Firestone, M.A.; Mau, T.K.; Conn, R.W.
1985-04-01
A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.
Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.
1985-03-01
The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.
Modular tokamak magnetic system
Yang, Tien-Fang
1988-01-01
A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.
Wootton, A.J.
1993-04-01
This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.
Completely bootstrapped tokamak
Weening, R.H. ); Boozer, A.H. )
1992-01-01
Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.
NASA Astrophysics Data System (ADS)
White, R. B.
2008-05-01
This lecture gives a basic introduction to magnetic £elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi£cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.
Transport in gyrokinetic tokamaks
Mynick, H.E.; Parker, S.E.
1995-01-01
A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ``gyrokinetic tokamak`` is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/{rho}{sub s} {approx_gt} 64) with minor radius, with current, and with a/{rho}{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} {approximately} 10) of k dominate the transport, and for each, only a handful (N{sub p} {approximately} 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.
Cowley, S.
1998-11-14
Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.
Tritium catalyzed deuterium tokamaks
Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.
1984-04-01
A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).
Energy confinement in tokamaks
Sugihara, M.; Singer, C.
1986-08-01
A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.
Polarization spectroscopy of tokamak plasmas
Wroblewski, D.
1991-09-01
Measurements of polarization of spectral lines emitted by tokamak plasmas provide information about the plasma internal magnetic field and the current density profile. The methods of polarization spectroscopy, as applied to the tokamak diagnostic, are reviewed with emphasis on the polarimetry of motional Stark effect in hydrogenic neutral beam emissions. 25 refs., 7 figs.
The tokamak as a neutron source
Hendel, H.W.; Jassby, D.L.
1989-11-01
This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs.
Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M
2008-04-23
Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.
Sawtooth oscillation in tokamaks
Park, W.; Monticello, D.A.
1989-03-01
A three-dimensional nonlinear toroidal full MHD code, MH3D, has been used to study sawtooth oscillations in tokamaks. The profile evolution during the sawtooth crash phase compares well with experiment, but only if neoclassical resistivity is used in the rise phase. (Classical resistivity has been used in most of the previous theoretical sawtooth studies.) With neoclassical resistivity, the q value at the axis drops from 1 to about 0.8 before the crash phase, and then resets to 1 through a Kadomtsev-type complete reconnection process. This ..delta..q/sub 0/ approx. = 0.2 is much larger than ..delta..q/sub o/ approx. = 0.01, which is obtained if classical resistivity is used. The current profile is strongly peaked at the axis with a flat region around the singular surface, and is similar to the Textor profile. To understand this behavior, approximate formulas for the time behavior of current and q values are derived. A functional dependence of sawtooth period scaling is also derived. A semi-empirical scaling is found which fits the experimental data from various tokamaks. Some evidence is presented which indicates that the fast crash time is due to enhanced effective resistivity inside the singular current sheet, generated by, e.g., microinstability and electron parallel viscosity with stochastic fields at the x-point. 16 refs., 5 figs.
NASA Astrophysics Data System (ADS)
Doggett, J.; Salpietro, E.; Shatalov, G.
1991-07-01
The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.
Causes of major tokamak disruptions
White, R.B.; Monticello, D.A.
1980-07-01
The nonlinear saturation theory of the tearing mode is used to examine the necessary conditions for the occurrence of a major tokamak disruption. The results are compared with full three-dimensional numerical simulations, and with experimental data.
The ARIES tokamak reactor study
Not Available
1989-10-01
The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.
Moving Divertor Plates in a Tokamak
S.J. Zweben, H. Zhang
2009-02-12
Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.
Resistive instabilities in tokamaks
Rutherford, P.H.
1985-10-01
Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.
Wolf, G.H.
1996-03-01
Plasma-wall interaction, heat removal and ash exhaust have emerged as the dominant problems still to be solved in order to achieve ignition and - even more difficult - to maintain a state of self-sustained thermo-nuclear burn. This is of particular delicacy, since those operational regimes which yield the best energy confinement correspond to an even better particle confinement and confinement of impurities, which then tend to accumulate in the plasma core and to result in disruption or degradation of the tokamak discharge. Therefore, plasma-wall interaction, heat removal and particle exhaust will determine not only the structure and configuration of the plasma edge region, of the wall system and of the materials facing the plasma, but also the final choice of useful confinement regimes. Moreover, the potential effect of powerful {alpha}-particle heating on plasma stability and confinement has to be kept below critical values. For the latter requirement, a final answer can only be obtained in an ITER-type device where ignition and burn will become accessible. 72 refs., 12 figs.
Tokamak coordinate conventions: COCOS
NASA Astrophysics Data System (ADS)
Sauter, O.; Medvedev, S. Yu.
2013-02-01
Dealing with electromagnetic fields, in particular current and related magnetic fields, yields "natural" physical vector relations in 3-D. However, when it comes to choosing local coordinate systems, the "usual" right-handed systems are not necessarily the best choices, which means that there are several options being chosen. In the magnetic fusion community such a difficulty exists for the choices of the cylindrical and of the toroidal coordinate systems. In addition many codes depend on knowledge of an equilibrium. In particular, the Grad-Shafranov axisymmetric equilibrium solution for tokamak plasmas, ψ, does not depend on the sign of the plasma current Ip nor that of the magnetic field B0. This often results in ill-defined conventions. Moreover the sign, amplitude and offset of ψ are of less importance, since the free sources in the equation depend on the normalized radial coordinate. The signs of the free sources, dp/dψ and dF2/dψ (p being the pressure, ψ the poloidal magnetic flux and F=RBφ), must be consistent to generate the current density profile. For example, RF and CD calculations (Radio Frequency heating and Current Drive) require an exact sign convention in order to calculate a co- or counter-CD component. It is shown that there are over 16 different coordinate conventions. This paper proposes a unique identifier, the COCOS convention, to distinguish between the 16 most-commonly used options. Given the present worldwide efforts towards code integration, the proposed new index COCOS defining uniquely the COordinate COnventionS required as input by a given code or module is particularly useful. As codes use different conventions, it is useful to allow different sign conventions for equilibrium code input and output, equilibrium being at the core of any calculations in magnetic fusion. Additionally, given two different COCOS conventions, it becomes simple to transform between them. The relevant transformations are described in detail.
Tokamak and RFP ignition requirements
Werley, K.A.
1991-01-01
A plasma model is applied to calculate numerically transport- confinement (n{tau}{sub E}) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f{sub RAD} {approximately} 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the n{tau}{sub E} transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab.
Prospects for Tokamak Fusion Reactors
Sheffield, J.; Galambos, J.
1995-04-01
This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.
Bootstrapped tokamak with oscillating field current drive
Weening, R.H. )
1993-07-01
A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.
Microwave Tokamak Experiment: Overview and status
Not Available
1990-05-01
The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs.
Density limit disruptions in tokamaks
NASA Astrophysics Data System (ADS)
Kleva, Robert G.; Drake, J. F.
1991-02-01
Magnetohydrodynamic simulations are presented which reproduce the rapid drop in the central temperature observed during density limit disruptions in tokamaks. The loss of central confinement is triggered by edge radiation which destabilizes a q=1 kink mode. A bubble of cold plasma is injected from the edge into the center by the q=1 kink. This bubble bears a striking resemblance to the cold plasma that is observed to move from the edge into the center during density limit disruptions on the JET tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. 1, p. 433], initiating the loss of central confinement. The bubble profile produced by the q=1 kink is unstable to a broad spectrum of modes which progressively reduce the magnetic shear between the q=2 surface and the center. The q=2 mode then grows across the center, broadening the current and throwing the hot plasma to the wall.
Burn Control Mechanisms in Tokamaks
NASA Astrophysics Data System (ADS)
Hill, Maxwell; Stacey, Weston
2013-10-01
Burn control and passive safety in accident scenarios will be an important design consideration in future tokamaks, especially those used as a neutron source for fusion-fission hybrid reactors, such as the Subcritical Advanced Burner Reactor (SABR) concept. At Georgia Tech, we are developing a new burning plasma dynamics code to investigate passive safety mechanisms that could prevent power excursions in tokamak reactors. This code solves the coupled set of balance equations governing burning plasmas in conjunction with a two-point SOL-divertor model. Predictions have been benchmarked against data from DIII-D. We are examining several potential negative feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instabilities, iii) the degradation of alpha-particle confinement resulting from ripples in the toroidal field, iv) modifications to the radial current profile, v) ``divertor choking'' and vi) Type 1 ELMs.
MHD stability of tokamak plasmas
Chance, M.S. Sun, Y.C.; Jardin, S.C.; Kessel, C.E.; Okabayashi, M.
1992-08-01
This paper will give an overview of the some of the methods which are used to simulate the ideal MHD properties of tokamak plasmas. A great deal of the research in this field is necessarily numerical and the substantial progress made during the past several years has roughly paralleled the continuing availability of more advanced supercomputers. These have become essential to accurately model the complex configurations necessary for achieving MHD stable reactor grade conditions. Appropriate tokamak MHD equilibria will be described. Then the stability properties is discussed in some detail, emphasizing the difficulties of obtaining stable high {beta} discharges in plasmas in which the current is mainly ohmically driven and thus demonstrating the need for tailoring the current and pressure profiles of the plasma away from the ohmic state. The outline of this paper will roughly follow the physics development to attain the second region of stability in the PBX-M device at The Princeton Plasmas Physics Laboratory.
Comprehensive numerical modelling of tokamaks
Cohen, R.H.; Cohen, B.I.; Dubois, P.F.
1991-01-03
We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell.
Magnetic island formation in tokamaks
Yoshikawa, S.
1989-04-01
The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs.
Gyrosheath near the tokamak edge
Hazeltine, R.D.; Xiao, H.; Valanju, P.M.
1993-03-01
A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results.
Neoclassical magnetic microislands in tokamaks
Kovalishen, E.A.; Mikhailovskii, A.B.; Botov, P.V.; Shirokov, M.S.; Konovalov, S.V.; Tsypin, V.S.; Galvao, R.M.O.
2005-09-15
Possibility of existence of neoclassical magnetic microislands (island width smaller than the ion Larmor radius) in a tokamak in the banana regime is shown. The rotation frequency of such islands is found. It is shown that for the case of positive electron temperature gradient, the bootstrap current destabilizes the microislands while the polarization current leads to their stabilization. Maximally possible neoclassical microisland width is estimated.
Magnetic confinement experiment. I: Tokamaks
Goldston, R.J.
1995-08-01
Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.
Steady State Tokamak Equilibria without Current Drive
Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.
1997-11-01
Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}
Numerical tokamak turbulence project (OFES grand challenge)
Beer, M; Cohen, B I; Crotinger, J; Dawson, J; Decyk, V; Dimits, A M; Dorland, W D; Hammett, G W; Kerbel, G D; Leboeuf, J N; Lee, W W; Lin, Z; Nevins, W M; Reynders, J; Shumaker, D E; Smith, S; Sydora, R; Waltz, R E; Williams, T
1999-08-27
The primary research objective of the Numerical Tokamak Turbulence Project (NTTP) is to develop a predictive ability in modeling turbulent transport due to drift-type instabilities in the core of tokamak fusion experiments, through the use of three-dimensional kinetic and fluid simulations and the derivation of reduced models.
Physics of compact ignition tokamak designs
Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.
1986-03-01
Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.
Advanced tokamak research on the DIII-D tokamak
Chan, V.S.
1994-01-01
The objective of the planned research in advanced tokamak development on DIII-D at General Atomics, San Diego, USA. is to establish improved tokamak operation through significant improvements in the stability factor, confinement quality, and bootstrap current fraction using localized radio frequency (rf) current profile control, rf and neutral beam heating for pressure profile control, as well as control of plasma rotation and optimization of the plasma boundary conditions. Recent research results in H-mode confinement, modifications of current profiles to achieve higher confinement and higher {beta}, a new regime of improved confinement (VH-mode), and rf noninductive current drive are encouraging. In this talk, arguments will be presented supporting the need for improved performance in tokamak reactors. Experimentally observed advanced performance regimes on DIII-D will be discussed. Confinement improvement up to H = 4, where H is the ratio of energy confinement time to the ITER89-P scaling H{triple_bond} {Tau}{sub E}/{Tau}{sub E-ITER89-P}, has been achieved. In other discharges {beta}{sub N} = {beta}/(I/aB),[%-m{center_dot}{Tau}/MA] {approx_gt} 6 has been obtained. These values have so far been achieved transiently and independently. Techniques, will be described which can extend the high performance to quasi-steady-state and sustain the high H and {beta}{sub N} values simultaneously. Two high performance regimes, one in first stable regime and the other in second stable regime, have been simulated br self-consistently evolving a magnetohydrodynamic (MHD) equilibrium-transport code. Finally, experimental program plans and outstanding important physics issues will be discussed.
Linear optimal control of tokamak fusion devices
Kessel, C.E.; Firestone, M.A.; Conn, R.W.
1989-05-01
The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.
Transport equations in tokamak plasmas
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2010-05-15
Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The
The Microwave Tokamak Experiment (MTX)
Thomassen, K.I.; Cohen, B.I.; Hooper, E.B.; Lang, D.D.; Nevins, W.M.
1987-10-02
A new experimental facility is being assembled at the Lawrence Livermore National Laboratory (LLNL) for studying microwave propagation and absorption in high density plasmas. A unique feature of the facility is the free electron laser (FEL) used to generate high peak power microwaves at 250 GHz, at a repetition rate so as to produce up to 2 MW of average power for up to 30 s. Called the Microwave Tokamak Experiment (MTX), the facility will be used for studies of plasma heating, current drive, and confinement.
Breakdown in the pretext tokamak
Benesch, J.F.
1981-06-01
Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.
Predictive Modeling of Tokamak Configurations*
NASA Astrophysics Data System (ADS)
Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.
2001-10-01
The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Superconducting magnet system for the TPX Tokamak
Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.
1993-09-15
The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.
OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS
LIN-LIU,YR; STAMBAUGH,RD
2002-11-01
OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.
Power and particle exhaust in tokamaks
Stambaugh, R.D.
1998-01-01
The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER`s nominal design positions; important directions for further research are identified.
Control of Dust Inventory in Tokamaks
Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Pitcher, C. S.; Taylor, N.; Furlan, J.
2008-09-07
Particles with sizes ranging from 100 nm to 100 {mu}m are produced in tokamaks by the interaction of the plasma with the first wall materials and divertor. Dust has not yet been of a major concern in existing tokamaks mainly because their quantities are small and these devices are not nuclear facilities. However, in ITER and in future reactors, they could represent operational and potential safety issues. The aim of this paper is thus to describe the dust creation processes in the tokamak environment. The diagnostics and removal techniques that are needed to be implemented to measure and minimise the dust inventory are also presented. The integration of these techniques into a tokamak environment is also discussed.
Burn Control Mechanisms in Tokamaks
NASA Astrophysics Data System (ADS)
Hill, M. A.; Stacey, W. M.
2015-11-01
Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.
Dust measurements in tokamaks (invited)
Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.; West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.; Ratynskaia, S.
2008-10-15
Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.
Plasma Physics Regimes in Tokamaks with Li Walls
L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev
2003-08-21
Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.
Bifurcated helical core equilibrium states in tokamaks
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.
2013-07-01
Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.
Microtearing modes in tokamak discharges
NASA Astrophysics Data System (ADS)
Rafiq, T.; Weiland, J.; Kritz, A. H.; Luo, L.; Pankin, A. Y.
2016-06-01
Microtearing modes (MTMs) have been identified as a source of significant electron thermal transport in tokamak discharges. In order to describe the evolution of these discharges, it is necessary to improve the prediction of electron thermal transport. This can be accomplished by utilizing a model for transport driven by MTMs in whole device predictive modeling codes. The objective of this paper is to develop the dispersion relation that governs the MTM driven transport. A unified fluid/kinetic approach is used in the development of a nonlinear dispersion relation for MTMs. The derivation includes the effects of electrostatic and magnetic fluctuations, arbitrary electron-ion collisionality, electron temperature and density gradients, magnetic curvature, and the effects associated with the parallel propagation vector. An iterative nonlinear approach is used to calculate the distribution function employed in obtaining the nonlinear parallel current and the nonlinear dispersion relation. The third order nonlinear effects in magnetic fluctuations are included, and the influence of third order effects on a multi-wave system is considered. An envelope equation for the nonlinear microtearing modes in the collision dominant limit is introduced in order to obtain the saturation level. In the limit that the mode amplitude does not vary along the field line, slab geometry, and strong collisionality, the fluid dispersion relation for nonlinear microtearing modes is found to agree with the kinetic dispersion relation.
Ripple induced trapped particle loss in tokamaks
White, R.B.
1996-05-01
The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetric orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor and International Thermonuclear Experimental Reactor equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks.
Global gyrokinetic simulation of tokamak transport
Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T. |
1998-10-01
A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or {eta}{sub i}({eta}{sub i} {equivalent_to} {partial_derivative}{ell}nT{sub i}/{partial_derivative}{ell}n n{sub i}) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling.
Activation analysis of the compact ignition tokamak
Selcow, E.C.
1986-01-01
The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.
Tokamak power systems studies, FY 1985
Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.
1985-12-01
The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.
Tokamak Spectroscopy for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.
2000-01-01
This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.
Electron cyclotron emission diagnostics on KSTAR tokamak.
Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M
2010-10-01
A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration. PMID:21033954
Electron cyclotron emission diagnostics on KSTAR tokamak
Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.
2010-10-15
A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.
Rotation of tokamak halo currents
Boozer, Allen H.
2012-05-15
During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.
Rotation of tokamak halo currents
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
2012-05-01
During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity va(r) with respect to that of the magnetic kink, vk, where va(r) is set by the radial electric field required for ambipolarity. The plasma velocity, vpl=va+vk, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy δϕ <±π/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.
Elementary Processes Underlying Alpha Channeling in Tokamaks
NM.J. Fisch
2012-06-15
Alpha channeling in tokamaks is speculative, but also extraordinarily attractive. Waves that can accomplish this effect have been identified. Key aspects of the theory now enjoy experimental confirmation. This paper will review the elementary processes of wave-particle interactions in plasma that underlie the alpha channeling effect
Compact tokamak reactors. Part 1 (analytic results)
Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.
1996-09-13
We discuss the possible use of tokamaks for thermonuclear power plants, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First we review and summarize the existing literature. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamak power plant, by including the power required to drive the toroidal field, and considering two extremes of plasma current drive efficiency. The analytic results will be augmented by a numerical calculation which permits arbitrary plasma current drive efficiency; the results of which will be presented in Part II. Third, a scaling from any given reference reactor design to a copper toroidal field coil device is discussed. Throughout the paper the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculating electric power. We conclude that the latest published reactor studies, which show little advantage in using low aspect ratio unless remarkably high efficiency plasma current drive and low safety factor are combined, can be reproduced with the analytic model.
Toroidal Alfven wave stability in ignited tokamaks
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
Microinstabilities in weak density gradient tokamak systems
Tang, W.M.; Rewoldt, G.; Chen, L.
1986-04-01
A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.
Analysis of sawtooth relaxation oscillations in tokamaks
Yamazaki, K.; McGuire, K.; Okabayashi, M.
1982-07-01
Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.
Stabilization of tokamak plasma by lithium streams
L.E. Zakharov
2000-08-07
The stabilization theory of free-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated. While the conventional, wall-locked, resistive wall mode can be well suppressed by the flow, a new, stream-locked mode determines the limits of the flow stabilization.
Transformer Recharging with Alpha Channeling in Tokamaks
N.J. Fisch
2009-12-21
Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________
Banana drift transport in tokamaks with ripple
Linsker, R.; Boozer, A.H.
1982-01-01
Ripple transport in tokamaks is discussed for the ''banana drift'' collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and consequently the resulting transport coefficients can differ by several orders of magnitude.
Banana drift transport in tokamaks with ripple
Linsker, R.; Boozer, A.H.
1981-04-01
Ripple transport in tokamaks is discussed for the banana drift collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and the resulting transport coefficients can consequently differ by several orders of magnitude.
UCLA Tokamak Program Close Out Report.
Taylor, Robert John
2014-02-04
The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.
INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS
HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M
2003-10-01
OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.
Spontaneous generation of rotation in tokamak plasmas
Parra Diaz, Felix
2013-12-24
Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.
Tokamak startup with electron cyclotron heating
Holly, D J; Prager, S C; Shepard, D A; Sprott, J C
1980-04-01
Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.
NASA Astrophysics Data System (ADS)
Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.
2009-05-01
Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.
Banana orbits in elliptic tokamaks with hole currents
NASA Astrophysics Data System (ADS)
Martin, P.; Castro, E.; Puerta, J.
2015-03-01
Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.
Microtearing modes in spherical and conventional tokamaks
NASA Astrophysics Data System (ADS)
Moradi, S.; Pusztai, I.; Guttenfelder, W.; Fülöp, T.; Mollén, A.
2013-06-01
The onset and characteristics of microtearing modes (MTM) in the core of spherical (NSTX) and conventional tokamaks (ASDEX Upgrade and JET) are studied through local linear gyrokinetic simulations with GYRO (Candy and Belli 2011 General Atomics Report GA-A26818). For experimentally relevant core plasma parameters in the NSTX and ASDEX Upgrade tokamaks, in agreement with previous works, we find MTMs as the dominant linear instability. Also, for JET-like core parameters considered in our study an MTM is found as the most unstable mode. In all of these plasmas, finite collisionality is needed for MTMs to become unstable and the electron temperature gradient is found to be the fundamental drive. However, a significant difference is observed in the dependence of the linear growth rate of MTMs on electron temperature gradient. While it varies weakly and non-monotonically in JET and ASDEX Upgrade plasmas, in NSTX it increases with the electron temperature gradient.
Tritium Retention and Removal in Tokamaks
Skinner, Charles H.
2009-02-19
Management of tritium inventory remains one of the grand challenges in the development of fusion energy. Tritium is an important source term in safety assessments, it is expensive and in short supply. Tritium can be continuously retained in a tokamak by codeposition with eroded carbon or beryllium and JET and TFTR with carbon plasma facing components showed a tritium retention level that would be unacceptable in ITER or future fusion reactors. Asdex-U and Alcator C-mod have shown reduced hydrogenic retention with tungsten clad and molybdenum plasma facing components. Once the tritium inventory approaches the administrative limit, tritium must be removed to permit continued D-T plasma operations. Several candidate techniques are being considered and need to be proven at a relevant speed and efficiency in contemporary tokamaks. Projections for ITER are discussed.
The Physics of Tokamak Start-up
D. Mueller
2012-11-13
Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.
The physics of tokamak start-up
Mueller, D.
2013-05-15
Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.
A low aspect ratio tokamak transmutation system
NASA Astrophysics Data System (ADS)
Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.
2000-03-01
A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Nonambipolar transport by trapped particles in tokamaks.
Park, Jong-Kyu; Boozer, Allen H; Menard, Jonathan E
2009-02-13
Small nonaxisymmetric perturbations of the magnetic field can greatly change the performance of tokamaks through nonambipolar transport. A number of theories have been developed, but the predictions were not consistent with experimental observations in tokamaks. This Letter provides a resolution, with a generalized analytic treatment of the nonambipolar transport. It is shown that the discrepancy between theory and experiment can be greatly reduced by two effects: (1) the small fraction of trapped particles for which the bounce and precession rates resonate; (2) the nonaxisymmetric variation in the field strength along the perturbed magnetic field lines rather than along the unperturbed magnetic field lines. The expected sensitivity of the International Thermonuclear Experimental Reactor to nonaxisymmetries is also discussed. PMID:19257595
First Engineering Commissioning of EAST Tokamak
NASA Astrophysics Data System (ADS)
Wan, Yuanxi; Li, Jiangang; Weng, Peide; EAST Team
2006-05-01
Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak. The first commissioning started on Feb. 1st of 2006 and finished on March 30th of 2006 at the Institute of Plasma Physics, Chinese Academy of Sciences. It consists of leakage testing at both room temperature and low temperature, pumping down, cooling down all coils, current leads, bus bar and the thermal shielding, exciting all the coils, measuring magnetic configuration and warming up the magnets. The electromagnetic, thermal hydraulic and mechanical performance of EAST Toroidal Field (TF) and Poloidal Field (PF) magnets have also been tested. All sub-systems, including pumping system, cryogenic system, PF& TF power supply systems, magnet instrumentation system, quench detection and protection system, water cooling system, data acquisition system, main control system, plasma control system (PCS), interlock and safety system have been successfully tested.
Decommissioning the Tokamak Fusion Test Reactor
Spampinato, P.T.; Walton, G.R.
1993-10-01
The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) will complete its experimental lifetime with a series of deuterium-tritium pulses in 1994. As a result, the machine structures will become radioactive, and vacuum components will also be contaminated with tritium. Dose rate levels will range from less than 1 mr/h for external structures to hundreds of mr/h for the vacuum vessel. Hence, decommissioning operations will range from hands on activities to the use of remotely operated equipment. After 21 months of cool down, decontamination and decommissioning (D and D) operations will commence and continue for approximately 15 months. The primary objective is to render the test cell complex re-usable for the next machine, the Tokamak Physics Experiment (TPX). This paper presents an overview of decommissioning TFTR and discusses the D and D objectives.
Rapidly Moving Divertor Plates In A Tokamak
S. Zweben
2011-05-16
It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.
The physics of tokamak start-upa)
NASA Astrophysics Data System (ADS)
Mueller, D.
2013-05-01
Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.
System studies of Compact Ignition Tokamaks
Galambos, J.D.; Peng, Y.K.M.; Blackfield, D.T.
1986-11-01
The Fusion Engineering Design Center (FEDC) Tokamak Systems Code is used to perform trade studies in accordance with the Compact Ignition Tokamak (CIT) physics and engineering guidelines. The authors examine various toroidal field coil (TFC) configurations, preload levels, and coil materials. Use of Inconel-copper composite material results in the smallest sized devices for both bucked and wedged TFCs and wedged-only TFCs. Preload levels of 23 Mkg are needed for the minimum sized devices, and for the lower strength materials, the minimum size is sensitive to the preload level. Results from these trade studies help lead to the choice of the baseline CIT point at R = 1.25 m and B = 10.4 T.
Confinement scaling and ignition in tokamaks
Perkins, F.W.; Sun, Y.C.
1985-10-01
A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.
Plasma filamentation in the Rijnhuizen tokamak RTP
Lopes Cardozo, N.J.; Schueller, F.C.; Barth, C.J.; Chu, C.C.; Pijper, F.J.; Lok, J.; Oomens, A.A.M. )
1994-07-11
Evidence for small scale magnetic structures in the Rijnhuizen tokamak RTP is presented. These are manifest through steps and peaks in the electron temperature and pressure, measured with multiposition Thomson scattering. During central electron cyclotron heating, several filaments of high pressure are found in the power deposition region. They live hundreds of microseconds. Near the sawtooth inversion radius a step'' in the temperature profile occurs. Further out, quasiperiodic structures are observed, in both Ohmic and heated discharges.
Self-Organized Stationary States of Tokamaks.
Jardin, S C; Ferraro, N; Krebs, I
2015-11-20
We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping." PMID:26636854
Tokamak with liquid metal toroidal field coil
Ohkawa, Tihiro; Schaffer, Michael J.
1981-01-01
Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.
Neoclassical transport in high [beta] tokamaks
Cowley, S.C.
1992-12-01
Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2
High beta plasmas in the PBX tokamak
Bol, K.; Buchenauer, D.; Chance, M.; Couture, P.; Fishman, H.; Fonck, R.; Gammel, G.; Grek, B.; Ida, K.; Itami, K.
1986-04-01
Bean-shaped configurations favorable for high ..beta.. discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present ..beta.. limit.
Neoclassical tearing modes in a tokamak
Hahm, T.S.
1988-08-01
Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive MHD value. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed. 10 refs.
Neoclassical tearing modes in a tokamak
Hahm, T.S.
1988-12-01
Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation, so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive magnetohydrodynamic values. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed.
Self-Organized Stationary States of Tokamaks
Jardin, S. C.; Ferraro, N.; Krebs, I.
2015-11-01
We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."
Multiple mode model of tokamak transport
Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.
1989-07-01
Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs.
Comparison of tokamak burn cycle options
Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.
1985-01-01
Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commerical reactor as well as an INTOR-class device. We begin with a review of the burn cycle options.
First Results of the ETE Spherical Tokamak
NASA Astrophysics Data System (ADS)
Ludwig, G. O.; del Bosco, E.; Ferreira, J. G.; Barroso, J. J.; Berni, L. A.; Oliveira, R. M.
2001-10-01
First tokamak plasma discharges were obtained in the ETE Spherical Tokamak Experiment (Experimento Tokamak Esferico) by November 2000. ETE is a medium size machine (major radius R=0.30m) with a compact design and good access for diagnostics. During the first phase of operation a plasma current of 200kA (t=15ms) will be produced in a 1.5 aspect ratio configuration with a toroidal magnetic field up to 0.4T. The ultimate values are limited by mechanical stresses in the joints of the toroidal field coil (B<0.8T), and by stresses and heating in the solenoid (0.24Wb, 30kA, 0.2s) for a maximum plasma current of about 400kA. Presently the experiments are focused on plasma formation, vacuum conditioning and diagnostics implementation. The machine was constructed in accordance with stringent design specifications. The assembly has an overall precision better than 2mm. Vacuum conditioning is being improved with baking, glow discharge cleaning and usual tokamak operation. Breakdown is easily obtained even without the pre-ionization provided by a hot filament electron emitter and by an ultraviolet lamp. Preliminary measurements of stray magnetic fields were carried out and eddy current effects are being modeled. Energy of the capacitor banks is being continuously increased to achieve the design parameters. A fast neutral lithium beam probe for plasma edge studies and a 6.7GHz high-power monotron for pre-ionization and electron cyclotron resonance plasma heating experiments are under development.
Development of a free-boundary tokamak equilibrium solver for advanced study of tokamak equilibria
NASA Astrophysics Data System (ADS)
Jeon, Young Mu
2015-09-01
A free-boundary Tokamak equilibrium solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered in all equilibrium calculations with a freeboundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence of variations in the computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by using a direct comparison with an analytic equilibrium known as a generalized Solov'ev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As an application of an advanced equilibrium study, a snow-flake divertor configuration that requires a second-order zero of the poloidal magnetic flux is discussed in the circumstance of the Korea superconducting tokamak advanced research (KSTAR) coil system.
Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)
NASA Astrophysics Data System (ADS)
Azizov, E. A.
2012-02-01
The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.
Spherical tokamaks with plasma centre-post
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2013-10-01
The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.
Remote feedback stabilization of tokamak instabilities
Sen, A.K. )
1994-05-01
A novel remote suppressor consisting of an injected ion beam has been used for the stabilization of plasma instabilities. A collisionless curvature-driven trapped-particle instability, an [bold E][times][bold B] flute mode and an ion temperature gradient (ITG) instability have been successfully suppressed down to noise levels using this scheme. Furthermore, the first experimental demonstration of a multimode feedback stabilization with a single sensor--suppressor pair has been achieved. Two modes (an [bold E][times][bold B] flute and an ITG mode) were simultaneously stabilized with a simple state-feedback-type method where more state'' information was generated from a single-sensor Langmuir probe by appropriate signal processing. The above experiments may be considered as paradigms for controlling several important tokamak instabilities. First, feedback suppression of edge fluctuations in a tokamak with a suitable form of insulated segmented poloidal limiter sections used as Langmuir-probe-like suppressors is proposed. Other feedback control schemes are proposed for the suppression of electrostatic core fluctuations via appropriately phased ion density input from a modulated neutral beam. Most importantly, a scheme to control major disruptions in tokamaks via feedback suppression of kink (and possibly) tearing modes is discussed. This may be accomplished by using a modulated neutral beam suppressor in a feedback loop, which will supply a momentum input of appropriate phase and amplitude. Simple theoretical models predict modest levels of beam energy, current, and power.
