Sample records for k-atp channel activity

  1. Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection.

    PubMed

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2004-01-01

    1. ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoK(ATP) channel) rather than in the sarcolemma (sarcK(ATP) channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcK(ATP) and mitoK(ATP) channels in guinea-pig ventricular myocytes. 2. Minoxidil activated a glybenclamide-sensitive sarcK(ATP) channel current in the whole-cell recording mode with an EC(50) of 182.6 microm. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoK(ATP) channel activity, in a concentration-dependent manner. The EC(50) for mitoK(ATP) channel activation was estimated to be 7.3 microm; this value was notably approximately 25-fold lower than that for sarcK(ATP) channel activation. 3. Minoxidil (10 microm) significantly attenuated the ouabain-induced increase of mitochondrial Ca(2+) concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 microm) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microm). 4. Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoK(ATP) channels.

  2. A novel type of ATP block on a Ca(2+)-activated K(+) channel from bullfrog erythrocytes.

    PubMed

    Shindo, M; Imai, Y; Sohma, Y

    2000-07-01

    Using the patch-clamp technique, we have identified an intermediate conductance Ca(2+)-activated K(+) channel from bullfrog (Rana catesbeiana) erythrocytes and have investigated the regulation of channel activity by cytosolic ATP. The channel was highly selective for K(+) over Na(+), gave a linear I-V relationship with symmetrical 117.5 mM K(+) solutions and had a single-channel conductance of 60 pS. Channel activity was dependent on Ca(2+) concentration (K(1/2) = 600 nM) but voltage-independent. These basic characteristics are similar to those of human and frog erythrocyte Ca(2+)-activated K(+) (Gardos) channels previously reported. However, cytoplasmic application of ATP reduced channel activity with block exhibiting a novel bell-shaped concentration dependence. The channel was inhibited most by approximately 10 microM ATP (P(0) reduced to 5% of control) but less blocked by lower and higher concentrations of ATP. Moreover, the novel type of ATP block did not require Mg(2+), was independent of PKA or PKC, and was mimicked by a nonhydrolyzable ATP analog, AMP-PNP. This suggests that ATP exerts its effect by direct binding to sites on the channel or associated regulatory proteins, but not by phosphorylation of either of these components.

  3. Diadenosine tetraphosphate-gating of cardiac K(ATP) channels requires intact actin cytoskeleton.

    PubMed

    Jovanović, S; Jovanović, A

    2001-09-01

    Diadenosine polyphosphates (ApnA) have been recently discovered in the heart, and their levels found to be regulated by ischemia. These signaling molecules are believed to regulate cellular processes that alarm a cell to metabolic stress. In particular, changes in cardiac diadenosine polyphosphates (ApnA) levels may contribute to the regulation of ATP-sensitive K+ (K(ATP)) channel activity, an ion channel that couples the cellular metabolic state with membrane excitability. A feature of myocardial ischemia is the disruption of the actin cytoskeleton which critically regulates the behavior of K(ATP) channels. Whether the integrity of actin microfilaments regulates the interaction of ApnA with K(ATP) channels is not known. The inside-out configuration of the patch-clamp technique was applied to cardiomyocytes isolated from guinea-pig heart. Following patch excision, the prototype dinucleotide, diadenosine tetraphosphate (Ap4A), inhibited K(ATP) channel opening. Treatment of the internal side of membrane patches with either cytochalasin B or DNase I, disrupters of the actin cytoskeleton, prevented Ap4A-induced inhibition of K(ATP) channel opening. Application of purified actin to DNase-treated membrane patches restored the ability of Ap4A to close K(ATP) channels. This study shows that inhibition of cardiac K(ATP) channel by Ap4A, a putative alarmone, requires intact subsarcolemmal actin network. Such interaction between K(ATP) channels, the cardiomyocyte cytoskeleton and intracellular Ap4A could affect different channel-dependent functions.

  4. Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels.

    PubMed

    Jovanovic, S; Jovanovic, A

    2001-02-01

    Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic beta cells where targets ATP-sensitive K(+) (K(ATP)) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic K(ATP) channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic K(ATP) channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of K(ATP) channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes K(ATP) channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.

  5. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    PubMed

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  6. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets.

    PubMed

    Yildirim, Vehpi; Vadrevu, Suryakiran; Thompson, Benjamin; Satin, Leslie S; Bertram, Richard

    2017-07-01

    Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels.

  7. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].

    PubMed

    Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto

    2003-09-01

    ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout

  8. Roles of phospho-GSK-3β in myocardial protection afforded by activation of the mitochondrial K ATP channel.

    PubMed

    Terashima, Yoshiaki; Sato, Tatsuya; Yano, Toshiyuki; Maas, Ole; Itoh, Takahito; Miki, Takayuki; Tanno, Masaya; Kuno, Atsushi; Shimamoto, Kazuaki; Miura, Tetsuji

    2010-11-01

    The aim of this study was to determine the roles of glycogen synthase kinase-3β (GSK-3β) in cardioprotection by activation of the mitochondrial ATP-sensitive K(+) channel (mK(ATP) channel). In isolated rat hearts, an mK(ATP) activator, diazoxide, and a GSK-3β inhibitor, SB216763, similarly limited infarct size and the combination of these agents did not afford further protection. The protection by pre-ischemic treatment with diazoxide was abolished by inhibition of protein kinase C-ε (PKC-ε) or phosphatidylinositol-3-kinase (PI3K) upon reperfusion. Infusion of a GSK-3β inhibitor (LiCl), but not diazoxide, during reperfusion limited infarct size. Inhibition of PKC-ε or PI3K did not affect the protection by LiCl. Diazoxide infusion alone did not induce GSK-3β phosphorylation. However, diazoxide infusion before ischemia increased mitochondrial phospho-GSK-3β level and reduced cyclophilin-D (CypD) binding to adenine nucleotide translocase (ANT) at 10 min after reperfusion. This diazoxide-induced GSK-3β phosphorylation was inhibited by blockade of the mK(ATP) channel before ischemia and by blockade of PKC-ε, PI3K or the adenosine A2b receptor at the time of reperfusion. Inhibition of GSK-3β by LiCl during reperfusion increased phospho-GSK-3β but had no significant effect on CypD-ANT binding. These results suggest that GSK-3β phosphorylation at the time of reperfusion by a PKC-ε, PI3K- and A2b receptor-dependent mechanism contributes to prevention of myocardial necrosis by pre-ischemic activation of the mK(ATP) channel. Inhibition of CypD-ANT interaction may contribute to mK(ATP)-induced myocardial protection, though it is not the sole mechanism of phospho-GSK-3β-mediated cytoprotection. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    PubMed

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.

    PubMed

    Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof

    2007-09-01

    beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.

  11. Variable effects of the mitoK(ATP) channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells.

    PubMed

    Nilakantan, Vani; Liang, Huanling; Mortensen, Jordan; Taylor, Erin; Johnson, Christopher P

    2010-02-01

    The role of mitochondrial K(ATP) (mitoK(ATP)) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoK(ATP) opener, diazoxide, and the mitoK(ATP) blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoK(ATP) channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.

  12. Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas.

    PubMed

    Englert, H C; Gerlach, U; Goegelein, H; Hartung, J; Heitsch, H; Mania, D; Scheidler, S

    2001-03-29

    Sulfonylthioureas exhibiting cardioselective blockade of ATP-sensitive potassium channels (K(ATP) channels) were discovered by stepwise structural variations of the antidiabetic sulfonylurea glibenclamide. As screening assays, reversal of rilmakalim-induced shortening of the cardiac action potential in guinea pig papillary muscles was used to probe for activity on cardiac K(ATP) channels as the target, and membrane depolarization in CHO cells stably transfected with hSUR1/hKir6.2 was used to probe for unwanted side effects on pancreatic K(ATP) channels. Changing glibenclamide's para-arrangement of substituents in the central aromatic ring to a meta-pattern associated with size reduction of the substituent at the terminal nitrogen atom of the sulfonylurea moiety was found to achieve cardioselectivity. An additional change from a sulfonylurea moiety to a sulfonylthiourea moiety along with an appropriate substituent in the ortho-position of the central aromatic system was a successful strategy to further improve potency on the cardiac K(ATP) channel. Among this series of sulfonylthioureas HMR1883, 1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea, and its sodium salt HMR1098 were selected for development and represent a completely new therapeutic approach toward the prevention of life-threatening arrhythmias and sudden cardiac death in patients with coronary heart disease.

  13. A highly active ATP-insensitive K+ import pathway in plant mitochondria.

    PubMed

    Ruy, Fernando; Vercesi, Anibal E; Andrade, Paula B M; Bianconi, M Lucia; Chaimovich, Hernan; Kowaltowski, Alicia J

    2004-04-01

    We describe here a regulated and highly active K+ uptake pathway in potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and maize (Zea mays) mitochondria. K+ transport was not inhibited by ATP, NADH, or thiol reagents, which regulate ATP-sensitive K+ channels previously described in plant and mammalian mitochondria. However, K+ uptake was completely prevented by quinine, a broad spectrum K+ channel inhibitor. Increased K+ uptake in plants leads to mitochondrial swelling, respiratory stimulation, heat release, and the prevention of reactive oxygen species formation. This newly described ATP-insensitive K+ import pathway is potentially involved in metabolism regulation and prevention of oxidative stress.

  14. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.

    PubMed

    Traverse, Jay H; Chen, YingJie; Hou, MingXiao; Li, Yunfang; Bache, Robert J

    2007-06-08

    K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.

  15. Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties.

    PubMed

    Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana

    2006-01-24

    ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.

  16. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    PubMed

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  17. ATP-sensitive K/sup +/ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Weille, J.; Schmid-Antomarchi, H.; Fosset, M.

    1988-02-01

    The action of the hyperglycemia-inducing hormone galanin, a 29-amino acid peptide names from its N-terminal glycine and C-terminal amidated alanine, was studied in rat insulinoma (RINm5F) cells using electrophysiological and /sup 86/Rb/sup +/ flux techniques. Galanin hyperpolarizes and reduces spontaneous electrical activity by activating a population of APT-sensitive K/sup +/ channels with a single-channel conductance of 30 pS (at -60 mV). Galanin-induced hyperpolarization and reduction of spike activity are reversed by the hypoglycemia-inducing sulfonylurea glibenclamine. Glibenclamide blocks the galanin-activated ATP-sensitive K/sup +/ channel. /sup 86/Rb/sup +/ efflux from insulinoma cells is stimulated by galanin in a dose-dependent manner. The half-maximummore » value of activation is found at 1.6 nM. Galanin-induced /sup 86/Rb/sup +/ efflux is abolished by glibenclamide. The half-maximum value of inhibition is found at 0.3 nM, which is close to the half-maximum value of inhibition of the ATP-dependent K/sup +/ channel reported earlier. /sup 86/Rb/sup +/ efflux studies confirm the electrophysiological demonstration that galanin activates and ATP-dependent K/sup +/ channel.« less

  18. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    PubMed

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  19. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.

    PubMed Central

    Urbach, V; Van Kerkhove, E; Maguire, D; Harvey, B J

    1996-01-01

    Isolated frog skin epithelium, mounted in an Ussing chamber and bathed in standard NaCl Ringer solution, recycles K+ across the basolateral membrane of principal cells through an inward-rectifier K+ channel (Kir) operating in parallel with a Na+-K+-ATPase pump. Here we report on the metabolic control of the Kir channel using patch clamping, short-circuit current measurement and enzymatic determination of cellular (ATP (ATPi). 2. The constitutively active Kir channel in the basolateral membrane has the characteristics of an ATP-regulated K+ channel and is now classed as a KATP channel. In excised inside-out patches the open probability (Po) of KATP channels was reduced by ATPi with half-maximum inhibition at an ATPi concentration of 50 microM. 3. ATPi measured (under normal Na+ transport conditions) with luciferin-luciferase was 1.50 +/- 0.23 mM (mean +/- S.E.M.; range, 0.4-3.3 mM n = 11). Thus the KATP channel would be expected to be inactive in intact cells if ATPi was the sole regulator of channel activity. KATP channels which were inactivated by 1 mM ATPi in excised patches could be reactivated by addition of 100 microM ADP on the cytosolic side. When added alone, ADP blocks this channel with half-maximal inhibition at [ADPi] > 5 mM. 4. Sulphonylureas inhibit single KATP channels in cell-attached patches as well as the total basolateral K+ current measured in frog skin epithelia perforated with nystatin on the apical side. 5. Na+-K+-ATPase activity is a major determinant of cytosolic ATP. Blocking the pump activity with ouabain produced a time-dependent increase in ATPi and reduced the open probability of KATP channels in cell-attached membranes. 6. We conclude that the ratio of ATP/ADP is an important metabolic coupling factor between the rate of Na+-K+ pumping and K+ recycling. Images Figure 9 PMID:9011625

  20. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.

    PubMed

    Seino, Susumu

    2003-01-01

    K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.

  1. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels.

    PubMed

    Richter, Katrin; Kiefer, Kevin P; Grzesik, Benno A; Clauss, Wolfgang G; Fronius, Martin

    2014-01-01

    Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; P<0.0001). This effect was reversible and repeatable ≥30 times. Preincubation with ATP-sensitive K(+) channel (K(ATP)) inhibitors (HMR1098 and glibenclamide) prevented the decrease in I(SC) (I(5cm)/I(0cm): HMR1098=1.19, P<0.0001; glibenclamide=1.11, P<0.0001). Similar effects were observed with hemichannel inhibitors (I(5cm)/I(0cm): meclofenamic acid=1.09, P<0.0001; probenecid=1.0, P<0.0001). The HP effect was accompanied by release of ATP (P<0.05), determined by luciferin-luciferase luminescence in perfusion solution from the luminal side of an Ussing chamber. ATP release was abrogated by both meclofenamic acid and probenecid. RT-PCR experiments revealed the expression of pannexin and connexin hemichannels and KATP subunit transcripts in X. laevis lung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.

  2. Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.

    PubMed

    Jiang, Bo; Cao, Kun; Wang, Rui

    2004-12-15

    Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.

  3. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  4. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  5. Activation of an ATP-dependent K(+) conductance in Xenopus oocytes by expression of adenylate kinase cloned from renal proximal tubules.

    PubMed

    Brochiero, E; Coady, M J; Klein, H; Laprade, R; Lapointe, J Y

    2001-02-09

    In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.

  6. Selective activation of the K(+)(ATP) channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis).

    PubMed

    Link, M S; Wang, P J; VanderBrink, B A; Avelar, E; Pandian, N G; Maron, B J; Estes, N A

    1999-07-27

    Sudden death due to relatively innocent chest-wall impact has been described in young individuals (commotio cordis). In our previously reported swine model of commotio cordis, ventricular fibrillation (with T-wave strikes) and ST-segment elevation (with QRS strikes) were produced by 30-mph baseball impacts to the precordium. Because activation of the K(+)(ATP) channel has been implicated in the pathogenesis of ST elevation and ventricular fibrillation in myocardial ischemia, we hypothesized that this channel could be responsible for the electrophysiologic findings in our experimental model and in victims of commotio cordis. In the initial experiment, 6 juvenile swine were given 0.5 mg/kg IV glibenclamide, a selective inhibitor of the K(+)(ATP) channel, and chest impact was given on the QRS. The results of these strikes were compared with animals in which no glibenclamide was given. In the second phase, 20 swine were randomized to receive glibenclamide or a control vehicle (in a double-blind fashion), with chest impact delivered just before the T-wave peak. With QRS impacts, the maximal ST elevation was significantly less in those animals given glibenclamide (0.16+/-0.10 mV) than in controls (0.35+/-0.20 mV; P=0.004). With T-wave impacts, the animals that received glibenclamide had significantly fewer occurrences of ventricular fibrillation (1 episode in 27 impacts; 4%) than controls (6 episodes in 18 impacts; 33%; P=0.01). In this experimental model of commotio cordis, blockade of the K(+)(ATP) channel reduced the incidence of ventricular fibrillation and the magnitude of ST-segment elevation. Therefore, selective K(+)(ATP) channel activation may be a pivotal mechanism in sudden death resulting from low-energy chest-wall trauma in young people during sporting activities.

  7. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.

    PubMed

    Ma, Weiyuan; Berg, Jim; Yellen, Gary

    2007-04-04

    A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.

  8. Sarcolemmal cardiac K(ATP) channels as a target for the cardioprotective effects of the fluorine-containing pinacidil analogue, flocalin.

    PubMed

    Voitychuk, Oleg I; Strutynskyi, Ruslan B; Yagupolskii, Lev M; Tinker, Andrew; Moibenko, Olexiy O; Shuba, Yaroslav M

    2011-02-01

    A class of drugs known as K(ATP) -channel openers induce cardioprotection. This study examined the effects of the novel K(ATP) -channel opener, the fluorine-containing pinacidil derivative, flocalin, on cardiac-specific K(ATP) -channels, excitability of native cardiac myocytes and on the ischaemic heart. The action of flocalin was investigated on: (i) membrane currents through cardiac-specific K(ATP) -channels (I(KATP) ) formed by K(IR) 6.2/SUR2A heterologously expressed in HEK-293 cells (HEK-293(₆.₂/₂A) ); (ii) excitability and intracellular Ca²(+) ([Ca²(+) ](i) ) transients of cultured rat neonatal cardiac myocytes; and (iii) functional and ultrastructural characteristics of isolated guinea-pig hearts subjected to ischaemia-reperfusion. Flocalin concentration-dependently activated a glibenclamide-sensitive I(KATP) in HEK-293(₆.₂/₂A) cells with an EC₅₀= 8.1 ± 0.4 µM. In cardiac myocytes, flocalin (5 µM) hyperpolarized resting potential by 3-5 mV, markedly shortened action potential duration, reduced the amplitude of [Ca²(+) ](i) transients by 2-3-fold and suppressed contraction. The magnitude and extent of reversibility of these effects depended on the type of cardiac myocytes. In isolated hearts, perfusion with 5 µmol·L⁻¹ flocalin, before inducing ischaemia, facilitated restoration of contraction during reperfusion, decreased the number of extrasystoles, prevented the appearance of coronary vasoconstriction and reduced damage to the cardiac tissue at the ultrastructural level (state of myofibrils, membrane integrity, mitochondrial cristae structure). Flocalin induced potent cardioprotection by activating cardiac-type K(ATP) -channels with all the benefits of the presence of fluorine group in the drug structure: higher lipophilicity, decreased toxicity, resistance to oxidation and thermal degradation, decreased metabolism in the organism and prolonged therapeutic action. © 2011 The Authors. British Journal of Pharmacology © 2011 The

  9. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Motoyuki; Gouaux, Eric

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less

  10. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase

    PubMed Central

    Shyng, S.-L.; Barbieri, A.; Gumusboga, A.; Cukras, C.; Pike, L.; Davis, J. N.; Stahl, P. D.; Nichols, C. G.

    2000-01-01

    ATP-sensitive potassium channels (KATP channels) regulate cell excitability in response to metabolic changes. KATP channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K+ channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), activate KATP channels and antagonize ATP inhibition of KATP channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP2 levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed KATP channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K1/2, the half maximal inhibitory concentration, ≈ 60 μM) than the sensitivities from control cells (K1/2 ≈ 10 μM). An inactive form of the PIP5K had little effect on the K1/2 of wild-type channels but increased the ATP-sensitivity of a mutant KATP channel that has an intrinsically lower ATP sensitivity (from K1/2 ≈ 450 μM to K1/2 ≈ 100 μM), suggesting a decrease in membrane PIP2 levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP2 and PI-3,4,5-P3 levels, is a significant determinant of the physiological nucleotide sensitivity of KATP channels. PMID:10639183

  11. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.

    PubMed

    Lázaro-Ibáñez, G G; Torres-López, J E; Granados-Soto, V

    2001-08-24

    The involvement of nitric oxide (NO), cyclic GMP and ATP-sensitive K(+) channels in the antinociceptive effect of ketorolac was assessed using the formalin test in the rat. Local administration of ketorolac in a formalin-injured paw produced a dose-dependent antinociceptive effect due to a local action, as drug administration in the contralateral paw was ineffective. Pretreatment of the injured paw with N(G)-L-nitro-arginine methyl ester (L-NAME, an NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) or glibenclamide (an ATP-sensitive K(+) channel blocker) prevented ketorolac-induced antinociception. However, pretreatment with saline or N(G)-D-nitro-arginine methyl ester (D-NAME) did not block antinociception. Local administration of S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) was inactive by itself, but increased the effect of ketorolac. The present results suggest that the antinociceptive effect of ketorolac involves activation of the NO-cyclic GMP pathway, followed by an opening of ATP-sensitive K(+) channels at the peripheral level.

  12. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    PubMed

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  13. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels.

    PubMed

    Chachin, Motohiko; Yamada, Mitsuhiko; Fujita, Akikazu; Matsuoka, Tetsuro; Matsushita, Kenji; Kurachi, Yoshihisa

    2003-03-01

    A novel antidiabetic agent, nateglinide, is a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety. We examined with the patch-clamp method the effect of nateglinide on recombinant ATP-sensitive K(+) (K(ATP)) channels expressed in human embryonic kidney 293T cells transfected with a Kir6.2 subunit and either of a sulfonylurea receptor (SUR) 1, SUR2A, and SUR2B. In inside-out patches, nateglinide reversibly inhibited the spontaneous openings of all three types of SUR/Kir6.2 channels. Nateglinide inhibited SUR1/Kir6.2 channels with high and low affinities (K(i) = 75 nM and 114 microM) but SUR2A/Kir6.2 and SUR2B/Kir6.2 channels only with low affinity (K(i) = 105 and 111 microM, respectively). Nateglinide inhibited the K(ATP) current mediated by Kir6.2 lacking C-terminal 26 amino acids only with low affinity (K(i) = 290 microM) in the absence of SUR. Replacement of serine at position 1237 of SUR1 to tyrosine [SUR1(S1237Y)] specifically abolished the high-affinity inhibition of SUR1/Kir6.2 channels by nateglinide. MgADP or MgUDP (100 microM) augmented the inhibitory effect of nateglinide on SUR1/Kir6.2 but not SUR1(S1237Y)/Kir6.2 or SUR2A/Kir6.2 channels. This augmenting effect of MgADP was also observed with the SUR1/Kir6.2(K185Q) channel, which was not inhibited by MgADP, but not with the SUR1(K1384A)/Kir6.2 channel, which was not activated by MgADP. These results indicate that therapeutic concentrations of nateglinide (approximately 10 microM) may selectively inhibit pancreatic type SUR1/Kir6.2 channels through SUR1, especially when the channel is activated by intracellular MgADP, even though the agent does not contain either a sulfonylurea or benzamido moiety.

  14. Effect of activators and inhibitors of K+ channels on insulin secretion in the amphibian pancreas.

    PubMed

    Francini, F; Pirotte, B; Gagliardino, J J

    1997-02-01

    The aim of this study was to obtain pharmacological evidence for the presence and participation of K+ channels in amphibian pancreatic islets. Pancreases from the toad Bufo arenarum were thus incubated with activators or blockers of K+ channels and the immunoreactive insulin released into the medium was measured by radioimmunoassay. Two K(+)-ATP channel openers (diazoxide and BPDZ44) inhibited; while a K(+)-ATP channel blocker (tolbutamide) and metabolizable sugars (glucose, glyceraldehyde) significantly stimulated the output of insulin. Although a nonmetabolizable sugar (galactose) failed to increase insulin release, dinitrophenol decreased the secretagogue effect of glucose. By contrast, although somatostatin and clonidine blocked the release of insulin, tetraethylammonium significantly stimulated secretion. For each compound tested, the effects on both insulin secretion and B-cell K+ channel activity were similar to those observed in the mammalian pancreas. These findings point to the existence of mammalian-like K+ channels in the B-cells of some amphibians.

  15. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    PubMed

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation

    PubMed Central

    Fan, Zheng; Neff, Robert A

    2000-01-01

    Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2ΔC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage. PMID:11118500

  17. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current.

    PubMed

    Ferrero, J M; Sáiz, J; Ferrero, J M; Thakor, N V

    1996-08-01

    The role of the ATP-sensitive K+ current (IK-ATP) and its contribution to electrophysiological changes that occur during metabolic impairment in cardiac ventricular myocytes is still being discussed. The aim of this work was to quantitatively study this issue by using computer modeling. A model of IK-ATP is formulated and incorporated into the Luo-Rudy ionic model of the ventricular action potential. Action potentials under different degrees of activation of IK-ATP are simulated. Our results show that in normal ionic concentrations, only approximately 0.6% of the KATP channels, when open, should account for a 50% reduction in action potential duration. However, increased levels of intracellular Mg2+ counteract this shortening. Under conditions of high [K+]0, such as those found in early ischemia, the activation of only approximately 0.4% of the KATP channels could account for a 50% reduction in action potential duration. Thus, our results suggest that opening of IK-ATP channels should play a significant role in action potential shortening during hypoxic/ischemic episodes, with the fraction of open channels involved being very low ( < 1%). However, the results of the model suggest that activation of IK-ATP alone does not quantitatively account for the observed K+ efflux in metabolically impaired cardiac myocytes. Mechanisms other than KATP channel activation should be responsible for a significant part of the K+ efflux measured in hypoxic/ischemic situations.

  18. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.

    PubMed Central

    Jovanovic, A.; Terzic, A.

    1996-01-01

    Diadenosine 5',5''-P1,P4-tetraphosphate (Ap4A) has been termed 'alarmone' due to its role in intracellular signaling during metabolic stress. It is not known whether Ap4A could modulate ATP-sensitive K+ (KATP) channels, a family of channels regulated by the metabolic status of a cell. We applied the single-channel patch-clamp technique to measure the effect of Ap4A on KATP channels. When applied to the intracellular side of patches, excised from guinea-pig ventricular myocytes, Ap4A inhibited KATP channel activity, in a reversible and concentration-dependent (half-maximal concentration approximately 17 microM) manner. We conclude that Ap4A, a naturally occurring diadenosine polyphosphate, is actually an inhibitor of the myocardial KATP channel. PMID:8789372

  19. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain.

    PubMed

    Thomzig, Achim; Laube, Gregor; Prüss, Harald; Veh, Rüdiger W

    2005-04-11

    K-ATP channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2, SUR2A, SUR2B) with regulatory activity. The functional diversity of K-ATP channels in brain is broad and of fundamental importance for neuronal activity. Here, using immunocytochemistry with monospecific antibodies against the Kir6.1 and Kir6.2 subunits, we analyze the regional and cellular distribution of both proteins in the adult rat brain. We find Kir6.2 to be widely expressed in all brain regions, suggesting that the Kir6.2 subunit forms the pore of the K-ATP channels in most neurons, presumably protecting the cells during cellular stress conditions such as hypoglycemia or ischemia. Especially in hypothalamic nuclei, in particular the ventromedial and arcuate nucleus, neurons display Kir6.2 immunoreactivity only, suggesting that Kir6.2 is the pore-forming subunit of the K-ATP channels in the glucose-responsive neurons of the hypothalamus. In contrast, Kir6.1-like immunolabeling is restricted to astrocytes (Thomzig et al. [2001] Mol Cell Neurosci 18:671-690) in most areas of the rat brain and very weak or absent in neurons. Only in distinct nuclei or neuronal subpopulations is a moderate or even strong Kir6.1 staining detected. The biological functions of these K-ATP channels still need to be elucidated. Copyright 2005 Wiley-Liss, Inc.

  20. Creatine kinase is physically associated with the cardiac ATP-sensitive k+ channel in vivo

    PubMed Central

    Crawford, Russell M.; Ranki, Harri J.; Botting, Catherine H.; Budas, Grant R.; Jovanovic, Aleksandar

    2007-01-01

    Cardiac sarcolemmal ATP-sensitive K+ (KATP) channels, composed of Kir6.2 and SUR2A subunits, couple the metabolic status of cells with the membrane excitability. Based on previous functional studies, we have hypothesized that creatine kinase (CK) may be a part of the sarcolemmal KATP channel protein complex. The inside-out and whole cell patch clamp electrophysiology applied on guinea pig cardiomyocytes showed that substrates of CK regulate KATP channels activity. Following immunoprecipitation of guinea-pig cardiac membrane fraction with the anti-SUR2 antibody, Coomassie blue staining revealed, besides Kir6.2 and SUR2A, a polypeptide at ∼48 kDa. Western blotting analysis confirmed the nature of putative Kir6.2 and SUR2A, whereas matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis identified p48 kDa as a muscle form of CK. In addition, the CK activity was found in the anti-SUR2A immunoprecipitate and the cross reactivity between an anti-CK antibody and the anti-SUR2A immunoprecipitate was observed as well as vice verse. Further results obtained at the level of recombinant channel subunits demonstrated that CK is directly physically associated with the SUR2A, but not the Kir6.2, subunit. All together, these results suggest that the CK is associated with SUR2A subunit in vivo, which is an integral part of the sarcolemmal KATP channel protein complex. PMID:11729098

  1. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    PubMed

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  2. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.

    PubMed

    Miki, Takashi; Minami, Kohtaro; Zhang, Li; Morita, Mizuo; Gonoi, Tohru; Shiuchi, Tetsuya; Minokoshi, Yasuhiko; Renaud, Jean-Marc; Seino, Susumu

    2002-12-01

    ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no K(ATP) channel activity in their skeletal muscles. A 2-deoxy-[(3)H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(-/-) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(-/-) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(-/-) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(-/-) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(-/-) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the K(ATP) channels.

  3. Biophysical Properties of ATP-sensitive Potassium Channels in CA3 Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Obregón-Herrera, Armando; Márquez-Gamiño, Sergio; Onetti, Carlos G.

    2004-09-01

    Single-channel activity of glucose-sensitive channels from CA3 neurons of the rat hippocampus, was studied in cell-attached membrane patches. Single-channel activity was totally abolished at 20 mM external glucose. Glucose-sensitive channels were selective to K+ ions; the unitary conductance was 170 pS in 140 mM K+, and the K+ permeability was 3.86×10-13 cmṡs-1. The open-state probability (PO) increased with membrane depolarization as a result of mean open time enhancement and shortening of the closure periods. The activation midpoint was -79 mV. Glucose-sensitive K+ channel of CA3 neurons could be considered as an ATP-sensitive potassium channel.

  4. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  5. Nandrolone decanoate negatively reverses the beneficial effects of exercise on cardiac muscle via sarcolemmal, but not mitochondrial K(ATP) channel.

    PubMed

    Bayat, Gholamreza; Javan, Mohammad; Safari, Fatemeh; Khalili, Azadeh; Shokri, Saeed; Goudarzvand, Mahdi; Salimi, Mehdi; Hajizadeh, Sohrab

    2016-03-01

    ATP-sensitive potassium channels are supposed to have a substantial role in improvement of cardiac performance. This study was performed to evaluate whether nandrolone decanoate (ND) and (or) exercise training could affect the expression of cardiac K(ATP) channel subunits. Thirty-five male albino Wistar rats were randomly divided into 5 groups, including sedentary control (SC), sedentary vehicle (SV), sedentary ND (SND), exercise control (EC), and exercise and ND (E+ND). Exercise training was performed on a treadmill 5 times per week. ND was injected (10 mg/kg/week, i.m.) to the rats in the SND and E+ND groups. Following cardiac isolation, the expression of both sarcolemmal and mitochondrial subunits of K(ATP) channel was measured using Western blot method. The expression of sarcolemmal, but not mitochondrial, subunits of K(ATP) channel (Kir6.2 and SUR2) of EC group was significantly higher compared with SC group while ND administration (SND group) did not show any change in their expression. In the E+ND group, ND administration led to decrease of the over-expression of sarcolemmal Kir6.2 and SUR2 which was previously induced by exercise. There was no significant association between the mitochondrial expression of either Kir6.2 or SUR2 proteins and administration of ND or exercise. Supra-physiological dosage of ND negatively reverses the effects of exercise on the cardiac muscle expression of sarcolemmal, but not mitochondrial, K(ATP) channel subunits.

  6. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  7. Noradrenaline activates the NO/cGMP/ATP-sensitive K(+) channels pathway to induce peripheral antinociception in rats.

    PubMed

    Romero, Thiago R L; Guzzo, Luciana S; Perez, Andrea C; Klein, André; Duarte, Igor D G

    2012-03-31

    Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.

    PubMed

    Coetzee, W A

    1992-11-01

    The aim was to describe the effects of extracellular application of monocarboxylates (pyruvate, lactate, or acetate) on current through KATP channels (iK,ATP) in isolated guinea pig ventricular myocytes. The iK,ATP was elicited during whole cell voltage clamping by application of metabolic poisons, 2,4-dinitrophenol (150 microM) or glucose free cyanide (1 mM) and could be blocked by glibenclamide (3 microM). Extracellular application of monocarboxylates, pyruvate (0.1-10 mM), L-lactate (0.1-10 mM), and acetate (10 mM) led to a rapid inhibition of iK,ATP--an effect which was fully reversible upon washout. Substances without any effect on iK,ATP were (10 mM each) gluconate, citrate, glutamate, creatine, succinate, and glycine. The mechanism underlying the effects of monocarboxylates on iK,ATP was unlikely to be related to an increased ATP production, since D-lactate (10 mM) essentially had the same effect on iK,ATP as the L-isomer of lactate. Furthermore, with intracellular dialysis of alpha-cyano-4-hydroxycinnamate (0.1-0.5 mM), which inhibits pyruvate uptake into mitochondria, extracellular pyruvate exerted the same inhibitory effect on iK,ATP. High concentrations of extracellular alpha-cyano-4-hydroxycinnamate (4 mM), which blocks the sarcolemmal monocarboxylate carrier, prevented the effects on iK,ATP by pyruvate, L-lactate, D-lactate, and acetate. Furthermore, intracellular dialysis with D-lactate (10 mM) led to a more rapid onset of iK,ATP when activated by ATP free dialysis. Activity of isolated KATP channels, measured in isolated membrane patches in the inside out or outside out configuration, typically had a single channel conductance of around 80 pS and was blocked by glibenclamide (3-9 microM). No significant effect of pyruvate was observed in either patch configuration. In cardiac tissue there may be some modulatory role involving monocarboxylate transport on KATP channel activity, the nature of which is unclear at present but which may involve cytosolic

  9. LPS from Escherichia coli protects against indomethacin-induced gastropathy in rats--role of ATP-sensitive potassium channels.

    PubMed

    Gomes, Antoniella S; Lima, Lívia M F; Santos, Camila L; Cunha, Fernando Q; Ribeiro, Ronaldo A; Souza, Marcellus H L P

    2006-10-10

    The effect of lipopolysaccharide (LPS) in gastric protection has not been elucidated, but ATP-sensitive potassium (K(ATP)) channels are known to be involved in gastric defense. We evaluated the effect of LPS administration on indomethacin-induced gastropathy, and the role of K(ATP) channels in this event. Rats received intravenous (i.v.) LPS administration. After 1/2, 6, 24 or 48 h, indomethacin was injected. 3H later, gastric damage and myeloperoxidase activity were determined. Another group received LPS and 5 h later, glibenclamide, diazoxide or glibenclamide plus diazoxide. After 1 h, the rats received indomethacin and 3 h later, gastric damage and myeloperoxidase activity were evaluated. LPS reduced dose dependently gastric damage and myeloperoxidase activity induced by indomethacin. Glibenclamide reversed this LPS effect on indomethacin-induced gastropathy. Glibenclamide plus diazoxide administration did not change this LPS effect. Thus LPS has a protective effect against indomethacin-induced gastropathy, probably through activation of K(ATP) channels.

  10. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu; Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu; Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology tomore » atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal

  11. Identification of critical amino acids in the proximal C-terminal of TREK-2 K+ channel for activation by acidic pHi and ATP-dependent inhibition.

    PubMed

    Woo, Joohan; Jun, Young Keul; Zhang, Yin-Hua; Nam, Joo Hyun; Shin, Dong Hoon; Kim, Sung Joon

    2018-02-01

    TWIK-related two-pore domain K + channels (TREKs) are regulated by intracellular pH (pH i ) and Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ). Previously, Glu 306 in proximal C-terminal (pCt) of mouse TREK-1 was identified as the pH i -sensing residue. The direction of PI(4,5)P 2 sensitivity is controversial, and we have recently shown that TREKs are inhibited by intracellular ATP via endogenous PI(4,5)P 2 formation. Here we investigate the anionic and cationic residues of pCt for the pH i and ATP-sensitivity in human TREK-2 (hTREK-2). In inside-out patch clamp recordings (I TREK-2,i-o ), acidic pH i -induced activation was absent in E332A and was partly attenuated in E335A. Neutralization of cationic Lys (K330A) also eliminated the acidic pH i sensitivity of I TREK-2,i-o . Unlike the inhibition of wild-type (WT) I TREK-2,i-o by intracellular ATP, neither E332A nor K330A was sensitive to ATP. Nevertheless, exogenous PI(4,5)P 2 (10 μM) abolished I TREK-2 i-o in all the above mutants as well as in WT, indicating unspecific inhibition by exogenous PI(4,5)P 2 . In whole-cell recordings of TREK-2 (I TREK-2,w-c ), K330A and E332A showed higher or fully active basal activity, showing attenuated or insignificant activation by 2-APB, arachidonic acid, or acidic pH e 6.9. I TREK-1,w-c of WT is largely suppressed by pH e 6.9, and the inhibition is slightly attenuated in K312A and E315A. The results show concerted roles of the oppositely charged Lys and Glu in pCt for the ATP-dependent low basal activity and pH i sensitivity.

  12. ATP-sensitive K+ current and its modulation by substance P in gastric myocytes isolated from guinea pig.

    PubMed

    Jun, J Y; Yeum, C H; Yoon, P J; Chang, I Y; Kim, S J; Kim, K W

    1998-09-25

    To investigate whether ATP-sensitive K+ channels exist in gastric smooth muscle of the guinea pig and whether they are modulated by substance P, we recorded lemakalim-activated K+ currents from freshly isolated cells using the standard whole-cell configuration. With 0.1 mM ATP and 140 mM K+ in the pipette and 90 mM K+ in the bath solution and a holding potential of -80 mV, lemakalim (10 microM) activated a glibenclamide-sensitive inward current with a mean amplitude of -224+/-34 pA. These currents were voltage-independent from -90 to 0 mV and K+-selective. Increasing the intracellular ATP concentrations from 0.1 to 3 mM reduced the lemakalim-activated currents by about five-fold. External barium and cesium inhibited the lemakalim-activated currents in a dose-dependent manner. External tetraethylammonium (10 mM) inhibited the lemakalim-activated currents by 66+/-15%. Bath application of substance P (5 microM) inhibited the lemakalim-activated currents by 53+/-13% and this inhibition was absent when 0.5 mM guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) was in the pipette. Phorbol 12,13-dibutyrate (PDB) inhibited the lemakalim-activated currents by 71+/-3%. Chelerythrine (1 microM) reduced the substance P-induced inhibition of lemakalim-activated currents by 22.2+/-11.3%. These results suggest the presence of ATP-sensitive K+ channels in gastric smooth muscle and that substance P inhibits ATP-sensitive K+ channels via G-protein through protein kinase C activation.

  13. Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release.

    PubMed

    Sabirov, R Z; Dutta, A K; Okada, Y

    2001-09-01

    In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+. In on-cell patches, single-channel events appeared with a lag period of approximately 15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at -20 to 0 mV. The channel in inside-out patches had the unitary conductance of approximately 400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC(50) of 12.3 mM and an electric distance (delta) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC(50) of 12.9 mM and delta of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with P(ATP)/P(Cl) of 0.09. The single-channel activity was sensitive to Gd(3)+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.

  14. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  15. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.

    PubMed

    Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling

    2016-10-14

    ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel.

    PubMed

    Aziz, Qadeer; Thomas, Alison; Khambra, Tapsi; Tinker, Andrew

    2010-05-25

    The biguanides, phenformin and metformin, are used in the treatment of type II diabetes mellitus, as well as being routinely used in studies investigating AMPK activity. We used the patch-clamp technique and rubidium flux assays to determine the role of these drugs in ATP-sensitive K+ channel (K(ATP)) regulation in cell lines expressing the cloned components of K(ATP) and the current natively expressed in vascular smooth muscle cells (VSMCs). Phenformin but not metformin inhibits a number of variants of K(ATP) including the cloned equivalents of currents present in vascular and non-vascular smooth muscle (Kir6.1/SUR2B and Kir6.2/SUR2B) and pancreatic beta-cells (Kir6.2/SUR1). However it does not inhibit the current potentially present in cardiac myocytes (Kir6.2/SUR2A). The highest affinity interaction is seen with Kir6.1/SUR2B (IC50=0.55 mM) and it also inhibits the current in native vascular smooth muscle cells. The extent and rate of inhibition are similar to that seen with the known K(ATP) blocker PNU 37883A. Additionally, phenformin inhibited the current elicited through the Kir6.2DeltaC26 (functional without SUR) channel with an IC50 of 1.78 mM. Phenformin reduced the open probability of Kir6.1/SUR2B channels by approximately 90% in inside-out patches. These findings suggest that phenformin interacts directly with the pore-forming Kir6.0 subunit however the sulphonylurea receptor is able to significantly modulate the affinity. It is likely to block from the intracellular side of the channel in a manner analogous to that of PNU 37883A. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  18. Modulation of Excitability of Stellate Neurons in the Ventral Cochlear Nucleus of Mice by ATP-Sensitive Potassium Channels.

    PubMed

    Bal, Ramazan; Ozturk, Gurkan; Etem, Ebru Onalan; Him, Aydin; Cengiz, Nurattin; Kuloglu, Tuncay; Tuzcu, Mehmet; Yildirim, Caner; Tektemur, Ahmet

    2018-02-01

    Major voltage-activated ionic channels of stellate cells in the ventral part of cochlear nucleus (CN) were largely characterized previously. However, it is not known if these cells are equipped with other ion channels apart from the voltage-sensitive ones. In the current study, it was aimed to study subunit composition and function of ATP-sensitive potassium channels (K ATP ) in stellate cells of the ventral cochlear nucleus. Subunits of K ATP channels, Kir6.1, Kir6.2, SUR1, and SUR2, were expressed at the mRNA level and at the protein level in the mouse VCN tissue. The specific and clearly visible bands for all subunits but that for Kir6.1 were seen in Western blot. Using immunohistochemical staining technique, stellate cells were strongly labeled with SUR1 and Kir6.2 antibodies and moderately labeled with SUR2 antibody, whereas the labeling signals for Kir6.1 were too weak. In patch clamp recordings, K ATP agonists including cromakalim (50 µM), diazoxide (0.2 mM), 3-Amino-1,2,4-triazole (ATZ) (1 mM), 2,2-Dithiobis (5-nitro pyridine) (DTNP) (330 µM), 6-Chloro-3-isopropylamino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC 55-0118) (1 µM), 6-chloro-3-(methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NN414) (1 µM), and H 2 O 2 (0.88 mM) induced marked responses in stellate cells, characterized by membrane hyperpolarization which were blocked by K ATP antagonists. Blockers of K ATP channels, glibenclamide (0.2 mM), tolbutamide (0.1 mM) as well as 5-hydroxydecanoic acid (1 mM), and catalase (500 IU/ml) caused depolarization of stellate cells, increasing spontaneous action potential firing. In conclusion, K ATP channels seemed to be composed dominantly of Kir 6.2 subunit and SUR1 and SUR2 and activation or inhibition of K ATP channels regulates firing properties of stellate cells by means of influencing resting membrane potential and input resistance.

  19. [K+ channels and lung epithelial physiology].

    PubMed

    Bardou, Olivier; Trinh, Nguyen Thu Ngan; Brochiero, Emmanuelle

    2009-04-01

    Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.

  20. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery.

    PubMed Central

    Zhang, H; Bolton, T B

    1995-01-01

    1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke

  1. A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.

    PubMed

    Spauschus, A; Lentes, K U; Wischmeyer, E; Dissmann, E; Karschin, C; Karschin, A

    1996-02-01

    Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.

  2. Localization and function of ATP-sensitive potassium channels in human skeletal muscle.

    PubMed

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva; Bangsbo, Jens; Juel, Carsten

    2003-02-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel inhibitor glibenclamide reduced (P < 0.05) interstitial K+ at rest from approximately 4.5 to 4.0 mM, whereas the concentration in the control leg remained constant. Glibenclamide had no effect on the interstitial K+ accumulation during knee-extensor exercise at a power output of 60 W. In contrast to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+.

