ARTMM began in 1988 and estimates mesothelioma incidence in Tuscany and collects information on past asbestos exposure of mesothelioma cases. The aim of this paper was to describe the incidence of pleural mesothelioma cases in Tuscany and to analyse their possible past asbestos exposures. We considered pleural mesothelioma cases recorded in ARTMM in the period 1988-2000 and interviews collected for these cases. In order to identify past asbestos exposure in the occupational and non-occupational history of patients, interviews were carried out using a standardised questionnaire. In the period 1988-2000, 494 pleural malignant mesothelioma cases were recorded in the ARTMM; 82% were males. In the periods 1988-1993, 1994-1997, 1998-2000 the incidence rates, standardised on the Italian population (per 100,000), were respectively 1.15, 1.57, 2.58 among males; 0.29; 0.27; 0.29 among females. Information on occupational history was collected for 418 mesothelioma patients (85% of recorded cases): 173 mesothelioma cases were directly interviewed; for 245 cases relatives or work colleagues were interviewed. Occupational asbestos exposure was ranked as certain, probable or possible in 72% of the interviewed cases (80% of males; 20% of females). Environmental and non-occupational asbestos exposure was identified in 1% of males, and 3% of females. In 24% of the interviewed cases (15% of males; 74% of females) no known asbestos exposure was identified. Occupational asbestos exposure occurred in maritime activities (shipyards, dock work, merchant and regular Navy), the building industry, railway carriage construction and maintenance, rail transport, textile industries (mainly rag sorting), electricity production, asbestos cement manufacture, chemical, iron and steel industries and in glass manufacturing. In Tuscany two areas are distinguished for their well-documented and massive use of asbestos: the coastal areas (Livorno and Massa Carrara) for maritime activities, and the areas of Pistoia and Arezzo for railway carriage construction and repair. Mesothelioma incidence rates in these areas are the highest in the whole region. Further investigation is needed in order to identify unknown asbestos uses and consequent exposure, in particular for females. Uncertainty as regards occurrence of asbestos exposure persists in the textile industries where the mesothelioma epidemics have not yet declined. Research hypotheses are addressed on the re-use of jute bags previously containing asbestos, therefore collection of further information on periods and methods of this recycling activity is essential.
1985-05-01
In this discussion of India attention is directed to the following: the people; geography; history; government; political conditions; the economy; foreign relations (Pakistan and Bangladesh, China, and the Soviet Union); defense; and the relations between the US and India. In 1983 India's population was estimated at 746 million with an annual growth rate of 2.24%. The infant mortality rate was estimated at 116/1000 in 1984 with a life expectancy of 54.9 years. Although India occupies only 2.4% of the world's land area, it supports nearly 15% of the world's population. 2 major ethnic strains predominate in India: the Aryan in the north and the Dravidian in the south, although the lines between them are blurred. India dominates the South Asian subcontinent geographically. The people of India have had a continuous civilization since about 2500 B.C., when the inhabitants of the Indus River Valley developed an urban culture based on commerce, trade, and, to a lesser degree, agriculture. This civilization declined about 1500 B.C. and Aryan tribes originating in central Asia absorbed parts of its culture as they spread out over the South Asian subcontinent. During the next few centuries, India flourished under several successive empires. The 1st British outpost in South Asia was established in 1619 at Surat on the northwestern coast of India. The British gradually expanded their influence until, by the 1850s, they controlled almost the entire area of present-day India. Independence was attained on August 15, 1947, and India became a dominion within the Commonwealth of Nations with Jawaharlal Nehru as prime minister. According to its constitution, India is a "sovereign socialist secular democratic republic." Like the US, India has a federal form of government, but the central government in India has greater power in relation to its states, and government is patterned after the British parliamentary system. The Congress Party has ruled India since independence with the exception of the 1977-79 period of Janta Party rule. Domestically, India has made much progress since independnece. A relatively sophisticated industrial base and a large pool of skilled labor have been created, but agriculture remains the crucial sector and supports 70% of the people. It contributes about 40% of gross national product (GNP). Only modest gains in per capita GNP have been achieved. Agricultural production has been increasing at an average annual rate of around 3%. Cotton and jute textile production continues to be the most important industry, but public sector firms in steel, heavy industry, and chemicals have become important since 1960. Supreme command of India's armed forces rests with the president but actual responsibility for national defense lies with the Cabinet Committee for Political Affairs. The US and India have aimed at cordial relations. The US is India's largest trading partner and has been an important source of foreign economic assistance.
Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials
NASA Astrophysics Data System (ADS)
Dittenber, David B.
The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination theory, finite element method, and Castigliano's method in unidirectional tension and compression, but are less accurate for the more bond-dependent flexural and shear properties. With the acknowledged NFRP matrix bonding issues, the over-prediction of these theoretical models indicates that the flexural stiffness of the kenaf composite may be increased by up to 40% if a better bond between the fiber and matrix can be obtained. The sustainability of NFRPs was examined from two perspectives: environmental and socioeconomic. While the kenaf fibers themselves possess excellent sustainability characteristics, costing less while possessing a lesser environmental impact than the glass fibers, the vinyl ester resin used in the composites is environmentally hazardous and inflated the cost and embodied energy of the composite SIPs. Consistent throughout all the designs was a correlation between the respective costs of the raw materials and the respective environmental impacts. The socioeconomic study looked at the sustainability of natural fiber reinforced composite materials as housing materials in developing countries. A literature study on the country of Bangladesh, where the fibers in this study were grown, showed that the jute and kenaf market would benefit from the introduction of a value-added product like natural fiber composites. The high rate of homeless and inadequately housed in Bangladesh, as well as in the US and throughout the rest of the world, could be somewhat alleviated if a new, affordable, and durable material were introduced. While this study found that natural fiber composites possess sufficient mechanical properties to be adopted as primary structural members, the two major remaining hurdles needing to be overcome before natural fiber composites can be adopted as housing materials are the cost and sustainability of the resin system and the moisture resistance/durability of the fibers. (Abstract shortened by UMI.)