Edge-localized-modes in tokamaks
Leonard, A. W.
2014-09-15
Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.
Forced Magnetic Reconnection In A Tokamak Plasma
NASA Astrophysics Data System (ADS)
Callen, J. D.; Hegna, C. C.
2015-11-01
The theory of forced magnetic field reconnection induced by an externally imposed resonant magnetic perturbation usually uses a sheared slab or cylindrical magnetic field model and often focuses on the potential time-asymptotic induced magnetic island state. However, tokamak plasmas have significant magnetic geometry and dynamical plasma toroidal rotation screening effects. Also, finite ion Larmor radius (FLR) and banana width (FBW) effects can damp and thus limit the width of a nascent magnetic island. A theory that is more applicable for tokamak plasmas is being developed. This new model of the dynamics of forced magnetic reconnection considers a single helicity magnetic perturbation in the tokamak magnetic field geometry, uses a kinetically-derived collisional parallel electron flow response, and employs a comprehensive dynamical equation for the plasma toroidal rotation frequency. It is being used to explore the dynamics of bifurcation into a magnetically reconnected state in the thin singular layer around the rational surface, evolution into a generalized Rutherford regime where the island width exceeds the singular layer width, and assess the island width limiting effects of FLR and FBW polarization currents. Support by DoE grants DE-FG02-86ER53218, DE-FG02-92ER54139.
The Spherical Tokamak MEDUSA for Mexico
NASA Astrophysics Data System (ADS)
Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.
2011-10-01
The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14m, a < 0.10m, BT < 0.5T, Ip < 40kA, 3ms pulse) is currently being recomissioned at the Universidad Autónoma de Nuevo León, Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.
SOL Width Scaling in the MAST Tokamak
NASA Astrophysics Data System (ADS)
Ahn, Joon-Wook; Counsell, Glenn; Connor, Jack; Kirk, Andrew
2002-11-01
Target heat loads are determined in large part by the upstream SOL heat flux width, Δ_h. Considerable effort has been made in the past to develop analytical and empirical scalings for Δh to allow reliable estimates to be made for the next-step device. The development of scalings for a large spherical tokamak (ST) such as MAST is particularly important both for development of the ST concept and for improving the robustness of scalings derived for conventional tokamaks. A first such scaling has been developed in MAST DND plasmas. The scaling was developed by flux-mapping data from the target Langmuir probe arrays to the mid-plane and fitting to key upstream parameters such as P_SOL, bar ne and q_95. In order to minimise the effects of co-linearity, dedicated campaigns were undertaken to explore the widest possible range of each parameter while keeping the remainder as fixed as possible. Initial results indicate a weak inverse dependence on P_SOL and approximately linear dependence on bar n_e. Scalings derived from consideration of theoretical edge transport models and integration with data from conventional devices is under way. The established scaling laws could be used for the extrapolations to the future machine such as Spherical Tokamak Power Plant (STPP). This work is jointly funded by Euratom and UK Department of Trade and Industry. J-W. Ahn would like to recognise the support of a grant from the British Foreign & Commonwealth Office.
Management and protection system for superconducting tokamak
NASA Astrophysics Data System (ADS)
Juszczyk, B.; Wojenski, A.; Zienkiewicz, P.; Kasprowicz, G.; Pozniak, K.; Romaniuk, R.
2015-09-01
This paper describes system for a diagnostics of a high-voltage power supply section of tokamaks. System is designed to assure reliability and safety of power supply subsystems. It is divided into two main components: remote and local. Remote part is located near tokamak, whereas local part can be localised away from the tokamak area. The remote side consists of custom, standalone devices. On the other hand, the local device is based on the uTCA.4 architecture. Components are connected with an optic fibre over a link-layer protocol which provides high throughput, low latency and transmission redundancy. All main operations ie. data processing, transmission etc. are performed on the FPGA devices. At the local side there is one device treated as a master device. It implements sort of a routing table which connects consecutive system inputs and outputs. It also provides possibility for some user defined data processing. This document contains general system overview, short description of hardware used in the project and gateware implementation.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Nonlinear Simulation Studies of Tokamaks and STs
W. Park; J. Breslau; J. Chen; G.Y. Fu; S.C. Jardin; S. Klasky; J. Menard; A. Pletzer; B.C. Stratton; D. Stutman; H.R. Strauss; L.E. Sugiyama
2003-07-07
The multilevel physics, massively parallel plasma simulation code, M3D, has been used to study spherical tori (STs) and tokamaks. The magnitude of outboard shift of density profiles relative to electron temperature profiles seen in NSTX [National Spherical Torus Experiment] under strong toroidal flow is explained. Internal reconnection events in ST discharges can be classified depending on the crash mechanism, just as in tokamak discharges; a sawtooth crash, disruption due to stochasticity, or high-beta disruption. Toroidal shear flow can reduce linear growth of internal kink. It has a strong stabilizing effect nonlinearly and causes mode saturation if its profile is maintained, e.g., through a fast momentum source. Normally, however, the flow profile itself flattens during the reconnection process, allowing a complete reconnection to occur. In some cases, the maximum density and pressure spontaneously occur inside the island and cause mode saturation. Gyrokinetic hot particle/MHD hybrid studies of NSTX show the effects of fluid compression on a fast-ion-driven n = 1 mode. MHD studies of recent tokamak experiments with a central current hole indicate that the current clamping is due to sawtooth-like crashes, but with n = 0.
Numerical investigations of plasma parameters in the COMPASS tokamak
Havlickova, E.; Zagorski, R.; Panek, R.
2008-09-15
A numerical investigation of plasma parameters in a diverter configuration of COMPASS tokamak is presented. The plasma parameters in the device are analyzed in the frame of the self-consistent description of the central plasma and edge region. The possibility of achieving high recycling and detached regimes in the boundary layer of the COMPASS tokamak is discussed.
Recent progress on the Compact Ignition Tokamak (CIT)
Ignat, D.W.
1987-01-01
This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.
Physics design requirements for the Tokamak Physics Experiment (TPX)
Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Nevins, W.M.; Porkolab, M.; Ulrickson, M.
1993-11-01
The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust.
Fokker-Planck/Transport model for neutral beam driven tokamaks
Killeen, J.; Mirin, A.A.; McCoy, M.G.
1980-01-01
The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.
Tokamak Physics Experiment (TPX) power supply design and development
Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.
1995-04-01
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.
Mathematical modeling plasma transport in tokamaks
Quiang, Ji
1995-12-31
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
3D MHD Simulations of Tokamak Disruptions
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Stuber, James
2014-10-01
Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.
Neoclassical Transport Properties of Tokamak Plasmas
Weyssow, B.
2004-03-15
The classical transport theory is strictly valid for a plasma in a homogeneous and stationary magnetic field. In the '60, experiments have shown that this theory does not apply as a local theory of transport in Tokamaks. It was shown that global geometric characteristics of the confining elements have a strong influence on the transport. Three regimes of collisionality are characteristic of the neoclassical transport theory: the banana regime (the electronic diffusion coefficient increases starting from zero), the plateau regime (the diffusion coefficient is almost independent of the collisionality) and the Pfirsch-Schlueter regime (the electronic diffusion coefficient again increases with the collisionality)
Electrostatic analysis of the tokamak edge plasma
Motley, R.W.
1981-07-01
The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.
Tokamak Equilibria with Reversed Current Density
NASA Astrophysics Data System (ADS)
Martynov, A. A.; Medvedev, S. Yu.; Villard, L.
2003-08-01
Observations of nearly zero toroidal current in the central region of tokamaks (the “current hole”) raises the question of the existence of toroidal equilibria with very low or reversed current in the core. The solutions of the Grad-Shafranov equilibrium equation with hollow toroidal current density profile including negative current density in the plasma center are investigated. Solutions of the corresponding eigenvalue problem provide simple examples of such equilibrium configurations. More realistic equilibria with toroidal current density reversal are computed using a new equilibrium problem formulation and computational algorithm which do not assume nested magnetic surfaces.
Dust divertor for a tokamak fusion reactor
Tang, X Z; Delzanno, G L
2009-01-01
Micron-size tungsten particulates find equilibrium position in the magnetized plasma sheath in the normal direction of the divertor surface, but are convected poloidally and toroidally by the sonic-ion-flow drag parallel to the divertor surface. The natural circulation of dust particles in the magnetized plasma sheath can be used to set up a flowing dust shield that absorbs and exhausts most of the tokamak heat flux to the divertor. The size of the particulates and the choice of materials offer substantial room for optimization.
Viscosity in the edge of tokamak plasmas
NASA Astrophysics Data System (ADS)
Stacey, W. M.
1993-05-01
A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the 'short radial gradient scale length' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.
Tokamak physics experiment: Diagnostic windows study
Merrigan, M.; Wurden, G.A.
1995-11-01
We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.
Calculation of rf current drive in tokamaks
NASA Astrophysics Data System (ADS)
Peysson, Y.; Decker, J.
2008-11-01
The toroidal plasma current is a key parameter for controlling MHD stability and fusion performances in tokamaks. Among the various methods for driving current, rf waves are a flexible and powerful tool. Therefore, their role in the design and optimization of advanced scenarios is considerable. The universal ray-tracing code C3PO coupled with the fully implicit linearized 3-D bounce-averaged relativistic electron Fokker-Planck solver LUKE is an illustration of the present day effort for performing fast and realistic calculations of the rf driven plasma current. The versatility of this tool is highlighted by simulations concerning the lower hybrid and electron cyclotron waves.
Diamagnetic flux measurement in Aditya tokamak
Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore
2010-12-15
Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.
Self-Organized Stationary States of Tokamaks
Jardin, S. C.; Ferraro, N.; Krebs, I.
2015-11-17
We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.
Anomalous thermal confinement in ohmically heated tokamaks
Romanelli, F.; Tang, W.M.; White, R.B.
1986-02-01
A model is proposed to explain the behavior of the gross energy confinement time in ohmically heated tokamak plasmas. The analysis takes into account the effect of the anomalous thermal conductivity due to small scale turbulence and of the macroscopic MHD behavior, which provides some constraints on the temperature profile. Results indicate that the thermal conductivity associated with the dissipative trapped-electron mode and with the ion temperature gradient (eta/sub i/) mode can account, respectively, for the Neo-Alcator scaling and the saturation of the energy confinement time with density. Comparisons with experimental results show reasonable agreement. 32 refs., 12 figs.
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions. PMID:19044600
Modular pump limiter systems for large tokamaks
NASA Astrophysics Data System (ADS)
Uckan, T.; Klepper, C. C.; Mioduszewski, P. K.; McGrath, R. T.
1987-09-01
Long-pulse (greater than 10-s) operation of large tokamaks with high-power (greater than 10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technolgy is discussed. The relationship between modules is considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented.
Plasma transport in a compact ignition tokamak
Singer, C.E.; Ku, L.P; Bateman, G.
1987-02-01
Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the /sup 3/He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved.
Constrained ripple optimization of Tokamak bundle divertors
Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.
1983-02-01
Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.
Physics evaluation of compact tokamak ignition experiments
Uckan, N.A.; Houlberg, W.A.; Sheffield, J.
1985-01-01
At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.
The Spherical Tokamak MEDUSA for Costa Rica
NASA Astrophysics Data System (ADS)
Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos
2012-10-01
The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R<0.14m, a<0.10m, BT<0.5T, Ip<40kA, 3ms pulse)[1] is in a process of donation to Costa Rica Institute of Technology. The main objective of MEDUSA is to train students in plasma physics /technical related issues which will help all tasks of the very low aspect ratio stellarator SCR-1(A≡R/>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012
Equilibrium reconstruction in the START tokamak
NASA Astrophysics Data System (ADS)
Appel, L. C.; Bevir, M. K.; Walsh, M. J.
2001-02-01
The computation of magnetic equilibria in the START spherical tokamak is more difficult than those in more conventional large aspect ratio tokamaks. This difficulty arises partly as a result of the use of induction compression to generate high current plasma, as this precludes the positioning of magnetic diagnostics close to the outboard side of the plasma. In addition, the effect of a conducting wall with a high, but finite, conductivity must be included. A method is presented for obtaining plasma equilibrium reconstructions based on the EFIT code. New constraints are used to relate isoflux surface locations deduced from radial profile measurements of electron temperature. A model of flux diffusion through the vessel wall is developed. It is shown that neglecting flux diffusion in the vessel wall can lead to a significant underestimate in the calculation of the plasma βt. Using a relatively sparse set of magnetic signals, βt can be obtained to within a fractional error of +/-10%. Using constraints to relate isoflux surface locations, the principle involved in determining the internal q profile is demonstrated.
System studies of compact ignition tokamaks
Galambos, J.D.; Peng, Y.K.M.; Blackfield, D.T.
1986-01-01
A new version of the FEDC Tokamak System Code (TSC) has been developed to analyze the Compact Ignition Tokamak (CIT). These proposed experiments have small (major radius F 1.5m) and high magnetic fields (B J 10T), and are characterized by reduced cost. Key design constraints of CIT include limits to the high stress levels in the magnetic coils, limits to the large temperature rises in the coils and on the first wall or divertor plate, minimizing power supply requirements, and assuring adequate plasma performance in fusion ignition and burn time consistent with the latest physics understanding. We present systems code level studies of CIT parameter space here for a range of design options with various design constraints. The present version of the TSC incorporates new models for key components of CIT. For example, new algorithms have been incorporated for calculating stress levels in the TFC and ohmic solenoid, temperature rise in the magnetic coils, peak power requirements, plasma MHD equilibrium and volt-second capability. The code also incorporates a numerical optimizer to find combinations of engineering quantities (device size, coil sizes, coil current densities etc.) and physics quantities (plasma density temperature, and beta, etc.) which satisfy all the constraints and can minimize or maximize a figure of merit (e.g., the major radius). This method was recently used in a mirror reactor system code (3) for the Minimara concept development.
Superconducting CICC for SST-1 tokamak magnets
Pradhan, S.; Saxena, Y.C.
1995-12-31
The SST-1 tokamak is being designed for steady state operation with plasma durations in the range of 100--1,000s. Both the toroidal field coils (TFC) and the poloidal field coils (PFC) in the SST-1 tokamak are superconducting. TF coils are required to produce a magnetic field of 3 T at 1.05 m from machine axis. The maximum field seen by the TF coil conductor will be {le} 4.3 T. The cable for the TF coils has, therefore, been designed for a field of 5 T at the conductor. The PFC are used for plasma shaping and equilibrium and the magnetic field on the PFC conductor is estimated to be {le} 3.2 T. Hence a cable designed for 5 T operation will be suitable for PFC also subjected to the stability against the disturbances generated by the current ramping in the PFC. The authors have designed two Cable-in-conduit-conductor (CICC) type cables, one with copper conduit (to be preferably used with the TFC) and the other with Stainless Steel conduit to be used with PFC. They describe some design aspects of these cables and discuss the stability of these cables against disturbances.
Critical issues for modeling dust transport in tokamaks.
Bacharis, Minas; Coppins, Michael; Allen, John E
2010-08-01
Dust produced in tokamaks is an important issue for fusion. Dust particles can introduce health and safety issues when in the same time can have an impact on reactor performance. Apart from the associated problems there are also potential benefits that make the better understanding of their behavior important. In this work the dust transport code Dust in TOKamakS will be used to explore the effect that variations in the plasma background and the physical model, describing the plasma-dust interaction, have on their predicted trajectories. PMID:20866922
/sup 3/He functions in tokamak-pumped laser systems
Jassby, D.L.
1986-10-01
/sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.
Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability
NASA Astrophysics Data System (ADS)
Zheng, Linjin; Horton, W.; Miura, H.; Shi, T. H.; Wang, H. Q.
2016-08-01
Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew-Goldburger-Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.
ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak
Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )
1990-08-09
The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.
A review of ELMs in divertor tokamaks
Hill, D.N.
1996-05-23
This paper reviews what is known about edge localized modes (ELMs), with an emphasis on their effect on the scrape-off layer and divertor plasmas. ELM effects have been measured in the ASDEX-U, C-Mod, COMPASS-D, DIII-D, JET, JFT-2M,JT-60U, and TCV tokamaks and are reported here. At least three types of ELMs have been identified and their salient features determined. Type-1 giant ELMs can cause the sudden loss of up to 10-15% of the plasma stored energy but their amplitude ({Delta}W/W) does not increase with increasing power. Type- 3 ELMs are observed near the H-mode power threshold and produce small energy dumps (1-3% of the stored energy). All ELMs increase the scrape- off layer plasma and produce particle fluxes on the divertor targets which are as much as ten times larger that the quiescent phase between ELMs. The divertor heat pulse is largest on the inner target, unlike that of L-Mode or quiescent H-mode; some tokamaks report radial structure in the heat flux profile which is suggestive of islands or helical structures. The power scaling of Type-1 ELM amplitude and frequency have been measured in several tokamaks and has recently been applied to predictions of the ELM Size in ITER. Concern over the expected ELM amplitude has led to a number of experiments aimed at demonstrating active control of ELMs. Impurity gas injection with feedback control on the radiation loss in ASDEX-U suggests that a promising mode of operation (the CDH-mode) with a very small type-3 ELMs can be maintained with heating power sell above the H-mode threshold, where giant type-1 ELMs can be maintained with heating power well above the H-mode threshold, where Giant type-1 ELMs are normally observed. While ELMs have many potential negative effects, the beneficial effect of ELMs in providing density control and limiting the core plasma impurity content in high confinement H- mode discharges should not be overlooked.
Development of tokamak reactor system analysis code NEW-TORSAC
NASA Astrophysics Data System (ADS)
Kasai, Masao; Ida, Toshio; Nishikawa, Masana; Kameari, Akihisa; Nishio, Satoshi; Tone, Tatsuzo
1987-07-01
A systems analysis code named NEW-TORSAC (TOkamak Reactor Systems Analysis Code) has been developed by modifying the TORSAC which had been already developed by us. The NEW-TORSAC is available for tokamak reactor designs and evaluations from experimental machines to commercial reactor plants. It has functions to design tokamaks automatically from plasma parameter setting to determining configurations of reactor equipments and calculating main characteristics parameters of auxiliary systems and the capital costs. In the case of analyzing tokamak reactor plants, the code can calculate busbar energy costs. In addition to numerical output, some output of this code such as a reactor configuration, plasma equilibrium, electro-magnetic forces, etc., are graphically displayed. The code has been successfully applied to the scoping studies of the next generation machines and commercial reactor plants.
Improvement of tokamak performance by injection of electrons
Ono, Masayuki
1992-12-01
Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas.
Requirements for neutral beam current drive in tokamaks
Dory, R.A.
1988-01-01
This paper contains viewgraphs on the use of neutral beam current drive in future tokamaks. Current profiles, slowing down distributions, beam destabilization of alfven waves and plasma parameters are some items covered in this paper. (DWL)
Heavy ion beam probe systems for tight aspect ratio tokamaks
Melnikov, A.V.; Zimeleva, L.G.; Krupnik, L.I.; Nedzelskij, I.S.; Trofimenko, Y.V.; Minaev, V.B.
1997-01-01
We discuss the specific features of the application of heavy ion beam probe (HIBP) systems to tight aspect ratio tokamaks. We present and compare the HIBP projects for the TUMAN-3, GLOBUS, and COMPASS, where the inner part of the plasma is not available for regular chord diagnostics, so the HIBP becomes very desirable. All existing tight aspect ratio facilities and projects have a low (less than 1.9 T) toroidal field that requires a comparatively low beam energy range. The natural elongation and triangularity in tight aspect ratio tokamaks require an accurate calculation of the three-dimensional magnetic field for probing optimization. In comparison with traditional tokamaks, the detector grids have a wider energy interval. In general, the trajectories and detector grids for tight aspect ratio tokamaks become similar to the stellarator ones. Traditional and new probing schemes are suggested and discussed. {copyright} {ital 1997 American Institute of Physics.}
Neutral beam injector performance on the PLT and PDX tokamaks
Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.
1981-02-01
An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures.
TFTR/JET INTOR workshop on plasma transport tokamaks
Singer, C.E.
1985-01-01
This report summarizes the proceedings of a Workshop on transport models for prediction and analysis of tokamak plasma confinement. Summaries of papers on theory, predictive modeling, and data analysis are included.
Computer simulation of transport driven current in tokamaks
NASA Astrophysics Data System (ADS)
Nunan, W. J.; Dawson, J. M.
1994-09-01
We have investigated transport driven current in tokamaks via 2+1/2 dimensional, electromagnetic, particle-in-cell simulations. These have demonstrated a steady increase of toroidal current in centrally fueled plasmas. Neoclassical theory predicts that the bootstrap current vanishes at large aspect ratio, but we see equal or greater current growth in straight cylindrical plasmas. These results indicate that a centrally fueled and heated tokamak may sustain its toroidal current, even without the ``seed current'' which the neoclassical bootstrap theory requires.
Neoclassical diffusion of heavy impurities in a rotating tokamak plasma
Wong, K.L.; Cheng, C.Z.
1987-08-01
Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle simulation is carried out and the results offer a qualitative explanation for some experimental data from the Tokamak Test Reactor (TFTR). 13 refs., 2 figs.
Design of a microwave calorimeter for the microwave tokamak experiment
Marinak, M. )
1988-10-07
The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.
Reliability of initial-value MHD calculations of Tokamak disruptions
NASA Astrophysics Data System (ADS)
Hicks, H. R.; Carreras, B. A.; Garcia, L.; Holmes, J. A.
1984-06-01
The nonlinear coupling of resistive tearing modes was proposed as the mechanism for some Tokamak disruptions. This is based primarily on initial value resistive magnetohydrodynamic calculations performed with a finite difference grid in minor radius and Fourier series expansion in the poloidal and toroidal angles. The calculations show that, for certain q profiles, the nonlinear interaction of tearing modes of different helicities leads to the rapid destabilization of other modes. The resulting effects and the time scale are consistent with the Tokamak disruption.
Decommissioning of the Tokamak Fusion Test Reactor
E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola
2003-10-28
The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.
Cooldown of the Compact Ignition Tokamak
Keeton, D.C.
1987-08-01
Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.
Radiation power measurement on the ADITYA tokamak
NASA Astrophysics Data System (ADS)
Tahiliani, Kumudni; Jha, Ratneshwar; Gopalkrishana, M. V.; Doshi, Kalpesh; Rathod, Vipal; Hansalia, Chandresh; ADITYA Team
2009-08-01
The radiation power loss and its variation with plasma density and current are studied in the ADITYA tokamak. The radiation power loss varies from 20% to 40% of the input power for different discharges. The radiation fraction decreases with increasing plasma current but it increases with increasing line-averaged central density. The radiated power behavior has also been studied in discharges with short pulses of molecular beam injection (MBI) and gas puff (GP). The increase in radiation loss is limited to the edge chords in the case of GP, but it extends to the core region for MBI fueling. The MBI seems to indicate reduction in the edge recycling. It is observed that during the density limit disruption, the radiated power loss is more in the current quench phase as compared with the thermal quench phase and comes mainly from the plasma edge.
Summer Research Experiences with a Laboratory Tokamak
NASA Astrophysics Data System (ADS)
Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.
1998-11-01
Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.
Argonne Plasma Engineering Experiment (APEX) Tokamak
Norem, J.H.; Balka, L.J.; Kulovitz, E.E.; Magill, S.R.; McGhee, D.G.; Moretti, A.; Praeg, W.F.
1981-03-01
The Argonne Plasma Engineering Experiment (APEX) Tokamak was designed to provide hot plasmas for reactor-relevant experiments with rf heating (current drive) and plasma wall experiments, principally in-situ low-Z wall coating and maintenance. The device, sized to produce energetic plasmas at minimum cost, is small (R = 51 cm, r = 15 cm) but capable of high currents (100 kA) and long pulse durations (100 ms). A design using an iron central core with no return legs, pure tension tapewound toroidal field coils, digital radial position control, and UHV vacuum technology was used. Diagnostics include monochrometers, x-ray detectors, and a microwave interferometer and radiometer for density and temperature measurements. Stable 100 ms shots were produced with electron temperatures in the range 500 to 1000 eV. Initial results included studies of thermal desorption and recoating of wall materials.
Nonlinear lower hybrid modeling in tokamak plasmas
Napoli, F.; Schettini, G.; Castaldo, C.; Cesario, R.
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
DIII-D Advanced Tokamak Research Overview
V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler
1999-12-01
This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.
Toroidal microinstability studies of high temperature tokamaks
Rewoldt, G.; Tang, W.M.
1989-07-01
Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.
Transport Bifurcation in a Rotating Tokamak Plasma
Highcock, E. G.; Barnes, M.; Schekochihin, A. A.; Parra, F. I.; Roach, C. M.; Cowley, S. C.
2010-11-19
The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.
Fast tomographic methods for the tokamak ISTTOK
Carvalho, P. J.; Coelho, R.; Neto, A.; Pereira, T.; Silva, C.; Fernandes, H.; Gori, S.; Toussaint, U. v.
2008-04-07
The achievement of long duration, alternating current discharges on the tokamak IST-TOK requires a real-time plasma position control system. The plasma position determination based on magnetic probes system has been found to be inadequate during the current inversion due to the reduced plasma current. A tomography diagnostic has been therefore installed to supply the required feedback to the control system. Several tomographic methods are available for soft X-ray or bolo-metric tomography, among which the Cormack and Neural networks methods stand out due to their inherent speed of up to 1000 reconstructions per second, with currently available technology. This paper discusses the application of these algorithms on fusion devices while comparing performance and reliability of the results. It has been found that although the Cormack based inversion proved to be faster, the neural networks reconstruction has fewer artifacts and is more accurate.
Anisotropic pressure tokamak equilibrium and stability considerations
Salberta, E.R.; Grimm, R.C.; Johnson, J.L.; Manickam, J.; Tang, W.M.
1987-02-01
Investigation of the effect of pressure anisotropy on tokamak equilibrium and stability is made with an MHD model. Realistic perpendicular and parallel pressure distributions, P/sub perpendicular/(psi,B) and P/sub parallel/(psi,B), are obtained by solving a one-dimensional Fokker-Planck equation for neutral beam injection to find a distribution function f(E, v/sub parallel//v) at the position of minimum field on each magnetic surface and then using invariance of the magnetic moment to determine its value at each point on the surface. The shift of the surfaces of constant perpendicular and parallel pressure from the flux surfaces depends strongly on the angle of injection. This shift explains the observed increase or decrease in the stability conditions. Estimates of the stabilizing effect of hot trapped ions indicates that a large fraction must be nonresonant and thus decoupled from the bad curvature before it becomes important.
ITER tokamak buildings and equipment layout
Ahlfeld, C.E.; Dilling, D.A.; Ishimoto, Kazuyuki; Tanaka, Eiichi; Stoner, S.
1996-12-31
The International Thermonuclear Experimental Reactor (ITER) design has evolved to a level of maturity that has enabled the building designers to define the major dimensions and characteristics of the cluster of buildings that contain the tokamak and adjacent support equipment. Three-dimensional building models developed in a CATIA database provide the framework for the equipment layout. This article describes the preliminary layout of all major pieces of equipment, large bore pipes, ducts, busbars and other services. It is anticipated that some features of the layout will change as equipment design is advanced and future decisions are made, but these changes are not expected to alter the basic building design and any necessary changes are facilitated by the 3-D CATIA models. 1 ref., 6 figs.
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Instrumentation and controls of an ignited tokamak
Becraft, W.R.; Golzy, J.; Houlberg, W.A.; Kukielka, C.A.; Onega R.J.; Raju, G.V.S.; Stone, R.S.
1980-10-01
The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented.
Stability of tearing modes in tokamak plasmas
Hegna, C.C.; Callen, J.D.
1994-02-01
The stability properties of m {ge} 2 tearing instabilities in tokamak plasmas are analyzed. A boundary layer theory is used to find asymptotic solutions to the ideal external kink equation which are used to obtain a simple analytic expression for the tearing instability parameter {Delta}{prime}. This calculation generalizes previous work on this topic by considering more general toroidal equilibria (however, toroidal coupling effects are ignored). Constructions of {Delta}{prime} are obtained for plasmas with finite beta and for islands that have nonzero width. A simple heuristic estimate is given for the value of the saturated island width when the instability criterion is violated. A connection is made between the calculation of the asymptotic matching parameter in the finite beta and island width case to the nonlinear analog of the Glasser effect.
Tearing mode analysis in tokamaks, revisited
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1998-12-01
A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}
'Snowflake' H Mode in a Tokamak Plasma
Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.
2010-10-08
An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy ({Delta}W{sub ELM}/W{sub p}) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.
Status of ECRH project on EAST Tokamak
NASA Astrophysics Data System (ADS)
Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Zhang, Jiang; Huang, Yiyun; Wei, Wei; Tang, Yunying; Xu, Weiye; Hu, Huaichuan; Wang, Jian; Xu, Li
2014-02-01
A 140GHz electron cyclotron resonance heating and current drive (EC H&CD) project for EAST Tokamak is launched in 2011 with a total power of 4MW and pulse length of 100 s. The main objectives of the system are to provide central H&CD, assist start-up and control of MHD activities. The system comprises four gyrotrons each with nominal output power of 1MW at 140GHz. The RF power, transmitted through four evacuated corrugated waveguides will be injected into plasma from the low field side (radial port). The front steering equatorial launcher directs the RF beam over ±25° toroidally and scans over 38° poloidally. At present, the construction of the first 1MW system is undergoing for the expected campaign in the end of 2013. In this paper, the current status of the development and the design of the 140-GHz ECRH system are presented.
Status of ECRH project on EAST Tokamak
Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Zhang, Jiang; Huang, Yiyun; Tang, Yunying; Xu, Weiye; Hu, Huaichuan; Wang, Jian; Xu, Li; Wei, Wei
2014-02-12
A 140GHz electron cyclotron resonance heating and current drive (EC H and CD) project for EAST Tokamak is launched in 2011 with a total power of 4MW and pulse length of 100 s. The main objectives of the system are to provide central H and CD, assist start-up and control of MHD activities. The system comprises four gyrotrons each with nominal output power of 1MW at 140GHz. The RF power, transmitted through four evacuated corrugated waveguides will be injected into plasma from the low field side (radial port). The front steering equatorial launcher directs the RF beam over ±25° toroidally and scans over 38° poloidally. At present, the construction of the first 1MW system is undergoing for the expected campaign in the end of 2013. In this paper, the current status of the development and the design of the 140-GHz ECRH system are presented.