  3. Diadenosine tetraphosphate stimulates atrial ANP release via A(1) receptor: involvement of K(ATP) channel and PKC.

    PubMed

    Yuan, Kuichang; Cao, Chunhua; Bai, Guang Yi; Kim, Sung Zoo; Kim, Suhn Hee

    2007-07-01

    Diadenosine polyphosphates (APnAs) are endogenous compounds and exert diverse cardiovascular functions. However, the effects of APnAs on atrial ANP release and contractility have not been studied. In this study, the effects of diadenosine tetraphosphate (AP4A) on atrial ANP release and contractility, and their mechanisms were studied using isolated perfused rat atria. Treatment of atria with AP4A resulted in decreases in atrial contractility and extracellular fluid (ECF) translocation whereas ANP secretion and cAMP levels in perfusate were increased in a dose-dependent manner. These effects of AP4A were attenuated by A(1) receptor antagonist but not by A(2A) or A(3) receptor antagonist. Other purinoceptor antagonists also did not show any effects on AP4A-induced ANF release and contractility. The increment of ANP release and negative inotropy induced by AP4A was similar to those induced by AP3A, AP5A, and AP6A. Protein kinase A inhibitors accentuated AP4A-induced ANP secretion. In contrast, an inhibitor of phospholipase C, protein kinase C or sarcolemma K(ATP) channel completely blocked AP4A-induced ANP secretion. However, an inhibitor of adenylyl cyclase or mitochondria K(ATP) channel had no significant modification of AP4A effects. These results suggest that AP4A regulates atrial inotropy and ANP release mainly through A(1) receptor signaling involving phospholipase C-protein kinase C and sarcolemmal K(ATP) channel and that protein kinase A negatively modulates the effects of AP4A.

  4. Regulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells.

    PubMed

    Leroy, Claudie; Privé, Anik; Bourret, Jean-Charles; Berthiaume, Yves; Ferraro, Pasquale; Brochiero, Emmanuelle

    2006-12-01

    In a recent study (Leroy C, Dagenais A, Berthiaume Y, and Brochiero E. Am J Physiol Lung Cell Mol Physiol 286: L1027-L1037, 2004), we identified an ATP-sensitive K(+) (K(ATP)) channel in alveolar epithelial cells, formed by inwardly rectifying K(+) channel Kir6.1/sulfonylurea receptor (SUR)2B subunits. We found that short applications of K(ATP), voltage-dependent K(+) channel KvLQT1, and calcium-activated K(+) (K(Ca)) channel modulators modified Na(+) and Cl(-) currents in alveolar monolayers. In addition, it was shown previously that a K(ATP) opener increased alveolar liquid clearance in human lungs by a mechanism possibly related to epithelial sodium channels (ENaC). We therefore hypothesized that prolonged treatment with K(+) channel modulators could induce a sustained regulation of ENaC activity and/or expression. Alveolar monolayers were treated for 24 h with inhibitors of K(ATP), KvLQT1, and K(Ca) channels identified by PCR. Glibenclamide and clofilium (K(ATP) and KvLQT1 inhibitors) strongly reduced basal transepithelial current, amiloride-sensitive Na(+) current, and forskolin-activated Cl(-) currents, whereas pinacidil, a K(ATP) activator, increased them. Interestingly, K(+) inhibitors or membrane depolarization (induced by valinomycin in high-K(+) medium) decreased alpha-, beta-, and gamma-ENaC and CFTR mRNA. alpha-ENaC and CFTR proteins also declined after glibenclamide or clofilium treatment. Conversely, pinacidil augmented ENaC and CFTR mRNAs and proteins. Since alveolar fluid transport was found to be driven, at least in part, by Na(+) transport through ENaC, we tested the impact of K(+) channel modulators on fluid absorption across alveolar monolayers. We found that glibenclamide and clofilium reduced fluid absorption to a level similar to that seen in the presence of amiloride, whereas pinacidil slightly enhanced it. Long-term regulation of ENaC and CFTR expression by K(+) channel activity could benefit patients with pulmonary diseases affecting ion

  5. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil.

    PubMed

    Shorter, Katie; Farjo, Nilofer P; Picksley, Steven M; Randall, Valerie A

    2008-06-01

    Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.

  6. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test.

    PubMed

    Nazari, Seyedeh Khadijeh; Nikoui, Vahid; Ostadhadi, Sattar; Chegini, Zahra Hadi; Oryan, Shahrbanoo; Bakhtiarian, Azam

    2016-12-01

    Previous study confirmed that the acute treatment with baclofen by inhibition of the l-arginine-nitric oxide (NO) pathway diminished the immobility behavior in the forced swimming test (FST) of mice. Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of baclofen in the forced swimming test (FST). After assessment of locomotor behavior in the open-field test (OFT), FST was applied for evaluation of the antidepressant-like activity of baclofen in mice. Baclofen at different doses (0.1, 0.3, and 1mg/kg) and fluoxetine (20mg/kg) were administrated by intraperitoneal (ip) route, 30min before the FST or OFT. To clarify the probable involvement of K ATP channels, after determination of sub-effective doses of glibenclamide as a K ATP channel blocker and cromakalim, as an opener of these channels, they were co-administrated with the sub-effective and effective doses of baclofen, respectively. Baclofen at dose 1mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20mg/kg). Co-administration of gelibenclamide sub-effective dose (1mg/kg) with baclofen (0.1mg/kg) showed a synergistic antidepressant-like effect in the FST. Also, sub-effective dose of cromakalim (0.1mg/kg) inhibited the antidepressant-like effect of baclofen (1mg/kg) in the FST. All aforementioned treatments had not any impact on the locomotor movement of mice in OFT. Our study for the first time revealed that antidepressant-like effect of baclofen on mice is K ATP -dependent, and baclofen seems that exert this effect by blocking the K ATP channels. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of K ATP channels, mice were pretreated with K ATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of K ATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of K ATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the K ATP channels.

  8. Relative similarity within purine nucleotide and ligand structures operating on nitric oxide synthetase, guanylyl cyclase and potassium (K ATP, BK Ca) channels.

    PubMed

    Williams, W Robert

    2011-01-01

    Purine nucleotides play a central role in signal transduction events initiated at the cell membrane. The NO-cGMP-cGK pathway, in particular, mediates events involving NOS and some classes of K(+) ion channel. The aim of this study is to investigate relative molecular similarity within the ligands binding to NOS, K(ATP), BK(Ca) channels and regulatory nucleotides. Minimum energy conformers of the ligand structures were superimposed and fitted to L-arginine and the nucleotides of adenine and guanine using a computational program. Distinctive patterns were evident in the fitting of NOS isoform antagonists to L-arginine. K(ATP) channel openers and antagonists superimposed on the glycosidic linkage and imidazole ring of the purine nucleotides, and guanidinium and ribose groups of GTP in the case of glibenclamide. The fits of BK(Ca) channel openers and antagonists to cGMP were characterized by the linear dimensions of their structures; distances between terminal oxy groups in respect of dexamethasone and aldosterone. The findings provide structural evidence for the functional interaction between K(+) channel openers/antagonists and the regulatory nucleotides. Use of the purine nucleotide template systematizes the considerable heterogeneity evident within the structures of ligands operating on K(+) ion channels. © 2010 The Author. JPP © 2010 Royal Pharmaceutical Society.

  9. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts.

    PubMed

    Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi

    2003-09-25

    Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.

  10. Cardioprotective effects of BMS-180448, a prototype mitoK(ATP) channel opener, and the role of salvage kinases, in the rat model of global ischemia and reperfusion heart injury.

    PubMed

    Lee, Ju-Han; Jung, In-Sang; Lee, Sung-Hun; Yang, Min-Kyu; Hwang, Ji-Hye; Lee, Hak-Dong; Cho, Yu-Sun; Song, Min-Jin; Yi, Kyu-Yang; Yoo, Sung-Eun; Kwon, Suk-Hyung; Kim, Bokyung; Lee, Chang-Soo; Shin, Hwa-Sup

    2007-05-01

    To investigate the involvement of reperfusion-induced salvage kinases (RISK) as possible signaling molecules for the cardioprotective effects of BMS-180448, a prototype mitochondrial ATP-sensitive K+ (mitoK(ATP)) channel opener, we measured its cardioprotective effects in a rat model of ischemia/reperfusion (I/R) heart injury, together with western blotting analysis of five different signaling proteins. In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, BMS-180448 (1, 3 and 10 microM) significantly increased reperfusion left ventricular developed pressure (LVDP) and 30-min reperfusion double product (heart rate x LVDP) in a concentration-dependent manner, while decreasing left ventricular end-diastolic pressure (LVEDP) throughout reperfusion period in a concentration-dependent manner. SDS-PAGE/western blotting analysis of left ventricle reperfused for 30 min revealed that BMS-180448 significantly decreased phospho-GSK3beta at high concentration, whereas it tended to increase slightly phospho-eNOS and phospho-p70S6K with concentration. However, BMS-180448 had no effect on phospho-Akt and phospho-Bad. These results suggest that the cardioprotective effects of BMS-180448 against I/R heart injury may result from direct activation of mitoK(ATP) channel in cardiomyocytes, with the minimal role of RISK pathway in the activation of this channel and the cardioprotective effects of BMS-180448.

  11. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.

    PubMed Central

    Sugita, M; Yue, Y; Foskett, J K

    1998-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR. PMID:9463368

  12. Inhibitors of ATP-sensitive potassium channels in guinea pig isolated ischemic hearts.

    PubMed

    Weyermann, A; Vollert, H; Busch, A E; Bleich, M; Gögelein, H

    2004-04-01

    During heart ischemia, ATP-sensitive potassium channels in the sarcolemmal membrane (sarcK(ATP)) open and cause shortening of the action potential duration. This creates heterogeneity of repolarization, being responsible for the development of re-entry arrhythmias and sudden cardiac death. Therefore, the aim is to develop selective blockers of the cardiac sarcK(ATP) channel. In the present study we established an in vitro model and classified 5 K(ATP) channel inhibitors with respect to their potency and selectivity between cardiomyocytes and the coronary vasculature and compared the results with inhibition of Kir6.2/SUR2A channels expressed in HEK293 cells, recorded with the Rb(+)-efflux methods. We used Langendorff-perfused guinea pig hearts, where low-flow ischemia plus hypoxia was performed by reducing the coronary flow (CF) to 1.2 ml/min and by gassing the perfusion solution with N(2) instead of O(2). Throughout the experiment, the monophasic action potential duration at 90% repolarization (MAPD(90)) was recorded. In separate experiments, high-flow hypoxia was produced by oxygen reduction in the perfusate from 95% to 20%, which caused an increase in the coronary flow. Under normoxic conditions, the substances glibenclamide, repaglinide, meglitinide, HMR 1402 and HMR 1098 (1 microM each) reduced the CF by 34%, 38%, 19%, 12% and 5%, respectively. The hypoxia-induced increase in CF was inhibited by the compounds half-maximally at 25 nM, approximately 200 nM, 600 nM, approximately 9 microM and >100 microM, respectively. In control experiments after 5 min low-flow ischemia plus hypoxia, the MAPD(90) shortened from 121+/-2 to 99+/-2 ms ( n=29). This shortening was half-maximally inhibited by the substances at concentrations of 95 nM, 74 nM, 400 nM, 110 nM and 550 nM, respectively. In HEK293 cells the Rb(+)-efflux through KIR6.2/SUR2A channels was inhibited by the compounds with IC(50) values of 21 nM, 67 nM, 205 nM, 60 nM and 181 nM, respectively. In summary, the

  13. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.

    PubMed

    Li, Mufeng; Silberberg, Shai D; Swartz, Kenton J

    2013-09-03

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.

  14. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  15. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    PubMed

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  16. Remodeling of atrial ATP-sensitive K+ channels in a model of salt-induced elevated blood pressure

    PubMed Central

    Lader, Joshua M.; Vasquez, Carolina; Bao, Li; Maass, Karen; Qu, Jiaxiang; Kefalogianni, Eirini; Fishman, Glenn I.; Coetzee, William A.

    2011-01-01

    Hypertension is associated with the development of atrial fibrillation; however, the electrophysiological consequences of this condition remain poorly understood. ATP-sensitive K+ (KATP) channels, which contribute to ventricular arrhythmias, are also expressed in the atria. We hypothesized that salt-induced elevated blood pressure (BP) leads to atrial KATP channel activation and increased arrhythmia inducibility. Elevated BP was induced in mice with a high-salt diet (HS) for 4 wk. High-resolution optical mapping was used to measure atrial arrhythmia inducibility, effective refractory period (ERP), and action potential duration at 90% repolarization (APD90). Excised patch clamping was performed to quantify KATP channel properties and density. KATP channel protein expression was also evaluated. Atrial arrhythmia inducibility was 22% higher in HS hearts compared with control hearts. ERP and APD90 were significantly shorter in the right atrial appendage and left atrial appendage of HS hearts compared with control hearts. Perfusion with 1 μM glibenclamide or 300 μM tolbutamide significantly decreased arrhythmia inducibility and prolonged APD90 in HS hearts compared with untreated HS hearts. KATP channel density was 156% higher in myocytes isolated from HS animals compared with control animals. Sulfonylurea receptor 1 protein expression was increased in the left atrial appendage and right atrial appendage of HS animals (415% and 372% of NS animals, respectively). In conclusion, KATP channel activation provides a mechanistic link between salt-induced elevated BP and increased atrial arrhythmia inducibility. The findings of this study have important implications for the treatment and prevention of atrial arrhythmias in the setting of hypertensive heart disease and may lead to new therapeutic approaches. PMID:21724863

  17. The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon.

    PubMed

    Ferreira, Beatriz M A; Moffa, Paulo J; Falcão, Andrea; Uchida, Augusto; Camargo, Paulo; Pereyra, Pascual; Soares, Paulo R; Hueb, Whady; Ramires, Jose A F

    2005-07-01

    The warm-up phenomenon observed after the second of two sequential exercise tests is characterized by an increased time to ischemia and ischemic threshold, and the latter is related to ischemic preconditioning. Previous studies have demonstrated that a single dose of glibenclamide, a cardiac ATP-sensitive K (K(ATP)) channel blocker, prevents ischemic preconditioning. This study aimed to investigate the effects of chronic treatment with glibenclamide during two sequential exercise tests. Forty patients with angina pectoris were divided into three groups: 20 nondiabetics (NDM), 10 patients with diabetes in treatment with glibenclamide (DMG) and 10 diabetic patients with other treatments (DMO). All patients underwent two consecutive exercise tests. Heart rate and rate-pressure product at 1.0 mm ST-segment depression significantly increased during the second exercise test in NDM group (121.3+/-16.5 vs 127.3+/-15.3 beats/min, P<0.001, and 216.7+43.1 vs 232.1+/-43.0 beats.min-1.mmHg.10(2), P<0.001), and in DMO group (114.1+/-19.6 vs 119.6+/-18.1 beats/min, P=0.001, and 199.8+/-36.6 vs 222.2+/-29.2 beats.min-1.mmHg.10(2), P=0.019), but it did not change in patients in DMG group (130.7+/-14.5 vs 132.1+/-4.7 beats/min, P=ns, and 251.7+/-47.2 vs 250.3+/-42.8 beats.min-1.mmHg.10(2), P=ns). In the three groups, NDM, DMO, and DMG, the time to 1.0 mm ST-segment depression during the second exercise test was greater than during the first (225.0+/-112.5 vs 267.0+/-122.3 seconds, P=0.006; 187.5+/-54.0 vs 226.5+/-74.6 seconds, P=0.029 and 150.0+/-78.7 vs 186.0+/-81.9 seconds, P<0.001). The chronic use of glibenclamide may have mediated the loss of preconditioning benefits in the warm-up phenomenon, probably through its KATP channel-blocker activity, but without acting upon the tolerance to exercise.

  18. Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides

    PubMed Central

    Fujiwara, Yuichiro; Kubo, Yoshihiro

    2006-01-01

    Phosphoinositides (PIPns) are known to regulate the activity of some ion channels. Here we determined that ATP-gated P2X2 channels also are regulated by PIPns, and investigated the structural background and the unique features of this regulation. We initially used two-electrode voltage clamp to analyse the electrophysiological properties of P2X2 channels expressed in Xenopus oocytes, and observed that preincubation with wortmannin or LY294002, two PI3K inhibitors, accelerated channel desensitization. K365Q or K369Q mutation of the conserved, positively charged, amino acid residues in the proximal region of the cytoplasmic C-terminal domain also accelerated desensitization, whereas a K365R or K369R mutation did not. We observed that the permeability of the channel to N-methyl-d-glucamine (NMDG) transiently increased and then decreased after ATP application, and that the speed of the decrease was accelerated by K365Q or K369Q mutation or PI3K inhibition. Using GST-tagged recombinant proteins spanning the proximal C-terminal region, we then analysed their binding of the P2X2 cytoplasmic domain to anionic lipids using PIPns-coated nitrocellulose membranes. We found that the recombinant proteins that included the positively charged region bound to PIPs and PIP2s, and that this binding was eliminated by the K365Q and K369Q mutations. We also used a fluorescence assay to confirm that fusion proteins comprising the proximal C-terminal region of P2X2 with EGFP expressed in COS-7 cells closely associated with the membrane. Taken together, these results show that membrane-bound PIPns play a key role in maintaining channel activity and regulating pore dilation through electrostatic interaction with the proximal region of the P2X2 cytoplasmic C-terminal domain. PMID:16857707

  19. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia

    PubMed Central

    Sun, Hong-shuo; Feng, Zhong-ping

    2013-01-01

    ATP-sensitive potassium (KATP) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens KATP channels, leading to membrane hyperpolarization. KATP channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke. KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future. PMID:23123646

  20. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease.

    PubMed

    Esmaeili, Mohammad Hossein; Bahari, Behnam; Salari, Ali-Akbar

    2018-03-01

    Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(K ATP ) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of K ATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, K ATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of K ATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that K ATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2

    PubMed Central

    Niemeyer, María Isabel; Cid, L. Pablo; Paulais, Marc; Teulon, Jacques; Sepúlveda, Francisco V.

    2017-01-01

    Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site. PMID:28358046

  2. Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2.

    PubMed

    Niemeyer, María Isabel; Cid, L Pablo; Paulais, Marc; Teulon, Jacques; Sepúlveda, Francisco V

    2017-03-30

    Two-pore domain K 2P K + channels responsible for the background K + conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K 2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P 2 , common among other classes of K + channels, affects K 2P channels is controversial. Here we show that K 2P K + channel TASK-2 requires PI(4,5)P 2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P 2 , its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P 2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P 2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.

  3. Spike-independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    As the release of ATP from neurons has only been directly studied in a few cases, we have used patch sniffing to examine ATP release from Xenopus spinal neurons. ATP release was detected following intracellular current injection to evoke spikes. However, spiking was not essential as both glutamate and NMDA could evoke release of ATP in the presence of TTX. Neither acetylcholine nor high K+ was effective at inducing ATP release in the presence of TTX. Although Cd2+ blocked glutamate-evoked release of ATP suggesting a dependence on Ca2+ entry, neither ω-conotoxin-GVIA nor nifedipine prevented ATP release. N-type and L-type channels are thus not essential for glutamate-evoked ATP release. That glutamate receptors can elicit release in the absence of spiking suggests a close physical relationship between these receptors, the Ca2+ channels and release sites. As the dependence of ATP release on the influx of Ca2+ through Ca2+ channel subtypes differs from that of synaptic transmitter release, ATP may be released from sites that are distinct from those of the principal transmitter. In addition to its role as a fast transmitter, ATP may thus be released as a consequence of the activation of excitatory glutamatergic synapses and act to signal information about activity patterns in the nervous system. PMID:11986374

  4. Levcromakalim- and isoprenaline-induced relaxation of human isolated airways--role of the epithelium and of K+ channel activation.

    PubMed

    Black, J L; Johnson, P R; McKay, K O; Carey, D; Armour, C L

    1994-06-01

    In this study we have investigated the mechanism of action of levcromakalim and isoprenaline in human isolated airways with respect to the K+ channels they activate and the possibility that these smooth muscle relaxants activate K+ channels on the airway epithelium. Mechanical removal of the epithelial layer (mean percentage of epithelium present 20 +/- 3%, n = 20 tissues) did not affect the relaxation responses to levcromakalim or isoprenaline, either in terms of maximal relaxation or sensitivity. Whilst having no effect on isoprenaline-induced relaxation, studied from basal tone, the ATP-sensitive K+ channel blocker BRL 31660 (10, 30 and 50 microM) reduced relaxation responses induced (from basal tone) by levcromakalim from 74 +/- 6% (of the maximal response to isoprenaline) to 48 +/- 12% (n = 7), 9 +/- 9% (n = 4) and 0 (n = 4), respectively. Charybdotoxin, a blocker of high conductance Ca(2+)-activated K+ channels, at concentrations of 30 and 100 nM, had no effect on either levcromakalim- or or isoprenaline-induced relaxation responses and yet charybdotoxin was active at KCa channels in outside-out patches of hippocampal granule cells. Moreover, tetraethylammonium (10 mM) inhibited neither isoprenaline- nor levcromakalim-induced relaxation. This study has demonstrated that the relaxation responses elicited in human bronchus to isoprenaline and levcromakalim are likely to be the result of direct effects on the smooth muscle with no contribution from epithelial receptors or K+ channels. The actions of levcromakalim appear to be mediated only via activation of KATP channels. Further, we have made the important observation that, under the experimental conditions of our study, isoprenaline does not activate the KCa channel to produce relaxation in human bronchus.

  5. The K(ATP)+ channel is involved in a low-amplitude permeability transition in plant mitochondria.

    PubMed

    Petrussa, Elisa; Casolo, Valentino; Peresson, Carlo; Braidot, Enrico; Vianello, Angelo; Macrì, Francesco

    2004-04-01

    Pea (Pisum sativum) stem mitochondria, energized by NADH, succinate or malate plus glutamate, underwent a spontaneous low-amplitude permeability transition (PT), which could be monitored by dissipation of the electrical potential (deltapsi) or swelling. The occurrence of the latter effects was dependent on O2 availability, because O2 shortage anticipated the manifestation of both deltapsi dissipation and swelling. Spontaneous deltapsi collapse was also monitored in sucrose-resuspended mitochondria and again O2 deprivation caused an anticipation of the phenomenon. However, in this case deltapsi dissipation was not accompanied by a parallel mitochondrial swelling. The latter effect was, indeed, evident only if mitochondria were resuspended in KCl (as osmoticum), or other cations with a molecular mass up to 100 Da (choline+). PT was also induced by protonophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or free fatty acids) or valinomycin (only in KCl). The FCCP-induced dissipation of deltapsi and swelling were inhibited by ATP and stimulated (anticipated) by cyclosporin A or O2 shortage. The FCCP-induced PT was accompanied by the release of pyridine nucleotides from the matrix and of cytochrome c from the intermembrane space of KCl-resuspended mitochondria. The spontaneous and FCCP-induced low-amplitude PT of plant mitochondria are interpreted as due to the activity of a recently identified K(ATP)+ channel whose open/closed state is dependent on polarization of the inner membrane and on the oxidoreductive state of some sulfhydryl groups.

  6. Synergistic modulation of KCNQ1/KCNE1 K(+) channels (IKs) by phosphatidylinositol 4,5-bisphosphate (PIP2) and [ATP]i.

    PubMed

    Kienitz, Marie-Cécile; Vladimirova, Dilyana

    2015-07-01

    Cardiac KCNQ1/KCNE1 channels (IKs) are dependent on the concentration of membrane phosphatidylinositol-4,5-bisphosphate (PIP2) and on cytosolic ATP by two distinct mechanisms. In this study we measured IKs and FRET between PH-PLCδ-based fluorescent PIP2 sensors in a stable KCNQ1/KCNE1 CHO cell line. Effects of activating either a muscarinic M3 receptor or the switchable phosphatase Ci-VSP on IKs were analyzed. Recovery of IKs from inhibition induced by muscarinic stimulation was incomplete despite full PIP2 resynthesis. Recovery of IKs was completely suppressed under ATP-free conditions, but partially restored by the ATP analog AMP-PCP, providing evidence that depletion of intracellular ATP inhibits IKs independent of PIP2-depletion. Simultaneous patch-clamp and FRET measurements in cells co-expressing Ci-VSP and the PIP2-FRET sensor revealed a component of IKs inhibition directly related to dynamic PIP2-depletion. A second component of inhibition was independent of acute changes in PIP2 and could be mimicked by ATP-free pipette solution, suggesting that it results from intracellular ATP-depletion. The reduction of intracellular ATP upon Ci-VSP activation appears to be independent of its activity as a phosphoinositide phosphatase. Our data demonstrate that ATP-depletion slowed IKs activation but had no short-term effect on PIP2 regeneration, suggesting that impaired PIP2-resynthesis cannot account for the rapid IKs inhibition by ATP-depletion. Furthermore, the second component of IKs inhibition by Ci-VSP was reduced by AMP-PCP in the pipette filling solution, indicating that direct binding of ATP to the KCNQ1/KCNE1 complex is required for voltage activation of IKs. We suggest that fluctuations of the cellular metabolic state regulate IKs in parallel with Gq-coupled PLC activation and PIP2-depletion. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. ATP-activated P2X2 current in mouse spermatozoa

    PubMed Central

    Navarro, Betsy; Miki, Kiyoshi; Clapham, David E.

    2011-01-01

    Sperm cells acquire hyperactivated motility as they ascend the female reproductive tract, which enables them to overcome barriers and penetrate the cumulus and zona pellucida surrounding the egg. This enhanced motility requires Ca2+ entry via cation channel of sperm (CatSper) Ca2+-selective ion channels in the sperm tail. Ca2+ entry via CatSper is enhanced by the membrane hyperpolarization mediated by Slo3, a K+ channel also present in the sperm tail. To date, no transmitter-mediated currents have been reported in sperm and no currents have been detected in the head or midpiece of mature spermatozoa. We screened a number of neurotransmitters and biomolecules to examine their ability to induce ion channel currents in the whole spermatozoa. Surprisingly, we find that none of the previously reported neurotransmitter receptors detected by antibodies alone are functional in mouse spermatozoa. Instead, we find that mouse spermatozoa have a cation-nonselective current in the midpiece of spermatozoa that is activated by external ATP, consistent with an ATP-mediated increase in intracellular Ca2+ as previously reported. The ATP-dependent current is not detected in mice lacking the P2X2 receptor gene (P2rx2−/−). Furthermore, the slowly desensitizing and strongly outwardly rectifying ATP-gated current has the biophysical and pharmacological properties that mimic heterologously expressed mouse P2X2. We conclude that the ATP-induced current on mouse spermatozoa is mediated by the P2X2 purinergic receptor/channel. Despite the loss of ATP-gated current, P2rx2−/− spermatozoa have normal progressive motility, hyperactivated motility, and acrosome reactions. However, fertility of P2rx2−/− males declines with frequent mating over days, suggesting that P2X2 receptor adds a selection advantage under these conditions. PMID:21831833

  8. Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: role of endogenous opioids, K(ATP)-channels and adenosine.

    PubMed

    Lopes, Synara C; da Silva, Ana Virginia L; Arruda, Bruno Rodrigues; Morais, Talita C; Rios, Jeison Barros; Trevisan, Maria Teresa S; Rao, Vietla S; Santos, Flávia A

    2013-09-01

    This study aimed to assess the possible systemic antinociceptive activity of mangiferin and to clarify the underlying mechanism, using the acute models of chemical (acetic acid, formalin, and capsaicin) and thermal (hot-plate and tail-flick) nociception in mice. Mangiferin at oral doses of 10 to 100 mg/kg evidenced significant antinociception against chemogenic pain in the test models of acetic acid-induced visceral pain and in formalin- and capsaicin-induced neuro-inflammatory pain, in a naloxone-sensitive manner, suggesting the participation of endogenous opiates in its mechanism. In capsaicin test, the antinociceptive effect of mangiferin (30 mg/kg) was not modified by respective competitive and non-competitive transient receptor potential vanilloid 1 (TRPV1) antagonists, capsazepine and ruthenium red, or by pretreatment with L-NAME, a non-selective nitric oxide synthase inhibitor, or by ODQ, an inhibitor of soluble guanylyl cyclase. However, mangiferin effect was significantly reversed by glibenclamide, a blocker of K(ATP) channels and in animals pretreated with 8-phenyltheophylline, an adenosine receptor antagonist. Mangiferin failed to modify the thermal nociception in hot-plate and tail-flick test models, suggesting that its analgesic effect is only peripheral but not central. The orally administered mangiferin (10-100 mg/kg) was well tolerated and did not impair the ambulation or the motor coordination of mice in respective open-field and rota-rod tests, indicating that the observed antinociception was unrelated to sedation or motor abnormality. The findings of this study suggest that mangiferin has a peripheral antinociceptive action through mechanisms that involve endogenous opioids, K(ATP)-channels and adenosine receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. ATP-Sensitive K+ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility

    PubMed Central

    Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C.; Yamada, Satsuki; Terzic, Andre

    2010-01-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 KATP channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved > 800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. KATP channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the KATP channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a KATP channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the KATP channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by KATP channel deletion, establishing a systems

  10. Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of beta-cell K(ATP) channels.

    PubMed

    Mikhailov, M V; Ashcroft, S J

    2000-02-04

    We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.

  11. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome.

    PubMed

    Chowdhry, Vivek; Mohanty, B B

    2015-01-01

    Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (K ATP ) channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of K ATP channel, it can expel K + ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy.

  12. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  13. Modulation of K(ATP) currents in rat ventricular myocytes by hypoxia and a redox reaction.

    PubMed

    Yan, Xi-Sheng; Ma, Ji-Hua; Zhang, Pei-Hua

    2009-10-01

    The present study investigated the possible regulatory mechanisms of redox agents and hypoxia on the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. Single-channel and whole-cell patch-clamp techniques were used to record the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. Oxidized glutathione (GSSG, 1 mmol/L) increased the I(KATP), while reduced glutathione (GSH, 1 mmol/L) could reverse the increased I(KATP) during normoxia. To further corroborate the effect of the redox agent on the K(ATP) channel, we employed the redox couple DTT (1 mmol/L)/H2O2 (0.3, 0.6, and 1 mmol/L) and repeated the previous processes, which produced results similar to the previous redox couple GSH/GSSG during normoxia. H2O2 increased the I(KATP) in a concentration dependent manner, which was reversed by DTT (1 mmol/L). In addition, our results have shown that 15 min of hypoxia increased the I(KATP), while GSH (1 mmol/L) could reverse the increased I(KATP). Furthermore, in order to study the signaling pathways of the I(KATP) augmented by hypoxia and the redox agent, we applied a protein kinase C(PKC) inhibitor bisindolylmaleimide VI (BIM), a protein kinase G(PKG) inhibitor KT5823, a protein kinase A (PKA) inhibitor H-89, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-62 and KN-93. The results indicated that BIM, KT5823, KN-62, and KN-93, but not H-89, inhibited the I(KATP) augmented by hypoxia and GSSG; in addition, these results suggest that the effects of both GSSG and hypoxia on K(ATP) channels involve the activation of the PKC, PKG, and CaMK II pathways, but not the PKA pathway. The present study provides electrophysiological evidence that hypoxia and the oxidizing reaction are closely related to the modulation of I(KATP).

  14. Allosteric modulation of ATP-gated P2X receptor channels

    PubMed Central

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  15. Cardioprotective effect of diadenosine tetraphosphate (AP4A) preservation in hypothermic storage and its relation with mitochondrial ATP-sensitive potassium channels.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Kitakaze, M; Matsuda, H

    2000-01-15

    The preconditioning effect of diadenosine tetraphosphate (AP4A) was reported in ischemia/reperfused hearts, but its effect in heart preservation was unknown. According to the possible role of mitochondrial ATP-sensitive potassium channel (mK(ATP) channel) in the effect of ischemic preconditioning, the contribution of mK(ATP) channel to the effect of AP4A was tested. Isolated rat hearts were arrested and preserved by Eurocollin's (EC) solution at 4 degrees C for 8 hr. AP4A (80 microM) or AP4A with the 5-hydroxydecanoic acid (100 microM), a selective inhibitor of the mK(ATP) channel, was added into the EC solution. The preischemic and postischemic cardiac functions were evaluated on a buffer-perfused Langendorff apparatus before storage and after 20 min of reperfusion. AP4A administration improved the recovery of poststorage cardiac functions (the rate-pressure production, left ventricular systolic pressure, heart rate, coronary flow rate, and derivative of left ventricular systolic pressure; P<0.05) and reduced the leakage of lactate dehydrate and creatine kinase during reperfusion, compared with EC alone. Those effects of AP4A were completely reversed by 5-hydroxydecanoic acid administration in combination subjects. AP4A administration protects the heart through opening of the mK(ATP) channel during hypothermic preservation. Thus, addition of AP4A into cardioplegia may be a novel method of ischemic preconditioning in the transplantation context.

  16. Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells.

    PubMed

    Kucherenko, Yuliya V; Wagner-Britz, Lisa; Bernhardt, Ingolf; Lang, Florian

    2013-04-01

    DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl(-) channels. Some Cl(-) channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca(2+) dependence of PS scrambling, we explored whether inhibitors of Cl(-) channels (DIDS, NPPB) or of Ca(2+)-activated Cl(-) channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca(2+) concentration ([Ca(2+)]i) and activity of Ca(2+)-activated K(+) (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl(-) channels inhibitors decreased [Ca(2+)]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca(2+)]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl(-) channel blockers further modified the alterations of [Ca(2+)]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca(2+) ionophore ionomycin (1 μM). The ability of the Cl(-) channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca(2+)]i as TA and AO1 had a particularly strong decreasing effect on [Ca(2+)]i but at the same time enhanced PS exposure. In conclusion, Cl(-) channel inhibitors affect Gardos channels, influence Ca(2+) homeostasis and induce PS exposure of hRBCs by Ca(2+)-independent mechanisms.

  17. Dodecafluoropentane emulsion elicits cardiac protection against myocardial infarction through an ATP-Sensitive K+ channel dependent mechanism.

    PubMed

    Strom, Joshua; Swyers, Trevor; Wilson, David; Unger, Evan; Chen, Qin M; Larson, Douglas F

    2014-12-01

    Dodecafluoropentane emulsion (DDFPe) is a perfluorocarbon with high oxygen dissolving, transport, and delivery capacity that may offer the potential to limit ischemic injury prior to clinical reperfusion. Here we investigated the cardiac protective potential of DDFPe in a mouse model of myocardial infarction. Myocardial infarction was initiated by permanent ligation of the left anterior descending (LAD) coronary artery. Mice were administered vehicle or 5-hydroxydecanoate (5-HD) intravenously 10 min before LAD occlusion followed by a single intravenous administration of vehicle or DDFPe immediately after occlusion. Heart tissue and serum samples were collected 24 after LAD occlusion for measurement of infarct size and cardiac troponin I (cTnI) levels, respectively. DDFPe treatment reduced infarct size by approximately 72% (36.9 ± 4.2% for vehicle vs 10.4 ± 2.3% for DDFPe; p < 0.01; n = 6-8) at 24 h. Serum cTnI levels were similarly reduced by DDFPe (35.0 ± 4.6 ng/ml for vehicle vs 15.8 ± 1.6 ng/ml for DDFPe; p < 0.01; n = 6-8). Pretreatment with 5-HD, a mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) inhibitor, blocked the reduction in infarct size (29.2 ± 4.4% for 5-HD vs 35.4 ± 7.4% for 5-HD+DDFPe; p = 0.48; n = 6-8) and serum cTnI levels (27.4 ± 5.1 ng/ml for 5-HD vs 34.6 ± 5.3 ng/ml for 5-HD+DDFPe; p = 0.86; n = 6-8) by DDFPe. Our data indicate a cardiac protective role of DDFPe that persists beyond its retention time in the body and is dependent on mitoK(ATP), an important mediator of ischemic preconditioning induced cardiac protection.

  18. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.

    PubMed

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D

    2005-03-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  19. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  20. The protein kinase C inhibitor, bisindolylmaleimide (I), inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells.

    PubMed

    Park, Won Sun; Son, Youn Kyoung; Ko, Eun A; Ko, Jae-Hong; Lee, Hyang Ae; Park, Kyoung Sun; Earm, Yung E

    2005-06-17

    We examined the effects of the protein kinase C (PKC) inhibitor, bisindolylmaleimide (BIM) (I), on voltage-dependent K+ (K(V)) channels in rabbit coronary arterial smooth muscle cells using whole-cell patch clamp technique. BIM (I) reversibly and dose-dependently inhibited the K(V) currents with an apparent Kd value of 0.27 microM. The inhibition of the K(V) current by BIM (I) was highly voltage-dependent between -30 and +10 mV (voltage range of channel activation), and the additive inhibition of the K(V) current by BIM (I) was voltage-dependence in the full activation voltage range. The rate constants of association and dissociation for BIM (I) were 18.4 microM(-1) s(-1) and 4.7 s(-1), respectively. BIM (I) had no effect on the steady-state activation and inactivation of K(V) channels. BIM (I) caused use-dependent inhibition of K(V) current, which was consistent with the slow recovery from inactivation in the presence of BIM (I) (recovery time constants were 856.95 +/- 282.6 ms for control, and 1806.38 +/- 110.0 ms for 300 nM BIM (I)). ATP-sensitive K+ (K(ATP)), inward rectifier K+ (K(IR)), Ca2+-activated K+ (BK(Ca)) channels, which regulate the membrane potential and arterial tone, were not affected by BIM (I). The PKC inhibitor, chelerythrine, and protein kinase A (PKA) inhibitor, PKA-IP, had little effect on the K(V) current and did not significantly alter the inhibitory effects of BIM (I) on the K(V) current. These results suggest that BIM (I) inhibits K(V) channels in a phosphorylation-independent, and voltage-, time- and use-dependent manner.

  1. K(Ca)3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation.

    PubMed

    Palmer, Melissa L; Peitzman, Elizabeth R; Maniak, Peter J; Sieck, Gary C; Prakash, Y S; O'Grady, Scott M

    2011-07-15

    Human mammary epithelial (HME) cells express several P2Y receptor subtypes located in both apical and basolateral membranes. Apical UTP or ATP-γ-S stimulation of monolayers mounted in Ussing chambers evoked a rapid, but transient decrease in short circuit current (I(sc)), consistent with activation of an apical K+ conductance. In contrast, basolateral P2Y receptor stimulation activated basolateral K+ channels and increased transepithelial Na+ absorption. Chelating intracellular Ca2+ using the membrane-permeable compound BAPTA-AM, abolished the effects of purinoceptor activation on I(sc). Apical pretreatment with charybdotoxin also blocked the I(sc) decrease by >90% and similar magnitudes of inhibition were observed with clotrimazole and TRAM-34. In contrast, iberiotoxin and apamin did not block the effects of apical P2Y receptor stimulation. Silencing the expression of K(Ca)3.1 produced ∼70% inhibition of mRNA expression and a similar reduction in the effects of apical purinoceptor agonists on I(sc). In addition, silencing P2Y2 receptors reduced the level of P2Y2 mRNA by 75% and blocked the effects of ATP-γ-S by 65%. These results suggest that P2Y2 receptors mediate the effects of purinoceptor agonists on K+ secretion by regulating the activity of K(Ca)3.1 channels expressed in the apical membrane of HME cells. The results also indicate that release of ATP or UTP across the apical or basolateral membrane elicits qualitatively different effects on ion transport that may ultimately determine the [Na+]/[K+] composition of fluid within the mammary ductal network.

  2. Vascular activation of K+ channels and Na+-K+ ATPase activity of estrogen-deficient female rats.

    PubMed

    Ribeiro Junior, Rogério Faustino; Fiorim, Jonaina; Marques, Vinicius Bermond; de Sousa Ronconi, Karoline; Botelho, Tatiani; Grando, Marcella D; Bendhack, Lusiane M; Vassallo, Dalton Valentim; Stefanon, Ivanita

    2017-12-01

    The goal of the present study was to evaluate vascular potassium channels and Na + -K + -ATPase activity in estrogen deficient female rats. Female rats that underwent ovariectomy were assigned to receive daily treatment with placebo (OVX) or estrogen replacement (OVX+E2, 1mg/kg, once a week, i.m.). Aortic rings were used to examine the involvement of K + channels and Na + -K + -ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100μM) and K + channels blockers: tetraethylammonium (TEA, 5mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5mM), charybdotoxin (ChTX, 0.1mM) and iberiotoxin plus apamin. When aortic rings were pre-contracted with KCl (60mM) or pre-incubated with TEA (5mM), 4-aminopyridine (4-AP, 5mM) and iberiotoxin (IbTX, 30nM) plus apamin (0.5μM), the ACh-induced relaxation was less effective in the ovariectomized group. Additionally, 4-AP and IbTX decreased the relaxation by sodium nitroprusside in all groups but this reduction was greater in the ovariectomized group. Estrogen deficiency also increased aortic functional Na + -K + ATPase activity evaluated by K + -induced relaxation. L-NAME or endothelium removal were not able to block the increase in aortic functional Na + -K + ATPase activity, however, TEA (5mM) restored this increase to the control level. We also found that estrogen deficiency increased superoxide anion production and reduced nitric oxide release in aortic ring from ovariectomized animals. In summary, our results emphasize that the process underlying ACh-induced relaxation is preserved in ovariectomized animals due to the activation of K + channels and increased Na + -K + ATPase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells.

    PubMed

    Yee, Karen K; Sukumaran, Sunil K; Kotha, Ramana; Gilbertson, Timothy A; Margolskee, Robert F

    2011-03-29

    Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.

  4. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  5. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel.

    PubMed

    Trezza, Alfonso; Cicaloni, Vittoria; Porciatti, Piera; Langella, Andrea; Fusi, Fabio; Saponara, Simona; Spiga, Ottavia

    2018-01-01

    ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. K ATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina-like symptoms, cardiovascular diseases. A broader view of the K ATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit K ATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.

  6. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    PubMed

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  7. KATP Channel Mutations and Neonatal Diabetes.

    PubMed

    Shimomura, Kenju; Maejima, Yuko

    2017-09-15

    Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

  8. Glyburide, a K(+)(ATP)channel blocker, improves hypotension and survival in anaphylactic shock induced in Wistar rats sensitized to ovalbumin.

    PubMed

    Dhanasekaran, Subramanian; Nemmar, Abderrahim; Aburawi, Elhadi H; Kazzam, Elsadig E; Abdulle, Abdishakur; Bellou, Moufida; Bellou, Abdelouahab

    2013-11-15

    Allergens can induce anaphylactic shock and death due to serve hypotension. Potassium channel blockers (K(+)(ATP)) such as glyburide (GLY) induce vasoconstriction. The effect of (K(+)(ATP)) channel blockers on anaphylactic shock is poorly understood. Objective of the study was to test the hypothesis that GLY reduces hypotension induced in anaphylactic shock and increases survival. Rats were grouped into: G1-N=Naïve; G2-SC=Sensitized-Control; G3-SG=Sensitized-GLY (glyburide 40 mg/kg); G4-SE=Sensitized-EPI (epinephrine 10 mg/kg). G2 to G4 groups were sensitized with ovalbumin (OVA) and shock was induced by i.v. injection of OVA. Treatments were administered intravenously 5 min later. Mean arterial pressure (MAP), heart rate (HR), and mean survival time (MST) were measured for 60 min following OVA injection and treatments administration. At the end of the experiment, blood withdrawal was performed to measure plasma levels of histamine, leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)) and prostaglandin F(2) (PGF(2)). Additionally blood gas (paO2, paCO2, SaO2) and electrolytes (Na(+), K(+) and Ca (++)) were measured. MAP was normal in G1-N; severe hypotension, negative inotropic and short MST were observed in G2-SC; normalization of MAP, with lesser negative inotropism and increased MST were observed in G3-SG; full recovery was observed in G4-SE. Histamine level was significantly higher in G2-SC; reduced in G3-SG and G4-SE. PGE(2) increased in G3-SG; PGF(2) increased in G2-SC and G3-SG. Na(+) and Ca (++) concentration decreased in sensitized rats but reversed in treated groups, without change in K(+) concentration. In conclusion, our data suggest that administration of GLY reduced hypotension and increases survival time in rat anaphylactic shock.

  9. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations.

    PubMed

    Xu, Junnan; Song, Dan; Bai, Qiufang; Zhou, Lijun; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-01-13

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  10. Mechanosensitive activation of K+ channel via phospholipase C-induced depletion of phosphatidylinositol 4,5-bisphosphate in B lymphocytes.

    PubMed

    Nam, Joo Hyun; Lee, Hoo-Se; Nguyen, Yen Hoang; Kang, Tong Mook; Lee, Sung Won; Kim, Hye-Young; Kim, Sang Jeong; Earm, Yung E; Kim, Sung Joon

    2007-08-01

    In various types of cells mechanical stimulation of the plasma membrane activates phospholipase C (PLC). However, the regulation of ion channels via mechanosensitive degradation of phosphatidylinositol 4,5-bisphosphate (PIP(2)) is not known yet. The mouse B cells express large conductance background K(+) channels (LK(bg)) that are inhibited by PIP(2). In inside-out patch clamp studies, the application of MgATP (1 mm) also inhibited LK(bg) due to the generation of PIP(2) by phosphoinositide (PI)-kinases. In the presence of MgATP, membrane stretch induced by negative pipette pressure activated LK(bg), which was antagonized by PIP(2) (> 1 microm) or higher concentration of MgATP (5 mm). The inhibition by PIP(2) was partially reversible. However, the application of methyl-beta-cyclodextrin, a cholesterol scavenger disrupting lipid rafts, induced the full recovery of LK(bg) activity and facilitated the activation by stretch. In cell-attached patches, LK(bg) were activated by hypotonic swelling of B cells as well as by negative pressure. The mechano-activation of LK(bg) was blocked by U73122, a PLC inhibitor. Neither actin depolymerization nor the inhibition of lipid phosphatase blocked the mechanical effects. Direct stimulation of PLC by m-3M3FBS or by cross-linking IgM-type B cell receptors activated LK(bg). Western blot analysis and confocal microscopy showed that the hypotonic swelling of WEHI-231 induces tyrosine phosphorylation of PLCgamma2 and PIP(2) hydrolysis of plasma membrane. The time dependence of PIP(2) hydrolysis and LK(bg) activation were similar. The presence of LK(bg) and their stretch sensitivity were also proven in fresh isolated mice splenic B cells. From the above results, we propose a novel mechanism of stretch-dependent ion channel activation, namely, that the degradation of PIP(2) caused by stretch-activated PLC releases LK(bg) from the tonic inhibition by PIP(2).