Experimental and numerical characterization of scalable cellulose nano-fiber composite
NASA Astrophysics Data System (ADS)
Barari, Bamdad
Fiber-reinforced polymer composites have been used in recent years as an alternative to the conventional materials because of their low weight, high mechanical properties and low processing temperatures. Most polymer composites are traditionally made using reinforcing fibers such as carbon or glass fibers. However, there has been recent interest in making these reinforcing fibers from natural resources. The plant-derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties at the nano-scale that are much superior to the mechanical properties of the traditional natural fibers (such as jute, hemp, kenaf, etc) used in the natural-fiber based polymer composites. Because CNF is bio-based and biodegradable, it is an attractive 'green' alternative for use in automotive, aerospace, and other engineering applications. However, efforts to produce CNF based nano-composites, with successful scaling-up of the remarkable nanoscale properties of CNF, have not met with much success and form an active area of research. The main goals of this research are to characterize the scalable CNF based nano composites using experimental methods and to develop effective models for flow of polymeric resin in the CNF-based porous media used during the proposed manufacture of CNF nano-composites. In the CNF composite characterization section, scalable isotropic and anisotropic CNF composites were made from a porous CNF preforms created using a freeze drying process. Formation of the fibers during freeze-drying process can change the micro skeleton of the final preform structure as non-aligned or isotropic and aligned or anisotropic CNF. Liquid Composite Molding (LCM) processes form a set of liquid molding technologies that are used quite commonly for making the conventional polymer composites. An improvised vacuum-driven LCM process was used to make the CNF-based nanocomposites from CNF preforms using a 'green' epoxy resin with high bio-content. Under the topic of isotropic CNF, formation of the freeze-dried CNF preforms' porous network strongly affects the mechanical, microstructural and tribological properties of the composite, therefore experimental testing was performed to characterize the effects of pore structure on global properties of isotropic CNF composites. Level of curing was investigated by experimental methods such as DSC in order to analyze its effects on the mechanical properties. The causes of failure in the composites were discussed by analyzing the SEM micrographs of fractured surfaces. The investigations revealed that the silane treated samples show superior mechanical behavior and higher storage modulus compared to the untreated (no silane) samples. The DMA and DSC results indicated a reduction in the glass transition temperature for the CNF composites compared to the pure resin samples. The tensile results showed higher elastic moduli in composites made from silane treated CNF preforms compared to those made from non silane-treated preforms. The tribological behavior of the silylated CNFs composites showed lower coefficient of friction and wear volumes than the neat bio-epoxy due to the formation of a transfer film on the mating surfaces, which led to a decrease in the 'direct contact' of the composite with the asperities of the hard metallic counterface. Under the topic of anisotropic CNF nanocomposites, a recently-discovered new type of CNF preform with more-aligned pore structure was used in our improvised LCM process to make the CNF-based anisotropic nanocomposite. The effect of such aligned pore structure on the mechanical and microstructural properties of CNF-based nanocomposites was investigated. As before, we used the tensile test, DMA and SEM to characterize this new material. Our investigation revealed that anisotropic CNF preform improved the overall mechanical properties of CNF composites due to better interfacing between the CNF and resin inside aligned pore structure of anisotropic CNF. Also, DMA results showed an improvement in the glass transition temperature of the anisotropic samples compared to the isotropic ones. For flow modeling in the CNF-based porous medium, the closure formulation, developed as a part of the derivation of Darcy's law developed by Whitaker [1], was used to develop novel numerical and experimental methods for estimating the permeability and absorption characteristics of a porous medium with a given pore-level microstructure. The permeability of such a porous medium was estimated numerically while the absorption characteristics were analyzed through experiments. In order to use real micrograph in permeability simulations, 2D SEM pictures of the CNF-based porous media were considered. The falling head permeameter was used for measuring the experimental permeability in order to test the accuracy of the permeability tensor obtained by the proposed numerical simulation. The permeability values were also compared with the theoretical models of Kozeny-Carman. A good agreement between the numerical, experimental and analytical methods demonstrated the accuracy of the closure formulation and the resulting simulation. These results also present the closure formulation based method as a viable method to estimate the permeability of porous media using 2D SEM micrographs; such a method harnesses the micro-macro coupling and is marked with absence of any constitutive-relation based assumption for such upscaling. Such a method is also faster, less expensive and less problematic than the corresponding 3D micro-CT scan based method because of much smaller degrees-of-freedom, memory and storage requirements. Under the absorption characteristics study, absorption characteristics of paper-like CNF porous medium was modeled using theoretical derivation of governing equation for single-phase flow and swelling behavior and absorption coefficient were investigated through experiments. In derivation part, unique form of mass conservation was developed using volume averaging theorem in the swelling, liquid-absorbing CNF-based preform. The case of the absorption coefficient, b being unity, which corresponds to the liquid absorption rate into fibers being equal to the fiber expansion rate, results in the classical form of the continuity equation that is originally derived for a rigid, non-deforming porous medium. The value of b was determined using a novel dipping experiment conducted with the help of a microbalance and was found to be unity for flow models in swelling porous media made of the CNF.