Dust Studies in DIII-D Tokamak
Rudakov, D L; West, W P; Groth, M; Yu, J H; Boedo, J A; Bray, B D; Brooks, N H; Fenstermacher, M E; Hollmann, E M; Hyatt, A W; Krasheninnikov, S I; Lasnier, C J; Moyer, R A; Pigarov, A Y; Smirnov, R; Solomon, W M; Wong, C C
2008-04-15
Studies of submicron dust using Mie scattering from Nd:YAG lasers and video data of micron to sub-millimeter sized dust on DIII-D tokamak have provided the first data of dust sources and transport during tokamak discharges. During normal operation on DIII-D dust observation rates are low, a few events per discharge or less. The net carbon content of the dust corresponds to a carbon atom density a few orders of magnitude below the core impurity density. Statistical analysis of Mie data collected over months of operation reveal correlation of increased dust rate with increased heating power and impulsive wall loading due to edge localized modes (ELMs) and disruptions. Generation of significant amounts of dust by disruptions is confirmed by the camera data. However, dust production by disruptions alone is insufficient to account for estimated in-vessel dust inventory in DIII-D. After an extended entry vent, thousands of dust particles are observed by cameras in the first 2-3 plasma discharges. Individual particles moving at velocities up to {approx}300 m/s, breakup of larger particles into pieces, and collisions of particles with walls are observed. After {approx}70 discharges, dust levels are reduced to a few events per discharge. In order to calibrate diagnostics and benchmark modeling, milligram amounts of micron-sized carbon dust have been injected into DIII-D discharges, leading to the core carbon density increase by a factor of 2-3. Following injection, dust trajectories in the divertor are mostly in the toroidal direction, consistent with the ion drag force. Dust from the injection is observed in the outboard midplane by a fast framing camera. The observed trajectories and velocities of the dust particles are in qualitative agreement with modeling by the 3D DustT code.
Self-organized stationary states of tokamaks
NASA Astrophysics Data System (ADS)
Jardin, Stephen
2015-11-01
We report here on a nonlinear mechanism that forms and maintains a self-organized stationary (sawtooth free) state in tokamaks. This process was discovered by way of extensive long-time simulations using the M3D-C1 3D extended MHD code in which new physics diagnostics have been added. It is well known that most high-performance modes of tokamak operation undergo ``sawtooth'' cycles, in which the peaking of the toroidal current density triggers a periodic core instability which redistributes the current density. However, certain modes of operation are known, such as the ``hybrid'' mode in DIII-D, ASDEX-U, JT-60U and JET, and the long-lived modes in NSTX and MAST, which do not experience this cycle of instability. Empirically, it is observed that these modes maintain a non-axisymmetric equilibrium which somehow limits the peaking of the toroidal current density. The physical mechanism responsible for this has not previously been understood, but is often referred to as ``flux-pumping,'' in which poloidal flux is redistributed in order to maintain q0 >1. In this talk, we show that in long-time simulations of inductively driven plasmas, a steady-state magnetic equilibrium may be obtained in which the condition q0 >1 is maintained by a dynamo driven by a stationary marginal core interchange mode. This interchange mode, unstable because of the pressure gradient in the ultra-low shear region in the center region, causes a (1,1) perturbation in both the electrostatic potential and the magnetic field, which nonlinearly cause a (0,0) component in the loop voltage that acts to sustain the configuration. This hybrid mode may be a preferred mode of operation for ITER. We present parameter scans that indicate when this sawtooth-free operation can be expected.
Plasma diagnostics for the compact ignition tokamak
Medley, S.S.; Young, K.M.
1988-06-01
The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.
Dust Studies in DIII-D Tokamak
Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Pigarov, A. Yu.; Smirnov, R.; West, W. P.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Groth, M.; Fenstermacher, M. E.; Lasnier, C. J.; Solomon, W. M.
2008-09-07
Studies of submicron dust using Mie scattering from Nd:YAG lasers and video data of micron to sub-millimeter sized dust on DIII-D tokamak have provided the first data of dust sources and transport during tokamak discharges. During normal operation on DIII-D dust observation rates are low, a few events per discharge or less. The net carbon content of the dust corresponds to a carbon atom density a few orders of magnitude below the core impurity density. Statistical analysis of Mie data collected over months of operation reveal correlation of increased dust rate with increased heating power and impulsive wall loading due to edge localized modes (ELMs) and disruptions. Generation of significant amounts of dust by disruptions is confirmed by the camera data. However, dust production by disruptions alone is insufficient to account for estimated in-vessel dust inventory in DIII-D. After an extended entry vent, thousands of dust particles are observed by cameras in the first 2-3 plasma discharges. Individual particles moving at velocities up to {approx}300 m/s, breakup of larger particles into pieces, and collisions of particles with walls are observed. After {approx}70 discharges, dust levels are reduced to a few events per discharge. In order to calibrate diagnostics and benchmark modeling, milligram amounts of micron-sized carbon dust have been injected into DIII-D discharges, leading to the core carbon density increase by a factor of 2-3. Following injection, dust trajectories in the divertor are mostly in the toroidal direction, consistent with the ion drag force. Dust from the injection is observed in the outboard midplane by a fast framing camera. The observed trajectories and velocities of the dust particles are in qualitative agreement with modeling by the 3D DustT code.
Tokamak foundation in USSR/Russia 1950-1990
NASA Astrophysics Data System (ADS)
Smirnov, V. P.
2010-01-01
In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER.
Resistive edge mode instability in stellarator and tokamak geometries
Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.
2008-09-15
Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.
LONG PULSE ADVANCED TOKAMAK DISCHARGES IN THE DIII-D TOKAMAK
P.I. PETERSEN
2002-06-01
One of the main goals for the DIII-D research program is to establish an advanced tokamak plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall mode stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode has been stabilized by the injection of ECH into the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECCD resonance with the location of the NTMs. Effective disruption mitigation has been obtained by massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long-pulse, advanced tokamak operations have been achieved in DIII-D: {beta}{sub T} = 4.2%, {beta}{sub p} = 2, f{sub BS} = 65%, and {beta}{sub N}H{sub 89} = 10 for 600 ms ({approx} 4{tau}{sub E}). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve resistive wall mode coils are scheduled to be installed in DIII-D during the summer of 2003. The future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.
The Science of Spherical Tokamak Plasmas: Progress and Promise
NASA Astrophysics Data System (ADS)
Sykes, Alan
2008-11-01
The talk will summarize the development of the low aspect ratio `Spherical' Tokamak (ST) from early linear magnetic confinement devices, through toroidal pinches, to the emergence of the tokamak in the 1960's. Theoretical predictions given by Peng and Strickler of the exciting physics of extreme low aspect ratio tokamaks (supported by early experiments involving centre rods inserted into existing Rotamaks, Spheromaks and other small-scale experiments), led to the pioneering START experiment at Culham which convincingly demonstrated the potential of the ST concept. There are now many STs world-wide. The largest among these are MA-scale devices NSTX and MAST with plasmas of cross-section comparable to DIII-D and Asdex-Upgrade. The major results include development of start-up methods; the refinement of scaling laws; improved understanding of general tokamak phenomena such as Edge Localised Modes and development of heating and current drive schemes. ST research on over 20 devices has extended the tokamak plasma regime in many ways, notably a factor 4 increase in stable toroidal average beta, and large increases in the Alfven Mach number and ExB flow shear. By exploiting such features, joint experiments with tokamaks of conventional aspect ratio are resolving several key degeneracies of interest to ITER, DEMO and larger future ST devices. Present STs have low toroidal fields sufficient for most physics studies, but for high fusion yield or energy production higher fields are required; importantly, studies on both NSTX and MAST indicate a stronger than expected improvement of performance with toroidal field. Both devices are planning exciting upgrades which feature a considerable increase of toroidal field. Recent designs for a D-T Component Test Facility based on the Spherical Tokamak show the promise of low Tritium consumption and minimum build cost. Such a facility would provide valuable R&D on the scientific and technical issues of fusion power.
Plasma Confinement in the UCLA Electric Tokamak.
NASA Astrophysics Data System (ADS)
Taylor, Robert J.
2001-10-01
The main goal of the newly constructed large Electric Tokamak (R = 5 m, a = 1 m, BT < 0.25 T) is to access an omnigeneous, unity beta(S.C. Cowley, P.K. Kaw, R.S. Kelly, R.M. Kulsrud, Phys. fluids B 3 (1991) 2066.) plasma regime. The design goal was to achieve good confinement at low magnetic fields, consistent with the high beta goal. To keep the program cost down, we adopted the use of ICRF as the primary heating source. Consequently, antenna surfaces covering 1/2 of the surface of the tokamak has been prepared for heating and current drive. Very clean hydrogenic plasmas have been achieved with loop voltage below 0.7 volt and densities 3 times above the Murakami limit, n(0) > 8 x 10^12 cm-3 when there is no MHD activity. The electron temperature, derived from the plasma conductivity is > 250 eV with a central electron energy confinement time > 350 msec in ohmic conditions. The sawteeth period is 50 msec. Edge plasma rotation is induced by plasma biasing via electron injection in an analogous manner to that seen in CCT(R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P. Pribyl, D. Darrow, and M. Ono. Phys. Rev Lett. 63 2365 1989.) and the neoclassical bifurcation is close to that described by Shaing et al(K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63 2369 (1989).). In the ohmic phase the confinement tends to be MHD limited. The ICRF heating eliminates the MHD disturbances. Under second harmonic heating conditions, we observe an internal confinement peaking characterized by doubling of the core density and a corresponding increase in the central electron temperature. Charge exchange data, Doppler data in visible H-alpha light, and EC radiation all indicate that ICRF heating works much better than expected. The major effort is focused on increasing the power input and controlling the resulting equilibrium. This task appears to be easy since our current pulses are approaching the 3 second mark without RF heating or current drive. Our
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, E. J.
2015-02-15
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error
Magnetic control of magnetohydrodynamic instabilities in tokamaks
NASA Astrophysics Data System (ADS)
Strait, E. J.
2015-02-01
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB /B ˜10-3 to 10-4 ) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low
Electromagnetic Torque in Tokamaks with Toroidal Asymmetries
NASA Astrophysics Data System (ADS)
Logan, Nikolas Christopher
Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric
Basic Physics of Tokamak Transport Final Technical Report.
Sen, Amiya K.
2014-05-12
The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to
Power supplies and quench protection for the Tokamak Physics Experiment
Neumeyer, C.L.
1994-07-01
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.
Overview of the compact ignition tokamak
Flanagan, C.A.
1986-01-01
A national team has developed a baseline concept for a Compact Ignition Tokamak (CIT). The CIT mission is to achieve ignition and provide experimental capability to study the behavior of burning plasma. The design uses large magnetic fields on axis (about 10 T) and large plasma currents (about 9-10 MA). The magnet structure derives high strength from the use of a copper-Inconel composite plate design in the nose of region of the toroidal field (TF) coil and in the ohmic heating solenoid. Inertial cooling is used;liquid nitrogen temperatures are established at the beginning of each pulse. Capability is provided to operate either with a divertor or limiter based plasma. The design is very compact (1.32-m major radius, 0.43-m plasma radius), has 16 TF coils, and has 16 major horizontal access ports, about 30 cm by 80 cm, located between TF coils. The schedule is for a construction project to be authorized for the period FY 1988-93.
Numerical simulation of electromagnetic turbulence in tokamaks
Waltz, R.E.
1985-02-01
Nonlinear two- and three-fluid equations are written for the time evolution of the perturbed electrostatic potential, densities, vector potential, and parallel ion motion of collisional and trapped electron plasmas in tokamak geometry. The nonlinear terms arise from the E x B/sub 0/ convection (d/dt = partial/partialt+v/sub E/ x del/sub perpendicular/) and magnetic flutter (del-tilde/sub parallel/ = del/sub parallel/+(B/sub perpendicular//B/sub 0/) x del/sub perpendicular/). Simplified two-dimensional (k/sub perpendicular/) mode coupling simulations with a fixed average parallel wavenumber (k/sub parallel/ = 1/Rq) and curvature drift (..omega../sub g/ = (L/sub n//R)..omega../sub asterisk/ ) characteristic of outward ballooning are performed. Homogeneous stationary turbulent states of the dissipative drift and interchange modes from 0< or =..beta..<..beta../sub crit/ for both the collisional and trapped electron plasmas are obtained. Transport coefficients associated with E x B and magnetic motions are calculated. The problem of simulating plasmas with high viscous Reynolds number is treated with an absorbing mantle at the largest wavenumbers.
Multiple time scale methods in tokamak magnetohydrodynamics
Jardin, S.C.
1984-01-01
Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.
Microwave Tokamak Experiment (MTX) ohmic heating system
Jackson, M.C. )
1989-09-13
The ohmic heating system for the Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL) provides both the voltage for the initial breakdown phase and the energy to drive the plasma current to a value of 400 kA or greater. Providing this voltage and flux swing requires a one-turn loop voltage of about 25 volts (11 kV across the coil) and a magnetic flux swing of 2 volt- seconds. This voltage and flux swing are accomplished by charging the ohmic heating coils to 20 kA, at which point the current is commutated off into a resistor generating the 11 kV across the coil. When the current passes through zero, another power supply drives the current in the opposite polarity to 20 kA, thus completing the full 2 volt-second flux swing. This paper describes the design features and performance of the ohmic heating circuit, with emphasis on the commutation circuit. In addition, the paper describes the use of the ohmic heating system for discharge cleaning and the changeover procedure. 3 refs., 4 figs., 1 tab.
Neoclassical transport in high {beta} tokamaks
Cowley, S.C.
1992-12-01
Neoclassical, transport in high {beta} large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high {beta} large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low {beta} values by a factor ({var_epsilon}/q{sup 2}{beta}){sup {1/2}} II. This factor is the ratio of plasma volume in the boundary layer to the volume in the core. The fraction of trapped particles on a given flux surface (f{sub t}) is also reduced by this factor so that
Impurities in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, D. P.; Bell, R. E.; Kaita, R.; Majeski, R.; Biewer, T. M.; Gray, T. K.; Tritz, K.; Widmann, K.
2014-10-01
The Lithium Tokamak Experiment (LTX) is designed to study the low-recycling regime through the use of close-fitting, lithium-coated, heatable shell quadrants surrounding the plasma volume. Lithium coatings can getter and bury impurities, but they can also become covered by impurity compounds. Liquefied coatings can both dissolve impurity compounds and bring them to the surface, while sputtering and evaporation rates increase strongly with temperature. Here, we use spectroscopic measurements to assess the effects of varying wall conditions on plasma impurities, mainly Li, C, and O. A passive Doppler spectroscopy system measures toroidal and poloidal impurity profiles using fixed-wavelength and variable-wavelength visible spectrometers. In addition, survey and high-resolution extreme ultraviolet spectrometers detect emission from higher charge states. Preliminary results show that fresh Li coatings generally reduced C and O emission. C emission decreased sharply following the first solid Li coatings. Inverted toroidal profiles in a discharge with solid Li coatings show peaked Li III emissivity and temperature profiles. Recently, experiments with fresh liquid coatings led to especially strong O reduction. Results from these and additional experiments will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Experimental results from the TFTR tokamak
Hawryluk, R.J.; Arunasalam, V.; Bell, J.D.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Bloody, F.; Bretz, N.; Budny, R.; Bush, C.E.
1986-10-01
Recent experiments on TFTR have extended the operating regime of TFTR in both ohmic- and neutral-beam-heated discharges. The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2 T). Initial neutral-beam-heating experiments used up to 6.3 MW of deuterium beams. With the recent installation of two additional beamlines, the power has been increased up to 11 MW. A deuterium pellet injector was used to increase the central density to 2.5 x 10/sup 20/ m/sup -3/ in high current discharges. At the opposite extreme, by operating at low plasma current (I/sub p/ approx. 0.8 MA) and low density (anti n/sub e/ approx. 1 x 10/sup 19/ m/sup -3/), high ion temperatures (9 +- 2 keV) and rotation speeds (7 x 10/sup 5/ m/s) have been achieved during injection. In addition, plasma compression experiments have demonstrated acceleration of beam ions from 82 keV to 150 keV, in accord with expectations. The wide operating range of TFTR, together with an extensive set of diagnostics and a flexible control system, has facilitated transport and scaling studies of both ohmic- and neutral-beam-heated discharges. The results of these confinement studies are presented.
Continuous tokamak operation with an internal transformer
Singer, C.E.; Mikkelsen, D.R.
1982-10-01
A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors.
The space potential in the tokamak text
Yang, X.Z.; Zhang, B.Z.; Wootton, A.J.; Schoch, P.M.; Richards, B.; Baldwin, D.; Brower, D.L.; Castle, G.G.; Hazeltine, R.D.; Heard, J.W.; Hickok, R.L.; Li, W.L.; Lin, H.; McCool, S.C.; Simcic, V.J.; Ritz, C.P.; Yu, C.X. )
1991-12-01
A heavy ion beam probe has been used to measure the plasma space potential profiles in the tokamak TEXT (Nucl. Fusion Technol. {bold 1}, 479 (1981)). The Ohmic discharges studied were perturbed by externally produced resonant magnetic fields (an ergodic magnetic limiter or EML). Without these perturbations the plasma central potential is generally consistent with the value calculated from radial ion momentum balance, using experimental values of density and ion temperature and assuming a neoclassical poloidal rotation velocity. Exceptions to the agreement are found when operating with reduced plasma parameters. Possible reasons for this discrepancy are explored, in particular, the effects of intrinsic magnetic field fluctuations, and modifications to the self-consistent radial electric sheath. With the application of the EML fields the edge electric field and potential increase during periods of magnetic island overlap. A test particle calculation of electron transport shows increases in diffusivity also occur during periods of magnetic island overlap. These calculated changes in diffusivity are interpreted in terms of a stochastic layer width, which is itself used to predict a potential change for comparison with the experimental results.
Quasicoherent modes on the COMPASS tokamak
NASA Astrophysics Data System (ADS)
Melnikov, A. V.; Markovic, T.; Eliseev, L. G.; Adámek, J.; Aftanas, M.; Bilkova, P.; Boehm, P.; Gryaznevich, M.; Imrisek, M.; Lysenko, S. E.; Medvedev, S. Y.; Panek, R.; Peterka, M.; Seidl, J.; Stefanikova, E.; Stockel, J.; Weinzettl, V.; the COMPASS Team
2015-06-01
Multiple quasicoherent electromagnetic modes with steady-state frequency and different nature and location were observed in the COMPASS tokamak (R = 0.56 m, = 0.2 m) at Bt = 1.14 T with Co-NBI (PNBI = 0.2-0.5 MW, Eb = 32 keV) at frequencies 5 kHz < f < 250 kHz. Modes were observed in both low and high confinement (L- and H-modes) plasmas. Lower frequency modes with f < 50 kHz were identified as low m tearing and kink MHD modes, while higher frequency modes with 50 kHz < f < 250 kHz were considered as having Alfvénic nature. Unexpectedly, such modes were only observed in the H-mode, both in neutral beam injector-assisted and Ohmic, so the mode driving force is not yet clear. Using the linear MHD code KINX, we initially identified the observed mode with a ballooning structure is as beta induced Alfvén eigenmode (BAE) with m, n < 5, while an antiballooning mode is initially identified as toroidal Alfvén eigenmode (TAE) with m, n < 9.
Ionization balance in EBIT and tokamak plasmas
NASA Astrophysics Data System (ADS)
Peacock, N. J.; Barnsley, R.; O'Mullane, M. G.; Tarbutt, M. R.; Crosby, D.; Silver, J. D.; Rainnie, J. A.
2001-01-01
The equilibrium state in tokamak core plasmas has been studied using the relative intensities of resonance x-ray lines, for example Lyα (H-like), "w" (He-like), and "q" (Li-like) from test ions such as Ar+15, Ar+16, and Ar+17. A full spatial analysis involves comparison of the line intensities with ion diffusion calculations, including relevant atomic rates. A zero-dimensional model using a global ion loss rate approximation has also been demonstrated by comparison with the data collected from a Johann configuration spectrometer with a charged coupled device (CCD) detector. Since the lines are nearly monoenergetic, their intensities are independent of the instrument sensitivity and are directly proportional to the ion abundances. This method has recently been applied to Ar in the Oxford electron beam ion trap (EBIT) with a beam energy in the range 3-10 keV. Taking into account the cross sections for monoenergetic electron collisions and polarization effects, model calculations agree with the observed line ratios at 4.1 keV beam energy. This work will be expanded to provide nomograms of ionization state versus line intensity ratios as a function of EBIT beam energy.
Thermo-Oxidation of Tokamak Carbon Dust
J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz
2008-04-01
The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.
Divertor design for the Tokamak Physics Experiment
Hill, D.N.; Braams, B.; Brooks, J.N.
1994-05-01
In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.
Multiscale coherent structures in tokamak plasma turbulence
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-10-15
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state.
Tearing mode analysis in tokamaks, revisited
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1997-12-01
A new {Delta}{prime} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon} {le} 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease {Delta}{prime}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low {beta} regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m {ge} 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code.
Physics aspects of the Compact Ignition Tokamak
Post, D.; Bateman, G.; Houlberg, W.; Bromberg, L.; Cohn, D.; Colestock, P.; Hughes, M.; Ignat, D.; Izzo, R.; Jardin, S.
1986-11-01
The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ approx. 2 x 10/sup 20/ sec m/sup -3/ required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k approx. 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided.
External Kink Mode in Diverted Tokamaks
NASA Astrophysics Data System (ADS)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Hanson, J. M.; Turco, F.; Piovesan, P.
2014-10-01
In a straight tokamak model, the external kink mode with toroidal mode number n and poloidal mode number m is predicted to be unstable when the edge safety factor, qedge , lies just below a rational value. In a torus, the picture is essentially unchanged and the 2/1 instability in particular is always encountered when qedge = 2 . For a diverted plasma, the edge q is infinite, but, the experimental limit is then q95 = 2 , where q95 is at the 95% flux surface. However, no theoretical basis has been established for the importance of q95 and ideal predictions indicate stability with qedge > 2 and q95 < 2 instability is found only when the actual q at the edge is below 2. Two possible solutions present themselves. The observed mode may be destabilized as a result of small 3D error fields. Alternatively, the observed mode may be destabilized by the rapidly increased resistivity at the plasma edge. Both possibilities are examined using ideal and resistive MHD tools in two and three dimensions. Work supported in part by the US DOE under DE-FG02-95ER54309, DE-FG02-04ER54761, and DE-FG02-07ER54917.
Pellet imaging techniques in the ASDEX tokamak
Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )
1990-11-01
As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow {ital in} {ital situ} velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 {mu}s, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened {ital D}{sub {alpha}}, {ital D}{sub {beta}}, and {ital D}{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2{times}10{sup 17} cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of {ital D}{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational {ital q} surfaces, but instead are a result of dynamic, nonstationary, ablation process.
Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator.
Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, Thomas W; Dix, D.; El-GuebalyUniv. Wisco, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D. G.; Zarnstorff, M. C.
2011-01-01
A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.
Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator
NASA Astrophysics Data System (ADS)
Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.
2011-10-01
A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.
Seo, Seong-Heon; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Park, Jinhyung; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.
2013-08-15
Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.
Pneumatic hydrogen pellet injection system for the ISX tokamak.
Milora, S L; Foster, C A
1979-04-01
We describe the design and operation of the solid hydrogen pellet injection system used in plasma refueling experiments on the ISX tokamak. The gun-type injector operates on the principle of gas dynamic acceleration of cold pellets confined laterally in a tube. The device is cooled by flowing liquid helium refrigerant, and pellets are formed in situ. Room temperature helium gas at moderate pressure is used as the propellant. The prototype device injected single hydrogen pellets into the tokamak discharge at a nominal 330 m/s. The tokamak plasma fuel content was observed to increase by (0.5-1.2) x10(19) particles subsequent to pellet injection. A simple modification to the existing design has extended the performance to 1000 m/s. At higher propellant operating pressures (28 bars), the muzzle velocity is 20% less than predicted by an idealized constant area expansion process. PMID:18699536
The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak
Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei
2014-01-01
The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099
Tokamak dust particle size and surface area measurement
Carmack, W.J.; Smolik, G.R.; Anderl, R.A.; Pawelko, R.J.; Hembree, P.B.
1998-07-01
The INEEL has analyzed a variety of dust samples from experimental tokamaks: General Atomics` DII-D, Massachusetts Institute of Technology`s Alcator CMOD, and Princeton`s TFTR. These dust samples were collected and analyzed because of the importance of dust to safety. The dust may contain tritium, be activated, be chemically toxic, and chemically reactive. The INEEL has carried out numerous characterization procedures on the samples yielding information useful both to tokamak designers and to safety researchers. Two different methods were used for particle characterization: optical microscopy (count based) and laser based volumetric diffraction (mass based). Surface area of the dust samples was measured using Brunauer, Emmett, and Teller, BET, a gas adsorption technique. The purpose of this paper is to present the correlation between the particle size measurements and the surface area measurements for tokamak dust.
Probing spherical tokamak plasmas using charged fusion products
NASA Astrophysics Data System (ADS)
Boeglin, Werner U.; Perez, Ramona V.; Darrow, Douglass S.; Cecconello, Marco; Klimek, Iwona; Allan, Scott Y.; Akers, Rob J.; Jones, Owen M.; Keeling, David L.; McClements, Ken G.; Scannell, Rory
2015-11-01
The detection of charged fusion products, such as protons and tritons resulting from D(d,p)t reactions, can be used to determine the fusion reaction rate profile in large spherical tokamak plasmas with neutral beam heating. The time resolution of a diagnostic of this type makes it possible to study the slowly-varying beam density profile, as well as rapid changes resulting from MHD instabilities. A 4-channel prototype proton detector (PD) was installed and operated on the MAST spherical tokamak in August/September 2013, and a new 6-channel system for the NSTX-U spherical tokamak is under construction. PD and neutron camera measurements obtained on MAST will be compared with TRANSP calculations, and the design of the new NSTX-U system will be presented, together with the first results from this diagnostic, if available. Supported in part by DOE DE-SC0001157.
Driven magnetic reconnection in the COMPASS-C tokamak
Morris, A.W.; Carolan, P.G.; Fitzpatrick, R.; Hender, T.C.; Todd, T.N. , Abingdon, Oxon )
1992-02-01
The question of the influence of nonaxisymmetric field perturbations on tokamaks is investigated. Recent experiments in the COMPASS-C tokamak (in {ital Proceedings} {ital of} {ital the} 15{ital th} {ital Symposium} {ital on} {ital Fusion} {ital Technology}, Utrecht (North-Holland, Amsterdam, 1989), Vol. 1, p. 361) with externally applied helical fields reveal that magnetic islands do not appear until the applied field exceeds a certain value, when plasma rotation and confinement are affected. A new resistive magnetohydrodynamic model including plasma rotation now provides an explanation of this threshold, and is quantitatively consistent with experimental results in Ohmic plasmas. The results indicate the tolerable error fields in future tokamaks. The effects of perturbations with various poloidal and toroidal mode numbers have been studied.
The dynamic mutation characteristics of thermonuclear reaction in Tokamak.
Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei
2014-01-01
The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z 2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099
Rippling modes in the edge of a Tokamak plasma
NASA Astrophysics Data System (ADS)
Carreras, B. A.; Callen, J. D.; Gaffney, P. W.; Hicks, H. R.
1982-02-01
A promising resistive magnetohydrodynamic candidate for the underlying cause of turbulence in the edge of a Tokamak plasma is the rippling instability. A computational model for these modes in the cylindrical Tokamak approximation was developed and the linear growth and single helicity quasilinear saturation phases of the rippling modes for parameters appropriate to the edge of a Tokamak plasma was explored. Large parallel heat conduction does not stabilize these mode. Nonlinearly, individual rippling modes are found to saturate by quasilinear flattening of the resistivity profile. The saturated amplitude of the modes scales as m/sup -1/, and the radial extent of these modes grows linearly with time due to radial Vector E x Vector B0 convection. It is found that this evolution is terminated by parallel heat conduction.
Texas Experimental Tokamak. Technical progress report, April 1990--April 1993
Wootton, A.J.
1993-04-01
This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.
Prospects and status of low-aspect-ratio tokamaks
Peng, Y.K.M.
1994-12-31
The prospects for the low-aspect-ratio (A) tokamak to fulfill the requirements of viable fusion power plants are considered relative to the present status in data and modeling. Desirable physics and design features for an attractive Blanket Test Facility and power reactors are estimated for low-A tokamaks based on calculations improved with the latest data from small pioneering experiments. While these experiments have confirmed some of the recent predictions for low-A, they also identify the remaining issues that require verification before reliable projections can be made for these deuterium-tritium applications. The results show that the low-A regime of small size, modest field, and high current offers a path complementary to the standard and high A tokamaks in developing the full potential of fusion power.
Orbit effects on impurity transport in a rotating tokamak plasma
Wong, K.L.; Cheng, C.Z.
1988-05-01
Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs.
Profile-turbulence interactions, magnetohydrodynamic relaxations, and transport in tokamaks
Thyagaraja, A.; Knight, P.J.; Baar, M.R. de; Hogeweij, G.M.D.; Min, E.
2005-09-15
The dynamical behavior of the global, two-fluid, electromagnetic model of a tokamak plasma is explored under conditions corresponding to the Rijnhuizen tokamak project [A. J. H. Donne, Plasma Phys. Rep. 20, 192 (1994)] using the CUTIE code [A. Thyagaraja, Plasma Phys. Controlled Fusion 42, B255 (2000)]. Simulations of an off-axis electron-cyclotron-heated (350 kW) hydrogen discharge and a purely Ohmic one over several resistive evolution times ({tau}{sub res}{approx_equal}15-20 ms) are described. The results illustrate profile-turbulence interactions and the spectral transfer processes implicated in the spontaneous generation and maintenance of mesoscale zonal flows and dynamo currents. Relaxation phenomena, including off- and on-axis sawteeth and periodically repeating edge ballooning instabilities mediated by these mechanisms, are presented. The CUTIE model reproduces many observed features of the experiment qualitatively and suggests that global electromagnetic simulations may play an essential role in understanding tokamak turbulence and transport.
Fractal structure of films deposited in a tokamak
NASA Astrophysics Data System (ADS)
Budaev, V. P.; Khimchenko, L. N.
2007-04-01
The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 μm showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68-0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.
Resistive demountable toroidal-field coils for tokamak reactors
Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.
1981-07-01
Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.
DIII-D tokamak long range plan. Revision 3
1992-08-01
The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998.
Design and Analysis of the Thermal Shield of EAST Tokamak
NASA Astrophysics Data System (ADS)
Xie, Han; Liao, Ziying
2008-04-01
EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.
Resistive X-point modes in tokamak boundary plasmas
Myra, J. R.; D'Ippolito, D. A.; Xu, X. Q.; Cohen, R. H.
2000-06-01
It is shown that the boundary (edge and scrape-off-layer) plasma in a typical low (L) mode diverted tokamak discharge is unstable to a new class of modes called resistive X-point (RX) modes. The RX mode is a type of resistive ballooning mode that exploits a synergism between resistivity and the magnetic geometry of the X-point region. The RX modes are shown to give robust instabilities at moderate mode numbers, and therefore are expected to be the dominant contributors to turbulent diffusion in the boundary plasma of a diverted tokamak. (c) 2000 American Institute of Physics.
Fusion-product transport in axisymmetric tokamaks: losses and thermalization
Hively, L.M.
1980-01-01
High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-..beta.., non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated.
A Midsize Tokamak As Fast Track To Burning Plasmas
E. Mazzucato
2010-07-14
This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.
What is the fate of runaway positrons in tokamaks?
Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang
2014-06-19
In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.
Electron cyclotron current drive efficiency in general tokamak geometry
Lin-Liu, Y. R.; Chan, V. S.; Prater, R.