  11. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K+ channels pathway and serotoninergic system.

    PubMed

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K + channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT 1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT 1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT 1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT 5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT 1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K + channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  12. ATP4A gene regulatory network for fine-tuning of proton pump and ion channels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar

    2013-06-01

    The ATP4A encodes α subunit of H(+), K(+)-ATPase that contains catalytic sites of the enzyme forming pores through cell membrane which allows the ion transport. H(+), K(+)-ATPase is a membrane bound P-type ATPase enzyme which is found on the surface of parietal cells and uses the energy derived from each cycle of ATP hydrolysis that can help in exchanging ions (H(+), K(+) and Cl(-)) across the cell membrane secreting acid into the gastric lumen. The 3-D model of α-subunit of H(+), K(+)-ATPase was generated by homology modeling. It was evaluated and validated on the basis of free energies and amino acid residues. The inhibitor binding amino acid active pockets were identified in the 3-D model by molecular docking. The two drugs Omeprazole and Rabeprazole were found more potent interactions with generated model of α-subunit of H(+), K(+)-ATPase on the basis of their affinity between drug-protein interactions. We have generated ATP4A gene regulatory networks for interactions with other proteins which involved in regulation that can help in fine-tuning of proton pump and ion channels. These findings provide a new dimension for discovery and development of proton pump inhibitors and gene regulation of the ATPase. It can be helpful in better understanding of human physiology and also using synthetic biology strategy for reprogramming of parietal cells for control of gastric ulcers.

  13. An ATP-gated cation channel with some P2Z-like characteristics in gastric smooth muscle cells of toad.

    PubMed Central

    Ugur, M; Drummond, R M; Zou, H; Sheng, P; Singer, J J; Walsh, J V

    1997-01-01

    1. Whole-cell and single-channel currents elicited by extracellular ATP were studied in freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus using standard patch clamp and microfluorimetric techniques. 2. This ATP-gated cation channel shares a number of pharmacological and functional properties with native rat myometrium receptors, certain native P2Z purinoceptors and the recently cloned P2X7 purinoceptor. But, unlike the last two, the ATP-gated channel does not mediate the formation of large non-specific pores. Thus, it may represent a novel member of the P2X or P2Z class. 3. Extracellular application of ATP (> or = 150 microM) elicited an inward whole-cell current at negative holding potentials that was inwardly rectifying and showed no sign of desensitization. Na+, Cs+ and, to a lesser degree, the organic cation choline served as charge carriers, but Cl- did not. Ratiometric fura-2 measurements indicated that the current is carried in part by Ca2+. The EC50 for ATP was 700 microM in solutions with a low divalent cation concentration. 4. ATP (> or = 100 microM) at the extracellular surface of cell-attached or excised patches elicited inwardly rectifying single-channel currents with a 22 pS conductance. Cl- did not serve as a charge carrier but both Na+ and Cs+ did, as did choline to a lesser extent. The mean open time of the channel was quite long, with a range in hundreds of milliseconds at a holding potential of -70 mV. 5. Mg2+ and Ca2+ decreased the magnitude of the ATP-induced whole-cell currents. Mg2+ decreased both the amplitude and the activity of ATP-activated single-channel currents. 6. ADP, UTP, P1, P5-di-adenosine pentaphosphate (AP5A), adenosine and alpha, beta-methylene ATP (alpha, beta-Me-ATP) did not induce significant whole-cell current. ATP-gamma-S and 2-methylthio ATP (2-Me-S-ATP) were significantly less effective than ATP in inducing whole-cell currents, whereas benzoylbenzoyl ATP (BzATP) was more effective. BzATP

  14. The Role of NH2-terminal Positive Charges in the Activity of Inward Rectifier KATP Channels

    PubMed Central

    Cukras, C.A.; Jeliazkova, I.; Nichols, C.G.

    2002-01-01

    Approximately half of the NH2 terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than ∼30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH2 terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH2 terminus, as well as the relationship of the NH2 terminus with the extended cytoplasmic COOH terminus of the channel. PMID:12198096

  15. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.

    PubMed

    Cukras, C A; Jeliazkova, I; Nichols, C G

    2002-09-01

    Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.

  16. The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*

    PubMed Central

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-01-01

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424

  17. The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.

    PubMed

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-02-21

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.

  18. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine.

    PubMed

    Laver, D R; Lenz, G K; Lamb, G D

    2001-12-15

    1. Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With 'resting' calcium (100 nM cytoplasmic and 1 mM luminal), RyRs had an open probability (P(o)) of approximately 0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with P(o) at saturation (P(max)) approximately 0.33 and K(a) (concentration for half-maximal activation) approximately 0.36 mM and with a Hill coefficient (n(H)) of approximately 1.8 in RyRs when P(max) < 0.5 and approximately 4 when P(max) > 0.5. 2. AMP was a much weaker agonist (P(max) approximately 0.09) and adenosine was weaker still (P(max) approximately 0.01-0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. 3. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with n(H) approximately 1 and K(i) approximately 0.06 mM at [ATP] < 0.5 mM, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mM. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mM for ATP, AMP and adenosine, respectively. Importantly, IMP (< or = 8 mM) had no inhibitory effect whatsoever on ATP-activated RyRs. 4. Mean open (tau(o)) and closed (tau(c)) dwell-times were more closely related to P(o) than to the nucleotide species or individual RyRs. At P(o) < 0.2, RyR regulation occurred via changes in tau(c), whereas at higher P(o) this also occurred via changes in tau(o). The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. 5. The results also show how deleterious adenosine accumulation is to the function of

  19. Molecular version of the resistive pulse technique: counting ATP by a single ion channel

    NASA Astrophysics Data System (ADS)

    Rostovtseva, T. K.; Bezrukov, S. M.

    1998-03-01

    The ``molecular Coulter counter'' concept has been used to study transport of ATP molecules through the nanometer-scale aqueous pore of the voltage-dependent mitochondrial ion channel, VDAC. We examine the ATP-induced current fluctuations and the change in average current through a single fully open channel reconstituted into a planar lipid bilayer. At high salt concentration (1M NaCl), the addition of ATP reduces both solution specific conductivity and channel conductance, but the effect on the channel is several times stronger and shows saturation behavior at 50 mM ATP concentration. ATP addition also generates an excess noise in the ionic current through the channel. By relating the low-frequency spectral density of the noise to the equilibrium diffusion of ATP molecules in the aqueous pore, we calculate a diffusion coefficient D = (1.6-3.3)x10-11 m^2 /s. We show that the mesoscopic VDAC pore is a Coulter counter with the added features of attraction and diffusion.

  20. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  1. Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats.

    PubMed

    Horiguchi, Takashi; Kis, Bela; Rajapakse, Nishadi; Shimizu, Katsuyoshi; Busija, David W

    2003-04-01

    The role of mitochondrial ATP-sensitive potassium channels (mitoK(ATP)) in ischemic tolerance has been well documented in heart, but little work has been done in brain. To investigate the involvement of mitoK(ATP) activation in chemical preconditioning in brain, we examined the effect of 5-hydroxydecanoate (5-HD), a selective mitoK(ATP) blocker, on neurotoxin 3-nitropropionic acid (3-NPA)-induced ischemic tolerance to transient focal cerebral ischemia in rats. Male Wistar rats were administrated 3-NPA (20 mg/kg IP; n=16) or vehicle (saline; n=16) 3 days before temporary occlusion (120 minutes) of the middle cerebral artery; 5-HD (40 mg/kg IP; n=16) was injected 20 minutes before 3-NPA administration. Infarct volumes were measured 4 days after reperfusion. To directly investigate whether chemical preconditioning activates mitoK(ATP), we tested the effect of prior incubation with 1 mmol/L 5-HD on 300 micromol/L 3-NPA-induced alterations of mitochondrial membrane potential (Delta(Psi)m) in cultured neurons and astrocytes using the fluorescent dye tetramethylrhodamine ethyl ester. Treatment with 3-NPA exhibited a 16% reduction (P<0.05) and 23% reduction in infarct volume (P<0.01) for total brain and cortex, respectively. Pretreatment with 5-HD completely abolished the neuroprotective effect of chemical preconditioning. In cultured cells, 3-NPA resulted in mitochondrial depolarization. This change of Delta(Psi)m was completely blocked by 5-HD pretreatment. These results strongly suggest that opening of mitoK(ATP) plays a key role as the trigger in the development of 3-NPA-induced ischemic tolerance in brain.

  2. Interdependence of ATP signalling and pannexin channels; the servant was really the master all along?

    PubMed

    Jackson, Michael F

    2015-12-15

    Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors. © 2015 Authors; published by Portland Press Limited.

  3. Ionic selectivity of native ATP-activated (P2X) receptor channels in dissociated neurones from rat parasympathetic ganglia

    PubMed Central

    Liu, Dong-Mei; Adams, David J

    2001-01-01

    The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (PX/PCs) ranging from 1.11 to 0.86. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X2 and/or anti-P2X4 but not anti-P2X1 antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X2 and P2X4 receptor subtypes expressed in rat submandibular neurones. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells. PMID:11454961

  4. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity

    PubMed Central

    Ader, Christian; Schneider, Robert; Hornig, Sönke; Velisetty, Phanindra; Vardanyan, Vitya; Giller, Karin; Ohmert, Iris; Becker, Stefan; Pongs, Olaf; Baldus, Marc

    2009-01-01

    Potassium (K+)-channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+-channel pore. PMID:19661921

  5. Pannexin1 channels act downstream of P2X7 receptors in ATP-induced murine T-cell death

    PubMed Central

    Shoji, Kenji F; Sáez, Pablo J; Harcha, Paloma A; Aguila, Hector L; Sáez, Juan C

    2014-01-01

    Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. PMID:24590064

  6. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  7. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Bilska-Wilkosz, Anna; Iciek, Małgorzata; Otto, Monika; Żytka, Iwona; Sapa, Jacek; Włodek, Lidia; Filipek, Barbara

    2014-06-01

    The cardiovascular effects of alpha lipoic acid were evaluated in isolated rat hearts exposed to ischemia-reperfusion injury in vitro. Alpha-lipoic acid raised the level of sulfane sulfur playing an important role in the release of hydrogen sulfide. H2S was shown to prevent the post-reperfusion arrhythmias and to protect the cardiomyocytes from death caused by hypoxia. The activation of potassium ATP-sensitive channels (K(ATP) channels) is one of the most important mechanisms of action of hydrogen sulfide in the cardiovascular system. The aim of this study was to investigate whether alpha lipoic acid can prevent the occurrence of post-reperfusion arrhythmias in vitro using a Langendorff model of ischemia-reperfusion in rats affecting the K(ATP) channels. Alpha lipoic acid significantly improved post-reperfusion cardiac function (reducing incidence of arrhythmias), especially in a dose of 10(-7)M. These cardiovascular effects of this compound on the measured parameters were reversed by glibenclamide, a selective K(ATP) blocker. Alpha lipoic acid increased the level of sulfane sulfur in the hearts. This may suggest that the positive effects caused by alpha lipoic acid in the cardiovascular system are not only related to its strong antioxidant activity, and the influence on the activity of such enzymes as aldehyde dehydrogenase 2, as previously suggested, but this compound can affect K(ATP) channels. It is possible that this indirect effect of alpha lipoic acid is connected with changes in the release of sulfane sulfur and hydrogen sulfide. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    PubMed

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  9. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    PubMed

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  10. Nitroxyl inhibits overt pain-like behavior in mice: role of cGMP/PKG/ATP-sensitive potassium channel signaling pathway

    PubMed Central

    Staurengo-Ferrari, Larissa; Zarpelon, Ana C.; Longhi-Balbinot, Daniela T.; Marchesi, Mario; Cunha, Thiago M.; Alves-Filho, José C.; Cunha, Fernando Q.; Ferreira, Sergio H.; Casagrande, Rubia; Miranda, Katrina M.; Verri, Waldiceu A.

    2014-01-01

    Background Several lines of evidence have indicated that nitric oxide (NO) plays complex and diverse roles in modulation of pain/analgesia. However, the roles of charged and uncharged congeners of NO are less well understood. In the present study, the antinociceptive effect of the nitroxyl (HNO) donor, Angeli’s salt (Na2N2O3; AS) was investigated in models of overt pain-like behavior. Moreover, whether the antinociceptive effect of nitroxyl was dependent on the activation of cGMP (cyclic guanosine monophosphate)/PKG (protein kinase G)/ATP-sensitive potassium channels was addressed. Methods The antinociceptive effect of AS was evaluated on phenyl-p-benzoquinone (PBQ)- and acetic acid-induced writhings and via the formalin test. In addition, pharmacological treatments targeting guanylate cyclase (ODQ), PKG (KT5923) and ATP-sensitive potassium channel (glybenclamide) were used. Results PBQ and acetic acid induced significant writhing responses over 20 min. The nociceptive response in these models were significantly reduced in a dose-dependent manner by subcutaneous pre-treatment with AS. Furthermore, AS also inhibited both phases of the formalin test. Subsequently, the inhibitory effect of AS in writhing and flinching responses were prevented by ODQ, KT5823 and glybenclamide, although these inhibitors alone did not alter the writhing score. Furthermore, pretreatment with L-cysteine, an HNO scavenger, confirmed that the antinociceptive effect of AS depends on HNO. Conclusion The present study demonstrates the efficacy of a nitroxyl donor and its analgesic mechanisms in overt pain-like behavior by activating the cGMP/PKG/ATP-sensitive potassium channel (K+) signaling pathway. PMID:24948073

  11. Responses of Rat P2X2 Receptors to Ultrashort Pulses of ATP Provide Insights into ATP Binding and Channel Gating

    PubMed Central

    Moffatt, Luciano; Hume, Richard I.

    2007-01-01

    To gain insight into the way that P2X2 receptors localized at synapses might function, we explored the properties of outside-out patches containing many of these channels as ATP was very rapidly applied and removed. Using a new method to calibrate the speed of exchange of solution over intact patches, we were able to reliably produce applications of ATP lasting <200 μs. For all concentrations of ATP, there was a delay of at least 80 μs between the time when ATP arrived at the receptor and the first detectable flow of inward current. In response to 200-μs pulses of ATP, the time constant of the rising phase of the current was ∼600 μs. Thus, most channel openings occurred when no free ATP was present. The current deactivated with a time constant of ∼60 ms. The amplitude of the peak response to a brief pulse of a saturating concentration of ATP was ∼70% of that obtained during a long application of the same concentration of ATP. Thus, ATP leaves fully liganded channels without producing an opening at least 30% of the time. Extensive kinetic modeling revealed three different schemes that fit the data well, a sequential model and two allosteric models. To account for the delay in opening at saturating ATP, it was necessary to incorporate an intermediate closed state into all three schemes. These kinetic properties indicate that responses to ATP at synapses that use homomeric P2X2 receptors would be expected to greatly outlast the duration of the synaptic ATP transient produced by a single presynaptic spike. Like NMDA receptors, P2X2 receptors provide the potential for complex patterns of synaptic integration over a time scale of hundreds of milliseconds. PMID:17664346

  12. Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages.

    PubMed

    Gao, Ya-dong; Hanley, Peter J; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen

    2010-07-01

    STIM1 'senses' decreases in endoplasmic reticular (ER) luminal Ca(2+) and induces store-operated Ca(2+) (SOC) entry through plasma membrane Orai channels. The Ca(2+)/calmodulin-activated K(+) channel K(Ca)3.1 (previously known as SK4) has been implicated as an 'amplifier' of the Ca(2+)-release activated Ca(2+) (CRAC) current, especially in T lymphocytes. We have previously shown that human macrophages express K(Ca)3.1, and here we used the whole-cell patch-clamp technique to investigate the activity of these channels during Ca(2+) store depletion and store-operated Ca(2+) influx. Using RT-PCR, we found that macrophages express the elementary CRAC channel components Orai1 and STIM1, as well as Orai2, Orai3 and STIM2, but not the putatively STIM1-activated channels TRPC1, TRPC3-7 or TRPV6. In whole-cell configuration, a robust Ca(2+)-induced outwardly rectifying K(+) current inhibited by clotrimazole and augmented by DC-EBIO could be detected, consistent with K(Ca)3.1 channel current (also known as intermediate-conductance IK1). Introduction of extracellular Ca(2+) following Ca(2+) store depletion via P2Y(2) receptors induced a robust charybdotoxin (CTX)- and 2-APB-sensitive outward K(+) current and hyperpolarization. We also found that SOC entry induced by thapsigargin treatment induced CTX-sensitive K(+) current in HEK293 cells transiently expressing K(Ca)3.1. Our data suggest that SOC and K(Ca)3.1 channels are tightly coupled, such that a small Ca(2+) influx current induces a much large K(Ca)3.1 channel current and hyperpolarization, providing the necessary electrochemical driving force for prolonged Ca(2+) signaling and store repletion. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.

    PubMed

    Oberhauser, A; Alvarez, O; Latorre, R

    1988-07-01

    Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.

  14. Mechanism of activation at the selectivity filter of the KcsA K+ channel

    PubMed Central

    Heer, Florian T; Posson, David J; Wojtas-Niziurski, Wojciech

    2017-01-01

    Potassium channels are opened by ligands and/or membrane potential. In voltage-gated K+ channels and the prokaryotic KcsA channel, conduction is believed to result from opening of an intracellular constriction that prevents ion entry into the pore. On the other hand, numerous ligand-gated K+ channels lack such gate, suggesting that they may be activated by a change within the selectivity filter, a narrow region at the extracellular side of the pore. Using molecular dynamics simulations and electrophysiology measurements, we show that ligand-induced conformational changes in the KcsA channel removes steric restraints at the selectivity filter, thus resulting in structural fluctuations, reduced K+ affinity, and increased ion permeation. Such activation of the selectivity filter may be a universal gating mechanism within K+ channels. The occlusion of the pore at the level of the intracellular gate appears to be secondary. PMID:28994652

  15. ATP sensitive K+ channel subunits (Kir6.1, Kir6.2) are the candidate mediators regulating ameliorating effects of pulsed magnetic field on aortic contractility in diabetic rats.

    PubMed

    Ocal, Isil; Yilmaz, Mehmet B; Kocaturk-Sel, Sabriye; Tufan, Turan; Erkoc, Mehmet A; Comertpay, Gamze; Oksuz, Hale; Barc, Esma D

    2018-05-01

    Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (K ATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (K ATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 39:299-311, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. mTor Regulates Lysosomal ATP-sensitive Two-Pore Na+ Channel to Adapt to Metabolic State

    PubMed Central

    Navarro, Betsy; Seo, Young-jun; Aranda, Kimberly; Shi, Lucy; Battaglia-Hsu, Shyuefang; Nissim, Itzhak; Clapham, David E.; Ren, Dejian

    2014-01-01

    SUMMARY Survival in the wild requires organismal adaptations to the availability of nutrients. Endosomes and lysosomes are key intracellular organelles that couple nutrition and metabolic status to cellular responses, but how they detect cytosolic ATP levels is not well understood. Here we identify an endolysosomal ATP-sensitive Na+ channel (lysoNaATP). The channel is a complex formed by Two-Pore Channels (TPC1 and TPC2), ion channels previously thought to be gated by nicotinic acid adenine dinucleotide phosphate (NAADP), and the mammalian target of rapamycin (mTOR). The channel complex detects nutrient status, becomes constitutively open upon nutrient removal and mTOR translocation off the lysosomal membrane, and controls the lysosome's membrane potential, pH stability, and the amino acid homeostasis. Mutant mice lacking lysoNaATP have much reduced exercise endurance after fasting. Thus, TPCs are a new ion channel family that couple the cell's metabolic state to endolysosomal function and are crucial for physical endurance during food restriction. PMID:23394946

  17. ATP forms a stable complex with the essential histidine kinase WalK (YycG) domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celikel, Reha; Veldore, Vidya Harini; Mathews, Irimpan

    The histidine WalK (YycG) plays a crucial role in coordinating murein synthesis with cell division and the crystal structure of its ATP binding domain has been determined. Interestingly the bound ATP was not hydrolyzed during crystallization and remains intact in the crystal lattice. In Bacillus subtilis, the WalRK (YycFG) two-component system coordinates murein synthesis with cell division. It regulates the expression of autolysins that function in cell-wall remodeling and of proteins that modulate autolysin activity. The transcription factor WalR is activated upon phosphorylation by the histidine kinase WalK, a multi-domain homodimer. It autophosphorylates one of its histidine residues by transferringmore » the γ-phosphate from ATP bound to its ATP-binding domain. Here, the high-resolution crystal structure of the ATP-binding domain of WalK in complex with ATP is presented at 1.61 Å resolution. The bound ATP remains intact in the crystal lattice. It appears that the strong binding interactions and the nature of the binding pocket contribute to its stability. The triphosphate moiety of ATP wraps around an Mg{sup 2+} ion, providing three O atoms for coordination in a near-ideal octahedral geometry. The ATP molecule also makes strong interactions with the protein. In addition, there is a short contact between the exocyclic O3′ of the sugar ring and O2B of the β-phosphate, implying an internal hydrogen bond. The stability of the WalK–ATP complex in the crystal lattice suggests that such a complex may exist in vivo poised for initiation of signal transmission. This feature may therefore be part of the sensing mechanism by which the WalRK two-component system is so rapidly activated when cells encounter conditions conducive for growth.« less

  18. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    ERIC Educational Resources Information Center

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  19. The influence of thapsigargin on Na,K-ATPase activity in cultured nonpigmented ciliary epithelial cells.

    PubMed

    Mito, T; Kuwahara, S; Delamere, N A

    1995-08-01

    Experiments were conducted to test the influence of thapsigargin on the NaK-ATPase activity of cultured cells (ODM2) derived from human nonpigmented ciliary epithelium. The rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was diminished in cells that had been pretreated with thapsigargin then permeabilized. Following 20 min exposure of intact cells to thapsigargin, the cells were permeabilized with digitonin and the rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was measured immediately in a calcium-free buffer. In permeabilized cells that had been pretreated with 1 microM thapsigargin for 20 min, the rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was reduced by 38%. Pretreatment with lesser concentrations of thapsigargin caused smaller changes of Na,K-ATPase activity. The decrease of Na,K-ATPase activity was the same whether or not calmodulin antagonists W7 or trifluoperazine were present during the thapsigargin pretreatment period. This inhibitory effect upon the Na,K-ATPase may serve to limit the extent of sodium pump activation that takes place in intact cells when thapsigargin causes sodium pump stimulation by a mechanism that appears to involve changes in cytoplasmic ion levels when potassium channels open.

  20. TNF-R1 and FADD mediate UVB-Induced activation of K+ channels in corneal epithelial cells

    PubMed Central

    Boersma, Peter M.; Haarsma, Loren D.; Schotanus, Mark P.; Ubels, John L.

    2017-01-01

    The goal of this study was to elucidate the role of Fas, TNF-R1, FADD and cytochrome c in UVB-induced K+ channel activation, an early step in UVB-induced apoptosis, in human corneal limbal epithelial (HCLE) cells. HCLE cells were treated with Fas, TNF-R1 or FADD siRNA and exposed to 80 or 150 mJ/cm2 UVB. K+ channel activation and loss of intracellular K+ were measured using whole-cell patch-clamp recording and ion chromatography, respectively. Cytochrome c was measured with an ELISA kit. Cells in which Fas was knocked down exhibited identical UVB-induced K+ channel activation and loss of intracellular K+ to control cells. Cells in which TNF-R1 or FADD were knocked down demonstrated reduced K+ channel activation and decreased loss of intracellular K+ following UVB, relative to control cells. Application of TNF-α, the natural ligand of TNF-R1, to HCLE cells induced K+ channel activation and loss of intracellular K+. Cytochrome c was translocated to the cytosol by 2 h after exposure to 150 mJ/cm2 UVB. However, there was no release by 10 min post-UVB. The data suggest that UVB activates TNF-R1, which in turn may activate K+ channels via FADD. This conclusion is supported by the observation that TNF-α also causes loss of intracellular K+. This signaling pathway appears to be integral to UVB-induced K+ efflux, since knockdown of TNF-R1 or FADD inhibits the UVB-induced K+ efflux. The lack of rapid cytochrome c translocation indicates cytochrome c does not play a role in UVB-induced K+ channel activation. PMID:27818316

  1. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K+ channels.

    PubMed

    Walsh, Kenneth B; Gay, Elaine A; Blough, Bruce E; Geurkink, David W

    2017-11-15

    G protein-gated inward rectifier K + (GIRK) channels are members of the super-family of proteins known as inward rectifier K + (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K + channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC 50 = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel.

    PubMed

    Jensen, B S; Strobaek, D; Christophersen, P; Jorgensen, T D; Hansen, C; Silahtaroglu, A; Olesen, S P; Ahring, P K

    1998-09-01

    The human intermediate-conductance, Ca2+-activated K+ channel (hIK) was identified by searching the expressed sequence tag database. hIK was found to be identical to two recently cloned K+ channels, hSK4 and hIK1. RNA dot blot analysis showed a widespread tissue expression, with the highest levels in salivary gland, placenta, trachea, and lung. With use of fluorescent in situ hybridization and radiation hybrid mapping, hIK mapped to chromosome 19q13.2 in the same region as the disease Diamond-Blackfan anemia. Stable expression of hIK in HEK-293 cells revealed single Ca2+-activated K+ channels exhibiting weak inward rectification (30 and 11 pS at -100 and +100 mV, respectively). Whole cell recordings showed a noninactivating, inwardly rectifying K+ conductance. Ionic selectivity estimated from bi-ionic reversal potentials gave the permeability (PK/PX) sequence K+ = Rb+ (1.0) > Cs+ (10.4) > Na+, Li+, N-methyl-D-glucamine (>51). NH+4 blocked the channel completely. hIK was blocked by the classical inhibitors of the Gardos channel charybdotoxin (IC50 28 nM) and clotrimazole (IC50 153 nM) as well as by nitrendipine (IC50 27 nM), Stichodactyla toxin (IC50 291 nM), margatoxin (IC50 459 nM), miconazole (IC50 785 nM), econazole (IC50 2.4 microM), and cetiedil (IC50 79 microM). Finally, 1-ethyl-2-benzimidazolinone, an opener of the T84 cell IK channel, activated hIK with an EC50 of 74 microM.

  3. Molecular structure of human KATP in complex with ATP and ADP

    PubMed Central

    Lee, Kenneth Pak Kin

    2017-01-01

    In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP’s ability to override ATP inhibition. PMID:29286281

  4. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    PubMed

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C

    2008-03-01

    This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.

  6. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  7. The antinociceptive effects of a standardized ethanol extract of the Bidens odorata Cav (Asteraceae) leaves are mediated by ATP-sensitive K+ channels.

    PubMed

    Zapata-Morales, Juan Ramón; Alonso-Castro, Angel Josabad; Domínguez, Fabiola; Carranza-Álvarez, Candy; Isiordia-Espinoza, Mario; Hernández-Morales, Alejandro; Solorio-Alvarado, Cesar

    2017-07-31

    Bidens odorata Cav (Asteraceae) is used for the empirical treatment of inflammation and pain. This work evaluated the in vitro and in vivo toxicity, antioxidant activity, as well as the anti-inflammatory and antinociceptive effects of an ethanol extract from Bidens odorata leaves (BOE). The in vitro toxicity of BOE (10-1000µg/ml) was evaluated with the comet assay in PBMC. The in vivo acute toxicity of BOE (500-5000mg/kg) and the effect of BOE (10-1000µg/ml) on the level of ROS in PBMC were determined. The in vivo anti-inflammatory activity of BOE was assessed using the TPA-induced ear edema in mice. The antinociceptive activities of BOE (50-200mg/kg p.o.) were assessed using the acetic acid and formalin tests. The antinociceptive mechanism of BOE was determined using naloxone and glibenclamide. BOE lacked DNA damage, and showed low in vivo toxicity (LD 50 > 5000mg/kg p.o.). BOE inhibited ROS production (IC 50 = 252.13 ± 20.54µg/ml), and decreased inflammation by 36.1 ± 3.66%. In both antinociceptive test, BOE (200mg/kg) exerted activity with similar activity than the reference drugs. B. odorata exerts low in vitro and in vivo toxicity, antioxidant effects, moderate in vivo anti-inflammatory activity, and antinociceptive effects mediated by ATP-sensitive K + channels. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  9. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes.

    PubMed

    Maher, Anthony D; Kuchel, Philip W

    2003-08-01

    Ca(2+)-dependent K(+) efflux from human erythrocytes was first described in the 1950s. Subsequent studies revealed that a K(+)-specific membrane protein (the Gárdos channel) was responsible for this phenomenon (the Gárdos effect). In recent years several types of Ca-activated K(+) channel have been identified and studied in a wide range of cells, with the erythrocyte Gárdos channel serving as both a model for a broader physiological perspective, and an intriguing component of erythrocyte function. The existence of this channel has raised a number of questions. For example, what is its role in the establishment and maintenance of ionic distribution across the red cell membrane? What role might it play in erythrocyte development? To what extent is it active in circulating erythrocytes? What are the cell-physiological implications of its dysfunction?This review summarises current knowledge of this membrane protein with respect to its function and structure, its physiological roles (some putative) and its contribution to various disease states, and it provides an introduction to adaptable NMR methods, which is our own area of technical expertise, for such ion transport analysis.

  10. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    PubMed Central

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  11. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts.

    PubMed

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X 1 -P2X 7 ) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K + -ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K + -ATP-induced currents were inhibited by P2X 4 and P2X 7 selective inhibitors (5-BDBD and KN62, respectively), while P2X 1 and P2X 3 inhibitors had no effects. P2X 7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X 1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K + -ATP-induced current were increased in solution without extracellular Ca 2+ , but decreased in Na + -free extracellular solution. In the absence of both of extracellular Na + and Ca 2+ , K + -ATP-induced currents were completely abolished. K + -ATP-induced Na + currents were inhibited by P2X 7 inhibitor, while the Ca 2+ currents were sensitive to P2X 4 inhibitor. These results indicated that odontoblasts functionally expressed P2X 4 and P2X 7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury.

  12. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  13. Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress.

    PubMed

    Melnyk, Mariia I; Dryn, Dariia O; Al Kury, Lina T; Zholos, Alexander V; Soloviev, Anatoly I

    2018-04-19

    The effects of quercetin-loaded liposomes (PCL-Q) and their constituents, that is, free quercetin (Q) and 'empty' phosphatidylcholine vesicles (PCL), on maxi-K channel activity were studied in single mouse ileal myocytes before and after H 2 O 2 -induced oxidative stress. Macroscopic Maxi-K channel currents were recorded using whole-cell patch clamp techniques, while single BK Ca channel currents were recorded in the cell-attached configuration. Bath application of PCL-Q (100 μg/ml of lipid and 3 μg/ml of quercetin) increased single Maxi-K channel activity more than threefold, from 0.010 ± 0.003 to 0.034 ± 0.004 (n = 5; p < 0.05), whereas single-channel conductance increased non-significantly from 138 to 146 pS. In the presence of PCL-Q multiple simultaneous channel openings were observed, with up to eight active channels in the membrane patch. Surprisingly, 'empty' PCL (100 μg/ml) also produced some channel activation, although it was less potent compared to PCL-Q, that is, these increased NPo from 0.010 ± 0.003 to 0.019 ± 0.003 (n = 5; p < 0.05) and did not affect single-channel conductance (139 pS). Application of PCL-Q restored macroscopic Maxi-K currents suppressed by H 2 O 2 -induced oxidative stress in ileal smooth muscle cells. We conclude that PCL-Q can activate Maxi-K channels in ileal myocytes mainly by increasing channel open probability, as well as maintain Maxi-K-mediated whole-cell current under the conditions of oxidative stress. While fusion of the 'pure' liposomes with the plasma membrane may indirectly activate Maxi-K channels by altering channel's phospholipids environment, the additional potentiating action of quercetin may be due to its better bioavailability.

  14. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.

    PubMed

    Troncoso Brindeiro, Carmen M; Lane, Pascale H; Carmines, Pamela K

    2012-03-01

    Experiments were performed to test the hypothesis that oxidative stress underlies the enhanced tonic dilator impact of inward-rectifier K(+) channels on renal afferent arterioles of rats with streptozotocin-induced diabetes mellitus. Sham and diabetic rats were left untreated or provided Tempol in their drinking water for 26±1 days, after which afferent arteriolar lumen diameter and its responsiveness to K(+) channel blockade were measured using the in vitro blood-perfused juxtamedullary nephron technique. Afferent diameter averaged 19.4±0.8 μm in sham rats and 24.4±0.8 μm in diabetic rats (P<0.05). The decrease in diameter evoked by Ba(2+) (inward-rectifier K(+) channel blocker) was 3 times greater in diabetic rats than in sham rats. Glibenclamide (K(ATP) channel blocker) and tertiapin-Q (Kir1.1/Kir3.x channel blocker) decreased afferent diameter in diabetic rats but had no effect on arterioles from sham rats. Chronic Tempol treatment prevented diabetes mellitus-induced increases in both renal vascular dihydroethidium staining and baseline afferent arteriolar diameter. Moreover, Tempol prevented the exaggeration of afferent arteriolar responses to Ba(2+), tertiapin-Q, and glibenclamide otherwise evident in diabetic rats. Preglomerular microvascular smooth muscle cells expressed mRNA encoding Kir1.1, Kir2.1, and Kir6.1. Neither diabetes mellitus nor Tempol altered Kir1.1, Kir2.1, Kir6.1, or SUR2B protein levels in renal cortical microvessels. To the extent that the effects of Tempol reflect its antioxidant actions, our observations indicate that oxidative stress contributes to the exaggerated impact of Kir1.1, Kir2.1, and K(ATP) channels on afferent arteriolar tone during diabetes mellitus and that this phenomenon involves posttranslational modulation of channel function.

  15. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    PubMed

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  16. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P.

    PubMed Central

    Mayer, E A; Loo, D D; Snape, W J; Sachs, G

    1990-01-01

    1. The regulation of Ca2(+)-activated K+ channels by the agonist substance P in freshly dissociated smooth muscle cells from the rabbit longitudinal colonic muscle was characterized using the patch clamp technique. 2. In the cell-attached recording mode, when pipette and bath solutions contained equal [K+] (126 mM), the Ca2(+)-activated K+ channels showed a linear current-voltage relationship (between -50 mV and 50 mV) with a slope conductance of 210 +/- 35 pS (n = 12). Reversal potential measurements indicated that the channel was highly selective for K+ over Na+ (PK/PNa = 110). 3. Channels were activated by depolarizing membrane voltages and cytosolic Ca2+, and in inside-out patches channel activation depended sigmoidally on voltage and [Ca2+]. The potential for half-activation at a cytosolic [Ca2+] of 5 x 10(-6) M was 0 mV. A tenfold increase in cytosolic Ca2+ resulted in a 60 mV shift of the sigmoidal voltage activation curve to more negative potentials. 4. Threshold concentrations of substance P (10(-12) M), which did not result in cell contraction, caused a prolonged activation of K+ channels. The K+ channels were observed to open in clusters: simultaneous opening of multiple channels was interrupted by complete, prolonged channel closure. 5. Lowering bath [Ca2+] to submicromolar concentrations abolished the effect of substance P. The activation of K+ channels by substance P (10(-12) M) was also inhibited by the dihydropyridine nifedipine (10(-6) M), a blocker of L-type Ca2+ channels. 6. In the whole-cell recording mode, with the pipette solution containing 126 mM-KCl, 0.77 mM-EGTA and 1 mM-ATP, depolarization from a holding potential of -70 mV elicited outward currents which increased to steady-state values. These were K+ currents as they were blocked by TEA (tetraethylammonium, 30 mM) and Ba2+ (1 mM) and were abolished when pipette K+ was replaced by Cs+. 7. The depolarization-activated outward current was not affected by lowering extracellular [Ca2+] or by

  17. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.

    PubMed

    Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu

    2015-04-01

    Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.

  18. Ent-7α-acetoxytrachyloban-18-oic acid and ent-7α-hydroxytrachyloban-18-oic acid from Xylopia langsdorfiana A. St-Hil. & Tul. modulate K(+) and Ca(2+) channels to reduce cytosolic calcium concentration on guinea pig ileum.

    PubMed

    Santos, Rosimeire F; Martins, Italo R R; Travassos, Rafael A; Tavares, Josean F; Silva, Marcelo S; Paredes-Gamero, Edgar J; Ferreira, Alice T; Nouailhetas, Viviane L A; Aboulafia, Jeannine; Rigoni, Vera L S; da Silva, Bagnólia A

    2012-03-05

    In this study we investigated the mechanism underlying the spasmolytic action of ent-7α-acetoxytrachyloban-18-oic acid (trachylobane-360) and ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318), diterpenes obtained from Xylopia langsdorfiana, on guinea pig ileum. Both compounds inhibited histamine-induced cumulative contractions (slope=3.5±0.9 and 4.4±0.7) that suggests a noncompetitive antagonism to histaminergic receptors. CaCl(2)-induced contractions were nonparallelly and concentration-dependently reduced by both diterpenes, indicating blockade of calcium influx through voltage-dependent calcium channels (Ca(v)). The Ca(v) participation was confirmed since both trachylobanes equipotently relaxed ileum pre-contracted with S-(-)-Bay K8644 (EC(50)=3.5±0.7×10-(5) and 1.1±0.2×10-(5)M) and KCl (EC(50)=5.5±0.3×10-(5) and 1.4±0.2×10-(5)M). K(+) channels participation was confirmed since diterpene-induced relaxation curves were significantly shifted to right in the presence of 5mM tetraethylammonium (TEA(+)) (EC(50)=0.5±0.04×10-(4) and 2.0±0.5×10-(5)M). ATP-sensitive K(+) channel (K(ATP)), voltage activated K(+) channels (K(V)), small conductance calcium-activated K(+) channels (SK(Ca)) or big conductance calcium-activated K(+) channels (BK(Ca)) did not seem to participate of trachylobane-360 spasmolytic action. However trachylobane-318 modulated positively K(ATP), K(V) and SK(Ca) (EC(50)=1.1±0.3×10-(5), 0.7±0.2×10-(5) and 0.7±0.2×10-(5)M), but not BK(Ca). A fluorescence analysis technique confirmed the decrease of cytosolic calcium concentration ([Ca(2+)](c)) induced by both trachylobanes in ileal myocytes. In conclusion, trachylobane-360 and trachylobane-318 induced spasmolytic activity by K(+) channel positive modulation and Ca(2+) channel blockade, which results in [Ca(2+)](c) reduction at cellular level leading to smooth muscle relaxation. Copyright © 2011. Published by Elsevier B.V.

  19. Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S.L.; Kim, H.S.; Okolie, P.

    1990-05-01

    Effects of the K+ channel blocking agent, glyburide, on the actions of two K+ channel openers, BRL 34915 (cromakalim) and P 1060 (Leo), a potent pinacidil derivative (N-(t-butyl)-N{double prime}-cyano-N{prime}-3-pyridyl-guanidine), were ascertained. Tension responses and {sup 86}Rb fluxes in rat portal vein strips and single channel electrophysiological recordings in enzymatically dissociated rat portal vein cells were obtained. Glyburide (0.3 microM) increased spontaneous contractile activity and caused concentration-dependent shifts in the relaxation responses to BRL 34915 and P 1060. Increases in {sup 86}Rb efflux were obtained only at much higher concentrations of BRL 34915 or P 1060, and these increases were blockedmore » only at higher concentrations of glyburide (5.0 microM). BRL 34915 and P 1060 specifically increase the open-state probability of the Ca+(+)-activated K+ (maxi-K+) channel, and these actions are blocked by glyburide and also by charybdotoxin. Changes in single channel activity and contractile responsiveness occur at similar concentrations of agonists and antagonists. Thus, the membrane channel in rat portal vein affected by glyburide, BRL 34915 and P 1060 appears to be the Ca+(+)-activated maxi-K+ channel (that does not show ATP dependence under the conditions of these experiments). Concentrations of agonists and antagonists effective on maxi-K+ channel activity correspond to those affecting contractile responsiveness and are lower than those eliciting changes in {sup 86}Rb flux.« less

  20. Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.

    PubMed

    John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J

    2007-02-01

    Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.

  1. Boosting the signal: Endothelial inward rectifier K+ channels.

    PubMed

    Jackson, William F

    2017-04-01

    Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.

  2. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon

    PubMed Central

    Zhang, Jin; Halm, Susan T.

    2012-01-01

    Secretagogues acting at a variety of receptor types activate electrogenic K+ secretion in guinea pig distal colon, often accompanied by Cl− secretion. Distinct blockers of KCa1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (Isc) associated with K+ secretion. Mucosal addition of IbTx inhibited epinephrine-activated Isc (epiIsc) and transepithelial conductance (epiGt) consistent with K+ secretion occurring via apical membrane KCa1.1. The concentration dependence of IbTx inhibition of epiIsc yielded an IC50 of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited epiGt with an IC50 of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited epiIsc and epiGt by ∼50%. IbTx and paxilline also inhibited Isc activated by mucosal ATP, supporting apical KCa1.1 as a requirement for this K+ secretagogue. Responses to IbTx and paxilline indicated that a component of K+ secretion occurred during activation of Cl− secretion by prostaglandin-E2 and cholinergic stimulation. Analysis of KCa1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits KCaβ1 and KCaβ4 also was demonstrated. Immunolocalization supported the presence of KCa1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K+ secretion involving apical membrane KCa1.1 during activation by several secretagogue types, but the observed K+ secretion likely required the activity of additional K+ channel types in the apical membrane. PMID:23064759

  3. TRPC5-eNOS Axis Negatively Regulates ATP-Induced Cardiomyocyte Hypertrophy.

    PubMed

    Sunggip, Caroline; Shimoda, Kakeru; Oda, Sayaka; Tanaka, Tomohiro; Nishiyama, Kazuhiro; Mangmool, Supachoke; Nishimura, Akiyuki; Numaga-Tomita, Takuro; Nishida, Motohiro

    2018-01-01

    Cardiac hypertrophy, induced by neurohumoral factors, including angiotensin II and endothelin-1, is a major predisposing factor for heart failure. These ligands can induce hypertrophic growth of neonatal rat cardiomyocytes (NRCMs) mainly through Ca 2+ -dependent calcineurin/nuclear factor of activated T cell (NFAT) signaling pathways activated by diacylglycerol-activated transient receptor potential canonical 3 and 6 (TRPC3/6) heteromultimer channels. Although extracellular nucleotide, adenosine 5'-triphosphate (ATP), is also known as most potent Ca 2+ -mobilizing ligand that acts on purinergic receptors, ATP never induces cardiomyocyte hypertrophy. Here we show that ATP-induced production of nitric oxide (NO) negatively regulates hypertrophic signaling mediated by TRPC3/6 channels in NRCMs. Pharmacological inhibition of NO synthase (NOS) potentiated ATP-induced increases in NFAT activity, protein synthesis, and transcriptional activity of brain natriuretic peptide. ATP significantly increased NO production and protein kinase G (PKG) activity compared to angiotensin II and endothelin-1. We found that ATP-induced Ca 2+ signaling requires inositol 1,4,5-trisphosphate (IP 3 ) receptor activation. Interestingly, inhibition of TRPC5, but not TRPC6 attenuated ATP-induced activation of Ca 2+ /NFAT-dependent signaling. As inhibition of TRPC5 attenuates ATP-stimulated NOS activation, these results suggest that NO-cGMP-PKG axis activated by IP 3 -mediated TRPC5 channels underlies negative regulation of TRPC3/6-dependent hypertrophic signaling induced by ATP stimulation.

  4. Shaking stack model of ion conduction through the Ca(2+)-activated K+ channel.

    PubMed Central

    Schumaker, M F

    1992-01-01

    Motivated by the results of Neyton and Miller (1988. J. Gen. Physiol. 92:549-586), suggesting that the Ca(2+)-activated K+ channel has four high affinity ion binding sites, we propose a physically attractive variant of the single-vacancy conduction mechanism for this channel. Simple analytical expressions for conductance, current, flux ratio exponent, and reversal potential under bi-ionic conditions are found. A set of conductance data are analyzed to determine a realistic range of parameter values. Using these, we find qualitative agreement with a variety of experimental results previously reported in the literature. The exquisite selectivity of the Ca(2+)-activated K+ channel may be explained as a consequence of the concerted motion of the "stack" in the proposed mechanism. PMID:1420923

  5. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K+ and Ca2+ channels.