2003-01-01
Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Stability of high. beta. large aspect ratio tokamaks
Cowley, S.C.
1991-10-01
High {beta}({beta}{much gt} {epsilon}/q{sup 2}) large aspect ratio ({epsilon} {much gt} 1) tokamak equilibria are shown to be always stable to ideal M.H.D. modes that are localized about a flux surface. Both the ballooning and interchange modes are shown to be stable. This work uses the analytic high {beta} large aspect ratio tokamak equilibria developed by Cowley et.al., which are valid for arbitrary pressure and safety factor profiles. The stability results make no assumption about these profiles or the shape of the boundary. 14 refs., 4 figs.
The role of spherical torus in clarifying tokamak physics
Morris, A. W.; Peng, Yueng Kay Martin
1999-01-01
The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one s understanding will be emphasized.
TIBER: Tokamak Ignition/Burn Experimental Research. Final design report
Henning, C.D.; Logan, B.G.; Barr, W.L.; Bulmer, R.H.; Doggett, J.N.; Johnson, B.M.; Lee, J.D.; Hoard, R.W.; Miller, J.R.; Slack, D.S.
1985-11-01
The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs. (WRF)
Reliability of initial-value MHD calculations of tokamak disruptions
Hicks, H.R.; Carreras, B.A.; Garcia, L.; Holmes, J.A.
1984-06-01
We have proposed the nonlinear coupling of resistive tearing modes as the mechanism for some tokamak disruptions. This is based primarily on initial-value resistive magnetohydrodynamic calculations performed with a finite-difference grid in minor radius and Fourier series expansion in the poloidal and toroidal angles. The calculations show that, for certain q profiles, the nonlinear interaction of tearing modes of different helicities leads to the rapid destabilization of other modes. The resulting effects and the time scale are consistent with the tokamak disruption.
Beta optimization in the context of reactor relevant tokamaks
Manickam, J.
1990-08-01
In a reactor relevant tokamak the appropriate definition of {beta}, the ratio of the particle and magnetic field pressures, is {beta}* {equivalent to} (2 < p{sup 2} >{sup {1/2}} /B{sup 2}), which exceeds the conventional definition by a factor dependent on the pressure peaking factor, PPF. A simple scaling is obtained which relates the two definitions, {beta}*/{beta}{approx equal}0.9 {plus} 0.15 PPF. Stability properties are determined in terms of {beta}* in a circular and dee-shaped tokamak. 4 refs., 6 figs.
Accessibility of second regions of stability in tokamaks
Manickam, J.
1985-12-01
Second regions of stability to the ideal ballooning modes have been shown to exist in large-aspect-ratio circular and small-aspect-ratio bean-shaped tokamaks. We report on the existence of these second stability regions in finite-aspect-ratio dee-shaped tokamaks. We also report on the discovery of a second-stable region with respect to the n = 1 external kink mode in a bean-shaped plasma. The role of the shear and current profile in determining these regions of parameter space are discussed. 13 refs., 6 figs.
What is the fate of runaway positrons in tokamaks?
Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang
2014-06-15
Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.
Kinetic energy principle and neoclassical toroidal torque in tokamaks
Park, Jong-Kyu
2011-11-15
It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.
Kinetic Energy Principle And Neoclassical Toroidal Torque In Tokamaks
Jong-Kyu Park
2011-11-07
It is shown that when tokamaks are perturbed the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the Neoclassical Toroidal Viscosity (NTV). A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy
Magnetic flux reconstruction methods for shaped tokamaks
Tsui, Chi-Wa
1993-12-01
The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.
Recent results from tokamak divertor plasma measurements
Allen, S.L.
1996-05-01
New diagnostics have been developed to address key divertor physics questions, including: target plate heat flux reduction by radiation, basic edge transport issues, and plasma wall interactions (PWI) such as erosion. A system of diagnostics measures the target plate heat flux (imaging IR thermography) and particle flux (probes, pressure and Penning gauges, and visible emission arrays). Recently, T{sub e},n{sub e}, and P{sub e} (electron pressure) have been measured in 2-D with divertor Thomson Scattering. During radiative divertor operation T{sub e} is less than 2 eV, indicating that new atomic processes are important. Langmuir probes measure higher T{sub e} in some cases. In addition, the measured P{sub e} near the separatrix at the target plate is lower than the midplane pressure, implying radial momentum transport. Bolometer arrays, inverted with reconstruction algorithms, provide the 2-D core and divertor radiation profiles. Spectroscopic measurements identify the radiating species and provide information on impurity transport; both absolute chordal measurements and tomographic reconstructions of images are used. Either intrinsic carbon or an inert species (e.g., injected Ne) are usually observed, and absolute particle inventories are obtained. Computer codes are both benchmarked with the experimental data and provide important consistency checks. Several techniques are used to measure fundamental plasma transport and fluctuations, including probes and reflectometry. PWI issues are studied with in-situ coupons and insertable samples (DiMES). Representative divertor results from DIII-D with references to results on other tokamaks will be presented.
Magnet design approach for pulsed tokamak reactors
Kim, S.H.; Evans, K. Jr.; Ehst, D.A.
1983-12-01
A choice of various operating modes of a tokamak reactor will have considerable impact on the fatigue lives and cost of ohmic heating (OH), equilibrium field (EF), and toroidal field (TF) coils. OH AND EF coil requirements and their costs, as well as the effects of the fringing fields of the EF coils on the TF coils, have been studied under cyclic operation in the range of N = 10/sup 2/ to 10/sup 6/ cycles, spanning the range from a noninductively driven reactor (STARFIRE) to a conventional ohmically driven reactor. For a reference design of TF coils the design of the central OH solenoid has been studied as a function of its maximum field, B/sup OH/. Increasing requirements for structural support lead to only negligible increases in volt-seconds for B/sup OH/ greater than or equal to 10.0 T. Fatigue failure of the OH coil is not a concern for N less than or equal to 10/sup 5/; for N approx. 10/sup 6/ fatigue limits the strain to small values, resulting in small increases in structural requirements and modest decreases in volt-seconds. Should noninductive current drive be achievable we note that this not only eliminates the OH coil, but it also permits EF coil placement in the inboard region, which facilitates the creation of highly shaped plasma cross sections (large triangularity, or bean-shaped equilibria). We have computed the stored energy, coil configuration and fringing fields for a number of EF coil design options.
Lee, H.G.; Lee, J.H.; Johnson, D.; Ellis, R.; Feder, R.; Park, H.
2004-10-01
The core and edge Thomson systems on Korea Superconducting Tokamak Advanced Research employ two different sets of lens collection optics. Their collection systems are positioned in the front end of a long reentrant cassette for optimum viewing coverage and optical throughput. Both systems collect the scattered light from a single tangential beam of multiple 50-Hz Nd:YAG lasers and image the scattering volume from core to edge with 40 spatial points. In order to obtain a higher resolution of 5 mm, the edge system has more spatial channels than the core system. Pressure-free heat shield windows, which will absorb the radiation heat flux, are mounted in front of large vacuum windows to protect them from the radiation heat load during long-pulse discharges.
Analysis of images from videocameras in the Frascati Tokamak Upgrade tokamak
De Angelis, R.; Migliori, S.; Borioni, S.; Bracco, G.; Pierattini, S.; Perozziello, A.
2004-10-01
The plasma edge interaction in FTU tokamak is monitored by wide angle videocameras. Data are acquired as movies or single frames at a rate of 50 frames/s. The images show interesting features of the plasma such as the presence of Marfes or runaways and give useful information on the status of large parts of the vacuum vessel and toroidal limiter. Due to the large number of data available visual inspection of the movies is often insufficient to correlate the images to the experimental findings. This article illustrates a number of applications developed in order to correlate the images with plasma signals and to search the image database for specific features relevant to the discharge.
HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak
Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.
1997-01-01
We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}
Observation of finite-. beta. MHD phenomena in tokamaks
McGuire, K.M.
1984-09-01
Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.
First neutron spectrometry measurement at the HL-2A Tokamak
NASA Astrophysics Data System (ADS)
Yuan, Xi; Zhang, Xing; Xie, Xu-Fei; Chen, Zhong-Jing; Peng, Xing-Yu; Fan, Tie-Shuan; Chen, Jin-Xiang; Li, Xiang-Qing; Yuan, Guo-Liang; Yang, Qing-Wei; Yang, Jin-Wei
2013-12-01
A compact neutron spectrometer based on the liquid scintillator is presented for neutron energy spectrum measurements at the HL-2A Tokamak. The spectrometer was well characterized and a fast digital pulse shape discrimination software was developed using the charge comparison method. A digitizer data acquisition system with a maximum frequency of 1 MHz can work under an environment with a high count rate at HL-2A Tokamak. Specific radiation and magnetic shielding for the spectrometer were designed for the neutron spectrum measurement at the HL-2A Tokamak. For pulse height spectrum analysis, dedicated numerical simulation utilizing NUBEAM combined with GENESIS was performed to obtain the neutron energy spectrum. Subsequently, the transportation process from the plasma to the detector was evaluated with Monte Carlo calculations. The distorted neutron energy spectrum was folded with the response matrix of the liquid scintillation spectrometer, and good consistency was found between the simulated and measured pulse height spectra. This neutron spectrometer based on a digital acquisition system could be well adopted for the investigation of the auxiliary heating behavior and the fast-ion related phenomenon on different tokamak devices.
Induced emission of extraordinary mode radiation in tokamaks
NASA Technical Reports Server (NTRS)
Freund, H. P.; Lee, L. C.
1979-01-01
The implications of the formation of a positive slope in the runaway electron tail in tokamak plasmas are investigated in regard to the radiation in the vicinity of the electron plasma frequency. In particular, it is shown that the amplification of extraordinary mode waves may result.
Bootstrap current close to magnetic axis in tokamaks
Shaing, K.C.; Hazeltine, R.D.
1996-12-01
It is shown that the bootstrap current density close to the magnetic axis in tokamaks does not vanish in simple electron-ion plasmas because the fraction of the trapped particles is finite. The magnitude of the current density could be comparable to that in the outer core region. This may reduce or even eliminate the need of the seed current.
General Description of Ideal Tokamak MHD Instability II
NASA Astrophysics Data System (ADS)
Shi, Bing-ren
2002-08-01
In this subsequent study on general description of ideal tokamak MHD instability, the part II, by using a coordinate with rectified magnetic field lines, the eigenmode equations describing the low-mode-number toroidal Alfven modes (TAE and EAE) are derived through a further expansion of the shear Alfven equation of motion.
TPX diagnostics for tokamak operation, plasma control and machine protection
Edmonds, P.H.; Medley, S.S.; Young, K.M.
1995-08-01
The diagnostics for TPX are at an early design phase, with emphasis on the diagnostic access interface with the major tokamak components. Account has to be taken of the very severe environment for diagnostic components located inside the vacuum vessel. The placement of subcontracts for the design and fabrication of the diagnostic systems is in process.
Confinement of high-energy trapped particles in tokamaks
Goldston, R.J.; White, R.B.; Boozer, A.H.
1981-08-31
The banana orbits of high-energy trapped particles in tokamaks are found to diffuse rapidly in the radial direction if the toroidal ripple exceeds a low critical value. During this diffusion the energy, the magnetic moment, and the value of the magnetic field strength at the banana tips are conserved.
Confinement of high energy trapped particles in tokamaks
Goldston, R.J.; White, R.B.; Boozer, A.H.
1981-04-01
The banana orbits of high energy trapped particles in tokamaks are found to diffuse rapidly in the radial direction if the toroidal ripple exceeds a low critical value. During this diffusion the energy, the magnetic moment, and the value of the magnetic field strength at the banana tips are conserved.
The impact of improved physics on commercial tokamak reactors
Galambos, J.D.; Perkins, L.J.; Haney, S.; Mandrekas, J.
1994-01-01
Improvements in the confinement and beta capability of tokamak devices have long been a goal of the fusion program. We examine the impact of improvements in present day confinement and beta capabilities on commercial tokamak reactors. We characterize confinement with the achievable enhancement factor (H) over the ITER89 Power scaling confinement time, and beta by the Troyon coefficient g. A surprisingly narrow range of plasma confinement and beta are found to be useful in minimizing the cost of electricity for a tokamak reactor. Improvements in only one of these quantities is not useful beyond some point, without accompanying improvements in the other. For the plasma beta limited by a Troyon coefficient (g) near 4.3 (%mT/MA), confinement levels characterized by H factor enhancements of only 2 are useful for our nominal steady-state driven tokamak. These confinement levels are similar to those observed in present day experiments. If the permissible Troyon beta coefficient is near 6, the useful H factor confinement range increases to 2.5, still close to present day confinement levels. Inductively driven, pulsed reactors have somewhat increased useful ranges of confinement, relative to the steady-state cases. For a Troyon beta limit coefficient g near 4.3, H factors up to 2.5 are useful, and for g near 6, H factors up to 3 are useful.
Cherenkov-type diagnostics of fast electrons within tokamak plasmas
NASA Astrophysics Data System (ADS)
Jakubowski, Lech; Sadowski, Marek J.; Zebrowski, Jaroslaw; Malinowski, Karol; Rabinski, Marek; Jakubowski, Marcin J.; Mirowski, Robert
2014-05-01
This paper presents a summary of the most important results of fast electron measurements performed so far within different tokamaks by means of Cherenkov-type detectors. In the ISTTOK tokamak (IPFN, IST, Lisboa, Portugal), two measuring heads were applied, each equipped with four radiators made of different types of alumina-nitrate poly-crystals. A two-channel measuring head equipped with diamond radiators was also used. Within the COMPASS tokamak (IPP AS CR, Prague, Czech Republic) some preliminary measurements have recently been performed by means of a new single-channel Cherenkov-type detector. The experimental data from the TORE SUPRA tokamak (CEA, IFRM, Cadarache, France), which were collected by means of a DENEPR-2 probe during two recent experimental campaigns, have been briefly analyzed. A new Cherenkov probe (the so-called DENEPR-3) has been mounted within the TORE SUPRA machine, but the electron measurements could not be performed because of the failure of this facility. Some conclusions concerning the fast electron emission are presented.
Electron-cyclotron-heating experiments in tokamaks and stellarators
England, A.C.
1983-01-01
This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.
Solenoid-free plasma start-up in spherical tokamaks
NASA Astrophysics Data System (ADS)
Raman, R.; Shevchenko, V. F.
2014-10-01
The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.
Performance and development of the DIII-D tokamak core
Anderson, P.M.; Johnson, W.R.; Busath, J.L.; Allen, S.L.
1998-07-01
The DIII-D tokamak is an upgrade of the Doublet III configuration which has operated since early 1986. This paper presents recent advances in performance using the upper divertor, fabrication development for vanadium components, operation of the helium leak checking in a high deuterium background, and restoration of the damaged Ohmic heating solenoid.
Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas
NASA Astrophysics Data System (ADS)
Hamada, Y.; Watari, T.; Nishizawa, A.; Yamagishi, O.; Narihara, K.; Ida, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.; the JIPPT-IIU Group
2015-04-01
Magnetic, density and potential fluctuations up to 500 kHz at several spatial points have been observed in the core region of JIPPT-IIU tokamak plasmas using a heavy ion beam probe. The frequency spectra of the density and magnetic oscillations are found to be similar, whereas there are large differences in the phase, coherence and frequency dependences deduced from signals at adjacent sample volumes. These differences allow us to ascribe the detected magnetic fluctuations to the microtearing mode (MTM) by simple dispersion relations of the MTM in collisionless and intermediate regimes. The frequency-integrated level of magnetic fluctuations around 150 kHz (100-200 kHz) is \\tilde{{B}}r /Bt ≈ 1× 10-4 , a level high enough for the ergodization of the magnetic surface and enhanced electron heat loss as derived by Rechester and Rosenbluth (1978 Phys. Rev. Lett. 40 38). This level is consistent with the measurements performed using cross-polarization scattering of microwaves in the Tore Supra tokamak. Our results are the first direct experimental verification of the MTM in the core region of tokamak plasmas, which has been recently observed in gyrokinetic simulations using a very fine mesh in tokamak and ST plasmas.
Gamma ray imager on the DIII-D tokamak.
Pace, D C; Cooper, C M; Taussig, D; Eidietis, N W; Hollmann, E M; Riso, V; Van Zeeland, M A; Watkins, M
2016-04-01
A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons. PMID:27131674
Gamma ray imager on the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Pace, D. C.; Cooper, C. M.; Taussig, D.; Eidietis, N. W.; Hollmann, E. M.; Riso, V.; Van Zeeland, M. A.; Watkins, M.
2016-04-01
A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.
2-D Imaging of Electron Temperature in Tokamak Plasmas
T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol
2004-07-08
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
On steady poloidal and toroidal flows in tokamak plasmas
McClements, K. G.
2010-08-15
The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B{sub {theta}/}B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B{sub {theta}/}B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.
LIDAR Thomson scattering for advanced tokamaks. Final report
Molvik, A.W.; Lerche, R.A.; Nilson, D.G.
1996-03-18
The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.
Analytic model for coaxial helicity injection in tokamak plasmas
Weening, R. H.
2011-12-15
Using a partial differential equation for the time evolution of the mean-field poloidal magnetic flux that incorporates resistivity {eta} and hyper-resistivity {Lambda} terms, an exact analytic solution is obtained for steady-state coaxial helicity injection (CHI) in force-free large aspect ratio tokamaks. The analytic mean-field Ohm's law model allows for calculation of the tokamak CHI current drive efficiency and the plasma inductances at arbitrary levels of magnetic fluctuations, or dynamo activity. The results of the mean-field model suggest that CHI approaching Ohmic efficiency is only possible in tokamaks when the size of the effective current drive boundary layer, {delta}{identical_to}({Lambda}/{eta}){sup 1/2}, becomes greater than half the size of the plasma, {delta}>a/2, with a the plasma minor radius. The electron thermal diffusivity due to magnetic fluctuation induced transport is obtained from the expression {chi}{sub e}={Lambda}/{mu}{sub 0}d{sub e}{sup 2}, with {mu}{sub 0} the permeability of free space and d{sub e} the electron skin depth, which for typical tokamak fusion plasma parameters is on the order of a millimeter. Thus, the ratio of the energy confinement time to the resistive diffusion time in a tokamak plasma driven by steady-state CHI approaching Ohmic efficiency is shown to be constrained by the relation {tau}{sub E}/{tau}{sub {eta}}<(d{sub e}/a){sup 2}{approx_equal}10{sup -6}. The mean-field model suggests that steady-state CHI can be viewed most simply as a boundary layer of stochastically wandering magnetic field lines.
High power heating of magnetic reconnection in merging tokamak experimentsa)
NASA Astrophysics Data System (ADS)
Ono, Y.; Tanabe, H.; Yamada, T.; Gi, K.; Watanabe, T.; , T., Ii; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.
2015-05-01
Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R˜105. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec2 ˜ Bp2. The guide toroidal field Bt does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field Bt, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with Bp > 0.4 T will enables us to heat the plasma to the alpha heating regime: Ti > 5 keV without using any additional heating facility.
Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; Sandorfi, Andy M.; Smith, S. P.; Wei, Xiangdong
2015-09-21
The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here as an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.
Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; Sandorfi, Andy M.; Smith, S. P.; Wei, Xiangdong
2015-09-21
The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less
Fueling studies on the lithium tokamak experiment
NASA Astrophysics Data System (ADS)
Lundberg, Daniel Patrick
Lithium plasma facing components reduce the flux of "recycled" particles entering the plasma edge from the plasma facing components. This results in increased external fueling requirements and provides the opportunity to control the magnitude and distribution of the incoming particle flux. It has been predicted that the plasma density profile will then be determined by the deposition profile of the external fueling, rather than dominated by the recycled particle flux. A series of experiments on the Lithium Tokamak Experiment demonstrate that lithium wall coatings facilitate control of the neutral and plasma particle inventories. With fresh lithium coatings and careful gas injection programming, over 90% of the injected particle inventory can be absorbed in the lithium wall during a discharge. Furthermore, dramatic changes in the fueling requirements and plasma parameters were observed when lithium coatings were applied. This is largely due to the elimination of water as an impurity on the plasma facing components. A Molecular Cluster Injector (MCI) was developed for the fueling of LTX plasmas. The MCI uses a supersonic nozzle, cooled to liquid nitrogen temperatures, to create the conditions necessary for molecular cluster formation. It has been predicted that molecular clusters will penetrate deeper into plasmas than gas-phase molecules via a reduced ionization cross-section and by improving the collimation of the neutral jet. Using an electron beam diagnostic, the densities of the cryogenic MCI are measured to be an order of magnitude higher than in the room-temperature jets formed with the same valve pressure. This indicates increased collimation relative to what would be expected from ideal gas dynamics alone. A systematic study of the fueling efficiencies achieved with the LTX fueling systems is presented. The fueling efficiency of the Supersonic Gas Injector (SGI) is demonstrated to be strongly dependent on the distance between the nozzle and plasma edge. The
Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks
NASA Astrophysics Data System (ADS)
Hanson, J. D.; Anderson, D. T.; Cianciosa, M.; Franz, P.; Harris, J. H.; Hartwell, G. H.; Hirshman, S. P.; Knowlton, S. F.; Lao, L. L.; Lazarus, E. A.; Marrelli, L.; Maurer, D. A.; Schmitt, J. C.; Sontag, A. C.; Stevenson, B. A.; Terranova, D.
2013-08-01
Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad-Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.
Configuration studies for a small-aspect-ratio tokamak stellarator hybrid
Carreras, B.A.; Lynch, V.E.; Ware, A.
1996-08-01
The use of modulated toroidal coils offers a new path to the tokamak-stellarator hybrids. Low-aspect-ratio configurations can be found with robust vacuum flux surfaces and rotational transform close to the transform of a reverse-shear tokamak. These configurations have clear advantages in minimizing disruptions and their effect and in reducing tokamak current drive needs. They also allow the study of low-aspect-ratio effects on stellarator confinement in small devices.
SYSTEM PERFORMANCE AND EXPERIMENTS WITH THE 110 GHZ MICROWAVE INSTALLATION ON THE DIII-D TOKAMAK
J.M. LOHR; F.W. BAITY,JR.; G.C. BARBER; R.W. CALLIS; I. GORELOV; C.M. GREENFIELD; R.A. LEGG; T.C. LUCE; C.C. PETTY; D. PONCE; R. PRATER
2000-09-01
A powerful microwave system operating at the second harmonic of the electron cyclotron frequency has been commissioned on the DIII-D tokamak. The primary mission of the microwave system is to permit current profile control leading to the improved performance of advanced tokamak operation in quasi-steady state. Initial performance tests and experiments on current drive both near and away from the tokamak axis and on transport have been performed.
Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments
Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.
2006-01-01
A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.
Three-dimensional analysis of tokamaks and stellarators
Garabedian, Paul R.
2008-01-01
The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807
Three-dimensional equilibria in axially symmetric tokamaks.
Garabedian, Paul R
2006-12-19
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of alpha particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Three-dimensional equilibria in axially symmetric tokamaks
Garabedian, Paul R.
2006-01-01
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Waves and turbulence in a tokamak fusion plasma.
Surko, C M; Slusher, R E
1983-08-26
The tokamak is a prototype fusion device in which a toroidal Magnetic field is used to confine a hot plasma. Coherent waves, excited near the plasma edge, can be used to transport energy into the plasma in order to heat it to the temperatures required for thermonuclear fusion. In addition, tokamak plasmas are known to exhibit high levels of turbulent density fluctuations, which can transport particles and energy out of the plasma. Recently, experiments have been conducted to elucidate the nature of both the coherent waves and the turbulence. The experiments provide insight into a broad range of interesting linear and nonlinear plasma phenomena and into many of the processes that determine such practical things as plasma heating and confinement. PMID:17753464
Three-dimensional analysis of tokamaks and stellarators.
Garabedian, Paul R
2008-09-16
The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807
Maintenance concept development for the Compact Ignition Tokamak
Macdonald, D.
1988-01-01
The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs.
Advances in Dust Detection and Removal for Tokamaks
NASA Astrophysics Data System (ADS)
Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.
2008-11-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.
Cryogenic requirements for the JT-60SA Tokamak
NASA Astrophysics Data System (ADS)
Michel, Frederic; Hitz, D.; Hoa, Christine; Lamaison, Valerie; Kamiya, Koji; Roussel, Pascal; Wanner, Manfred; Yoshida, Kiyoshi
2012-06-01
The superconducting tokamak JT-60SA is part of the Broader Approach Programmeagreed between Japan and Europe. CEA is in charge of the cryogenic system procurementincluding the Warm Compression Station, the gas storages, the Refrigerator Cold Box andthe Auxiliary Cold Box (ACB) which has to be installed on the JAEA Naka site in 2016.This paper summarizes the updated cryogenic requirements for the tokamak JT-60SAcryogenic system. The cryogenic system has a refrigeration capacity of about 9 kW equivalent at 4.5K, to supply cryopump panels at 3.7 K, superconducting magnets and cold structures at 4.4 K, HTS current leads at 50 K, and thermal shields at 80 K. This paper presents the static and variable heat loads of the different cooling loops and the results of the rmohydraulic calculations to derive the transient heat loads at the interface between the magnet system cooling loops and the Auxiliary Cold Box.
Gyrokinetics for high-frequency modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, Z. T.; Wang, L.; Long, L. X.; Dong, J. Q.; He, Zhixiong; Liu, Y.; Tang, C. J.
2012-07-01
Gyrokinetics for high-frequency modes in tokamaks is developed. It is found that the breakdown of the invariants by perturbed electromagnetic fields drives microinstability. The obtained diamagnetic frequency, ω∗, is proportional to only the toroidal mode number rather than transverse mode numbers. Therefore, there is no nonadiabatic drive for axisymmetrical modes in gyrokinetics. Meanwhile, the conventional eikonal Ansatz breaks down for the axisymmetrical modes. The ion drift-cyclotron instability discovered in a mirror machine is found for the first time in the toroidal system. The growth rates are proportional to ρi/Ln, and the slope changes with magnetic curvature. In spherical torus, where magnetic curvature is greater than that of traditional tokamaks, instability poses a potential danger to such devices.
Molecular emission in the edge plasma of T-10 tokamak
Zimin, A. M.; Krupin, V. A.; Troynov, V. I.; Klyuchnikov, L. A.
2015-12-15
The experiments on recording molecular emission in the edge plasma of the T-10 tokamak are described. To obtain reliable spectra with sufficient spectral, temporal, and spatial resolution, the optical circuit is optimized for various experimental conditions. Typical spectra measured in two sections of the tokamak are shown. It is shown that, upon varying the parameters of the discharge, the molecular spectrum not only changes significantly in intensity but also undergoes a qualitative change in the rotational and vibrational structure. For a detailed analysis, we use the Fulcher-α system (d{sup 3}Π{sub u}–a{sup 3}Σ{sub g}{sup +}) of deuterium in the wavelength range from 590 to 640 nm. The rotational temperatures of ground state X{sup 1}Σ{sub g}{sup +} and upper excited state d{sup 3}Π{sub u} are estimated by the measured spectra.
[alpha]-particle transport-driven current in tokamaks
Heikkinen, J.A. ); Sipilae, S.K. )
1995-03-01
It is shown that the radial transport of fusion-born energetic [alpha] particles, induced by electrostatic waves traveling in one poloidal direction, is directly connected to a net momentum of [alpha] particles in the toroidal direction in tokamaks. Because the momentum change is almost independent of toroidal velocity, the energy required for the momentum generation remains small on an [alpha]-particle population sustained by an isotropic time-independent source. By numerical toroidal Monte Carlo calculations it is shown that the current carried by [alpha] particles in the presence of intense well penetrated waves can reach several mega-amperes in reactor-sized tokamaks. The current obtained can greatly exceed the neoclassical bootstrap current of the [alpha] particles.
Gyrokinetics for high-frequency modes in tokamaks
Wang, Z. T.; Long, L. X.; Dong, J. Q.; He, Zhixiong; Wang, L.; Liu, Y.; Tang, C. J.
2012-07-15
Gyrokinetics for high-frequency modes in tokamaks is developed. It is found that the breakdown of the invariants by perturbed electromagnetic fields drives microinstability. The obtained diamagnetic frequency, {omega}{sup *}, is proportional to only the toroidal mode number rather than transverse mode numbers. Therefore, there is no nonadiabatic drive for axisymmetrical modes in gyrokinetics. Meanwhile, the conventional eikonal Ansatz breaks down for the axisymmetrical modes. The ion drift-cyclotron instability discovered in a mirror machine is found for the first time in the toroidal system. The growth rates are proportional to {rho}{sub i}/L{sub n}, and the slope changes with magnetic curvature. In spherical torus, where magnetic curvature is greater than that of traditional tokamaks, instability poses a potential danger to such devices.
Multipoint Thomson scattering diagnostic for the ETE tokamak
Berni, L.A.; Alonso, M.P.; Oliveira, R.M.
2004-10-01
To measure the electron temperature and plasma density profiles on the Experimento Tokamak Esferico tokamak a multiplexed Thomson scattering diagnostic was implemented. The diagnostic is based on a 10 J ruby laser and a single five spectral channel filter polychromator. A collection lens with f/6.3 relay the scattered light from 23 spatial points to optical fibers. The fibers have a monotonous increasing length and are inserted into the polychromator. Between the collection lens and each fiber optic we have a microlens to match the numerical aperture and to enlarge the plasma observation volume. This work describes the project, the simulations, and the preliminary results obtained with the first four optical fibers.
Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths
NASA Astrophysics Data System (ADS)
Monreal, Pedro; Calvo, Iván; Sánchez, Edilberto; Parra, Félix I.; Bustos, Andrés; Könies, Axel; Kleiber, Ralf; Görler, Tobias
2016-04-01
In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the Gene and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.
Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons
Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.
2015-07-15
Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.
Drift-wave fluctuation in an inviscid tokamak plasma
NASA Astrophysics Data System (ADS)
Yang, Jian-Rong; Mao, Jie-Jian; Tang, Xiao-Yan
2013-11-01
In order to describe the characterization of resistive drift-wave fluctuation in a tokamak plasma, a coupled inviscid two-dimensional Hasegawa—Wakatani model is investigated. Two groups of new analytic solutions with and without phase shift between the fluctuant density and the fluctuant potential are obtained by using the special function transformation method. It is demonstrated that the fluctuant potential shares similar spatio—temporal variations with the density. It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex, and that the fluctuation may be controlled through the adiabaticity and diffusion. By using the typical parameters in the quasi-adiabatic regime in the solutions with phase shift, it is shown that the density gradient becomes larger as the contours become dense toward the plasma edge and the contours have irregular structures, which reveal the nonuniform distribution in the tokamak edge.
Recent Progress of HT-7U Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Weng, Pei-de
2002-12-01
HT-7U is a superconducting tokamak, which is being constructed in Institute of Plasma Physics, Chinese Academy of Sciences. The mission of the HT-7U project is to develop a scientific and engineering basis of the steady state operation of advanced tokamak. The engineering design of the device has been optimized. The R&D program is going on. Short samples of the conductor and a CS model coil were tested. All the TF and PF coils will be manufactured and tested in Institute of Plasma Physics. Therefore, a 600-meter long jacketing line for cable-in-conduit conductors along with two winding machines, a set of VPI equipment and a test facility for the TF and PF coils are ready in ASIPP now. In this paper, the recent progress of the HT-7U is described.
Commissioning of heating neutral beams for COMPASS-D tokamak
Deichuli, P.; Davydenko, V.; Belov, V.; Gorbovsky, A.; Dranichnikov, A.; Ivanov, A.; Sorokin, A.; Mishagin, V.; Abdrashitov, A.; Kolmogorov, V.; Kondakov, A.
2012-02-15
Two neutral beam injectors have been developed for plasma heating on COMPASS-D tokamak (Institute of Plasma Physics, Prague). The 4-electrodes multihole ion-optical system with beam focusing was chosen to provide the low divergence 300 kW power in both deuterium and hydrogen atoms. The accelerating voltage is 40 kV at extracted ion current up to 15 A. The power supply system provides the continuous and modulated mode of the beam injection at a maximal pulse length 300 ms. The optimal arrangement of the cryopanels and the beam duct elements provides sufficiently short-length beamline which reduces the beam losses. The evolution of the impurities and molecular fraction content is studied in the process of the high voltage conditioning of the newly made ion sources. Two injectors of the same type have been successfully tested and are ready for operation at tokamak in IPP, Prague.
Testing of low Z coated limiters in tokamak fusion devices
Whitely, J.B.; Mullendore, A.W.; Langley, R.A.
1980-01-01
Extensive testing on a laboratory scale has been used to select those coatings most suitable for this environment. From this testing which included pulsed electron beam heating, low energy ion bombardment and arcing, chemical vapor deposited coating of TiB/sub 2/ and TiC on Poco graphite substrates have been selected and tested as limiters in ISX. Both limiter materials gave clean, stable, reproducible tokamak discharges the first day of operation. After one weeks exposure, the TiC limiter showed only superficial damage with no coating failure. The TiB/sub 2/ limiter had some small areas of coating failure. TiC coated graphite limiters have also been briefly tested in the tokamaks Alcator and PDX with favorable results.
Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas
Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.; Lifschitz, A. F.
2013-07-15
A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.
The application of diagnostic equipment in the Tokamak fusion reaction
NASA Astrophysics Data System (ADS)
Zhang, Bang-shuai; Chang, Jun; Gong, Xian-zu; Gan, Jia-fu; Feng, Shu-long
2011-11-01
This paper introduces the infrared optical system in the Tokamak fusion reaction device. In this optical system, the traditional optical structure can't meet the requirements, because the length of the infrared optical system in the Tokamak is very long. The design of optical system in the detection facility includes three parts:1.the combination of the concave aspheric mirror and flat mirror; 2.the Cassegrain system; 3.the relay group lenses. This paper describes the decrease of the modulation transfer function (MTF) when the temperature changes and how to compensate the decrease of the MTF in order to maintain the image quality in a high level. As a result, the image quality of this optical system can reach the requirements when the temperature changes.
Comparison of a radial fractional transport model with tokamak experiments
Kullberg, A. Morales, G. J.; Maggs, J. E.
2014-03-15
A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, α, is likely a function of radial position in the devices surveyed.
Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities
Fulton, D. P.; Holod, I.; Lin, Z.; Xiao, Y.
2014-04-15
Gyrokinetic simulations of electrostatic driftwave instabilities in a tokamak edge have been carried out to study the turbulent transport in the pedestal of an H-mode plasma. The simulations use annulus geometry and focus on two radial regions of a DIII-D experiment: the pedestal top with a mild pressure gradient and the middle of the pedestal with a steep pressure gradient. A reactive trapped electron instability with a typical ballooning mode structure is excited by trapped electrons in the pedestal top. In the middle of the pedestal, the electrostatic instability exhibits an unusual mode structure, which peaks at the poloidal angle θ=±π/2. The simulations find that this unusual mode structure is due to the steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry appears to have a stabilizing effect on the instability when compared to a simple circular tokamak geometry.
Comparison of a radial fractional transport model with tokamak experiments
NASA Astrophysics Data System (ADS)
Kullberg, A.; Morales, G. J.; Maggs, J. E.
2014-03-01
A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, α, is likely a function of radial position in the devices surveyed.
Equilibrium analysis of tokamak discharges with toroidal variation
Zwingmann, W.; Becoulet, M.; Moreau, Ph.; Nardon, E.
2006-11-30
Tokamaks provide a field structure that is almost axisymmetric around the torus axis. There are however always small toroidal variations due to the limited number of toroidal field coils, the magnetic field ripple. On the other hand, non-axisymmetric external fields are applied on purpose to ergodise the field structure close to the separatrix, to control the heat and particle transport across the plasma boundary. We present a perturbation method to calculate the magnetic field of tokamak discharges with with weak toroidal variation. The method is applied for the equilibrium reconstruction of Tore Supra discharges with toroidal ripple. The perturbation method does not rely on a flux surface representation and can therefore be applied to structures with magnetic islands. We obtain the plasma response to the field of ergodising external coils, as proposed for the ITER device.
Investigation of tokamak solid divertor target options. Final report
McMurray, J.M.
1981-05-26
Analysis of survival constraints on the design of solid targets for tokamak bundle divertors is presented. Previous target design efforts are reviewed. Considerations of heat removal, surface erosion, and fatigue life are included in a generalized design window methodology which facilitates target selection. Using subcooled water as coolant, eight possible target materials are evaluated for use in tubular and plate targets as substrates, coatings, and claddings. Subject to the severe environment of the tokamak plasma, the most promising conventional designs are identified. A thermally bonded, mechanically unbonded laminated design is proposed and evaluated as a target design well suited to the divertor target environment. Due to fatigue and sputtering erosion this configuration has limited life, but appears to constitute an upper bound for the capabilities of a solid target design. Needs for experimental work are identified.
Pseudo-MHD ballooning modes in tokamak plasmas
Callen, J.D.; Hegna, C.C.
1996-08-01
The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant {open_quotes}pseudo-MHD{close_quotes} model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for {alpha} > s{sup 2}(2 {sup 7/3}/9) (r{sub p}/R{sub 0}) or-d{radical}{Beta}/dr > (2{sup 1/6} /3)(s/ R{sub 0q}), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas.
Tokamak Plasma Flows Induced by Local RF Forces
NASA Astrophysics Data System (ADS)
Chen, Jiale; Gao, Zhe
2015-10-01
The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are employed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated. supported by National Natural Science Foundation of China (Nos. 11405218, 11325524, 11375235 and 11261140327), in part by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB111002, 2013GB112001 and 2013GB112010), and the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning
Electron Transport by Radio Frequency Waves in Tokamak Plasmas
Ram, A. K.; Kominis, Y.; Hizanidis, K.
2009-11-26
A relativistic kinetic description for momentum and spatial diffusion of electrons by radio frequency (RF) waves and non-axisymmetric magnetic field perturbations in a tokamak is formulated. The Lie perturbation technique is used to obtain a non-singular, time dependent evolution equation for resonant and non-resonant electron diffusion in momentum space and diffusion in configuration space. The kinetic equation for the electron distribution function is different from the usual quasilinear equations as it includes interactions that are non-Markovian. It is suitable for studying wave-particle interaction in present tokamaks and in ITER. A primary goal of RF waves, and, in particular, of electron cyclotron waves, in ITER is to control instabilities like the neoclassical tearing mode (NTM). Non-axisymmetric effects due to NTMs are included in the kinetic formalism.
Estimation of Electron Temperature on Glass Spherical Tokamak (GLAST)
NASA Astrophysics Data System (ADS)
Hussain, S.; Sadiq, M.; Shah, S. I. W.; GLAST Team
2015-03-01
Glass Spherical Tokamak (GLAST) is a small spherical tokamak indigenously developed in Pakistan with an insulating vacuum vessel. A commercially available 2.45 GHz magnetron is used as pre-ionization source for plasma current startup. Different diagnostic systems like Rogowski coils, magnetic probes, flux loops, Langmuir probe, fast imaging and emission spectroscopy are installed on the device. The plasma temperature inside of GLAST, at the time of maxima of plasma current, is estimated by taking into account the Spitzer resistivity calculations with some experimentally determined plasma parameters. The plasma resistance is calculated by using Ohm's law with plasma current and loop voltage as experimentally determined inputs. The plasma resistivity is then determined by using length and area of the plasma column. Finally, the average plasma electron temperature is predicted to be 12.65eV for taking neon (Ne) as a working gas.
Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas
NASA Astrophysics Data System (ADS)
Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.; Lifschitz, A. F.
2013-07-01
A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.
The Multiple Gyrotron System on the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Lohr, John; Cengher, Mirela; Doane, John L.; Gorelov, Yuri A.; Moeller, Charles P.; Ponce, Dan; Prater, Ron
2011-03-01
The electron cyclotron heating and current drive complex on the DIII-D tokamak presently comprises six gyrotrons injecting rf power from the low field side at 110 GHz, the 2 f ce resonance at the center of the vacuum chamber. Typical injected rf power is 600-650 kW per gyrotron. The launched rf can be directed over ±20° toroidally to create both co- and counter-current drive and scanned over 40° poloidally to permit the injected rf beams to intersect, and be absorbed at, the second harmonic resonance anywhere in the tokamak upper half plane. The elliptical polarization is controlled so that the desired extraordinary or ordinary modes are excited for any injection geometry. The maximum injected energy on a single plasma shot has been 16.6 MJ for six gyrotrons injecting a total of 3.4 MW for 5 seconds.
A moving finite element model of the tokamak scrapeoff layer
Glasser, A.H.; Kuprat, A.P.
1993-10-01
Most numerical simulations of the tokamak scrapeoff layer use a mapping to flux coordinates and a piecewise equidistributed grid in those coordinates to resolve the multiple length scales and anisotropy characteristic of this problem. We have developed an alternative numerical method using simple cylindrical coordinates with a complex adaptive grid scheme. It is based on an understructured grid of traingles which move adaptively, aligning themselves with the magnetic field and concentrating in regions of sharp gradients.
Tokamak Startup Using Point-Source dc Helicity Injection
Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Redd, A. J.; Sontag, A. C.
2009-06-05
Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.
Tokamak startup using point-source dc helicity injection.
Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C
2009-06-01
Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation. PMID:19658871
Drift-Wave Instabilities and Transport in Non - Tokamak Geometry
NASA Astrophysics Data System (ADS)
Hua, Daniel Duc
Motivated by experimental scaling laws that suggest an improvement in the confinement time of fusion plasmas in tokamaks with elongated cross section, we search theoretically for favorable dependence on elongation for drift-wave instabilities, which may be responsible for anomalous transport in tokamaks. First, using thermodynamic methods, we derive upper bounds on thermal diffusivities for drift-wave instabilities in tokamaks but find no elongation dependence to lowest order. Also, compared with experimentally inferred ion thermal diffusivities from the DIIID tokamak, the thermodynamic bounds are as much as 100 times bigger in the plasma core. Second, utilizing a simulation code to calculate linear growth rates, we obtain mixing-length estimates of ion thermal diffusivities for a specific drift wave, the ion-temperature-gradient (ITG) mode, which becomes unstable only if the temperature gradient exceeds a finite threshold value (whereas the thermodynamic constraints allow instability for any value). We find that the simulation growth rates and the diffusivities estimated from them do decrease for increasing elongation, due to finite Larmor radius effects (which do not explicitly appear in the thermodynamic constraints). Compared with the experimentally inferred diffusivities, the simulation diffusivities are similar near the edge but are 10 times bigger in the core. However, a small adjustment in the temperature profile, within experimental and theoretical uncertainties, would produce good agreement everywhere. Therefore, we suggest that for the DIIID experiments studied, the plasma is actually very close to the ITG instability threshold in the core and farther away from threshold near the edge, but not far enough to induce the full thermodynamic level of diffusivities. This conjecture is supported by model transport calculations that reproduce the experimental diffusivity profile fairly well.
Viscous damping of toroidal angular momentum in tokamaks
Stacey, W. M.
2014-09-15
The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.
Stochastic Acceleration of Dust Particles in Tokamak Edge Plasmas
Marmolino, C.; De Angelis, U.; Ivlev, A. V.; Morfill, G. E.
2008-10-15
Stochastic heating of dust particles resulting from dust charge fluctuations is considered in the conditions of the scrape-off-layer (SOL) in tokamak plasmas. It is shown that kinetic energies corresponding to velocities of {approx_equal}Km/s can be reached in times of order {approx_equal}1 ms by micron-size dust particles interacting with a background of stochastically heated nano-size dust particles.
Problems with the concept of plasma equilibrium in tokamaks
Carreras, B.A.
1992-06-01
The equilibrium condition for a magnetically confined plasma in normally formulated in terms of macroscopic equations. In these equations, the plasma pressure is assumed to be a function of the magnetic flux with continuous derivatives. However, in three- dimensional systems this is not necessarily the case. Here, we look at the case of an intrinsically three-dimensional realistic tokamak, and we discuss the possible interconnection between the equilibrium and anomalous transport.
Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport
Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.
2011-03-18
The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.
Design of geometric phase measurement in EAST Tokamak
NASA Astrophysics Data System (ADS)
Lan, T.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Wang, Y. L.; Gao, X.; Qin, H.
2016-07-01
The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.
Anatomy of a disruption in MTX (Microwave Tokamak Experiment)
Hooper, E.B.; Casper, T.A.; Lasnier, C.J.; Makowski, M.A.; Meyer, W.H.; Moller, J.M.; Oasa, K.; Rice, B.W.; Wood, R.D.
1990-10-15
Disruptions are observed in the Microwave Tokamak Experiment, MTX (nee Alcator C), over a wide range of plasma parameters. Indeed, disruptions often occur far from the boundaries of the operating space as defined by Hugill and l{sub i}-q plots. Despite this, the general behavior during the disruptive process is generally similar whatever the operating parameters. This report will describe one disruption in detail in order to provide a detailed anatomy of the event.
Thermally excited proton spin-flip laser emission in tokamaks
Arunasalam, V.; Greene, G.J.
1993-07-01
Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.
FEM (Free Electron Maser) for tokamak: Final report
Not Available
1987-01-01
This paper studies the feasibility of a microwave source for heating a tokamak reactor. The free electron maser (FEM) shows great promise for being this source. The topics covered in this paper are microwave generation with FEM, efficiency enhancement, parameter scaling, space charge scaling, beam energy spread and efficiency scaling, electron beam line with energy recovery, achromatic bend, multi-stage depressed voltage electron beam collector, and development plans. 12 refs., 10 figs., 5 tabs. (LSP)
Edge Plasma Studies and Related Diagnostics on CASTOR Tokamak
Hron, M.; Stockel, J.; Duran, I.; Panek, R.; Adamek, J.; Weinzettl, V.
2006-12-04
In this contribution, two sets of measurements using a full poloidal array of Langmuir probes in the scrape-off layer of the CASTOR tokamak are described. First, results obtained with edge plasma biasing show creation of convective cells that cause radial transport due to ExB drift. Next, the analysis of the turbulence behaviour in standard ohmic discharges shows the presence of a spatially periodical mode with mode number equal to the edge safety factor q.
Key Aspects of EBW Heating and Current Drive in Tokamaks
NASA Astrophysics Data System (ADS)
Urban, Jakub; Decker, Joan; Preinhaelter, Josef; Taylor, Gary; Vahala, Linda; Vahala, George
2010-11-01
Electron Bernstein wave (EBW) heating and current drive is modeled by coupled mode conversion, ray-tracing (AMR) and Fokker-Planck (LUKE) codes. Deposition and current drive profiles are determined for EBW with various injection parameters under realistic spherical tokamak conditions. There parameters are varied to investigate the robustness of the applied scenarios. The importance of relativistic corrections to EBW absorption is considered. The differences between various relativistic models are explored.
UCLA program in reactor studies: The ARIES tokamak reactor study
Not Available
1991-01-01
The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.
Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment
C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson
2003-10-13
The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.
Mode Analysis with Autocorrelation Method (Single Time Series) in Tokamak
NASA Astrophysics Data System (ADS)
Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman
2010-08-01
In this paper plasma mode analyzed with statistical method that designated Autocorrelation function. Auto correlation function used from one time series, so for this purpose we need one Minov coil. After autocorrelation analysis on mirnov coil data, spectral density diagram is plotted. Spectral density diagram from symmetries and trends can analyzed plasma mode. RHF fields effects with this method ate investigated in IR-T1 tokamak and results corresponded with multichannel methods such as SVD and FFT.
Pulsed reflectometry experiments in T-11M tokamak: Preliminary results
Shevchenko, V.F.; Petrov, A.A.; Petrov, V.G.; Chaplygin, Yu.A.
1994-12-31
A pulsed radar-reflectometer (PRR) having a 32.1-GHz probing wavelength was developed within the framework of the T-14 program to study global displacements of the plasma column and to conduct routine measurements of electron-density profile at all stages of T-14 discharge. The first experimental results obtained on the T-11M tokamak with the single-frequency PRR are presented. 4 refs., 3 figs.
Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry
Long-Poe Ku and Allen H. Boozer
2009-06-05
If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.
Operation of a tokamak reactor in the radiative improved mode
NASA Astrophysics Data System (ADS)
Morozov, D. Kh.; Mavrin, A. A.
2016-03-01
The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.
Global electromagnetic simulations of tokamak scrape-off layer turbulence
NASA Astrophysics Data System (ADS)
Halpern, Federico; Ricci, Paolo; Jolliet, Sebastien; Loizu, Joaquim; Mosetto, Annamaria
2013-10-01
We discuss recent studies addressing the properties of tokamak SOL turbulence using a global, electromagnetic, fluid drift-reduced Braginskii model. Non-linear simulations are carried out using the Global Braginskii Solver (GBS) code, which is capable of carrying out self-consistent, global three-dimensional simulations of the plasma dynamics in the tokamak SOL. The simulations involve plasma profile formation in the SOL as a power balance between plasma flux from the core, the turbulent radial transport, and the losses at the plasma sheath where the magnetic field lines intersect with the vessel. A gradual approach in increasing complexity has made possible (a) to determine the dominant instabilities driving the SOL turbulence, (b) to identify the mechanisms that saturate the growth of the linear modes and therefore regulate the level of radial transport, and (c) to study the role of electromagnetic effects in enhanced transport regimes. The non-linear dynamics revealed by the simulations agree with the analytical estimates that have been carried out. A scaling for the SOL width in circular limited plasmas has been derived and compared against experimental data from several tokamaks. This work was supported by the Swiss National Science Foundation
Preconceptual design and assessment of a Tokamak Hybrid Reactor
Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.
1980-09-01
The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.
Performance Projections For The Lithium Tokamak Experiment (LTX)
Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.
2009-06-17
Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.
Preconceptual design and assessment of a Tokamak hybrid reactor
NASA Astrophysics Data System (ADS)
Teofilo, V. L.; Leonard, B. R., Jr.; Aase, D. T.; Bickford, W. E.; McCormick, N. J.; McGrath, R. T.; Morrison, J. E.; Perry, R. T.; Schulte, S. C.; Willingham, C. E.
1980-09-01
The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant was performed. The Tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb3Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited Tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs were made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis was made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.
Dust-Particle Transport in Tokamak Edge Plasmas
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.
Triangularity effects on the collisional diffusion for elliptic tokamaks
NASA Astrophysics Data System (ADS)
Martín, Pablo; Castro, Enrique
2015-09-01
The effect of ellipticity and triangularity will be analyzed for axisymmetric tokamak in the collisional regime. Analytic forms for the magnetic field cross sections are taken from those derived recently by other authors. Analytic results can be obtained in elliptic plasmas with triangularity by using an special system of tokamak coordinates previously published. Our results show that triangularities smaller than 0.6 increase confinement for ellipticities in the range 1.2-2. This behavior happens for negative and positive triangularities, however this effect is stronger for negative than for positive triangularities. The maximum diffusion velocity is not obtained for zero triangularity, but for small negative triangularities. Ellipticity is also very important in confinement, but the effect of triangularity seems to be more important. High electric inductive fields increase confinement, though this field is difficult to modify once the tokamak has been built. The analytic form of the current produced by this field is like that of a weak Ware pinch with an additional factor, which weakens the effect by an order of magnitude. The dependence of the triangularity effect with the Shafranov shift is also analyzed.
The design of the Tokamak Physics Experiment (TPX)
NASA Astrophysics Data System (ADS)
Schmidt, J. A.; Thomassen, K. I.; Goldston, R. J.; Neilson, G. H.; Nevins, W. M.; Sinnis, J. C.; Andersen, P.; Bair, W.; Barr, W. L.; Batchelor, D. B.; Baxi, C.; Berg, G.; Bernabei, S.; Bialek, J. M.; Bonoli, P. T.; Boozer, A.; Bowers, D.; Bronner, G.; Brooks, J. N.; Brown, T. G.; Bulmer, R.; Butner, D.; Campbell, R.; Casper, T.; Chaniotakis, E.; Chaplin, M.; Chen, S. J.; Chin, E.; Chrzanowski, J.; Citrolo, J.; Cole, M. J.; Dahlgren, F.; Davis, F. C.; Davis, J.; Davis, S.; Diatchenko, N.; Dinkevich, S.; Feldshteyn, Y.; Felker, B.; Feng, T.; Fenstermacher, M. E.; Fleming, R.; Fogarty, P. J.; Fragetta, W.; Fredd, E.; Gabler, M.; Galambos, J.; Gohar, Y.; Goranson, P. L.; Greenough, N.; Grisham, L. R.; Haines, J.; Haney, S.; Hassenzahl, W.; Heim, J.; Heitzenroeder, P. J.; Hill, D. N.; Hodapp, T.; Houlberg, W. A.; Hubbard, A.; Hyatt, A.; Jackson, M.; Jaeger, E. F.; Jardin, S. C.; Johnson, J.; Jones, G. H.; Juliano, D. R.; Junge, R.; Kalish, M.; Kessel, C. E.; Knutson, D.; LaHaye, R. J.; Lang, D. D.; Langley, R. A.; Liew, S.-L.; Lu, E.; Mantz, H.; Manickam, J.; Mau, T. K.; Medley, S.; Mikkelsen, D. R.; Miller, R.; Monticello, D.; Morgan, D.; Moroz, P.; Motloch, C.; Mueller, J.; Myatt, L.; Nelson, B. E.; Neumeyer, C. L.; Nilson, D.; O'Conner, T.; Pearlstein, L. D.; Peebles, W. A.; Pelovitz, M.; Perkins, F. W.; Perkins, L. J.; Petersen, D.; Pillsbury, R.; Politzer, P. A.; Pomphrey, N.; Porkolab, M.; Posey, A.; Radovinsky, A.; Raftopoulis, S.; Ramakrishnan, S.; Ramos, J.; Rauch, W.; Ravenscroft, D.; Redler, K.; Reiersen, W. T.; Reiman, A.; Reis, E.; Rewoldt, G.; Richards, D. J.; Rocco, R.; Rognlien, T. D.; Ruzic, D.; Sabbagh, S.; Sapp, J.; Sayer, R. O.; Scharer, J. E.; Schmitz, L.; Schnitz, J.; Sevier, L.; Shipley, S. E.; Simmons, R. T.; Slack, D.; Smith, G. R.; Stambaugh, R.; Steill, G.; Stevenson, T.; Stoenescu, S.; Onge, K. T. St.; Stotler, D. P.; Strait, T.; Strickler, D. J.; Swain, D. W.; Tang, W.; Tuszewski, M.; Ulrickson, M. A.; VonHalle, A.; Walker, M. S.; Wang, C.; Wang, P.; Warren, J.; Werley, K. A.; West, W. P.; Williams, F.; Wong, R.; Wright, K.; Wurden, G. A.; Yugo, J. J.; Zakharov, L.; Zbasnik, J.
1993-09-01
The Tokamak Physics Experiment is designed to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. It is based on an emerging class of tokamak operating modes, characterized by beta limits well in excess of the Troyon limit, confinement scaling well in excess of H-mode, and bootstrap current fractions approaching unity. Such modes are attainable through the use of advanced, steady state plasma controls including strong shaping, current profile control, and active particle recycling control. Key design features of the TPX are superconducting toroidal and poloidal field coils; actively-cooled plasma-facing components; a flexible heating and current drive system; and a spacious divertor for flexibility. Substantial deuterium plasma operation is made possible with an in-vessel remote maintenance system, a lowactivation titanium vacuum vessel, and shielding of ex-vessel components. The facility will be constructed as a national project with substantial participation by U.S. industry. Operation will begin with first plasma in the year 2000.
TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE
CHU, M.S.; PARKS, P.B.
2002-06-01
OAK B202 TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE. Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). Straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids, 3, 67 (1971)] on tokamak equilibrium to these plasmas leads to apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e. no negative currents can be driven in the central region.
Modeling of Anomalous Transport in Tokamaks with FACETS code
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Batemann, G.; Kritz, A.; Rafiq, T.; Vadlamani, S.; Hakim, A.; Kruger, S.; Miah, M.; Rognlien, T.
2009-05-01
The FACETS code, a whole-device integrated modeling code that self-consistently computes plasma profiles for the plasma core and edge in tokamaks, has been recently developed as a part of the SciDAC project for core-edge simulations. A choice of transport models is available in FACETS through the FMCFM interface [1]. Transport models included in FMCFM have specific ranges of applicability, which can limit their use to parts of the plasma. In particular, the GLF23 transport model does not include the resistive ballooning effects that can be important in the tokamak pedestal region and GLF23 typically under-predicts the anomalous fluxes near the magnetic axis [2]. The TGLF and GYRO transport models have similar limitations [3]. A combination of transport models that covers the entire discharge domain is studied using FACETS in a realistic tokamak geometry. Effective diffusivities computed with the FMCFM transport models are extended to the region near the separatrix to be used in the UEDGE code within FACETS. 1. S. Vadlamani et al. (2009) %First time-dependent transport simulations using GYRO and NCLASS within FACETS (this meeting).2. T. Rafiq et al. (2009) %Simulation of electron thermal transport in H-mode discharges Submitted to Phys. Plasmas.3. C. Holland et al. (2008) %Validation of gyrokinetic transport simulations using %DIII-D core turbulence measurements Proc. of IAEA FEC (Switzerland, 2008)
High power heating of magnetic reconnection in merging tokamak experiments
Ono, Y.; Tanabe, H.; Gi, K.; Watanabe, T.; Ii, T.; Yamada, T.; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.
2015-05-15
Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2} ∼ B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.
NASA Astrophysics Data System (ADS)
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-01
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-01
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-15
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Naydenkova, D I; Weinzettl, V; Stockel, J; Matějíček, J
2014-12-01
Typical situations, which can be met during the process of absolute calibration, are shown in the case of a visible light observation system for the COMPASS tokamak. Technical issues and experimental limitations of absolute measurements connected with tokamak operation are discussed. PMID:25607972
Summary of the IEA Workshop on Alpha Physics and Tritium Issues in Large Tokamaks
Cheng, C.Z.; Stratton, B.; Zweben, S.J.; Pitcher, C.S.
1993-11-01
A brief summary is presented of the talks given during this meeting, which was held at PPPL and sponsored by the IEA (International Energy Agency) as part of the Large Tokamak collaboration. These talks are summarized into four sessions: tritium issues in large tokamaks, alpha particle simulation experiments, alpha particle theory, and alpha particle diagnostics.
The Discharge Design of HL-2M with the Tokamak Simulation Code (TSC)
Yudong Pan, S.C. Jardin, and C. Kes
2007-10-10
We present results on the discharge design of the HL-2M tokamak, which is to be an upgrade to the existing HL-2A tokamak. We present simulation results for complete 5-sec. discharges, both double null and lower single null, for both ohmic and auxiliary heated discharges. We also discuss the vertical stability properties of the device. __________________________________________________
NASA Astrophysics Data System (ADS)
Van Oost, G.; Del Bosco, E.; Gryaznevich, M. P.; Malaquias, A.; Mank, G.
2006-12-01
Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confinement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasma-wall interaction; scenarios of additional heating and non-inductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies, which because of the risky nature cannot be done in large machines without preliminary studies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of post-graduate students and for the training of personnel for large tokamaks. All these tasks are well recognised and reflected in documents and understood by the large tokamak teams. Recent experimental results will be presented of contributions to mainstream fusion physics and technology research on small tokamaks involved in the IAEA Coordinated Research Project "Joint Research using small tokamaks", started in 2004.
A nonlinear dynamic model of relaxation oscillations in tokamaks
NASA Astrophysics Data System (ADS)
Thyagaraja, A.; Haas, F. A.; Harvey, D. J.
1999-06-01
Tokamaks exhibit several types of relaxation oscillations such as sawteeth, fishbones and Edge Localized Modes (ELMs) under appropriate conditions. Several authors have introduced model nonlinear dynamic systems with a small number of degrees of freedom which can illustrate the generic characteristics of such oscillations. In these models, one focuses on physically "relevant" degrees of freedom, without attempting to simulate all the myriad details of the fundamentally nonlinear tokamak phenomena. Such degrees of freedom often involve the plasma macroscopic quantities such as pressure or density and also some measure of the plasma turbulence, which is thought to control transport. In addition, "coherent" modes may be involved in the dynamics of relaxation, as well as radial electric fields, sheared flows, etc. In the present work, an extension of an earlier sawtooth model (which involved only two degrees of freedom) due to the authors is presented. The dynamical consequences of a pressure-driven "coherent" mode, which interacts with the turbulence in a specific manner, are investigated. Varying only the two parameters related to the coherent mode, the bifurcation properties of the system have been studied. These turn out to be remarkably rich and varied and qualitatively similar to the behavior found experimentally in actual tokamaks. The dynamic model presented involves only continuous nonlinearities and is the simplest known to the authors that can yield features such as sawteeth, "compound sawteeth" with partial crashes, "monster" sawteeth, metastability, intermittency, chaos, periodic and "grassy" ELMing in appropriate regions of parameter space. The results suggest that linear stability analysis of systems, while useful in elucidating instability drives, can be misleading in understanding the dynamics of nonlinear systems over time scales much longer than linear growth times and states far from stable equilibria.
Development of a tokamak plasma optimized for stability and confinement
Politzer, P.A.
1995-02-01
Design of an economically attractive tokamak fusion reactor depends on producing steady-state plasma operation with simultaneous high energy density ({beta}) and high energy confinement ({tau}{sub E}); either of these, by itself, is insufficient. In operation of the DIII-D tokamak, both high confinement enhancement (H{equivalent_to} {tau}{sub E}/{tau}{sub ITER-89P} = 4) and high normalized {beta} ({beta}{sub N}{equivalent_to} {beta}/(I/aB) = 6%-m-T/MA) have been obtained. For the present, these conditions have been produced separately and in transient discharges. The DIII-D advanced tokamak development program is directed toward developing an understanding of the characteristics which lead to high stability and confinement, and to use that understanding to demonstrate stationary, high performance operation through active control of the plasma shape and profiles. The authors have identified some of the features of the operating modes in DIII-D that contribute to better performance. These are control of the plasma shape, control of both bulk plasma rotation and shear in the rotation and Er profiles, and particularly control of the toroidal current profiles. In order to guide their future experiments, they are developing optimized scenarios based on their anticipated plasma control capabilities, particularly using fast wave current drive (on-axis) and electron cyclotron current drive (off-axis). The most highly developed model is the second-stable core VH-mode, which has a reversed magnetic shear safety factor profile [q(O) = 3.9, q{sub min} = 2.6, and q{sub 95} = 6]. This model plasma uses profiles which the authors expect to be realizable. At {beta}{sub N} {>=} 6, it is stable to n=l kink modes and ideal ballooning modes, and is expected to reach H {>=} 3 with VH-mode-like confinement.