    PubMed

    Marinko, Marija; Jankovic, Goran; Nenezic, Dragoslav; Milojevic, Predrag; Stojanovic, Ivan; Kanjuh, Vladimir; Novakovic, Aleksandra

    2018-02-01

    In this study, we aimed to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human saphenous vein (HSV), as a part of its cardioprotective action, and to define the mechanisms underlying this vasorelaxation. (-)-Epicatechin induced a concentration-dependent relaxation of HSV pre-contracted by phenylephrine. Among K + channel blockers, 4-aminopyridine, margatoxin, and iberiotoxin significantly inhibited relaxation of HSV, while glibenclamide considerably reduced effects of the high concentrations of (-)-epicatechin. Additionally, (-)-epicatechin relaxed contraction induced by 80 mM K + , whereas in the presence of nifedipine produced partial relaxation of HSV rings pre-contracted by phenylephrine. In Ca 2+ -free solution, (-)-epicatechin relaxed contraction induced by phenylephrine, but had no effect on contraction induced by caffeine. A sarcoplasmic reticulum Ca 2+ -ATPase inhibitor, thapsigargin, significantly reduced relaxation of HSV produced by (-)-epicatechin. These results demonstrate that (-)-epicatechin produces endothelium-independent relaxation of isolated HSV rings. Vasorelaxation to (-)-epicatechin probably involves activation of 4-aminopyridine- and margatoxin-sensitive K V channels, BK Ca channels, and at least partly, K ATP channels. In addition, not only the inhibition of extracellular Ca 2+ influx, but regulation of the intracellular Ca 2+ release, via inositol-trisphosphate receptors and reuptake into sarcoplasmic reticulum, via stimulation of Ca 2+ -ATPase, as well, most likely participate in (-)-epicatechin-induced relaxation of HSV. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Dynamic oligomeric conversions of the cytoplasmic RCK domains mediate MthK potassium channel activity.

    PubMed

    Kuo, Mario Meng-Chiang; Baker, Kent A; Wong, Lee; Choe, Senyon

    2007-02-13

    The crystal structure of the RCK-containing MthK provides a molecular framework for understanding the ligand gating mechanisms of K+ channels. Here we examined the macroscopic currents of MthK in enlarged Escherichia coli membrane by patch clamp and rapid perfusion techniques and showed that the channel undergoes desensitization in seconds after activation by Ca2+ or Cd2+. Additionally, MthK is inactivated by slightly acidic pH only from the cytoplasmic side. Examinations of isolated RCK domain by size-exclusion chromatography, static light scattering, analytical sedimentation, and stopped-flow spectroscopy show that Ca2+ rapidly converts isolated RCK monomers to multimers at alkaline pH. In contrast, the RCK domain at acidic pH remains firmly dimeric regardless of Ca2+ but restores predominantly to multimer or monomer at basic pH with or without Ca2+, respectively. These functional and biochemical analyses correlate the four functional states of the MthK channel with distinct oligomeric states of its RCK domains and indicate that the RCK domains undergo oligomeric conversions in modulating MthK activities.

  7. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.

    PubMed

    Price, Alexander K; Fischer, David J; Martin, R Scott; Spence, Dana M

    2004-08-15

    The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.22 +/- 0.50 microM ATP). Microscopic images indicate that erythrocytes, when being pumped through the microchip channels, migrate toward the center of the channels, leaving a cell-free or skimming layer at the walls of the channel, a profile known to exist in circulatory vessels in vivo. A comparison of the amounts of ATP released from RBCs mechanically deformed in microbore tubing (2.54 +/- 0.15 microM) vs a microchip (2.59 +/- 0.32 microM) suggests that channels in microchips may serve as functional biomimics of the microvasculature. Control studies involving diamide, a membrane-stiffening agent, suggest that the RBC-derived ATP is not due to cell lysis but rather physical deformation.

  8. Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells.

    PubMed

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F; Moran, Nava

    2009-02-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.

  9. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    PubMed

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  10. Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes.

    PubMed

    Rivera, A; Rotter, M A; Brugnara, C

    1999-10-01

    Cell dehydration mediated by Ca(2+)-activated K(+) channels plays an important role in the pathogenesis of sickle cell disease. CD-1 mouse erythrocytes possess a Ca(2+)-activated K(+) channel (Gardos channel) with maximal velocity (V(max)) of 0.154 +/- 0.02 mmol. l cells(-1). min(-1) and an affinity constant (K(0.5)) for Ca(2+) of 286 +/- 83 nM in the presence of A-23187. Cells pretreated with 500 nM endothelin-1 (ET-1) increased their V(max) by 88 +/- 9% (n = 8) and decreased their K(0.5) for Ca(2+) to 139 +/- 63 nM (P < 0.05; n = 4). Activation of the Gardos channel resulted in an EC(50) of 75 +/- 20 nM for ET-1 and 374 +/- 97 nM for ET-3. Analysis of the affinity of unlabeled ET-1 for its receptor showed two classes of binding sites with apparent dissociation constants of 167 +/- 51 and 785 +/- 143 nM and with capacity of binding sites of 298 +/- 38 and 1,568 +/- 211 sites/cell, respectively. The Gardos channel was activated by the endothelin B (ET(B)) receptor agonist IRL 1620 and inhibited by BQ-788, demonstrating the involvement of ET(B) receptors. Calphostin C inhibited 73% of ET-1-induced Gardos activation and 84% of the ET-1-induced membrane protein kinase C activity. Thus endothelins regulate erythrocyte Gardos channels via ET(B) receptors and a calphostin-sensitive mechanism.

  11. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  12. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The roles of KCa, KATP, and KV channels in regulating cutaneous vasodilation and sweating during exercise in the heat.

    PubMed

    Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; McNeely, Brendan D; Kenny, Glen P

    2017-05-01

    We recently showed the varying roles of Ca 2+ -activated (K Ca ), ATP-sensitive (K ATP ), and voltage-gated (K V ) K + channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K + channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1 ) lactated Ringer solution (control); 2 ) 50 mM tetraethylammonium (nonspecific K Ca channel blocker); 3 ) 5 mM glybenclamide (selective K ATP channel blocker); or 4 ) 10 mM 4-aminopyridine (nonspecific K V channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. K Ca channel inhibition resulted in greater CVC versus control at end exercise ( P = 0.04) and 10 and 20 min into recovery (both P < 0.01). K ATP channel blockade attenuated CVC compared with control during baseline ( P = 0.04), exercise (all P ≤ 0.04), and 10 min into recovery ( P = 0.02). No differences in CVC were observed with K V channel inhibition during baseline ( P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of K V channel inhibition augmenting sweating during baseline ( P = 0.04), responses were similar to control with all K + channel blockers during each time period (all P ≥ 0.07). We demonstrated that K Ca and K ATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat. Copyright © 2017 the American Physiological Society.

  14. Potential therapeutic targets for ATP-gated P2X receptor ion channels.

    PubMed

    Li, Zhiyuan; Liang, Dong; Chen, Ling

    2008-04-01

    P2X receptors make up a novel family of ligand-gated ion channels that are activated by binding of extracellular ATP. These receptors can form a number of homomeric and heteromeric ion channels, which are widely distributed throughout the human body. They are thought to play an important role in many cellular processes, including synaptic transmission and thrombocyte aggregation. These ion channels are also involved in the pathology of several disease states, including chronic inflammation and neuropathic pain, and thus are the potential targets for drug development. The recent discovery of potent and highly selective antagonists for P2X(7) receptors, through the use of high-throughput screening, has helped to further understand the P2X receptor pharmacology and provided new evidence that P2X(7) receptors play a specific role in chronic pain states. In this review, we discuss how the P2X family of ion channels has distinguished itself as a potential new drug target. We are optimistic that safe and effective candidate drugs will be suitable for progression into clinical development.

  15. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

    PubMed Central

    Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling

    2013-01-01

    ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968

  16. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  17. Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet.

    PubMed

    Price, Diana L; Ludwig, Jeffrey W; Mi, Huaiyu; Schwarz, Thomas L; Ellisman, Mark H

    2002-11-29

    Evidence that Ca(2+)-activated K(+) (K(Ca)) channels play a role in cell volume changes and K(+) homeostasis led to a prediction that astrocytes would have K(Ca) channels near blood vessels in order to maintain K(+) homeostasis. Consistent with this thinking the present study demonstrates that rSlo K(Ca) channels are in glial cells of the adult rat central nervous system (CNS) and highly localized to specializations of astrocytes associated with the brain vasculature. Using confocal and thin-section electron microscopic immunolabeling methods the distribution of rSlo was examined in adult rat brain. Strong rSlo immunolabeling was present around the vasculature of most brain regions. Examination of dye-filled hippocampal astrocytes revealed rSlo immunolabeling polarized in astrocytic endfeet. Ultrastructural analysis confirmed that the rSlo staining was concentrated in astrocytic endfeet ensheathing capillaries as well as abutting the pia mater. Immunostaining within the endfeet was predominantly distributed at the plasma membrane directly adjacent to either the vascular basal lamina or the pial surface. The distribution of the aquaporin-4 (AQP-4) water channel was also examined using dye-filled hippocampal astrocytes. In confirmation of earlier reports, intense AQP-4 immunolabeling was generally observed at the perimeter of blood vessels, and coincided with perivascular endfeet and rSlo labeling. We propose that rSlo K(Ca) channels, with their sensitivity to membrane depolarization and intracellular calcium, play a role in the K(+) modulation of cerebral blood flow. Additional knowledge of the molecular and cellular machinery present at perivascular endfeet may provide insight into the structural and functional molecular elements responsible for the neuronal activity-dependent regulation of cerebral blood flow. Copyright 2002 Elsevier Science B.V.

  18. Preliminary Studies of Acute Cadmium Administration Effects on the Calcium-Activated Potassium (SKCa and BKCa) Channels and Na+/K+-ATPase Activity in Isolated Aortic Rings of Rats.

    PubMed

    Vassallo, Dalton V; Almenara, Camila C P; Broseghini-Filho, Gilson Brás; Teixeira, Ariane Calazans; da Silva, David Chaves F; Angeli, Jhuli K; Padilha, Alessandra S

    2018-06-01

    Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na + /K + -ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K + channels, voltage-activated calcium channel, and Na + /K + -ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K + channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K + channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca 2+ -activated K + channels-SK Ca ), iberiotoxin (a selective blocker of large-conductance Ca 2+ -activated K + channels-BK Ca ), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na + /K + -ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SK Ca and BK Ca ) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na + /K + -ATPase activity.

  19. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.

    PubMed Central

    Islam, M S; Larsson, O; Nilsson, T; Berggren, P O

    1995-01-01

    In the pancreatic beta-cell, an increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) by caffeine is believed to indicate mobilization of Ca2+ from intracellular stores, through activation of a ryanodine receptor-like channel. It is not known whether other mechanisms, as well, underlie caffeine-induced changes in [Ca2+]i. We studied the effects of caffeine on [Ca2+]i by using dual-wavelength excitation microfluorimetry in fura-2-loaded beta-cells. In the presence of a non-stimulatory concentration of glucose, caffeine (10-50 mM) consistently increased [Ca2+]i. The effect was completely blocked by omission of extracellular Ca2+ and by blockers of the L-type voltage-gated Ca2+ channel, such as D-600 or nifedipine. Depletion of agonist-sensitive intracellular Ca2+ pools by thapsigargin did not inhibit the stimulatory effect of caffeine on [Ca2+]i. Moreover, this effect of caffeine was not due to an increase in cyclic AMP, since forskolin and 3-isobutyl-1-methylxanthine (IBMX) failed to raise [Ca2+]i in unstimulated beta-cells. In beta-cells, glucose and sulphonylureas increase [Ca2+]i by causing closure of ATP-sensitive K+ channels (KATP channels). Caffeine also caused inhibition of KATP channel activity, as measured in excised inside-out patches. Accordingly, caffeine (> 10 mM) induced insulin release from beta-cells in the presence of a non-stimulatory concentration of glucose (3 mM). Hence, membrane depolarization and opening of voltage-gated L-type Ca2+ channels were the underlying mechanisms whereby the xanthine drug increased [Ca2+]i and induced insulin release. Paradoxically, in glucose-stimulated beta-cells, caffeine (> 10 mM) lowered [Ca2+]i. This effect was due to the fact that caffeine reduced depolarization-induced whole-cell Ca2+ current through the L-type voltage-gated Ca2+ channel in a dose-dependent manner. Lower concentrations of caffeine (2.5-5.0 mM), when added after glucose-stimulated increase in [Ca2+]i, induced fast oscillations in [Ca2

  20. Atrial fibrillation: Therapeutic potential of atrial K+ channel blockers.

    PubMed

    Ravens, Ursula; Odening, Katja E

    2017-08-01

    Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K + ) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two pore domain K + (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Here, we briefly review the characteristics of these K + channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    PubMed

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  2. Synergistic Interaction of a Gabapentin- Mangiferin Combination in Formalin-Induced Secondary Mechanical Allodynia and Hyperalgesia in Rats Is Mediated by Activation of NO-Cyclic GMP-ATP-Sensitive K+ Channel Pathway.

    PubMed

    Godínez-Chaparro, Beatriz; Quiñonez-Bastidas, Geovanna Nallely; Rojas-Hernández, Isabel Rocío; Austrich-Olivares, Amaya Montserrat; Mata-Bermudez, Alfonso

    2017-12-01

    Preclinical Research Gabapentin is an anticonvulsant used to treat neuropathic pain. Mangiferin is an antioxidant that has antinociceptive and antiallodynic effects in inflammatory and neuropathic pain models. The purpose of this study was to determine the interaction between mangiferin and gabapentin in the development and maintenance of formalin-induced secondary allodynia and hyperalgesia in rats. Gabapentin, mangiferin, or their fixed-dose ratio combination were administrated peripherally. Isobolographic analyses was used to define the nature of the interaction of antiallodynic and/or antihyperalgesic effects of the two compounds. Theoretical ED 50 values for the combination were 74.31 µg/paw and 95.20 µg/paw for pre- and post-treatment, respectively. These values were higher than the experimental ED 50 values, 29.45 µg/paw and 37.73 µg/paw respectively, indicating a synergistic interaction in formalin-induced secondary allodynia and hyperalgesia. The antiallodynic and antihyperalgesic effect induced by the gabapentin/mangiferin combination was blocked by administration of L-NAME, the soluble guanylyl cyclase inhibitor, ODQ and glibenclamide. These data suggest that the gabapentin- mangiferin combination produces a synergistic interaction at the peripheral level. Moreover, the antiallodynic and hyperalgesic effect induced by the combination is mediated via the activation of an NO-cyclic GMP-ATP-sensitive K + channel pathway. Drug Dev Res 78 : 390-402, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  4. Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells

    PubMed Central

    Høy, Marianne; Olsen, Hervør L; Bokvist, Krister; Buschard, Karsten; Barg, Sebastian; Rorsman, Patrik; Gromada, Jesper

    2000-01-01

    Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 μm and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. The stimulatory action of tolbutamide was dependent on protein kinase C activity. The action of tolbutamide was mimicked by the general K+ channel blockers TEA (10 mm) and quinine (10 μm). A similar stimulation was elicited by 5-hydroxydecanoate (5-HD; 10 μm), an inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. Tolbutamide-stimulated, but not TEA-induced, exocytosis was antagonized by the K+ channel openers diazoxide, pinacidil and cromakalim. Dissipating the transgranular K+ gradient with nigericin and valinomycin inhibited tolbutamide- and Ca2+-evoked exocytosis. Furthermore, tolbutamide- and Ca2+-induced exocytosis were abolished by the H+ ionophore FCCP or by arresting the vacuolar (V-type) H+-ATPase with bafilomycin A1 or DCCD. Finally, ammonium chloride stimulated exocytosis to a similar extent to that obtained with tolbutamide. We propose that during granular maturation, a granular V-type H+-ATPase pumps H+ into the secretory granule leading to the generation of a pH gradient across the granular membrane and the development of a positive voltage inside the granules. The pumping of H+ is facilitated by the concomitant exit of K+ through granular K+ channels with pharmacological properties similar to those of mitochondrial KATP channels. Release of granules that have been primed is then facilitated by the

  5. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.

    PubMed

    Brustovetsky, Tatiana; Shalbuyeva, Natalia; Brustovetsky, Nickolay

    2005-10-01

    Pharmacological modulation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) sensitive to diazoxide and 5-hydroxydecanoate (5-HD) represents an attractive strategy to protect cells against ischaemia/reperfusion- and stroke-related injury. To re-evaluate a functional role for the mitoKATP in brain, we used Percoll-gradient-purified brain nonsynaptosomal mitochondria in a light absorbance assay, in radioisotope measurements of matrix volume, and in measurements of respiration, membrane potential (DeltaPsi) and depolarization-induced K+ efflux. The changes in mitochondrial morphology were evaluated by transmission electron microscopy (TEM). Polyclonal antibodies raised against certain fragments of known sulphonylurea receptor subunits, SUR1 and SUR2, and against different epitopes of K+ inward rectifier subunits Kir 6.1 and Kir 6.2 of the ATP-sensitive K+ channel of the plasma membrane (cellKATP), were employed to detect similar subunits in brain mitochondria. A variety of plausible blockers (ATP, 5-hydroxydecanoate, glibenclamide, tetraphenylphosphonium cation) and openers (diazoxide, pinacidil, chromakalim, minoxidil, testosterone) of the putative mitoKATP were applied to show the role of the channel in regulating matrix volume, respiration, and DeltaPsi and K+ fluxes across the inner mitochondrial membrane. None of the pharmacological agents applied to brain mitochondria in the various assays pinpointed processes that could be unequivocally associated with mitoKATP activity. In addition, immunoblotting analysis did not provide explicit evidence for the presence of the mitoKATP, similar to the cellKATP, in brain mitochondria. On the other hand, the depolarization-evoked release of K+ suppressed by ATP could be re-activated by carboxyatractyloside, an inhibitor of the adenine nucleotide translocase (ANT). Moreover, bongkrekic acid, another inhibitor of the ANT, inhibited K+ efflux similarly to ATP. These observations implicate the ANT in ATP-sensitive K

  6. Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.

    2009-08-13

    P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have largemore » acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.« less

  7. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine

    PubMed Central

    Laver, Derek R; Lenz, Gerlinde K E; Lamb, Graham D

    2001-01-01

    Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With ‘resting’ calcium (100 nm cytoplasmic and 1 mm luminal), RyRs had an open probability (Po) of ∼0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with Po at saturation (Pmax) ∼0.33 and Ka (concentration for half-maximal activation) ∼0.36 mm and with a Hill coefficient (nH) of ∼1.8 in RyRs when Pmax < 0.5 and ∼4 when Pmax > 0.5. AMP was a much weaker agonist (Pmax∼0.09) and adenosine was weaker still (Pmax∼0.01–0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with nH∼1 and Ki∼0.06 mm at [ATP] < 0.5 mm, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mm. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mm for ATP, AMP and adenosine, respectively. Importantly, IMP (≤ 8 mm) had no inhibitory effect whatsoever on ATP-activated RyRs. Mean open (τo) and closed (τc) dwell-times were more closely related to Po than to the nucleotide species or individual RyRs. At Po < 0.2, RyR regulation occurred via changes in τc, whereas at higher Po this also occurred via changes in τo. The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca2+ release, indicate that voltage sensor activation requires ATP binding to

  8. FTIR Study of ATP-Induced Changes in Na+/K+-ATPase from Duck Supraorbital Glands

    PubMed Central

    Pratap, Promod R.; Dediu, Oana; Nienhaus, G. Ulrich

    2003-01-01

    The Na+/K+-ATPase uses energy from the hydrolysis of ATP to pump Na+ ions out of and K+ ions into the cell. ATP-induced conformational changes in the protein have been examined in the Na+/K+-ATPase isolated from duck supraorbital salt glands using Fourier transform infrared spectroscopy. Both standard transmission and attenuated total internal reflection sample geometries have been employed. Under transmission conditions, enzyme at 75 mg/ml was incubated with dimethoxybenzoin-caged ATP. ATP was released by flashing with a UV laser pulse at 355 nm, which resulted in a large change in the amide I band. The absorbance at 1659 cm−1 decreased with a concomitant increase in the absorbance at 1620 cm−1. These changes are consistent with a partial conversion of protein secondary structure from α-helix to β-sheet. The changes were ∼8% of the total absorbance, much larger than those seen with other P-type ATPases. Using attenuated total internal reflection Fourier transform infrared spectroscopy, the decrease in absorbance at ∼1650 cm−1 was titrated with ATP, and the titration midpoint K0.5 was determined under different ionic conditions. In the presence of metal ions (Na+, Na+ and K+, or Mg2+), K0.5 was on the order of a few μM. In the absence of these ions, K0.5 was an order of magnitude lower (0.1 μM), indicating a higher apparent affinity. This effect suggests that the equilibrium for the ATP-induced conformational changes is dependent on the presence of metal ions. PMID:14645062

  9. K+ channels of Müller glial cells in retinal disorders.

    PubMed

    Gao, Feng; Xu, Linjie; Zhao, Yuan; Sun, Xinghuai; Wang, Zhongfeng

    2018-02-01

    Müller cell is the major type glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge

    PubMed Central

    Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.

    2012-01-01

    SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483

  11. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner.

    PubMed

    Eckford, Paul D W; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E

    2012-10-26

    The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.

  12. Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia?

    PubMed

    Niemeyer, María Isabel; Cid, L Pablo; González, Wendy; Sepúlveda, Francisco V

    2016-09-01

    K2P K(+) channels with two pore domains in tandem associate as dimers to produce so-called background conductances that are regulated by a variety of stimuli. Whereas gating in K2P channels has been poorly understood, recent developments have provided important clues regarding the gating mechanism for this family of proteins. Two modes of gating present in other K(+) channels have been considered. The first is the so-called activation gating that occurs by bundle crossing and the splaying apart of pore-lining helices commanding ion passage. The second mode involves a change in conformation at the selectivity filter (SF), which impedes ion flow at this narrow portion of the conduction pathway and accounts for extracellular pH modulation of several K2P channels. Although some evidence supports the existence of an activation gate in K2P channels, recent results suggest that perhaps all stimuli, even those sensed at a distant location in the protein, are also mediated by SF gating. Recently resolved crystal structures of K2P channels in conductive and nonconductive conformations revealed that the nonconductive state is reached by blockade by a lipid acyl chain that gains access to the channel cavity through intramembrane fenestrations. Here we discuss whether this novel type of gating, proposed so far only for membrane tension gating, might mediate gating in response to other stimuli or whether SF gating is the only type of opening/closing mechanism present in K2P channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function.

    PubMed

    Wang, Xinrui; Fitts, Robert H

    2017-08-01

    Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the

  14. Functional significance of the intermediate conductance Ca2+-activated K+ channel for the short-term survival of injured erythrocytes.

    PubMed

    Föller, Michael; Bobbala, Diwakar; Koka, Saisudha; Boini, Krishna M; Mahmud, Hasan; Kasinathan, Ravi S; Shumilina, Ekaterina; Amann, Kerstin; Beranek, Golo; Sausbier, Ulrike; Ruth, Peter; Sausbier, Matthias; Lang, Florian; Huber, Stephan M

    2010-11-01

    Increased cytosolic Ca(2+) concentrations activate Gardos K(+) channels in human erythrocytes with membrane hyperpolarization, efflux of K(+), Cl⁻, and osmotically obliged H₂O resulting in cell shrinkage, a phenomenon referred to as Gardos effect. We tested whether the Gardos effect delays colloid osmotic hemolysis of injured erythrocytes from mice lacking the Ca(2+)-activated K(+) channel K(Ca)3.1. To this end, we applied patch clamp and flow cytometry and determined in vitro as well as in vivo hemolysis. As a result, erythrocytes from K(Ca)3.1-deficient (K(Ca)3.1(-/-)) mice lacked Gardos channel activity and the Gardos effect. Blood parameters, reticulocyte count, or osmotic erythrocyte resistance, however, did not differ between K(Ca)3.1(-/-) mice and their wild-type littermates, suggesting low or absent Gardos channel activity in unstressed erythrocytes. Oxidative stress-induced Ca(2+) entry and phospholipid scrambling were significantly less pronounced in K(Ca)3.1(-/-) than in wild-type erythrocytes. Moreover, in vitro treatment with α-toxin from Staphylococcus aureus, which forms pores in the cellular membrane, resulted in significantly stronger hemolysis of K(Ca)3.1(-/-) than of wild-type erythrocytes. Intravenous injection of α-toxin induced more profound hemolysis in K(Ca)3.1(-/-) than in wild-type mice. Similarly, intra-peritoneal application of the redox-active substance phenylhydrazine, an agent for the induction of hemolytic anemia, was followed by a significantly stronger decrease of hematocrit in K(Ca)3.1(-/-) than in wild-type mice. Finally, malaria infection triggered the activation of K(Ca)3.1 and transient shrinkage of the infected erythrocytes. In conclusion, K(Ca)3.1 channel activity and Gardos effect counteract hemolysis of injured erythrocytes, thus decreasing hemoglobin release into circulating blood.

  15. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  16. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms.

    PubMed

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru

    2016-08-31

    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose.

  17. CCCP activation of the reconstituted NaK-pump.

    PubMed

    Yoda, A; Yoda, S

    1990-08-01

    In the NaK-ATPase proteoliposomes (PLs), the NaK-pump activity, Na+ uptake, and ATP hydrolysis were apparently enhanced by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and other ionophores without ion gradients. These ionophore effects were not cation specific. Without ionophores, the PL's ATPase activity fell to its steady-state value within 3 sec at 15 degrees C. This decrease in activity disappeared in the presence of CCCP. Since CCCP is believed to enhance proton mobility across the lipid bilayer and dissipate membrane potential (Vm), we postulated that a Vm build-up partially inhibits the PLs by changing the conformation of the NaK-pump, and that CCCP eliminated this partial inhibition. Since this activation required extracellular K+ and high ATP concentration in the PLs, CCCP must affect the conversion between the phosphorylated forms of NaK-ATPase (EP); this step has been suggested by Goldschlegger et al. (1987) to be the voltage-sensitive step (J. Physiol. (London) 387:331-355). Although cytoplasmic K+ accelerated the change of ADP- and K(+)-sensitive EP (E*P) to K(+)-sensitive ADP-insensitive EP (E2P), CCCP did not complete with cytoplasmic K+ when cytoplasmic Na+ was saturated. When the PLs were phosphorylated with 20 microM ATP and 20 microM palmitoyl CoA instead of with high concentration of ATP, CCCP increased the E*P content and decreased the ADP-sensitive K(+)-insensitive EP (E1P). The results described above suggest that CCCP affects the E1P to E*P change in the E1P----E*P----E2P conversion and that this reaction step is inhibited by Vm.

  18. Voltage-gated K+ channel modulators as neuroprotective agents.

    PubMed

    Leung, Yuk-Man

    2010-05-22

    A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.

  19. The vasorelaxant mechanisms of methanol on isolated rat aortic rings: Involvement of ion channels and signal transduction pathways.

    PubMed

    Bai, Y; Zhang, Q; Yang, Z; Meng, Z; Zhao, Q

    2017-10-01

    It is reported that methanol is generally used as an industrial solvent, antifreeze, windshield washer fluid, cooking fuel and perfume. Methanol ingestion can lead to severe metabolic disturbances, blindness, or even death. So far, few studies about its negative effects on cardiovascular system have been reported. The purpose of this study was to determine the vasoactive effect of methanol and roles of ion channels and signal transduction pathways on isolated rat aorta. The results suggested that the mechanism of methanol-induced vasorelaxation at low concentrations (<500 mM) was mediated by ATP-sensitive K + (K ATP ) and L-type Ca 2+ channels, but the mechanism at high concentrations (>600 mM) was related to K ATP , voltage-dependent K + , big-conductance Ca 2+ -activated K + , L-type Ca 2+ channels as well as prostacyclin, protein kinase C, β-adrenoceptors pathways. In addition, methanol induced a dose-dependent inhibition of vasoconstrictions caused by calcium chloride, potassium chloride, or norepinephrine. Further work is needed to investigate the relative contribution of each channel and pathway in methanol-induced vasoactive effect.

  20. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    PubMed

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  1. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  2. TNF-{alpha} promotes cell survival through stimulation of K{sup +} channel and NF{kappa}B activity in corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-11-15

    Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less

  3. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro.

    PubMed

    Bonatto, Ana C; Souza, Emanuel M; Oliveira, Marco A S; Monteiro, Rose A; Chubatsu, Leda S; Huergo, Luciano F; Pedrosa, Fábio O

    2012-08-01

    PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.

  4. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  5. ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance.

    PubMed

    Yu, Ning; Zhao, Hong-Bo

    2008-11-01

    Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.

  6. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Potentiator VX-770 (Ivacaftor) Opens the Defective Channel Gate of Mutant CFTR in a Phosphorylation-dependent but ATP-independent Manner* ♦

    PubMed Central

    Eckford, Paul D. W.; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E.

    2012-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe. PMID:22942289

  7. MinK-dependent internalization of the IKs potassium channel.

    PubMed

    Xu, Xianghua; Kanda, Vikram A; Choi, Eun; Panaghie, Gianina; Roepke, Torsten K; Gaeta, Stephen A; Christini, David J; Lerner, Daniel J; Abbott, Geoffrey W

    2009-06-01

    KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.

  8. Kinetics of transient pump currents generated by the (H,K)-ATPase after an ATP concentration jump.

    PubMed

    Stengelin, M; Fendler, K; Bamberg, E

    1993-03-01

    (H,K)-ATPase containing membranes from hog stomach were attached to black lipid membranes. Currents induced by an ATP concentration jump were recorded and analyzed. A sum of three exponentials (tau 1(-1) approximately 400 sec-1, tau 2(-1) approximately 100 sec-1, tau 3(-1) approximately 10 sec-1; T = 300 K, pH 6, MgCl2 3 mM, no K+) was fitted to the transient signal. The dependence of the resulting time constants and the peak current on electrolyte composition, ATP conversion rate, temperature, and membrane conductivity was recorded. The results are consistent with a reaction scheme similar to that proposed by Albers and Post for the NaK-ATPase. Based on this model the following assignments were made: tau 2 corresponds to ATP binding and exchange with caged ATP. tau 1 describes the phosphorylation reaction E1 x ATP-->E1P. The third, slowest time constant tau 3 is tentatively assigned to the E1P-->E2P transition. This is the first electrogenic step and is accelerated at high pH and by ATP via a low affinity binding site. The second electrogenic step is the transition from E2K to E1H. The E2K<==>E1H equilibrium is influenced by potassium with an apparent K0.5 of 3 mM and by the pH. Low pH and low potassium concentration stabilize the E1 conformation.

  9. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    PubMed

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  10. Phosphoinositides Regulate P2X4 ATP-Gated Channels through Direct Interactions

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Chevallier, Stéphanie; Blais, Dominique; Zhao, Qi; Boué-Grabot, Éric; Logothetis, Diomedes; Séguéla, Philippe

    2008-01-01

    P2X receptors are ATP-gated nonselective cation channels highly permeable to calcium that contribute to nociception and inflammatory responses. The P2X4 subtype, upregulated in activated microglia, is thought to play a critical role in the development of tactile allodynia following peripheral nerve injury. Posttranslational regulation of P2X4 function is crucial to the cellular mechanisms of neuropathic pain, however it remains poorly understood. Here, we show that the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), products of phosphorylation by wortmannin-sensitive phosphatidylinositol 4-kinases and phosphatidylinositol 3-kinases, can modulate the function of native and recombinant P2X4 receptor channels. In BV-2 microglial cells, depleting the intracellular levels of PIP2 and PIP3 with wortmannin significantly decreased P2X4 current amplitude and P2X4-mediated calcium entry measured in patch clamp recordings and ratiometric ion imaging, respectively. Wortmannin-induced depletion of phosphoinositides in Xenopus oocytes decreased the current amplitude of P2X4 responses by converting ATP into a partial agonist. It also decreased their recovery from desensitization and affected their kinetics. Injection of phosphoinositides in wortmannin-treated oocytes reversed these effects and application of PIP2 on excised inside-out macropatches rescued P2X4 currents from rundown. Moreover, we report the direct interaction of phospholipids with the proximal C-terminal domain of P2X4 subunit (Cys360-Val375) using an in vitro binding assay. These results demonstrate novel regulatory roles of the major signaling phosphoinositides PIP2 and PIP3 on P2X4 function through direct channel-lipid interactions. PMID:19036987

  11. Determining k channel activation curves from k channel currents often requires the goldman-hodgkin-katz equation.

    PubMed

    Clay, John R

    2009-01-01

    Potassium ion current in nerve membrane, I(K), has traditionally been described by I(K) = g(K)(V - E(K)), where g(K) is the K ion conductance, V is membrane potential and E(K) is the K(+) Nernst potential. This description has been unchallenged by most investigators in neuroscience since its introduction almost 60 years ago. The problem with the I(K) approximately (V - E(K)) proportionality is that it is inconsistent with the unequal distribution of K ions in the intra- and extracellular bathing media. Under physiological conditions the intracellular K(+) concentration is significantly higher than the extracellular concentration. Consequently, the slope conductance at potentials positive to E(K) cannot be the same as that for potentials negative to E(K), as the linear proportionality between I(K) and (V - E(K)) requires. Instead I(K) has a non-linear dependence on (V - E(K)) which is well described by the Goldman-Hodgkin-Katz equation. The implications of this result for K(+) channel gating and membrane excitability are reviewed in this report.

  12. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    PubMed

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  13. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema.

    PubMed

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-12-13

    BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). CONCLUSIONS Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.

  14. Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells

    PubMed Central

    Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica

    2012-01-01

    Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134

  15. Killing K channels with TEA+.

    PubMed

    Khodakhah, K; Melishchuk, A; Armstrong, C M

    1997-11-25

    Tetraethylammonium (TEA+) is widely used for reversible blockade of K channels in many preparations. We noticed that intracellular perfusion of voltage-clamped squid giant axons with a solution containing K+ and TEA+ irreversibly decreased the potassium current when there was no K+ outside. Five minutes of perfusion with 20 mM TEA+, followed by removal of TEA+, reduced potassium current to < 5% of its initial value. The irreversible disappearance of K channels with TEA+ could be prevented by addition of > or = 10 mM K+ to the extracellular solution. The rate of disappearance of K channels followed first-order kinetics and was slowed by reducing the concentration of TEA+. Killing is much less evident when an axon is held at -110 mV to tightly close all of the channels. The longer-chain TEA+ derivative decyltriethylammonium (C10+) had irreversible effects similar to TEA+. External K+ also protected K channels against the irreversible action of C10+. It has been reported that removal of all K+ internally and externally (dekalification) can result in the disappearance of K channels, suggesting that binding of K+ within the pore is required to maintain function. Our evidence further suggests that the crucial location for K+ binding is external to the (internal) TEA+ site and that TEA+ prevents refilling of this location by intracellular K+. Thus in the absence of extracellular K+, application of TEA+ (or C10+) has effects resembling dekalification and kills the K channels.

  16. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.

    PubMed

    Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas

    2016-02-25

    Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Potassium Channels and Uterine Vascular Adaptation to Pregnancy and Chronic Hypoxia

    PubMed Central

    Zhu, Ronghui; Xiao, DaLiao; Zhang, Lubo

    2014-01-01

    During a normal course of pregnancy, uterine vascular tone is significantly decreased resulting in a striking increase in uterine blood flow, which is essential for fetal development and fetal growth. Chronic hypoxia during gestation may adversely affect the normal adaptation of uterine vascular tone and increase the risk of preeclampsia and fetal intrauterine growth restriction. In this review, we present evidence that the regulation of K+ channels is an important mechanism in the adaptation of uterine vascular tone to pregnancy and hypoxia. There are four types of K+ channels identified in arterial smooth muscle cells: 1) voltage-dependent K+ (Kv) channels, 2) Ca2+-activated K+ (KCa) channels, 3) inward rectifier K+ (KIR) channels, and 4) ATP-sensitive K+ (KATP) channels. Pregnancy differentially augments the expression and activity of K+ channels via downregulation of protein kinase C signaling in uterine and other vascular beds, leading to decreased uterine vascular tone and increased uterine blood flow. Sex steroid hormones play an important role in the pregnancy-mediated alteration of K+ channels in the uterine vasculature. In addition, chronic hypoxia alters uterine vascular K+ channels expression and activities via modulation of steroid hormones/receptors-mediated signaling, resulting in increased uterine vascular tone during pregnancy. PMID:24063385

  18. Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels.

    PubMed

    Birdsong, William T; Fierro, Leonardo; Williams, Frank G; Spelta, Valeria; Naves, Ligia A; Knowles, Michelle; Marsh-Haffner, Josephine; Adelman, John P; Almers, Wolfhard; Elde, Robert P; McCleskey, Edwin W

    2010-11-18

    Ischemic pain--examples include the chest pain of a heart attack and the leg pain of a 30 s sprint--occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here, we show that another compound released from ischemic muscle, adenosine tri-phosphate (ATP), works together with acid by increasing the pH sensitivity of acid-sensing ion channel number 3 (ASIC3), the molecule used by sensory neurons to detect lactic acidosis. Our data argue that ATP acts by binding to P2X receptors that form a molecular complex with ASICs; the receptor on sensory neurons appears to be P2X5, an electrically quiet ion channel. Coincident detection of acid and ATP should confer sensory selectivity for ischemia over other conditions of acidosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. CARDIAC SULFONYLUREA RECEPTOR SHORT FORM-BASED CHANNELS CONFER A GLIBENCLAMIDE-INSENSITIVE KATP ACTIVITY

    PubMed Central

    Pu, Jie-Lin,; Ye, Bin; Kroboth, Stacie L.; McNally, Elizabeth M.; Makielski, Jonathan C.; Shi, Nian-Qing

    2008-01-01

    The cardiac sarcolemmal ATP-sensitive potassium channel (KATP) consists of a Kir6.2 pore and a SUR2 regulatory subunit, which is an ATP-binding cassette (ABC) transporter. KATP channels have been proposed to play protective roles during ischemic preconditioning. A SUR2 mutant mouse was previously generated by disrupting the first nucleotide-binding domain (NBD1), where a glibenclamide action site was located. In the mutant ventricular myocytes, a non-conventional glibenclamide-insensitive (10 μM), ATP-sensitive current (IKATPn) was detected in 33% of single-channel recordings with an average amplitude of 12.3±5.4 pA per patch, an IC50 to ATP inhibition at 10 μM, and a mean burst duration at 20.6±1.8 ms. Newly designed SUR2-isoform or variant-specific antibodies identified novel SUR2 short forms in the sizes of 28 and 68 kDa in addition to a 150-kDa long form in the sarcolemmal membrane of wild-type (WT) heart. We hypothesized that channels constituted by these short forms that lack NBD1, confer IKATPn. The absence of the long form in the mutant corresponded to loss of the conventional glibenclamide-sensitive KATP currents (IKATP) in isolated cardiomyocytes and vascular smooth muscle cells but the SUR2 short forms remained intact. Nested exonic RT-PCR in the mutant indicated that the short forms lacked NBD1 but contained NBD2. The SUR2 short forms co-immunoprecipitated with Kir6.1 or Kir6.2 suggesting that the short forms may function as hemi-transporters reported in other eukaryotic ABC transporter subgroups. Our results indicate that different KATP compositions may co-exist in cardiac sarcolemmal membrane. PMID:18001767

  20. The pure anti-oestrogen ICI 182,780 (Faslodex™) activates large conductance Ca2+-activated K+ channels in smooth muscle

    PubMed Central

    Dick, Gregory M

    2002-01-01

    Oestrogen and tamoxifen activate large conductance Ca2+-activated K+ (BKCa) channels in smooth muscle through a non-genomic mechanism that depends on the regulatory β1 subunit and an extracellular binding site. It is unknown whether a ‘pure' anti-oestrogen such as ICI 182,780 (Faslodex™), that has no known oestrogenic properties, would have any effect on BKCa channels. Using single channel patch clamp techniques on canine colonic myocytes, the hypothesis that ICI 182,780 would activate BKCa channels was tested. ICI 182,780 increased the open probability of BKCa channels in inside-out patches with an EC50 of 1 μM. These data suggest that molecules with the ability to bind nuclear oestrogen receptors, regardless of oestrogenic or anti-oestrogenic nature, activate BKCa channels through this nongenomic, membrane-delimited mechanism. The identity and characteristics of this putative binding site remain unclear; however, it has pharmacological similarity to oestrogen receptors α and β, as ICI 182,780 interacts with it. PMID:12145095

  1. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  2. External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba

    PubMed Central

    1994-01-01

    Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK- EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization. PMID:8035163

  3. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.

    PubMed

    Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling

    2013-07-19

    ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.

  4. Oral administration of clotrimazole and blockade of human erythrocyte Ca(++)-activated K+ channel: the imidazole ring is not required for inhibitory activity.

    PubMed

    Brugnara, C; Armsby, C C; Sakamoto, M; Rifai, N; Alper, S L; Platt, O

    1995-04-01

    The Ca(++)-activated K+ (Gardos) channel of erythrocytes plays a crucial role in K+ loss and dehydration of sickle erythrocytes; a potential therapeutic strategy would be to prevent dehydration by specifically blocking this channel. The authors report here on the activity of the clotrimazole (CLT) metabolite, 2-chlorophenyl-bis-phenyl-methanol, which accounts for a portion of the blockade of the erythrocyte Gardos channel when CLT is given orally to normal volunteers. Administration of a single oral dose of 1 g of CLT to four normal healthy volunteers (approximately 15 mg/kg of body weight) resulted in 51% to 92% peak inhibition of the Gardos channel measured in whole blood 2 to 4 hr later. Inhibition remained detectable for 24 to 34 hr. Inhibition of the Gardos channel correlated best with the summed levels of CLT plus its two major metabolites (P < .002; apparent IC50 = 0.65 +/- 0.19 microM). In vitro experiments with 2-chlorophenyl-bis-phenyl-methanol revealed dose-dependent inhibition of K transport and displacement of specifically bound 125I-charybdotoxin. Thus, the imidazole ring of CLT, which is required for antimycotic activity and associated with most of the historically observed toxicity, is not necessary for inhibition of the Gardos channel.

  5. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?

    PubMed

    Ravens, Ursula

    2017-11-01

    In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.

  6. KATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis.

    PubMed

    Vidal-Taboada, José M; Pugliese, Marco; Salvadó, Maria; Gámez, Josep; Mahy, Nicole; Rodríguez, Manuel J

    2018-02-28

    The ATP-sensitive potassium (K ATP ) channel directly regulates the microglia-mediated inflammatory response following CNS injury. To determine the putative role of the K ATP channel in amyotrophic lateral sclerosis (ALS) pathology, we investigated whether ALS induces changes in K ATP channel expression in the spinal cord and motor cortex. We also characterized new functional variants of human ABCC8, ABCC9, KCNJ8, and KCNJ11 genes encoding for the K ATP channel and analyzed their association with ALS risk, rate of progression, and survival in a Spanish ALS cohort. The expression of ABCC8 and KCNJ8 genes was enhanced in the spinal cord of ALS samples, and KCNJ11 increased in motor cortex of ALS samples, as determined by real-time polymerase chain reaction. We then sequenced the exons and regulatory regions of K ATP channel genes from a subset of 28 ALS patients and identified 50 new genetic variants. For the case-control association analysis, we genotyped five selected polymorphisms with predicted functional relevance in 185 Spanish ALS (134 spinal ALS and 51 bulbar ALS) patients and 493 controls. We found that bulbar ALS patients presenting the G/G genotype of the rs4148646 variant of ABCC8 and the T/T genotype of the rs5219 variant of KCNJ11 survived longer than other ALS patients presenting other genotypes. Also, the C/C genotype of the rs4148642 variant of ABCC8 and the T/C genotype of the rs148416760 variant of ABCC9 modified the progression rate in spinal ALS patients. Our results suggest that the K ATP channel plays a role in the pathophysiological mechanisms of ALS.