A charged fusion product diagnostic for a spherical tokamak
NASA Astrophysics Data System (ADS)
Perez, Ramona Leticia Valenzuela
Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are
Measurement of LHCD antenna position in Aditya tokamak
NASA Astrophysics Data System (ADS)
Ambulkar, K. K.; Sharma, P. K.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Kulkarni, S. V.
2010-02-01
To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.
MHD Effects of a Ferritic Wall on Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency
Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor
Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.
1998-12-14
Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.
Eikonal waves, caustics and mode conversion in tokamak plasmas
NASA Astrophysics Data System (ADS)
Jaun, A.; Tracy, E. R.; Kaufman, A. N.
2007-01-01
Ray optics is used to model the propagation of short electromagnetic plasma waves in toroidal geometry. The new RAYCON code evolves each ray independently in phase space, together with its amplitude, phase and focusing tensor to describe the transport of power along the ray. Particular emphasis is laid on caustics and mode conversion layers, where a linear phenomenon splits a single incoming ray into two. The complete mode conversion algorithm is described and tested for the first time, using the two space dimensions that are relevant in a tokamak. Applications are shown, using a cold plasma model to account for mode conversion at the ion-hybrid resonance in the Joint European Torus.
NASTRAN analysis of Tokamak vacuum vessel using interactive graphics
NASA Technical Reports Server (NTRS)
Miller, A.; Badrian, M.
1978-01-01
Isoparametric quadrilateral and triangular elements were used to represent the vacuum vessel shell structure. For toroidally symmetric loadings, MPCs were employed across model boundaries and rigid format 24 was invoked. Nonsymmetric loadings required the use of the cyclic symmetry analysis available with rigid format 49. NASTRAN served as an important analysis tool in the Tokamak design effort by providing a reliable means for assessing structural integrity. Interactive graphics were employed in the finite element model generation and in the post-processing of results. It was felt that model generation and checkout with interactive graphics reduced the modelling effort and debugging man-hours significantly.
General approach to the problem of disruption forces in tokamaks
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.
2015-09-01
An approach for calculating the force on the vessel wall during plasma disruptions in tokamaks is proposed. It is mainly based on the Maxwell equations and, therefore, is general. Another essential element is the integral force balance on the plasma that strongly constrains the possible solutions. The derived expressions are valid at any disruption scenario and finally give the net forces in terms of the magnetic perturbations behind the wall. The result can be used with magnetic measurements alone. It shows that the geometrical inhomogeneity of the wall and its resistivity are the key factors determining the direction and amplitude of the force.
Controlling tokamak geometry with three-dimensional magnetic perturbations
Bird, T. M.; Hegna, C. C.
2014-10-15
It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.
Experimental setup for tungsten transport studies at the NSTX tokamak
Clementson, J.; Beiersdorfer, P.; Roquemore, A. L.; Skinner, C. H.; Mansfield, D. K.; Hartzfeld, K.; Lepson, J. K.
2010-10-15
Tungsten particles have been introduced into the National Spherical Torus Experiment (NSTX) in Princeton with the purpose to investigate the effects of tungsten injection on subsequent plasma discharges. An experimental setup for the study of tungsten particle transport is described where the particles are introduced into the tokamak using a modified particle dropper, otherwise used for lithium-powder injection. An initial test employing a grazing-incidence extreme ultraviolet spectrometer demonstrates that the tungsten-transport setup could serve to infer particle transport from the edge to the hot central plasmas of NSTX.
Tritium Experience in Large Tokamaks: Application to ITER
Skinner, C.H.; Gentile, C.; Hosea, J.; Mueller, D; Gentile, C.; Federici, G.; Haanges, R.
1998-05-01
Recent experience with the use of tritium fuel in the Tokamak Fusion Test Reactor and the Joint European Torus, together with progress in developing the technical design of the International Thermonuclear Experimental Reactor has expanded the technical knowledge base for tritium issues in fusion. This paper reports on an IEA workshop that brought together scientists and engineers to share experience and expertise on all fusion-related tritium issues. Extensive discussion periods were devoted to exploring outstanding issues and identifying potential R{ampersand}D avenues to address them. This paper summarizes the presentations, discussions, and recommendations.
A design retrospective of the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Luxon, J. L.
2002-05-01
The DIII-D tokamak evolved from the earlier Doublet III device in 1986. Since then, the facility has undergone a number of changes including the installation of divertor baffles and pumping chambers in the vacuum vessel, the addition of a radiation shield, the development of extensive neutral beam and RF heating systems, and the addition of a comprehensive plasma control system. The facility has become the focus of a broad fusion plasma science research programme. An integrated picture of the facility and its capabilities is presented.
Parabolic approximation method for fast magnetosonic wave propagation in tokamaks
Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.
1985-07-01
Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters.
Microwave Imaging Reflectometry for the Visualization of Turbulence in Tokamaks
E. Mazzucato
1999-12-16
Understanding the mechanism of anomalous transport in magnetically confined plasmas requires the use of sophisticated diagnostic tools for the measurement of short-scale turbulent fluctuations. This paper describes the conceptual design of an experimental technique for the global visualization of density fluctuations in tokamaks. The proposed method is based on microwave reflectometry and consists in using a large diameter probing beam, collecting the reflected waves with a large aperture antenna, and forming an image of the reflecting plasma layer onto a 2D array of microwave receivers. Based on results from a series of numerical simulations, the theoretical feasibility conditions of the proposed method are discussed.
Helium Refrigerator Design for Pulsed Heat Load in Tokamaks
Kuendig, A.; Schoenfeld, H.
2006-04-27
Nuclear fusion reactors of the Tokamak type will be operated in a pulsed mode requiring the helium refrigerator to remove periodically large heat loads in time steps of approximately one hour. What are the necessary steps for a refrigerator to cope with such load variations?A series of numerical simulations has been performed indicating the possibility of an active refrigerator control with low exergetic losses. A basic comparison is made between the largest existing refrigerator sizes and the size required to service for example the ITER requirements.
Impurity Line Emissions in VUV Region of TCABR Tokamak
Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.
2008-04-07
Spectral emissions in the vacuum ultraviolet region from 50 nm to 320 nm have been measured on TCABR tokamak using an one meter VUV spectrometer and a MCP coupled to a CCD detector. Among the 98 emissions classified, 37 are from first order diffraction, 29 are from second order, 24 are from third order, 7 from fourth order, and one from fifth order diffraction. Main impurity lines are OII to OVII, CII to CIV, NIII to N V, FVII, besides working gas plasma hydrogen Lyman lines.
EXPLICT CALULATIONS OF HOMOCLINIC TANGLES SURROUNDING MAGNETIC ISLANDS IN TOKAMAKS
ROEDER, R.K.W.; RAPOPORT, B.I.; EVANS, T.E.
2002-06-01
We present explicit calculations of the complicated geometric objects known as homoclinic tangles that surround magnetic islands in the Poincare mapping of a tokamak's magnetic field. These tangles are shown to exist generically in the magnetic field of all toroidal confinement systems. The geometry of these tangles provides an explanation for the stochasticity known to occur near the X-points of the Poincare mapping. Furthermore, the intersection of homoclinic tangles from different resonances provides an explicit mechanism for the non-diffusive transport of magnetic field lines between these resonance layers.
Poloidal flow damping with potato orbits in tokamaks
Shaing, K.C.
2005-10-01
The poloidal flow damping rate in the vicinity of the magnetic axis in tokamaks is calculated using the time-dependent plasma viscosity. It is found that the damping rate is of the order of {nu}{sub ii}/f{sub t}{sup 2}, where {nu}{sub ii} is the ion-ion collision frequency, and f{sub t} is the fraction of the trapped potatoes. The corresponding neoclassical polarization or inertia enhancement factor is [1+({sigma}{sub p}q{sup 2}/f{sub t})], where {sigma}{sub p} is a numerical number of the order of unity, and q is the safety factor.
Ion plateau transport near the tokamak magnetic axis
Shaing, K.C.; Hazeltine, R.D.
1998-04-01
Conventional neoclassical transport theory does not pertain near the magnetic axis, where orbital variation of the minor radius and the poloidal field markedly change the nature of guiding-center trajectories. Instead of the conventional tokamak banana-shaped trajectories, near-axis orbits, called potato orbits, are radially wider and lead to distinctive kinetic considerations. Here it is shown that there is a plateau regime for the near-axis case; the corresponding potato-plateau ion thermal conductivity is computed. {copyright} {ital 1998 American Institute of Physics.}
Resonant magnetic perturbations and edge ergodization on the COMPASS tokamak
Cahyna, P.; Fuchs, V.; Krlin, L.
2008-09-15
Results of calculations of resonant magnetic perturbation spectra on the COMPASS tokamak are presented. Spectra of the perturbations are calculated from the vacuum field of the perturbation coils. Ergodization is then estimated by applying the criterion of overlap of the resulting islands and verified by field line tracing. Results show that for the chosen configuration of perturbation coils an ergodic layer appears in the pedestal region. The ability to form an ergodic layer is similar to the theoretical results for the ELM suppression experiment at DIII-D; thus, a comparable effect on ELMs can be expected.
Numerical Modelling of the Nonlinear ELM Cycle in Tokamaks
Wingen, A; Evans, T E; Lasnier, C J; Spatschek, K H
2009-06-02
A numerical model of the nonlinear evolution of edge localized modes (ELMs) in tokmaks is presented. In the model discussed here it is assumed that thermoelectric currents flow in short connection length flux tubes, initially established by error fields or other non-axisymmetric magnetic perturbations. Magnetic perturbations resulting from the currents are incorporated into the magnetic topology. The predictions are compared to measurements at the DIII-D tokamak. Excellent agreement between the calculated magnetic structures on the vessel wall and camera observations during an ELM cycle is shown. The ELM collapse process is discussed.
Evidence of Inward Toroidal Momentum Convection in the JET Tokamak
Tala, T.; Zastrow, K.-D.; Brix, M.; Corrigan, G.; Giroud, C.; Naulin, V.; Peeters, A. G.; Tardini, G.; Strintzi, D.
2009-02-20
Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers.
Toroidally symmetric plasma vortex at tokamak divertor null point
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Ryutov, D. D.
2016-03-01
Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. The trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transport at the null point.
Continuum kinetic modeling of the tokamak plasma edge
NASA Astrophysics Data System (ADS)
Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.; Cohen, R. H.; Rognlien, T. D.
2016-05-01
The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.
GAM observation in the TUMAN-3M tokamak
NASA Astrophysics Data System (ADS)
Bulanin, V. V.; Askinazi, L. G.; Belokurov, A. A.; Kornev, V. A.; Lebedev, V.; Petrov, A. V.; Tukachinsky, A. S.; Vildjunas, M. I.; Wagner, F.; Yashin, A. Yu
2016-04-01
Results of an experimental study of geodesic acoustic modes (GAM) in the TUMAN-3M tokamak are reported. With Doppler backscattering (DBS) the basic properties of the GAM such as frequency, conditions for the GAM existence and the GAM radial location have been identified. The two-frequency Doppler reflectometer system was employed to reveal an interplay between low frequency sheared poloidal rotation, ambient turbulence level and the GAM intensity. Bicoherence analysis of the DBS data evidences the presence of a nonlinear interaction between the GAM and plasma turbulence.
Halo current diagnostic system of experimental advanced superconducting tokamak.
Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J
2015-10-01
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well. PMID:26520954
Oxygen impurity radiation from Tokamak-like plasmas
NASA Technical Reports Server (NTRS)
Rogerson, J. E.; Davis, J.; Jacobs, V. L.
1977-01-01
We have constructed a nonhydrodynamic coronal model for calculating radiation from impurity atoms in a heated plasma. Some recent developments in the calculation of dielectronic recombination rate coefficients and collisional excitation rate coefficients are included. The model is applied to oxygen impurity radiation during the first few milliseconds of a TFR Tokamak plasma discharge, and good agreement with experimental results is obtained. Estimates of total line and continuum radiation from the oxygen impurity are given. It is shown that impurity radiation represents a considerable energy loss.
Experimental study of the principles governing tokamak transport
NASA Astrophysics Data System (ADS)
Wagner, F.; Gruber, O.; Lackner, K.; Murmann, H. D.; Speth, E.; Becker, G.; Bosch, H. S.; Brocken, H.; Cattanei, G.; Dorst, D.; Eberhagen, A.; Elsner, A.; Erckmann, V.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Grieger, G.; Grigull, P.; Haas, G.; Hacker, H.; Hartfuss, H. J.; Jäckel, H.; Jaenicke, R.; Janeschitz, G.; Junker, J.; Karger, F.; Kasparek, W.; Keilhacker, M.; Kick, M.; Klüber, O.; Kornherr, M.; Kroiss, H.; Kuehner, M.; Lenoci, M.; Lisitano, G.; Maassberg, M.; Mahn, C.; Marlier, S.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Müller, .; Müller, G.; Niedermeyer, H.; Ohlendorf, W.; Poschenrieder, W.; Rapp, H.; Rau, F.; Renner, H.; Riedler, H.; Ringler, H.; Sardei, F.; Schüller, P. G.; Schwörer, K.; Siller, G.; Söldner, F.; Steuer, K.-H.; Thumm, M.; Tutter, M.; Vollmer, O.; Weller, A.; Wilhelm, R.; Wobig, H.; Würsching, E.; Zippe, M.
1986-05-01
Both in ohmically and beam-heated L-mode discharges of ASDEX, the electron-temperature (Te) profile shape can be varied over a wide range by the choice of the safety factor qa. The power-deposition profile, on the contrary, has no effect on the Te-profile shape. In current-free WVII-A stellarator plasmas, no such invariance property is found. An independent constraint seems to fix the current distribution j(r) of the tokamak, which defines the conditions of electron heat transport.
Dynamic modeling of transport and positional control of tokamaks
Jardin, S.C.; Pomphrey, N.; DeLucia, J.
1985-10-01
We describe here a numerical model of a free boundary axisymmetric tokamak plasma and its associated control systems. The plasma is modeled with a hybrid method using two-dimensional velocity and flux functions with surface-averaged MHD equations describing the evolution of the adiabatic invariants. Equations are solved for the external circuits and for the effects of eddy currents in nearby conductors. The method is verified by application to several test problems and used to simulate the formation of a bean-shaped plasma in the PBX experiment.
Resistive MHD studies of high-beta Tokamak plasmas
NASA Astrophysics Data System (ADS)
Lynch, V. E.; Hicks, H. R.; Holmes, J. A.; Carreras, B. A.; Garcia, L.
1982-02-01
The magnetohydrodynamic (MHD) activity in high beta Tokamaks such as ISX-B was calculated. These initial value calculations are built on earlier low beta techniques, but the beta effects create several new numerical issues. In addition to time stepping modules, the system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes a low beta to predominantly pressure driven modes at high beta is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment.
Tokamak with liquid metal for inducing toroidal electrical field
Ohkawa, Tihiro
1981-01-01
A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.
Tokamak with mechanical compression of toroidal magnetic field
Ohkawa, Tihiro
1981-01-01
A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.
Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field
Schaffer, Michael J.
1986-01-01
A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.
Information content of transient synchrotron radiation in tokamak plasmas
Fisch, N.J.; Kritz, A.H.
1989-04-01
A brief, deliberate, perturbation of hot tokamak electrons produces a transient, synchrotron radiation signal, in frequency-time space, with impressive informative potential on plasma parameters; for example, the dc toroidal electric field, not available by other means, may be measurably. Very fast algorithms have been developed, making tractable a statistical analysis that compares essentially all parameter sets that might possibly explain the transient signal. By simulating data numerically, we can estimate the informative worth of data prior to obtaining it. 20 refs., 2 figs.
Gyrokinetic simulation of isotope scaling in tokamak plasmas
Lee, W.W.; Santoro, R.A.
1995-07-01
A three-dimensional global gyrokinetic particle code in toroidal geometry has been used for investigating the transport properties of ion temperature gradient (ITG) drift instabilities in tokamak plasmas. Using the isotopes of hydrogen (H{sup +}), deuterium (D{sup +}) and tritium (T{sup +}), we have found that, under otherwise identical conditions, there exists a favorable isotope scaling for the ion thermal diffusivity, i.e., Xi decreases with mass. Such a scaling, which exists both at the saturation of the instability and also at the nonlinear steady state, can be understood from the resulting wavenumber and frequency spectra.
Divertor bypass in the Alcator C-Mod tokamak
NASA Astrophysics Data System (ADS)
Pitcher, C. S.; LaBombard, B.; Danforth, R.; Pina, W.; Silveira, M.; Parkin, B.
2001-01-01
The Alcator C-Mod divertor bypass has for the first time allowed in situ variations to the mechanical baffle design in a tokamak. The design utilizes small coils which interact with the ambient magnetic field inside the vessel to provide the torque required to control small flaps of a Venetian blind geometry. Plasma physics experiments with the bypass have revealed the importance of the divertor baffling to maintain high divertor gas pressures. These experiments have also indicated that the divertor baffling has only a limited effect on the main chamber pressure in C-Mod.
Lower hybrid current drive in the PLT tokamak
Bernabei, S.; Daughney, C.; Efthimion, P.
1982-07-01
Order of magnitude improvements in the level and duration of current driven by lower hybrid waves have been achieved in the PLT tokamak. Steady currents up to 175 kA have been maintained for three seconds and 400 kA for 0.3 sec by the rf power alone. The principal current carrier appears to be a high energy (approx. 100 keV) electron component, concentrated in the central 20 to 40 cm diameter core of the 80 cm PLT discharge.
Enhancement of the Bootstrap Current in a Tokamak Pedestal
Kagan, Grigory; Catto, Peter J.
2010-07-23
The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.
Radiation−condensation instability in tokamaks with mixed impurities
Morozov, D. Kh.; Pshenov, A. A.
2015-08-15
Radiation−condensation instability (RCI) is one of the possible mechanisms behind the formation of microfaceted asymmetric radiation from the edge (MARFE) of a tokamak. It has been previously shown by the authors that RCI in carbon-seeded plasma can be stabilized using neon injection. Recently, beryllium- and tungsten-seeded plasmas became a subject of great interest. Therefore, in the present paper, RCI stability analysis of the edge plasma seeded with beryllium, tungsten, nitrogen, and carbon is performed. The influence of neutral hydrogen fluxes from the wall on the marginal stability limit is studied as well.
Halo current diagnostic system of experimental advanced superconducting tokamak
Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.
2015-10-15
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
Control And Data Acquisition System Of Tokamak KTM
Baystrukov, K. I.; Pavlov, V. M.; Sharnin, A. V.; Obhodskij, A. V.; Merkulov, S. V.; Golobokov, Y. N.; Mezentsev, A. A.; Ovchinnikov, A. V.; Tazhibaeva, I. L.
2008-04-07
The preliminary results of control and data acquisition system (CODAS) development for Kazakhstan tokamak for material testing (KTM) [1] are presented. The KTM CODAS is completely new system optimized for KTM facility and its regimes of operation. Its development is carrying out in Tomsk Polytechnic University by Russian specialists. The first KTM launching under the control of CODAS is planed on 2008 year. The base functionality of CODAS is presented, including short description of its subsystems, such as control system of conditioning process, plasma control system, digital control system of power supplies, protection and timing system, data acquisition system.
Geodesic Acoustic Mode Induced by Toroidal Rotation in Tokamaks
Wahlberg, C.
2008-09-12
The effect of toroidal rotation on the geodesic acoustic mode (GAM) in a tokamak is studied. It is shown that, in addition to a small frequency upshift of the ordinary GAM, another GAM, with much lower frequency, is induced by the rotation. The new GAM appears as a consequence of the nonuniform plasma density and pressure created by the centrifugal force on the magnetic surfaces. Both GAMs in a rotating plasma are shown to exist both as continuum modes with finite mode numbers m and n at the rational surfaces q=m/n as well as in the form of axisymmetric modes with m=n=0.
Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.
2016-06-01
The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.
Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks.
Ham, C J; Cowley, S C; Brochard, G; Wilson, H R
2016-06-10
The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments. PMID:27341237
The tokamak density limit: A thermo-resistive disruption mechanism
NASA Astrophysics Data System (ADS)
Gates, David
2015-11-01
A magnetic island growth mechanism based on radiative cooling of the internal island flux surfaces is shown to produce the correct physical scaling to explain one of the long standing mysteries of tokamak physics - the empirical Greenwald density limit. In this presentation we will review the phenomenology of the density limit and the correlation between the Greenwald limit and the onset threshold for radiation-driven tearing modes. The behavior of magnetic islands with a 3D electron temperature distribution which is consistent with a large ratio of radial to parallel heat conductivity - and a corresponding 3D resistivity profile - is examined for islands with near-zero net heating in the island interior. The effect of varying impurity mix on the local island onset threshold is consistent with the established experimental scalings for tokamaks at the density limit. A simple analytic theory is developed which reveals the effect of heating and cooling in the island interior as well as the effect of island asymmetry. It is shown that a new term accounting for the thermal effects of island asymmetry is a crucial addition to the Modified Rutherford Equation. The resultant model exhibits a robust onset of a rapidly growing tearing mode - consistent with the disruption mechanism observed at the density limit in tokamaks. Additionally, a fully non-linear 3D cylindrical calculation is performed that simulates the effect of net island heating / cooling by raising / suppressing the temperature in the core of the island. In both the analytic theory and the numerical simulation a sudden threshold for explosive growth is found to be due to the interaction between three distinct thermal non-linearities, which affect the island resistivity, thereby modifying the growth dynamics. Expanding on the model presented, we speculate that the mechanism described may be applicable to a much wider range of tokamak disruptions than just those near the Greenwald limit. This work is supported
Nonlinear tearing instabilities in tokamaks with locally flattened current profiles
Reiman, A.H.
1988-07-01
Nonlinear tearing stability is evaluated for current profiles which are linearly stabilized by flattening the current in the neighborhood of the rational surface. When marginally stable to the linear instability, these profiles remain unstable in the presence of a small but finite island. The growth of the island saturated only when the island reaches the width it would have attained in the absence of flattening. Implications are discused for proposed methods of tearing mode stabilization and for theories of the tokamak sawtooth oscillation. 19 refs., 1 fig.
Carborane films: Applications to first-wall problems in tokamaks
Doyle, B.L.; Walsh, D.S.; Wampler, W.R.; Hays, A.K. ); Dylla, H.F.; Manos, D.M.; Kilpatrick, S.J. )
1991-07-01
RF plasma-assisted CVD and sputter deposition of amorphous boron-carbon layers similar to those being used in the TFTR tokamak at the Princeton Plasma Physics Laboratory have been performed. The initial stoichiometry has been determined using Rutherford backscattering spectrometry and elastic recoil detection. Films have also been implanted with deuterium in order to determine H-isotope pumping capacity. These studies, in addition to characterizations made of layers collected on probes in TFTR, have been used to optimize the boronization parameters and to better understand the effects of boronization on TFTR.
Ambipolarity in a tokamak with magnetic field ripple
NASA Astrophysics Data System (ADS)
Hazeltine, R. D.
2016-08-01
In view of the recognized importance of electrostatic fields regarding turbulent transport, the radial electric field in a tokamak with magnetic field ripple is reconsidered. Terms in the ambipolarity condition involving the radial derivative of the field are derived from an extended drift-kinetic equation, including effects of second order in the gyroradius. Such terms are of interest in part because of their known importance in rotational relaxation equations for the axisymmetric case. The electric field is found to satisfy a nonlinear differential equation that is universal in a certain sense, and that implies spatial relaxation of the potential to its conventionally predicted value.
Preliminary Safety Analysis Report for the Tokamak Physics Experiment
Motloch, C.G.; Bonney, R.F.; Levine, J.D.; McKenzie-Carter, M.A.; Masson, L.S.; Commander, J.C.
1995-04-01
This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR.
Carborane films: Applications to first-wall problems in tokamaks
Doyle, B.L.; Walsh, D.S.; Wampler, W.R.; Hays, A.K. ); Dylla, H.F.; Manos, D.M.; Kilpatrick, S.J. . Plasma Physics Lab.)
1990-01-01
RF plasma-assisted CVD and sputter deposition of amorphous boron-carbon layers similar to those being used in the TFTR tokamak at the Princeton Plasma Physics Laboratory have been performed. The initial stoichiometry has been determined using Rutherford backscattering spectrometry and elastic recoil detection. Films have also been implanted with deuterium in order to determine H-isotope pumping capacity. These studies, in addition to characterizations made of layers collected on probes in TFTR, have been used to optimize the boronization parameters and to better understand the effects of boronization on TFTR. 10 refs., 3 figs.
Formation and Stability of Impurity "snakes" in Tokamak Plasmas
L. Delgado-Aparicio, et. al.
2013-01-28
New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried-out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q < 1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature
Neutron Dosimetry Tokamak Fusion Test Reactor Lithium Blanket Module
Tsang, F.Y.; Harker, Y.D.; Anderl, R.A.; Nigg, D.W.; Jassby, D.L.
1986-11-01
The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment.
Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry
Xu, X.Q.
1998-10-14
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.
Nonlinear saturation of ballooning modes in tokamaks and stellarators
Bauer, F.; Garabedian, P.; Betancourt, O.
1988-01-01
The spectral code BETAS computes plasma equilibrium in a toroidal magnetic field B = [unk]s × [unk]Ψ with remarkable accuracy because the finite difference scheme employed in the radial direction allows for discontinuities of the flux function Ψ across the nested surfaces s = const. Instability of higher modes in stellarators like the Heliotron E can be detected in roughly an hour on the best supercomputers by calculating bifurcated equilibria that are defined over just one field period. The method has been validated by comparing results about nonlinear saturation of ballooning modes in tokamaks with numerical data from the PEST code. PMID:16593984
Plasma flows in scrape-off layer of Aditya tokamak
Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.
2012-09-15
The magnetized Mach probe is used to make measurement of plasma flows in the scrape-off layer of the Aditya tokamak [R. Jha et al., Plasma Phys. Controlled Fusion 51, 095010 (2009)]. This probe is further used to measure dependencies of Mach number on local plasma densities and radial distances of the probe in the scrape-off layer. The measured Mach number has contributions from E Multiplication-Sign B drift, Pfrisch-Schlueter, and transport driven flows. We have determined that the toroidal flow is towards the ion side of the limiter and the poloidal flow direction is towards the contact of the last closed flux surface with the limiter.
Diamagnetic thresholds for sawtooth cycling in tokamak plasmas
NASA Astrophysics Data System (ADS)
Halpern, Federico D.; Lütjens, Hinrich; Luciani, Jean-François
2011-10-01
The cycling dynamics of the internal kink mode, which drives sawtooth oscillations in tokamak plasmas, is studied using the three dimensional, non-linear magnetohydrodynamic (MHD) code XTOR-2F [H. Lütjens and J.-F. Luciani, J. Comput. Phys. 229, 8130 (2010)]. It is found that sawtooth cycling, which is characterized by quiescent ramps and fast crashes in the experiment, can be recovered in two-fluid MHD provided that a criterion of diamagnetic stabilization is fulfilled. The simulation results indicate that diamagnetic effects alone may be sufficient to drive sawteeth with complete magnetic reconnection in high temperature Ohmic plasmas.
Tritium experience in the Tokamak Fusion Test Reactor
Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Brooks, J.N.; Hogan, J.
1998-07-01
Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors.
Electron cyclotron heating experiments on the DIII-D tokamak
Prater, R.; Austin, M.E.; Bernabei, S.
1998-01-01
Initial experiments on heating and current drive using second harmonic electron cyclotron heating (ECH) are being performed on the DIII-D tokamak using the new 110 GHz ECH system. Modulation of the ECH power in the frequency range 50 to 300 Hz and detection of the temperature perturbation by ECE diagnostics is used to validate the location of the heating. This technique also determines an upper bound on the width of the deposition profile. Analysis of electron cyclotron current drive indicates that up to 0.17 MA of central current is driven, resulting in a negative loop voltage near the axis.
Tartari, U; Grosso, G; Granucci, G; Gandini, F; Garavaglia, S; Grossetti, G; Simonetto, A; Mellera, V; Muzzini, V; Lubyako, L; Shalashov, A; Orsitto, F P; Ciccone, G; Volpe, F
2007-04-01
We first describe the improved receiving system of the diagnostic experiment of millimeter-wave collective Thomson scattering being run on the Frascati Tokamak Upgrade (FTU), and then discuss some peculiar problems and new operating procedures related to the investigation of strong anomalous spectra of nonthermal origin, many-orders-of-magnitude stronger than the ion thermal feature merged in them, systematically observed in the experimentation, and finally ascribed to a perturbation of the gyrotron that generates the probing beam. Arguments in favor of a more general valence of the solutions actuated for the specific case of FTU are finally given. PMID:17477659
Electromagnetic effects on trace impurity transport in tokamak plasmas
Hein, T.; Angioni, C.
2010-01-15
The impact of electromagnetic effects on the transport of light and heavy impurities in tokamak plasmas is investigated by means of an extensive set of linear gyrokinetic numerical calculations with the code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and of analytical derivations with a fluid model. The impurity transport is studied by appropriately separating diffusive and convective contributions, and conditions of background microturbulence dominated by both ion temperature gradient (ITG) and trapped electron modes (TEMs) are analyzed. The dominant contribution from magnetic flutter transport turns out to be of pure convective type. However it remains small, below 10% with respect to the ExB transport. A significant impact on the impurity transport due to an increase in the plasma normalized pressure parameter beta is observed in the case of ITG modes, while for TEM the overall effect remains weak. In realistic conditions of high beta plasmas in the high confinement (H-) mode with dominant ITG turbulence, the impurity diffusivity is found to decrease with increasing beta in qualitative agreement with recent observations in tokamaks. In contrast, in these conditions, the ratio of the total off-diagonal convective velocity to the diagonal diffusivity is not strongly affected by an increase in beta, particularly at low impurity charge, due to a compensation between the different off-diagonal contributions.
Feasibility study of a fission-suppressed tokamak fusion breeder
Moir, R.W.; Lee, J.D.; Neef, W.S.; Berwald, D.H.; Garner, J.K.; Whitley, R.H.; Ghoniem, N.; Wong, C.P.C.; Maya, I.; Schultz, K.R.
1984-12-01
The preliminary conceptual design of a tokamak fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m/sup 2/ and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 +- 30% per fusion reaction. This results in the production of 4900 kg of /sup 233/U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW/sub e/ LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U/sub 3/O/sub 8/ depending on government financing or utility financing assumptions. Additional topics discussed in the report include the tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.
Decontamination and Decommissioning of the Tokamak Fusion Test Reactor
E. Perry; J. Chrzanowski; K. Rule; M. Viola; M. Williams; R. Strykowsky
1999-11-01
The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling.
Influence of plasma surface interactions on tokamak startup
Goswami, Rajiv
2013-08-15
The startup phase of a tokamak is a complex phenomenon involving burnthrough of the low-Z impurities and rampup of I{sub p}, the plasma current. The design considerations of a tokamak are closely connected with the startup modeling. Plasma evolution is analysed using a zero-dimensional model. The particle and energy balance is considered of two subclasses of plasmas which are penetrable by neutral gas, together with another component, neutrals trapped in the wall. The first subclass includes plasmas being penetrated by slow neutrals of (∼few eV) temperature. The second includes plasmas being penetrated only by fast neutrals having a temperature comparable to that of the ions. The impact of impurities on energy balance is considered through their generation by ion induced desorption of adsorbed oxygen on the first wall and physical and chemical sputtering of carbon. The paper demonstrates self-consistently that the evolution of initial phase of the discharge is intimately linked to the condition of the plasma facing components (PFCs) and the resultant plasma surface interactions.
Kinetic theory of plasma adiabatic major radius compression in tokamaks
NASA Astrophysics Data System (ADS)
Gorelenkova, M. V.; Gorelenkov, N. N.; Azizov, E. A.; Romannikov, A. N.; Herrmann, H. W.
1998-05-01
In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm's law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation.
The GBS code for tokamak scrape-off layer simulations
NASA Astrophysics Data System (ADS)
Halpern, F. D.; Ricci, P.; Jolliet, S.; Loizu, J.; Morales, J.; Mosetto, A.; Musil, F.; Riva, F.; Tran, T. M.; Wersal, C.
2016-06-01
We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.
The tokamak density limit: A thermo-resistive disruption mechanism
Gates, D. A.; Brennan, D. P.; Delgado-Aparicio, L.; White, R. B.
2015-06-15
The behavior of magnetic islands with 3D electron temperature and the corresponding 3D resistivity effects on growth are examined for islands with near-zero net heating in the island interior. We refer to the resulting class of non-linearities as thermo-resistive effects. In particular, the effects of varying impurity mix on the previously proposed local island onset threshold [Gates and Delgado-Aparicio, Phys. Rev. Lett. 108, 165004 (2012)] are examined and shown to be consistent with the well established experimental scalings for tokamaks at the density limit. A surprisingly simple semi-analytic theory is developed which imposes the effects of heating/cooling in the island interior as well as the effects of island geometry. For the class of current profiles considered, it is found that a new term that accounts for the thermal effects of island asymmetry is required in the modified Rutherford equation. The resultant model is shown to exhibit a robust onset of a rapidly growing tearing mode—consistent with the disruption mechanism observed at the density limit in tokamaks. A fully non-linear 3D cylindrical calculation is performed that simulates the effect of net island heating/cooling by raising/suppressing the temperature in the core of the island. In both the analytic theory and the numerical simulation, the sudden threshold for rapid growth is found to be due to an interaction between three distinct thermal non-linearities which affect the island resistivity, thereby modifying the growth dynamics.
First neutron spectrometry measurements in the ASDEX Upgrade tokamak
NASA Astrophysics Data System (ADS)
Tardini, G.; Zimbal, A.; Esposito, B.; Gagnon-Moisan, F.; Marocco, D.; Neu, R.; Schuhmacher, H.; the ASDEX Upgrade Team
2012-03-01
A compact neutron spectrometer based on the liquid scintillator BC501A has been installed on the ASDEX Upgrade tokamak. The aim is to measure neutron energy distribution functions as footprints of fast ions distribution functions, generated mainly via Neutral Beam Injection (NBI) in present day tokamaks. A flexible and fast software has been developed to perform digital pulse shape separation and to evaluate pulse height spectra. First measurements of count rates and pulse height spectra show a good signal to noise ratio for integration times comparable to the NBI slowing down time and to the energy confinement time. Due to the perpendicular line of sight, D-d fusion with perpendicular NBI is detected more efficiently and the line broadening of the 2.45 MeV neutrons is higher. Ion Cyclotron Resonance Heating (ICRH) combined to NBI exhibits a synergy effect, with count rates higher than the sum of the counts due to NBI and ICRH separately. Although the collimator is designed to screen gammas as much as possible, some qualitative gamma analysis is also possible, providing information in case of runaway electrons during disruptions. The experimental campaign for the characterisation of the system (detector + acquisition system) is complete and the determination of the response function is in progress.
Modeling of non-axisymmetric magnetic perturbations in tokamaks
NASA Astrophysics Data System (ADS)
Sun, Y.; Liang, Y.; Qian, J.; Shen, B.; Wan, B.
2015-04-01
A numerical model to evaluate the effects of the non-axisymmetric magnetic perturbations on magnetic topology and magnetic field ripple in tokamaks is presented in this paper. It is illustrated by using an example magnetic field perturbation induced by a coil system on the EAST tokamak. The influence of the choice of the coordinates on the spectrum is presented. The amplitude of resonant components of the spectrum are found to be independent of the coordinates system, while that of the non-resonant components are not. A better way to describe the edge topology by using the Chirikov parameter profile is proposed and checked by the numerical Poincaré plot results. The contribution of the magnetic perturbation on local toroidal field ripple can be significant. One approximate method to model the helical ripple on the perturbed flux surface induced by a given non-axisymmetric magnetic field perturbation is presented. All of the spectrum analysis is applicable in case the plasma response is taken into account in the input of perturbed magnetic field.
HOMOCLINIC TANGLE BIFURCATIONS AND EDGE STOCHASTICITY IN DIVERTED TOKAMAKS
EVANS,TE; ROEDER,RKW; CARTER,JA; RAPOPORT,BI
2003-09-01
OAK-B135 The boundary and pedestal region of a poloidally diverted tokamak is particularly susceptible to the onset of vacuum magnetic field stochasticity due to small non-axisymmetric resonant perturbations. Recent calculations of the separatrix topology in diverted tokamaks, when subjected to small magnetic perturbations, show the existence of complex invariant manifold structures known as homoclinic tangles. These structures appear above a relatively low perturbation threshold that depends on certain equilibrium shape parameters. Homoclinic tangles represent a splitting of the unperturbed separatrix into stable and unstable invariant manifolds associated with each X-point (hyperbolic point). The manifolds that make up homoclinic tangles set the boundaries that prescribe how stochastic field line trajectories are organized i.e., how field lines from the inner domain of the unperturbed separatrix mix and are transported to plasma facing surfaces such as divertor target plates and protruding baffle structures. Thus, the topology of these tangles determines which plasma facing components are most likely to interact with escaping magnetic field lines and the parallel heat and particle flux they carry.
Modeling of ICRF Internal Transport Barrier Control for Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Sund, R. S.; Scharer, J. E.
1998-11-01
We present an analysis of TFTR ICRF current drive experiments carried out by Majeski et al.(R. Majeski, J. Rodgers, G. Schilling, C. Phillips, J. Hosea and the TFTR Group, private communication.) The influence of deuterium, tritium, minority specie, electron and alpha concentrations, temperatures and beam fractions are considered for the two-ion mode conversion current drive experiments. Direct comparison with experimental data is carried out by means of a nonlocal large gyroradius ICRF code(O. Sauter, Ph.D. thesis, Ecole Polytechnique de Lausanne, Switzerland (1992).) which incorporates 1-D plasma profiles. It is found that substantial beam and alpha particle absorption can occur for some cases. Application of ion cyclotron range of frequencies internal transport barrier control requires further examination of fast wave mode conversion and the interaction of ion Bernstein waves with plasmas in advanced tokamaks. The effects of perpendicular and parallel magnetic gradients on the ion, electron, and alpha particle absorption are examined. A viable internal transport barrier control scheme for a reactor grade advanced tokamak will be discussed.
Kinetic analysis of MHD ballooning modes in tokamaks
Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.
1984-10-01
A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from ..beta.. = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with ..beta.., these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-..beta..-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties.
ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK
AUSTIN, ME; LOHR, J
2002-08-01
OAK A271 ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK. The electron cyclotron emission (ECE) heterodyne radiometer diagnostic on DIII-D has been upgraded with the addition of eight channels for a total of 40. The new, higher frequency channels allow measurements of electron temperature into the magnetic axis in discharges at maximum field, 2.15 T. The complete set now extends over the full usable range of second harmonic emission frequencies at 2.0 T covering radii from the outer edge inward to the location of third harmonic overlap on the high field side. Full coverage permits the measurement of heat pulses and magnetohydrodynamic (MHD) fluctuations on both sides of the magnetic axis. In addition, the symmetric measurements are used to fix the location of the magnetic axis in tokamak magnetic equilibrium reconstructions. Also, the new higher frequency channels have been used to determine central T{sub e} with good time resolution in low field, high density discharges using third harmonic ECE in the optically gray and optically thick regimes.
Comments on experimental results of energy confinement of tokamak plasmas
Chu, T.K.
1989-04-01
The results of energy-confinement experiments on steady-state tokamak plasmas are examined. For plasmas with auxiliary heating, an analysis based on the heat diffusion equation is used to define heat confinement time (the incremental energy confinement time). For ohmically sustained plasmas, experiments show that the onset of the saturation regime of energy confinement, marfeing, detachment, and disruption are marked by distinct values of the parameter /bar n//sub e///bar j/. The confinement results of the two types of experiments can be described by a single surface in 3-dimensional space spanned by the plasma energy, the heating power, and the plasma density: the incremental energy confinement time /tau//sub inc/ = ..delta..W/..delta..P is the correct concept for describing results of heat confinement in a heating experiment; the commonly used energy confinement time defined by /tau//sub E/ = W/P is not. A further examination shows that the change of edge parameters, as characterized by the change of the effective collision frequency ..nu../sub e/*, governs the change of confinement properties. The totality of the results of tokamak experiments on energy confinement appears to support a hypothesis that energy transport is determined by the preservation of the pressure gradient scale length. 70 refs., 6 figs., 1 tab.
Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)
NASA Astrophysics Data System (ADS)
Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.
2000-02-01
Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.
Two Dimensional Particle Transport in the Cct Tokamak Edge Plasma
NASA Astrophysics Data System (ADS)
Tynan, George Robert
The physics of particle transport in the CCT tokamak plasma edge is studied experimentally in this dissertation. A full poloidal array of Langmuir probes is used to measure the equilibrium plasma and transport properties of the CCT edge plasma during Ohmic and H-mode discharges. During Ohmic L-mode, the equilibrium plasma density and electron temperature are found to vary on a magnetic flux surface. The equilibrium plasma distribution coincides with the distribution of particle transport. Inside the last closed flux surface, convective processes dominate particle transport. Several large convective cells are observed near the limiter radius. At and beyond the limiter radius, turbulent transport is significant. The turbulence appears to be driven by the convective plasma flows. In Ohmic L-mode-like discharges, plasma transport occurs predominantly through the low-field region of the tokamak with local bad curvature. The convective cells are destroyed at the L-H transition and replaced with a more poloidally symmetric, radially narrow jet of plasma flow at the limiter radius. The jet effectively isolates the plasma core from the scrape -off layer. The turbulence associated with the convective cells is reduced across the edge region. Radial particle transport across the limiter radius is thus inhibited and the global particle confinement is increased. The available data suggest that the residual H-mode particle transport is more poloidally symmetric.
The Lithium Tokamak eXperiment - Upgrade (LTX-U)
NASA Astrophysics Data System (ADS)
Majeski, R.; Bell, R.; Boyle, D.; Diallo, A.; Kaita, R.; Kozub, T.; Leblanc, B.; Lucia, M.; Merino, E.; Schmitt, J. C.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Peebles, W. A.; Hansen, C.; Jarboe, T.; Bialek, J.; Koel, B.; Beiersdorfer, P.; Widman, K.; Tritz, K.
2015-11-01
Results from the LTX program during the last 18 months have significantly advanced the concept of the liquid lithium-walled tokamak. These results include energy confinement times in an ohmic, wall-limited tokamak which exceed ITER ELMy H-mode scaling by a factor of 2-4, the development of very flat electron temperature profiles, and measurements of lithium concentrations in the core which are less than 0.5%, with a full liquid lithium wall. Although considerable investigation of ohmically heated discharges remains, the results strongly support an extension to regimes with strong auxiliary heating, in order to better determine whether liquid lithium walls should be deployed in a large confinement device. A widened operational window, in both toroidal field and plasma current, is also advisable, as well as eventual operation in diverted geometry. An upgrade of LTX, imaginatively named LTX-U, has been proposed. The upgraded device will be described. The results which form the basis for this next step will be briefly summarized. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.
Continuum Kinetic Modeling of the Tokamak Plasma Edge
NASA Astrophysics Data System (ADS)
Dorf, Mikhail
2015-11-01
The problem of edge plasma transport provides substantial challenges for analytical or numerical analysis due to (a) complex magnetic geometry including both open and closed magnetic field lines B, (b) steep radial gradients comparable to ion drift-orbit excursions, and (c) a variation in the collision mean-free path along B from long to short compared to the magnetic connection length. Here, the first 4D continuum drift-kinetic transport simulations that span the magnetic separatrix of a tokamak are presented, motivated in part by the success of continuum kinetic codes for core physics and in part by the potential for high accuracy. The calculations include fully-nonlinear Fokker-Plank collisions and electrostatic potential variations. The problem of intrinsic toroidal rotation driven by ion orbit loss is addressed in detail. The code, COGENT, developed by the Edge Simulation Laboratory collaboration, is distinguished by a fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex magnetic X-point divertor geometry with high accuracy. Previously, successful performance of high-order algorithms has been demonstrated in a simpler closed magnetic-flux-surface geometry for the problems of neoclassical transport and collisionless relaxation of geodesic acoustic modes in a tokamak pedestal, including the effects of a strong radial electric field under H-mode conditions. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344.
Dynamic simulations of the cryogenic system of a tokamak
NASA Astrophysics Data System (ADS)
Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.
2015-12-01
Power generation in the next decades could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to 4.4K. The plasma works cyclically and the coil system is subjected to pulsed heat load which has to be handled by the refrigerator. By smoothing the variable loads, the refrigerator capacity can be set close to the average power; optimizing investment and operational costs. Within the “Broader Approach agreement” related to ITER project, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) is in charge of providing the cryogenic system for the Japanese tokamak (JT-60SA), that is currently under construction in Naka. The system has been designed to handle the pulsed heat loads. To prepare the acceptance tests of the cryogenic system foreseen in 2016, both dynamic modelling and experimental tests on a scaled down mock-up are of high interest for assessing pulsed load smoothing control. After explaining HELIOS (HElium Loop for hIgh lOad Smoothing) operating modes, a dynamic model is presented, with results on the pulsed heat load scenarios. All the simulations have been performed with EcosimPro® and the associated cryogenic library CRYOLIB.
Full f gyrokinetic method for particle simulation of tokamak transport
Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.
2008-05-10
A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.
The tokamak density limit: A thermo-resistive disruption mechanism
NASA Astrophysics Data System (ADS)
Gates, D. A.; Brennan, D. P.; Delgado-Aparicio, L.; White, R. B.
2015-06-01
The behavior of magnetic islands with 3D electron temperature and the corresponding 3D resistivity effects on growth are examined for islands with near-zero net heating in the island interior. We refer to the resulting class of non-linearities as thermo-resistive effects. In particular, the effects of varying impurity mix on the previously proposed local island onset threshold [Gates and Delgado-Aparicio, Phys. Rev. Lett. 108, 165004 (2012)] are examined and shown to be consistent with the well established experimental scalings for tokamaks at the density limit. A surprisingly simple semi-analytic theory is developed which imposes the effects of heating/cooling in the island interior as well as the effects of island geometry. For the class of current profiles considered, it is found that a new term that accounts for the thermal effects of island asymmetry is required in the modified Rutherford equation. The resultant model is shown to exhibit a robust onset of a rapidly growing tearing mode—consistent with the disruption mechanism observed at the density limit in tokamaks. A fully non-linear 3D cylindrical calculation is performed that simulates the effect of net island heating/cooling by raising/suppressing the temperature in the core of the island. In both the analytic theory and the numerical simulation, the sudden threshold for rapid growth is found to be due to an interaction between three distinct thermal non-linearities which affect the island resistivity, thereby modifying the growth dynamics.
Charge exchange recombination spectroscopy on the T-10 tokamak.
Klyuchnikov, L A; Krupin, V A; Nurgaliev, M R; Korobov, K V; Nemets, A R; Dnestrovskij, A Yu; Tugarinov, S N; Serov, S V; Naumenko, N N
2016-05-01
The charge exchange recombination spectroscopy (CXRS) diagnostics on the T-10 tokamak is described. The system is based on a diagnostic neutral beam and includes three high etendue spectrometers designed for the ITER edge CXRS system. A combined two-channel spectrometer is developed for simultaneous measurements of two beam-induced spectral lines using the same lines of sight. A basic element of the combined spectrometer is a transmitting holographic grating designed for the narrow spectral region 5291 ± 100 Å. The whole CXRS system provides simultaneous measurements of two CXRS impurity spectra and Hα beam line. Ion temperature measurements are routinely provided using the C(6+) CXRS spectral line 5291 Å. Simultaneous measurements of carbon densities and one more impurity (oxygen, helium, lithium etc.) are carried out. Two light collecting systems with 9 lines of sight in each system are used in the diagnostics. Spatial resolution is up to 2.5 cm and temporal resolution of 1 ms is defined by the diagnostic neutral beam diameter and pulse duration, respectively. Experimental results are shown to demonstrate a wide range of the CXRS diagnostic capabilities on T-10 for investigation of impurity transport processes in tokamak plasma. Developed diagnostics provides necessary experimental data for studying of plasma electric fields, heat and particle transport processes, and for investigation of geodesic acoustic modes. PMID:27250422
ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS
Campos, A.; Skinner, C.H.
2009-01-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.
Diamond Wire Cutting of the Tokamak Fusion Test Reactor
Keith Rule; Erik Perry; Robert Parsells
2003-01-31
The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.
DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR
Rule, Keith; Perry, Erik; Parsells, Robert
2003-02-27
The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.
Intrinsic momentum transport in tokamaks with tilted elliptical flux surfaces
NASA Astrophysics Data System (ADS)
Ball, Justin; Parra, Felix; Barnes, Michael; Dorland, William; Hammett, Gregory; Rodrigues, Paulo; Loureiro, Nuno
2014-10-01
Recent work demonstrated that breaking the up-down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. Using GS2, a local δf gyrokinetic code that self-consistently calculates momentum transport, we simulate tokamaks with tilted elliptical poloidal cross-sections and a Shafranov shift. These simulations show both the magnitude and poloidal dependence of nonlinear momentum transport. The results are consistent with TCV experimental measurements and suggest that this mechanism can generate rotation with an Alfven Mach number of several percent in a tilted elliptical ITER-like machine. It appears that rotation generated with up-down asymmetry may be sufficient to stabilize the resistive wall mode in reactor-sized devices. J.R.B. and F.I.P. were partially supported by the RCUK Energy Programme (grant number EP/I501045) and the European Unions Horizon 2020 research and innovation programme.
POLOIDAL MAGNETIC FIELD TOPOLOGY FOR TOKAMAKS WITH CURRENT HOLES
Puerta, Julio; Martin, Pablo; Castro, Enrique
2009-07-26
The appearance of hole currents in tokamaks seems to be very important in plasma confinement and on-set of instabilities, and this paper is devoted to study the topology changes of poloidal magnetic fields in tokamaks. In order to determine these fields different models for current profiles can be considered. It seems to us, that one of the best analytic descriptions is given by V. Yavorskij et al., which has been chosen for the calculations here performed. Suitable analytic equations for the family of magnetic field surfaces with triangularity and Shafranov shift are written down here. The topology of the magnetic field determines the amount of trapped particles in the generalized mirror type magnetic field configurations. Here it is found that the number of maximums and minimums of Bp depends mainly on triangularity, but the pattern is also depending of the existence or not of hole currents. Our calculations allow comparing the topology of configurations of similar parameters, but with and without whole currents. These differences are study for configurations with equal ellipticity but changing the triangularity parameters. Positive and negative triangularities are considered and compared between them.
Overview of the EUROfusion Medium Size Tokamak program
NASA Astrophysics Data System (ADS)
Martin, Piero; Beurskens, Marc; Coda, Stefano; Eich, Thomas; Meyer, Hendrik; the EUROfusion MST1 Team
2015-11-01
As a result of the new organization of the European fusion programme, now under the umbrella of the EUROfusion Consortium, the MST (Medium Size Tokamaks) task force is in charge of executing the European science programme in the ASDEX Upgrade, TCV and MAST-U tokamaks. This paper will present an overview of the main results obtained in the 2014 campaign-where only ASDEX upgrade was operating-and the preliminary achievements of the recently started 2015/16 campaign, where also TCV will contribute. The main subjects of the experimental campaigns are (i) the development of scenarios relevant for the ITER Q=10 goal, in an all metal wall device (ii) the understanding of ELM mitigation/suppression with pellets and resonant magnetic perturbations, and in particular the effect of density versus collisionality, (iii) the understanding and optimization of methods for disruption mitigation or avoidance and runaway electrons control and (iv) the exploration of ITER and DEMO relevant scenarios with high normalized separatrix power flux, Psep / R , (Psep is the power through the separatrix, R the major radius) and tolerable target heat loads. The overview of the future programs in MST will be given. http://www.euro-fusionscipub.org/mst1
DSC -- Disruption Simulation Code for Tokamaks and ITER applications
NASA Astrophysics Data System (ADS)
Galkin, S. A.; Grubert, J. E.; Zakharov, L. E.
2010-11-01
Arguably the most important issue facing the further development of magnetic fusion via advanced tokamaks is to predict, avoid, or mitigate disruptions. This recently became the hottest challenging topic in fusion research because of several potentially damaging effects, which could impact the ITER device. To address this issue, two versions of a new 3D adaptive Disruption Simulation Code (DSC) will be developed. The first version will solve the ideal reduced 3D MHD model in the real geometry with a thin conducting wall structure, utilizing the adaptive meshless technique. The second version will solve the resistive reduced 3D MHD model in the real geometry of the conducting structure of the tokamak vessel and will finally be parallelized. The DSC will be calibrated against the JET disruption data and will be capable of predicting the disruption effects in ITER, as well as contributing to the development of the disruption mitigation scheme and suppression of the RE generation. The progress on the first version of the 3D DSC development will be presented.
Thermal decomposition of Ti getter films from the DITE tokamak
Malinowski, M.E.
1981-04-01
The potential application of Ti gettering in tritium-using tokamaks will result in unacceptably high in-torus tritium inventories if the tritium cannot be recovered from the Ti thin films. To help assess the feasibility of tritium recovery by outgassing such films, several samples of getter films evaporated in the DITE tokamak were thermally decomposed in vacuum. Film samples from four different azimuthal torus positions were heated at approx.1/sup 0/C s/sup -1/ and all exhibited decomposition rate peaks at 410/sup 0/ +- 10/sup 0/C; every film had been fully decomposed by the time 475/sup 0/C was reached. Separate experiments showed that isothermal desorption at temperatures as low as 350/sup 0/C was sufficient to outgas such films in 10 min. Together with previous work on clean films, the present results indicated that films which have not been as heavily contaminated as the DITE samples could be desorbed in vacuum at temperatures between 250--350/sup 0/C in acceptably short times, and demonstrate that in situ outgassing of tritided films would be feasible.
Realtime capable first principle based modelling of tokamak turbulent transport
NASA Astrophysics Data System (ADS)
Citrin, Jonathan; Breton, Sarah; Felici, Federico; Imbeaux, Frederic; Redondo, Juan; Aniel, Thierry; Artaud, Jean-Francois; Baiocchi, Benedetta; Bourdelle, Clarisse; Camenen, Yann; Garcia, Jeronimo
2015-11-01
Transport in the tokamak core is dominated by turbulence driven by plasma microinstabilities. When calculating turbulent fluxes, maintaining both a first-principle-based model and computational tractability is a strong constraint. We present a pathway to circumvent this constraint by emulating quasilinear gyrokinetic transport code output through a nonlinear regression using multilayer perceptron neural networks. This recovers the original code output, while accelerating the computing time by five orders of magnitude, allowing realtime applications. A proof-of-principle is presented based on the QuaLiKiz quasilinear transport model, using a training set of five input dimensions, relevant for ITG turbulence. The model is implemented in the RAPTOR real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. Progress in generalizing the emulation to include 12 input dimensions is presented. This opens up new possibilities for interpretation of present-day experiments, scenario preparation and open-loop optimization, realtime controller design, realtime discharge supervision, and closed-loop trajectory optimization.
On resistive magnetohydrodynamic studies of sawtooth oscillations in tokamaks
Aydemir, A. Y. Kim, J. Y.; Park, B. H.; Seol, J.
2015-03-15
A fundamental requirement for the validity and accuracy of any large-scale computation is sufficiently well-resolved length and time scales relevant to the problem under study. Ironically, despite the enormous computational resources available today, poorly resolved length scales in sophisticated nonlinear calculations are not uncommon. Using the internal kink mode that is responsible for tokamak sawtooth oscillations as an example, consequences of not resolving in sufficient detail the linear and nonlinear layer widths of the resistive n = 1 mode and its nonlinear spectrum are examined. Poor radial and spectral resolution are shown to cause nonphysical, large-scale stochasticity that can be erroneously associated with a fast temperature collapse and sawtooth crash. With the assistance of a nonlinear mode coupling model, a sufficiently well-resolved toroidal spectrum is shown to require at least an order of magnitude more toroidal modes than is commonly used at dissipation levels relevant to today's tokamaks. A subgrid-scale model is introduced that helps with the spectral resolution problem by reducing the required number of degrees of freedom from that of a well-resolved direct numerical simulation.
Suprathermal electron dynamics and MHD instabilities in a tokamak
NASA Astrophysics Data System (ADS)
Kamleitner, J.; Coda, S.; Decker, J.; Graves, J. P.; the TCV Team
2015-10-01
The dynamics of suprathermal electrons in the presence of magnetohydrodynamics (MHD) activity and the excitation of MHD modes by suprathermal electrons are studied experimentally to improve the understanding of the interaction of fast particles with MHD instabilities in a tokamak. The study focuses on three different aspects of the internal kink mode with poloidal/toroidal mode number m/n=1/1 : the sawtooth instability, electron fishbones and coupled bursts alternating with sawtooth crashes (CAS), all located where the safety factor (q) profile approaches or takes the value q=1 . New quantitative results on suprathermal electron transport and an investigation of electron acceleration during sawtooth crashes are followed by the characterization of initial electron fishbone observations on the Tokamak à configuration variable (TCV). Finally, m/n=1/1 bursts associated with the sawtooth cycle, coupled to a persisting m/n=2/1 mode and alternating with sawtooth crashes, are discussed, in particular in view of the fast electron dynamics and their role in confinement degradation and mode excitation.
Ion temperature gradient driven transport in tokamaks with square shaping
Joiner, N.; Dorland, W.
2010-06-15
Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping). The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.
In-vessel remote maintenance of the Compact Ignition Tokamak
Tabor, M.A.; Hager, E.R.; Creedon, R.L.; Fisher, M.V.; Atkin, S.D.
1987-01-01
The Compact Ignition Tokamak (CIT) is the first deuterium-tritium (D-T) fusion device that will study the physics of an ignited plasma. The ability of the tokamak vacuum vessel to be maintained remotely while under vacuum has not been fully demonstrated on previous machines, and this ability will be critical to the efficient and safe operation of ignition devices. Although manned entry into the CIT vacuum vessel will be possible during the nonactivated stages of operation, remotely automated equipment will be used to assist in initial assembly of the vessel as well as to maintain all in-vessel components once the D-T burn is achieved. Remote maintenance and operation will be routinely required for replacement of thermal protection tiles, inspection of components, leak detection, and repair welding activities. Conceptual design to support these remote maintenance activities has been integrated with the conceptual design of the in-vessel components to provide a complete and practical remote maintenance system for CIT. The primary remote assembly and maintenance operations on CIT will be accomplished through two dedicated 37- x 100-cm ports on the main toroidal vessel. Each port contains a single articulated boom manipulator (ABM), which is capable of accessing half of the torus. The proposed ABM consists of a movable carriage assembly, telescoping two-part mast, and articulated link sections. 1 ref.
Magnetic Diagnostics for the Lithium Tokamak eXperiment
Berzak, L.; Kaita, R.; Kozub, T.; Majeski, R.; Zakharov, L.
2008-06-20
The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ~ 3.4kG, IP ~ 400kA, and pulse length ~ 0.25s. The focus of LTX is to investigate the novel, low-recycling Lithium Wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double-axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
Finite pressure effects on the tokamak sawtooth crash
Nishimura, Yasutaro
1998-07-01
The sawtooth crash is a hazardous, disruptive phenomenon that is observed in tokamaks whenever the safety factor at the magnetic axis is below unity. Recently, Tokamak Test Fusion Reactor (TFTR) experimental data has revealed interesting features of the dynamical pressure evolution during the crash phase. Motivated by the experimental results, this dissertation focuses on theoretical modeling of the finite pressure effects on the nonlinear stage of the sawtooth crash. The crash phase has been studied numerically employed a toroidal magnetohydrodynamic (MHD) initial value code deduced from the FAR code. For the first time, by starting from a concentric equilibrium, it has been shown that the evolution through an m/n = 1/1 magnetic island induces secondary high-n ballooning instabilities. The magnetic island evolution gives rise to convection of the pressure inside the inversion radius and builds up a steep pressure gradient across the island separatrix, or current sheet, and thereby triggers ballooning instabilities below the threshold for the axisymmetric equilibrium. Due to the onset of secondary ballooning modes, concomitant fine scale vortices and magnetic stochasticity are generated. These effects produce strong flows across the current sheet, and thereby significant modify the m = 1 driven magnetic reconnection process. The resultant interaction of the high-n ballooning modes with the magnetic reconnection process is discussed.
42GHz ECRH assisted Plasma Breakdown in tokamak SST-1
NASA Astrophysics Data System (ADS)
Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.
2015-03-01
In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.
Excitation, propagation, and damping of electron Bernstein waves in tokamaks
NASA Astrophysics Data System (ADS)
Ram, A. K.; Schultz, S. D.
2000-10-01
The conventional ordinary O-mode and the extraordinary X-mode in the electron cyclotron range of frequencies are not suitable for core heating in high-β spherical tokamak plasmas, like the National Spherical Torus Experiment [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th International Atomic Energy Agency Fusion Energy Conference (International Atomic Energy Agency, Vienna, 1999), Vol. 3, p. 1135], as they are weakly damped at high harmonics of the electron cyclotron frequency. However, electron Bernstein waves (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBWs via mode conversion of either the X-mode or the O-mode. The two mode conversions are optimized in different regions of the parameter space spanned by the parallel wavelength and wave frequency. The conditions for optimized mode conversion to EBWs are evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. From geometric optics ray tracing it is found that the EBWs damp strongly near the Doppler-broadened resonance at harmonics of the electron cyclotron frequency.
NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK
WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG; PIGLOWSKI, DA; ARIOLA, M; PIRONTI, A; SCHUSTER, E
2002-10-01
OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.
Radial transport and electron-cyclotron-current drive in the TCV and DIII-D tokamaks.
Harvey, R W; Sauter, O; Prater, R; Nikkola, P
2002-05-20
Calculation of electron-cyclotron-current drive (ECCD) with the comprehensive CQL3D Fokker-Planck code for a TCV tokamak shot gives 550 kA of driven toroidal current, in marked disagreement with the 100-kA experimental value. Published ECCD efficiencies calculated with CQL3D in the much larger, higher-confinement DIII-D tokamak are in excellent agreement with experiment. The disagreement is resolved by including in the calculations electrostatic-type radial transport at levels given by global energy confinement in tokamaks. The radial transport of energy and toroidal current are in agreement. PMID:12005571
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.
1996-12-31
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data.
Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks
Parra, Felix I.; Barnes, Michael
2011-06-15
Two symmetries of the local nonlinear {delta}f gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.