  7. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel

    PubMed Central

    Habermacher, Chloé; Martz, Adeline; Calimet, Nicolas; Lemoine, Damien; Peverini, Laurie; Specht, Alexandre; Cecchini, Marco; Grutter, Thomas

    2016-01-01

    P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as ‘molecular tweezers’ to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. DOI: http://dx.doi.org/10.7554/eLife.11050.001 PMID:26808983

  8. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations*

    PubMed Central

    Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling

    2016-01-01

    ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238

  9. Involvement of ectodomain Leu 214 in ATP binding and channel desensitization of the P2X4 receptor.

    PubMed

    Zhang, Longmei; Xu, Huijuan; Jie, Yanling; Gao, Chao; Chen, Wanjuan; Yin, Shikui; Samways, Damien S K; Li, Zhiyuan

    2014-05-13

    P2X receptors are trimeric ATP-gated cation permeable ion channels. When ATP binds, the extracellular head and dorsal fin domains are predicted to move closer to each other. However, there are scant functional data corroborating the role of the dorsal fin in ligand binding. Here using site-directed mutagenesis and electrophysiology, we show that a dorsal fin leucine, L214, contributes to ATP binding. Mutant receptors containing a single substitution of alanine, serine, glutamic acid, or phenylalanine at L214 of the rat P2X4 receptor exhibited markedly reduced sensitivities to ATP. Mutation of other dorsal fin side chains, S216, T223, and D224, did not significantly alter ATP sensitivity. Exposure of L214C to sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) or (2-aminoethyl) methanethiosulfonate hydrobromide in the absence of ATP blocked responses evoked by subsequent ATP application. In contrast, when MTSES(-) was applied in the presence of ATP, no current inhibition was observed. Furthermore, L214A also slightly reduced the inhibitory effect of the antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP, and the blockade was more rapidly reversible after washout. Certain L214 mutants also showed effects on current desensitization in the continued presence of ATP. L214I exhibited an accelerated current decline, whereas L214M exhibited a slower rate. Taken together, these data reveal that position L214 participates in both ATP binding and conformational changes accompanying channel opening and desensitization, providing compelling evidence that the dorsal fin domain indeed has functional properties that are similar to those previously reported for the body domains.

  10. Purification of charybdotoxine, a specific inhibitor of the high-conductance Ca/sup 2 +/-activated K/sup +/ channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.; Phillips, M.; Miller, C.

    1986-11-05

    Charybdotoxim is a high-affinity specific inhibitor of the high-conductance Ca/sup 2 +/-activated K/sup +/ channel found in the plasma membranes of many vertebrate cell types. Using Ca/sup 2 +/-activated K/sup +/ channels reconstituted into planar lipid bilayer membranes as an assay, the authors have purified the toxin from the venom of the scorpion Leiurus quinquestriatus by a two-step procedure involving chromatofocusing on SP-Sephadex, followed by reversed-phase high-performance liquid chromatography. Charybdotoxin is shown to be a highly basic protein with a mass of 10 kDa. Under the standard assay conditions, the purified toxin inhibits the Ca/sup 2 +/-activated K/sup +/ channelmore » with an apparent dissociation constant of 3.5 nM. The protein is unusually stable, with inhibitory potency being insensitive to boiling or exposure to organic solvents. The toxin's activity is sensitive to chymotrypsin treatment and to acylation of lysine groups. The protein may be radioiodinated without loss of activity.« less

  11. Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line.

    PubMed

    Wischmeyer, E; Lentes, K U; Karschin, A

    1995-04-01

    The basophilic leucaemia cell line RBL-2H3 exhibits a robust inwardly rectifying potassium current, IKIR, which is likely to be modulated by G proteins. We examined the physiological and molecular properties of this KIR conductance to define the nature of the underlying channel species. The macroscopic conductance revealed characteristics typical of classical K+ inward rectifiers of the IRK type. Channel gating was rapid, first order (tau approximately 1 ms at -100 mV) and steeply voltage dependent. Both activation potential and slope conductance were dependent on extracellular K+ concentration ([K+]o) and inward rectification persisted in the absence of internal Mg2+. The current was susceptible to a concentration- and voltage-dependent block by extracellular Na+, Cs+ and Ba2+. Initial IKIR whole-cell amplitudes as well as current rundown were dependent on the presence of 1 mM internal ATP. Perfusion of intracellular guanosine 5'-Q-(3-thiotriphosphate) (GTP[gamma S]) suppressed IKIR with an average half-time of decline of approximately 400 s. It was demonstrated that the dominant IRK-type 25 pS conductance channel was indeed suppressed by 100 microM preloaded GTP[gamma S]. Reverse transcriptase-polymerase chain reactions (RT-PCR) with RBL cell poly(A)+ RNA identified a full length K+ inward rectifier with 94% base pair homology to the recently cloned mouse IRK1 channel. It is concluded that RBL cells express a classical voltage-dependent IRK-type K+ inward rectifier RBL-IRK1 which is negatively controlled by G proteins.

  12. Cytosolic increased labile Zn2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion.

    PubMed

    Degirmenci, Sinan; Olgar, Yusuf; Durak, Aysegul; Tuncay, Erkan; Turan, Belma

    2018-07-01

    Intracellular labile (free) Zn 2+ -level ([Zn 2+ ] i ) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn 2+ ] i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn 2+ ] i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn 2+ ] i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn 2+ ] i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn 2+ ] i induced inhibitions in voltage-dependent K + -channel currents, such as transient outward K + -currents, I to , steady-state currents, I ss and inward-rectifier K + -currents, I K1 , reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both I ss and I K1 , while no effect on I to . However, the increased-[Zn 2+ ] i could induce marked activation in ATP-sensitive K + -channel currents, I KATP , depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn 2+ ] i with no change in mRNA level of Kv4.2, while the mRNA level of I KATP subunit, SUR2A was increased significantly with increased-[Zn 2+ ] i , being reversible with DTT. Overall we demonstrated that high-[Zn 2+ ] i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K + -currents, although activation of I KATP is playing cardioprotective role, through some biochemical changes in

  13. Involvement of dominant-negative spliced variants of the intermediate conductance Ca2+-activated K+ channel, K(Ca)3.1, in immune function of lymphoid cells.

    PubMed

    Ohya, Susumu; Niwa, Satomi; Yanagi, Ayano; Fukuyo, Yuka; Yamamura, Hisao; Imaizumi, Yuji

    2011-05-13

    The intermediate conductance Ca(2+)-activated K(+) channel (IK(Ca) channel) encoded by K(Ca)3.1 is responsible for the control of proliferation and differentiation in various types of cells. We identified novel spliced variants of K(Ca)3.1 (human (h) K(Ca)3.1b) from the human thymus, which were lacking the N-terminal domains of the original hK(Ca)3.1a as a result of alternative splicing events. hK(Ca)3.1b was significantly expressed in human lymphoid tissues. Western blot analysis showed that hK(Ca)3.1a proteins were mainly expressed in the plasma membrane fraction, whereas hK(Ca)3.1b was in the cytoplasmic fraction. We also identified a similar N terminus lacking K(Ca)3.1 variants from mice and rat lymphoid tissues (mK(Ca)3.1b and rK(Ca)3.1b). In the HEK293 heterologous expression system, the cellular distribution of cyan fluorescent protein-tagged hK(Ca)3.1a and/or YFP-tagged hK(Ca)3.1b isoforms showed that hK(Ca)3.1b suppressed the localization of hK(Ca)3.1a to the plasma membrane. In the Xenopus oocyte translation system, co-expression of hK(Ca)3.1b with hK(Ca)3.1a suppressed IK(Ca) channel activity of hK(Ca)3.1a in a dominant-negative manner. In addition, this study indicated that up-regulation of mK(Ca)3.1b in mouse thymocytes differentiated CD4(+)CD8(+) phenotype thymocytes into CD4(-)CD8(-) ones and suppressed concanavalin-A-stimulated thymocyte growth by down-regulation of mIL-2 transcripts. Anti-proliferative effects and down-regulation of mIL-2 transcripts were also observed in mK(Ca)3.1b-overexpressing mouse thymocytes. These suggest that the N-terminal domain of K(Ca)3.1 is critical for channel trafficking to the plasma membrane and that the fine-tuning of IK(Ca) channel activity modulated through alternative splicing events may be related to the control in physiological and pathophysiological conditions in T-lymphocytes.

  14. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion.

    PubMed

    Julio-Kalajzić, Francisca; Villanueva, Sandra; Burgos, Johanna; Ojeda, Margarita; Cid, L Pablo; Jentsch, Thomas J; Sepúlveda, Francisco V

    2018-02-01

    K + channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K + channel, but the secretory process survives after genetic inactivation of the K + channel in the mouse. Here we use double mutant mice to investigate which alternative K + channels come into action to compensate for the absence of KCNQ1-KCNE3 K + channels. Our data establish that whilst Ca 2+ -activated K Ca 3.1 channels are not involved, K 2P two-pore domain TASK-2 K + channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K + channels that contribute to the robustness of the cAMP-activated anion secretion process. Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl - channels and requires the simultaneous activity of basolateral K + channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K + channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 β-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K + conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca 2+ -dependent anion secretion can also be supported by Ca 2+ -dependent K Ca 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of K Ca 3.1 and KCNQ1-KCNE3 K + channel activity. We

  15. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.

    PubMed

    Cifelli, Carlo; Boudreault, Louise; Gong, Bing; Bercier, Jean-Philippe; Renaud, Jean-Marc

    2008-10-01

    Muscles deficient in ATP-dependent potassium (KATP) channels develop contractile dysfunctions during fatigue that may explain their apparently faster rate of fatigue compared with wild-type muscles. The objectives of this study were to determine: (1) whether the contractile dysfunctions, namely unstimulated force and depressed force recovery, result from excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) whether reducing the magnitude of these two contractile dysfunctions reduces the rate of fatigue in KATP channel-deficient muscles. To reduce Ca2+ influx, we lowered the extracellular Ca2+ concentration ([Ca2+]o) from 2.4 to 0.6 mM or added 1 microM verapamil, an L-type Ca2+ channel blocker. Flexor digitorum brevis (FDB) muscles deficient in KATP channels were obtained by exposing wild-type muscles to 10 microM glibenclamide or by using FDB from Kir6.2-/- mice. Fatigue was elicited with one contraction per second for 3 min at 37 degrees C. In wild-type FDB, lowered [Ca2+]o or verapamil did not affect the decrease in peak tetanic force and unstimulated force during fatigue and force recovery following fatigue. In KATP channel-deficient FDB, lowered [Ca2+]o or verapamil slowed down the decrease in peak tetanic force recovery, reduced unstimulated force and improved force recovery. In Kir6.2-/- FDB, the rate of fatigue became slower than in wild-type FDB in the presence of verapamil. The cell membrane depolarized from -83 to -57 mV in normal wild-type FDB. The depolarizations in some glibenclamide-exposed fibres were similar to those of normal FDB, while in other fibres the cell membrane depolarized to -31 mV in 80 s, which was also the time when these fibres supercontracted. It is concluded that: (1) KATP channels are crucial in preventing excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) they contribute to the decrease in force during fatigue.

  16. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.

    PubMed Central

    Vivaudou, M; Forestier, C

    1995-01-01

    1. The molecular mechanisms underlying pH regulation of skeletal muscle ATP-sensitive K+ (KATP) channels were studied using the patch clamp technique in the inside-out configuration. Two effects of intracellular protons were studied in detail: the decrease in magnitude of single-channel currents and the increase in open probability (Po) of nucleotide-inhibited channels. 2. The pH dependence of inward unit currents under different ionic conditions was in poor agreement with either a direct block of the pore by protons or an indirect proton-induced conformational change, but was compatible with the protonation of surface charges located near the cytoplasmic entrance of the pore. This latter electrostatic mechanism was modelled using Gouy-Chapman-Stern theory, which predicted the data accurately with a surface charge density of about 0.1 negative elementary charges per square nanometre and a pK (pH value for 50% effect) value for protonation of these charges of 6.25. The same mechanism, i.e. neutralization of negative surface charges by cation binding, could also account for the previously reported reduction of inward unit currents by Mg2+. 3. Intracellular alkalization did not affect Po of the KATP channels. Acidification increased Po. In the presence of 0.1 mM ATP (no Mg2+), the channel activation vs. pH relationship could be fitted with a sigmoid curve with a Hill coefficient slightly above 2 and a pK value of 6. This latter value was dependent on the ATP concentration, decreasing from 6.3 in 30 microM ATP to 5.3 in 1 microM ATP. 4. Conversely, the channel inhibition vs. ATP concentration curve was shifted to the right when the pH was lowered. At pH 7.1, the ATP concentration causing half-maximal inhibition was about 10 microM. At pH 5.4, it was about 400 microM. The Hill coefficient values remained slightly below 2. Similar effects were observed when ADP was used as the inhibitory nucleotide. 5. These results confirm that a reciprocal competitive link exists

  17. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  18. Age Decline in the Activity of the Ca2+-sensitive K+ Channel of Human Red Blood Cells

    PubMed Central

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M.; Lew, Virgilio L.

    2007-01-01

    The Ca2+-sensitive K+ channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca2+ loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age–activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K+ permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age–density distribution pattern during dehydration. However, when Ca2+ loads were used to induce maximal K+ fluxes via Gardos channels in all RBCs (F max), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F max was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age–activity relation revealed a monotonic decline in F max with cell age, with a broad quasi-Gaussian F max distribution among the RBCs. PMID:17470662

  19. Age decline in the activity of the Ca2+-sensitive K+ channel of human red blood cells.

    PubMed

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M; Lew, Virgilio L

    2007-05-01

    The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age-activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K(+) permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age-density distribution pattern during dehydration. However, when Ca(2+) loads were used to induce maximal K(+) fluxes via Gardos channels in all RBCs (F(max)), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F(max) was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age-activity relation revealed a monotonic decline in F(max) with cell age, with a broad quasi-Gaussian F(max) distribution among the RBCs.

  20. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    PubMed

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  1. Analysis of function-related interactions of ATP, sodium and potassium ions with Na+- and K+-transporting ATPase studied with a thiol reagent as tool.

    PubMed

    Grosse, R; Eckert, K; Malur, J; Repke, K R

    1978-01-01

    protective effect of ATP. The K+ affinity of the enzyme-ATP complex is by more than two orders of magnitude higher than that of free enzyme. Na+ ligandation of the K+-liganded enzyme-ATP complex reverses the effect of K+ ligandation and produces a protective effect which distinctly surpasses that of the complexation of free enzyme with ATP. Hence, the enzyme molecule carries simultaneously ionophoric centres for both Na+ and K+. 5. The findings that per enzyme molecule ionophoric centres for Na+ and K+, and two catalytic centres with anticooperative interaction coexist corroborate the corresponding basic predictions of the flip-flop concept of (NaK)-ATPase pump mechanism, and explain some peculiar kinetic features of transport and enzyme activities of (NaK)-ATPase.

  2. Phosphatidylinositol (4,5)Bisphosphate Inhibits K+-Efflux Channel Activity in NT1 Tobacco Cultured Cells1[W][OA

    PubMed Central

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F.; Moran, Nava

    2009-01-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed “cytosolic” Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: “Low PIs” had depressed levels of these PIs, and “High PIs” had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 μm) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5–4 μm), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells. PMID:19052153

  3. Chronic Hypoxia Suppresses Pregnancy-Induced Upregulation of Large-Conductance Ca2+-Activated K+ Channel Activity in Uterine Arteries

    PubMed Central

    Hu, Xiang-Qun; Xiao, Daliao; Zhu, Ronghui; Huang, Xiaohui; Yang, Shumei; Wilson, Sean M.; Zhang, Lubo

    2013-01-01

    Our previous study demonstrated that increased Ca2+-activated K+ (BKCa) channel activity played a key role in the normal adaptation of reduced myogenic tone of uterine arteries in pregnancy. The present study tested the hypothesis that chronic hypoxia during gestation inhibits pregnancy-induced upregulation of BKCa channel function in uterine arteries. Resistance-sized uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (≈300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia during gestation significantly inhibited pregnancy-induced upregulation of BKCa channel activity and suppressed BKCa channel current density in pregnant uterine arteries. This was mediated by a selective downregulation of BKCa channel β1 subunit in the uterine arteries. In accordance, hypoxia abrogated the role of the BKCa channel in regulating pressure-induced myogenic tone of uterine arteries that was significantly elevated in pregnant animals acclimatized to chronic hypoxia. In addition, hypoxia abolished the steroid hormone-mediated increase in the β1 subunit and BKCa channel current density observed in nonpregnant uterine arteries. Although the activation of protein kinase C inhibited BKCa channel current density in pregnant uterine arteries of normoxic sheep, this effect was ablated in the hypoxic animals. The results demonstrate that selectively targeting BKCa channel β1 subunit plays a critical role in the maladaption of uteroplacental circulation caused by chronic hypoxia, which contributes to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia. PMID:22665123

  4. Physiology and pathophysiology of ClC-K/barttin channels.

    PubMed

    Fahlke, Christoph; Fischer, Martin

    2010-01-01

    ClC-K channels form a subgroup of anion channels within the ClC family of anion transport proteins. They are expressed predominantly in the kidney and in the inner ear, and are necessary for NaCl resorption in the loop of Henle and for K+ secretion by the stria vascularis. Subcellular distribution as well as the function of these channels are tightly regulated by an accessory subunit, barttin. Barttin improves the stability of ClC-K channel protein, stimulates the exit from the endoplasmic reticulum and insertion into the plasma membrane and changes its function by modifying voltage-dependent gating processes. The importance of ClC-K/barttin channels is highlighted by several genetic diseases. Dysfunctions of ClC-K channels result in Bartter syndrome, an inherited human condition characterized by impaired urinary concentration. Mutations in the gene encoding barttin, BSND, affect the urinary concentration as well as the sensory function of the inner ear. Surprisingly, there is one BSND mutation that causes deafness without affecting renal function, indicating that kidney function tolerates a reduction of anion channel activity that is not sufficient to support normal signal transduction in inner hair cells. This review summarizes recent work on molecular mechanisms, physiology, and pathophysiology of ClC-K/barttin channels.

  5. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  6. The effects of the putative potassium channel activator WAY-120,491 on 86Rb efflux from the rabbit aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodge, N.J.; Cohen, R.B.; Havens, C.N.

    1991-02-01

    WAY-120,491 ((-)-(3S-trans)-2-(3,4-dihydro-3-hydroxy-2,2-dimethyl-6-(trifluoromet hox y)- 2H-1-benzopyran-4-yl)-2,3-dihydro-1H-isoindol-1-one) is a novel antihypertensive agent. We have investigated the effects of this compound on contractile force and 86Rb efflux, using the rabbit aorta, in order to assess its K channel activator properties. K channel blockers and ionic conditions thought to modulate specific K channel types have been used to provide insight into the K channel(s) affected by this compound. WAY-120,491 evoked relaxation of precontracted rabbit aortic rings and increased the rate of 86Rb efflux from strips of rabbit aorta; both effects occurring in a concentration-dependent manner. The WAY-120,491 (1 microM)-induced 86Rb efflux was inhibited bymore » tetraethylammonium (IC50 = 0.38 mM), indicating that the increased efflux was mediated by K channels. Glyburide completely blocked the WAY-120,491 (1 microM)-evoked 86Rb efflux with 50% block occurring at a concentration of 0.48 microM. Glyburide also antagonized the WAY-120,491-induced relaxation of aortic rings. Omission of Ca from the solution bathing the aorta did not inhibit the WAY-120,491 induced 86Rb efflux but rather caused an augmentation of the response. It is concluded that WAY-120,491 may be classified as a K channel opener. Furthermore, the K channel upon which WAY-120,491 acts exhibits some characteristics normally associated with the ATP regulated K channel although the involvement of other K channel types has not been ruled out.« less

  7. Interaction of KCNE subunits with the KCNQ1 K+ channel pore

    PubMed Central

    Panaghie, Gianina; Tai, Kwok-Keung; Abbott, Geoffrey W

    2006-01-01

    KCNQ1 α subunits form functionally distinct potassium channels by coassembling with KCNE ancillary subunits MinK and MiRP2. MinK-KCNQ1 channels generate the slowly activating, voltage-dependent cardiac IKs current. MiRP2-KCNQ1 channels form a constitutively active current in the colon. The structural basis for these contrasting channel properties, and the mechanisms of α subunit modulation by KCNE subunits, are not fully understood. Here, scanning mutagenesis located a tryptophan-tolerant region at positions 338–340 within the KCNQ1 pore-lining S6 domain, suggesting an exposed region possibly amenable to interaction with transmembrane ancillary subunits. This hypothesis was tested using concomitant mutagenesis in KCNQ1 and in the membrane-localized ‘activation triplet’ regions of MinK and MiRP2 to identify pairs of residues that interact to control KCNQ1 activation. Three pairs of mutations exerted dramatic effects, ablating channel function or either removing or restoring control of KCNQ1 activation. The results place KCNE subunits close to the KCNQ1 pore, indicating interaction of MiRP2-72 with KCNQ1-338; and MinK-59,58 with KCNQ1-339, 340. These data are consistent either with perturbation of the S6 domain by MinK or MiRP2, dissimilar positioning of MinK and MiRP2 within the channel complex, or both. Further, the results suggest specifically that two of the interactions, MiRP2-72/KCNQ1-338 and MinK-58/KCNQ1-340, are required for the contrasting gating effects of MinK and MiRP2. PMID:16308347

  8. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    PubMed

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  9. Mechanism of pain relief by low-power infrared irradiation: ATP is an IR-target molecule in nociceptive neurons.

    PubMed

    Yachnev, Igor L; Plakhova, Vera B; Podzorova, Svetlana A; Shelykh, Tatiana N; Rogachevsky, Ilya V; Krylov, Boris V

    2012-01-01

    Effects of infrared (IR) radiation generated by a low-power CO2-laser on the membrane of cultured dissociated nociceptive neurons of newborn rat spinal ganglia were investigated using the whole-cell patch-clamp method. Low-power IR radiation diminished the voltage sensitivity of activation gating machinery of slow sodium channels (Na(v)1.8). Ouabain known to block both transducer and pumping functions of Na+,K+-ATPase eliminated IR irradiation effects. The molecular mechanism of interaction of CO2-laser radiation with sensory membrane was proposed. The primary event of this interaction is the process of energy absorption by ATP molecules. The transfer of vibrational energy from Na+,K+- ATPase-bound and vibrationally excited ATP molecules to Na+,K+-ATPase activates this enzyme and converts it into a signal transducer. This effect leads to a decrease in the voltage sensitivity of Na(v)1.8 channels. The effect of IR-radiation was elucidated by the combined application of a very sensitive patch-clamp method and an optical facility with a controlled CO2-laser. As a result, the mechanism of interaction of non-thermal low-power IR radiation with the nociceptive neuron membrane is suggested.

  10. DCEBIO facilitates myogenic differentiation via intermediate conductance Ca2+ activated K+ channel activation in C2C12 myoblasts.

    PubMed

    Tanaka, Shoko; Ono, Yuko; Sakamoto, Kazuho

    2017-04-01

    Membrane hyperpolarization is suggested to be a trigger for skeletal muscle differentiation. We investigated whether DCEBIO, an opener of the small/intermediate conductance Ca 2+ activated K + (SK Ca /IK Ca ) channels, increase myogenic differentiation in C2C12 skeletal myoblasts. DCEBIO significantly increased myotube formation, protein expression level of myosin heavy chain II, and mRNA expression level of myogenin in C2C12 myoblasts cultured in differentiation medium. DCEBIO induced myotube formation and hyperpolarization were reduced by the IK Ca channel blocker TRAM-34, but not by the SK Ca channel blocker apamin. These findings show that DCEBIO increases myogenic differentiation by activating IK Ca channels. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Dog red blood cells: Na and K diffusion potentials with extracellular ATP

    PubMed Central

    1977-01-01

    External ATP causes a prompt increase in the Na and K permeability of dog red blood cells. By manipulating intra- and extracellular ion composition it is possible to observe ATP-induced net fluxes which can be explained in terms of the contribution of Na or K diffusion potentials to the membrane potential. Measurements of membrane voltage by a fluorescent dye technique confirm the existence of such potentials. A rough calculation of chloride permeability gives a value of the order of 10(-8) cm/s, which agrees with results in other species. The cells appear to be somewhat more permeable to bromide than to chloride. PMID:853285

  12. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  13. ATP analogues at a glance.

    PubMed

    Bagshaw, C

    2001-02-01

    ATP has long been known to play a central role in the energetics of cells both in transduction mechanisms and in metabolic pathways, and is involved in regulation of enzyme, channel and receptor activities. Numerous ATP analogues have been synthesised to probe the role of ATP in biosystems (Yount, 1975; Jameson and Eccleston, 1997; Bagshaw, 1998). In general, two contrasting strategies are employed. Modifications may be introduced deliberately to change the properties of ATP (e.g. making it non-hydrolysable) so as to perturb the chemical steps involved in its action. Typically these involve modification of the phosphate chain. Alternatively, derivatives (e.g. fluorescent probes) are designed to report on the action of ATP but have a minimal effect on its properties. ATP-utilising systems vary enormously in their specificity; so what acts as a good analogue in one case may be very poor in another. The accompanying poster shows a representative selection of derivatives that have been synthesised and summarises their key properties.

  14. Multiple roles for the Na,K-ATPase subunits, Atp1a1 and Fxyd1, during brain ventricle development

    PubMed Central

    Chang, Jessica T.; Lowery, Laura Anne; Sive, Hazel

    2012-01-01

    Formation of the vertebrate brain ventricles requires both production of cerebrospinal fluid (CSF), and its retention in the ventricles. The Na,K-ATPase is required for brain ventricle development, and we show here that this protein complex impacts three associated processes. The first requires both the alpha subunit (Atp1a1) and the regulatory subunit, Fxyd1, and leads to formation of a cohesive neuroepithelium, with continuous apical junctions. The second process leads to modulation of neuroepithelial permeability, and requires Atp1a1, which increases permeability with partial loss of function and decreases it with overexpression. In contrast, fxyd1 overexpression does not alter neuroepithelial permeability, suggesting that its activity is limited to neuroepithelium formation. RhoA regulates both neuroepithelium formation and permeability, downstream of the Na,K-ATPase. A third process, likely to be CSF production, is RhoA-independent, requiring Atp1a1, but not Fxyd1. Consistent with a role for Na,K-ATPase pump function, the inhibitor ouabain prevents neuroepithelium formation, while intracellular Na+ increases after Atp1a1 and Fxyd1 loss of function. These data include the first reported role for Fxyd1 in the developing brain, and indicate that the Na,K-ATPase regulates three aspects of brain ventricle development essential for normal function - formation of a cohesive neuroepithelium, restriction of neuroepithelial permeability, and production of CSF. PMID:22683378

  15. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broadmore » distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.« less

  16. Vascular Inward Rectifier K+ Channels as External K+ Sensors in the Control of Cerebral Blood Flow

    PubMed Central

    LONGDEN, THOMAS A.; NELSON, MARK T.

    2015-01-01

    For decades it has been known that external potassium (K+) ions are rapid and potent vasodilators that increase cerebral blood flow (CBF). Recent studies have implicated the local release of K+ from astrocytic endfeet—which encase the entirety of the parenchymal vasculature—in the dynamic regulation of local CBF during neurovascular coupling (NVC). It has been proposed that the activation of strong inward rectifier K+ (KIR) channels in the vascular wall by external K+ is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K+ sensors in the control of CBF. We propose that K+ is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR2 subtype in particular, are present in both the endothelial and smooth muscle cells of parenchymal arterioles and propose that this dual positioning of KIR2 channels increases the robustness of the vasodilation to external K+, enables the endothelium to be actively engaged in neurovascular coupling, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF. PMID:25641345

  17. Changes by short-term hypoxia in the membrane properties of pyramidal cells and the levels of purine and pyrimidine nucleotides in slices of rat neocortex; effects of agonists and antagonists of ATP-dependent potassium channels.

    PubMed

    Pissarek, M; Garcia de Arriba, S; Schäfer, M; Sieler, D; Nieber, K; Illes, P

    1998-10-01

    In a first series of experiments, intracellular recordings were made from pyramidal cells in layers II-III of the rat primary somatosensory cortex. Superfusion of the brain slice preparations with hypoxic medium (replacement of 95%O2-5%CO2 with 95%N2-5%CO2) for up to 30 min led to a time-dependent depolarization (HD) without a major change in input resistance. Short periods of hypoxia (5 min) induced reproducible depolarizations which were concentration-dependently depressed by an agonist of ATP-dependent potassium (K(ATP)) channels, diazoxide (3-300 microM). The effect of 30 but not 300 microM diazoxide was reversed by washout. Tolbutamide (300 microM), an antagonist of K(ATP) channels, did not alter the HD when given alone. It did, however, abolish the inhibitory effect of diazoxide (30 microM) on the HD. Neither diazoxide (3-300 microM) nor tolbutamide (300 microM) influenced the membrane potential or the apparent input resistance of the neocortical pyramidal cells. Current-voltage (I-V) curves constructed at a membrane potential of -90 mV by injecting both de- and hyperpolarizing current pulses were not altered by diazoxide (30 microM) or tolbutamide (300 microM). Moreover, normoxic and hypoxic I-V curves did not cross each other, excluding a reversal of the HD at any membrane potential between -130 and -50 mV. The hypoxia-induced change of the I-V relation was the same both in the absence and presence of tolbutamide (300 microM). In a second series of experiments, nucleoside di- and triphosphates separated with anion exchange HPLC were measured in the neocortical slices. After 5 min of hypoxia, levels of nucleoside triphosphates declined by 29% (GTP), 34% (ATP), 44% (UTP) and 58% (CTP). By contrast, the levels of nucleoside diphosphates either did not change (UDP) or increased by 13% (GDP) and 40% (ADP). In slices subjected to 30 min of hypoxia the triphosphate levels continued to decrease, while the levels of GDP and ADP returned to control values. The tri

  18. Big-conductance Ca2+-activated K+ channels in physiological and pathophysiological urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao

    2016-01-01

    ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440

  19. Piezo1 regulates mechanotransductive release of ATP from human RBCs.

    PubMed

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E; Wan, Jiandi

    2015-09-22

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.

  20. Molecular mechanisms underlying pimaric acid-induced modulation of voltage-gated K+ channels.

    PubMed

    Sakamoto, Kazuho; Suzuki, Yoshiaki; Yamamura, Hisao; Ohya, Susumu; Muraki, Katsuhiko; Imaizumi, Yuji

    2017-04-01

    Voltage-gated K + (K V ) channels, which control firing and shape of action potentials in excitable cells, are supposed to be potential therapeutic targets in many types of diseases. Pimaric acid (PiMA) is a unique opener of large conductance Ca 2+ -activated K + channel. Here, we report that PiMA modulates recombinant rodent K V channel activity. The enhancement was significant at low potentials (<0 mV) but not at more positive potentials. Application of PiMA significantly shifted the voltage-activation relationships (V 1/2 ) of rodent K V 1.1, 1.2, 1.3, 1.4, 1.6 and 2.1 channels (K V 1.1-K V 2.1) but K V 4.3 to lower potentials and prolonged their half-decay times of the deactivation (T 1/2D ). The amino acid sequence which is responsible for the difference in response to PiMA was examined between K V 1.1-K V 2.1 and K V 4.3 by site-directed mutagenesis of residues in S5 and S6 segments of Kv1.1. The point mutation of Phe 332 into Tyr mimics the effects of PiMA on V 1/2 and T 1/2D and also abolished the further change by addition of PiMA. The results indicate that PiMA enhances voltage sensitivity of K V 1.1-K V 2.1 channels and suggest that the lipophilic residues including Phe 332 in S5 of K V 1.1-K V 2.1 channels may be critical for the effects of PiMA, providing beneficial information for drug development of K V channel openers. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels.

    PubMed

    Bogdan, Roman; Veith, Christine; Clauss, Wolfgang; Fronius, Martin

    2008-09-01

    Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.

  2. Inhibition of Large-Conductance Ca2+-Activated K+ Channels by Nanomolar Concentrations of Ag+S⃞

    PubMed Central

    Xia, Xiaoming; Lingle, Christopher J.

    2010-01-01

    Silver has been widely used in various medical products because of its antibacterial properties. However, there is only limited information concerning silver-related cytotoxicity. In this study we show that Ag+ at low nanomolar concentrations (<10 nM) strongly inhibits the activity of large-conductance Ca2+-activated K+ channels (BK) (Slo1), a widely expressed and physiologically important potassium channel. The Ag+ inhibition is caused by irreversible modification on cytosolically accessible parts of the BK channel. At least four intracellular cysteines are involved in this process. In addition, at least one of these key cysteines is not accessible to the bulkier thiolate-active reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide. One of the cysteine-less constructs generated in this study shows gating properties similar to wild-type BK channel but with much lower Ag+ sensitivity, in which the Ag+ modification rate was decreased by approximately 20-fold. The results from the present study suggest a possible contribution of BK channel inhibition to the cytotoxicity of Ag+ in humans and other species. PMID:20729303

  3. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.

    PubMed

    Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin

    2018-06-01

    ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow.

    PubMed

    Longden, Thomas A; Nelson, Mark T

    2015-04-01

    For decades it has been known that external K(+) ions are rapid and potent vasodilators that increase CBF. Recent studies have implicated the local release of K(+) from astrocytic endfeet-which encase the entirety of the parenchymal vasculature-in the dynamic regulation of local CBF during NVC. It has been proposed that the activation of KIR channels in the vascular wall by external K(+) is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K(+) sensors in the control of CBF. We propose that K(+) is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR 2 subtype in particular, are present in both the endothelial and SM cells of parenchymal arterioles and propose that this dual positioning of KIR 2 channels increases the robustness of the vasodilation to external K(+), enables the endothelium to be actively engaged in NVC, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF. © 2015 John Wiley & Sons Ltd.

  5. Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP.

    PubMed Central

    Sokolov, V S; Apell, H J; Corrie, J E; Trentham, D R

    1998-01-01

    Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), from which the relatively slow rate of ATP release limits analysis of processes in the pump mechanism controlled by rate constants greater than 100 s(-1) at physiological pH. Here Na,K-ATPase was reinvestigated using the P3-[1-(3,5-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP (DMB-caged ATP), which has an ATP release rate of >10(5) s(-1). Under otherwise identical conditions, photorelease of ATP from DMB-caged ATP showed faster kinetics of the transient current compared to that from NPE-caged ATP. With DMB-caged ATP, transient currents had rate profiles that were relatively insensitive to pH and the concentration of caged compound. Rate constants of ATP binding and of the E1 to E2 conformational change were compatible with earlier studies. Rate constants of enzyme phosphorylation and ADP-dependent dephosphorylation were 600 s(-1) and 1.5 x 10(6) M(-1) s(-1), respectively, at pH 7.2 and 22 degrees C. PMID:9591656

  6. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  7. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  8. The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses.

    PubMed

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-07-01

    The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca 2+ gated outward K + currents. To quantify how the voltage-dependent activation of the K + channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K + conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K + channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K + channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. BAD and KATP channels regulate neuron excitability and epileptiform activity

    PubMed Central

    Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L

    2018-01-01

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity. PMID:29368690

  10. Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney.

    PubMed

    Li, Yue; Hu, Hongxiang; Butterworth, Michael B; Tian, Jin-Bin; Zhu, Michael X; O'Neil, Roger G

    2016-01-01

    The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which

  11. The Antinociceptive Effect of a Tapentadol-Ketorolac Combination in a Mouse Model of Trigeminal Pain is Mediated by Opioid Receptors and ATP-Sensitive K+ Channels.

    PubMed

    Barreras-Espinoza, Israel; Soto-Zambrano, José Alberto; Serafín-Higuera, Nicolás; Zapata-Morales, Ramón; Alonso-Castro, Ángel; Bologna-Molina, Ronell; Granados-Soto, Vinicio; Isiordia-Espinoza, Mario A

    2017-02-01

    Preclinical Research The aim of the present study was to evaluate the antinoceptive interaction between the opioid analgesic, tapentadol, and the NSAID, ketorolac, in the mouse orofacial formalin test. Tapentadol or ketorolac were administered ip 15 min before orofacial formalin injection. The effect of the individual drugs was used to calculate their ED 50 values and different proportions (tapentadol-ketorolac in 1:1, 3:1, and 1:3) were assayed in the orofacial test using isobolographic analysis and interaction index to evaluate the interaction between the drugs. The combination showed antinociceptive synergistic and additive effects in the first and second phase of the orofacial formalin test. Naloxone and glibenclamide were used to evaluate the possible mechanisms of action and both partially reversed the antinociception produced by the tapentadol-ketorolac combination. These data suggest that the mixture of tapentadol and ketorolac produces additive or synergistic interactions via opioid receptors and ATP-sensitive K + channels in the orofacial formalin-induced nociception model in mice. Drug Dev Res 78 : 63-70, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Role of potassium ion channels in detrusor smooth muscle function and dysfunction

    PubMed Central

    Petkov, Georgi V.

    2013-01-01

    Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field. PMID:22158596

  13. Fluorescent ATP analog mant-ATP reports dynein activity in the isolated Chlamydomonas axoneme

    NASA Astrophysics Data System (ADS)

    Feofilova, Maria; Howard, Jonathon

    Eukaryotic flagella are long rod-like extensions of cells, which play a fundamental role in single cell movement, as well as in fluid transport. Flagella contain a highly evolutionary conserved mechanical structure called the axoneme. The motion of the flagellum is generated by dynein motor proteins located all along the length of the axoneme. How the force production of motors is controlled spatially and temporally is still an open question. Therefore, monitoring dynein activity in the axonemal structure is expected to provide novel insights in regulation of the beat. We use high sensitivity fluorescence microscopy to monitor the binding and hydrolysis kinetics of the fluorescently labeled ATP analogue mant-ATP (2'(3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate), which is known to support dynein activity. By studying the kinetics of mant-ATP fluorescence, we identified distinct mant-ATP binding sites in the axoneme. The application of this method to axonemes with reduced amounts of dynein, showed evidence that one of the sites is associated with binding to dynein. In the future, we would like to use this method to find the spatial distribution of dynein activity in the axoneme.

  14. Impact of the F508del mutation on ovine CFTR, a Cl− channel with enhanced conductance and ATP-dependent gating

    PubMed Central

    Cai, Zhiwei; Palmai-Pallag, Timea; Khuituan, Pissared; Mutolo, Michael J; Boinot, Clément; Liu, Beihui; Scott-Ward, Toby S; Callebaut, Isabelle; Harris, Ann; Sheppard, David N

    2015-01-01

    Cross-species comparative studies are a powerful approach to understanding the epithelial Cl− channel cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF). Here, we investigate the single-channel behaviour of ovine CFTR and the impact of the most common CF mutation, F508del-CFTR, using excised inside-out membrane patches from transiently transfected CHO cells. Like human CFTR, ovine CFTR formed a weakly inwardly rectifying Cl− channel regulated by PKA-dependent phosphorylation, inhibited by the open-channel blocker glibenclamide. However, for three reasons, ovine CFTR was noticeably more active than human CFTR. First, single-channel conductance was increased. Second, open probability was augmented because the frequency and duration of channel openings were increased. Third, with enhanced affinity and efficacy, ATP more strongly stimulated ovine CFTR channel gating. Consistent with these data, the CFTR modulator phloxine B failed to potentiate ovine CFTR Cl− currents. Similar to its impact on human CFTR, the F508del mutation caused a temperature-sensitive folding defect, which disrupted ovine CFTR protein processing and reduced membrane stability. However, the F508del mutation had reduced impact on ovine CFTR channel gating in contrast to its marked effects on human CFTR. We conclude that ovine CFTR forms a regulated Cl− channel with enhanced conductance and ATP-dependent channel gating. This phylogenetic analysis of CFTR structure and function demonstrates that subtle changes in structure have pronounced effects on channel function and the consequences of the CF mutation F508del. Key points Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR), a gated pathway for chloride movement, causes the common life-shortening genetic disease cystic fibrosis (CF). Towards the development of a sheep model of CF, we have investigated the function of sheep CFTR. We found that

  15. Propofol inhibits carbachol-induced chloride secretion by directly targeting the basolateral K+ channel in rat ileum epithelium.

    PubMed

    Tang, S-H; Wang, H-Y; Sun, H; An, N; Xiao, L; Sun, Q; Zhao, D-B

    2017-02-01

    Propofol is a widely used intravenous general anesthetic. Acetylcholine (ACh) is critical in controlling epithelial ion transport. This study was to investigate the effects of propofol on ACh-evoked secretion in rat ileum epithelium. The Ussing chamber technique was used to investigate the effects of propofol on carbachol (CCh)-evoked short-circuit currents (Isc). Propofol (10 -2 -10 -6  mol/L) attenuated CCh-evoked Isc of rat ileum mucosa in a dose-dependent manner. The inhibitory effect of propofol was only evident after application to the serosal side. Pretreatment with tetrodotoxin (TTX, 0.3 μmol/L, n=5) had no effect on propofol-induced inhibitory effect, whereas serosal application of K + channel inhibitor, glibenclamide, but not, an ATP-sensitive K + channel inhibitor, largely reduced the inhibitory effect of propofol. In addition, pretreatment with either hexamethonium bromide (HB, nicotinic nACh receptor antagonist) or Cl - channel blockers niflumic acid and cystic fibrosis transmembrane conductance regulator (inh)-172 did not produce any effect on the propofol-induced inhibitory effect. Propofol inhibits CCh-induced intestinal secretion by directly targeting basolateral K + channels. © 2016 John Wiley & Sons Ltd.

  16. Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture

    PubMed Central

    Lee, Dong Hyeon; Kong, In Deok; Lee, Joong-Woo

    2008-01-01

    Purpose This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). Materials and Methods The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. Results The dominant inward rectifier K+ channel subtypes were Kir2.1 and Kir6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100 µM) and enhanced by high K+ (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300 µM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. Conclusion HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process. PMID:18581597

  17. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A activemore » site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.« less

  18. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  19. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes

    PubMed Central

    Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh

    2014-01-01

    In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322

  20. The role of maxiK channels in carotid body chemotransduction.

    PubMed

    Peers, Chris; Wyatt, Christopher N

    2007-07-01

    MaxiK channels are a unique class of K(+) channels activated by both voltage and intracellular Ca(2+). Derived from a single gene, their diversity arises from extensive splicing, and their wide distribution has led to their implication in a large variety of cellular functions. In the carotid body, they have been proposed to contribute to the resting membrane potential of type I cells, and also to be O(2) sensitive. Thus, they have been suggested to have an important role in hypoxic chemotransduction. Their O(2) sensitivity is preserved when the channels are expressed in HEK 293 cells, permitting detailed studies of candidate mechanisms underlying hypoxic inhibition of maxiK channels. In this article, we review evidence for and against an important role for maxiK channels in chemotransduction. We also consider different mechanisms proposed to account for hypoxic channel inhibition and suggest that, although our understanding of this important physiological process has advanced significantly in recent years, there remain important, unanswered questions as to the importance of maxiK in carotid body chemoreception.

  1. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  2. A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis.

    PubMed

    Li, Legong; Kim, Beom-Gi; Cheong, Yong Hwa; Pandey, Girdhar K; Luan, Sheng

    2006-08-15

    Nutrient sensing is critical for plant adaptation to the environment. Because of extensive farming and erosion, low content of mineral nutrients such as potassium (K(+)) in soils becomes a limiting factor for plant growth. In response to low-K conditions, plants enhance their capability of K(+) uptake through an unknown signaling mechanism. Here we report the identification of a Ca(2+)-dependent pathway for low-K response in Arabidopsis. We are not aware of any other example of a molecular pathway for a nutrient response in plants. Earlier genetic analyses revealed three genes encoding two Ca(2+) sensors (CBL1 and CBL9) and their target protein kinase (CIPK23) to be critical for plant growth on low-K media and for stomatal regulation, indicating that these calcium signaling components participate in the low-K response and turgor regulation. In this study, we show that the protein kinase CIPK23 interacted with, and phosphorylated, a voltage-gated inward K(+) channel (AKT1) required for K(+) acquisition in Arabidopsis. In the Xenopus oocyte system, our studies showed that interacting calcium sensors (CBL1 and CBL9) together with target kinase CIPK23, but not either component alone, activated the AKT1 channel in a Ca(2+)-dependent manner, connecting the Ca(2+) signal to enhanced K(+) uptake through activation of a K(+) channel. Disruption of both CBL1 and CBL9 or CIPK23 gene in Arabidopsis reduced the AKT1 activity in the mutant roots, confirming that the Ca(2+)-CBL-CIPK pathway functions to orchestrate transporting activities in planta according to external K(+) availability.

  3. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    PubMed

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  4. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells

    PubMed Central

    Hoffman, Joseph F.; Joiner, William; Nehrke, Keith; Potapova, Olga; Foye, Kristen; Wickrema, Amittha

    2003-01-01

    The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes, again showed only the presence of SK4. Western blot analysis, with an anti-SK4 antibody, showed that human erythroid progenitor cells and, importantly, mature human red blood cell ghost membranes, both expressed the SK4 protein. The Gardos channel is known to turn on, given inside Ca2+, in the presence but not the absence of external \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{K}}_{{\\mathrm{o}}}^{+}\\end{equation*}\\end{document} and remains refractory to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{K}}_{{\\mathrm{o}}}^{+}\\end{equation*}\\end{document} added after exposure to inside Ca2+. Heterologously expressed SK4, but not SK3, also shows this behavior. In inside–out patches of red cell membranes, the open probability (Po) of the Gardos channel is markedly reduced when the temperature is raised from 27 to 37°C. Net K+ efflux of intact red cells is also reduced by increasing temperature, as are the Po values of inside–out patches of Chinese hamster ovary cells expressing SK4 (but not SK3). Thus the envelope of evidence indicates that SK4 is the gene that codes for the Gardos channel in human red blood cells. This channel is important

  5. Effects of lubiprostone on pacemaker activity of interstitial cells of cajal from the mouse colon.

    PubMed

    Jiao, Han-Yi; Kim, Dong Hyun; Ki, Jung Suk; Ryu, Kwon Ho; Choi, Seok; Jun, Jae Yeoul

    2014-08-01

    Lubiprostone is a chloride (Cl(-)) channel activator derived from prostaglandin E1 and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid EP1, EP2, EP3, and EP4 antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [K(+)] channel blocker) and apamin (a calcium [Ca(2+)]-dependent K(+) channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive K(+) channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive K(+) channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive K(+) channel through a prostanoid EP receptor-independent mechanism.

  6. Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

    PubMed Central

    Jiao, Han-Yi; Kim, Dong Hyun; Ki, Jung Suk; Ryu, Kwon Ho; Choi, Seok

    2014-01-01

    Lubiprostone is a chloride (Cl-) channel activator derived from prostaglandin E1 and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid EP1, EP2, EP3, and EP4 antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [K+] channel blocker) and apamin (a calcium [Ca2+]-dependent K+ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive K+ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive K+ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive K+ channel through a prostanoid EP receptor-independent mechanism. PMID:25177167

  7. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.

    PubMed

    Dale, T J; Cryan, J E; Chen, M X; Trezise, D J

    2002-11-01

    The bee venom toxin apamin is an important drug tool for characterising small conductance Ca(2+)-activated K(+) channels (SK channels). In recombinant expression systems both rSK2 and rSK3 channels are potently blocked by apamin, whilst the sensitivity of SK1 channels is somewhat less clear. In the present study we have conducted a detailed analysis by patch clamp electrophysiology of the effects of apamin on human SK channels (SK1, SK2 and SK3) stably expressed in Chinese hamster ovary (CHO-K1) cells. CHO-K1 cell lines expressing either hSK1, 2 or 3 channels were first validated using specific antibodies and Western blotting. Specific protein bands of a size corresponding to the predicted channel tetramer (approximately 250-290 kDa) were detected. In each cell line, but not wild-type untransfected cells, large, time-independent inwardly rectifying Ca(2+)-dependent K(+) currents were observed under voltage-clamp. In CHO-hSK1, this current was markedly reduced by apamin (IC(50) value 8 nM), however, a significant fraction of the current remained unblocked (39+/-5%), even at saturating concentrations (1 microM apamin). The apamin-sensitive and -insensitive currents possess very similar biophysical and pharmacological properties. Each are Ca(2+)-dependent, inwardly rectify and have relative ionic permeabilities of K(+)>Cs(+)>Li(+)=Na(+). Both components were resistant to block by charybdotoxin and iberiotoxin, known IK and BK channel blockers, but were attenuated by the tricyclic antidepressant cyproheptadine (>95% block at 1 mM). The SK channel opener 1-EBIO could still produce channel activation in the presence of apamin. Importantly, hSK2 and hSK3 channels also exhibit partial apamin sensitivity in our experimental paradigm (IC(50) values of 0.14 nM and 1.1 nM, respectively, and maximal percentage inhibition values of 47+/-7% and 58+/-9%, respectively). Our data indicate that, at least in a recombinant expression system, all three SK channels can be partially

  8. Synthesis and biological activity of novel 1,3-benzoxazine derivatives as K+ channel openers.

    PubMed

    Yamamoto, S; Hashiguchi, S; Miki, S; Igata, Y; Watanabe, T; Shiraishi, M

    1996-04-01

    A new series of 1,3-benzoxazine derivatives with a 2-pyridine 1-oxide group at C4 was designed to explore novel K+ channel openers. Synthesis was carried out by using a palladium(0)-catalyzed carbon-carbon bond formation reaction of imino-triflates with organozinc reagents and via a new one-pot 1,3-benzoxazine skeleton formation reaction of benzoylpyridines. The compounds were tested for vasorelaxant activity in tetraethylammonium chloride (TEA) and BaCl2-induced and high KCl-induced contraction of rat aorta to identify potential K+ channel openers, and also for oral hypotensive effects in spontaneously hypertensive rats. An electron-withdrawing group with the proper shape at C6 and a methyl or halogeno group at C7 of the 1,3-benzoxazine nucleus were required for the development of optimal vasorelaxant and hypotensive activity. In particular, 2-(6-bromo-7-chloro-2,2-dimethyl-2H-1,3-benzoxazin-4-yl)pyridine 1-oxide (71) showed more potent vasorelaxant activity (EC50 = 0.14 microM) against TEA and BaCl2-induced contraction and longer-lasting hypotensive effects than cromakalim (1).

  9. Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium

    PubMed Central

    Hanrahan, JW; Wills, NK; Phillips, JE; Lewis, SA

    1986-01-01

    K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. PMID:2420918

  10. Effective pore size and radius of capture for K+ ions in K-channels

    PubMed Central

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  11. Effective pore size and radius of capture for K(+) ions in K-channels.

    PubMed

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-02-02

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.

  12. Inhibition of plasma membrane Ca(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2+)-occluded state.

    PubMed

    Moreira, Otacilio C; Rios, Priscila F; Barrabin, Hector

    2005-07-15

    The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.

  13. Monitoring ATP dynamics in electrically active white matter tracts

    PubMed Central

    Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes

    2017-01-01

    In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271

  14. Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using V‐ATPase generated voltage gradient as the driving force

    PubMed Central

    Zhong, Xi Zoë; Cao, Qi; Sun, Xue

    2016-01-01

    Key points SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation.P2X4 receptors act as lysosomal ion channels activated by luminal ATP.SLC17A9‐mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V‐ATPase inhibitor.SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V‐ATPase as the driving force to transport ATP into the lysosome to activate P2X4. Abstract The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9‐mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V‐ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9. PMID:27477609

  15. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels.

    PubMed

    Yamane, Satoshi; Kanno, Toshio; Nakamura, Hiroyuki; Fujino, Hiromichi; Murayama, Toshihiko

    2014-10-05

    Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.

    PubMed

    Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S

    2018-01-01

    Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.

  17. Oleate induces KATP channel-dependent hyperpolarization in mouse hypothalamic glucose-excited neurons without altering cellular energy charge.

    PubMed

    Dadak, Selma; Beall, Craig; Vlachaki Walker, Julia M; Soutar, Marc P M; McCrimmon, Rory J; Ashford, Michael L J

    2017-03-27

    The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K + channels (K ATP ). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of K ATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by K ATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces K ATP- dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Quantification of the functional expression of the Ca2+ -activated K+ channel KCa 3.1 on microglia from adult human neocortical tissue.

    PubMed

    Blomster, Linda V; Strøbaek, Dorte; Hougaard, Charlotte; Klein, Jessica; Pinborg, Lars H; Mikkelsen, Jens D; Christophersen, Palle

    2016-12-01

    The K Ca 3.1 channel (KCNN4) is an important modulator of microglia responses in rodents, but no information exists on functional expression on microglia from human adults. We isolated and cultured microglia (max 1% astrocytes, no neurons or oligodendrocytes) from neocortex surgically removed from epilepsy patients and employed electrophysiological whole-cell measurements and selective pharmacological tools to elucidate functional expression of K Ca 3.1. The channel expression was demonstrated as a significant increase in the voltage-independent current by NS309, a K Ca 3.1/K Ca 2 activator, followed by full inhibition upon co-application with NS6180, a highly selective K Ca 3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed K Ca 3.1, and the difference in current between full activation and inhibition (ΔK Ca 3.1) was estimated at 292 ± 48 pA at -40 mV (n = 75), which equals at least 585 channels per cell. Serial K Ca 3.1 activation/inhibition significantly hyperpolarized/depolarized the membrane potential. The isolated human microglia were potently activated by lipopolysaccharide (LPS) shown as a prominent increase in TNF-α production. However, incubation with LPS neither changed the K Ca 3.1 current nor the fraction of K Ca 3.1 expressing cells. In contrast, the anti-inflammatory cytokine IL-4 slightly increased the K Ca 3.1 current per cell, but as the membrane area also increased, there was no significant change in channel density. A large fraction of the microglia also expressed a voltage-dependent current sensitive to the K Ca 1.1 modulators NS1619 and Paxilline and an inward-rectifying current with the characteristics of a K ir channel. The high functional expression of K Ca 3.1 in microglia from epilepsy patients accentuates the need for further investigations of its role in neuropathological processes. GLIA 2016;64:2065-2078. © 2016 Wiley Periodicals, Inc.

  19. ATP-dependent potassium channels and mitochondrial permeability transition pores play roles in the cardioprotection of theaflavin in young rat.

    PubMed

    Ma, Huijie; Huang, Xinli; Li, Qian; Guan, Yue; Yuan, Fang; Zhang, Yi

    2011-07-01

    Previous studies have confirmed that tea polyphenols possess a broad spectrum of biological functions such as anti-oxidative, anti-bacterial, anti-tumor, anti-inflammatory, anti-viral and cardiovascular protection activities, as well as anti-cerebral ischemia-reperfusion injury properties. But the effect of tea polyphenols on ischemia/reperfusion heart has not been well elucidated. The aim of this study was to investigate the protective effect of theaflavin (TF1) and its underlying mechanism. Young male Sprague-Dawley (SD) rats were randomly divided into five groups: (1) the control group; (2) TF1 group; (3) glibenclamide + TF1 group; (4) 5-hydroxydecanoate (5-HD) + TF1 group; and (5) atractyloside + TF1 group. The Langendorff technique was used to record cardiac function in isolated rat heart before and after 30 min of global ischemia followed by 60 min of reperfusion. The parameters of cardiac function, including left ventricular developing pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal differentials of LVDP (± LVdP/dt (max)) and coronary flow (CF), were measured. The results showed: (1) compared with the control group, TF1 (10, 20, 40 μmol/l) displayed a better recovery of cardiac function after ischemia/reperfusion in a concentration-dependent manner. At 60 min of reperfusion, LVDP, ± LVdP/dt (max) and CF in the TF1 group were much higher than those in the control group, whereas left ventricular end-diastolic pressure (LVEDP) in the TF1 group was lower than that in the control group (P < 0.01). (2) Pretreatment with glibenclamide (10 μmol/l), a K(ATP) antagonist, completely abolished the cardioprotective effects of TF1 (20 μmol/l). Also, most of the effects of TF1 (20 μmol/l) on cardiac function after 60 min of reperfusion were reversed by 5-HD (100 μmol/l), a selective mitochondria K(ATP) antagonist. (3) Atractyloside (20 μmol/l), a mitochondrial permeability transition pore (mPTP) opener, administered at the beginning of 15

  20. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms.

    PubMed

    McClenaghan, Conor; Hanson, Alex; Sala-Rabanal, Monica; Roessler, Helen I; Josifova, Dragana; Grange, Dorothy K; van Haaften, Gijs; Nichols, Colin G

    2018-02-09

    The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9 , the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which K ATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium ( 86 Rb + ) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases K ATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in K ATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel

    NASA Astrophysics Data System (ADS)

    Long, Stephen B.; Campbell, Ernest B.; MacKinnon, Roderick

    2005-08-01

    Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase β subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and β subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the β subunit.

  2. External K+ dependence of strong inward rectifier K+ channel conductance is caused not by K+ but by competitive pore blockade by external Na.

    PubMed

    Ishihara, Keiko

    2018-06-15

    Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.

  3. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  4. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    PubMed Central

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  5. Basolateral membrane K+ channels in renal epithelial cells

    PubMed Central

    Devor, Daniel C.

    2012-01-01

    The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

  6. [Crystallography of ATP hydrolysis mechanism in rat brain kinesin].

    PubMed

    Wan, Qun; Zhu, Pingting; Lü, Houning; Chen, Xinhong

    2014-04-01

    Rat brain kinesin is a conventional kinesin that uses the energy from ATP hydrolysis to walk along the microtubule progressively. Studying how the chemical energy in ATP is utilized for mechanical movement is important to understand this moving function. The monomeric motor domain, rK354, was crystallized. An ATP analog, AMPPNP, was soaked in the active site. Comparing the complex structure of rK354 x AMPPNP and that of rK354ADP, a hypothesis is proposed that Glu237 in the Switch II region sensors the presence of gamma-phosphate and transfers the signal to the microtubule binding region.

  7. Characterization of a novel 132-bp exon of the human maxi-K channel.

    PubMed

    Korovkina, V P; Fergus, D J; Holdiman, A J; England, S K

    2001-07-01

    The large-conductance Ca2+-activated voltage-dependent K+ channel (maxi-K channel) induces a significant repolarizing current that buffers cell excitability. This channel can derive its diversity by alternative splicing of its transcript-producing isoforms that differ in their sensitivity to voltage and intracellular Ca2+. We have identified a novel 132-bp exon of the maxi-K channel from human myometrial cells that encodes 44 amino acids within the first intracellular loop of the channel protein. Distribution analysis reveals that this exon is expressed predominantly in human smooth muscle tissues with the highest abundance in the uterus and aorta and resembles the previously reported distribution of the total maxi-K channel transcript. Single-channel K+ current measurements in fibroblasts transfected with the maxi-K channel containing this novel 132-bp exon demonstrate that the presence of this insert attenuates the sensitivity to voltage and intracellular Ca2+. Alternative splicing to introduce this 132-bp exon into the maxi-K channel may elicit another mode to modulate cell excitability.

  8. Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    We have investigated the pharmacological properties and targets of p2y purinoceptors in Xenopus embryo spinal neurons. ATP reversibly inhibited the voltage-gated K+ currents by 10 ± 3 %. UTP and the analogues α,β-methylene-ATP and 2-methylthio-ATP also inhibited K+ currents. This agonist profile is similar to that reported for a p2y receptor cloned from Xenopus embryos. Voltage-gated K+ currents could be inhibited by ADP (9 ± 0.8 %) suggesting that a further p2y1-like receptor is also present in the embryo spinal cord. Unexpectedly we found that α,β-methylene-ADP, often used to block the ecto-5′-nucleotidase, also inhibited voltage-gated K+ currents (7 ± 2.3 %). This inhibition was occluded by ADP, suggesting that α,β-methylene-ADP is an agonist at p2y1 receptors. We have directly studied the properties of the ecto-5′-nucleotidase in Xenopus embryo spinal cord. Although ADP inhibited this enzyme, α,β-methylene-ADP had no action. Caution therefore needs to be used when interpreting the actions of α,β-methylene-ADP as it has previously unreported agonist activity at P2 receptors. Xenopus spinal neurons possess fast and slow voltage-gated K+ currents. By using catechol to selectively block the fast current, we completely occluded the actions of ATP and ADP. Furthermore, the purines appeared to block only the fast relaxation component of the tail currents. We therefore conclude that the p2y receptors target only the fast component of the delayed rectifier. As ATP breakdown to ADP is rapid and ADP may accumulate at higher levels than ATP, the contribution of ADP acting through p2y1-like receptors may be an important additional mechanism for the control of spinal motor pattern generation. PMID:11986373

  9. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness.

    PubMed

    Dalamon, Viviana; Fiori, Mariana C; Figueroa, Vania A; Oliva, Carolina A; Del Rio, Rodrigo; Gonzalez, Wendy; Canan, Jonathan; Elgoyhen, Ana B; Altenberg, Guillermo A; Retamal, Mauricio A

    2016-05-01

    Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.

  10. K(+) channels of squid giant axons open by an osmotic stress in hypertonic solutions containing nonelectrolytes.

    PubMed

    Kukita, Fumio

    2011-08-01

    In hypertonic solutions made by adding nonelectrolytes, K(+) channels of squid giant axons opened at usual asymmetrical K(+) concentrations in two different time courses; an initial instantaneous activation (I (IN)) and a sigmoidal activation typical of a delayed rectifier K(+) channel (I (D)). The current-voltage relation curve for I (IN) was fitted well with Goldman equation described with a periaxonal K(+) concentration at the membrane potential above -10 mV. Using the activation-voltage curve obtained from tail currents, K(+) channels for I (IN) are confirmed to activate at the membrane potential that is lower by 50 mV than those for I (D). Both I (IN) and I (D) closed similarly at the holding potential below -100 mV. The logarithm of I (IN)/I (D) was linearly related with the osmolarity for various nonelectrolytes. Solute inaccessible volumes obtained from the slope increased with the nonelectrolyte size from 15 to 85 water molecules. K(+) channels representing I (D) were blocked by open channel blocker tetra-butyl ammonium (TBA) more efficiently than in the absence of I (IN), which was explained by the mechanism that K(+) channels for I (D) were first converted to those for I (IN) by the osmotic pressure and then blocked. So K(+) channels for I (IN) were suggested to be derived from the delayed rectifier K(+) channels. Therefore, the osmotic pressure is suggested to exert delayed-rectifier K(+) channels to open in shrinking rather hydrophilic flexible parts outside the pore than the pore itself, which is compatible with the recent structure of open K(+) channel pore.

  11. Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.

    PubMed

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-07-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.

  12. Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages

    PubMed Central

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-01-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499

  13. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair

    PubMed Central

    Girault, Alban

    2013-01-01

    Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531

  14. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers.

    PubMed

    da Rosa Maggi Sant'Helena, Bruna; Guarido, Karla L; de Souza, Priscila; Crestani, Sandra; da Silva-Santos, J Eduardo

    2015-10-15

    We evaluated the effects of K+ channel blockers in the vascular reactivity of in vitro perfused kidneys, as well as on the influence of vasoactive agents in the renal blood flow of rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both norepinephrine and phenylephrine had the ability to increase the vascular perfusion pressure reduced in kidneys of rats subjected to CLP at 18 h and 36 h before the experiments. The non-selective K+ channel blocker tetraethylammonium, but not the Kir6.1 blocker glibenclamide, normalized the effects of phenylephrine in kidneys from the CLP 18 h group. Systemic administration of tetraethylammonium, glibenclamide, or the KCa1.1 blocker iberiotoxin, did not change the renal blood flow in control or septic rats. Norepinephrine or phenylephrine also had no influence on the renal blood flow of septic animals, but its injection in rats from the CLP 18 h group previously treated with either glibenclamide or iberiotoxin resulted in an exacerbated reduction in the renal blood flow. These results suggest an abnormal functionality of K+ channels in the renal vascular bed in sepsis, and that the blockage of different subtypes of K+ channels may be deleterious for blood perfusion in kidneys, mainly when associated with vasoactive drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  16. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport.

    PubMed

    Pottosin, Igor; Dobrovinskaya, Oxana

    2014-05-15

    Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channel's inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Dependence of renal (Na+ + k+)-adenosine triphosphatase activity on thyroid status.

    PubMed

    Lo, S C; August, T R; Liberman, U A; Edelman, I S

    1976-12-25

    In thyroidectomized rats, a single injection of L-2,,5,2'-triiodothyronine (T3) (50mug/100 g body weight) elicited at 45% increase in (Na+ + k+)-dependent adenosine triphosphatase (NaK-ATPase) activity of the membrane-rich fraction of renal cortex at the optimal time of response, 48 h after injection. Three successive doses of T3 (50 mug/100 g body weight), given on alternate days, increased NaK-ATPase by 67% in the renal cortex but had no significant effect on the outer medulla or the papilla. Moreover, T3 had no effect on Mg2+-dependent adenosine trisphatase (MgATPase) in cortex, cedulla, or papilla. Three doses of T3 (50 mug/100 g body weight) given on alternate days to thyroidectomized rats elecited a 134, 79, and 46% increase in Vmax for ATP, Na4, and K+, respectively. There were no changes in the Km for ATP or the K1/2 values for Na+ and K+. Two methods were used to estimate the effect of T3 on the number of NaK-ATPase units (assumed to represent the number of Na+ pump sites); rat renal plasma membrane fractions were incubated with [gamma-32P]ATP, Mg2+, and Na+; the 32P-labeled membrane protein yeild was quantitatively dependent on Na+ and was hydrolyzed on addition of K+. There was a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of phosphorylated intermediate formed, in renal cortical membrane fractions from thyroidectomized rats given T3 or the diluent. There was also a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of [3H]ouabain specifically bound (Na+-, Mg2+-, APT-dependent) to the NaK-ATPase preparation. Injection of T3 resulted in a 70% increase in NaK-ATPase activity, a 79% increase in formation of the phosphorylated intermediate, and a 65% increase in the [H]ouabain specifically bound to the NaK-ATPase system. The T3-dependent increases in Vmax for ATP, Na+, and K+ and the proportionate increases in the phosphorylated intermediate and in the amount of [3H]ouabain bound

  18. Neurokinin B potentiates ATP-activated currents in rat DRG neurons.

    PubMed

    Wang, M J; Xiong, S H; Li, Z W

    2001-12-27

    This study aimed to explore whether NKB could modulate the responses mediated by ATP receptor (P2X purinoceptor). Whole-cell patch clamp and repatch experiments were performed on cultured rat DRG neurons. The majority of neurons examined were sensitive both to ATP and to NKB (77.1%, 54/70). NKB preapplied could potentiate ATP-activated currents (I(ATP)) markedly; this effect was concentration-dependent and could be blocked by SR 142801, an NK3 receptor antagonist. Preapplication of 0.001, 0.01, 0.1 and 1.0 microM NKB increased ATP-activated currents by 55.1+/-18.8, 75.2+/-17.4, 84.1+/-18.8 and 81.0+/-21.7%, respectively. The concentration-response curves for ATP with and without preapplication of NKB show that: (1) preapplication of NKB shifted the curve upwards; (2) the maximal amplitude of I(ATP) with NKB preapplication increased by 78.5%, while the threshold value remained unchanged; (3) the EC(50) values of the two curves were very close (44 vs. 42 microM). Intracellular dialysis of H-7 by using repatch clamp technique could block the potentiation of I(ATP) by NKB. It suggests that this potentiating effect was caused by phosphorylation of ATP receptor, which resulted from the activation of G protein coupled NK3 receptor and consequential intracellular signal transduction cascade.

  19. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    PubMed

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk.

    PubMed

    Vedovato, Natascia; Cliff, Edward; Proks, Peter; Poovazhagi, Varadarajan; Flanagan, Sarah E; Ellard, Sian; Hattersley, Andrew T; Ashcroft, Frances M

    2016-07-01

    The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.

  1. The intermediate-conductance Ca2+ -activated K+ channel (KCa3.1) in vascular disease.

    PubMed

    Tharp, D L; Bowles, D K

    2009-01-01

    The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) was first described by Gardos in erythrocytes and later confirmed to play a significant role in T-cell activation and the immune response. More recently, K(Ca)3.1 has been characterized in numerous cell types which contribute to the development of vascular disease, such as T-cells, B-cells, endothelial cells, fibroblasts, macrophages, and dedifferentiated smooth muscle cells (SMCs). Physiologically, K(Ca)3.1 has been demonstrated to play a role in acetylcholine and endothelium-derived hyperpolarizing factor (EDHF) induced hyperpolarization, and thus control of blood pressure. Pathophysiologically, K(Ca)3.1 contributes to proliferation of T-cells, B-cells, fibroblasts, and vascular SMCs, as well as the migration of SMCs and macrophages and platelet coagulation. Recent studies have indicated that blockade of K(Ca)3.1, by specific blockers such as TRAM-34, could prove to be an effective treatment for vascular disease by inhibiting T-cell activation as well as preventing proliferation and migration of macrophages, endothelial cells, and SMCs. This vasculoprotective potential of K(Ca)3.1 inhibition has been confirmed in both rodent and swine models of restenosis. In this review, we will discuss the physiological and pathophysiological role of K(Ca)3.1 in cells closely associated with vascular biology, and the effect of K(Ca)3.1 blockers on the initiation and progression of vascular disease.

  2. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties

    PubMed Central

    Blin, Sandy; Ben Soussia, Ismail; Kim, Eun-Jin; Brau, Frédéric; Kang, Dawon; Lesage, Florian; Bichet, Delphine

    2016-01-01

    The tandem of pore domain in a weak inwardly rectifying K+ channel (Twik)-related acid-arachidonic activated K+ channel (TRAAK) and Twik-related K+ channels (TREK) 1 and TREK2 are active as homodimers gated by stretch, fatty acids, pH, and G protein-coupled receptors. These two-pore domain potassium (K2P) channels are broadly expressed in the nervous system where they control excitability. TREK/TRAAK KO mice display altered phenotypes related to nociception, neuroprotection afforded by polyunsaturated fatty acids, learning and memory, mood control, and sensitivity to general anesthetics. These channels have emerged as promising targets for the development of new classes of anesthetics, analgesics, antidepressants, neuroprotective agents, and drugs against addiction. Here, we show that the TREK1, TREK2, and TRAAK subunits assemble and form active heterodimeric channels with electrophysiological, regulatory, and pharmacological properties different from those of homodimeric channels. Heteromerization occurs between all TREK variants produced by alternative splicing and alternative translation initiation. These results unveil a previously unexpected diversity of K2P channels that will be challenging to analyze in vivo, but which opens new perspectives for the development of clinically relevant drugs. PMID:27035965

  3. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio

    PubMed Central

    Tantama, Mathew; Martínez-François, Juan Ramón; Mongeon, Rebecca; Yellen, Gary

    2013-01-01

    The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically-encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (KATP) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and KATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research. PMID:24096541

  4. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  5. Simulated-use validation of a sponge ATP method for determining the adequacy of manual cleaning of endoscope channels.

    PubMed

    Alfa, Michelle J; Olson, Nancy

    2016-05-04

    The objective of this study was to validate the relative light unit (RLU) cut-off of adequate cleaning of flexible colonoscopes for an ATP (adenosine tri-phosphate) test kit that used a sponge channel collection method. This was a simulated-use study. The instrument channel segment of a flexible colonoscope was soiled with ATS (artificial test soil) containing approximately 8 Log10 Enterococcus faecalis and Pseudomonas aeruginosa/mL. Full cleaning, partial cleaning and no cleaning were evaluated for ATP, protein and bacterial residuals. Channel samples were collected using a sponge device to assess residual RLUs. Parallel colonoscopes inoculated and cleaned in the same manner were sampled using the flush method to quantitatively assess protein and bacterial residuals. The protein and viable count benchmarks for adequate cleaning were <6.4 ug/cm(2) and <4 Log10 cfu/cm(2). The negative controls for the instrument channel, over the course of the study remained low with on average 14 RLUs, 0.04 ug/cm(2) protein and 0.025 Log10 cfu/cm(2). Partial cleaning resulted in an average of 6601 RLUs, 3.99 ug/cm(2), 5.25 Log10 cfu/cm(2) E. faecalis and 4.48 Log10 cfu/cm(2) P. aeruginosa. After full cleaning, the average RLU was 29 (range 7-71 RLUs) and the average protein, E. faecalis and P. aeruginosa residuals were 0.23 ug/cm(2), 0.79 and 1.61 Log10 cfu/cm(2), respectively. The validated cut-off for acceptable manual cleaning was set at ≤100 RLUs for the sponge collected channel ATP test kit.

  6. ATP Dependence of Na+/H+ Exchange

    PubMed Central

    Demaurex, Nicolas; Romanek, Robert R.; Orlowski, John; Grinstein, Sergio

    1997-01-01

    We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-d-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In

  7. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.

    PubMed

    Kaiserová, K; Lakatos, B; Peterajová, E; Orlický, J; Varecka, L'

    2002-12-01

    In this study the properties of the 45Ca2+ influx in human red blood cells (RBC) induced by NaVO3 or ATP-depletion were compared. Both NaVO3-induced and ATP-depletion-induced 45Ca2+ influxes were in the range 10(-6)-10(-5) mol Ca2+ x l(-1)cells x h(-1). The saturatability of ATP-depletion-induced 45Ca2+ influx with Ca2+ was much less pronounced than that of NaVO3-induced 45Ca2+ influx. The NaVO3-induced Ca2+ influx was sensitive to nifedipine (IC50 = 50 micromol/l) and Cu2+ (IC50 = 9 micromol/l) but these inhibitors had only a marginal effect when ATP-depletion was used as the Ca2+ influx inducer. On the other hand, polymyxin B (PXB) (1-5 mg/ml) strongly stimulated the ATP-depletion-induced 45Ca2+ influx whereas its effect on the NaVO3-induced Ca2+ influx was biphasic, with about 10% stimulation at lower PXB concentrations and an inhibition of 40% at higher concentrations. SDS-PAGE revealed that both NaVO3 and PXB induced changes in the protein phosphorylation pattern in the presence of Ca2+. NaVO3 stimulated the phosphorylation of several proteins and this effect was counteracted by PXB. The comparison of the kinetics and temperature dependencies of the Gárdos effect induced by NaVO3 and the ATP-depletion showed marked differences. The ability of NaVO3 to induce the Gárdos effect dramatically increased in ATP-depleted cells. These findings indicate that the 45Ca2+ influxes preceding the activation of the Ca2+-activated K+ efflux (Gárdos effect) stimulated by NaVO3 and by ATP-depletion, are mediated by different transport pathways. In addition, obtained results demonstrate that ATP-depletion and NaVO3-treatment exert additive action in triggering the Gárdos effect.

  8. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells.

    PubMed

    Hoffman, Joseph F; Joiner, William; Nehrke, Keith; Potapova, Olga; Foye, Kristen; Wickrema, Amittha

    2003-06-10

    The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes, again showed only the presence of SK4. Western blot analysis, with an anti-SK4 antibody, showed that human erythroid progenitor cells and, importantly, mature human red blood cell ghost membranes, both expressed the SK4 protein. The Gardos channel is known to turn on, given inside Ca2+, in the presence but not the absence of external Ko+ and remains refractory to Ko+ added after exposure to inside Ca2+. Heterologously expressed SK4, but not SK3, also shows this behavior. In inside-out patches of red cell membranes, the open probability (Po) of the Gardos channel is markedly reduced when the temperature is raised from 27 to 37 degrees C. Net K+ efflux of intact red cells is also reduced by increasing temperature, as are the Po values of inside-out patches of Chinese hamster ovary cells expressing SK4 (but not SK3). Thus the envelope of evidence indicates that SK4 is the gene that codes for the Gardos channel in human red blood cells. This channel is important pathophysiologically, because it represents the major pathway for cell shrinkage via KCl and water loss that occurs in sickle cell disease.

  9. Distal Potassium Handling Based On Flow Modulation of Maxi-K Channel Activity

    PubMed Central

    Rodan, Aylin R.; Huang, Chou-Long

    2011-01-01

    Purpose of review Studies on the mechanisms of distal K+ secretion have highlighted the importance of the renal outer-medullary K+ (ROMK) and maxi-K channels. This review considers several human disorders characterized by hypo- and hyperkalemia, as well as mouse models of these disorders, and the mechanisms by which ROMK and maxi-K may be dysregulated. Recent findings Analysis of knockout mice lacking ROMK, a model for type II Bartter’s syndrome, has shown a role for maxi-K in distal K+ secretion. Knockout mice lacking either the α or β1 subunits of maxi-K also show deficits in flow-dependent K+ secretion. Analysis of transgenic and knock-in mouse models of pseudohypoaldsoteronism type II (PHA2), in which mutant forms of with-no-lysine kinase 4 (WNK4) are expressed, suggests ways in which ROMK and maxi-K may be dysregulated to result in hyperkalemia. Modeling studies also provide insights into the role of Na+ delivery versus flow in K+ secretion. Summary The importance of both ROMK and maxi-K to distal K+ secretion is now well-established, but the relative role each of these two channels plays in normal and diseased states has not been definitively established. Analysis of human and animal model data can generate hypotheses for future experiments. PMID:19448535

  10. Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides.

    PubMed

    de Wet, Heidi; Proks, Peter

    2015-10-01

    Sulphonylureas stimulate insulin secretion from pancreatic β-cells primarily by closing ATP-sensitive K(+) channels in the β-cell plasma membrane. The mechanism of channel inhibition by these drugs is unusually complex. As direct inhibitors of channel activity, sulphonylureas act only as partial antagonists at therapeutic concentrations. However, they also exert an additional indirect inhibitory effect via modulation of nucleotide-dependent channel gating. In this review, we summarize current knowledge and recent advances in our understanding of the molecular mechanism of action of these drugs. © 2015 Authors; published by Portland Press Limited.

  11. Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation

    PubMed Central

    Song, Min Seok; Choi, Seon Young; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes. PMID:26849432

  12. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  13. Luminescent Immunoprecipitation System (LIPS) for Detection of Autoantibodies Against ATP4A and ATP4B Subunits of Gastric Proton Pump H+,K+-ATPase in Atrophic Body Gastritis Patients

    PubMed Central

    Lahner, Edith; Brigatti, Cristina; Marzinotto, Ilaria; Carabotti, Marilia; Scalese, Giulia; Davidson, Howard W; Wenzlau, Janet M; Bosi, Emanuele; Piemonti, Lorenzo; Annibale, Bruno; Lampasona, Vito

    2017-01-01

    Objectives: Circulating autoantibodies targeting the H+/K+-ATPase proton pump of gastric parietal cells are considered markers of autoimmune gastritis, whose diagnostic accuracy in atrophic body gastritis, the pathological lesion of autoimmune gastritis, remains unknown. This study aimed to assess autoantibodies against ATP4A and ATP4B subunits of parietal cells H+, K+-ATPase in atrophic body gastritis patients and controls. Methods: One-hundred and four cases with atrophic body gastritis and 205 controls were assessed for serological autoantibodies specific for ATP4A or ATP4B subunits using luminescent immunoprecipitation system (LIPS). Recombinant luciferase-reporter-fused-antigens were expressed by in vitro transcription-translation (ATP4A) or after transfection in Expi293F cells (ATP4B), incubated with test sera, and immune complexes recovered using protein-A-sepharose. LIPS assays were compared with a commercial enzyme immunoassay (EIA) for parietal cell autoantibodies. Results: ATP4A and ATP4B autoantibody titers were higher in cases compared to controls (P<0.0001). The area under the receiver-operating characteristic curve was 0.98 (95% CI 0.965–0.996) for ATP4A, and 0.99 (95% CI 0.979–1.000) for ATP4B, both higher as compared with that of EIA: 0.86 (95% CI 0.809–0.896), P<0.0001. Sensitivity-specificity were 100–89% for ATP4A and 100–90% for ATP4B assay. Compared with LIPS, EIA for parietal cell autoantibodies showed a lower sensitivity (72%, P<0.0001) at a similar specificity (92%, P=0.558). Conclusions: Positivity to both, ATP4A and ATP4B autoantibodies is closely associated with atrophic body gastritis. Both assays had the highest sensitivity, at the cost of diagnostic accuracy (89 and 90% specificity), outperforming traditional EIA. Once validated, these LIPS assays should be valuable screening tools for detecting biomarkers of damaged atrophic oxyntic mucosa. PMID:28102858

  14. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  15. The K+ channel KZM2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells.

    PubMed

    Gao, Yong-Qiang; Wu, Wei-Hua; Wang, Yi

    2017-11-01

    Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K + channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K + channels in maize guard cells is limited. In the present study, we identified two KAT1-like Shaker K + channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K + (K in ) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K + currents. However, KZM2 can interact with KZM3 forming heteromeric K in channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2-KZM3 heteromeric channel became slower than the KZM3 channel. Patch-clamping results showed that the inward K + currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the K in channels in maize guard cells. KZM2 and KZM3 may form heteromeric K in channel and control stomatal opening in maize. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate.

    PubMed

    Lange, Sofie C; Winkler, Ulrike; Andresen, Lars; Byhrø, Mathilde; Waagepetersen, Helle S; Hirrlinger, Johannes; Bak, Lasse K

    2015-12-01

    We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis seems to be negatively affected by the presence of lactate alone, suggesting that glucose is needed to support neuronal energy metabolism during activation.

  17. IGF-1 activates hEAG K(+) channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation.

    PubMed

    Borowiec, Anne-Sophie; Hague, Frédéric; Harir, Noria; Guénin, Stéphanie; Guerineau, François; Gouilleux, Fabrice; Roudbaraki, Morad; Lassoued, Kaiss; Ouadid-Ahidouch, Halima

    2007-09-01

    Previous work from our laboratory has shown that human ether à go-go (hEAG) K(+) channels are crucial for breast cancer cell proliferation and cell cycle progression. In this study, we investigated the regulation of hEAG channels by an insulin-like growth factor-1 (IGF-1), which is known to stimulate cell proliferation. Acute applications of IGF-1 increased K(+) current-density and hyperpolarized MCF-7 cells. The effects of IGF-1 were inhibited by hEAG inhibitors. Moreover, IGF-1 increased mRNA expression of hEAG in a time-dependent manner in parallel with an enhancement of cell proliferation. The MCF-7 cell proliferation induced by IGF-1 is inhibited pharmacologically by Astemizole or Quinidine or more specifically using siRNA against hEAG channel. Either mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K) are known to mediate IGF-1 cell proliferative signals through the activation of extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, respectively. In MCF-7 cells, IGF-1 rapidly stimulated Akt phosphorylation, whereas IGF-1 had little stimulating effect on Erk 1/2 which seems to be constitutively activated. The application of wortmannin was found to block the effects of IGF-1 on K(+) current. Moreover, the inhibition of Akt phosphorylation by the application of wortmannin or by a specific reduction of Akt kinase activity reduced the hEAG mRNA levels. Taken together, our results show, for the first time, that IGF-1 increases both the activity and the expression of hEAG channels through an Akt-dependent pathway. Since a hEAG channel is necessary for cell proliferation, its regulation by IGF-1 may thus play an important role in IGF-1 signaling to promote a mitogenic effect in breast cancer cells.

  18. Block of ATP-binding cassette B19 ion channel activity by 5-nitro-2-(3-phenylpropylamino)-benzoic acid impairs polar auxin transport and root gravitropism.

    PubMed

    Cho, Misuk; Henry, Elizabeth M; Lewis, Daniel R; Wu, Guosheng; Muday, Gloria K; Spalding, Edgar P

    2014-12-01

    Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), possibly to compensate for an inhibitory effect of the drug on ABCB19 activity. Consistent with this hypothesis, NPPB blocked ion channel activity associated with ABCB19 expressed in human embryonic kidney cells as measured by patch-clamp electrophysiology. NPPB inhibited polar auxin transport through Arabidopsis seedling roots similarly to abcb19 mutations. NPPB also inhibited shootward auxin transport, which depends on the related ABCB4 protein. NPPB substantially decreased ABCB4 and ABCB19 protein levels when cycloheximide concomitantly inhibited new protein synthesis, indicating that blockage by NPPB enhances the degradation of ABCB transporters. Impairing the principal auxin transport streams in roots with NPPB caused aberrant patterns of auxin signaling reporters in root apices. Formation of the auxin-signaling gradient across the tips of gravity-stimulated roots, and its developmental consequence (gravitropism), were inhibited by micromolar concentrations of NPPB that did not affect growth rate. These results identify ion channel activity of ABCB19 that is blocked by NPPB, a compound that can now be considered an inhibitor of polar auxin transport with a defined molecular target. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  1. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    PubMed

    Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy

    2015-01-01

    Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  2. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History

    PubMed Central

    Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy

    2015-01-01

    Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom. PMID:26356684

  3. Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice.

    PubMed

    Pateliya, Bharat Bhai; Singh, Nirmal; Jaggi, Amteshwar Singh

    2008-09-01

    The present study was designed to investigate the possible role of opioids and K(ATP) channels in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion (I/R) induced neuronal injury. Mice were subjected to global ischemia by bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h, to produce neuronal injury. Ischemic postconditioning was induced by three episodes of carotid artery occlusion and reperfusion of 10 s each, immediately after global ischemia. Morphine postconditioning was induced by administration of morphine (5 mg/kg i.v.), 5 min prior to reperfusion. Naloxone (5 mg/kg i.v.), opioid receptor antagonist, and glibenclamide (5 mg/kg i.v.), K(ATP) channel blocker were administered 10 min before global ischemia. Extent of cerebral injury was assessed by measuring cerebral infarct size using triphenyl tetrazolium chloride (TTC) staining. Short-term memory was evaluated using the elevated plus maze test, while degree of motor incoordination was evaluated using inclined beam-walking, rota-rod and lateral push tests. Bilateral carotid artery occlusion followed by reperfusion resulted in significant increase in infarct size, impairment in short-term memory and motor co-ordination. Ischemic/morphine postconditioning significantly attenuated I/R induced neuronal injury and behavioural alterations. Pretreatments with naloxone and glibenclamide attenuated the neuroprotective effects of ischemic/morphine postconditioning. It may be concluded that ischemic/morphine postconditioning protects I/R induced cerebral injury via activating opioid receptor and K(ATP) channel opening.

  4. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases

  5. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  6. Primitive ATP-activated P2X receptors: discovery, function and pharmacology

    PubMed Central

    Fountain, Samuel J.

    2013-01-01

    Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292

  7. Block of ATP-Binding Cassette B19 Ion Channel Activity by 5-Nitro-2-(3-Phenylpropylamino)-Benzoic Acid Impairs Polar Auxin Transport and Root Gravitropism1[OPEN

    PubMed Central

    Cho, Misuk; Henry, Elizabeth M.; Lewis, Daniel R.; Wu, Guosheng; Muday, Gloria K.

    2014-01-01

    Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), possibly to compensate for an inhibitory effect of the drug on ABCB19 activity. Consistent with this hypothesis, NPPB blocked ion channel activity associated with ABCB19 expressed in human embryonic kidney cells as measured by patch-clamp electrophysiology. NPPB inhibited polar auxin transport through Arabidopsis seedling roots similarly to abcb19 mutations. NPPB also inhibited shootward auxin transport, which depends on the related ABCB4 protein. NPPB substantially decreased ABCB4 and ABCB19 protein levels when cycloheximide concomitantly inhibited new protein synthesis, indicating that blockage by NPPB enhances the degradation of ABCB transporters. Impairing the principal auxin transport streams in roots with NPPB caused aberrant patterns of auxin signaling reporters in root apices. Formation of the auxin-signaling gradient across the tips of gravity-stimulated roots, and its developmental consequence (gravitropism), were inhibited by micromolar concentrations of NPPB that did not affect growth rate. These results identify ion channel activity of ABCB19 that is blocked by NPPB, a compound that can now be considered an inhibitor of polar auxin transport with a defined molecular target. PMID:25324509

  8. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    PubMed

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  9. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles

    PubMed Central

    Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.

    2017-01-01

    Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380

  10. Sulfate-activating enzymes of Penicillium chrysogenum. The ATP sulfurylase. adenosine 5'-phosphosulfate complex does not serve as a substrate for adenosine 5'-phosphosulfate kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renosto, F.; Martin, R.L.; Segel, I.H.

    1989-06-05

    At a noninhibitory steady state concentration of adenosine 5'-phosphosulfate (APS), increasing the concentration of Penicillium chrysogenum ATP sulfurylase drives the rate of the APS kinase-catalyzed reaction toward zero. The result indicates that the ATP sulfurylase.APS complex does not serve as a substrate for APS kinase, i.e. there is no ''substrate channeling'' of APS between the two sulfate-activating enzymes. APS kinase had no effect on the (S)0.5 values, nH values, or maximum isotope trapping in the single turnover of ATP sulfurylase-bound (/sup 35/S)APS. Equimolar APS kinase (+/- MgATP or APS) also had no effect on the rate constants for the inactivationmore » of ATP sulfurylase by phenylglyoxal, diethylpyrocarbonate, or N-ethylmaleimide. Similarly, ATP sulfurylase (+/- ligands) had no effect on the inactivation of equimolar APS kinase by trinitrobenzene sulfonate, diethylpyrocarbonate, or heat. (The last promotes the dissociation of dimeric APS kinase to inactive monomers.) ATP sulfurylase also had no effect on the reassociation of APS kinase subunits at low temperature. The cumulative results suggest that the two sulfate activating enzymes do not associate to form a ''3'-phosphoadenosine 5'-phosphosulfate synthetase'' complex.« less

  11. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    PubMed

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  12. Ion channel-transporter interactions

    PubMed Central

    Neverisky, Daniel L.; Abbott, Geoffrey W.

    2016-01-01

    All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective, and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H+/K+-ATPases and Na+/K+-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion, and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term “chansporters”, explore their biological roles, and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality. PMID:27098917

  13. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  14. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology

    PubMed Central

    Bernardi, Paolo; Rasola, Andrea; Forte, Michael; Lippe, Giovanna

    2015-01-01

    The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca2+-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology. PMID:26269524

  15. Intermediate Conductance Ca2+-Activated K+ Channels Modulate Human Placental Trophoblast Syncytialization

    PubMed Central

    Díaz, Paula; Wood, Amber M.; Sibley, Colin P.; Greenwood, Susan L.

    2014-01-01

    Regulation of human placental syncytiotrophoblast renewal by cytotrophoblast migration, aggregation/fusion and differentiation is essential for successful pregnancy. In several tissues, these events are regulated by intermediate conductance Ca2+-activated K+ channels (IKCa), in part through their ability to regulate cell volume. We used cytotrophoblasts in primary culture to test the hypotheses that IKCa participate in the formation of multinucleated syncytiotrophoblast and in syncytiotrophoblast volume homeostasis. Cytotrophoblasts were isolated from normal term placentas and cultured for 66 h. This preparation recreates syncytiotrophoblast formation in vivo, as mononucleate cells (15 h) fuse into multinucleate syncytia (66 h) concomitant with elevated secretion of human chorionic gonadotropin (hCG). Cells were treated with the IKCa inhibitor TRAM-34 (10 µM) or activator DCEBIO (100 µM). Culture medium was collected to measure hCG secretion and cells fixed for immunofluorescence with anti-IKCa and anti-desmoplakin antibodies to assess IKCa expression and multinucleation respectively. K+ channel activity was assessed by measuring 86Rb efflux at 66 h. IKCa immunostaining was evident in nucleus, cytoplasm and surface of mono- and multinucleate cells. DCEBIO increased 86Rb efflux 8.3-fold above control and this was inhibited by TRAM-34 (85%; p<0.0001). Cytotrophoblast multinucleation increased 12-fold (p<0.05) and hCG secretion 20-fold (p<0.05), between 15 and 66 h. Compared to controls, DCEBIO reduced multinucleation by 42% (p<0.05) and hCG secretion by 80% (p<0.05). TRAM-34 alone did not affect cytotrophoblast multinucleation or hCG secretion. Hyposmotic solution increased 86Rb efflux 3.8-fold (p<0.0001). This effect was dependent on extracellular Ca2+, inhibited by TRAM-34 and 100 nM charybdotoxin (85% (p<0.0001) and 43% respectively) but unaffected by 100 nM apamin. In conclusion, IKCa are expressed in cytotrophoblasts and their activation inhibits the formation

  16. Identity and function of a cardiac mitochondrial small conductance Ca2+-activated K+ channel splice variant

    PubMed Central

    Yang, MeiYing; Camara, Amadou K.S.; Aldakkak, Mohammed; Kwok, Wai-Meng; Stowe, David F.

    2017-01-01

    We provide evidence for location and function of a small conductance, Ca2+-activated K+ (SKCa) channel isoform 3 (SK3) in mitochondria (m) of guinea pig, rat and human ventricular myocytes. SKCa agonists protected isolated hearts and mitochondria against ischemia/reperfusion (IR) injury; SKCa antagonists worsened IR injury. Intravenous infusion of a SKCa channel agonist/antagonist, respectively, in intact rats was effective in reducing/enhancing regional infarct size induced by coronary artery occlusion. Localization of SK3 in mitochondria was evidenced by Western blot of inner mitochondrial membrane, immunocytochemical staining of cardiomyocytes, and immunogold labeling of isolated mitochondria. We identified a SK3 splice variant in guinea pig (SK3.1, aka SK3a) and human ventricular cells (SK3.2) by amplifying mRNA, and show mitochondrial expression in mouse atrial tumor cells (HL-1) by transfection with full length and truncated SK3.1 protein. We found that the Nterminus is not required for mitochondrial trafficking but the C-terminus beyond the Ca2+ calmodulin binding domain is required for Ca2+ sensing to induce mK+ influx and/or promote mitochondrial localization. In isolated guinea pig mitochondria and in SK3 overexpressed HL-1 cells, mK+ influx was driven by adding CaCl2. Moreover, there was a greater fall in membrane potential (ΔΨm), and enhanced cell death with simulated cell injury after silencing SK3.1 with siRNA. Although SKCa channel opening protects the heart and mitochondria against IR injury, the mechanism for favorable bioenergetics effects resulting from SKCa channel opening remains unclear. SKCa channels could play an essential role in restraining cardiac mitochondria from inducing oxidative stress-induced injury resulting from mCa2+ overload. PMID:28342809

  17. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J., E-mail: fisher@chem.ucdavis.edu

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminalmore » sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.« less

  18. Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test.

    PubMed

    Budni, Josiane; Gadotti, Vinícius M; Kaster, Manuella P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2007-12-01

    The administration of agmatine elicits an antidepressant-like effect in the mouse forced swimming test by a mechanism dependent on the inhibition of the NMDA receptors and the L-arginine-nitric oxide (NO) pathway. Since it has been reported that the NO can activate different types of potassium (K(+)) channels in several tissues, the present study investigates the possibility of synergistic interactions between different types of K(+) channel inhibitors and agmatine in the forced swimming test. Treatment of mice by i.c.v. route with subeffective doses of tetraethylammonium (a non specific inhibitor of K(+) channels, 25 pg/site), glibenclamide (an ATP-sensitive K(+) channels inhibitor, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel inhibitor, 25 pg/site) or apamin (a small-conductance calcium-activated K(+) channel inhibitor, 10 pg/site), augmented the effect of agmatine (0.001 mg/kg, i.p.) in the forced swimming test. Furthermore, the administration of agmatine and the K(+) channel inhibitors, alone or in combination, did not affect locomotion in the open-field test. Moreover, the reduction in the immobility time elicited by an active dose of agmatine (10 mg/kg, i.p.) in the forced swimming test was prevented by the pre-treatment of mice with the K(+) channel openers cromakalim (10 microg/site, i.c.v.) and minoxidil (10 microg/site, i.c.v.), without affecting locomotion. Together these data raise the possibility that the antidepressant-like effect of agmatine in the forced swimming test is related to its modulatory effects on neuronal excitability, via inhibition of K(+) channels.

  19. Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J

    1998-04-01

    K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.

  20. Loss of Ca2+-mediated ion transport during colitis correlates with reduced ion transport responses to a Ca2+-activated K+ channel opener

    PubMed Central

    Hirota, Christina L; McKay, Derek M

    2009-01-01

    Background and purpose: Epithelial surface hydration is critical for proper gut function. However, colonic tissues from individuals with inflammatory bowel disease or animals with colitis are hyporesponsive to Cl− secretagogues. The Cl− secretory responses to the muscarinic receptor agonist bethanechol are virtually absent in colons of mice with dextran sodium sulphate (DSS)-induced colitis. Our aim was to define the mechanism underlying this cholinergic hyporesponsiveness. Experimental approach: Colitis was induced by 4% DSS water, given orally. Epithelial ion transport was measured in Ussing chambers. Colonic crypts were isolated and processed for mRNA expression via RT-PCR and protein expression via immunoblotting and immunolocalization. Key results: Expression of muscarinic M3 receptors in colonic epithelium was not decreased during colitis. Short-circuit current (ISC) responses to other Ca2+-dependent secretagogues (histamine, thapsigargin, cyclopiazonic acid and calcium ionophore) were either absent or severely attenuated in colonic tissue from DSS-treated mice. mRNA levels of several ion transport molecules (a Ca2+-regulated Cl− channel, the intermediate-conductance Ca2+-activated K+ channel, the cystic fibrosis transmembrane conductance regulator, the Na+/K+-ATPase pump or the Na+/K+/2Cl− co-transporter) were not reduced in colonic crypts from DSS-treated mice. However, protein expression of Na+/K+-ATPase α1 subunits was decreased twofold during colitis. Activation of Ca2+-activated K+ channels increased ISC significantly less in DSS colons compared with control, as did the protein kinase C activator, phorbol 12-myristate 13-acetate. Conclusions and implications: Decreased Na+/K+-ATPase expression probably contributes to overall epithelial hyporesponsiveness during colitis, while dysfunctional K+ channels may account, at least partially, for lack of epithelial secretory responses to Ca2+-mediated secretagogues. PMID:19298254

  1. Studying Mechanosensitivity of Two-Pore Domain K+ Channels in Cellular and Reconstituted Proteoliposome Membranes.

    PubMed

    Del Mármol, Josefina; Rietmeijer, Robert A; Brohawn, Stephen G

    2018-01-01

    Mechanical force sensation is fundamental to a wide breadth of biology from the classic senses of touch, pain, hearing, and balance to less conspicuous sensations of proprioception, blood pressure, and osmolarity and basic aspects of cell growth, differentiation, and development. These diverse and essential systems use force-gated (or mechanosensitive) ion channels that convert mechanical stimuli into cellular electrical signals. TRAAK, TREK1, and TREK2 are K + -selective ion channels of the two-pore domain K + (K2P) family that are mechanosensitive: they are gated open by increasing membrane tension. TRAAK and TREK channels are thought to play roles in somatosensory and other mechanosensory processes in neuronal and non-neuronal tissues. Here, we present protocols for three assays to study mechanical activation of these channels in cell membranes: (1) cell swelling, (2) cell poking, and (3) patched membrane stretching. Patched membrane stretching is also applicable to the study of mechanosensitive K2P channel activity in a cell-free system and a procedure for proteoliposome reconstitution and patching is also presented. These approaches are also readily applicable to the study of other mechanosensitive ion channels.

  2. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons.

    PubMed

    Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K

    2017-02-22

    Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal

  3. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  4. Conformational coupling between the active site and residues within the K(C)-channel of the Vibrio cholerae cbb3-type (C-family) oxygen reductase.

    PubMed

    Ahn, Young O; Mahinthichaichan, Paween; Lee, Hyun Ju; Ouyang, Hanlin; Kaluka, Daniel; Yeh, Syun-Ru; Arjona, Davinia; Rousseau, Denis L; Tajkhorshid, Emad; Adelroth, Pia; Gennis, Robert B

    2014-10-21

    The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K(C)-channel is a conserved glutamate in subunit III. However, the majority of the K(C)-channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K(C)-channel, was found to depend on the conformation of Y241(Vc), located in subunit I at the interface with subunit III. Mutations of Y241(Vc) (to A/F/H/S) in the Vibrio cholerae cbb3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b3. The data suggest a linkage between residues lining the K(C)-channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241(Vc) and the active site cross-linked Y255(Vc), as well as two CuB histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.

  5. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels.

    PubMed

    Chou, Chun-Hsiao; Gong, Chi-Li; Chao, Chia-Chia; Lin, Chia-Huei; Kwan, Chiu-Yin; Hsieh, Ching-Liang; Leung, Yuk-Man

    2009-05-22

    Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.

  6. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  7. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels

    PubMed Central

    Hoshi, Toshinori; Wissuwa, Bianka; Tian, Yutao; Tajima, Nobuyoshi; Xu, Rong; Bauer, Michael; Heinemann, Stefan H.; Hou, Shangwei

    2013-01-01

    Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA), found abundantly in oily fish, may have diverse health-promoting effects, potentially protecting the immune, nervous, and cardiovascular systems. However, the mechanisms underlying the purported health-promoting effects of DHA remain largely unclear, in part because molecular signaling pathways and effectors of DHA are only beginning to be revealed. In vascular smooth muscle cells, large-conductance Ca2+- and voltage-activated K+ (BK) channels provide a critical vasodilatory influence. We report here that DHA with an EC50 of ∼500 nM rapidly and reversibly activates BK channels composed of the pore-forming Slo1 subunit and the auxiliary subunit β1, increasing currents by up to ∼20-fold. The DHA action is observed in cell-free patches and does not require voltage-sensor activation or Ca2+ binding but involves destabilization of the closed conformation of the ion conduction gate. DHA lowers blood pressure in anesthetized wild-type but not in Slo1 knockout mice. DHA ethyl ester, contained in dietary supplements, fails to activate BK channels and antagonizes the stimulatory effect of DHA. Slo1 BK channels are thus receptors for long-chain omega-3 fatty acids, and these fatty acids—unlike their ethyl ester derivatives—activate the channels and lower blood pressure. This finding has practical implications for the use of omega-3 fatty acids as nutraceuticals for the general public and also for the critically ill receiving omega-3–enriched formulas. PMID:23487785

  8. K(ATP) channel blocker HMR 1883 reduces monophasic action potential shortening during coronary ischemia in anesthetised pigs.

    PubMed

    Wirth, K J; Uhde, J; Rosenstein, B; Englert, H C; Gögelein, H; Schölkens, B A; Busch, A E

    2000-02-01

    ATP-sensitive potassium channels (KATP) open during myocardial ischemia. The ensuing repolarising potassium efflux shortens the action potential. Accumulation of extracellular potassium is able to partially depolarise the membrane, reducing the upstroke velocity of the action potential and thereby impairing impulse conduction. Both mechanisms are believed to be involved in the development of reentrant arrhythmias during cardiac ischemia. The sulfonylthiourea HMR 1883 (1-[[5-[2-(5-chloro-O-anisamido)ethyl]-methoxyphenyl]sulfonyl]-3-m ethylthiourea) was designed as a cardioselective KATP channel blocker for the prevention of arrhythmic sudden death in patients with ischemic heart disease. The aim of this study was to show that this compound, which has already shown antifibrillatory efficacy in dogs and rats, is able to inhibit ischemic changes of the action potential induced by coronary artery occlusion in anesthetised pigs. Action potentials were taken in situ with the technique of monophasic action potential (MAP) recording. In a control group (n=7), three consecutive occlusions of a small branch of the left circumflex coronary artery resulted in reproducible reductions in MAP duration and a decrease in upstroke velocity. In a separate group (n=7), HMR 1883 (3 mg/kg i.v.) significantly (P<0.05) reduced the ischemia-induced shortening of the MAP: during the first and second control occlusion of the coronary artery in the HMR 1883-group, MAP50 duration shortened from 218.5 +/- 3.0 ms to 166.7 +/- 3.3 ms and from 219.7 +/- 4.5 ms to 164.9 +/- 1.8 ms, respectively. After HMR 1883, during the third occlusion, MAP duration decreased from 226.9 +/- 3.6 ms to 205.3 +/- 4.3 ms only corresponding to 59% inhibition. HMR 1883 also improved the upstroke velocity of the MAP, which was depressed by ischemia: in the two preceding control occlusions ischemia prolonged the time to peak of the MAP, an index for upstroke velocity, from 10.83 +/- 0.43 ms to 39.42 +/- 1.60 ms and from

  9. Perfusion of isolated carotid sinus with hydrogen sulfide attenuated the renal sympathetic nerve activity in anesthetized male rats.

    PubMed

    Guo, Q; Wu, Y; Xue, H; Xiao, L; Jin, S; Wang, R

    2016-07-18

    The purpose of the present study was to define the indirect central effect of hydrogen sulfide (H(2)S) on baroreflex control of sympathetic outflow. Perfusing the isolated carotid sinus with sodium hydrosulfide (NaHS), a H(2)S donor, the effect of H(2)S was measured by recording changes of renal sympathetic nerve activity (RSNA) in anesthetized male rats. Perfusion of isolated carotid sinus with NaHS (25, 50, 100 micromol/l) dose and time-dependently inhibited sympathetic outflow. Preconditioning of glibenclamide (20 micromol/l), a ATP-sensitive K(+) channels (K(ATP)) blocker, the above effect of NaHS was removed. With 1, 4-dihydro-2, 6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl) pyridine-3-carboxylic acid methyl ester (Bay K8644, 500 nmol/l) pretreatment, which is an agonist of L-calcium channels, the effect of NaHS was eliminated. Perfusion of cystathionine gamma-lyase (CSE) inhibitor, DL-propargylglycine (PPG, 200 micromol/l), increased sympathetic outflow. The results show that exogenous H(2)S in the carotid sinus inhibits sympathetic outflow. The effect of H(2)S is attributed to opening K(ATP) channels and closing the L-calcium channels.

  10. The role of entropic potential in voltage activation and K+ transport through Kv 1.2 channels

    NASA Astrophysics Data System (ADS)

    Wawrzkiewicz-Jałowiecka, Agata; Grzywna, Zbigniew J.

    2018-03-01

    We analyze the entropic effects of inner pore geometry changes of Kv 1.2 channel during membrane depolarization and their implications for the rate of transmembrane transport of potassium ions. We base this on the idea that spatial confinements within the channel pore give rise to entropic barriers which can both effectively affect the stability of open macroconformation and influence channel's ability to conduct the potassium ions through the membrane. First, we calculate the differences in entropy between voltage-activated and resting states of the channel. As a template, we take a set of structures of channel pore in an open state at different membrane potentials generated in our previous research. The obtained results indicate that tendency to occupy open states at membrane depolarization is entropy facilitated. Second, we describe the differences in rates of K+ transport through the channel pore at different voltages based on the results of appropriate random walk simulations in entropic and electric potentials. The simulated single channel currents (I) suggest that the geometry changes during membrane depolarization are an important factor contributing to the observed flow of potassium ions through the channel. Nevertheless, the charge distribution within the channel pore (especially at the extracellular entrance) seems most prominent for the observed I/Imax relation at a qualitative level at analyzed voltages.

  11. Large conductance Ca(2+)-activated K(+) channel (BKCa) activating properties of a series of novel N-arylbenzamides: Channel subunit dependent effects.

    PubMed

    Kirby, R W; Martelli, A; Calderone, V; McKay, N G; Lawson, K

    2013-07-15

    Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α+β1-subunit complex. Channel activity was determined using a non-radioactive Rb(+) efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb(+) efflux both in cells expressing α-subunit alone or α+β1-subunits. Co-expression of the β1-subunit modified the Rb(+) efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α+β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α+β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α+β1-subunit expressing cells. In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle.

    PubMed Central

    Wickenden, A. D.; Grimwood, S.; Grant, T. L.; Todd, M. H.

    1991-01-01

    1 The actions of the potassium channel openers, cromakalim and minoxidil sulphate, were compared in a range of isolated blood vessel preparations. 2 Cromakalim and minoxidil sulphate inhibited spontaneous mechanical activity of the guinea-pig portal vein and relaxed the noradrenaline precontracted rat aorta with similar potency. In contrast, minoxidil sulphate was less potent than cromakalim in inhibiting spontaneous activity in the rat portal vein and was essentially inactive in the noradrenaline precontracted rat mesenteric artery and rabbit aorta. 3 Minoxidil sulphate did not antagonize the effects of cromakalim in the rabbit aorta indicating it was not acting as a partial 'agonist'. 4 Charybdotoxin, noxiustoxin and rubidium failed to discriminate between cromakalim and minoxidil sulphate indicating that the apparently selective effects of minoxidil sulphate were not mediated by either Ca(2+)-activated potassium channels, delayed rectifiers or rubidium impermeable potassium channels. 5 Glibenclamide antagonized the effects of cromakalim in an apparently competitive manner whereas the effects of minoxidil sulphate were antagonized in a non-competitive manner. The involvement of subtypes of ATP-sensitive potassium channels is discussed. PMID:1878752

  13. Epigenetic silencing of Na,K-ATPase β1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma

    PubMed Central

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-01-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression. PMID:24452105

  14. Epigenetic silencing of Na,K-ATPase β 1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma.

    PubMed

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-04-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients' tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2'-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.

  15. Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP.

    PubMed Central

    Serysheva, I I; Schatz, M; van Heel, M; Chiu, W; Hamilton, S L

    1999-01-01

    The functional state of the skeletal muscle Ca2+ release channel is modulated by a number of endogenous molecules during excitation-contraction. Using electron cryomicroscopy and angular reconstitution techniques, we determined the three-dimensional (3D) structure of the skeletal muscle Ca2+ release channel activated by a nonhydrolyzable analog of ATP in the presence of Ca2+. These ligands together produce almost maximum activation of the channel and drive the channel population toward a predominately open state. The resulting 30-A 3D reconstruction reveals long-range conformational changes in the cytoplasmic region that might affect the interaction of the Ca2+ release channel with the t-tubule voltage sensor. In addition, a central opening and mass movements, detected in the transmembrane domain of both the Ca(2+)- and the Ca2+/nucleotide-activated channels, suggest a mechanism for channel opening similar to opening-closing of the iris in a camera diaphragm. PMID:10512814

  16. 5-HT2 receptor blockade exhibits 5-HT vasodilator effects via nitric oxide, prostacyclin and ATP-sensitive potassium channels in rat renal vasculature.

    PubMed

    García-Pedraza, J A; García, M; Martín, M L; Rodríguez-Barbero, A; Morán, A

    2016-04-01

    The aim of this study was to determine whether orally sarpogrelate (selective 5-HT2 antagonist) treatment (30 mg/kg/day; 14 days) could modify 5-HT renal vasoconstrictor responses, characterizing 5-HT receptors and mediator mechanisms involved in serotonergic responses in the in situ autoperfused rat kidney. Intra-arterial (i.a.) injections of 5-HT (0.00000125 to 0.1 μg/kg) decreased renal perfusion pressure (RPP) but did not affect the mean blood pressure (MBP). i.a. agonists 5-CT (5-HT1/7), CGS-12066B (5-HT1B), L-694,247 (5-HT1D) or AS-19 (5-HT7) mimicked renal 5-HT vasodilator effect. However, neither 8-OH-DPAT (5-HT1A) nor 1-phenylbiguanide (5-HT3) modified RPP. Moreover: (i) GR-55562 (5-HT1B antagonist) and L-NAME (nitric oxide synthase [NOS] inhibitor) blocked CGS-12066B-induced vasodilator response, (ii) LY310762 (5-HT1D antagonist) and indomethacin (non-selective cyclooxygenase inhibitor) blocked L-694,247-induced vasodilator response; (iii) SB-258719 (5-HT7 antagonist) and glibenclamide (ATP-sensitive K+ channel blocker) blocked AS-19-induced vasodilator response; and (iv) 5-HT- or 5-CT-elicited renal vasodilation was significantly blocked by the mixture of GR-55562 + LY310762 + SB-258719. Furthermore, eNOS and iNOS proteins and prostacyclin levels are overexpressed in sarpogrelate-treated rats. Our data suggest that 5-HT exerts renal vasodilator effect in the in situ autoperfused sarpogrelate-treated rat kidney, mediated by 5-HT1D, 5-HT1B and 5-HT7 receptors, involving cyclooxygenase-derived prostacyclin, nitric oxide synthesis/release and ATP-sensitive K+ channels, respectively.

  17. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  18. K+ Stimulation of ATPase Activity Associated with the Chloroplast Inner Envelope 1

    PubMed Central

    Wu, Weihua; Berkowitz, Gerald A.

    1992-01-01

    Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo. ImagesFigure 3 PMID:16668922

  19. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John

    2013-01-01

    Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility. PMID:24352333

  20. Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin

    PubMed Central

    Zhu, Jinqiu; Qu, Zhiqiang; Cui, Yuan-Yuan; Hartzell, H. Criss

    2014-01-01

    The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel. PMID:24420770

  1. Unexpected Effects of K+ and Adenosine Triphosphate on the Thermal Stability of Na+,K+-ATPase.

    PubMed

    Placenti, M Agueda; Kaufman, Sergio B; González Flecha, F Luis; González Lebrero, Rodolfo M

    2017-05-18

    Na + ,K + -ATPase is an integral membrane protein which couples ATP hydrolysis to the transport of three Na + out and two K + into the cell. The aim of this work is to characterize the effect of K + , ATP, and Mg 2+ (essential activator) on the Na + ,K + -ATPase thermal stability. Under all conditions tested, thermal inactivation of the enzyme is concomitant with a structural change involving the ATP binding site and membrane-associated regions. Both ligands exert a clear stabilizing effect due to both enthalpic and entropic contributions. Competition experiments between ATP and K + showed that, when ATP is present, the inactivation rate coefficient exhibits a biphasic dependence on K + concentration. At low [K + ], destabilization of the enzyme is observed, while stabilization occurred at larger cation concentrations. This is not expected for a simple competition between the enzyme and two ligands that individually protect the enzyme. A model that includes enzyme species with none, one, or two K + and/or one molecule of ATP bound explains the experimental data. We concluded that, despite both ligands stabilizing the enzyme, the species with one K + and one ATP simultaneously bound is unstable.

  2. Selectivity and permeation of alkali metal ions in K+-channels.

    PubMed

    Furini, Simone; Domene, Carmen

    2011-06-24

    Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Functional link between muscarinic receptors and large-conductance Ca2+-activated K+ channels in freshly-isolated human detrusor smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.; Hristov, Kiril L.; Cheng, Qiuping; Malysz, John; Rovner, Eric S.; Petkov, Georgi V.

    2014-01-01

    Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large conductance Ca2+-activated K+ (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly-isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9±1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca2+ from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1channels were examined under conditions of removing the major cellular Ca2+ sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca2+, thus increasing the excitability in human DSM cells. PMID:24867682

  5. Mechanism of the modulation of Kv4:KChIP-1 channels by external K+.

    PubMed

    Kaulin, Yu A; De Santiago-Castillo, J A; Rocha, C A; Covarrubias, M

    2008-02-15

    In response to a prolonged membrane depolarization, inactivation autoregulates the activity of voltage-gated ion channels. Slow inactivation involving a localized constriction of the selectivity filter (P/C-type mechanism) is prevalent in many voltage-gated K(+) channels of the Kv1 subfamily. However, the generalization of this mechanism to other Kv channel subfamilies has remained uncertain and controversial. In agreement with a "foot-in-the-door" mechanism and the presence of ion-ion interactions in the pore, elevated external K(+) slows the development of P/C-type inactivation and accelerates its recovery. In sharp contrast and resembling the regulation of the hippocampal A-type K(+) current, we found that Kv4.x channels associated with KChIP-1 (an auxiliary subunit) exhibit accelerated inactivation and unaffected recovery from inactivation when exposed to elevated external K(+). This regulation depends on the ability of a permeant ion to enter the selectivity filter (K(+) = Rb(+) = NH4(+) > Cs(+) > Na(+)); and the apparent equilibrium dissociation constant of a single regulatory site is 8 mM for K(+). By applying a robust quantitative global kinetic modeling approach to all macroscopic properties over a 210-mV range of membrane potentials, we determined that elevated external K(+) inhibits unstable closed states outside the main activation pathway and thereby promotes preferential closed-state inactivation. These results suggest the presence of a vestigial and unstable P/C-type mechanism of inactivation in Kv4 channels and strengthen the concept of novel mechanisms of closed-state inactivation. Regulation of Kv4 channel inactivation by hyperkalemia may help to explain the pathophysiology of electrolyte imbalances in excitable tissues.

  6. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    PubMed

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance

    PubMed Central

    Anjum, Naser A.; Gill, Ritu; Kaushik, Manjeri; Hasanuzzaman, Mirza; Pereira, Eduarda; Ahmad, Iqbal; Tuteja, Narendra; Gill, Sarvajeet S.

    2015-01-01

    Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO42-), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO42--activation and yields activated high-energy compound adenosine-5′-phosphosulfate that is reduced to sulfide (S2-) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes. PMID:25904923

  8. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  9. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert,H.; Hill, C.

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, therebymore » providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.« less

  10. Activation of ATP-sensitive potassium channels antagonize nociceptive behavior and hyperexcitability of DRG neurons from rats.

    PubMed

    Du, Xiaona; Wang, Chao; Zhang, Hailin

    2011-05-14

    Nociceptive responses to noxious stimuli are initiated at peripheral nociceptor terminals. Ion channels play a vital role in pain signal initiation and conduction. Activation of KATP channels has been implicated in mediating the analgesic effects of agents such as morphine. However, systematic studies regarding the effects of KATP activators on nociception and neuronal excitability are scarce. In this study, we describe the antagonistic effects of KATP activators pinacidil and diazoxide on nocifensive behavior induced by bradykinin (BK), thermo and mechanical stimuli, and the bradykinin-induced hyperexcitability of DRG neurons. We also found that KATP activators can moderately activate KATP in DRG neurons. Because the effects of KATP activators can be reversed by the KATP blocker glyburide, direct activation of KATP is most likely the underlying mechanism. This systematic study clearly demonstrates that activation of KATP could have significant modulatory effects on the excitability of sensory neurons and thus on sensory behaviors, such as nociception. KATP activators can be evaluated clinically for the treatment of pain symptoms.

  11. ACTIVATION OF EXTRACELLULAR-SIGNAL REGULATED KINASE (ERK1/2) BY FLUID SHEAR IS CA2+- AND ATP-DEPENDENT IN MC3T3-E1 OSTEOBLASTS

    PubMed Central

    Liu, Dawei; Genetos, Damian C.; Shao, Ying; Geist, Derik J.; Li, Jiliang; Ke, Hua Zhu; Turner, Charles H.; Duncan, Randall L.

    2010-01-01

    To determine the role of Ca2+ signaling in activation of the Mitogen-Activated Protein Kinase (MAPK) pathway, we subjected MC3T3-E1 pre-osteoblastic cells to inhibitors of Ca2+ signaling during application of fluid shear stress (FSS). FSS only activated ERK1/2, rapidly inducing phosphorylation within 5 minutes of the onset of shear. Phosphorylation of ERK1/2 (pERK1/2) was significantly reduced when Ca2+i was chelated with BAPTA or when Ca2+ was removed from the flow media. Inhibition of both the L-type voltage-sensitive Ca2+ channel and the mechanosensitive cation-selective channel blocked FSS-induced pERK1/2. Inhibition of phospholipase C with U73122 significantly reduced pERK1/2. This inhibition did not result from block of intracellular Ca2+ release, but a loss of PKC activation. Recent data suggests a role of ATP release and purinergic receptor activation in mechanotransduction. Apyrase-mediated hydrolysis of extracellular ATP completely blocked FSS-induced phosphorylation of ERK1/2, while addition of exogenous ATP to static cells mimicked the effects of FSS on pERK1/2. Two P2 receptors, P2Y2 and P2X7, have been associated with the anabolic responses of bone to mechanical loading. Using both iRNA techniques and primary osteoblasts isolated from P2X7 knockout mice, we found that the P2X7, but not the P2Y2, purinergic receptor was involved in ERK1/2 activation under FSS. These data suggest that FSS-induced ERK1/2 phosphorylation requires Ca2+-dependent ATP release, however both increased Ca2+i and PKC activation are needed for complete activation. Further, this ATP-dependent ERK1/2 phosphorylation is mediated through P2X7, but not P2Y2, purinergic receptors. PMID:18291742

  12. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense.

    PubMed

    Tripathi, Diwaker; Zhang, Tong; Koo, Abraham J; Stacey, Gary; Tanaka, Kiwamu

    2018-01-01

    Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis ( Arabidopsis thaliana ) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1 - 3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1 , but not in the JA biosynthesis mutant, aos , or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses. © 2018

  13. Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias.

    PubMed

    Kerst, G; Beschorner, U; Unsöld, B; von Hahn, T; Schreiber, R; Greger, R; Gerlach, U; Lang, H J; Kunzelmann, K; Bleich, M

    2001-10-01

    KCNQ1 (KVLQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study the properties and regulation of the cloned sKVLQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (<3 pS) K+ channels, in parallel with other K+ channels. sKCNQ1 generated similar small-conductance K+ channels upon expression in CHO cells and Xenopus oocytes. The results suggest the presence of low-conductance KCNQ1 K+ channels in RGT, which are probably regulated by changes in intracellular cAMP, Ca2+ and pH.

  14. Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.

    PubMed

    Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner

    2007-01-24

    A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.

  15. Expression of K2P5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients.

    PubMed

    Bittner, Stefan; Bobak, Nicole; Feuchtenberger, Martin; Herrmann, Alexander M; Göbel, Kerstin; Kinne, Raimund W; Hansen, Anker J; Budde, Thomas; Kleinschnitz, Christoph; Frey, Oliver; Tony, Hans-Peter; Wiendl, Heinz; Meuth, Sven G

    2011-02-11

    CD4+ T cells express K(2P)5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K(2P)5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K(2P)5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Expression levels of K(2P)5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K(2P)5.1. K(2P)5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K(2P)5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K(2P)5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Disease activity in RA patients correlates strongly with K(2P)5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K(2P)5.1 as a potential biomarker for disease activity and differential diagnosis.

  16. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells.

    PubMed

    Schwab, Albrecht; Nechyporuk-Zloy, Volodymyr; Gassner, Birgit; Schulz, Christoph; Kessler, Wolfram; Mally, Sabine; Römer, Michael; Stock, Christian

    2012-02-01

    Calcium-sensitive potassium channels (K(Ca)3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. K(Ca)3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo- and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hK(Ca)3.1. A hK(Ca)3.1 channel construct with an HA-tag in the extracellularly located S3-S4 linker was transfected into migrating transformed renal epithelial MDCK-F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell-based ELISA. Movement of hK(Ca)3.1 channel containing vesicles as well as migration of MDCK-F cells were monitored by means of time lapse video microscopy. hK(Ca)3.1 channels are endocytosed during migration. Most of the hK(Ca)3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule-dependent manner towards the front of MDCK-F cells. Our experiments indicate that endocytosis of hK(Ca)3.1 channels is clathrin-dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C-terminal dileucine motif is mutated. The C-terminal dileucine motif is also important for the subcellular localization of hK(Ca)3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hK(Ca)3.1 channels contributes to their characteristic subcellular distribution in migrating cells. Copyright © 2011 Wiley Periodicals, Inc.

  17. Release of ATP from marginal cells in the cochlea of neonatal rats can be induced by changes in extracellular and intracellular ion concentrations.

    PubMed

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Sprague-Dawley rats aged 1-3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K(+) and intra- and extracellular Ca(2+). Furthermore, changes in the concentration of intracellular Ca(2+) induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K(+) channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A(2).

  18. Release of ATP from Marginal Cells in the Cochlea of Neonatal Rats Can Be Induced by Changes in Extracellular and Intracellular Ion Concentrations

    PubMed Central

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2. PMID:23071731

  19. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus.

    PubMed Central

    Heurteaux, C; Bertaina, V; Widmann, C; Lazdunski, M

    1993-01-01

    Transient global forebrain ischemia induces in rat brain a large increase of expression of the immediate early genes c-fos and c-jun and of the mRNAs for the 70-kDa heat-shock protein and for the form of the amyloid beta-protein precursor including the Kunitz-type protease-inhibitor domain. At 24 hr after ischemia, this increased expression is particularly observed in regions that are vulnerable to the deleterious effects of ischemia, such as pyramidal cells of the CA1 field in the hippocampus. In an attempt to find conditions which prevent the deleterious effects of ischemia, representatives of three different classes of K+ channel openers, (-)-cromakalim, nicorandil, and pinacidil, were administered both before ischemia and during the reperfusion period. This treatment totally blocked the ischemia-induced expression of the different genes. In addition it markedly protected neuronal cells against degeneration. The mechanism of the neuroprotective effects involves the opening of ATP-sensitive K+ channels since glipizide, a specific blocker of that type of channel, abolished the beneficial effects of K+ channel openers. The various classes of K+ channel openers seem to deserve attention as potential drugs for cerebral ischemia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8415718

  20. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.

    PubMed

    Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph

    2017-04-01

    ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Exploration of human, rat, and rabbit embryonic cardiomyocytes suggests K-channel block as a common teratogenic mechanism.

    PubMed

    Danielsson, Christian; Brask, Johan; Sköld, Anna-Carin; Genead, Rami; Andersson, Agneta; Andersson, Ulf; Stockling, Kenneth; Pehrson, Rickard; Grinnemo, Karl-Henrik; Salari, Sajjad; Hellmold, Heike; Danielsson, Bengt; Sylvén, Christer; Elinder, Fredrik

    2013-01-01

    Several drugs blocking the rapidly activating potassium (K(r)) channel cause malformations (including cardiac defects) and embryonic death in animal teratology studies. In humans, these drugs have an established risk for acquired long-QT syndrome and arrhythmia. Recently, associations between cardiac defects and spontaneous abortions have been reported for drugs widely used in pregnancy (e.g. antidepressants), with long-QT syndrome risk. To investigate whether a common embryonic adverse-effect mechanism exists in the human, rat, and rabbit embryos, we made a comparative study of embryonic cardiomyocytes from all three species. Patch-clamp and quantitative-mRNA measurements of K(r) and slowly activating K (K(s)) channels were performed on human, rat, and rabbit primary cardiomyocytes and cardiac samples from different embryo-foetal stages. The K(r) channel was present when the heart started to beat in all species, but was, in contrast to human and rabbit, lost in rats in late organogenesis. The specific K(r)-channel blocker E-4031 prolonged the action potential in a species- and development-dependent fashion, consistent with the observed K(r)-channel expression pattern and reported sensitive periods of developmental toxicity. E-4031 also increased the QT interval and induced 2:1 atrio-ventricular block in multi-electrode array electrographic recordings of rat embryos. The K(s) channel was expressed in human and rat throughout the embryo-foetal period but not in rabbit. This first comparison of mRNA expression, potassium currents, and action-potential characteristics, with and without a specific K(r)-channel blocker in human, rat, and rabbit embryos provides evidence of K(r)-channel inhibition as a common mechanism for embryonic malformations and death.

  2. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.

    PubMed

    Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos

    2005-12-01

    In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.

  3. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K+ channels

    PubMed Central

    Dean, Terry; Xu, Rong; Joiner, William; Sehgal, Amita; Hoshi, Toshinori

    2011-01-01

    The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K+ currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss of function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude. PMID:21813698

  4. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K(+) channels.

    PubMed

    Dean, Terry; Xu, Rong; Joiner, William; Sehgal, Amita; Hoshi, Toshinori

    2011-08-03

    The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K(+) currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss-of-function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss-null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude.

  5. Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

    PubMed

    Zhong, L R; Artinian, L; Rehder, V

    2013-01-03

    Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.

    PubMed

    Apell, H J; Marcus, M M; Anner, B M; Oetliker, H; Läuger, P

    1985-01-01

    A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.

  7. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.

    PubMed

    Jih, Kang-Yang; Hwang, Tzyh-Chang

    2013-03-12

    Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR's responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770's effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent "reentry" mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR.

  8. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle

    PubMed Central

    Jih, Kang-Yang; Hwang, Tzyh-Chang

    2013-01-01

    Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR’s responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770’s effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent “reentry” mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR. PMID:23440202

  9. Protection of ATP-Depleted Cells by Impermeant Strychnine Derivatives

    PubMed Central

    Dong, Zheng; Venkatachalam, Manjeri A.; Weinberg, Joel M.; Saikumar, Pothana; Patel, Yogendra

    2001-01-01

    Glycine and structurally related amino acids with activities at chloride channel receptors in the central nervous system also have robust protective effects against cell injury by ATP depletion. The glycine receptor antagonist strychnine shares this protective activity. An essential step toward identification of the molecular targets for these compounds is to determine whether they protect cells through interactions with intracellular targets or with molecules on the outer surface of plasma membranes. Here we report cytoprotection by a cell-impermeant derivative of strychnine. A strychnine-fluorescein conjugate (SF) was synthesized, and impermeability of plasma membranes to this compound was verified by fluorescence confocal microscopy. In an injury model of Madin-Darby canine kidney cells, ATP depletion led to lactate dehydrogenase release. SF prevented lactate dehydrogenase leakage without ameliorating ATP depletion. This was accompanied by preservation of cellular ultrastructure and exclusion of vital dyes. SF protection was also shown for ATP-depleted rat hepatocytes. On the other hand, when a key structural motif in the active site of strychnine was chemically blocked, the SF lost its protective effect, establishing strychnine-related specificity for SF protection. Cytoprotective effects of the cell-impermeant strychnine derivative provide compelling evidence suggesting that molecular targets on the outer surface of plasma membranes may mediate cytoprotection by strychnine and glycine. PMID:11238050

  10. The role of KATP channels in cerebral ischemic stroke and diabetes

    PubMed Central

    Szeto, Vivian; Chen, Nai-hong; Sun, Hong-shuo; Feng, Zhong-ping

    2018-01-01

    ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke. PMID:29671418

  11. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    PubMed

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  12. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but notmore » by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.« less

  13. Elemental maps in human allantochorial placental vessels cells: 1. High K + and acetylcholine effects

    NASA Astrophysics Data System (ADS)

    Michelet-Habchi, C.; Barberet, Ph.; Dutta, R. K.; Guiet-Bara, A.; Bara, M.; Moretto, Ph.

    2003-09-01

    Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K + and Ca 2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K + channels, K Ca) and of high concentration of K + (which blocks the voltage-sensitive K + channels, K df). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K + medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K + medium, a significant increase in Cl and K concentration. These results indicated the importance of K df, K Ca and K ATP channels in the regulation of K + intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data.

  14. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.

    PubMed

    Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J

    1995-01-01

    cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.

  15. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    PubMed Central

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  16. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    PubMed Central

    Morais, Tatiana P.; Coelho, David; Vaz, Sandra H.; Sebastião, Ana M.; Valente, Cláudia A.

    2018-01-01

    In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication. PMID:29386993

  17. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  18. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate

    PubMed Central

    Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun; Chang, Changsoo; Joachimiak, Andrzej; Lee, Sukyeong; Tsai, Francis T. F.

    2016-01-01

    Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding. PMID:26929380

  19. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    PubMed Central

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  20. Superior diastolic function with KATP channel opener diazoxide in a novel mouse Langendorff model.

    PubMed

    Makepeace, Carol M; Suarez-Pierre, Alejandro; Kanter, Evelyn M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2018-07-01

    Adenosine triphosphate-sensitive potassium (K ATP ) channel openers have been found to be cardioprotective in multiple animal models via an unknown mechanism. Mouse models allow genetic manipulation of K ATP channel components for the investigation of this mechanism. Mouse Langendorff models using 30 min of global ischemia are known to induce measurable myocardial infarction and injury. Prolongation of global ischemia in a mouse Langendorff model could allow the determination of the mechanisms involved in K ATP channel opener cardioprotection. Mouse hearts (C57BL/6) underwent baseline perfusion with Krebs-Henseleit buffer (30 min), assessment of function using a left ventricular balloon, delivery of test solution, and prolonged global ischemia (90 min). Hearts underwent reperfusion (30 min) and functional assessment. Coronary flow was measured using an inline probe. Test solutions included were as follows: hyperkalemic cardioplegia alone (CPG, n = 11) or with diazoxide (CPG + DZX, n = 12). Although the CPG + DZX group had greater percent recovery of developed pressure and coronary flow, this was not statistically significant. Following a mean of 74 min (CPG) and 77 min (CPG + DZX), an additional increase in end-diastolic pressure was noted (plateau), which was significantly higher in the CPG group. Similarly, the end-diastolic pressure (at reperfusion and at the end of experiment) was significantly higher in the CPG group. Prolongation of global ischemia demonstrated added benefit when DZX was added to traditional hyperkalemic CPG. This model will allow the investigation of DZX mechanism of cardioprotection following manipulation of targeted K ATP channel components. This model will also allow translation to prolonged ischemic episodes associated with cardiac surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. "Host tissue damage" signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes.

    PubMed

    Kaufmann, Andreas; Musset, Boris; Limberg, Sven H; Renigunta, Vijay; Sus, Rainer; Dalpke, Alexander H; Heeg, Klaus M; Robaye, Bernard; Hanley, Peter J

    2005-09-16

    The activation of Toll-like receptors (TLRs) by lipopolysaccharide or other ligands evokes a proinflammatory immune response, which is not only capable of clearing invading pathogens but can also inflict damage to host tissues. It is therefore important to prevent an overshoot of the TLR-induced response where necessary, and here we show that extracellular ATP is capable of doing this in human monocytes. Using reverse transcription-PCR, we showed that monocytes express P2Y(1), P2Y(2), P2Y(4), P2Y(11), and P2Y(13) receptors, as well as several P2X receptors. To elucidate the function of these receptors, we first studied Ca(2+) signaling in single cells. ATP or UTP induced a biphasic increase in cytosolic Ca(2+), which corresponded to internal Ca(2+) release followed by activation of store-operated Ca(2+) entry. The evoked Ca(2+) signals stimulated Ca(2+)-activated K(+) channels, producing transient membrane hyperpolarization. In addition, ATP promoted cytoskeleton reorganization and cell migration; however, unlike chemoattractants, the migration was non-directional and further analysis showed that ATP did not activate Akt, essential for sensing gradients. When TLR2, TLR4, or TLR2/6 were stimulated with their respective ligands, ATPgammaS profoundly inhibited secretion of proinflammatory cytokines (tumor necrosis factor-alpha and monocyte chemoattractant protein-1) but increased the production of interleukin-10, an anti-inflammatory cytokine. In radioimmune assays, we found that ATP (or ATPgammaS) strongly increased cAMP levels, and, moreover, the TLR-response was inhibited by forskolin, whereas UTP neither increased cAMP nor inhibited the TLR-response. Thus, our data suggest that ATP promotes non-directional migration and, importantly, acts as a "host tissue damage" signal via the G(s) protein-coupled P2Y(11) receptor and increased cAMP to negatively regulate TLR signaling.

  2. Biphasic Somatic A-Type K+ Channel Downregulation Mediates Intrinsic Plasticity in Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Jung, Sung-Cherl; Hoffman, Dax A.

    2009-01-01

    Since its original description, the induction of synaptic long-term potentiation (LTP) has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity) of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K+ channels. In the present manuscript, we examined the role of A-type K+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling. PMID:19662093

  3. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  4. Calcium modulates the ATP and ADP hydrolysis in human placental mitochondria.

    PubMed

    Martínez, Federico; Uribe, Aida; Espinosa-García, M Teresa; Flores-Herrera, Oscar; García-Pérez, Cecilia; Milán, Rebeca

    2002-08-01

    This study evaluated the effect of Ca2+ on the extramitochondrial hydrolysis of ATP and ADP by the extramitochondrial ATPase in isolated mitochondria and submitochondrial particles (SMPs) from human term placenta. The effect of different oxidizable substrates on the hydrolysis of ATP and ADP in the presence of sucrose or K+ was evaluated. Ca2+ increased phosphate release from ATP and ADP, but this stimulation showed different behavior depending on the oxidizable substrate present in the incubation media. Ca2+ stimulated the hydrolysis of ATP and ADP in the presence of sucrose. However, Ca2+ did not stimulate the hydrolysis of ADP in the medium containing K+. Ca2+ showed inhibition depending on the respiratory substrate. This study suggests that the energetic state of mitochondria controls the extramitochondrial ATPase activity, which is modulated by Ca2+ and respiratory substrates.

  5. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    PubMed

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  6. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    PubMed

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  7. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1.

    PubMed

    Coleman, Nichole; Brown, Brandon M; Oliván-Viguera, Aida; Singh, Vikrant; Olmstead, Marilyn M; Valero, Marta Sofia; Köhler, Ralf; Wulff, Heike

    2014-09-01

    Small-conductance (KCa2) and intermediate-conductance (KCa3.1) calcium-activated K(+) channels are voltage-independent and share a common calcium/calmodulin-mediated gating mechanism. Existing positive gating modulators like EBIO, NS309, or SKA-31 activate both KCa2 and KCa3.1 channels with similar potency or, as in the case of CyPPA and NS13001, selectively activate KCa2.2 and KCa2.3 channels. We performed a structure-activity relationship (SAR) study with the aim of optimizing the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity. We identified SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine), which displays 123-fold selectivity for KCa3.1 (EC50 111 ± 27 nM) over KCa2.3 (EC50 13.7 ± 6.9 μM), and SKA-121 (5-methylnaphtho[2,1-d]oxazol-2-amine), which displays 41-fold selectivity for KCa3.1 (EC50 109 nM ± 14 nM) over KCa2.3 (EC50 4.4 ± 1.6 μM). Both compounds are 200- to 400-fold selective over representative KV (KV1.3, KV2.1, KV3.1, and KV11.1), NaV (NaV1.2, NaV1.4, NaV1.5, and NaV1.7), as well as CaV1.2 channels. SKA-121 is a typical positive-gating modulator and shifts the calcium-concentration response curve of KCa3.1 to the left. In blood pressure telemetry experiments, SKA-121 (100 mg/kg i.p.) significantly lowered mean arterial blood pressure in normotensive and hypertensive wild-type but not in KCa3.1(-/-) mice. SKA-111, which was found in pharmacokinetic experiments to have a much longer half-life and to be much more brain penetrant than SKA-121, not only lowered blood pressure but also drastically reduced heart rate, presumably through cardiac and neuronal KCa2 activation when dosed at 100 mg/kg. In conclusion, with SKA-121, we generated a KCa3.1-specific positive gating modulator suitable for further exploring the therapeutical potential of KCa3.1 activation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Selectivity of prandial glucose regulators: nateglinide, but not repaglinide, accelerates exocytosis in rat pancreatic A-cells.

    PubMed

    Bokvist, K; Hoy, M; Buschard, K; Holst, J J; Thomsen, M K; Gromada, J

    1999-12-10

    The effects of the two prandial glucose regulators, repaglinide and nateglinide, on ATP-sensitive K(+) (K(ATP)) channel activity, membrane potential and exocytosis in single rat pancreatic A-cells were investigated using the patch-clamp technique. K(ATP) channel activity was reversibly blocked by repaglinide (K(d)=22 nM) and nateglinide (K(d)=410 nM) and this was associated with membrane depolarisation and initiation of electrical activity. The effect of repaglinide and nateglinide on stimulation of glucagon secretion by direct interference with the exocytotic machinery was investigated by the use of capacitance measurements. Nateglinide, but not repaglinide, at concentrations similar to those required to block K(ATP) channels potentiated Ca(2+)-evoked exocytosis 3-fold. In alphaTC1-9 glucagonoma cells addition of nateglinide, but not repaglinide, was associated with stimulation of glucagon secretion. These results indicate that the fast-acting insulin secretagogue nateglinide is glucagonotropic primarily by stimulating Ca(2+)-dependent exocytosis.

  9. Failure of the Cystic Fibrosis Transmembrane Conductance Regulator to Conduct ATP

    NASA Astrophysics Data System (ADS)

    Reddy, M. M.; Quinton, P. M.; Haws, C.; Wine, J. J.; Grygorczyk, R.; Tabcharani, J. A.; Hanrahan, J. W.; Gunderson, K. L.; Kopito, R. R.

    1996-03-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is chloride ion channel regulated by protein kinase A and adenosine triphosphate (ATP). Loss of CFTR-mediated chloride ion conductance from the apical plasma membrane of epithelial cells is a primary physiological lesion in cystic fibrosis. CFTR has also been suggested to function as an ATP channel, although the size of the ATP anion is much larger than the estimated size of the CFTR pore. ATP was not conducted through CFTR in intact organs, polarized human lung cell lines, stably transfected mammalian cell lines, or planar lipid bilayers reconstituted with CFTR protein. These findings suggest that ATP permeation through the CFTR is unlikely to contribute to the normal function of CFTR or to the pathogenesis of cystic fibrosis.

  10. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.

    PubMed

    Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J

    2006-11-22

    Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.

  11. Conservation of an ATP-binding domain among recA proteins from Proteus vulgaris, erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K.L.; Hess, R.M.; McEntee, K.

    1988-06-01

    The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N/sub 3/ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the (..cap alpha..-/sup 32/P)8N/sub 3/ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in eachmore » of the digests and these peptides eluted identically with the tryptic peptide T/sub 31/ of the E. coli K-12 RecA protein, which was the unique site of 8N/sub 3/ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10/sup 7/ years.« less

  12. Initial steps of inactivation at the K+ channel selectivity filter

    PubMed Central

    Thomson, Andrew S.; Heer, Florian T.; Smith, Frank J.; Hendron, Eunan; Bernèche, Simon; Rothberg, Brad S.

    2014-01-01

    K+ efflux through K+ channels can be controlled by C-type inactivation, which is thought to arise from a conformational change near the channel’s selectivity filter. Inactivation is modulated by ion binding near the selectivity filter; however, the molecular forces that initiate inactivation remain unclear. We probe these driving forces by electrophysiology and molecular simulation of MthK, a prototypical K+ channel. Either Mg2+ or Ca2+ can reduce K+ efflux through MthK channels. However, Ca2+, but not Mg2+, can enhance entry to the inactivated state. Molecular simulations illustrate that, in the MthK pore, Ca2+ ions can partially dehydrate, enabling selective accessibility of Ca2+ to a site at the entry to the selectivity filter. Ca2+ binding at the site interacts with K+ ions in the selectivity filter, facilitating a conformational change within the filter and subsequent inactivation. These results support an ionic mechanism that precedes changes in channel conformation to initiate inactivation. PMID:24733889

  13. A spontaneous increase in intracellular Ca2+ in metaphase II human oocytes in vitro can be prevented by drugs targeting ATP-sensitive K+ channels

    PubMed Central

    Fernandes, Gonçalo; Dasai, Navin; Kozlova, Natalia; Mojadadi, Albaraa; Gall, Mandy; Drew, Ellen; Barratt, Evelyn; Madamidola, Oladipo A.; Brown, Sean G.; Milne, Alison M.; Martins da Silva, Sarah J.; Whalley, Katherine M.; Barratt, Christopher L.R.; Jovanović, Aleksandar

    2016-01-01

    STUDY QUESTION Could drugs targeting ATP-sensitive K+ (KATP) channels prevent any spontaneous increase in intracellular Ca2+ that may occur in human metaphase II (MII) oocytes under in vitro conditions? SUMMARY ANSWER Pinacidil, a KATP channel opener, and glibenclamide, a KATP channel blocker, prevent a spontaneous increase in intracellular Ca2+ in human MII oocytes. WHAT IS KNOWN ALREADY The quality of the oocyte and maintenance of this quality during in vitro processing in the assisted reproductive technology (ART) laboratory is of critical importance to successful embryo development and a healthy live birth. Maintenance of Ca2+ homeostasis is crucial for cell wellbeing and increased intracellular Ca2+ levels is a well-established indicator of cell stress. STUDY DESIGN, SIZE, DURATION Supernumerary human oocytes (n = 102) collected during IVF/ICSI treatment that failed to fertilize were used from October 2013 to July 2015. All experiments were performed on mature (MII) oocytes. Dynamics of intracellular Ca2+ levels were monitored in oocytes in the following experimental groups: (i) Control, (ii) Dimethyl sulfoxide (DMSO; used to dissolve pinacidil, glibenclamide and 2,4-Dinitrophenol (DNP)), (iii) Pinacidil, (iv) Glibenclamide, (v) DNP: an inhibitor of oxidative phosphorylation, (vi) Pinacidil and DNP and (vii) Glibenclamide and DNP. PARTICIPANTS/MATERIALS/SETTINGS/METHODS Oocytes were collected under sedation as part of routine treatment at an assisted conception unit from healthy women (mean ± SD) age 34.1 ± 0.6 years, n = 41. Those surplus to clinical use were donated for research. Oocytes were loaded with Fluo-3 Ca2+-sensitive dye, and monitored by laser confocal microscopy for 2 h at 10 min intervals. Time between oocyte collection and start of Ca2+ monitoring was 80.4 ± 2.1 h. MAIN RESULTS AND THE ROLE OF CHANCE Intracellular levels of Ca2+ increased under in vitro conditions with no deliberate challenge, as shown by Fluo-3 fluorescence increasing from

  14. A real-time bioluminescent HTS method for measuring protein kinase activity influenced neither by ATP concentration nor by luciferase inhibition.

    PubMed

    Lundin, Arne; Eriksson, Jonas

    2008-08-01

    The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.

  15. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenhagen, Jason Alan

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activatedmore » a G{sub q}-type protein to initiate ATP release from HUVECs. Ca 2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca 2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K + and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized Cd

  16. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    PubMed

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  17. Agonist trapped in ATP-binding sites of the P2X2 receptor

    PubMed Central

    Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas

    2011-01-01

    ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent “tethering” reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel. PMID:21576497

  18. Agonist trapped in ATP-binding sites of the P2X2 receptor.

    PubMed

    Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas

    2011-05-31

    ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent "tethering" reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel.

  19. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation

    PubMed Central

    Mirshamsi, Shirin; Laidlaw, Hilary A; Ning, Ke; Anderson, Erin; Burgess, Laura A; Gray, Alexander; Sutherland, Calum; Ashford, Michael LJ

    2004-01-01

    Background Leptin and insulin are long-term regulators of body weight. They act in hypothalamic centres to modulate the function of specific neuronal subtypes, by altering transcriptional control of releasable peptides and by modifying neuronal electrical activity. A key cellular signalling intermediate, implicated in control of food intake by these hormones, is the enzyme phosphoinositide 3-kinase. In this study we have explored further the linkage between this enzyme and other cellular mediators of leptin and insulin action on rat arcuate nucleus neurones and the mouse hypothalamic cell line, GT1-7. Results Leptin and insulin increased the levels of various phosphorylated signalling intermediates, associated with the JAK2-STAT3, MAPK and PI3K cascades in the arcuate nucleus. Inhibitors of PI3K were shown to reduce the hormone driven phosphorylation through the PI3K and MAPK pathways. Using isolated arcuate neurones, leptin and insulin were demonstrated to increase the activity of KATP channels in a PI3K dependent manner, and to increase levels of PtdIns(3,4,5)P3. KATP activation by these hormones in arcuate neurones was also sensitive to the presence of the actin filament stabilising toxin, jasplakinolide. Using confocal imaging of fluorescently labelled actin and direct analysis of G- and F-actin concentration in GT1-7 cells, leptin was demonstrated directly to induce a re-organization of cellular actin, by increasing levels of globular actin at the expense of filamentous actin in a PI3-kinase dependent manner. Leptin stimulated PI3-kinase activity in GT1-7 cells and an increase in PtdIns(3,4,5)P3 could be detected, which was prevented by PI3K inhibitors. Conclusions Leptin and insulin mediated phosphorylation of cellular signalling intermediates and of KATP channel activation in arcuate neurones is sensitive to PI3K inhibition, thus strengthening further the likely importance of this enzyme in leptin and insulin mediated energy homeostasis control. The

  20. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery

    PubMed Central

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-01-01

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (5 μm, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n= 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K+ over the same time period (n= 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca2+-sensitive, large-conductance K+ (BKCa) channel opening as iberiotoxin (100 nm) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n= 5; P < 0.05). 8-pCPT-AM increased Ca2+ spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s-1μm-1 (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s−1) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n= 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nm) and to ryanodine (30 μm). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n= 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n= 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n= 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca2+-sensitive, small- and intermediate

  1. Sterol Regulation of Voltage-Gated K+ Channels.

    PubMed

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  2. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  3. The orientation and molecular movement of a k(+) channel voltage-sensing domain.

    PubMed

    Gandhi, Chris S; Clark, Eliana; Loots, Eli; Pralle, Arnd; Isacoff, Ehud Y

    2003-10-30

    Voltage-gated channels operate through the action of a voltage-sensing domain (membrane segments S1-S4) that controls the conformation of gates located in the pore domain (membrane segments S5-S6). Recent structural studies on the bacterial K(v)AP potassium channel have led to a new model of voltage sensing in which S4 lies in the lipid at the channel periphery and moves through the membrane as a unit with a portion of S3. Here we describe accessibility probing and disulfide scanning experiments aimed at determining how well the K(v)AP model describes the Drosophila Shaker potassium channel. We find that the S1-S3 helices have one end that is externally exposed, S3 does not undergo a transmembrane motion, and S4 lies in close apposition to the pore domain in the resting and activated state.

  4. [Effects of vitamin K3 on the contractile activity of the colonic smooth muscles of guinea pig through the calcium activated potassium channel].

    PubMed

    Li, Jun; Luo, He-sheng; He, Xiao-gu

    2006-07-25

    To study the mechanism of relaxation of gastrointestinal smooth muscles by vitamin K(3). Stripes of proximal colon were collected from guinea pigs. Suspension of single cells was created from these stripes. TD-112S transducer was used to measure the contraction of the stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L respectively. The Ca(2+)-activated K(+) current [IK(Ca)] of the cytomembrane of the colon smooth muscle was recorded with an EPC 10 amplifier under conventional whole cell patterns. The contraction frequencies of the muscle stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L were 79% +/- 4%, 58% +/- 5%, 33% +/- 4%, and 12% +/- 3% respectively of that of the control group (all P < 0.01), and the contraction strength was reduced to 77% +/- 10%, 54% +/- 7%, 30% +/- 6%, and 11% +/- 4% respectively (all P < 0.01). The IK((Ca)) of the cytomembrane of the colon smooth muscle at the voltage of +60 mV was increased to 120% +/- 18%, 149% +/- 12%, 197% +/- 19%, and 223% +/- 14% respectively (all P < 0.01). Vitamin K(3) inhibits the contractile activity of the colonic muscle stripes and increases the IK(Ca) of single myocytes concentration-dependently. The mechanism is activation of the Ca(2+)-activated K(+) channel, thus promoting the potassium efflux.

  5. Copper and protons directly activate the zinc-activated channel.

    PubMed

    Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z; Ortiz, Eydith J Comenencia; Moss, Stephen J; Jensen, Anders A; Davies, Paul A

    2016-03-01

    The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities of ZAC for Na(+) and K(+) relative to Cs(+) are indistinguishable, whereas replacing all of extracellular Na(+) and K(+) with the divalent cations Ca(2+) or Mg(2+) results in complete elimination of Zn(2+)-activated currents at both negative and positive holding potentials. This indicates that ZAC is non-selectively permeable to monovalent cations, whereas Ca(2+) and Mg(2+) inhibit the channel. In conclusion, this is the first report of a Cys-loop receptor being gated by Zn(2+), Cu(2+) and H(+). ZAC could be an important mediator of some of the wide range of physiological functions regulated by or involving Zn(2+), Cu(2+) and H(+). Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

    PubMed

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2011-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  7. Molecular basis of slow activation of the human ether-á-go-go related gene potassium channel

    PubMed Central

    Subbiah, Rajesh N; Clarke, Catherine E; Smith, David J; Zhao, JingTing; Campbell, Terence J; Vandenberg, Jamie I

    2004-01-01

    The human ether-á-go-go related gene (HERG) encodes the pore forming α-subunit of the rapid delayed rectifier K+ channel which is central to the repolarization phase of the cardiac action potential. HERG K+ channels have unusual kinetics characterized by slow activation and deactivation, yet rapid inactivation. The fourth transmembrane domain (S4) of HERG, like other voltage-gated K+ channels, contains multiple positive charges and is the voltage sensor for activation. In this study, we mutated each of the positively charged residues in this region to glutamine (Q), expressed the mutant and wild-type (WT) channels in Xenopus laevis oocytes and studied them using two-electrode voltage clamp methods. K525Q channels activated at more hyperpolarized potentials than WT, whereas all the other mutant channels activated at more depolarized potentials. All mutants except for R531Q also had a reduction in apparent gating charge associated with activation. Mutation of K525 to cysteine (C) resulted in a less dramatic phenotype than K525Q. The addition of the positively charged MTSET to K525C altered the phenotype to one more similar to K525Q than to WT. Therefore it is not charge per se, but the specific lysine side chain at position 525, that is crucial for stabilizing the closed state. When rates of activation and deactivation for WT and mutant channels were compared at equivalent total (chemical + electrostatic) driving forces, K525Q and R528Q accelerated activation but had no effect on deactivation, R531Q slowed activation and deactivation, R534Q accelerated activation but slowed deactivation and R537Q accelerated deactivation but had no effect on activation. The main conclusions we can draw from these data are that in WT channels K525 stabilizes the closed state, R531 stabilizes the open state and R534 participates in interactions that stabilize pre-open closed states. PMID:15181157

  8. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  9. ATP excites mouse vomeronasal sensory neurons through activation of P2X receptors.

    PubMed

    Vick, J S; Delay, R J

    2012-09-18

    Purinergic signaling through activation of P2X and P2Y receptors is critically important in the chemical senses. In the mouse main olfactory epithelium (MOE), adenosine 5'-triphosphate (ATP) elicits an increase in intracellular calcium ([Ca(2+)](I)) and reduces the responsiveness of olfactory sensory neurons to odorants through activation of P2X and P2Y receptors. We investigated the role of purinergic signaling in vomeronasal sensory neuron (VSN)s from the mouse vomeronasal organ (VNO), an olfactory organ distinct from the MOE that responds to many conspecific chemical cues. Using a combination of calcium imaging and patch-clamp electrophysiology with isolated VSNs, we demonstrated that ATP elicits an increase in [Ca(2+)](I) and an inward current with similar EC(50)s. Neither adenosine nor the P2Y receptor ligands adenosine 5'-diphosphate, uridine 5'-triphosphate, and uridine-5'-disphosphate could mimic either effect of ATP. Moreover, the increase in [Ca(2+)](I) required the presence of extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. Consistent with the activation of P2X receptors, we detected gene expression of the P2X1 and 3 receptors in the VNO by Reverse transcription polymerase chain reaction (RT-PCR). When co-delivered with dilute urine, a natural stimulus, ATP significantly increased the inward current above that elicited by dilute urine or ATP alone. Mechanical stimulation of the VNO induced the release of ATP, detected by luciferin-luciferase luminometry, and this release of ATP was completely abolished in the presence of the connexin/pannexin hemichannel blocker, carbenoxolone. We conclude that the release of ATP could occur during the activity of the vasomotor pump that facilitates the movement of chemicals into the VNO for detection by VSNs. This mechanism could lead to a

  10. Ion-binding properties of a K+ channel selectivity filter in different conformations.

    PubMed

    Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W

    2015-12-08

    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.

  11. The β1 Subunit Enhances Oxidative Regulation of Large-Conductance Calcium-activated K+ Channels

    PubMed Central

    Santarelli, Lindsey Ciali; Chen, Jianguo; Heinemann, Stefan H.; Hoshi, Toshinori

    2004-01-01

    Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) α subunits alone. Because native BKCa channel complexes may include the auxiliary subunit β1, we investigated whether β1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with β1 present shifted the half-activation voltage much further in the hyperpolarizing direction (−75 mV) as compared with that with α alone (−30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of β1. Oxidation of cysteine and methionine residues within β1 was not involved in these potentiated effects because expression of mutant β1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type β1. Unlike the results with α alone, oxidation by Ch-T caused a significant acceleration of channel activation only when β1 was present. The β1 M177 mutation disrupted normal channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming α subunit are greatly amplified by the presence of β1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within β1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with β1 has a considerable chance of being open within the physiological voltage

  12. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain.

    PubMed

    Singh, H; Li, M; Hall, L; Chen, S; Sukur, S; Lu, R; Caputo, A; Meredith, A L; Stefani, E; Toro, L

    2016-03-11

    Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish

  13. The newly identified K+ channel blocker talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons.

    PubMed

    Wang, Yanxia; Song, Mingke; Hou, Lina; Yu, Zhihua; Chen, Hongzhuan

    2012-06-19

    Loss of cytosolic K(+) through up-regulated delayed rectifier K(+) channels play an important role in beta-amyloid (Aβ) induced neurotoxicity. Potent K(+) channel blocker, particular specific for I(K) channels has been suggested as an attractive candidate for the treatment of Alzheimer's disease (AD). Talatisamine is a novel I(K) channel blocker discovered by virtual screening and electrophysiological characterization. In the present study, we examined the neuroprotective effect of talatisamine against Aβ oligomers induced cytotoxicity in primarily cultured cortical neurons. The neurotoxicity related to K(+) loss caused by Aβ40 oligomers included enhanced I(K) density, increased cell membrane permeability, reduced cell viability, and impaired mitochondrial transmembrane potential. Decreased Bcl-2 and increased Bax level, activation of Caspase-3 and Caspase-9 were also observed after Aβ40 oligomers incubation. Talatisamine (120 μM) and TEA (5mM) inhibited the enhanced I(K) caused by Aβ40 oligomers, attenuated cytotoxicity of Aβ oligomers by restoring cell viability and suppressing K(+) loss related apoptotic response. Our results suggested that talatisamine may become a leading compound as I(K) channel blocker for neuroprotection. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    PubMed

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  15. Regulation of Na(+)/K(+)-ATPase by nuclear respiratory factor 1: implication in the tight coupling of neuronal activity, energy generation, and energy consumption.

    PubMed

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2012-11-23

    NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between

  16. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    PubMed Central

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  17. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    PubMed

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  18. DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K+ Channels.

    PubMed

    Kurokawa, Tatsuki; Kiyonaka, Shigeki; Nakata, Eiji; Endo, Masayuki; Koyama, Shohei; Mori, Emiko; Tran, Nam Ha; Dinh, Huyen; Suzuki, Yuki; Hidaka, Kumi; Kawata, Masaaki; Sato, Chikara; Sugiyama, Hiroshi; Morii, Takashi; Mori, Yasuo

    2018-03-01

    In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K + channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K + channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    NASA Astrophysics Data System (ADS)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  20. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling.

    PubMed

    Kuang, Jian-Ren; Zhang, Zhi-Hui; Leng, Wei-Ling; Lei, Xiao-Tian; Liang, Zi-Wen

    2017-05-15

    Studies have shown that hepatic insulin resistance, a disorder of glucose and lipid metabolism, plays a vital role in type 2 diabetes (T2D). To clarify the function of Dapper1 in glucose and lipid metabolism in the liver, we investigated the relationships between Dapper1 and adenosine triphosphate (ATP)- and Ca 2+ -mediated activation of PI3K/Akt. We observed a reduction in hepatic Dapper1 in db/db (mice that are homozygous for a spontaneous diabetes mutation) and HFD-induced diabetic mice with T2D. Hepatic overexpression of Dapper1 improved hyperglycemia, insulin resistance, and fatty liver. It also increased Akt (pAkt) signaling and repressed both gluconeogenesis and lipogenesis. Conversely, Ad-shDapper1-induced knockdown of hepatic Dapper1 promoted gluconeogenesis and lipogenesis. Furthermore, Dapper1 activated PI3K p110α/Akt in an insulin-independent manner by inducing ATP production and secretion in vitro. Blockade of P2 ATP receptors, the downstream phospholipase C (PLC), or the inositol triphosphate receptor (IP3R all reduced the Dapper1-induced increase in cytosolic free calcium and Dapper1-mediated PI3K/Akt activation, as did removal of calcium in the medium. In conclusion, Dapper1 attenuates hepatic gluconeogenesis and lipogenesis in T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2.

    PubMed

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V

    2007-12-01

    Vitamin K3 (menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2, which are essential for blood clotting. The naturally occurring structural analogue of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We here report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). Vitamin K3 and plumbagin inhibited the binding of [(125)I]iodoarylazidoprazosin, a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC(50) values of 7.3 and 22.6 micromol/L, respectively, but had no effect on the binding of the photoaffinity analogue to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of the ABCG2 transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared with the control cells, suggesting that they are substrates of this transporter. Collectively, these data show for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function.

  2. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  3. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    PubMed Central

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  4. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. ATP binding at noncatalytic sites of soluble chloroplast F1-ATPase is required for expression of the enzyme activity.

    PubMed

    Milgrom, Y M; Ehler, L L; Boyer, P D

    1990-11-05

    The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.

  6. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  7. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.

    PubMed

    Padula, Audrey E; Griffin, William C; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S; Chesler, Elissa J; Miles, Michael F; Williams, Robert W; Randall, Patrick K; Woodward, John J; Becker, Howard C; Mulholland, Patrick J

    2015-07-01

    Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction.

  8. Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel

    PubMed Central

    Niemeyer, María Isabel; González-Nilo, Fernando D.; Zúñiga, Leandro; González, Wendy; Cid, L. Pablo; Sepúlveda, Francisco V.

    2007-01-01

    Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein. PMID:17197424

  9. KV7 Channel Pharmacological Activation by the Novel Activator ML213: Role for Heteromeric KV7.4/KV7.5 Channels in Guinea Pig Detrusor Smooth Muscle Function.

    PubMed

    Provence, Aaron; Angoli, Damiano; Petkov, Georgi V

    2018-01-01

    Voltage-gated K V 7 channels (K V 7.1 to K V 7.5) are important regulators of the cell membrane potential in detrusor smooth muscle (DSM) of the urinary bladder. This study sought to further the current knowledge of K V 7 channel function at the molecular, cellular, and tissue levels in combination with pharmacological tools. We used isometric DSM tension recordings, ratiometric fluorescence Ca 2+ imaging, amphotericin-B perforated patch-clamp electrophysiology, and in situ proximity ligation assay (PLA) in combination with the novel compound N -(2,4,6-trimethylphenyl)-bicyclo[2.2.1]heptane-2-carboxamide (ML213), an activator of K V 7.2, K V 7.4, and K V 7.5 channels, to examine their physiologic roles in guinea pig DSM function. ML213 caused a concentration-dependent (0.1-30 µ M) inhibition of spontaneous phasic contractions in DSM isolated strips; effects blocked by the K V 7 channel inhibitor XE991 (10 µ M). ML213 (0.1-30 µ M) also reduced pharmacologically induced and nerve-evoked contractions in DSM strips. Consistently, ML213 (10 µ M) decreased global intracellular Ca 2+ concentrations in Fura-2-loaded DSM isolated strips. Perforated patch-clamp electrophysiology revealed that ML213 (10 µ M) caused an increase in the amplitude of whole-cell K V 7 currents. Further, in current-clamp mode of the perforated patch clamp, ML213 hyperpolarized DSM cell membrane potential in a manner reversible by washout or XE991 (10 µ M), consistent with ML213 activation of K V 7 channel currents. Preapplication of XE991 (10 µ M) not only depolarized the DSM cells, but also blocked ML213-induced hyperpolarization, confirming ML213 selectivity for K V 7 channel subtypes. In situ PLA revealed colocalization and expression of heteromeric K V 7.4/K V 7.5 channels in DSM isolated cells. These combined results suggest that ML213-sensitive K V 7.4- and K V 7.5-containing channels are essential regulators of DSM excitability and contractility. Copyright © 2017 by The American

  10. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    PubMed Central

    2010-01-01

    Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P < 0.05, n = 12) in mice intratracheally administrated verapamil. KCa3.1 (1-EBIO) and KATP (minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598

  11. [Change in concentration of cytosolic Ca2+ caused by extracellular ATP and ecto-ATP-ase activity in thymocytes and transformed MT-4 cells].

    PubMed

    Hrebinyk, S M; Artemenko, O Iu; Hryniuk, I I; Perepelitsyna, O M; Matyshevs'ka, O P

    2009-01-01

    The comparative study of extracellular ATP (ATP0) effect on free cytosolic calcium concentration ([Ca2+]i) in normal (isolated rat thymocytes) and transformed (leukosis MT-4 line) T-cells was carried out. Addition of 1 mM ATP to Ca-free incubation medium of both types of cells, loaded with indo-1, had no effect on [Ca2+]i level. Upon subsequent addition of 1 mM CaCl2 to the incubation medium the rapid and significant increase of [Ca2+]i in MT-4 cells was registered. This effect was maintained within 10 min and was not inhibited by phospholipase C inhibitor 0.2 mM neomycin, that was induced by cation entry into the cells from the extracellular medium. Both types of cells were shown to demonstrate ecto-ATPase activity in the presence of 1 mM MgCl2 or CaC12 in the incubation medium. Estimation of kinetic parameters has indicated that the maximum rate of extracellular ATP hydrolysis by MT-4 cells is higher and Mg2+ and Ca2+ activation constants are lower as compared to respective parameters of ATP hydrolysis by thymocytes. The possible functional significance of the increased level of ecto-ATPase activity in malignantly transformed cells is discussed.

  12. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Naohiko; Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp; Furuya, Kishio

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellularmore » Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.« less

  13. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes.

    PubMed

    Tejada, Maria A; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells.

  14. K+ and NH4(+) modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion.

    PubMed

    Garçon, D P; Masui, D C; Mantelatto, F L M; McNamara, J C; Furriel, R P M; Leone, F A

    2007-05-01

    To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.

  15. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    PubMed Central

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  16. Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium

    PubMed Central

    González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David

    2008-01-01

    After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results

  17. Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea

    PubMed Central

    Ceriani, Federico; Pozzan, Tullio; Mammano, Fabio

    2016-01-01

    Spatially and temporally coordinated variations of the cytosolic free calcium concentration ([Ca2+]c) play a crucial role in a variety of tissues. In the developing sensory epithelium of the mammalian cochlea, elevation of extracellular adenosine trisphosphate concentration ([ATP]e) triggers [Ca2+]c oscillations and propagation of intercellular inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ waves. What remains uncertain is the relative contribution of gap junction channels and connexin hemichannels to these fundamental mechanisms, defects in which impair hearing acquisition. Another related open question is whether [Ca2+]c oscillations require oscillations of the cytosolic IP3 concentration ([IP3]c) in this system. To address these issues, we performed Ca2+ imaging experiments in the lesser epithelial ridge of the mouse cochlea around postnatal day 5 and constructed a computational model in quantitative adherence to experimental data. Our results indicate that [Ca2+]c oscillations are governed by Hopf-type bifurcations within the experimental range of [ATP]e and do not require [IP3]c oscillations. The model replicates accurately the spatial extent and propagation speed of intercellular Ca2+ waves and predicts that ATP-induced ATP release is the primary mechanism underlying intercellular propagation of Ca2+ signals. The model also uncovers a discontinuous transition from propagating regimes (intercellular Ca2+ wave speed > 11 μm⋅s−1) to propagation failure (speed = 0), which occurs upon lowering the maximal ATP release rate below a minimal threshold value. The approach presented here overcomes major limitations due to lack of specific connexin channel inhibitors and can be extended to other coupled cellular systems. PMID:27807138

  18. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    PubMed

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Thermodynamics of proton transport coupled ATP synthesis.

    PubMed

    Turina, Paola; Petersen, Jan; Gräber, Peter

    2016-06-01

    The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°(ref)=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pH(in) or pH(out)) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F(0) to the catalytic nucleotide binding sites on the β-subunits in F(1), is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system.

    PubMed Central

    Fagan, J M; Waxman, L; Goldberg, A L

    1987-01-01

    Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors. Images Fig. 2. PMID:2820375

  1. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine

    PubMed Central

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2010-01-01

    Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

  2. Molecular mechanism of pharmacological activation of BK channels

    PubMed Central

    Gessner, Guido; Cui, Yong-Mei; Otani, Yuko; Ohwada, Tomohiko; Soom, Malle; Hoshi, Toshinori; Heinemann, Stefan H.

    2012-01-01

    Large-conductance voltage- and Ca2+-activated K+ (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabietic acid derivative Cym04 activates BK channels. As a representative of NS1619-like BK openers, Cym04 reversibly left-shifts the half-activation voltage of Slo1 BK channels. Using an established allosteric BK gating model, the Cym04 effect can be simulated by a shift of the voltage sensor and the ion conduction gate equilibria toward the activated and open state, respectively. BK activation by Cym04 occurs in a splice variant-specific manner; it does not occur in such Slo1 BK channels using an alternative neuronal exon 9, which codes for the linker connecting the transmembrane segment S6 and the cytosolic RCK1 domain—the S6/RCK linker. In addition, Cym04 does not affect Slo1 BK channels with a two-residue deletion within this linker. Mutagenesis and model-based gating analysis revealed that BK openers, such as Cym04 and NS1619 but not mallotoxin, activate BK channels by functionally interacting with the S6/RCK linker, mimicking site-specific shortening of this purported passive spring, which transmits force from the cytosolic gating ring structure to open the channel's gate. PMID:22331907

  3. ATPase activity and light scattering of acto-heavy meromyosin: dependence on ATP concentration and on ionic strength.

    PubMed

    Dancker, P

    1975-01-01

    1. The dependence on ATP concentration of ATPase activity and light scattering decrease of acto-HMM could be described at very low ionic strength by one hyperbolic adsorption isotherm with a dissociation constant of 3 X 10(-6)M. Hence the increase of ATP ase activity was paralleled by a decrease in light scattering. At higher values of ionic strength ATPase activity stopped rising before HMM was completely saturated with ATP. Higher ionic strength prevented ATPase activity from further increasing when the rigor links (links between actin and nucleotide-free myosin), which have formerly protected the ATPase against the suppressing action of higher ionic strength have fallen below a certain amount. This protecting influence of rigor links did not require tropomyosin-troponin. 2. For complete activation of ATPase activity by actin less actin was needed when HMM was incompletely saturated with ATP than when it was completely saturated with ATP. 3. The apparent affinity of ATP to regulated acto-HMM (which contained tropomyosin-troponin) was lower than to unregulated acto-HMM (which was devoid of tropomyosin-troponin). In the presence of rigor complexes (indicated by an incomplete decrease of light scattering) the ATPase activity of regulated acto-HMM was higher than that of unregulated acto-HMM. At increasing ATP concentrations the ATPase activity of regulated acto-HMM stopped rising at a similar degree of saturation with ATP as the ATPase activity of unregulated acto-HMM at the same ionic strength.

  4. The conserved phenylalanine in the K+ channel voltage-sensor domain creates a barrier with unidirectional effects.

    PubMed

    Schwaiger, Christine S; Liin, Sara I; Elinder, Fredrik; Lindahl, Erik

    2013-01-08

    Voltage-gated ion channels are crucial for regulation of electric activity of excitable tissues such as nerve cells, and play important roles in many diseases. During activation, the charged S4 segment in the voltage sensor domain translates across a hydrophobic core forming a barrier for the gating charges. This barrier is critical for channel function, and a conserved phenylalanine in segment S2 has previously been identified to be highly sensitive to substitutions. Here, we have studied the kinetics of K(v)1-type potassium channels (Shaker and K(v)1.2/2.1 chimera) through site-directed mutagenesis, electrophysiology, and molecular simulations. The F290L mutation in Shaker (F233L in K(v)1.2/2.1) accelerates channel closure by at least a factor 50, although opening is unaffected. Free energy profiles with the hydrophobic neighbors of F233 mutated to alanine indicate that the open state with the fourth arginine in S4 above the hydrophobic core is destabilized by ∼17 kJ/mol compared to the first closed intermediate. This significantly lowers the barrier of the first deactivation step, although the last step of activation is unaffected. Simulations of wild-type F233 show that the phenyl ring always rotates toward the extracellular side both for activation and deactivation, which appears to help stabilize a well-defined open state. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.

    PubMed

    Brown, Maile R; Kronengold, Jack; Gazula, Valeswara-Rao; Spilianakis, Charalampos G; Flavell, Richard A; von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2008-11-01

    The rates of activation and unitary properties of Na+-activated K+ (K(Na)) currents have been found to vary substantially in different types of neurones. One class of K(Na) channels is encoded by the Slack gene. We have now determined that alternative RNA splicing gives rise to at least five different transcripts for Slack, which produce Slack channels that differ in their predicted cytoplasmic amino-termini and in their kinetic properties. Two of these, termed Slack-A channels, contain an amino-terminus domain closely resembling that of another class of K(Na) channels encoded by the Slick gene. Neuronal expression of Slack-A channels and of the previously described Slack isoform, now called Slack-B, are driven by independent promoters. Slack-A mRNAs were enriched in the brainstem and olfactory bulb and detected at significant levels in four different brain regions. When expressed in CHO cells, Slack-A channels activate rapidly upon depolarization and, in single channel recordings in Xenopus oocytes, are characterized by multiple subconductance states with only brief transient openings to the fully open state. In contrast, Slack-B channels activate slowly over hundreds of milliseconds, with openings to the fully open state that are approximately 6-fold longer than those for Slack-A channels. In numerical simulations, neurones in which outward currents are dominated by a Slack-A-like conductance adapt very rapidly to repeated or maintained stimulation over a wide range of stimulus strengths. In contrast, Slack-B currents promote rhythmic firing during maintained stimulation, and allow adaptation rate to vary with stimulus strength. Using an antibody that recognizes all amino-termini isoforms of Slack, Slack immunoreactivity is present at locations that have no Slack-B-specific staining, including olfactory bulb glomeruli and the dendrites of hippocampal neurones, suggesting that Slack channels with alternate amino-termini such as Slack-A channels are present at

  6. Application of the principle of linked functions to ATP-driven ion pumps: kinetics of activation by ATP.

    PubMed Central

    Reynolds, J A; Johnson, E A; Tanford, C

    1985-01-01

    If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct participant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center. PMID:2987939

  7. Conserved Allosteric Hot Spots in the Transmembrane Domains of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channels and Multidrug Resistance Protein (MRP) Pumps*

    PubMed Central

    Wei, Shipeng; Roessler, Bryan C.; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L.; Kirk, Kevin L.

    2014-01-01

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5′-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. PMID:24876383

  8. Activation of p38 in C2C12 myotubes following ATP depletion depends on extracellular glucose.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2015-06-01

    Muscle cells adjust their glucose metabolism in response to myriad stimuli, and particular attention has been paid to glucose metabolism after contraction, ATP depletion, and insulin stimulation. Each of these requires translocation of GLUT4 to the cell membrane, and may require activation of glucose transporters by p38. In contrast, AICAR stimulates glucose transport without activation of p38, suggesting that p38 activation may be an indirect consequence of accelerated glucose transport or metabolism. This study was designed to investigate the contribution of AMPK and p38 to ATP homeostasis and glucose metabolism to test the hypothesis that p38 reflects glycolytic activity rather than controls glucose uptake. Treating mature myotubes with rotenone caused transient ATP depletion in 15 min with recovery by 120 min, associated with increased lactate production. Both ACC and p38 were rapidly phosphorylated, but ACC remained phosphorylated while p38 phosphorylation declined as ATP recovered. AMPK inhibition blocked ATP recovery, lactate production, and phosphorylation of p38 and ACC. Inhibition of p38 had little effect. AICAR induced ACC phosphorylation, but not lactate production or p38 phosphorylation. Finally, removing extracellular glucose potentiated rotenone-induced AMPK activation, but reduced lactate generation, ATP recovery and p38 activation. Thus, glucose metabolism is highly sensitive to ATP homeostasis via AMPK activity, but p38 activity is dispensable. Although p38 is strongly phosphorylated during ATP depletion, this appears to be an indirect consequence of accelerated glycolysis.

  9. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH

    PubMed Central

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Paulais, Marc

    2016-01-01

    ClC-K2, a member of the ClC family of Cl− channels and transporters, forms the major basolateral Cl− conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl− absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl−, and Ca2+ on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca2+ strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl− has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl−/HCO3− exchange in type B intercalated cells. PMID:27574292

  10. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    PubMed

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells. © 2016 Pinelli et al.

  11. Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Fen; Hui, Zhenhai; Wei, Wei

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune-disease with complex and unclear etiology. Hypotonicity of synovial fluid is a typical characteristic of RA, which may play pivotal roles in RA pathogenesis. In this work, we studied the responses of RA synovial fibroblasts to hypotonic stress in vitro and further explored the underlying mechanisms. Data showed that hyposmotic solutions significantly triggered increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) of synoviocytes. Subsequently, it caused rapid release of ATP, as well as remarkable production of intracellular reactive oxygen species (ROS). Meanwhile, hypotonic stimulus promoted the proliferation of synovial fibroblasts. These effects weremore » almost abolished by calcium-free buffer and significantly inhibited by gadolinium (III) chloride (a mechanosensitive Ca{sup 2+} channel blocker) and ruthenium red (a transient receptor potential vanilloid 4 (TRPV4) blocker). 4α-phorbol 12,13-didecanoate, a specific agonist of TRPV4, also mimicked hypotonic shock-induced responses shown above. In contrast, voltage-gated channel inhibitors verapamil and nifedipine had little influences on these responses. Furthermore, RT-PCR and western blotting evidently detected TRPV4 expression at mRNA and protein level in isolated synoviocytes. Taken together, our results indicated that hypotonic stimulus resulted in ATP release, ROS production, and cell proliferation depending on Ca{sup 2+} entry through activation of TRPV4 channel in synoviocytes. - Highlights: • Hypotonic stress evokes Ca{sup 2+} entry in rheumatoid arthritis synovial fibroblasts. • Hypotonic stress induces rapid ATP release and ROS production in synoviocytes. • Hypotonic stimulation promotes the proliferation of synovial fibroblasts. • TRPV4 controls hypotonic-induced responses in synoviocytes.« less

  12. Structural and Biochemical Consequences of Disease-Causing Mutations in the Ankyrin Repeat Domain of the Human TRPV4 Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inada, Hitoshi; Procko, Erik; Sotomayor, Marcos

    2012-10-23

    The TRPV4 calcium-permeable cation channel plays important physiological roles in osmosensation, mechanosensation, cell barrier formation, and bone homeostasis. Recent studies reported that mutations in TRPV4, including some in its ankyrin repeat domain (ARD), are associated with human inherited diseases, including neuropathies and skeletal dysplasias, probably because of the increased constitutive activity of the channel. TRPV4 activity is regulated by the binding of calmodulin and small molecules such as ATP to the ARD at its cytoplasmic N-terminus. We determined structures of ATP-free and -bound forms of human TRPV4-ARD and compared them with available TRPV-ARD structures. The third inter-repeat loop region (Fingermore » 3 loop) is flexible and may act as a switch to regulate channel activity. Comparisons of TRPV-ARD structures also suggest an evolutionary link between ARD structure and ATP binding ability. Thermal stability analyses and molecular dynamics simulations suggest that ATP increases stability in TRPV-ARDs that can bind ATP. Biochemical analyses of a large panel of TRPV4-ARD mutations associated with human inherited diseases showed that some impaired thermal stability while others weakened ATP binding ability, suggesting molecular mechanisms for the diseases.« less

  13. Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel

    PubMed Central

    Li-Smerin, Yingying; Swartz, Kenton J.

    2000-01-01

    Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1–S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20–25 Å away from the central pore axis. PMID:10828242

  14. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation.

    PubMed

    Mhashal, Anil R; Choudhury, Chandan Kumar; Roy, Sudip

    2016-03-01

    Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.

  15. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    PubMed Central

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  16. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    PubMed

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  17. Cloning and characterization of BmK86, a novel K{sup +}-channel blocker from scorpion venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xin; Cao, Zhijian; Yin, Shijin

    2007-09-07

    Scorpion venom represents a tremendous hitherto unexplored resource for understanding ion channels. BmK86 is a novel K{sup +}-channel toxin gene isolated from a cDNA library of Mesobuthus martensii Karsch, which encodes a signal peptide of 22 amino acid residues and a mature toxin of 35 residues with three disulfide bridges. The genomic sequence of BmK86 consists of two exons disrupted by an intron of 72 bp. Comparison with the other scorpion toxins BmK86 shows low sequence similarity. The GST-BmK86 fusion protein was successfully expressed in Escherichia coli. The fusion protein was cleaved by enterokinase and the recombinant BmK86 was purifiedmore » by HPLC. Using whole-cell patch-clamp recording, the recombinant BmK86 was found to inhibit the potassium current of mKv1.3 channel expressed in COS7 cells. These results indicated that BmK86 belongs to a representative member of a novel subfamily of {alpha}-KTxs. The systematic number assigned to BmK86 is {alpha}-KTx26.1.« less

  18. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase

    PubMed Central

    Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul

    2010-01-01

    Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the

  19. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  20. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes

    PubMed Central

    Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A.

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells. PMID:28222129