Theory of "clumps" in drift-wave turbulence in tokamak plasma
NASA Astrophysics Data System (ADS)
Wang, Xiaogang; Qiu, Xiaoming; X, M. Qhiu
1986-08-01
Basing on the new method of trajectory stochastic treatment advanced by one of the authors of this paper, the theory of "clumps" in driftwave turbulence in tokamak plasmas has been developed. It is shown that, as a longer time behaviour, plasmas in tokamaks will have the same "clumps" effects as those in uniform magnetic fields, although the diffusion crossing magnetic field lines in tokamaks will be enhanced. The influence of the non-uniformity of the magnetic field, such as curvature, shear, etc., on the transverse diffusion and the "clump" life-time is discussed.
Spectroscopy of smooth deuterated carbon films redeposited from plasma discharge in the tokamak T-10
Svechnikov, N. Yu. Stankevich, V. G.; Lebedev, A. M.; Men'shikov, K. A.; Kolbasov, B. N.; Kriventsov, V. V.
2006-12-15
Smooth deuterated carbon films redeposited from a deuterium plasma discharge in the tokamak T-10 vacuum chamber have been investigated by different spectroscopic methods and temperature measurements. The photoluminescence excitation spectra of sp{sup 3}-sp{sup 2} nanostructures of tokamak films and sp{sup 2} nanostructures of fullerite C60 films are compared. The effect of defect states on the photoluminescence and its temperature quenching is discussed. It is concluded that the mechanism of thermal luminescence quenching for smooth deuterated tokamak films is close to the corresponding mechanism for amorphous a-C:H films.
Centre-solenoid-free merging start-up of spherical tokamak plasmas in UTST
NASA Astrophysics Data System (ADS)
Inomoto, M.; Watanabe, T. G.; Gi, K.; Yamasaki, K.; Kamio, S.; Imazawa, R.; Yamada, T.; Guo, X.; Ushiki, T.; Ishikawa, H.; Nakamata, H.; Kawakami, N.; Sugawara, T.; Matsuyama, K.; Noma, K.; Kuwahata, A.; Tanabe, H.
2015-03-01
A centre-solenoid-free merging start-up scheme for spherical tokamak plasmas was developed in a University of Tokyo spherical tokamak (UTST) experiment by using outer poloidal field coils. Torus breakdown was initiated at null points and two spherical tokamak plasmas with a total current up to 80 kA were generated inductively. Their merging process provided substantial ion and electron heating by magnetic reconnection. The obtained dependence of heating on plasma current suggests that high-temperature and high-current plasma suitable for neutral beam injection is attainable under the realistic conditions in the merging start-up method.
The residual zonal flow in tokamak plasmas toroidally rotating at arbitrary velocity
Zhou, Deng
2014-08-15
Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In our previous work [D. Zhou, Nucl. Fusion 54, 042002 (2014)], the residual zonal flow in a tokamak plasma rotating toroidally at sonic speed is found to have the same form as that of a static plasma. In the present work, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved for low speed rotation to give the expression of residual zonal flows, and the expression is then generalized for cases with arbitrary rotating velocity through interpolation. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the former simulation result for high aspect ratio tokamaks.
A Cross-Benchmarking and Validation Initiative for Tokamak 3D Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Reiman, A.; Turnbull, A.; Evans, T.; Ferraro, N.; Lazarus, E.; Breslau, J.; Cerfon, A.; Chang, C. S.; Hager, R.; King, J.; Lanctot, M.; Lazerson, S.; Liu, Y.; McFadden, G.; Monticello, D.; Nazikian, R.; Park, J. K.; Sovinec, C.; Suzuki, Y.; Zhu, P.
2014-10-01
We are pursuing a cross-benchmarking and validation initiative for tokamak 3D equilibrium calculations, with 11 codes participating: the linearized tokamak equilibrium codes IPEC and MARS-F, the time-dependent extended MHD codes M3D-C1, M3D, and NIMROD, the gyrokinetic code XGC, as well as the stellarator codes VMEC, NSTAB, PIES, HINT and SPEC. Dedicated experiments for the purpose of generating data for validation have been done on the DIII-D tokamak. The data will allow us to do validation simultaneously with cross-benchmarking. Initial cross-benchmarking calculations are finding a disagreement between stellarator and tokamak 3D equilibrium codes. Work supported in part by U.S. DOE under Contracts DE-ACO2-09CH11466, DE-FC02-04E854698, DE-FG02-95E854309 and DE-AC05-000R22725.
Laser system for high resolution Thomson scattering diagnostics on the COMPASS tokamak
Bohm, P.; Sestak, D.; Bilkova, P.; Aftanas, M.; Weinzettl, V.; Hron, M.; Panek, R.; Dunstan, M. R.; Naylor, G.
2010-10-15
A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.
ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM
HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG
2002-10-01
A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.
NASA Astrophysics Data System (ADS)
Sager, G. T.; Wong, C. P. C.; Kapich, D. D.; McDonald, C. F.; Schleicher, R. W.
1993-11-01
The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankine and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed.
Gyrotron Performance on the 110 GHZ Installation at the DIII-D Tokamak
Gorelov, I.; Lohr, J.M.; Ponce, D.; Callis, R.W.; Ikezi, H.; Legg, R.A.; Tsimring, S.E.
1999-06-01
The 110 GHz gyrotron system on the DIII-D tokamak comprises three different gyrotrons in the 1 MW class. The individual gyrotron characteristics and the operational experience with the system are described.
Sheffield, J.
1987-01-01
This report presents a collection of Vugraphs dealing with the Compact Ignition Tokamak (CIT) and the Engineering Test Reactor (ETR). The role of the Ignition Physics Study Group is defined. Several design goals are presented. (JDH)
Normal-zone detection in tokamak superconducting magnets with Co- wound voltage sensors
Martovetsky, N.N.; Chaplin, M.R.
1995-06-08
This paper discusses advantages and disadvantages of different locations of co-wound voltage sensors for quench detection in tokamak magnets with a cable-in-conduit conductor. The voltage sensor locations are analyzed and estimates of the anticipated noise vs. dB/dt are derived for transverse, parallel, and self fields. The LLNL Noise Rejection Experiment, also described here, is designed to verify theoretical expectations on a copper cable exposed to these fields that will simulate the tokamak field environment.
Excitation of large-{kappa}{sub {theta}} ion-Bernstein waves in tokamaks
Valeo, E.J.; Fisch, N.J.
1994-09-01
The mode-converted ion-Bernstein wave excited in tokamaks is shown to exhibit certain very interesting behavior, including the attainment of very small poloidal phase velocities, the reversal of poloidal direction, and up-down asymmetries in propagation and damping. Because of these effects, this wave holds promise for channeling {alpha}-particle power to ions, something that would make a tokamak fusion reactor far more attractive than presently envisioned.
First results on fast wave current drive in advanced tokamak discharges in DIII-D
Prater, R.; Cary, W.P.; Baity, F.W.
1995-07-01
Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m{sup 2}.
Steady-state tokamak reactor with non-divertor impurity control: STARFIRE
Baker, C.C.
1980-01-01
STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described.
Cummings, Julian C.
2013-05-15
This project was a collaboration between researchers at the California Institute of Technology and the University of California, Irvine to investigate the utility of a global field-aligned mesh and gyrokinetic field solver for simulations of the tokamak plasma edge region. Mesh generation software from UC Irvine was tested with specific tokamak edge magnetic geometry scenarios and the quality of the meshes and the solutions to the gyrokinetic Poisson equation were evaluated.
[Fusion research/tokamak]. Final report, 1 May 1988--30 April 1994
1994-12-31
The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves.
Mirnov Coil Analysis by Singular Value Decomposition Method in IR-T1 Tokamak
NASA Astrophysics Data System (ADS)
Salemi, Mohammad K.; Saadat, Shervin; Ghoranneviss, Mahmoud; Tabadar, Alireza
2010-10-01
The spatial and temporal structures of magnetic signal in the tokamak is analyzed using recently developed singular value decomposition (SVD) technique to determine the structure of current perturbation as the discharge progresses. In this work we use SVD technique for that purpose in IR-T1 tokamak.ootnotetextC. Nardonet, ``Multichannel Fluctuation Data Analysis By The Singular Value Decomposition Method Application To MHD Modes In Jet,'' Plasma Physics & Controlled Fusion, V. 34, No. 9, 1992, 1447-1465
Geodesic acoustic mode in toroidally rotating anisotropic tokamaks
Ren, Haijun
2015-07-15
Effects of anisotropy on the geodesic acoustic mode (GAM) are analyzed by using gyro-kinetic equations applicable to low-frequency microinstabilities in a toroidally rotating tokamak plasma. Dispersion relation in the presence of arbitrary Mach number M, anisotropy strength σ, and the temperature ration τ is analytically derived. It is shown that when σ is less than 3 + 2τ, the increased electron temperature with fixed ion parallel temperature increases the normalized GAM frequency. When σ is larger than 3 + 2τ, the increasing of electron temperature decreases the GAM frequency. The anisotropy σ always tends to enlarge the GAM frequency. The Landau damping rate is dramatically decreased by the increasing τ or σ.
RF wave propagation and scattering in turbulent tokamak plasmas
Horton, W. Michoski, C.; Peysson, Y.; Decker, J.
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
A Lumped Parameter Model for Feedback Studies in Tokamaks
NASA Astrophysics Data System (ADS)
Chance, M. S.; Chu, M. S.; Okabayashi, M.; Glasser, A. H.
2004-11-01
A lumped circuit model of the feedback stabilization studies in tokamaks is calculated. This work parallels the formulation by Boozer^a, is analogous to the studies done on axisymmetric modes^b, and generalizes the cylindrical model^c. The lumped circuit parameters are derived from the DCON derived eigenfunctions of the plasma, the resistive shell and the feedback coils. The inductances are calculated using the VACUUM code which is designed to calculate the responses between the various elements in the feedback system. The results are compared with the normal mode^d and the system identification^e approaches. ^aA.H. Boozer, Phys. Plasmas 5, 3350 (1998). ^b E.A. Lazarus et al., Nucl. Fusion 30, 111 (1990). ^c M. Okabayashi et al., Nucl. Fusion 38, 1607 (1998). ^dM.S. Chu et al., Nucl. Fusion 43, 441 (2003). ^eY.Q. Liu et al., Phys. Plasmas 7, 3681 (2000).
Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure
NASA Astrophysics Data System (ADS)
Throumoulopoulos, George; Kuiroukidis, Apostolos; Tasso, Henri
2015-11-01
By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e. the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis. This work has received funding from (a) the National Programme for the Controlled Thermonuclear Fusion, Hellenic Republic, (b) Euratom research and training programme 2014-2018 under grant agreement No 633053.
TRAIL: a Tokamak Rail Gun Limiter for fusion reactors
Powell, J R; Yu, W S; Fillo, J A; Usher, J L
1980-01-01
An attractive new limiter concept is investigated. The Tokamak Rail Gun Limiter (TRAIL) system impacts a stream of moderate velocity pellets (100 to 200 m/sec through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled, after cooling, to the injector in an E-M mass accelerator. Heat fluxes of approx. 30,000 W/cm/sup 2/ can be readily accommodated by the pellets, with very low recirculating power requirements (approx. 0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state-of-the-art (several km/sec). Accelerators injecting pellets at approx. 1 km/sec can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs.
Compact Ignition Tokamak Program: R and D needs
Flanagan, C.A.
1985-01-01
This report on the Compact Ignition Tokamak Program supplies information concerning: segmented vacuum vessel joint development; first wall tile attachments; first wall/tile development - composite materials; vacuum leak detection; high frequency rf sources; Faraday shield development; design and testing of rf launchers for high power, ling pulse operation; radiation hardened, low loss, dielectric windows for rf, IR, visible, UV and X-rays, mirrors for changing direction and focusing IR, visible and UV radiation; radiation resistant optical dielectric wave guides; radiation resistant HV insulation for diagnostic magnetic pickup coils; compact radiation and/or magnetic shielding for in-vault diagnostics that need some attenuation to reduce S/N ratio; radiation hardened line-of-sight sensors such as bolometers, UV and soft X-ray detectors, neutral particle analyzers, torus pressure gauges; special maintenance fixtures and tools; material properties - design data base - all materials; and insulation - electrical/thermal and mechanical properties.
Solid scintillator based neutron fluctuation measurement on EAST tokamak
NASA Astrophysics Data System (ADS)
Pu, N.; Zhu, Y. B.; Zhong, G. Q.; Hu, L. Q.; Lin, S. Y.; Xu, L. Q.
2015-12-01
Microsecond level fast temporal resolved neutron flux and its fluctuation measurement system based on three types of solid scintillator detectors has been successfully established on the Experimental Advanced Superconducting Tokamak (EAST) for energetic particle (EP) and magnetohydrodynamics (MHD) instabilities relevant studies. The detector #1, where 50mm thick polyethylene is used for neutron thermalization, is mostly sensitive to thermal neutron. The detector #2 and #3 measure fast D-D neutrons directly with different gamma immunity. Design details together with detector test results with three types of radioisotope sources are presented. The system has been successfully implemented in EAST experiments for neutron and gamma identification. Typical fast MHD fluctuation related EAST experimental results from this system is also presented.
Low energy neutral outflux from the PLT Tokamak
Voss, D.E.; Cohen, S.A.
1980-05-01
A time-of-flight system has been developed to measure the energy spectrum of neutral deuterium atoms emitted from the PLT Tokamak plasma in the energy range 20 to 1000 eV. D/sup 0/ neutrals are mechanically chopped by a rotating 25 cm OD stainless steel disc with 24 .025 cm wide slots photo-etched at an 11.4 cm radius. The gated neutrals free stream 181 cm where they impinge on a Cu-Be disc, thereby ejecting secondary electrons which are collected and amplified by an electron multiplier. Since the energy dependence of the Cu-Be secondary emission coefficient as well as the multiplier gain are known from prior calibration, quantitative D/sup 0/ fluxes can be determined.
STARFIRE: a commercial tokamak fusion power plant study
Not Available
1980-09-01
STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.
Winding insulation in electromagnetic systems for Tokamak reactor plants
NASA Astrophysics Data System (ADS)
Maslov, V. V.; Trubachev, S. G.
1985-01-01
Magnetic containment of the plasma in nuclear fusion reactors of the Tokamak type requires electromagnets with insulation which must withstand high temperatures and thermal shocks as well as ionizing radiation in various forms and electric fields, and mechanical loads. Insulation materials to ensure adequate thermophysical and mechanical properties are evaluated, followed by design of insulation systems with satisfactory performance characteristics. Data on neutron fluence energy characteristics and radiation absorption doses during neutron interactions are essential for such an evaluation. Materials considered for insulation in electromagnets with superconductor and cryoresistance windings are glass mica tape with epoxy compound impregnation, glass cloth with epoxy compound impregnation (STE), polyimide glass cloth with adhesive coating (LSNL), glass Textolite with epoxy phenolic binder (STEN), epoxy resin paste with mineral fillers (PE), and polyurethane compound modified by epoxy resin with mineral filler (KPU).
Elements of Neoclassical Theory and Plasma Rotation in a Tokamak
NASA Astrophysics Data System (ADS)
Smolyakov, A.
2015-12-01
The following sections are included: * Introduction * Quasineutrality condition * Diffusion in fully ionized magnetized plasma and automatic ambipolarity * Toroidal geometry and neoclassical diffusion * Diffusion and ambipolarity in toroidal plasmas * Ambipolarity and equilibrium poloidal rotation * Ambipolarity paradox and damping of poloidal rotation * Neoclassical plasma inertia * Oscillatory modes of poloidal plasma rotation * Dynamics of the toroidal momentum * Momentum diffusion in strongly collisional, short mean free path regime * Diffusion of toroidal momentum in the weak collision (banana) regime * Toroidal momentum diffusion and momentum damping from drift-kinetic theory and fluid moment equations * Comments on non-axisymmetric effects * Summary * Acknowledgments * Appendix: Trapped (banana) particles and collisionality regimes in a tokamak * Appendix: Hierarchy of moment equations * Appendix: Plasma viscosity tensor in the magnetic field: parallel viscosity, gyroviscosity, and perpendicular viscosity * Appendix: Closure relations for the flux surface averaged parallel viscosity in neoclassical (banana and plateau) regimes * References
Improved timing sequence generator on the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Colio, R. A.; Finkenthal, D. F.; Deterly, T. M.
2011-10-01
The DIII-D tokamak uses a central clock source and trigger system to synchronize plant operations and diagnostics. The system uses a bi-phase encoding technique to send both clock and trigger signals to remote receivers, and supports both pre-programmed sequences of triggers as well as event-driven triggers. A 1 MHz timebase is used and triggers are encoded as eight-bit hexadecimal words. Currently, the system relies on a cascaded series of CAMAC-based delay generators to produce the trigger sequence. We present a modern and more versatile implementation based on a single FPGA (field programmable gate array) capable of providing clock rates upward of 100 MHz while maintaining compatibility with existing equipment. A proposal for system clock synchronization with GPS for improved precision is also presented. Work supported in part by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.
Microinstability-based model for anomalous thermal confinement in tokamaks
Tang, W.M.
1986-03-01
This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed.
WILDCAT: a catalyzed D-D tokamak reactor
Evans, K. Jr.; Baker, C.C.; Brooks, J.N.
1981-11-01
WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.
Vlasov tokamak equilibria with sheared toroidal flow and anisotropic pressure
Kuiroukidis, Ap; Throumoulopoulos, G. N.; Tasso, H.
2015-08-15
By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e., the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions, these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.
Plasma density behavior in the Hefei tokamak-7
NASA Astrophysics Data System (ADS)
Gao, Xiang; Jie, Y. X.; Yang, Y.; Xia, C. Y.; Wei, M. S.; Zhang, S. Y.; Cheng, Y. F.; Hu, L. Q.; Mao, J. S.; Tong, X. D.; Wan, B. N.; Kuang, G. L.; Li, J. G.; Zhao, Y. P.; Luo, J. R.; Qiu, N.; Yang, K.; Li, G.; Xie, J. K.; Wan, Y. X.
2000-07-01
The density profiles were measured in the Hefei tokamak-7 (HT-7) [World Survey of Activities in Controlled Fusion Research, Nuclear Fusion Special Supplement (International Atomic Energy Agency, Vienna, 1997), p. 61] ohmic discharges by means of a new multichannel far-infrared (FIR) laser interferometer. The progress on the extension of the HT-7 ohmic discharge operation region was introduced. The experiment results at the density limit, the multifaceted asymmetric radiation from the edge (MARFE) phenomena, the rf (radio frequency) boronization experiments, and the fueling efficiency studies were reported. The plasma physics in the molecular beam injection (MBI), the pellet injection (PI), and the gas puffing (GP) fueling experiments was studied and discussed.
High Density Experiments in the HL-1M Tokamak
NASA Astrophysics Data System (ADS)
Yan, Long-wen; Yao, Liang-hua; Zhou, Yan; Liu, Yong; Wang, En-yao; HL-1M Team
2000-10-01
The plasma performance of high density has been investigated in the HL-1M Tokamak. Different density limits are given for three fueling methods i.e. gas puffing, pellet injection and molecular beam injection (MBI). The maximum Murakami constant is CM = 3.4 × 1019 m-2T-1 for Ohmic discharge. A maximum line-averaged density of 8.2 × 1019 m-3 has been achieved for Ohmic discharge at qa = 4.4. A 1.4 times of the Greenwald limit is obtained at Ip = 120 kA. The rising rates and peak factors of density are discussed. The plasma confinement of high density is analyzed, including the behavior of density limit disruption.
Electron temperature gradient driven instability in the tokamak boundary plasma
Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.
1992-12-15
A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t{sup {minus}1/2}e{sup {gamma}mt}.
The Radial Electric Field in Tokamak with Reversed Magnetic Shear
NASA Astrophysics Data System (ADS)
Zhu, Ping; Horton, Wendell; Sugama, Hideo
1998-10-01
Neoclassical theory with the impurity rotational velocity is used to evaluate the radial electric field Er in tokamaks. The result of the complete matrix method for the deuterium-carbon plasma is compared with a reduced analytic formula for determining Er [Ernst et al., (1998)]. The analytic formula is shown to overestimate the Er magnitude and its gradient. Then two transport measures of the effect of the Er shear are compared for the reverse shear and enhanced reversed shear discharges in TFTR [Mazzucato et al., (1996)]. We show that the combined Er and magnetic shear measure Υs from linear stability theory gives a higher correlation with the observed transition between the two discharges than the vorticity measure ωs from Er shear alone.
Edge profile measurements using Thomson scattering on the KSTAR tokamak
Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.
2014-11-15
In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.
Edge profile measurements using Thomson scattering on the KSTAR tokamak.
Lee, J H; Oh, S; Lee, W R; Ko, W H; Kim, K P; Lee, K D; Jeon, Y M; Yoon, S W; Cho, K W; Narihara, K; Yamada, I; Yasuhara, R; Hatae, T; Yatsuka, E; Ono, T; Hong, J H
2014-11-01
In the KSTAR Tokamak, a "Tangential Thomson Scattering" (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10-15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper. PMID:25430170
Stationary density profiles in the Alcator C-mod tokamak
Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Shiraiwa, S.; Whyte, D.; Scott, S.
2012-12-15
In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.
Design and installation of a ferromagnetic wall in tokamak geometry.
Hughes, P E; Levesque, J P; Rivera, N; Mauel, M E; Navratil, G A
2015-10-01
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak-Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability. PMID:26520952
Forbidden line emission from highly ionized atoms in tokamak plasmas
NASA Technical Reports Server (NTRS)
Feldman, U.; Doschek, G. A.; Bhatia, A. K.
1982-01-01
Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature
On the avalanche generation of runaway electrons during tokamak disruptions
Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
2015-08-15
A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model.
Stabilization of the resistive shell mode in tokamaks
Fitzpatrick, R.; Aydemir, A.
1995-02-01
The stability of current-driven external-kink modes is investigated in a tokamak plasma surrounded by an external shell of finite electrical conductivity. According to conventional theory, the ideal mode can be stabilized by placing the shell sufficiently close to the plasma, but the non-rotating ``resistive shell mode,`` which grows on the characteristic L/R time of the shell, always persists. It is demonstrated, using both analytic and numerical techniques, that a combination of strong edge plasma rotation and dissipation somewhere inside the plasma is capable of stabilizing the resistive shell mode. This stabilization mechanism does not necessarily depend on toroidicity or presence of resonant surfaces inside the plasma.
Composition And Electrical Properties Of Dust From Tokamak Compass
Vaverka, J.; Beranek, M.; Pavlu, J.; Richterova, I.; Vysinka, M.; Safrankova, J.; Nemecek, Z.
2011-11-29
In spite of the fact that fusion is a subject of the study for many years, there are still a lot of open questions. One of the interesting topics in fusion research is a presence of dust grains in reactors. In the paper, dust grains born in tokamak Compass are studied and compared with samples of a spherical geometry and well known composition. A unique experimental setup was used for investigations of charging properties of such grains and the SEM and EDX spectroscopy was applied for a study of grain composition. We focus on the secondary emission because this process plays a prominent role when a portion of energetic electrons is present in surroundings of a particular grain. It was shown that depending on the grain size and material, energetic electrons charge the grains to positive potentials comparable with the energy of impinging electrons.
Tokamak power reactor ignition and time dependent fractional power operation
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.
Reflectometer measurements of density fluctuations in tokamak plasmas
Nazikian, R.; Mazzucato, E.
1994-08-01
We show that many anomalous features observed in reflectometer measurements of turbulent fluctuations in tokamak plasmas, such as loss of coherent reflection, large amplitude fluctuations, large angular divergence of the reflected waves and correlation lengths of the order of the free space wavelength of the probe beam, can be explained by modeling the plasma fluctuations as a poloidally varying random phase grating located at the cutoff with a phase magnitude given by 1D geometric optics. A key result of our analysis is that the turbulence spectrum cannot be inferred from phase measurements when large amplitude fluctuations are observed at the receiver. However, the turbulence spectrum may still be recovered from phase measurements by use of imaging optics, and wide angle phase sensitive receivers.
Validation of Tokamak Equilibria: Reconciling Theory and Observation Using BEAST
NASA Astrophysics Data System (ADS)
von Nessi, Gregory; Hole, Matthew; Svensson, Jakob
2011-10-01
We present a new technique for reconciling force-balance models with diagnostic observations via the statistical theory of Bayesian analysis. This method forms the backbone of a new data analysis code called BEAST (Bayesian Equilibrium Analysis and Simulation Technique) and is based on refactoring the force-balance relation into two different forward models, each associated with a 'fractional' observation, which are subsequently used in the Bayesian inference of the plasma equilibrium. By using a variant of the nested sampling algorithm, the evidence of the inferred posterior distribution is calculated and provides a relative quantification of how much the inferred equilibrium differs from a force-balance solution. Results are presented for discharges on the Mega-Ampere Spherical Tokamak (MAST), which are calculated using pickup coil, flux loop and Motional-Stark Effect (MSE) diagnostic data.
MHD stability properties of bean-shaped tokamaks
Grimm, R.C.; Chance, M.S.; Todd, A.M.M.; Manickam, J.; Okabayashi, M.; Tang, W.M.; Dewar, R.L.; Fishman, H.; Mendelsohn, S.L.; Monticello, D.A.
1984-03-01
A study of the MHD stability properties of bean-shaped tokamak plasmas is presented. For ballooning modes, while increased indentation gives larger ..beta.. stable configurations, the existence and accessibility of the second stable region is sensitive to the pressure and safety factor profiles. The second stable region appears at lower ..beta.. values for large aspect ratio and moderately high q-values. Finite-Larmor-radius (FLR) kinetic effects can significantly improve the stability properties. For low q (< 1) operation, long wavelength (n approx. 2,3) internal pressure driven modes occur at modest ..beta../sub p/ values and accessibility to higher ..beta.. operation is unlikely. Indentation modifies the nature of the usually vertical axisymmetric instability, but the mode can be passively stabilized by placing highly conducting plates near to the tips of the plasma bean. At constant q, indentation has a stabilizing effect on tearing modes.
Advanced ICRF antenna design for R-TOKAMAK
NASA Astrophysics Data System (ADS)
Kako, E.; Ando, R.; Ichimura, M.; Ogawa, Y.; Amano, T.; Watari, T.
1986-01-01
The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For high power heating, a new type antenna called Panel heater antenna is proposed. It has a wide radiation area and is able to select a parallel wave number k. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma.
Poloidal rotation in tokamaks with large electric field gradients
Hinton, F.L.; Kim, Y.
1995-01-01
The ion poloidal flow velocity near the plasma edge in a tokamak has been calculated by extending neoclassical theory to include orbit squeezing, which is the reduction of the ion banana widths due to radial electric field shear. The pressure gradient-driven ion parallel flow is reduced by orbit squeezing, and then no longer cancels the diamagnetic flow in its contribution to poloidal flow. This allows the poloidal flow velocity to be a significant fraction of the ion diamagnetic velocity, which can be much larger than the standard neoclassical value (proportional to the ion temperature gradient). Equations for determining the poloidal flow and radial electric field profiles self-consistently are given. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Neoclassical momentum transport in an impure rotating tokamak plasma
Newton, S.; Helander, P.
2006-01-15
It is widely believed that transport barriers in tokamak plasmas are caused by radial electric-field shear, which is governed by angular momentum transport. Turbulence is suppressed in the barrier, and ion thermal transport is comparable to the neoclassical prediction, but experimentally angular momentum transport has remained anomalous. With this motivation, the collisional transport matrix is calculated for a low collisionality plasma with collisional impurity ions. The bulk plasma toroidal rotation velocity is taken to be subsonic, but heavy impurities undergo poloidal redistribution due to the centrifugal force. The impurities give rise to off-diagonal terms in the transport matrix, which cause the plasma to rotate spontaneously. At conventional aspect ratio, poloidal impurity redistribution increases the angular momentum flux by a factor up to {epsilon}{sup -3/2} over previous predictions, making it comparable to the 'banana' regime heat flux. The flux is primarily driven by radial pressure and temperature gradients.
Tritium pellet injector design for tokamak fusion test reactor
Fisher, P.W.; Baylor, L.R.; Bryan, W.E.; Combs, S.K.; Easterly, C.E.; Lunsford, R.V.; Milora, S.L.; Schuresko, D.D.; White, J.A.; Williamson, D.H.
1985-01-01
A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper.
Operational conditions in a W-clad tokamak
NASA Astrophysics Data System (ADS)
Neu, R.; Hopf, Ch.; Kallenbach, A.; Pütterich, T.; Dux, R.; Greuner, H.; Gruber, O.; Herrmann, A.; Krieger, K.; Maier, H.; Rohde, V.; ASDEX Upgrade Team
2007-08-01
Experiments with tungsten plasma facing components (PFCs) are performed in the ASDEX Upgrade divertor tokamak and the area covered by W-PFCs has been increased steadily since 1999 reaching 85% for the 2005/2006 campaign. The configurations chosen are W-coatings on graphite and CFC. The different locations are subject to different power loads and erosion yields. This is taken into account by selecting different thicknesses in the W-coating manufactured either by physical vapour deposition or vacuum plasma spraying. Power loads in excess of 15 MW/m 2 can be handled in this way. The experiments on ASDEX Upgrade show that plasma operation is feasible with walls and divertor surfaces mostly covered with tungsten, but also reveal critical issues: fast particles from plasma heating can play a crucial role in W erosion and particle transport must be kept high enough to overcome high impurity content and to prevent central impurity accumulation.
Electron heating using lower hybrid waves in the PLT tokamak
Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.
1987-06-01
Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs.
Ion radial transport induced by ICRF waves in tokamaks
Chen, L.; Vaclavik, J.; Hammett, G.W.
1987-05-01
The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant.
Transport properties of interacting magnetic islands in tokamak plasmas
Gianakon, T.A.; Callen, J.D.; Hegna, C.C.
1993-10-01
This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.
Thermo-resistive disruptions and the tokamak density limit
NASA Astrophysics Data System (ADS)
Gates, D. A.; Brennan, D. P.; Delgado-Aparicio, L.; Teng, Q.; White, R. B.
2016-05-01
The physical mechanism behind the tokamak density limit scaling is described in terms of a non-linear theory of tearing mode growth in cylindrical geometry coupled to a model for thermal transport in the island. Important new physics features of the model include: (1) island asymmetry due to finite island width in cylindrical geometry, (2) a model of radiation based on local coronal equilibrium including impurity radiation, (3) current perturbations due the perturbed resistivity, and (4) numerical solution of the cylindrical eigenfunctions and Δ' . The semi-analytic cylindrical model is then solved for a wide range of current profiles, magnetic field values, and plasma currents using reasonable assumptions for impurity densities and the Greenwald limit [M. Greenwald et al., Nucl. Fusion 28, 2199 (1988)] is reproduced. The limit is shown to be only weakly dependent on variations in the assumed parameters.
Continuum kinetic modeling of the tokamak plasma edge
Dorf, M. A.; Dorr, M.; Rognlien, T.; Hittinger, J.; Cohen, R.
2016-03-10
In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less
Resistive MHD studies of high-. beta. -tokamak plasmas
Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.
1981-01-01
Numerical calculations have been performed to study the MHD activity in high-..beta.. tokamaks such as ISX-B. These initial value calculations built on earlier low ..beta.. techniques, but the ..beta.. effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low ..beta.. to predominantly pressure driven modes at high ..beta.. is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment.