Sample records for k-band selected sample

  1. High-spatial-resolution K-band Imaging of Select K2 Campaign Fields

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Howell, Steve B.; Ciardi, David R.; Barclay, Thomas

    2017-12-01

    NASA's K2 mission began observing fields along the ecliptic plane in 2014. Each observing campaign lasts approximately 80 days, during which high-precision optical photometry of select astrophysical targets is collected by the Kepler spacecraft. Due to the 4 arcsec pixel scale of the Kepler photometer, significant blending between the observed targets can occur (especially in dense fields close to the Galactic plane). We undertook a program to use the Wide Field Camera (WFCAM) on the 3.8 m United Kingdom InfraRed Telescope (UKIRT) to collect high-spatial-resolution near-infrared images of targets in select K2 campaign fields, which we report here. These 0.4 arcsec resolution K-band images offer the opportunity to perform a variety of science, including vetting exoplanet candidates by identifying nearby stars blended with the target star and estimating the size, color, and type of galaxies observed by K2.

  2. The K-selected Butcher-Oemler Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, S A; De Propris, R; Dickinson, M

    2004-03-02

    We investigate the Butcher-Oemler effect using samples of galaxies brighter than observed frame K* + 1.5 in 33 clusters at 0.1 {approx}< z {approx}< 0.9. We attempt to duplicate as closely as possible the methodology of Butcher & Oemler. Apart from selecting in the K-band, the most important difference is that we use a brightness limit fixed at 1.5 magnitudes below an observed frame K* rather than the nominal limit of rest frame M(V ) = -20 used by Butcher & Oemler. For an early type galaxy at z = 0.1 our sample cutoff is 0.2 magnitudes brighter than restmore » frame M(V ) = -20, while at z = 0.9 our cutoff is 0.9 magnitudes brighter. If the blue galaxies tend to be faint, then the difference in magnitude limits should result in our measuring lower blue fractions. A more minor difference from the Butcher & Oemler methodology is that the area covered by our galaxy samples has a radius of 0.5 or 0.7 Mpc at all redshifts rather than R{sub 30}, the radius containing 30% of the cluster population. In practice our field sizes are generally similar to those used by Butcher & Oemler. We find the fraction of blue galaxies in our K-selected samples to be lower on average than that derived from several optically selected samples, and that it shows little trend with redshift. However, at the redshifts z < 0.6 where our sample overlaps with that of Butcher & Oemler, the difference in fB as determined from our K-selected samples and those of Butcher & Oemler is much reduced. The large scatter in the measured f{sub B}, even in small redshift ranges, in our study indicates that determining the f{sub B} for a much larger sample of clusters from K-selected galaxy samples is important. As a test of our methods, our data allow us to construct optically-selected samples down to rest frame M(V ) = -20, as used by Butcher & Oemler, for four clusters that are common between our sample and that of Butcher & Oemler. For these rest V selected samples, we find similar fractions of blue

  3. Progressive sample processing of band selection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Liu, Keng-Hao; Chien, Hung-Chang; Chen, Shih-Yu

    2017-10-01

    Band selection (BS) is one of the most important topics in hyperspectral image (HSI) processing. The objective of BS is to find a set of representative bands that can represent the whole image with lower inter-band redundancy. Many types of BS algorithms were proposed in the past. However, most of them can be carried on in an off-line manner. It means that they can only be implemented on the pre-collected data. Those off-line based methods are sometime useless for those applications that are timeliness, particular in disaster prevention and target detection. To tackle this issue, a new concept, called progressive sample processing (PSP), was proposed recently. The PSP is an "on-line" framework where the specific type of algorithm can process the currently collected data during the data transmission under band-interleavedby-sample/pixel (BIS/BIP) protocol. This paper proposes an online BS method that integrates a sparse-based BS into PSP framework, called PSP-BS. In PSP-BS, the BS can be carried out by updating BS result recursively pixel by pixel in the same way that a Kalman filter does for updating data information in a recursive fashion. The sparse regression is solved by orthogonal matching pursuit (OMP) algorithm, and the recursive equations of PSP-BS are derived by using matrix decomposition. The experiments conducted on a real hyperspectral image show that the PSP-BS can progressively output the BS status with very low computing time. The convergence of BS results during the transmission can be quickly achieved by using a rearranged pixel transmission sequence. This significant advantage allows BS to be implemented in a real time manner when the HSI data is transmitted pixel by pixel.

  4. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  5. Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack

    2008-01-01

    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.

  6. K-Band Latching Switches

    NASA Technical Reports Server (NTRS)

    Piotrowski, W. S.; Raue, J. E.

    1984-01-01

    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  7. K-Band Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.

    2010-01-01

    A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.

  8. Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan

    2018-03-01

    We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5< z< 4.5 and i< 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z∼ 2{--}3. It confirms that our color selections are highly complete in a wide redshift range (z< 4.5), especially over the quasar number density peak at z∼ 2{--}3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z> 2.5.

  9. On estimation in k-tree sampling

    Treesearch

    Christoph Kleinn; Frantisek Vilcko

    2007-01-01

    The plot design known as k-tree sampling involves taking the k nearest trees from a selected sample point as sample trees. While this plot design is very practical and easily applied in the field for moderate values of k, unbiased estimation remains a problem. In this article, we give a brief introduction to the...

  10. Dual-band frequency selective surface with large band separation and stable performance

    NASA Astrophysics Data System (ADS)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  11. On sampling band-pass signals

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Shahshahani, M.

    1989-01-01

    Four techniques for uniform sampling of band-bass signals are examined. The in-phase and quadrature components of the band-pass signal are computed in terms of the samples of the original band-pass signal. The relative implementation merits of these techniques are discussed with reference to the Deep Space Network (DSN).

  12. Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.

    2009-08-01

    We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.

  13. The K-Band Quasar Luminosity Function from an SDSS and UKIDSS Matched Catalog

    NASA Astrophysics Data System (ADS)

    Peth, Michael; Ross, N. P.; Schneider, D. P.

    2010-01-01

    We match the 1,015,082 quasars from the Sloan Digital Sky Survey (SDSS) DR6 Photometric Quasar catalog to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) DR3 to produce a catalog of 130,827 objects with optical (ugriz) and infrared (YJHK) measurements over an area of 1,200 sq. deg. A matching radius of 1'’ is used; the positional standard deviations of SDSS DR6 quasars and UKIDSS LAS is δRA = 0.137'’ and δDec = 0.131''. The catalog contains 74,351 K-band detections and 42,133 objects have coverage in all four NIR bands. In addition to the catalog, we present optical and NIR color-redshift and color-color plots. The photometric vs. spectroscopic redshift plots demonstrate how unreliable high reported photometric redshifts can be. This forces us to focus on z4.6 quasars are compared to our highest redshift objects. The giK color-color plot demonstrates that stellar contamination only affects a small sample of the objects. Distributions for Y,J,H,K and i-bands reveal insights into the flux limits in each magnitude. We investigate the distribution of redshifts from different data sets and investigate the legitimacy of certain measured photometric redshift regions. For in-depth analysis, we focus on the 300 sq. deg area equatorial SDSS region designated as Stripe 82. We measure the observed K-band quasar luminosity function (QLF) for a subset of 9,872, z<2.2 objects. We find the shape of the K-band QLF is very similar to that of the optical QLF, over the considered redshift ranges. Our calculated K-Band QLFs broadly match previous optical QLFs calculated from the SDSS and 2SLAQ QSO surveys and should provide important constraints linking unobscured optical quasars to Mid-Infrared detected, dusty and obscured AGNs at high-redshift.

  14. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  15. W-band Heterodyne Receiver Module with 27 K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Gawande, R.; Reeves, R.; Cleary, K.; Readhead, A. C.; Gaier, T.; Kangaslahti, P.; Samoska, L.; Church, S.; Sieth, M.; Voll, P.; hide

    2012-01-01

    We present noise temperature and gain measurements of a W-band heterodyne module populated with MMIC LNAs designed and fabricated using 35nm InP HEMT process. The module has a WR-10 waveguide input. GPPO connectors are used for the LO input and the I and and Q IF outputs. The module is tested at both ambient (300 K) and cryogenic (25 K) temperatures. At 25 K physical temperature, the module has a noise temperature in the range of 27-45 K over the frequency band of 75-111 GHz. The module gain varies between 15 dB and 27 dB. The band-averaged module noise temperature of 350 K and 33 K were measured over 80-110 GHz for the physical temperature of 300 K and 25 K, respectively. The resulting cooling factor is 10.6.

  16. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less

  17. Selecting band combinations with thematic mapper data

    NASA Technical Reports Server (NTRS)

    Sheffield, C. A.

    1983-01-01

    A problem arises in making color composite images because there are 210 different possible color presentations of TM three-band images. A method is given for reducing that 210 to a single choice, decided by the statistics of a scene or subscene, and taking into full account any correlations that exist between different bands. Instead of using total variance as the measure for information content of the band triplets, the ellipsoid of maximum volume is selected which discourages selection of bands with high correlation. The band triplet is obtained by computing and ranking in order the determinants of each 3 x 3 principal submatrix of the original matrix M. After selection of the best triplet, the assignment of colors is made by using the actual variances (the diagonal elements of M): green (maximum variance), red (second largest variance), blue (smallest variance).

  18. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    NASA Astrophysics Data System (ADS)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  19. A Ks-band-selected catalogue of objects in the ALHAMBRA survey

    NASA Astrophysics Data System (ADS)

    Nieves-Seoane, L.; Fernandez-Soto, A.; Arnalte-Mur, P.; Molino, A.; Stefanon, M.; Ferreras, I.; Ascaso, B.; Ballesteros, F. J.; Cristóbal-Hornillos, D.; López-Sanjuán, C.; Hurtado-Gil, Ll.; Márquez, I.; Masegosa, J.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Moles, M.; Olmo, A. del; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.; Troncoso-Iribarren, P.; Viironen, K.

    2017-02-01

    The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data ( = 0.86) and the approximately I-band selection, there is a noticeable bias against red objects at moderate redshift. We avoid this bias by creating a new catalogue selected in the Ks band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at z > 1. We select objects using the Ks band images, which reach an approximate AB magnitude limit Ks ≈ 22. We generate masks and derive completeness functions to characterize the sample. We have tested the quality of the photometry and photometric redshifts using both internal and external checks. Our final catalogue includes ≈95 000 sources down to Ks ≈ 22, with a significant tail towards high redshift. We have checked that there is a large sample of objects with spectral energy distributions that correspond to that of massive, passively evolving galaxies at z > 1, reaching as far as z ≈ 2.5. We have tested the possibility of combining our data with deep infrared observations at longer wavelengths, particularly Spitzer IRAC data.

  20. Band-selective filter in a zigzag graphene nanoribbon.

    PubMed

    Nakabayashi, Jun; Yamamoto, Daisuke; Kurihara, Susumu

    2009-02-13

    Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is investigated by using the recursive Green's function method. In the case of the steplike potential, we demonstrate numerically that scattering processes obey a selection rule for the band indices when the number of zigzag chains is even; the electrons belonging to the "even" ("odd") bands are scattered only into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier potential, by tuning the barrier height to be an appropriate value, we show that it can work as the "band-selective filter", which transmits electrons selectively with respect to the indices of the bands to which the incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance by applying two barrier potentials.

  1. Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band

    PubMed Central

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang

    2016-01-01

    In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter. PMID:27658929

  2. Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band.

    PubMed

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang

    2016-09-23

    In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter.

  3. System and method for progressive band selection for hyperspectral images

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.

  4. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall be...

  5. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall be...

  6. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall be...

  7. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall be...

  8. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall be...

  9. The Multiwavelength Survey by Yale-Chile (MUSYC): Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z {approx} 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Guillermo A.; Lira, Paulina; Francke, Harold

    2008-07-10

    We present K-band imaging of two {approx}30{sup '} x 30{sup '} fields covered by the Multiwavelength Survey by Yale-Chile (MUSYC) Wide NIR Survey. The SDSS 1030+05 and Cast 1255 fields were imaged with the Infrared Side Port Imager (ISPI) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) to a 5 {sigma} point-source limiting depth of K {approx} 20 (Vega). Combining these data with the MUSYC optical UBVRIz imaging, we created multiband K-selected source catalogs for both fields. These catalogs, together with the MUSYC K-band catalog of the Extended Chandra Deep Field South (ECDF-S) field, weremore » used to select K < 20 BzK galaxies over an area of 0.71 deg{sup 2}. This is the largest area ever surveyed for BzK galaxies. We present number counts, redshift distributions, and stellar masses for our sample of 3261 BzK galaxies (2502 star-forming [sBzK] and 759 passively evolving [pBzK]), as well as reddening and star formation rate estimates for the star-forming BzK systems. We also present two-point angular correlation functions and spatial correlation lengths for both sBzK and pBzK galaxies and show that previous estimates of the correlation function of these galaxies were affected by cosmic variance due to the small areas surveyed. We have measured correlation lengths r{sub 0} of 8.89 {+-} 2.03 and 10.82 {+-} 1.72 Mpc for sBzK and pBzK galaxies, respectively. This is the first reported measurement of the spatial correlation function of passive BzK galaxies. In the {lambda}CDM scenario of galaxy formation, these correlation lengths at z {approx} 2 translate into minimum masses of {approx}4 x 10{sup 12} and {approx}9 x 10{sup 12} M{sub sun} for the dark matter halos hosting sBzK and pBzK galaxies, respectively. The clustering properties of the galaxies in our sample are consistent with their being the descendants of bright Lyman break galaxies at z {approx} 3, and the progenitors of present-day >1L{sup *} galaxies.« less

  10. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  11. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  12. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  13. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  14. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  15. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  16. V and K-band Mass-Luminosity Relations for M dwarf Stars

    NASA Astrophysics Data System (ADS)

    Benedict, G. Fritz; Henry, Todd J.; McArthur, Barbara; Franz, Otto G.; Wasserman, Lawrence H.; Dieterich, Sergio

    2015-01-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2.1% error for 24 components of 12 M dwarf binary star systems. Masses range 0.08 to 0.40 solar masses. With these we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. (1999, ApJ, 512, 864). We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter than in the V-band. For the eight binary components for which we have component magnitude differences in the K-band the RMS residual drops from 0.5 magnitude in the V-band to 0.05 magnitude in the K-band. These relations can be used to estimate the masses of the ubiquitous red dwarfs that account for 75% of all stars, to an accuracy of 5%, which is much better than ever before.

  17. The properties and evolution of a K-band selected sample of massive galaxies at z ~ 0.4-2 in the Palomar/DEEP2 survey

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Bundy, K.; Trujillo, I.; Coil, A.; Eisenhardt, P.; Ellis, R. S.; Georgakakis, A.; Huang, J.; Lotz, J.; Nandra, K.; Newman, J.; Papovich, C.; Weiner, B.; Willmer, C.

    2007-11-01

    We present the results of a study on the properties and evolution of massive (M* > 1011Msolar) galaxies at z ~ 0.4-2 utilizing Keck spectroscopy, near-infrared Palomar imaging, and Hubble, Chandra and Spitzer data covering fields targeted by the DEEP2 galaxy spectroscopic survey. Our sample is K-band selected and stellar mass limited, based on wide-area near-infrared imaging from the Palomar Observatory Wide-Field Infrared Survey, which covers 1.53 deg2 to a 5σ depth of Ks,vega ~ 20.5. Our primary goal is to obtain a broad census of massive galaxies through measuring how their number and mass densities, morphology, as well as their star formation and active galactic nucleus content evolve from z ~ 0.4-2. Our major findings include: (i) statistically the mass and number densities of M* > 1011Msolar galaxies show little evolution between z = 0 and 1 and from z ~ 0 to 2 for M* > 1011.5Msolar galaxies. We however find significant evolution within 1 < z < 1.5 for 1011 Msolar < M* < 1011.5Msolar galaxies. (ii) After examining the structures of our galaxies using Hubble ACS imaging, we find that M* > 1011Msolar selected galaxies show a nearly constant elliptical fraction of ~70-90 per cent at all redshifts. The remaining objects tend to be peculiars possibly undergoing mergers at z > 0.8, while spirals dominate the remainder at lower redshifts. A significant fraction (~25 per cent) of these early-types contain minor structural anomalies. (iii) We find that only a fraction (~60 per cent) of massive galaxies with M* > 1011Msolar are on the red sequence at z ~ 1.4, while nearly 100 per cent evolve on to it by z ~ 0.4. (iv) By utilizing Spitzer MIPS imaging and [OII] line fluxes we argue that M* > 1011.5Msolar galaxies have a steeply declining star formation rate (SFR) density ~ (1 + z)6. By examining the contribution of star formation to the evolution of the mass function, as well as the merger history through the CAS parameters, we determine that M* > 1011Msolar galaxies

  18. The USNO-UKIRT K-band Hemisphere Survey

    NASA Astrophysics Data System (ADS)

    Dahm, Scott; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Fred J.; Dorland, Bryan; Dye, Simon; Kerr, Tom; Varricatt, Watson; Irwin, Mike; Lawrence, Andy; McLaren, Robert; Hodapp, Klaus; Hasinger, Guenther

    2018-01-01

    We present initial results from the United States Naval Observatory (USNO) and UKIRT K-band Hemisphere Survey (U2HS), currently underway using the Wide Field Camera (WFCAM) installed on UKIRT on Maunakea. U2HS is a collaborative effort undertaken by USNO, the Institute for Astronomy, University of Hawaii, the Cambridge Astronomy Survey Unit (CASU) and the Wide Field Astronomy Unit (WFAU) in Edinburgh. The principal objective of the U2HS is to provide continuous northern hemisphere K-band coverage over a declination range of δ=0o – +60o by combining over 12,700 deg2 of new imaging with the existing UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Galactic Plane Survey (GPS) and Galactic Cluster Survey (GCS). U2HS will achieve a 5-σ point source sensitivity of K~18.4 mag (Vega), over three magnitudes deeper than the Two Micron All Sky Survey (2MASS). In this contribution we discuss survey design, execution, data acquisition and processing, photometric calibration and quality control. The data obtained by the U2HS will be made publicly available through the Wide Field Science Archive (WSA) maintained by the WFAU.

  19. Coulomb excitation of the K π= 8⁻ isomeric band in 178Hf

    DOE PAGES

    Napiorkovsk, P. J.; Srebrny, J.; Czosnyka, T.; ...

    2001-12-01

    The Coulomb excitation experiment on the 178Hf was performed using 650 MeV beam of 136Xe. The first observation of discrete transitions in the K π = 8 - isomeric band. Coulomb excited from K π = 0+ ground state, is reported. The possible mechanisms of El coupling of the ground state band and the isomeric band is discussed.

  20. Korean VLBI Network Calibrator Survey (KVNCS). 1. Source Catalog of KVN Single-dish Flux Density Measurement in the K and Q Bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong Ae; Sohn, Bong Won; Jung, Taehyun

    We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single-dish radio survey simultaneously conducted at 22 ( K band) and 43 GHz ( Q band) using the Korean VLBI Network (KVN) from 2009 to 2011. A total of 2045 sources are selected from the VLBA Calibrator Survey with an extrapolated flux density limit of 100 mJy at the K  band. The KVNCS contains 1533 sources in the K band with a flux density limit of 70 mJy and 553 sources in the Q band with a flux density limit of 120more » mJy; it covers the whole sky down to −32.°5 in decl. We detected 513 sources simultaneously in the K and Q bands; ∼76% of them are flat-spectrum sources (−0.5 ≤ α ≤ 0.5). From the flux–flux relationship, we anticipated that most of the radiation of many of the sources comes from the compact components. The sources listed in the KVNCS therefore are strong candidates for high-frequency VLBI calibrators.« less

  1. A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Nonino, M.; Vanzella, E.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Santini, P.

    2007-04-01

    Context: The classification scheme for high redshift galaxies is complex at the present time, with simple colour-selection criteria (i.e. EROs, IEROs, LBGs, DRGs, BzKs), resulting in ill-defined properties for the stellar mass and star formation rate of these distant galaxies. Aims: The goal of this work is to investigate the properties of different classes of high-z galaxies, focusing in particular on the stellar masses of LBGs, DRGs, and BzKs, in order to derive their contribution to the total mass budget of the distant Universe. Methods: We used the GOODS-MUSIC catalog, containing ~3000 Ks-selected (~10 000 z-selected) galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8~μm band, with spectroscopic or accurate photometric redshifts. We selected samples of BM/BX/LBGs, DRGs, and BzK galaxies to discuss the overlap and the limitations of these criteria, which can be overridden by a selection criterion based on physical parameters. We then measured the stellar masses of these galaxies and computed the stellar mass density (SMD) for the different samples up to redshift ≃4. Results: We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. On the other hand, BzK-SF is highly contaminated by passively evolving galaxies at red z-Ks colours. We find that LBGs and DRGs contribute almost equally to the global SMD at z≥ 2 and, in general, that star-forming galaxies form a substantial fraction of the universal SMD. Passively evolving galaxies show a strong negative density evolution from redshift 2 to 3, indicating that we are witnessing the epoch of mass assembly of such objects. Finally we have indications that by pushing the selection to deeper magnitudes, the contribution of less massive DRGs could overtake that of LBGs. Deeper surveys, like the HUDF, are required to confirm this suggestion.

  2. Selective Distance-Based K+ Quantification on Paper-Based Microfluidics.

    PubMed

    Gerold, Chase T; Bakker, Eric; Henry, Charles S

    2018-04-03

    In this study, paper-based microfluidic devices (μPADs) capable of K + quantification in aqueous samples, as well as in human serum, using both colorimetric and distance-based methods are described. A lipophilic phase containing potassium ionophore I (valinomycin) was utilized to achieve highly selective quantification of K + in the presence of Na + , Li + , and Mg 2+ ions. Successful addition of a suspended lipophilic phase to a wax printed paper-based device is described and offers a solution to current approaches that rely on organic solvents, which damage wax barriers. The approach provides an avenue for future alkali/alkaline quantification utilizing μPADs. Colorimetric spot tests allowed for K + quantification from 0.1-5.0 mM using only 3.00 μL of sample solution. Selective distance-based quantification required small sample volumes (6.00 μL) and gave responses sensitive enough to distinguish between 1.0 and 2.5 mM of sample K + . μPADs using distance-based methods were also capable of differentiating between 4.3 and 6.9 mM K + in human serum samples. Distance-based methods required no digital analysis, electronic hardware, or pumps; any steps required for quantification could be carried out using the naked eye.

  3. Ku and K band GaN High Power Amplifier MMICs

    DTIC Science & Technology

    2017-03-20

    end Ku-band HPA operates from 13 to 14.5 GHz and delivers 48 Watts of output power with 43% PAE. A high-end Ku-band HPA operates from 15.5 to 18 GHz and...delivers 25 Watts of output power with 45% PAE. A K-band HPA operates from 19.5 to 22 GHz and delivers 18 Watts of output power with 29% PAE...15.5 and 18 GHz. The circuit is a three-stage reactively-matched amplifier. A photograph of a fabricated high-end Ku-band GaN HPA is shown as an

  4. Sharpending of the Vnir and SWIR Bands of the Wide Band Spectral Imager Onboard Tiangong-II Imagery Using the Selected Bands

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, X.; Liu, G.; Huang, C.; Li, H.; Guan, X.

    2018-04-01

    The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI) onboard the Tiangong-II has 14 visible and near-infrared (VNIR) spectral bands covering the range from 403-990 nm and two shortwave infrared (SWIR) bands covering the range from 1230-1250 nm and 1628-1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS) sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  5. NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Agan, M.

    1994-01-01

    JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.

  6. Interface band alignment in high-k gate stacks

    NASA Astrophysics Data System (ADS)

    Eric, Bersch; Hartlieb, P.

    2005-03-01

    In order to successfully implement alternate high-K dielectric materials into MOS structures, the interface properties of MOS gate stacks must be better understood. Dipoles that may form at the metal/dielectric and dielectric/semiconductor interfaces make the band offsets difficult to predict. We have measured the conduction and valence band densities of states for a variety MOS stacks using in situ using inverse photoemission (IPE) and photoemission spectroscopy (PES), respectively. Results obtained from clean and metallized (with Ru or Al) HfO2/Si, SiO2/Si and mixed silicate films will be presented. IPE indicates a shift of the conduction band minimum (CBM) to higher energy (i.e. away from EF) with increasing SiO2. The effect of metallization on the location of band edges depends upon the metal species. The addition of N to the dielectrics shifts the CBM in a way that is thickness dependent. Possible mechanisms for these observed effects will be discussed.

  7. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  8. a Band Selection Method for High Precision Registration of Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Yang, H.; Li, X.

    2018-04-01

    During the registration of hyperspectral images and high spatial resolution images, too much bands in a hyperspectral image make it difficult to select bands with good registration performance. Terrible bands are possible to reduce matching speed and accuracy. To solve this problem, an algorithm based on Cram'er-Rao lower bound theory is proposed to select good matching bands in this paper. The algorithm applies the Cram'er-Rao lower bound theory to the study of registration accuracy, and selects good matching bands by CRLB parameters. Experiments show that the algorithm in this paper can choose good matching bands and provide better data for the registration of hyperspectral image and high spatial resolution image.

  9. In-beam spectroscopy of the k π=0- bands in230 236U

    NASA Astrophysics Data System (ADS)

    Zeyen, P.; Ackermann, B.; Dämmrich, U.; Euler, K.; Grafen, V.; Günther, C.; Herzog, P.; Marten-Tölle, M.; Prillwitz, B.; Tölle, R.; Lauterbach, Ch.; Maier, H. J.

    1987-12-01

    The K π=0- bands in even uranium nuclei were studied in the compound reactions231Pa( p, 2 n)230U,230, 232Th( α,2 n)232, 234U and236U( d, pn)236U. In-beam γ-rays were measured in coincidence with conversion-electrons, which were detected with an iron-free orange spectrometer. The negative-parity levels are observed up to intermediate spins ( I<13-). In addition, the 1- and 3- levels in230U were confirmed by a decay study with an isotope separated230Pa source. For the heavier isotopes ( A≥232) the properties of the K π=0- bands (energies and γ-branchings) are consistent with a vibrational character of these bands. For230U the K π=0- band lies at rather low energy ( E(1-)=367 keV), and the level spacings within this band are very similar to those of the isotones228Th and226Ra, which might indicate the onset of a stable octupole deformation.

  10. K/Ka-band Antenna for Broadband Aeronautical Mobile Application

    NASA Technical Reports Server (NTRS)

    Densmore, A.

    1994-01-01

    The Jet Propulsion Laboratory (JPL) has recently begun the development of a Broadband Aeronauical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS).

  11. Mid- and Near-infrared spectral properties of a sample of Swift-BAT X-ray selected AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Malkan, Matthew A.; Ichikawa, Kohei; Ueda, Yoshihiro; Shirahata, M.; Nakagawa, Takao; Imanishi, Masatoshi; Oyabu, Shinki

    2015-08-01

    We present a comparative study of the mid- (MIR) to near-infrared (NIR) properties of a sample of X-ray selected AGNs from the Swift/Burst Alert Telescope (BAT) 70-month all-sky hard X-ray (14-195 keV) survey. For a sample of 78 AGNs, including both Seyfert 1 and Seyfert 2 sources with black hole masses derived from 2MASS K-band magnitudes and literature, we obtain spectroscopic data from the IRC (2.5 - 5 μm) and IRS (in the 5-14 μm band) instruments onboard the Akari and Spitzer satellites, respectively. We test possible correlations between the 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm polycyclic aromatic hydrocarbon (PAH) emission features, the continuum slope and CO optical depth, as well as CO2, H2O, and amorphous silicates. Using the 3.3, 6.2 and 11.3 μm PAH emission features as a proxy for the star-formation rate (SFR) we report the AGN type and Eddington-ratio dependences of circum-nuclear star formation.

  12. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  13. 47 CFR 73.30 - Petition for authorization of an allotment in the 1605-1705 kHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 1605-1705 kHz band. 73.30 Section 73.30 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... authorization of an allotment in the 1605-1705 kHz band. (a) Any party interested in operating an AM broadcast station on one of the ten channels in the 1605-1705 kHz band must file a petition for the establishment of...

  14. The empirical Gaia G-band extinction coefficient

    NASA Astrophysics Data System (ADS)

    Danielski, C.; Babusiaux, C.; Ruiz-Dern, L.; Sartoretti, P.; Arenou, F.

    2018-06-01

    Context. The first Gaia data release unlocked the access to photometric information for 1.1 billion sources in the G-band. Yet, given the high level of degeneracy between extinction and spectral energy distribution for large passbands such as the Gaia G-band, a correction for the interstellar reddening is needed in order to exploit Gaia data. Aims: The purpose of this manuscript is to provide the empirical estimation of the Gaia G-band extinction coefficient kG for both the red giants and main sequence stars in order to be able to exploit the first data release DR1. Methods: We selected two samples of single stars: one for the red giants and one for the main sequence. Both samples are the result of a cross-match between Gaia DR1 and 2MASS catalogues; they consist of high-quality photometry in the G-, J- and KS-bands. These samples were complemented by temperature and metallicity information retrieved from APOGEE DR13 and LAMOST DR2 surveys, respectively. We implemented a Markov chain Monte Carlo method where we used (G - KS)0 versus Teff and (J - KS)0 versus (G - KS)0, calibration relations to estimate the extinction coefficient kG and we quantify its corresponding confidence interval via bootstrap resampling. We tested our method on samples of red giants and main sequence stars, finding consistent solutions. Results: We present here the determination of the Gaia extinction coefficient through a completely empirical method. Furthermore we provide the scientific community with a formula for measuring the extinction coefficient as a function of stellar effective temperature, the intrinsic colour (G - KS)0, and absorption.

  15. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz shall...

  16. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz shall...

  17. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz shall...

  18. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz shall...

  19. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz shall...

  20. Dynamically Close Pairs of Galaxies Selected in the NIR

    NASA Astrophysics Data System (ADS)

    Keenan, Ryan C.; Foucaud, Sebastien; De Propris, Roberto; Lin, Jing-Hua

    2013-07-01

    Studies of dynamically close pairs of galaxies can serve as a powerful probe of the galaxy merger rate and its evolution. Here we present a large sample of dynamically close pairs of galaxies selected in the K-band from the UKIDSS LAS. These data span ~ 175 deg2 on the sky in the 2dFGRS equatorial region (10 h < RA < 14h). Combining the 2dFGRS redshifts with those from the SDSS, our K-band selected catalog is > 90% spectroscopically complete at K AB < 16.4. In this study, we focus on quantifying the relative contributions of wet, dry, and mixed mergers to the stellar mass buildup of galaxies over the past 1-2 Gyr.

  1. A Survey Study of U.S. Collegiate and K-12 Steel Band Directors' Attitudes Relating to Steel Band Curriculum and Pedagogy

    ERIC Educational Resources Information Center

    Haskett, Brandon L.

    2016-01-01

    Steel bands were introduced into U.S. schools and universities during the 1950s and 1960s. There are now more than 600 U.S. school and university steel bands. The range of teaching methods and repertoire choices must be examined to more fully understand the variety of steel band traditions present in K-12 schools and universities. U.S. steel band…

  2. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  3. Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands

    PubMed Central

    Islam, M. M.; Islam, M. T.; Faruque, M. R. I.

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878

  4. Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.

    PubMed

    Islam, M M; Islam, M T; Faruque, M R I

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.

  5. Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection.

    PubMed

    Brinkman, Loek; Stolk, Arjen; Marshall, Tom R; Esterer, Sophie; Sharp, Poppy; Dijkerman, H Chris; de Lange, Floris P; Toni, Ivan

    2016-08-17

    To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection. This study shows dissociable effects of 10 Hz and 20 Hz tACS on the duration of movement selection. These observations have two elements of general relevance. First, the

  6. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  7. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  8. A computer program for sample size computations for banding studies

    USGS Publications Warehouse

    Wilson, K.R.; Nichols, J.D.; Hines, J.E.

    1989-01-01

    Sample sizes necessary for estimating survival rates of banded birds, adults and young, are derived based on specified levels of precision. The banding study can be new or ongoing. The desired coefficient of variation (CV) for annual survival estimates, the CV for mean annual survival estimates, and the length of the study must be specified to compute sample sizes. A computer program is available for computation of the sample sizes, and a description of the input and output is provided.

  9. Spectral band selection for classification of soil organic matter content

    NASA Technical Reports Server (NTRS)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  10. Kinetic contribution to extracellular Na+/K+ selectivity in the Na+/K+ pump.

    PubMed

    Vleeskens, Elizabeth; Clarke, Ronald J

    2018-05-01

    The sodium potassium pump (Na + ,K + -ATPase) shows a high selectivity for K + over Na + binding from the extracellular medium. To understand the K + selectivity in the presence of a high concentration of competing Na + ions requires consideration of more than just ion binding affinities. Here, equilibrium-based calculations of the extracellular occupation of the Na + ,K + -ATPase transport sites by Na + and K + are compared to fluxes through Na + and K + transport pathways. The results show that, under physiological conditions, there is a 332-fold selectivity for pumping of K + from the extracellular medium into the cytoplasm relative to Na + , whereas equilibrium calculations alone predict only a 7.5-fold selectivity for K + . Thus, kinetic effects make a major contribution to the determination of extracellular K + selectivity.

  11. Method for producing a thin sample band in a microchannel device

    DOEpatents

    Griffiths, Stewart K [Livermore, CA; Nilson, Robert H [Cardiff, CA

    2004-08-03

    The present invention improves the performance of microchannel systems for chemical and biological synthesis and analysis by providing a method and apparatus for producing a thin band of a species sample. Thin sample bands improve the resolution of microchannel separation processes, as well as many other processes requiring precise control of sample size and volume. The new method comprises a series of steps in which a species sample is manipulated by controlled transport through a junction formed at the intersection of four or more channels. A sample is first inserted into the end of one of these channels in the vicinity of the junction. Next, this sample is thinned by transport across the junction one or more times. During these thinning steps, flow enters the junction through one of the channels and exists through those remaining, providing a divergent flow field that progressively stretches and thins the band with each traverse of the junction. The thickness of the resulting sample band may be smaller than the channel width. Moreover, the thickness of the band may be varied and controlled by altering the method alone, without modification to the channel or junction geometries. The invention is applicable to both electroosmotic and electrophoretic transport, to combined electrokinetic transport, and to some special cases in which bulk fluid transport is driven by pressure gradients. It is further applicable to channels that are open, filled with a gel or filled with a porous or granular material.

  12. Apparatus for producing a thin sample band in a microchannel system

    DOEpatents

    Griffiths, Stewart K [Livermore, CA; Nilson, Robert H [Cardiff, CA

    2008-05-13

    The present invention improves the performance of microchannel systems for chemical and biological synthesis and analysis by providing a method and apparatus for producing a thin band of a species sample. Thin sample bands improve the resolution of microchannel separation processes, as well as many other processes requiring precise control of sample size and volume. The new method comprises a series of steps in which a species sample is manipulated by controlled transport through a junction formed at the intersection of four or more channels. A sample is first inserted into the end of one of these channels in the vicinity of the junction. Next, this sample is thinned by transport across the junction one or more times. During these thinning steps, flow enters the junction through one of the channels and exists through those remaining, providing a divergent flow field that progressively stretches and thins the band with each traverse of the junction. The thickness of the resulting sample band may be smaller than the channel width. Moreover, the thickness of the band may be varied and controlled by altering the method alone, without modification to the channel or junction geometries. The invention is applicable to both electroosmotic and electrophoretic transport, to combined electrokinetic transport, and to some special cases in which bulk fluid transport is driven by pressure gradients. It is further applicable to channels that are open, filled with a gel or filled with a porous or granular material.

  13. Properties of DRGs, LBGs, and BzK Galaxies in the GOODS South Field

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Santini, P.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2007-12-01

    We use the GOODS-MUSIC catalog with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, and spectroscopic or accurate photometric redshifts to select samples of BM/BX/LBGs, DRGs, and BzK galaxies. We discuss the overlap and the limitations of these selection criteria, which can be overcome with a criterion based on physical parameters (age and star formation timescale). We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. We also find that LBGs and DRGs contribute almost equally to the global Stellar Mass Density (SMD) at z≥ 2 and in general that star forming galaxies form a substantial fraction of the universal SMD.

  14. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  15. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZYmore » code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less

  16. The Munich Near-Infrared Cluster Survey - IX. Galaxy evolution to z ~ 2 from optically selected catalogues†‡

    NASA Astrophysics Data System (ADS)

    Feulner, Georg; Goranova, Yuliana; Hopp, Ulrich; Gabasch, Armin; Bender, Ralf; Botzler, Christine S.; Drory, Niv

    2007-06-01

    We present B-, R- and I-band-selected galaxy catalogues based on the Munich Near-Infrared Cluster Survey (MUNICS) which, together with the previously used K-selected sample, serve as an important probe of galaxy evolution in the redshift range 0 <~ z <~ 2. Furthermore, used in comparison they are ideally suited to study selection effects in extragalactic astronomy. The construction of the B-, R- and I-selected photometric catalogues, containing ~9000, ~9000 and ~6000 galaxies, respectively, is described in detail. The catalogues reach 50 per cent completeness limits for point sources of B ~= 24.5 mag, R ~= 23.5 mag and I ~= 22.5 mag and cover an area of about 0.3deg2. Photometric redshifts are derived for all galaxies with an accuracy of δz/(1 + z) ~= 0.057, very similar to the K-selected sample. Galaxy number counts in the B, V, R, I, J and K bands demonstrate the quality of the data set. The rest-frame colour distributions of galaxies at different selection bands and redshifts suggest that the most-massive galaxies have formed the bulk of their stellar population at earlier times and are essentially in place at redshift unity. We investigate the influence of selection band and environment on the specific star formation rate (SSFR). We find that K-band selection indeed comes close to selection in stellar mass, while B-band selection purely selects galaxies in SFR. We use a galaxy group catalogue constructed on the K-band-selected MUNICS sample to study possible differences of the SSFR between the field and the group environment, finding a marginally lower average SSFR in groups as compared to the field, especially at lower redshifts. The field-galaxy luminosity function in the B and R band as derived from the R-selected sample evolves out to z ~= 2 in the sense that the characteristic luminosity increases but the number density decreases. This effect is smaller at longer rest-frame wavelengths and gets more pronounced at shorter wavelengths. Parametrizing the

  17. Limitations to Dual Frequency Ionosphere Corrections for Frequency Switched K-Q-Band Observations with the VLBA

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor; Gordon, David; Sovers, Ojars J.

    2004-01-01

    A series of VLBA experiments were carried out at K and Q bands for astrometry and imaging within the KQ VLBI Survey Collaboration. The paired K and Q observations of each source are separated by approximately 3 minutes of time. We investigate the delay effect of the ionosphere between K and Q bands involving the interscan separation. This differential delay effect is intermixed with the differential fluctuation effect of the troposphere.

  18. SHARK-NIR: from K-band to a key instrument, a status update

    NASA Astrophysics Data System (ADS)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  19. Broadband MMIC LNAs for ALMA Band 2+3 With Noise Temperature Below 28 K

    NASA Astrophysics Data System (ADS)

    Cuadrado-Calle, David; George, Danielle; Fuller, Gary A.; Cleary, Kieran; Samoska, Lorene; Kangaslahti, Pekka; Kooi, Jacob W.; Soria, Mary; Varonen, Mikko; Lai, Richard; Mei, Xiaobing

    2017-05-01

    Recent advancements in transistor technology, such as the 35 nm InP HEMT, allow for the development of monolithic microwave integrated circuit (MMIC) low noise amplifiers (LNAs) with performance properties that challenge the hegemony of SIS mixers as leading radio astronomy detectors at frequencies as high as 116 GHz. In particular, for the Atacama Large Millimeter and Submillimeter Array (ALMA), this technical advancement allows the combination of two previously defined bands, 2 (67-90 GHz) and 3 (84-116 GHz), into a single ultra-broadband 2+3 (67-116 GHz) receiver. With this purpose, we present the design, implementation, and characterization of LNAs suitable for operation in this new ALMA band 2+3, and also a different set of LNAs for ALMA band 2. The best LNAs reported here show a noise temperature less than 250 K from 72 to 104 GHz at room temperature, and less than 28 K from 70 to 110 GHz at cryogenic ambient temperature of 20 K. To the best knowledge of the authors, this is the lowest wideband noise ever published in the 70-110 GHz frequency range, typically designated as W-band.

  20. K+-selective nanospheres: maximising response range and minimising response time.

    PubMed

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2006-12-01

    Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking

  1. Spectral Band Selection for Urban Material Classification Using Hyperspectral Libraries

    NASA Astrophysics Data System (ADS)

    Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N.

    2016-06-01

    In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000-2400 nm) to material

  2. The genealogy of samples in models with selection.

    PubMed

    Neuhauser, C; Krone, S M

    1997-02-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

  3. The Genealogy of Samples in Models with Selection

    PubMed Central

    Neuhauser, C.; Krone, S. M.

    1997-01-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models, DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case. PMID:9071604

  4. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    PubMed

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  5. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  6. Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Hernitschek, Nina; Mitrović, Sandra; Ivezić, Željko; Rix, Hans-Walter; Cohen, Judith G.; Bernard, Edouard J.; Grebel, Eva K.; Martin, Nicolas F.; Schlafly, Edward F.; Burgett, William S.; Draper, Peter W.; Flewelling, Heather; Kaiser, Nick; Kudritzki, Rolf P.; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Waters, Christopher

    2017-05-01

    RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≲ 12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in > 80 % of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ˜45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.

  7. Novel on-demand droplet generation for selective fluid sample extraction

    PubMed Central

    Lin, Robert; Fisher, Jeffery S.; Simon, Melinda G.; Lee, Abraham P.

    2012-01-01

    A novel microfluidic device enabling selective generation of droplets and encapsulation of targets is presented. Unlike conventional methods, the presented mechanism generates droplets with unique selectivity by utilizing a K-junction design. The K-junction is a modified version of the classic T-junction with an added leg that serves as the exit channel for waste. The dispersed phase fluid enters from one diagonal of the K and exits the other diagonal while the continuous phase travels in the straight leg of the K. The intersection forms an interface that allows the dispersed phase to be controllably injected through actuation of an elastomer membrane located above the inlet channel near the interface. We have characterized two critical components in controlling the droplet size—membrane actuation pressure and timing as well as identified the region of fluid in which the droplet will be formed. This scheme will have applications in fluid sampling processes and selective encapsulation of materials. Selective encapsulation of a single cell from the dispersed phase fluid is demonstrated as an example of functionality of this design. PMID:22655015

  8. SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Gezari, S.; Heinis, S.

    2015-03-20

    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and anmore » analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off

  9. Effects of band selection on endmember extraction for forestry applications

    NASA Astrophysics Data System (ADS)

    Karathanassi, Vassilia; Andreou, Charoula; Andronis, Vassilis; Kolokoussis, Polychronis

    2014-10-01

    In spectral unmixing theory, data reduction techniques play an important role as hyperspectral imagery contains an immense amount of data, posing many challenging problems such as data storage, computational efficiency, and the so called "curse of dimensionality". Feature extraction and feature selection are the two main approaches for dimensionality reduction. Feature extraction techniques are used for reducing the dimensionality of the hyperspectral data by applying transforms on hyperspectral data. Feature selection techniques retain the physical meaning of the data by selecting a set of bands from the input hyperspectral dataset, which mainly contain the information needed for spectral unmixing. Although feature selection techniques are well-known for their dimensionality reduction potentials they are rarely used in the unmixing process. The majority of the existing state-of-the-art dimensionality reduction methods set criteria to the spectral information, which is derived by the whole wavelength, in order to define the optimum spectral subspace. These criteria are not associated with any particular application but with the data statistics, such as correlation and entropy values. However, each application is associated with specific land c over materials, whose spectral characteristics present variations in specific wavelengths. In forestry for example, many applications focus on tree leaves, in which specific pigments such as chlorophyll, xanthophyll, etc. determine the wavelengths where tree species, diseases, etc., can be detected. For such applications, when the unmixing process is applied, the tree species, diseases, etc., are considered as the endmembers of interest. This paper focuses on investigating the effects of band selection on the endmember extraction by exploiting the information of the vegetation absorbance spectral zones. More precisely, it is explored whether endmember extraction can be optimized when specific sets of initial bands related to

  10. J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using NIRSPEC on Keck II.

    PubMed

    McLean; Wilcox; Becklin; Figer; Gilbert; Graham; Larkin; Levenson; Teplitz; Kirkpatrick

    2000-04-10

    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.

  11. Automated SEM and TEM sample preparation applied to copper/low k materials

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Shaapur, F.; Griffiths, D.; Diebold, A. C.; Foran, B.; Raz, E.

    2001-01-01

    We describe the use of automated microcleaving for preparation of both SEM and TEM samples as done by SELA's new MC500 and TEMstation tools. The MC500 is an automated microcleaving tool that is capable of producing cleaves with 0.25 μm accuracy resulting in SEM-ready samples. The TEMstation is capable of taking a sample output from the MC500 (or from SELA's earlier MC200 tool) and producing a FIB ready slice of 25±5 μm, mounted on a TEM-washer and ready for FIB thinning to electron transparency for TEM analysis. The materials selected for the tool set evaluation mainly included the Cu/TaN/HOSP low-k system. The paper is divided into three sections, experimental approach, SEM preparation and analysis of HOSP low-k, and TEM preparation and analysis of Cu/TaN/HOSP low-k samples. For the samples discussed, data is presented to show the quality of preparation provided by these new automated tools.

  12. Selective complexation of K+ and Na+ in simple polarizable ion-ligating systems.

    PubMed

    Bostick, David L; Brooks, Charles L

    2010-09-29

    An influx of experimental and theoretical studies of ion transport protein structure has inspired efforts to understand underlying determinants of ionic selectivity. Design principles for selective ion binding can be effectively isolated and interrogated using simplified models composed of a single ion surrounded by a set of ion-ligating molecular species. While quantum mechanical treatments of such systems naturally incorporate electronic degrees of freedom, their computational overhead typically prohibits thorough dynamic sampling of configurational space and, thus, requires approximations when determining ion-selective free energy. As an alternative, we employ dynamical simulations with a polarizable force field to probe the structure and K(+)/Na(+) selectivity in simple models composed of one central K(+)/Na(+) ion surrounded by 0-8 identical model compounds: N-methylacetamide, formamide, or water. In the absence of external restraints, these models represent gas-phase clusters displaying relaxed coordination structures with low coordination number. Such systems display Na(+) selectivity when composed of more than ∼3 organic carbonyl-containing compounds and always display K(+) selectivity when composed of water molecules. Upon imposing restraints that solely enforce specific coordination numbers, we find all models are K(+)-selective when ∼7-8-fold ion coordination is achieved. However, when models composed of the organic compounds provide ∼4-6-fold coordination, they retain their Na(+) selectivity. From these trends, design principles emerge that are of basic importance in the behavior of K(+) channel selectivity filters and suggest a basis not only for K(+) selectivity but also for modulation of block and closure by smaller ions.

  13. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-10-15

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates.

  14. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed Central

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-01-01

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates. PMID:12837132

  15. On the role of covariance information for GRACE K-band observations in the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Bentel, Katrin; Meyer, Ulrich; Arnold, Daniel; Jean, Yoomin; Jäggi, Adrian

    2017-04-01

    The Astronomical Institute at the University of Bern (AIUB) derives static and time-variable gravity fields by means of the Celestial Mechanics Approach (CMA) from GRACE (level 1B) data. This approach makes use of the close link between orbit and gravity field determination. GPS-derived kinematic GRACE orbit positions, inter-satellite K-band observations, which are the core observations of GRACE, and accelerometer data are combined to rigorously estimate orbit and spherical harmonic gravity field coefficients in one adjustment step. Pseudo-stochastic orbit parameters are set up to absorb unmodeled noise. The K-band range measurements in along-track direction lead to a much higher correlation of the observations in this direction compared to the other directions and thus, to north-south stripes in the unconstrained gravity field solutions, so-called correlated errors. By using a full covariance matrix for the K-band observations the correlation can be taken into account. One possibility is to derive correlation information from post-processing K-band residuals. This is then used in a second iteration step to derive an improved gravity field solution. We study the effects of pre-defined covariance matrices and residual-derived covariance matrices on the final gravity field product with the CMA.

  16. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  17. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    NASA Astrophysics Data System (ADS)

    Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  18. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under “Cocktail-Party” Listening Conditions

    PubMed Central

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344

  19. Band selection method based on spectrum difference in targets of interest in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Yang, Guang; Yang, Yongbo; Huang, Junhua

    2016-10-01

    While hyperspectral data shares rich spectrum information, it has numbers of bands with high correlation coefficients, causing great data redundancy. A reasonable band selection is important for subsequent processing. Bands with large amount of information and low correlation should be selected. On this basis, according to the needs of target detection applications, the spectral characteristics of the objects of interest are taken into consideration in this paper, and a new method based on spectrum difference is proposed. Firstly, according to the spectrum differences of targets of interest, a difference matrix which represents the different spectral reflectance of different targets in different bands is structured. By setting a threshold, the bands satisfying the conditions would be left, constituting a subset of bands. Then, the correlation coefficients between bands are calculated and correlation matrix is given. According to the size of the correlation coefficient, the bands can be set into several groups. At last, the conception of normalized variance is used on behalf of the information content of each band. The bands are sorted by the value of its normalized variance. Set needing number of bands, and the optimum band combination solution can be get by these three steps. This method retains the greatest degree of difference between the target of interest and is easy to achieve by computer automatically. Besides, false color image synthesis experiment is carried out using the bands selected by this method as well as other 3 methods to show the performance of method in this paper.

  20. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.

    2013-01-01

    Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T1-1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R⊥ and R||) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R⊥. T1-1, R⊥, and R|| profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1-1, R⊥, and R||, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ˜30 n

  1. The 64 meter antenna operation at K sub A band

    NASA Technical Reports Server (NTRS)

    Potter, P. D.

    1980-01-01

    The future potential of the 32 GHz K sub A band frequency region to planetary exploration, and the expected performance of the 64 m antenna network at 32 GHz is addressed. A modest level of noninterference upgrade work is assumed to achieve reasonable antenna aperture efficiency and alleviate antenna pointing difficulties. Electronic compensation of antenna aperture phasing errors is briefly considered as an alternative to the physical upgrade.

  2. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    PubMed

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  3. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunesmore » the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.« less

  4. Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods.

    PubMed

    Nouri, Dorra; Lucas, Yves; Treuillet, Sylvie

    2016-12-01

    Hyperspectral imaging is an emerging technology recently introduced in medical applications inasmuch as it provides a powerful tool for noninvasive tissue characterization. In this context, a new system was designed to be easily integrated in the operating room in order to detect anatomical tissues hardly noticed by the surgeon's naked eye. Our LCTF-based spectral imaging system is operative over visible, near- and middle-infrared spectral ranges (400-1700 nm). It is dedicated to enhance critical biological tissues such as the ureter and the facial nerve. We aim to find the best three relevant bands to create a RGB image to display during the intervention with maximal contrast between the target tissue and its surroundings. A comparative study is carried out between band selection methods and band transformation methods. Combined band selection methods are proposed. All methods are compared using different evaluation criteria. Experimental results show that the proposed combined band selection methods provide the best performance with rich information, high tissue separability and short computational time. These methods yield a significant discrimination between biological tissues. We developed a hyperspectral imaging system in order to enhance some biological tissue visualization. The proposed methods provided an acceptable trade-off between the evaluation criteria especially in SWIR spectral band that outperforms the naked eye's capacities.

  5. Deep galaxy counts in the K band with the Kech telescope

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Soifer, B. T.; Pahre, M. A.; Larkin, J. E.; Smith, J. D.; Neugebauer, G.; Smail, I.; Matthews, K.; Hogg, D. W.; Blandford, R. D.

    1995-01-01

    We present deep galaxy counts in the K (lambda 2.2 micrometer) band, obtained at the W. M. Kech 10 m telescope. The data reach limiting magnitudes K approximately 24 mag, about 5 times deeper than the deepest published K-band images to date. The counts are performed in three small (approximately 1 min), widely separated high-latitude fields. Extensive Monte Carlo tests were used to derive the comleteness corrections and minimize photometric biases. The counts continue to rise, with no sign of a turnover, down to the limits of our data, with the logarithmic slope of d log N/dm = 0.315 +/- 0.02 between K = 20 and 24 mag. This implies a cumulative surface density of approximately 5 x 10(exp 5) galaxies/sq deg, or approximately 2 x 10(exp 10) over the entire sky, down to K = 24 mag. Our counts are in good agreement with, although slightly lower than, those from the Hawaii Deep Survey by Cowie and collaborators; the discrepancies may be due to the small differences in the aperture corrections. We compare our counts with some of the available theoretical predictions. The data do not require models with a high value of Omega(sub 0), but can be well fitted by models with no (or little) evolution, and cosmologies with a low value of Omega(sub 0). Given the uncertainties in the models, it may be premature to put useful constrains on the value of Omega(sub 0) from the counts alone. Optical-to-IR colors are computed, using CCD data obtaind previously at Palomar. We find a few red galaxies with (r-K) approximately greater than 5 mag, or (i-K) approximately greater than 5 mag; these may be ellipticals at z approximately 1. While the redshift distribution of galaxies in our counts is still unknown, the flux limits reached would allow us to detect unobscured L(sub *) galaxies out to substantial redshifts (z greater than 3?).

  6. Lunar Reconnaissance Orbiter K-Band (26 GHz) Signal Analysis: Initial Study Results

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Heckman, D.

    2017-11-01

    Lower frequency telemetry bands are becoming more limited in bandwidth due to increased competition between flight projects and other entities. Higher frequency bands offer significantly more bandwidth and hence the prospect of much higher data rates. Future or prospective flight projects considering higher frequency bands such as Ka-band (32 GHz) for deep-space and K-band (26 GHz) for near-Earth telemetry links are interested in past flight experience with available received data at these frequencies. Given that there is increased degradation due to the atmosphere at these higher frequencies, there is an effort to retrieve flight data of received signal strength to analyze performance under a variety of factors. Such factors include elevation angle, season, and atmospheric conditions. This article reports on the analysis findings of over 10 million observations of received signal strength of the Lunar Reconnaissance Orbiter (LRO) spacecraft collected between 2014 and 2017. We analyzed these data to characterize link performance over a wide range of weather conditions, season, and as a function of elevation angle. Based on this analysis, we have confirmed the safety of using a 3-dB margin for preflight planning purposes. These results suggest that a 3-dB margin with respect to adverse conditions will ensure a 98 to 99 percent data return under 95 percent weather conditions at 26 GHz (K-band), thus confirming expectations from link budget predictions. The results suggest that this margin should be applicable for all elevation angles above 10 deg. Thus, missions that have sufficient power for their desired data rates may opt to use 10 deg as their minimum elevation angle. Limitations of this study include climate variability and the fact that the observations require removal of hotbody noise in order to perform an adequate cumulative distribution function (CDF) analysis, which is planned for a future comprehensive study. Flight projects may use other link margins

  7. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  8. On the Determination of C0 (or A0), D0K, H0K, and Some Dark States for Symmetric-top Molecules from Infrared Spectra without the Need for Localized Perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, Arthur; Masiello, Tony; Blake, Thomas A

    2009-05-01

    For symmetric top molecules, the normal Δk = 0, Δl = 0 and Δk = ±1, Δl = ±1 selection rules for parallel and perpendicular bands, respectively, do not allow the determination of the K-dependent rotational constants, C 0 (or A 0), D 0 K, and H 0 K. However, we show here that several different combinations of allowed and apparently unperturbed rovibrational infrared transitions can give access to those constants. A necessary ingredient for the application of this technique is a band with selection rules Δk = ±1 (or Δk = 0), Δl = ∓2, such as an overtonemore » or difference band, and appropriate other bands. Bands with selection rules Δk = ±2, Δl = ∓1 are also useful but are seldom found. As a general rule, more than one vibrational transition is needed. Examples are given for boron trifluoride (BF 3), sulfur trioxide (SO 3), and cyclopropane (C 3H 6) for which there are microwave measurements that provide a check on the derived constants. The technique is also extended to a D 2d molecule, allene, even though we have no measurements to use as an example. Examples are also given for the determination of dark states from difference bands, and/or hot bands, and also whole forbidden bands that arise from mixing with distant energy levels.« less

  9. Multitemporal spectroscopy for crop stress detection using band selection methods

    NASA Astrophysics Data System (ADS)

    Mewes, Thorsten; Franke, Jonas; Menz, Gunter

    2008-08-01

    A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.

  10. Novel Dual-Band Miniaturized Frequency Selective Surface based on Fractal Structures

    NASA Astrophysics Data System (ADS)

    Zhong, Tao; Zhang, Hou; Wu, Rui; Min, Xueliang

    2017-01-01

    A novel single-layer dual-band miniaturized frequency selective surface (FSS) based on fractal structures is proposed and analyzed in this paper. A prototype with enough dimensions is fabricated and measured in anechoic chamber, and the measured results provide good agreement with the simulated. The simulations and measurements indicate that the dual-band FSS with bandstop selectivity center at 3.95 GHz and 7.10 GHz, and the whole dimension of the proposed FSS cell is only 7×7 mm2, amount to 0.092λ0×0.092λ0, that λ0 is free space wavelength at first resonant frequency. In addition, the center frequencies have scarcely any changes for different polarizations and incidences. What's more, dual-band mechanism is analyzed clearly and it provides a new way to design novel miniaturized FSS structures.

  11. Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm

    USGS Publications Warehouse

    Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.H.; Gorelick, N.S.

    2003-01-01

    increase the signal-to-noise ratio in a photon-noise-limited system when high levels of accuracy are desired. It is possible, using this simulation method, to select optimum combinations of band-pass, sampling interval, and signal-to-noise ratio values for a particular application that maximize identification accuracy and minimize the volume of imaging data.

  12. An adaptive band selection method for dimension reduction of hyper-spectral remote sensing image

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Yu, Hui; Wang, Chen-sheng

    2014-11-01

    Hyper-spectral remote sensing data can be acquired by imaging the same area with multiple wavelengths, and it normally consists of hundreds of band-images. Hyper-spectral images can not only provide spatial information but also high resolution spectral information, and it has been widely used in environment monitoring, mineral investigation and military reconnaissance. However, because of the corresponding large data volume, it is very difficult to transmit and store Hyper-spectral images. Hyper-spectral image dimensional reduction technique is desired to resolve this problem. Because of the High relation and high redundancy of the hyper-spectral bands, it is very feasible that applying the dimensional reduction method to compress the data volume. This paper proposed a novel band selection-based dimension reduction method which can adaptively select the bands which contain more information and details. The proposed method is based on the principal component analysis (PCA), and then computes the index corresponding to every band. The indexes obtained are then ranked in order of magnitude from large to small. Based on the threshold, system can adaptively and reasonably select the bands. The proposed method can overcome the shortcomings induced by transform-based dimension reduction method and prevent the original spectral information from being lost. The performance of the proposed method has been validated by implementing several experiments. The experimental results show that the proposed algorithm can reduce the dimensions of hyper-spectral image with little information loss by adaptively selecting the band images.

  13. Wavelength band selection method for multispectral target detection.

    PubMed

    Karlholm, Jörgen; Renhorn, Ingmar

    2002-11-10

    A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.

  14. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    PubMed

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  15. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  16. The profile of the bending mode band in solid CO2

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Palumbo, M. E.

    2017-12-01

    Context. Solid carbon dioxide (CO2) is one of the most abundant species detected in icy grain mantles in dense molecular clouds. Its identification is based on the comparison between astronomical and laboratory spectra. In the past 30 yr the profile of solid CO2 infrared absorption bands has been extensively studied experimentally, however, the debate on the structure (amorphous versus crystalline) of CO2 samples obtained in laboratory by the thin-film technique is still open. Aims: The aim of this work is to investigate if the presence of the double peak feature in the profile of the CO2 bending mode band is related to the crystalline or amorphous structure of the sample. Methods: We performed new laboratory experiments depositing CO2 under ultra high vacuum (UHV) conditions at 17 K. We investigated, using infrared transmission spectroscopy, the influence of various experimental parameters on the profile of the CO2 bands, namely deposition rate, sample thickness, annealing, and presence of H2O, CH3OH or CO co-deposited with CO2. Results: We found that, within experimental uncertainties, under UHV conditions the profile of the CO2 bands in pure solid samples does not depend on the deposition rate or the sample thickness in the ranges investigated. In all cases the bending mode band profile shows a double peak (at 660 and 655 cm-1). The spectra also show the Fermi resonance features that cannot be active in crystalline samples. On the other hand, when a small fraction of H2O or CH3OH is co-deposited with CO2 the double peak is not observed while it is observed when a CO2:CO mixture is considered. Furthermore, we measured the density of solid CO2 and the refractive index (at 543.5 nm) at 17 K and at 70 K: ρ(17 K)= 1.17 g cm-3, ρ(70K)= 1.49 g cm-3, n(17K)= 1.285, and n(70K)= 1.372. Conclusions: Our experimental results indicate that the presence of the double peak in the profile of the bending mode band is not an indication of a crystalline structure of the sample

  17. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M

  18. Quasiparticle interference in ZrSiS: Strongly band-selective scattering depending on impurity lattice site

    NASA Astrophysics Data System (ADS)

    Butler, Christopher J.; Wu, Yu-Mi; Hsing, Cheng-Rong; Tseng, Yi; Sankar, Raman; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong

    2017-11-01

    Scanning tunneling microscopy visualizations of quasiparticle interference (QPI) enable powerful insights into the k -space properties of superconducting, topological, Rashba, and other exotic electronic phases, but their reliance on impurities acting as scattering centers is rarely scrutinized. Here, we investigate QPI at the vacuum-cleaved (001) surface of the Dirac semimetal ZrSiS. We find that interference patterns around impurities located on the Zr and S lattice sites appear very different, and can be ascribed to selective scattering of different subsets of the predominantly Zr 4 d -derived band structure, namely, the m =0 and ±1 components. We show that the selectivity of scattering channels requires an explanation beyond the different bands' orbital characteristics and their respective charge density distributions over Zr and S lattice sites. Importantly, this result shows that the usual assumption of generic scattering centers allowing observations of quasiparticle interference to shed light indiscriminately and isotropically upon the q space of scattering events does not hold, and that the scope and interpretation of QPI observations can therefore be be strongly contingent on the material defect chemistry. This finding promises to spur new investigations into the quasiparticle scattering process itself, to inform future interpretations of quasiparticle interference observations, and ultimately to aid the understanding and engineering of quantum electronic transport properties.

  19. Obscured AGN at z ~ 1 from the zCOSMOS-Bright Survey. I. Selection and optical properties of a [Ne v]-selected sample

    NASA Astrophysics Data System (ADS)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    2013-08-01

    Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 < z < 1.20 was selected from the 20k-Bright zCOSMOS galaxy sample by detection of the high-ionization [Ne v] λ3426 line. The presence of this emission line in a galaxy spectrum is indicative of nuclear activity, although the selection is biased toward low absorbing column densities on narrow-line region or galactic scales. A similar sample of unobscured (type 1 AGN) was collected applying the same analysis to zCOSMOS broad-line objects. This paper presents and compares the optical spectral properties of the two AGN samples. Taking advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in

  20. GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling

    NASA Technical Reports Server (NTRS)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Ruffio, Jean-Baptiste; Wang, Jason J.; De Rosa, Robert J.; Aguilar, Jonathan; Rameau, Julien; Barman, Travis; Marois, Christian; Marley, Mark S.; hide

    2018-01-01

    We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets.

  1. Effect of Thermal Annealing on the Band GAP and Optical Properties of Chemical Bath Deposited ZnSe Thin Films

    NASA Astrophysics Data System (ADS)

    Ezema, F. I.; Ekwealor, A. B. C.; Osuji, R. U.

    2006-05-01

    Zinc selenide (ZnSe) thin films were deposited on glass substrate using the chemical bath deposition method at room temperature from aqueous solutions of zinc sulphate and sodium selenosulfate in which sodium hydroxide was employed as complexing agents. The `as-deposited' ZnSe thin films are red in color and annealed in oven at 473 K for 1 hour and on a hot plate in open air at 333 K for 5 minutes, affecting the morphological and optical properties. Optical properties such as absorption coefficient a and extinction coefficient k, were determined using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-1000 nm. The films have transmittance in VIS-NIR regions that range between 26 and 87%. From absorbance and transmittance spectra, the band gap energy determined ranged between 1.60 eV and 1.75 for the `as deposited' samples, and the annealed samples exhibited a band gap shift of 0.15 eV. The high transmittance of the films together with its large band gap made them good materials for selective coatings for solar cells.

  2. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  3. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression

    PubMed Central

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-01-01

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient. PMID:28788412

  4. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    NASA Astrophysics Data System (ADS)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  5. The large area KX quasar catalogue - I. Analysis of the photometric redshift selection and the complete quasar catalogue

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, Paul C.; Péroux, Céline; Nestor, Daniel B.; Wisotzki, Lutz

    2012-08-01

    The results of a large area, ˜600 deg2, K-band flux-limited spectroscopic survey for luminous quasars are presented. The survey utilizes the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. The K-band excess (KX) of all quasars with respect to Galactic stars is exploited in combination with a photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The data contained within this investigation will be able to provide new constraints on the fraction of luminous quasars reddened by dust with E(B - V) ≤ 0.5 mag. The spectroscopic sample is defined using the K-band, 14.0 ≤ K ≤ 16.6, and SDSS i-band limits of i = 19.5, 19.7 and 22.0 over sky areas of 287, 150 and 196 deg2, respectively. The survey includes >3200 known quasars from the SDSS and more than 250 additional confirmed quasars from the KX selection. A well-defined subsample of quasars in the redshift interval 1.0 ≤ z ≤ 3.5 includes 1152 objects from the SDSS and 172 additional KX-selected quasars. The quasar selection is >95 per cent complete with respect to known SDSS quasars and >95 per cent efficient, largely independent of redshift and i-band magnitude. The properties of the new KX-selected quasars confirm the known redshift-dependent effectiveness of the SDSS quasar selection and provide a sample of luminous quasars experiencing intermediate levels of extinction by dust. The catalogue represents an important step towards the assembly of a well-defined sample of luminous quasars that may be used to investigate the properties of quasars experiencing intermediate levels of dust extinction within their host galaxies or due intervening absorption line systems. †Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 083.A0360 and 085.A0359.‡Based on observations collected at the Centro Astronómico Hispano

  6. Selective inhibition of K(+)-stimulation of Na,K-ATPase by bretylium.

    PubMed Central

    Tiku, P. E.; Nowell, P. T.

    1991-01-01

    1. The effects of bretylium were investigated on purified Na,K-ATPase from guinea-pig heart and on the Na/K pump in trout erythrocytes, with a view to further identifying the mechanism(s) associated with its antiarrhythmic effects. 2. Na,K-ATPase activity of the thiocyanate-dispersed enzyme was determined by the measurement of inorganic phosphate produced by ATP hydrolysis. 3. When the concentrations of each of the Na,K-ATPase activating components were varied in turn, bretylium (1-5 mmol l-1) exhibited competitive-type effects against K+ with a Ki of 1.4 mmol l-1 and noncompetitive-type effects against Na+, Mg2+ and ATP. 4. In K+ influx studies in trout erythrocytes with 86Rb+ used as the marker, the inhibition of total influx observed with bretylium (5 and 10 mmol l-1) was attributable to the bretylium cation selectively inhibiting the Na/K pump-mediated influx with the associated tosylate anion inhibiting Na/K cotransport. 5. The observed inhibition kinetics indicated that the bretylium cation (2-15 mmol l-1) competitively inhibited K+ stimulation of the Na/K pump at 6 and 1.25 mmol l-1 external K+ with a mean K1 of 2.3 mmol l-1. 6. The effects demonstrated on the functioning Na/K pump in erythrocytes confirmed the Na,K-ATPase findings, with bretylium selectively inhibiting K+ stimulation of the pump mechanism in both cases. 7. It is suggested that Na,K-ATPase inhibition may contribute to the antiarrhythmic and positive inotropic effects of bretylium with the cardiac accumulation of bretylium also possibly being a further important factor. PMID:1667290

  7. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    NASA Astrophysics Data System (ADS)

    Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.

    2014-09-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies

  8. K West Basin Sand Filter Backwash Sample Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, Sandra K.; Smoot, Margaret R.; Coffey, Deborah S.

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will bemore » used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO 3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present in the

  9. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    PubMed

    Almutairy, Meznah; Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  10. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

    PubMed Central

    Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989

  11. V and K-band Mass-Luminosity Relations for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio

    2015-08-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.

  12. W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.

    1997-01-01

    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements.

  13. 40 CFR 90.507 - Sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sample selection. 90.507 Section 90... Auditing § 90.507 Sample selection. (a) Engines comprising a test sample will be selected at the location... cannot be selected in the manner specified in the test order, an alternative selection procedure may be...

  14. 40 CFR 89.507 - Sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sample selection. 89.507 Section 89... Auditing § 89.507 Sample selection. (a) Engines comprising a test sample will be selected at the location... cannot be selected in the manner specified in the test order, an alternative selection procedure may be...

  15. Contrast based band selection for optimized weathered oil detection in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier

    2012-09-01

    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore

  16. "Off-the-Shelf" K2-EDTA for Calcific Band Keratopathy.

    PubMed

    Lee, Marco E; Ouano, Dean P; Shapiro, Brett; Fong, Andrew; Coroneo, Minas T

    2018-07-01

    To explore the effectiveness of "off-the-shelf" dipotassium-ethylenediaminetetraacetic acid (K2-EDTA) as an alternative to sodium EDTA as chelation therapy in removal of calcific band keratopathy (CBK). This study was a retrospective case series involving 4 patients with CBK who underwent superficial keratectomy and subsequent chelation therapy with K2-EDTA in a single center (Coastal Eye Clinic) by the same surgeon. Visual acuity and symptomatic relief were the main outcomes measured in our study. All 4 participants in this study were female with an average age of 80.3 years. Three of the patients with reasonable baseline visual acuity experienced improved visual acuity at 1 month. The other patient with multiple ocular comorbidities and severely reduced visual potential reported symptomatic pain relief at 1-month follow-up after the intervention. K2-EDTA seems to be an effective alternative to disodium EDTA in its ability to clear calcific plaques and restore visual function. Because of the logistical difficulties associated with acquiring disodium EDTA, and the relative abundance of K2-EDTA in health-care facilities, we believe that our findings warrant further investigation into its use as a more accessible and cost-effective chelating agent in CBK.

  17. Protonation of key acidic residues is critical for the K+-selectivity of the Na/K pump

    PubMed Central

    Yu, Haibo; Ratheal, Ian; Artigas, Pablo; Roux, Benoît

    2011-01-01

    The sodium-potassium (Na/K) pump is a P-type ATPase that generates Na+ and K+ concentration gradients across the cell membrane. For each ATP molecule, the pump extrudes three Na+ and imports two K+ by alternating between outward- and inward-facing conformations that preferentially bind K+ or Na+, respectively. Remarkably, the selective K+ and Na+ binding sites share several residues, and how the pump is able to achieve the selectivity required for the functional cycle is unclear. Here, free energy perturbation molecular dynamics (FEP/MD) simulations based on the crystal structures of the Na/K pump in a K+-loaded state (E2·Pi) reveal that protonation of the high-field acidic side-chains involved in the binding sites is critical to achieve the proper K+ selectivity. This prediction is tested with electrophysiological experiments showing that the selectivity of the E2P state for K+ over Na+ is affected by extracellular pH. PMID:21909093

  18. The strengths of r- and K-selection shape diversity-disturbance relationships.

    PubMed

    Bohn, Kristin; Pavlick, Ryan; Reu, Björn; Kleidon, Axel

    2014-01-01

    Disturbance is a key factor shaping species abundance and diversity in plant communities. Here, we use a mechanistic model of vegetation diversity to show that different strengths of r- and K-selection result in different disturbance-diversity relationships. R- and K-selection constrain the range of viable species through the colonization-competition tradeoff, with strong r-selection favoring colonizers and strong K-selection favoring competitors, but the level of disturbance also affects the success of species. This interplay among r- and K-selection and disturbance results in different shapes of disturbance-diversity relationships, with little variation of diversity with no r- and no K-selection, a decrease in diversity with r-selection with disturbance rate, an increase in diversity with K-selection, and a peak at intermediate values with strong r- and K-selection. We conclude that different disturbance-diversity relationships found in observations may reflect different intensities of r- and K-selection within communities, which should be inferable from broader observations of community composition and their ecophysiological trait ranges.

  19. Initial steps of inactivation at the K+ channel selectivity filter

    PubMed Central

    Thomson, Andrew S.; Heer, Florian T.; Smith, Frank J.; Hendron, Eunan; Bernèche, Simon; Rothberg, Brad S.

    2014-01-01

    K+ efflux through K+ channels can be controlled by C-type inactivation, which is thought to arise from a conformational change near the channel’s selectivity filter. Inactivation is modulated by ion binding near the selectivity filter; however, the molecular forces that initiate inactivation remain unclear. We probe these driving forces by electrophysiology and molecular simulation of MthK, a prototypical K+ channel. Either Mg2+ or Ca2+ can reduce K+ efflux through MthK channels. However, Ca2+, but not Mg2+, can enhance entry to the inactivated state. Molecular simulations illustrate that, in the MthK pore, Ca2+ ions can partially dehydrate, enabling selective accessibility of Ca2+ to a site at the entry to the selectivity filter. Ca2+ binding at the site interacts with K+ ions in the selectivity filter, facilitating a conformational change within the filter and subsequent inactivation. These results support an ionic mechanism that precedes changes in channel conformation to initiate inactivation. PMID:24733889

  20. 40 CFR 91.606 - Sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sample selection. 91.606 Section 91....606 Sample selection. (a) Engines comprising a test sample will be selected at the location and in the... in the manner specified in the test order, an alternative selection procedure may be employed...

  1. The Hazard of Exposure to 2.075 kHz Center Frequency Narrow Band Impulses

    DTIC Science & Technology

    1991-09-01

    i By r James H. Patterson, Jr. Kevin Bordwell Sensory Research Division and Roger P. Hamernik William A. Ahroon George Turrentine C. E. Hargett, Jr...The hazard of exposure to 2.075 kHz center frequency narrow band impulses 12. PERSONAL AUTHOR(S) James H. Patterson, Jr., Kevin Bordwell , Roger P...Patterson, J. H., Jr., Carrier, M., Jr., Bordwell , K., Lomba Gautier, I. M., Hamernik, R. P., Ahroon, W. A., Turrentine, G. A., and Hargett, C. E., Jr

  2. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    PubMed

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.

    2014-06-01

    The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency formore » future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: • a description of the K Basin sludge sample archive program and the sample inventory • a summary and images of the samples that were repackaged in April 2014 • up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory • updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory • occurrence and deficiency reports associated with sample storage and repackaging« less

  4. Multi-band reflector antenna with double-ring element frequency selective subreflector

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Lee, S. W.

    1993-01-01

    Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.

  5. An antenna-pointing mechanism for the ETS-6 K-band Single Access (KSA) antenna

    NASA Technical Reports Server (NTRS)

    Takada, Noboru; Amano, Takahiro; Ohhashi, Toshiro; Wachi, Shigeo

    1991-01-01

    Both the design philosophy for the Antenna Pointing Mechanism (APM) to be used for the K-band Single Access (KSA) antenna system and experimental results of the APM Engineering Model (EM) tests are described. The KSA antenna system will be flown on the Engineering Test Satellite 6 (ETS-6).

  6. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  7. Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling

    NASA Astrophysics Data System (ADS)

    Ryczko, K.; Sek, G.; Sitarek, P.; Mika, A.; Misiewicz, J.; Langer, F.; Höfling, S.; Forchel, A.; Kamp, M.

    2013-06-01

    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 mo in QWs with 1.2% N and 0.15 mo for the case of larger N content of 2.2%.

  8. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  9. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  10. Absolute band intensities in the nu19/nu23 (530 cm(-1)) and nu7 (777 cm(-1)) bands of acetone ((CH3)2CO) from 232 to 295 K

    NASA Technical Reports Server (NTRS)

    Wang, W. F.; Stevenson, A.; Reuter, D. C.; Sirota, J. M.

    2000-01-01

    Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.

  11. 76 FR 6493 - Notice of Intent to Prepare an Environmental Impact Statement for the Proposed K Road/Moapa Band...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Impact Statement for the Proposed K Road/Moapa Band of Paiute Indians Photovoltaic Solar Facility, Clark... and operate an up-to 350 MW solar photovoltaic electricity generating facility on approximately 2,000... preparing an environmental impact statement (EIS) for the proposed Moapa Band of Paiute Indians Solar...

  12. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    NASA Astrophysics Data System (ADS)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  13. 47 CFR 97.301 - Authorized frequency bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements see § 97.303... Advanced Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements... General Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements...

  14. 47 CFR 97.301 - Authorized frequency bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements see § 97.303... Advanced Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements... General Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements...

  15. 47 CFR 97.301 - Authorized frequency bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements see § 97.303... Advanced Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements... General Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements...

  16. 47 CFR 97.301 - Authorized frequency bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements see § 97.303... Advanced Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements... General Class: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements...

  17. W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.

    PubMed

    Reginsson, Gunnar W; Hunter, Robert I; Cruickshank, Paul A S; Bolton, David R; Sigurdsson, Snorri Th; Smith, Graham M; Schiemann, Olav

    2012-03-01

    A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    NASA Astrophysics Data System (ADS)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  19. Machine-learning approaches to select Wolf-Rayet candidates

    NASA Astrophysics Data System (ADS)

    Marston, A. P.; Morello, G.; Morris, P.; van Dyk, S.; Mauerhan, J.

    2017-11-01

    The WR stellar population can be distinguished, at least partially, from other stellar populations by broad-band IR colour selection. We present the use of a machine learning classifier to quantitatively improve the selection of Galactic Wolf-Rayet (WR) candidates. These methods are used to separate the other stellar populations which have similar IR colours. We show the results of the classifications obtained by using the 2MASS J, H and K photometric bands, and the Spitzer/IRAC bands at 3.6, 4.5, 5.8 and 8.0μm. The k-Nearest Neighbour method has been used to select Galactic WR candidates for observational follow-up. A few candidates have been spectroscopically observed. Preliminary observations suggest that a detection rate of 50% can easily be achieved.

  20. [Study on once sampling quantitation based on information entropy of ISSR amplified bands of Houttuynia cordata].

    PubMed

    Wang, Haiqin; Liu, Wenlong; He, Fuyuan; Chen, Zuohong; Zhang, Xili; Xie, Xianggui; Zeng, Jiaoli; Duan, Xiaopeng

    2012-02-01

    To explore the once sampling quantitation of Houttuynia cordata through its DNA polymorphic bands that carried information entropy, from other form that the expression of traditional Chinese medicine polymorphism, genetic polymorphism, of traditional Chinese medicine. The technique of inter simple sequence repeat (ISSR) was applied to analyze genetic polymorphism of H. cordata samples from the same GAP producing area, the DNA genetic bands were transformed its into the information entropy, and the minimum once sampling quantitation with the mathematical mode was measured. One hundred and thirty-four DNA bands were obtained by using 9 screened ISSR primers to amplify from 46 strains DNA samples of H. cordata from the same GAP, the information entropy was H=0.365 6-0.978 6, and RSD was 14.75%. The once sampling quantitation was W=11.22 kg (863 strains). The "once minimum sampling quantitation" were calculated from the angle of the genetic polymorphism of H. cordata, and a great differences between this volume and the amount from the angle of fingerprint were found.

  1. High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.

    1984-01-01

    A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.

  2. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA.more » An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.« less

  3. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AbuEl-Rub, Khaled M.

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, andmore » are in good agreement with experimental data.« less

  4. Sodium in weak G-band giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Lambert, David L.

    1994-01-01

    Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.

  5. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  6. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  7. Relation between star formation and AGN activity in typical elliptical galaxies: Analysis of the 2MASS K-band galaxy images

    NASA Astrophysics Data System (ADS)

    Pierce, Katherine

    2014-01-01

    We are carrying out a program of aperture photometry on typical elliptical galaxies. While there are many ways to calculate the and magnitude, we are going to use the Aperture Photometry Tool (APT) GUI and the program IRAF (Image Reduction and Analysis Facility). By looking at a sample of 236 galaxies from the 2MASS survey k-band, it was determined that 68 of the galaxies needed some sort of a pixel blocking technique due to unwanted background stars or galaxies that may interfere with our readings. My job is to determine a way to block out these pixels while not compromising the true from the galaxy.

  8. Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAKER, R.B.

    1998-11-20

    This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic backgroundmore » logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.« less

  9. Effective traffic features selection algorithm for cyber-attacks samples

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  10. Starburst Galaxies. II. Imaging and Spectroscopy of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N., III

    1996-06-01

    We present J-, H-, and K-band images and low-resolution K-band spectra of the 20 most luminous starburst galaxies from the survey of Condon, Frayer, & Broderick. Optical rotation curves are also shown for 10 of these galaxies. Near-infrared colors, optical depths, CO indices, and dynamical masses are calculated. The near-infrared colors of the starburst nuclei are significantly redder than those observed in "normal" galaxies. Together, the Brγ and radio fluxes available for five of the galaxies imply that the starbursts are heavily obscured; an average extinction of A_V_~ 25 is derived. Strong CO absorption features indicate that late-type evolved stars are present in many of the starbursts. The average dynamical mass of the starburst region is found to be (1.0 +/- 0.4) x 10^9^ M_sun_.

  11. A Cancer Gene Selection Algorithm Based on the K-S Test and CFS.

    PubMed

    Su, Qiang; Wang, Yina; Jiang, Xiaobing; Chen, Fuxue; Lu, Wen-Cong

    2017-01-01

    To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. We adopted support vector machines (SVM) as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR), and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.

  12. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  13. The NuSTAR  Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    NASA Astrophysics Data System (ADS)

    Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.

    2018-02-01

    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median < z> =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous z< 1 X-ray determinations. Furthermore, f abs at z=0.1{--}0.5 and {log}({L}{{x}}/{erg} {{{s}}}-1)≈ 43.6{--}44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with {L}{{X}} (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values.

  14. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally

  15. Underwater hearing sensitivity of harbor seals (Phoca vitulina) for narrow noise bands between 0.2 and 80 kHz.

    PubMed

    Kastelein, Ronald A; Wensveen, Paul; Hoek, Lean; Terhune, John M

    2009-07-01

    The underwater hearing sensitivities of two 1.5-year-old female harbor seals were quantified in a quiet pool built specifically for acoustic research, by using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not ("go/no-go" response). Fourteen narrowband noise signals (1/3-octave bands but with some energy in adjacent bands), at 1/3-octave center frequencies of 0.2-80 kHz, and of 900 ms duration, were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. Between 0.5 and 40 kHz, the thresholds corresponded to a 1/3-octave band noise level of approximately 60 dB re 1 microPa (SD+/-3.0 dB). At lower frequencies, the thresholds increased to 66 dB re 1 microPa and at 80 kHz the thresholds rose to 114 dB re 1 microPa. The 1/3-octave noise band thresholds of the two seals did not differ from each other, or from the narrowband frequency-modulated tone thresholds at the same frequencies obtained a few months before for the same animals. These hearing threshold values can be used to calculate detection ranges of underwater calls and anthropogenic noises by harbor seals.

  16. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.

    PubMed

    Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun

    2018-05-20

    In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.

  17. Temperature dependence of the band gap of GaAsSb epilayers

    NASA Astrophysics Data System (ADS)

    Lukic-Zrnic, R.; Gorman, B. P.; Cottier, R. J.; Golding, T. D.; Littler, C. L.; Norman, A. G.

    2002-12-01

    We have optically characterized a series of GaAs1-xSbx epilayers (0.19samples, we have investigated the absorption as a function of temperature (4 KK) using Fourier transform infrared spectroscopy techniques. The band gap at each temperature was determined from the photon energy dependence of the absorption coefficient and compared with theoretical predictions. From our results we have obtained the Varshni coefficients, α=(4.2±0.1)×10-4 eV/K and β=(189±9) K, which describe well not only the temperature dependence of the band gap for the entire alloy range of our samples, but also for the past experimental work of others. These values differ significantly from what we believe are the only other reported values by K. G. Merkel et al. [K. G. Merkel et al., Appl. Phys. Lett. 65, 2442 (1994)].

  18. Measurement accuracies in band-limited extrapolation

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.

    1982-01-01

    The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.

  19. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE PAGES

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; ...

    2018-01-24

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  20. Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    NASA Astrophysics Data System (ADS)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; Peng, Lintao; Rettie, Alexander J. E.; Gorai, Prashun; Chung, Duck Young; Kanatzidis, Mercouri G.; Grayson, Matthew; Stevanović, Vladan; Toberer, Eric S.; Snyder, G. Jeffrey

    2018-01-01

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n -p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm-1 K-1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T =0.2 and 0.1 for p and n type, respectively, at 300 K, and z T =0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.

  1. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  2. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  3. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    1993-01-01

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  4. New H-band Stellar Spectral Libraries for the SDSS-III/APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Zamora, O.; García-Hernández, D. A.; Allende Prieto, C.; Carrera, R.; Koesterke, L.; Edvardsson, B.; Castelli, F.; Plez, B.; Bizyaev, D.; Cunha, K.; García Pérez, A. E.; Gustafsson, B.; Holtzman, J. A.; Lawler, J. E.; Majewski, S. R.; Manchado, A.; Mészáros, Sz.; Shane, N.; Shetrone, M.; Smith, V. V.; Zasowski, G.

    2015-06-01

    The Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) has obtained high-resolution (R ˜ 22,500), high signal-to-noise ratio (\\gt 100) spectra in the H-band (˜1.5-1.7 μm) for about 146,000 stars in the Milky Way galaxy. We have computed spectral libraries with effective temperature ({{T}eff}) ranging from 3500 to 8000 K for the automated chemical analysis of the survey data. The libraries, used to derive stellar parameters and abundances from the APOGEE spectra in the SDSS-III data release 12 (DR12), are based on ATLAS9 model atmospheres and the ASSɛT spectral synthesis code. We present a second set of libraries based on MARCS model atmospheres and the spectral synthesis code Turbospectrum. The ATLAS9/ASSɛT ({{T}eff} = 3500-8000 K) and MARCS/Turbospectrum ({{T}eff} = 3500-5500 K) grids cover a wide range of metallicity (-2.5 ≤slant [M/H] ≤slant +0.5 dex), surface gravity (0 ≤ log g ≤slant 5 dex), microturbulence (0.5 ≤slant ξ ≤slant 8 km s-1), carbon (-1 ≤slant [C/M] ≤slant +1 dex), nitrogen (-1 ≤slant [N/M] ≤slant +1 dex), and α-element (-1 ≤slant [α/M] ≤slant +1 dex) variations, having thus seven dimensions. We compare the ATLAS9/ASSɛT and MARCS/Turbospectrum libraries and apply both of them to the analysis of the observed H-band spectra of the Sun and the K2 giant Arcturus, as well as to a selected sample of well-known giant stars observed at very high resolution. The new APOGEE libraries are publicly available and can be employed for chemical studies in the H-band using other high-resolution spectrographs.

  5. Electronic band structure and Shubnikov-de Haas effect in two-dimensional semimetallic InAs/GaSb nanostructure superlattice

    NASA Astrophysics Data System (ADS)

    Boutramine, Abderrazak; Nafidi, Abdelhakim; Barkissy, Driss; El-Frikhe, Es-Said; Charifi, Hicham; Elanique, Abdellatif; Chaib, Hassan

    2016-02-01

    We have investigated the band structure E( d = d 1 + d 2), E( k z) and E( k p), respectively, as a function of the SL period, d, in the growth direction and in plan of InAs( d 1 = 160 Å)/GaSb( d 2 = 105 Å) type II superlattice, performed in the envelope function formalism with the valence band offset, Λ, of 510 meV at 4.2 K. For the ratio d 1/ d 2 = 1.52, d and Λ dependence of the SL energy band gap show that the semiconductor-to-semimetal transition takes place at d c = 173 Å and Λ c = 463 meV. Therefore, this sample is semimetallic. The position of the Fermi level, E F = 500.2 meV, indicates n type conductivity. The spectra of energy, E( k z, k p), show a negative band gap of -48.3 meV. The cutoff wavelength | λ c| = 25.7 µm indicates that this sample can be used as a far-infrared detector. Further, we have interpreted the minima of the magnetoresistance oscillations, Shubnikov-de Haas effect, observed by D. M. Symons et al.

  6. Implementation of a SPR immunosensor for the simultaneous detection of the 22K and 20K hGH isoforms in human serum samples.

    PubMed

    de Juan-Franco, Elena; Rodríguez-Frade, J M; Mellado, M; Lechuga, Laura M

    2013-09-30

    We have implemented a Surface Plasmon Resonance (SPR) immunosensor based on a sandwich assay for the simultaneous detection of the two main hGH isoforms, of 22 kDa (22K) and 20 kDa (20K). An oriented-antibody sensor surface specific for both hormone isoforms was assembled by using the biotin-streptavidin system. The immunosensor functionality was checked for the direct detection of the 22K hGH isoform in buffer, which gave high specificity and reproducibility (intra and inter-assay mean coefficients of variation of 8.23% and 9% respectively). The selective determination of the 22K and 20K hGH isoforms in human serum samples in a single assay was possible by using two specific anti-hGH monoclonal antibodies. The detection limit for both hormone isoforms was 0.9 ng mL(-1) and the mean coefficient of variation was below 7.2%. The excellent reproducibility and sensitivity obtained indicate the high performance of this immunosensor for implementing an anti-doping test. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Sample Selection for Training Cascade Detectors.

    PubMed

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  8. Automatic allograft bone selection through band registration and its application to distal femur.

    PubMed

    Zhang, Yu; Qiu, Lei; Li, Fengzan; Zhang, Qing; Zhang, Li; Niu, Xiaohui

    2017-09-01

    Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.

  9. Design of a K/Q-band Beacon Receiver for the Alphasat TDP#5 Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zemba, Michael J.; Morse, Jacquelynne R.

    2014-01-01

    This paper describes the design and performance of a coherent K/Q-band (20/40GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload #5 (TDP#5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58dB at 1Hz and better than 48dB at 10Hz rates.

  10. Mineralogical and geochemical anomalous data of the K-T boundary samples

    NASA Technical Reports Server (NTRS)

    Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.

    1988-01-01

    Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although geochemical bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and geochemical study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and geochemical anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).

  11. 40 CFR 86.607-84 - Sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sample selection. 86.607-84 Section 86... selection. (a) Vehicles comprising a test sample which are required to be tested, pursuant to a test order... specified in the test order, an alternative selection procedure may be employed: Provided, That the...

  12. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  13. Ground-based K-band detection of thermal emission from the exoplanet TrES-3b

    NASA Astrophysics Data System (ADS)

    de Mooij, E. J. W.; Snellen, I. A. G.

    2009-01-01

    Context: Secondary eclipse measurements of transiting extrasolar planets with the Spitzer Space Telescope have yielded several direct detections of thermal exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 μm, arguably one of the most interesting parts of the planet spectrum (from 1 to 3 μm) is inaccessible with this satellite. This region is at the peak of the planet's spectral energy distribution and is also the regime where molecular absorption bands can significantly influence the measured emission. Aims: So far, 2.2 μm K-band secondary eclipse measurements, which are possible from the ground, have not yet lead to secure detections. The aim of this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b in K-band, and in addition to observe its transit, to obtain an accurate planet radius in the near infrared. Methods: We have used the william herschell telescope (WHT) to observe the secondary eclipse, and the united kingdom infrared telescope (UKIRT) to observe the transit of TrES-3b. Both observations involved significant defocusing of the telescope, aimed to produce high-cadence time series of several thousand frames at high efficiency, with the starlight spread out over many pixels. Results: We detect the secondary eclipse of TrES-3b with a depth of -0.241 ± 0.043% (~6σ). This corresponds to a day-side brightness temperature of TB(2.2 μm) = 2040 ± 185 K, which is consistent with current models of the physical properties of this planet's upper atmosphere. The centre of the eclipse seems slightly offset from phase φ=0.5 by Δφ = -0.0042 ± 0.0027, which could indicate that the orbit of TrES-3b is non-circular. Analysis of the transit data shows that TrES-3b has a near-infrared radius of 1.338 ± 0.016 R_Jup, showing no significant deviation from optical measurements.

  14. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, D. A.; Turner, J. A.; Cook, D. O.

    2017-03-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR {sub C} I {submore » C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.« less

  15. Measurement of the nighttime infrared luminosity of Spacelab 1 in the H- and K-bands

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Obrien, K.; Caroff, L.

    1985-01-01

    Infrared measurements of the Spacelab 1, Space Transportation System 9, were made from the Maui Optical Station tracking facility using a sensitive photometer n two infrared bands, the H-band centered at a wavelength of 1.6 microns and the K-band centered at 2.3 micrometers. The objective was to measure radiation from the vicinity of the Shuttle arising from interaction of Shuttle surfaces with atmospheric particles. It was necessary to include the Shuttle itself in the field of view of the photometer. The integrated brightness of the entire Shuttle at a distance of 400 km was found to be equivalent to that of a star of magnitude +6.6 or 1.6 microns; it was much fainter in the visible. Most of the emission at 1.6 microns appears to be attributable to the Shuttle glow phenomenon. It is hundreds of times brighter than the zodiacal background. The radiation at 2.3 microns can be accounted for primarily by diffusely scattered thermal radiation from Earth's surface.

  16. K-Band Si/SiGe HBT MMIC Amplifiers Using Lumped Passive Components with a Micromachined Structure

    NASA Technical Reports Server (NTRS)

    Lu, Liang-Hung; Rieh, Jae-Sung; Bhattacharya, Pallab; Katechi, Linda P. B.; Croke, E. T.; Ponchak, George E.; Alterovitz, Samuel A.

    2000-01-01

    Using Si/SiGe heterojunction bipolar transistors with a maximum oscillation frequency of 52 GHz and a novel structure for passive components, a two-stage K-band lumped-element amplifier has been designed and fabricated on high-resistivity Si substrates. The chip size including biasing and RF chokes is 0.92 x 0.67 sq mm.

  17. The K-KIDS Sample: K Dwarfs within 50 Parsecs and the Search for their Closest Companions with CHIRON

    NASA Astrophysics Data System (ADS)

    Paredes-Alvarez, Leonardo; Nusdeo, Daniel Anthony; Henry, Todd J.; Jao, Wei-Chun; Gies, Douglas R.; White, Russel; RECONS Team

    2017-01-01

    To understand fundamental aspects of stellar populations, astronomers need carefully vetted, volume-complete samples. In our K-KIDS effort, our goal is to survey a large sample of K dwarfs for their "kids", companions that may be stellar, brown dwarf, or planetary in nature. Four surveys for companions orbiting an initial set of 1048 K dwarfs with declinations between +30 and -30 have begun. Companions are being detected with separations less than 1 AU out to 10000 AU. Fortuitously, the combination of Hipparcos and Gaia DR1 astrometry with optical photometry from APASS and infrared photometry from 2MASS now allows us to create an effectively volume-complete sample of K dwarfs to a horizon of 50 pc. This sample facilitates rigorous studies of the luminosity and mass functions, as well as comprehensive mapping of the companions orbiting K dwarfs that have never before been possible.Here we present two important results. First, we find that our initial sample of ~1000 K dwarfs can be expanded to 2000-3000 stars in what is an effectively volume-complete sample. This population is sufficiently large to provide superb statistics on the outcomes of star and planet formation processes. Second, initial results from our high-precision radial velocity survey of K dwarfs with the CHIRON spectrograph on the CTIO/SMARTS 1.5m reveal its short-term precision and indicate that stellar, brown dwarf and Jovian planets will be detectable. We present radial velocity curves for an inital sample of 8 K dwarfs with V = 7-10 using cross-correlation techniques on R=80,000 spectra, and illustrate the stability of CHIRON over hours, days, and weeks. Ultimately, the combination of all four surveys will provide an unprecedented portrait of K dwarfs and their kids.This effort has been supported by the NSF through grants AST-1412026 and AST-1517413, and via observations made possible by the SMARTS Consortium

  18. ANATOMICAL RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT OF THE KNEE: DOUBLE BAND OR SINGLE BAND?

    PubMed

    Zanella, Luiz Antonio Zanotelli; Junior, Adair Bervig; Badotti, Augusto Alves; Michelin, Alexandre Froes; Algarve, Rodrigo Ilha; de Quadros Martins, Cesar Antonio

    2012-01-01

    To evaluate the double-band and single-band techniques for anatomical reconstruction of the anterior cruciate ligament of the knee and demonstrate that the double-band technique not only provides greater anterior stability but also causes less pain and a better subjective patient response. We selected 42 patients who underwent anterior cruciate ligament reconstruction, by means of either the single-band anatomical reconstruction technique, using flexor tendon grafts with two tunnels, or the double-band anatomical reconstruction technique, using four tunnels and grafts from the semitendinosus and gracilis tendons. All fixations were performed using interference screws. There was no variation in the sample. Before the operation, the objective and subjective IKDC scores, Lysholm score and length of time with the injury were evaluated. All these variables were reassessed six months later, and the KT-1000 correlation with the contralateral knee was also evaluated. There was no significant difference between the two groups in subjective evaluations, but the single-band group showed better results in relation to range of motion and objective evaluations including KT-1000 (with statistical significance). Our study demonstrated that there was no difference between the two groups in subjective evaluations, but better results were found using the single-band anatomical technique, in relation to objective evaluations.

  19. ANATOMICAL RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT OF THE KNEE: DOUBLE BAND OR SINGLE BAND?

    PubMed Central

    Zanella, Luiz Antonio Zanotelli; Junior, Adair Bervig; Badotti, Augusto Alves; Michelin, Alexandre Froes; Algarve, Rodrigo Ilha; de Quadros Martins, Cesar Antonio

    2015-01-01

    Objective: To evaluate the double-band and single-band techniques for anatomical reconstruction of the anterior cruciate ligament of the knee and demonstrate that the double-band technique not only provides greater anterior stability but also causes less pain and a better subjective patient response. Methods: We selected 42 patients who underwent anterior cruciate ligament reconstruction, by means of either the single-band anatomical reconstruction technique, using flexor tendon grafts with two tunnels, or the double-band anatomical reconstruction technique, using four tunnels and grafts from the semitendinosus and gracilis tendons. All fixations were performed using interference screws. There was no variation in the sample. Before the operation, the objective and subjective IKDC scores, Lysholm score and length of time with the injury were evaluated. All these variables were reassessed six months later, and the KT-1000 correlation with the contralateral knee was also evaluated. Results: There was no significant difference between the two groups in subjective evaluations, but the single-band group showed better results in relation to range of motion and objective evaluations including KT-1000 (with statistical significance). Conclusion: Our study demonstrated that there was no difference between the two groups in subjective evaluations, but better results were found using the single-band anatomical technique, in relation to objective evaluations. PMID:27042621

  20. An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K.

    PubMed

    Tripathi, T S; Bala, M; Asokan, K

    2014-08-01

    We report on an experimental setup for the simultaneous measurement of the thermoelectric power (TEP) of two samples in the temperature range from 77 K to 500 K using optimum electronic instruments. The setup consists of two rectangular copper bars in a bridge arrangement for sample mounting, two surface mount (SM) chip resistors for creating alternate temperature gradient, and a type E thermocouple in differential geometry for gradient temperature (ΔT) measurement across the samples. In addition, a diode arrangement has been made for the alternate heating of SM resistors using only one DC current source. The measurement accuracy of ΔT increases with the differential thermocouple arrangement. For the calibration of the setup, measurements of TEP on a high purity (99.99%) platinum wire and type K thermocouple wires Chromel and Alumel have been performed from 77 K to 500 K with respect to copper lead wires. Additionally, this setup can be utilized to calibrate an unknown sample against a sample of known absolute TEP.

  1. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  2. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    DOEpatents

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  3. The Large Area KX Quasar Survey: Photometric Redshift Selection and the Complete Quasar Catalogue

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, P. C.; Peroux, C.

    2013-01-01

    We have completed a large area, ˜600 square degree, spectroscopic survey for luminous quasars flux-limited in the K-band. The survey utilises the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. We exploit the K-band excess (KX) of all quasars with respect to Galactic stars in combination with a custom-built photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The survey is complete to K≤16.6, and includes >3200 known quasars from the SDSS, with more than 250 additional confirmed quasars from the KX-selection which eluded the SDSS quasar selection algorithm. The selection is >95% complete with respect to known SDSS quasars and >95% efficient, largely independent of redshift and magnitude. The KX-selected quasars will provide new constraints on the fraction of luminous quasars reddened by dust with E(B-V)≤0.5 mag. Several projects utilizing the KX quasars are ongoing, including a spectroscopic campaign searching for dusty quasar intervening absorption systems. The KX survey is a well-defined sample of quasars useful for investigating the properties of luminous quasars with intermediate levels of dust extinction either within their host galaxies or due to intervening absorption systems.

  4. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    PubMed

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution.

  5. Evolution of the major merger galaxy pair fraction at z < 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, R. C.; Hsieh, B. C.; Lin, L.

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies andmore » is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).« less

  6. An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, T. S.; Bala, M.; Asokan, K.

    2014-08-01

    We report on an experimental setup for the simultaneous measurement of the thermoelectric power (TEP) of two samples in the temperature range from 77 K to 500 K using optimum electronic instruments. The setup consists of two rectangular copper bars in a bridge arrangement for sample mounting, two surface mount (SM) chip resistors for creating alternate temperature gradient, and a type E thermocouple in differential geometry for gradient temperature (ΔT) measurement across the samples. In addition, a diode arrangement has been made for the alternate heating of SM resistors using only one DC current source. The measurement accuracy of ΔTmore » increases with the differential thermocouple arrangement. For the calibration of the setup, measurements of TEP on a high purity (99.99%) platinum wire and type K thermocouple wires Chromel and Alumel have been performed from 77 K to 500 K with respect to copper lead wires. Additionally, this setup can be utilized to calibrate an unknown sample against a sample of known absolute TEP.« less

  7. 40 CFR 91.506 - Engine sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine sample selection. 91.506... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.506 Engine sample selection. (a) At the start of each model year, the marine SI engine...

  8. Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast.

    PubMed

    Pakhomova, O N; Belt, M L; Mathur, S P; Lee, J C; Akyel, Y

    1998-01-01

    Cell samples of the yeast Saccharomyces cerevisiae were exposed to 100 J/m2 of 254 nm ultraviolet (UV) radiation followed by a 30 min treatment with ultra-wide band (UWB) electromagnetic pulses. The UWB pulses (101-104 kV/m, 1.0 ns width, 165 ps rise time) were applied at the repetition rates of 0 Hz (sham), 16 Hz, or 600 Hz. The effect of exposures was evaluated from the colony-forming ability of the cells on complete and selective media and the number of aberrant colonies. The experiments established no effect of UWB exposure on the UV-induced reciprocal and non-reciprocal recombination, mutagenesis, or cell survival.

  9. The thermopower in the temperature range T(sub c)-1000K and the bank spectrum of Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Smirnov, V. I.; Kazanskiy, S. V.

    1995-01-01

    The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  10. Polycrystalline ZrTe{sub 5} Parameterized as a Narrow Band Gap Semiconductor for Thermoelectric Performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivitymore » for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT =0.2 and 0.1 for p and n type, respectively, at 300 K, and zT= 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  11. 40 CFR 90.706 - Engine sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine sample selection. 90.706... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Manufacturer Production Line Testing Program § 90.706 Engine sample selection. (a) At the start of each model year, the...

  12. 47 CFR 18.303 - Prohibited frequency bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Prohibited frequency bands. 18.303 Section 18.303 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL... following safety, search and rescue frequency bands is prohibited: 490-510 kHz, 2170-2194 kHz, 8354-8374 kHz...

  13. 47 CFR 18.303 - Prohibited frequency bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Prohibited frequency bands. 18.303 Section 18.303 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL... following safety, search and rescue frequency bands is prohibited: 490-510 kHz, 2170-2194 kHz, 8354-8374 kHz...

  14. 47 CFR 18.303 - Prohibited frequency bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Prohibited frequency bands. 18.303 Section 18.303 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL... following safety, search and rescue frequency bands is prohibited: 490-510 kHz, 2170-2194 kHz, 8354-8374 kHz...

  15. 47 CFR 18.303 - Prohibited frequency bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Prohibited frequency bands. 18.303 Section 18.303 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL... following safety, search and rescue frequency bands is prohibited: 490-510 kHz, 2170-2194 kHz, 8354-8374 kHz...

  16. 47 CFR 97.301 - Authorized frequency bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or who holds a Class 1 IARP license: Wavelength band MF ITU region 1 kHz ITU region 2 kHz ITU region 3 kHz Sharing requirements see § 97.303(paragraph) 160 m 1810-1850 1800-2000 1800-2000 (a), (c), (g... who has been granted an operator license of Advanced Class: Wavelength band MF ITU region 1 kHz ITU...

  17. 40 CFR 90.706 - Engine sample selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine sample selection. 90.706 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Manufacturer Production Line Testing Program § 90.706 Engine sample selection. (a) At the start of each model year, the small...

  18. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  19. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  20. JNDS of interaural time delay (ITD) of selected frequency bands in speech and music signals

    NASA Astrophysics Data System (ADS)

    Aliphas, Avner; Colburn, H. Steven; Ghitza, Oded

    2002-05-01

    JNDS of interaural time delay (ITD) of selected frequency bands in the presence of other frequency bands have been reported for noiseband stimuli [Zurek (1985); Trahiotis and Bernstein (1990)]. Similar measurements will be reported for speech and music signals. When stimuli are synthesized with bandpass/band-stop operations, performance with complex stimuli are similar to noisebands (JNDS in tens or hundreds of microseconds); however, the resulting waveforms, when viewed through a model of the auditory periphery, show distortions (irregularities in phase and level) at the boundaries of the target band of frequencies. An alternate synthesis method based upon group-delay filtering operations does not show these distortions and is being used for the current measurements. Preliminary measurements indicate that when music stimuli are created using the new techniques, JNDS of ITDs are increased significantly compared to previous studies, with values on the order of milliseconds.

  1. Phase noise measurements of the 400-kW, 2.115-GHz (S-band) transmitter

    NASA Technical Reports Server (NTRS)

    Boss, P.; Hoppe, D.; Bhanji, A.

    1987-01-01

    The measurement theory is described and a test method to perform phase noise verification using off-the-shelf components and instruments is presented. The measurement technique described consists of a double-balanced mixer used as phase detector, followed by a low noise amplifier. An FFT spectrum analyzer is then used to view the modulation components. A simple calibration procedure is outlined that ensures accurate measurements. A block diagram of the configuration is presented as well as actual phase noise data from the 400 kW, 2.115 GHz (S-band) klystron transmitter.

  2. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  3. W-Band InP Wideband MMIC LNA with 30K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.

    2000-01-01

    This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.

  4. Band-selective excited ultrahigh resolution PSYCHE-TOCSY: fast screening of organic molecules and complex mixtures.

    PubMed

    Kakita, Veera Mohana Rao; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh

    2016-04-01

    Precise assignments of (1) H atomic sites and establishment of their through-bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using (1) H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of (1) H-(1) H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure-shift), particularly, Morris's advanced broadband pure-shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE-TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE-TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band-selective analog of the broadband PSYCHE-TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band-selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE-PSYCHE-TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE-TOCSY. Furthermore, unlike the earlier homonuclear band-selective decoupling, the BSE-PSYCHE-decoupling provides fully decoupled pure-shift spectra for all the individual chemical sites within the excited band. The BSE-PSYCHE-TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley

  5. HICOSMO - cosmology with a complete sample of galaxy clusters - I. Data analysis, sample selection and luminosity-mass scaling relation

    NASA Astrophysics Data System (ADS)

    Schellenberger, G.; Reiprich, T. H.

    2017-08-01

    The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).

  6. A Ka-band chirped-pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2012-10-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.

  7. K-Band Power Enbedded Transmission Line (ETL) MMIC Amplifiers for Satellite Communication Applications

    NASA Technical Reports Server (NTRS)

    Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve

    1998-01-01

    The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.

  8. Giant K-doubling and in-plane/out-of-plane mixing in the asymmetric methyl-bending bands of CH3SH

    NASA Astrophysics Data System (ADS)

    Guislain, B. G.; Reid, E. M.; Lees, R. M.; Xu, Li-Hong; Twagirayezu, S.; Perry, D. S.; Thapaliya, B. P.; Dawadi, M. B.; Billinghurst, B. E.

    2017-05-01

    In analyzing high-resolution spectra of the methyl-deformation bands of methyl mercaptan recorded at the Canadian Light Source synchrotron, we have encountered interesting interactions between certain levels of the ν4 in-plane asymmetric CH3-bending mode and its ν10 out-of-plane bending partner below. The origin of the K = 0A ν4 substate is just 0.2 cm-1 higher than that of the K = 2A ν10 substate, while the K = 0E ν4 origin is only 0.035 cm-1 below the K = 2E ν10 origin. These very close accidental near-degeneracies lead to substantial perturbations in the spectrum. For the former, the A+/A- asymmetry K-doublet coupling rules are such that the A- component of the 2A ν10 doublet interacts and mixes strongly with the 0A+ ν4 levels whereas the 2A+ component is unaffected. The 2A- levels are pushed rapidly downwards by the coupling creating an extremely large apparent K = 2A asymmetry splitting. We call this "giant K-doubling" by analogy with a comparable phenomenon seen for methanol. The 0A+ ν4 state, in turn, is perturbed upward and passes through the descending K = 1A+ ν4 state between J = 22 and 23, leading to distinct local perturbations near the level-crossing. The 0E ν4 and 2E ν10 coupling produces a correspondingly strong repulsion and mixing between those two substates, and gives rise to a forbidden K = 0 ← 3E intermode sub-band in the spectrum via intensity borrowing.

  9. Giant K-doubling and in-plane/out-of-plane mixing in the asymmetric methyl-bending bands of CH 3SH

    DOE PAGES

    Guislain, B. G.; Reid, E. M.; Lees, R. M.; ...

    2017-03-02

    In analyzing high-resolution spectra of the methyl-deformation bands of methyl mercaptan recorded at the Canadian Light Source synchrotron, we have encountered interesting interactions between certain levels of the ν 4 in-plane asymmetric CH 3-bending mode and its ν 10 out-of-plane bending partner below. The origin of the K = 0A ν 4 substate is just 0.2 cm -1 higher than that of the K = 2A ν 10 substate, while the K = 0E ν 4 origin is only 0.035 cm -1 below the K = 2E ν 10 origin. These very close accidental near-degeneracies lead to substantial perturbations inmore » the spectrum. For the former, the A +/A - asymmetry K-doublet coupling rules are such that the A - component of the 2A ν 10 doublet interacts and mixes strongly with the 0A + ν 4 levels whereas the 2A + component is unaffected. The 2A - levels are pushed rapidly downwards by the coupling creating an extremely large apparent K = 2A asymmetry splitting. We call this “giant K-doubling” by analogy with a comparable phenomenon seen for methanol. The 0A + ν 4 state, in turn, is perturbed upward and passes through the descending K = 1A + ν 4 state between J = 22 and 23, leading to distinct local perturbations near the level-crossing. The 0E ν 4 and 2E ν 10 coupling produces a correspondingly strong repulsion and mixing between those two substates, and gives rise to a forbidden K = 0 ← 3E intermode sub-band in the spectrum via intensity borrowing.« less

  10. Giant K-doubling and in-plane/out-of-plane mixing in the asymmetric methyl-bending bands of CH 3SH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guislain, B. G.; Reid, E. M.; Lees, R. M.

    In analyzing high-resolution spectra of the methyl-deformation bands of methyl mercaptan recorded at the Canadian Light Source synchrotron, we have encountered interesting interactions between certain levels of the ν 4 in-plane asymmetric CH 3-bending mode and its ν 10 out-of-plane bending partner below. The origin of the K = 0A ν 4 substate is just 0.2 cm -1 higher than that of the K = 2A ν 10 substate, while the K = 0E ν 4 origin is only 0.035 cm -1 below the K = 2E ν 10 origin. These very close accidental near-degeneracies lead to substantial perturbations inmore » the spectrum. For the former, the A +/A - asymmetry K-doublet coupling rules are such that the A - component of the 2A ν 10 doublet interacts and mixes strongly with the 0A + ν 4 levels whereas the 2A + component is unaffected. The 2A - levels are pushed rapidly downwards by the coupling creating an extremely large apparent K = 2A asymmetry splitting. We call this “giant K-doubling” by analogy with a comparable phenomenon seen for methanol. The 0A + ν 4 state, in turn, is perturbed upward and passes through the descending K = 1A + ν 4 state between J = 22 and 23, leading to distinct local perturbations near the level-crossing. The 0E ν 4 and 2E ν 10 coupling produces a correspondingly strong repulsion and mixing between those two substates, and gives rise to a forbidden K = 0 ← 3E intermode sub-band in the spectrum via intensity borrowing.« less

  11. Ion-binding properties of a K+ channel selectivity filter in different conformations.

    PubMed

    Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W

    2015-12-08

    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.

  12. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  13. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  14. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    PubMed

    Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng

    2016-01-01

    Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  15. Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2010-09-01

    Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.

  16. 40 CFR 761.353 - Second level of sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Second level of sample selection. 761...-Site Disposal, in Accordance With § 761.61 § 761.353 Second level of sample selection. The second level of sample selection reduces the size of the 19-liter subsample that was collected according to...

  17. A new low-cost 10 ns pulsed K(a)-band radar.

    PubMed

    Eskelinen, Pekka; Ylinen, Juhana

    2011-07-01

    Two Gunn oscillators, conventional intermediate frequency building blocks, and a modified GaAs diode detector are combined to form a portable monostatic 10 ns instrumentation radar for outdoor K(a)-band radar cross section measurements. At 37.8 GHz the radar gives +20 dBm output power and its tangential sensitivity is -76 dBm. Processing bandwidth is 125 MHz, which also allows for some frequency drift in the Gunn devices. Intra-pulse frequency chirp is less than 15 MHz. All functions are steered by a microcontroller. First measurements convince that the construction has a reasonable ability to reduce close-to-ground surface clutter and gives an effective way of resolving target detail. This is beneficial especially when amplitude fluctuations disturb measurements with longer pulses. The new unit operates on 12 V dc, draws a current of less than 3 A, and weighs 5 kg.

  18. A monolithic K-band phase-locked loop for microwave radar application

    NASA Astrophysics Data System (ADS)

    Zhou, Guangyao; Ma, Shunli; Li, Ning; Ye, Fan; Ren, Junyan

    2017-02-01

    A monolithic K-band phase-locked loop (PLL) for microwave radar application is proposed and implemented in this paper. By eliminating the tail transistor and using optimized high-Q LC-tank, the proposed voltage-controlled oscillator (VCO) achieves a tuning range of 18.4 to 23.3 GHz and reduced phase noise. Two cascaded current-mode logic (CML) divide-by-two frequency prescalers are implemented to bridge the frequency gap, in which inductor peaking technique is used in the first stage to further boost allowable input frequency. Six-stage TSPC divider chain is used to provide programmable division ratio from 64 to 127, and a second-order passive loop filter with 825 kHz bandwidth is also integrated on-chip to minimize required external components. The proposed PLL needs only approximately 18.2 μs settling time, and achieves a wide tuning range from 18.4 to 23.3 GHz, with a typical output power of ‑0.84 dBm and phase noise of ‑91.92 dBc/Hz @ 1 MHz. The chip is implemented in TSMC 65 nm CMOS process, and occupies an area of 0.56 mm2 without pads under a 1.2 V single voltage supply. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  19. Fabrication of frequency selective surface for band stop IR-filter

    NASA Astrophysics Data System (ADS)

    Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.

  20. A 20 GHz bright sample for δ > 72° - II. Multifrequency follow-up

    NASA Astrophysics Data System (ADS)

    Ricci, R.; Righini, S.; Verma, R.; Prandoni, I.; Carretti, E.; Mack, K.-H.; Massardi, M.; Procopio, P.; Zanichelli, A.; Gregorini, L.; Mantovani, F.; Gawroński, M. P.; Peel, M. W.

    2013-11-01

    We present follow-up observations at 5, 8 and 30 GHz of the K-band Northern Wide Survey (KNoWS) 20 GHz Bright Sample, performed with the 32-m Medicina radio telescope and the 32-m Toruń radio telescope. The KNoWS sources were selected in the Northern Polar Cap (δ > 72°) and have a flux density limit S20 GHz = 115 mJy. We include NRAO-VLA Sky Survey 1.4 GHz measurements to derive the source radio spectra between 1.4 and 30 GHz. Based on optical identifications, 68 per cent of the sources are quasars and 27 per cent are radio galaxies. A redshift measurement is available for 58 per cent of the sources. The radio spectral properties of the different source populations are found to be in agreement with those of other high-frequency-selected samples.

  1. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography

    PubMed Central

    Choi, Dong-hak; Yoshimura, Reiko; Ohbayashi, Kohji

    2013-01-01

    Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained. PMID:24409394

  2. Characterization of Structure and Function of ZS-9, a K+ Selective Ion Trap

    PubMed Central

    Stavros, Fiona; Yang, Alex; Leon, Alejandro; Nuttall, Mark; Rasmussen, Henrik S.

    2014-01-01

    Hyperkalemia, a condition in which serum potassium ions (K+) exceed 5.0 mmol/L, is a common electrolyte disorder associated with substantial morbidity. Current methods of managing hyperkalemia, including organic polymer resins such as sodium polystyrene sulfonate (SPS), are poorly tolerated and/or not effective. Sodium zirconium cyclosilicate (ZS-9) is under clinical development as an orally administered, non-absorbed, novel, inorganic microporous zirconium silicate compound that selectively removes excess K+ in vivo. The development, structure and ion exchange properties of ZS-9 and its hypothesized mechanism of action are described. Based on calculation of the interatomic distances between the atoms forming the ZS-9 micropores, the size of the pore opening was determined to be ∼3 Å (∼diameter of unhydrated K+). Unlike nonspecific organic polymer resins like SPS, the ZS-9 K+ exchange capacity (KEC) was unaffected by the presence of calcium (Ca2+) or magnesium ions (Mg2+) and showed>25-fold selectivity for K+ over either Ca2+ or Mg2+. Conversely, the selectivity of SPS for K+ was only 0.2–0.3 times its selectivity for Ca2+ or Mg2+in mixed ionic media. It is hypothesized that the high K+ specificity of ZS-9 is attributable to the chemical composition and diameter of the micropores, which possibly act in an analogous manner to the selectivity filter utilized by physiologic K+ channels. This hypothesized mechanism of action is supported by the multi-ion exchange studies. The effect of pH on the KEC of ZS-9 was tested in different media buffered to mimic different portions of the human gastrointestinal tract. Rapid K+ uptake was observed within 5 minutes - mainly in the simulated small intestinal and large intestinal fluids, an effect that was sustained for up to 1 hour. If approved, ZS-9 will represent a novel, first-in-class therapy for hyperkalemia with improved capacity, selectivity, and speed for entrapping K+ when compared to currently available options

  3. Characterization of structure and function of ZS-9, a K+ selective ion trap.

    PubMed

    Stavros, Fiona; Yang, Alex; Leon, Alejandro; Nuttall, Mark; Rasmussen, Henrik S

    2014-01-01

    Hyperkalemia, a condition in which serum potassium ions (K+) exceed 5.0 mmol/L, is a common electrolyte disorder associated with substantial morbidity. Current methods of managing hyperkalemia, including organic polymer resins such as sodium polystyrene sulfonate (SPS), are poorly tolerated and/or not effective. Sodium zirconium cyclosilicate (ZS-9) is under clinical development as an orally administered, non-absorbed, novel, inorganic microporous zirconium silicate compound that selectively removes excess K+ in vivo. The development, structure and ion exchange properties of ZS-9 and its hypothesized mechanism of action are described. Based on calculation of the interatomic distances between the atoms forming the ZS-9 micropores, the size of the pore opening was determined to be ∼ 3 Å (∼ diameter of unhydrated K+). Unlike nonspecific organic polymer resins like SPS, the ZS-9 K+ exchange capacity (KEC) was unaffected by the presence of calcium (Ca2+) or magnesium ions (Mg2+) and showed>25-fold selectivity for K+ over either Ca2+ or Mg2+. Conversely, the selectivity of SPS for K+ was only 0.2-0.3 times its selectivity for Ca2+ or Mg2+in mixed ionic media. It is hypothesized that the high K+ specificity of ZS-9 is attributable to the chemical composition and diameter of the micropores, which possibly act in an analogous manner to the selectivity filter utilized by physiologic K+ channels. This hypothesized mechanism of action is supported by the multi-ion exchange studies. The effect of pH on the KEC of ZS-9 was tested in different media buffered to mimic different portions of the human gastrointestinal tract. Rapid K+ uptake was observed within 5 minutes - mainly in the simulated small intestinal and large intestinal fluids, an effect that was sustained for up to 1 hour. If approved, ZS-9 will represent a novel, first-in-class therapy for hyperkalemia with improved capacity, selectivity, and speed for entrapping K+ when compared to currently available options.

  4. k - dependent Jeff=1/2 band splitting and the electron-hole asymmetry in SrIrO3

    NASA Astrophysics Data System (ADS)

    Singh, Vijeta; Pulikkotil, J. J.

    2017-02-01

    The Ir ion in Srn+1 IrnO 3 n + 1 series of compounds is octahedrally coordinated. However, unlike Sr2IrO4 (n=1) and Sr3Ir2O7 (n=2) which are insulating due to spin-orbit induced Jeff splitting of the t2g bands, SrIrO3 (n= ∞) is conducting. To explore whether such a splitting is relevant in SrIrO3, and if so to what extent, we investigate the electronic structure of orthorhombic SrIrO3 using density functional theory. Calculations reveal that the crystal field split Ir t2 g bands in SrIrO3 are indeed split into Jeff=3/2 and and Jeff=1/2 states. However, the splitting is found to be strongly k - dependent with its magnitude determined by the Ir - O orbital hybridization. Besides, we find that the spin-orbit induced pseudo-gap, into which the Fermi energy is positioned, is composed of both light electron-like and heavy hole-like bands. These features in the band structure of SrIrO3 suggest that variations in the carrier concentration control the electronic transport properties in SrIrO3, which is consistent with the experiments.

  5. ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczak, Jens; Lambert, David L., E-mail: adamczak@astro.as.utexas.edu

    We determined the chemical composition of a large sample of weak G band stars-a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normalmore » giants and the {sup 12}C/{sup 13}C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.« less

  6. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    NASA Astrophysics Data System (ADS)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  7. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, Marco, E-mail: marco.ferrante@lngs.infn.it; De Angelis, Francesco, E-mail: francesco.deangelis@univaq.it; Nisi, Stefano, E-mail: stefano.nisi@lngs.infn.it

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detectionmore » limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.« less

  8. Concentration of ions in selected bottled water samples sold in Malaysia

    NASA Astrophysics Data System (ADS)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  9. 40 CFR 761.247 - Sample site selection for pipe segment removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.247 Sample site selection for pipe segment removal. (a) General. (1) Select the pipe... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample site selection for pipe segment...

  10. 40 CFR 761.247 - Sample site selection for pipe segment removal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sample site selection for pipe segment... Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.247 Sample site selection for pipe segment removal. (a) General. (1) Select the pipe...

  11. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates

    NASA Astrophysics Data System (ADS)

    Oudich, Mourad; Senesi, Matteo; Assouar, M. Badreddine; Ruzenne, Massimo; Sun, Jia-Hong; Vincent, Brice; Hou, Zhilin; Wu, Tsung-Tsong

    2011-10-01

    We provide experimental evidence of the existence of a locally resonant sonic band gap in a two-dimensional stubbed plate. Structures consisting of a periodic arrangement of silicone rubber stubs deposited on a thin aluminium plate were fabricated and characterized. Brillouin spectroscopy analysis is carried out to determine the elastic constants of the used rubber. The constants are then implemented in an efficient finite-element model that predicts the band structure and transmission to identify the theoretical band gap. We measure a complete sonic band gap for the out-of-plane Lamb wave modes propagating in various samples fabricated with different stub heights. Frequency domain measurements of full wave field and transmission are performed through a scanning laser Doppler vibrometer. A complete band gap from 1.9 to 2.6 kHz is showed using a sample with 6-mm stub diameter, 5-mm thickness, and 1-cm structure periodicity. Very good agreement between numerical and experimental results is obtained.

  12. A comparison of the usefulness of canonical analysis, principal components analysis, and band selection for extraction of features from TMS data for landcover analysis

    NASA Technical Reports Server (NTRS)

    Boyd, R. K.; Brumfield, J. O.; Campbell, W. J.

    1984-01-01

    Three feature extraction methods, canonical analysis (CA), principal component analysis (PCA), and band selection, have been applied to Thematic Mapper Simulator (TMS) data in order to evaluate the relative performance of the methods. The results obtained show that CA is capable of providing a transformation of TMS data which leads to better classification results than provided by all seven bands, by PCA, or by band selection. A second conclusion drawn from the study is that TMS bands 2, 3, 4, and 7 (thermal) are most important for landcover classification.

  13. KINETyS II: Constraints on spatial variations of the stellar initial mass function from K-band spectroscopy

    NASA Astrophysics Data System (ADS)

    Alton, P. D.; Smith, R. J.; Lucey, J. R.

    2018-05-01

    We investigate the spatially resolved stellar populations of a sample of seven nearby massive Early-type galaxies (ETGs), using optical and near infrared data, including K-band spectroscopy. This data offers good prospects for mitigating the uncertainties inherent in stellar population modelling by making a wide variety of strong spectroscopic features available. We report new VLT-KMOS measurements of the average empirical radial gradients out to the effective radius in the strengths of the Ca I 1.98 μm and 2.26 μm features, the Na I 2.21 μm line, and the CO 2.30 μm bandhead. Following previous work, which has indicated an excess of dwarf stars in the cores of massive ETGs, we pay specific attention to radial variations in the stellar initial mass function (IMF) as well as modelling the chemical abundance patterns and stellar population ages in our sample. Using state-of-the-art stellar population models we infer an [Fe/H] gradient of -0.16±0.05 per dex in fractional radius and an average [Na/Fe] gradient of -0.35±0.09. We find a large but radially-constant enhancement to [Mg/Fe] of ˜ 0.4 and a much lower [Ca/Fe] enhancement of ˜ 0.1. Finally, we find no significant IMF radial gradient in our sample on average and find that most galaxies in our sample are consistent with having a Milky Way-like IMF, or at most a modestly bottom heavy IMF (e.g. less dwarf enriched than a single power law IMF with the Salpeter slope).

  14. A Variable-Selection Heuristic for K-Means Clustering.

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Cradit, J. Dennis

    2001-01-01

    Presents a variable selection heuristic for nonhierarchical (K-means) cluster analysis based on the adjusted Rand index for measuring cluster recovery. Subjected the heuristic to Monte Carlo testing across more than 2,200 datasets. Results indicate that the heuristic is extremely effective at eliminating masking variables. (SLD)

  15. Mars sample return: Site selection and sample acquisition study

    NASA Technical Reports Server (NTRS)

    Nickle, N. (Editor)

    1980-01-01

    Various vehicle and mission options were investigated for the continued exploration of Mars; the cost of a minimum sample return mission was estimated; options and concepts were synthesized into program possibilities; and recommendations for the next Mars mission were made to the Planetary Program office. Specific sites and all relevant spacecraft and ground-based data were studied in order to determine: (1) the adequacy of presently available data for identifying landing sities for a sample return mission that would assure the acquisition of material from the most important geologic provinces of Mars; (2) the degree of surface mobility required to assure sample acquisition for these sites; (3) techniques to be used in the selection and drilling of rock a samples; and (4) the degree of mobility required at the two Viking sites to acquire these samples.

  16. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  17. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  18. Sample selection in foreign similarity regions for multicrop experiments

    NASA Technical Reports Server (NTRS)

    Malin, J. T. (Principal Investigator)

    1981-01-01

    The selection of sample segments in the U.S. foreign similarity regions for development of proportion estimation procedures and error modeling for Argentina, Australia, Brazil, and USSR in AgRISTARS is described. Each sample was chosen to be similar in crop mix to the corresponding indicator region sample. Data sets, methods of selection, and resulting samples are discussed.

  19. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  20. Fabrication of frequency selective surface for band stop IR-filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.

    2016-05-23

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less

  1. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollefs, K.; European Synchrotron Radiation Facility; Meckenstock, R.

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and thereforemore » does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.« less

  2. A k-Vector Approach to Sampling, Interpolation, and Approximation

    NASA Astrophysics Data System (ADS)

    Mortari, Daniele; Rogers, Jonathan

    2013-12-01

    The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.

  3. Design, fabrication, test and delivery of a K-band antenna breadboard model

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a research effort to develop a Ku-Band single channel monopulse antenna with significant improvements in efficiency and bandwidth are reported. A single aperture, multimode horn, utilized in a near field Cassegrainian configuration, was the technique selected for achieving the desired efficiency and bandwidth performance. In order to provide wide polarization flexibility, a wire grid, space filter polarizer was developed. A solid state switching network with appropriate driving electronics provides the receive channel sum and difference signal interface with an existing Apollo type tracking electronics subsystem. A full scale breadboard model of the antenna was fabricated and tested. Performance of the model was well within the requirements and goals of the contract.

  4. Substrate integrated waveguide (SIW) 3 dB coupler for K-Band applications

    NASA Astrophysics Data System (ADS)

    Khalid, Nurehansafwanah; Zuraidah Ibrahim, Siti; Wee, Fwen Hoon; Shazuani Mahmud, Farah

    2017-11-01

    This paper presented a designed coupler by using Rogers RO4003C with thickness (h) 0.508 mm and relative permittivity (ɛr) 3.55. The four port network coupler operates in K-band (18-27 GHz) and design by using substrate integrated waveguide (SIW) method. The reflection coefficient and isolation coefficient of propose Substrate Integrated Waveguide (SIW) coupler is below than -10 dB. Meanwhile the coupler requirements are phase shift 90° between coupled port and output. SIW are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable for use in microwave and communication electronics, as well as increase bandwidth systems. The designs of coupler are investigated using CST Microwave Studio simulation tool. This proposed couplers are varied from parameters that cover the frequency range (21 -24 GHz) and better performance of scattering (S-parameter).

  5. Measurement of pressure-broadening and lineshift coefficients at 77 and 296 K of methane lines in the 727 nm band using intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Kuldip; O'Brien, James J.

    1994-01-01

    Pressure-broadening coefficients and pressure-induced lineshifts of several rotational-vibrational lines have been measured in the 727 nm absorption band of methane at temperatures of 77 and 296 K, using nitrogen, hydrogen, and helium as the foreign-gas collision partners. A technique involving intracavity laser spectroscopy is used to record the methane spectra. Average values of the broadening coefficients (/cm/atm) at 77 K are: 0.199, 0.139, 0.055, and 0.29 for collision partners N2, H2, He, and CH4, respectively. Typical average values of the pressure-induced lineshifts (/cm/atm) at 77 K and for the range of foreign gas pressures between 10 and 200 torr are -0.052 for N2, -0.063 for H2, and +0.031 for He. All the values obtained at 296 K are considerably different from the corresponding values at 77 K. This represents the first report of pressure-broadening and shifting coefficients for the methane transitions in a region where the delta nu(sub C-H) = 5 band occurs.

  6. Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films

    NASA Astrophysics Data System (ADS)

    Cheng, Yong-Zhi; Nie, Yan; Gong, Rong-Zhou

    2013-10-01

    We present the design of a wide-band metamaterial absorber, based on fractal frequency selective surface and resistive films. The total thickness is only 0.8 mm and shows a polarization-insensitive and wide-angle strong absorption. Due to the multiband resonance properties of the Minkowski fractal loop structure and Ohmic loss properties of resistive films, a strongly absorptive bandwidth of about 19 GHz is demonstrated numerically in the range 6.51-25.42 GHz. This design provides an effective and feasible way to construct a broad-band absorber in stealth technology.

  7. 40 CFR 205.57-2 - Test vehicle sample selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Test vehicle sample selection. 205.57... vehicle sample selection. (a) Vehicles comprising the batch sample which are required to be tested... test request from a batch of vehicles of the category or configuration specified in the test request...

  8. 40 CFR 761.250 - Sample site selection for pipeline section abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample site selection for pipeline... Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.250 Sample site selection for pipeline section abandonment. This procedure...

  9. 40 CFR 761.250 - Sample site selection for pipeline section abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sample site selection for pipeline... Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.250 Sample site selection for pipeline section abandonment. This procedure...

  10. Calculation of the X-Ray emission K and L 2,3 bands of metallic magnesium and aluminum with allowance for multielectron effects

    NASA Astrophysics Data System (ADS)

    Ovcharenko, R. E.; Tupitsyn, I. I.; Savinov, E. P.; Voloshina, E. N.; Dedkov, Yu. S.; Shulakov, A. S.

    2014-01-01

    A procedure is proposed to calculate the shape of the characteristic X-ray emission bands of metals with allowance for multielectron effects. The effects of the dynamic screening of a core vacancy by conduction electrons and the Auger effect in the valence band are taken into account. The dynamic screening of a core vacancy, which is known to be called the MND (Mahan-Nozeieres-De Dominics) effect, is taken into account by an ab initio band calculation of crystals using the PAW (projected augmented waves) method. The Auger effect is taken into account by a semiempirical method using the approximation of a quadratic dependence of the level width in the valence band on the difference between the level energy and the Fermi energy. The proposed calculation procedure is used to describe the X-ray emission K and L 2,3 bands of metallic magnesium and aluminum crystals. The calculated spectra agree well with the experimental bands both near the Fermi level and in the low-energy part of the spectra in all cases.

  11. The impact of column connection on band broadening in very high pressure liquid chromatography.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Guiochon, Georges

    2013-09-01

    A series of experiments was conducted to evaluate the degree of band broadening in very high pressure LC due to column connections. Different column manufacturers use slightly different designs for their column fittings. If the same column connections are repeatedly used to attach columns of different origins, different void volumes form between capillary tubes and column inlets. An Agilent Ultra Low Dispersion Kit (tubing id 75 μm) was installed on an Agilent Infinity 1290 ultra HPLC and used to connect successively an Agilent, a Phenomenex, and a Waters column. A series of uracil (unretained) samples were injected and eluted at a wide range of flow rates with a water/acetonitrile mixture as eluent. In order to determine the variance contribution from column connections as accurately as possible a nonretained probe compound was selected because the variance contribution from the column is the smallest for analytes, which have very low k values. Yet, this effect still has an impact on the resolution for moderately retained compounds (k > 2) for narrow-bore columns packed with fine particles, since variance contributions are additive for linear chromatographic systems. Each injection was replicated five times under the same experimental conditions. Then NanoViper column connections (tubing id 75 μm) were used and the same injections were made. This system was designed to minimize connection void volumes for any column. Band variances were calculated as the second central moment of elution peaks and used to assess the degree of band broadening due to the column connections. Band broadening may increase from 3.8 to 53.9% when conventional metal ferrules were used to join columns to connection sites. The results show that the variance contribution from improper connections can generate as much as 60.5% of the total variance observed. This demonstrates that column connections can play a larger role than the column packing with respect to band dispersion. © 2013 WILEY

  12. Low-Profile Multiband and Flush-Mountable Wideband Antennas for HF/VHF and K/Ka Band Applications

    NASA Astrophysics Data System (ADS)

    Garrido Lopez, David

    This thesis introduces several novel antenna systems with extended performance capabilities achieved by either enabling multiple operation bands or by widening the bandwidth. Proposed theoretical concepts are successfully tested through simulations and experiments with excellent agreement are demonstrated. The designs developed in this thesis research are low-profile or flush mountable, enabling simple platform integration. In the HF/VHF bands, the development of a novel low-profile multiband antenna for vehicular applications is presented. Specifically, an inverted-F antenna is used as a driven element, to operate at the lowest frequency of 27 MHz, whereas two parasitic elements are built as inverted-L monopoles to enable resonances at 49 and 53 MHz. To eliminate the need for an external matching network, an offset feeding technique is used. When the antenna is mounted on a vehicle and bent to follow its profile, a very low-profile is achieved (lambda/44) while good impedance and far-field performance are maintained across all three bands. The developed antenna system is not only electrically smallest among others found in the literature, but it is easily modified for other band selections and tuning of each band can be readily achieved. Vehicular antennas are often used for high power applications, which may cause exposure of nearby individuals to possibly dangerous electromagnetic fields. To assess this hazard, the RF exposure of a vehicle's crew is discussed and an original and fast modeling approach for prediction thereof is demonstrated. The modeling approach is based on eigenmode analysis for acquiring a range of frequencies where the shielding effectiveness of a vehicle cabin is expected to be lower than average. This approach is typically much faster and requires less computational resources as compared to classical full-wave analyses. This analysis also shows that the position of an antenna system is critical and must be considered when high-power RF

  13. Recovering physical properties from narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  14. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David A.; Vedral, L. James; Smith, David A.

    2015-04-15

    Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and comparedmore » well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.« less

  15. Highly K+ -Selective Fluorescent Probes for Lifetime Sensing of K+ in Living Cells.

    PubMed

    Schwarze, Thomas; Mertens, Monique; Müller, Peter; Riemer, Janine; Wessig, Pablo; Holdt, Hans-Jürgen

    2017-12-06

    The new K + -selective fluorescent probes 1 and 2 were obtained by Cu I -catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K + in the presence of Na + in water by fluorescence enhancement (2.2 for 1 at 2000 mm K + and 2.5 for 2 at 160 mm K + ). Fluorescence lifetime measurements in the absence and presence of K + revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times (τ f(av) ). For 1 a decrease of τ f(av) from 12.4 to 9.3 ns and for 2 an increase from 17.8 to 21.8 ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the K d value for a certain K + concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the K d value from >300 mm to 10 mm. 2 was chosen for studying the efflux of K + from human red blood cells (RBC). Upon addition of the Ca 2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca 2+ , the fluorescence of 2 slightly rose within 10 min, however, after 120 min a significant increase was observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging

    DOE PAGES

    Wu, Xiang; Lee, Hyungseok; Bilsel, Osman; ...

    2015-01-01

    One of the key roadblocks in UCNP development is its extremely limited choices of excitation wavelengths. We report a generic design to program UCNPs to possess highly tunable dye characteristic excitation bands. Using such distinctive properties, we were able to develop a new excitation wavelength selective security imaging. Finally, this work unleashed the greater freedom of the excitation wavelengths of the upconversion nanoparticles and we believe it is a game-changer in the field and this method will enable numerous applications that are currently limited by existing UCNPs.

  17. Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.

    PubMed

    Heikal, A A; Wachowicz, K; Fallone, B G

    2016-10-01

    To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.

  18. Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng

    2015-03-01

    Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.

  19. A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band

    NASA Astrophysics Data System (ADS)

    Zou, Quan; Shan, Xiao; Jiang, Yi

    Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.

  20. Zero-phonon line and fine structure of the yellow luminescence band in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; McNamara, J. D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Yu.; Morkoç, H.

    2016-07-01

    The yellow luminescence band was studied in undoped and Si-doped GaN samples by steady-state and time-resolved photoluminescence. At low temperature (18 K), the zero-phonon line (ZPL) for the yellow band is observed at 2.57 eV and attributed to electron transitions from a shallow donor to a deep-level defect. At higher temperatures, the ZPL at 2.59 eV emerges, which is attributed to electron transitions from the conduction band to the same defect. In addition to the ZPL, a set of phonon replicas is observed, which is caused by the emission of phonons with energies of 39.5 meV and 91.5 meV. The defect is called the YL1 center. The possible identity of the YL1 center is discussed. The results indicate that the same defect is responsible for the strong YL1 band in undoped and Si-doped GaN samples.

  1. The Evolution of the Multiplicity of Embedded Protostars. I. Sample Properties and Binary Detections

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the observational results of a near-infrared survey of a large sample of Class I protostars designed to determine the Class I binary separation distribution from ~100 AU to ~5000 AU. We have selected targets from a new sample of 267 nearby candidate Class I objects. This sample is well understood, consists of mostly Class I young stellar objects (YSOs) within 1 kpc, has targets selected from the whole sky, and is not biased by previous studies of star formation. We have observed 189 Class I YSOs north of δ = -40° at the H, K, and L' bands, with a median angular resolution of 0farcs33 at L'. We determine our detection limit for close binary companions by observing artificial binaries. We choose a contrast limit and an outer detection limit to minimize contamination and to ensure that a candidate companion is gravitationally bound. Our survey uses observations at the L' rather than the K band for the detection of binary companions since there is less scattered light and better seeing at L'. This paper presents the positions of our targets, the near-IR photometry of sources detected in our fields at L', as well as the observed properties of the 89 detected companions (73 of which are newly discovered). Although we have chosen contrast and separation limits to minimize contamination, we expect that there are about six stars identified as binary companions that are due to contamination. Finder charts at L' for each field are shown to facilitate future studies of these objects. The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical

  2. Mechanism of activation at the selectivity filter of the KcsA K+ channel

    PubMed Central

    Heer, Florian T; Posson, David J; Wojtas-Niziurski, Wojciech

    2017-01-01

    Potassium channels are opened by ligands and/or membrane potential. In voltage-gated K+ channels and the prokaryotic KcsA channel, conduction is believed to result from opening of an intracellular constriction that prevents ion entry into the pore. On the other hand, numerous ligand-gated K+ channels lack such gate, suggesting that they may be activated by a change within the selectivity filter, a narrow region at the extracellular side of the pore. Using molecular dynamics simulations and electrophysiology measurements, we show that ligand-induced conformational changes in the KcsA channel removes steric restraints at the selectivity filter, thus resulting in structural fluctuations, reduced K+ affinity, and increased ion permeation. Such activation of the selectivity filter may be a universal gating mechanism within K+ channels. The occlusion of the pore at the level of the intracellular gate appears to be secondary. PMID:28994652

  3. A genetic algorithm-based framework for wavelength selection on sample categorization.

    PubMed

    Anzanello, Michel J; Yamashita, Gabrielli; Marcelo, Marcelo; Fogliatto, Flávio S; Ortiz, Rafael S; Mariotti, Kristiane; Ferrão, Marco F

    2017-08-01

    In forensic and pharmaceutical scenarios, the application of chemometrics and optimization techniques has unveiled common and peculiar features of seized medicine and drug samples, helping investigative forces to track illegal operations. This paper proposes a novel framework aimed at identifying relevant subsets of attenuated total reflectance Fourier transform infrared (ATR-FTIR) wavelengths for classifying samples into two classes, for example authentic or forged categories in case of medicines, or salt or base form in cocaine analysis. In the first step of the framework, the ATR-FTIR spectra were partitioned into equidistant intervals and the k-nearest neighbour (KNN) classification technique was applied to each interval to insert samples into proper classes. In the next step, selected intervals were refined through the genetic algorithm (GA) by identifying a limited number of wavelengths from the intervals previously selected aimed at maximizing classification accuracy. When applied to Cialis®, Viagra®, and cocaine ATR-FTIR datasets, the proposed method substantially decreased the number of wavelengths needed to categorize, and increased the classification accuracy. From a practical perspective, the proposed method provides investigative forces with valuable information towards monitoring illegal production of drugs and medicines. In addition, focusing on a reduced subset of wavelengths allows the development of portable devices capable of testing the authenticity of samples during police checking events, avoiding the need for later laboratorial analyses and reducing equipment expenses. Theoretically, the proposed GA-based approach yields more refined solutions than the current methods relying on interval approaches, which tend to insert irrelevant wavelengths in the retained intervals. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Relationship between selected physicochemical properties of peaty-mucks soils and main absorbance bands of its FTIR spectra*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Peatlands are a large reservoir of organic matter that is responsible for sorption properties, structure of soils and microbial activity. However, most of the peatlands in Poland have been drained and subjected to agricultural use. Processes of such kind cause acceleration of peat mass transformation to mucks. Changes in peat evolution under melioration processes are mostly characterised by mineralisation and humification. The above processes lead to changes in the morphological, chemical, biological and physical properties of peat soils. Knowledge about changes of these parameters is very important in suitable application of conditions and fertilisers in order to improve agricultural value of soil. One of the indicators which could describe the changes in peat mass could be the water holding capacity index proposed by Gawlik. This parameter characterises the secondary transformation processes taking place in soils. Mucking processes are also well described by humification indexes and organic/inorganic carbon content. However, changes of above physical and physicochemical properties of soils are also connected with changes of chemical structure of organic matter contained in soil material. Organic matter is a significant component of organic soils and it influences such important parameters of all soil like sorptivity. So that, it is also valuable to control state of functional groups which determine sorption capacity of soil. One of the methods which could be applied in this case is observation of absorbance values of functional groups in infrared spectra of samples. This is quick and method but it could be used only in approximate way because of some content of ash and inorganic parts. Main aim of this work was attempt to find relationships beetwen selected physicochemical properties of peats soils and height of the most important infrared bands of these materials. 11 peaty-muck soils were taken from different places in Eastern part of Poland from deph 0-20cm

  5. New rotational bands in sup 166 Ho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.; Sood, P.C.; Baluba Mutshil

    1989-08-01

    The {ital K}{sup {pi}}=1{sup {minus}} and 0{sup {minus}} bands from the (1/2{sup +}(411){plus minus}(1/2{sup {minus}}(521))) configuration, and the {ital K}{sup {pi}}=1{sup {minus}} and 2{sup {minus}} bands from the (3/2{sup +}(411){plus minus}(1/2{sup {minus}}(521))) configuration have been identified for the first time largely using known but previously unused gamma transitions from the {sup 165}Ho({ital n},{gamma}) reaction. A remarkable similarity is shown to exist between the level structures of the {ital K}{sup {pi}}=1{sup {minus}} and 0{sup {minus}} bands from the (1/2{sup +}(411){plus minus}(1/2{sup {minus}}(521))) configurations in {sup 170}Tm and {sup 166}Ho.

  6. Selectivity and permeation of alkali metal ions in K+-channels.

    PubMed

    Furini, Simone; Domene, Carmen

    2011-06-24

    Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of High-Pressure High-Temperature Sintering on the Band Gap and Thermoelectric Properties of PbSe

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Yi; Sun, Zhen-Ya

    2018-06-01

    In this study, PbSe bulk samples were prepared by a high-pressure high-temperature (HPHT) sintering technique, and the phase compositions, band gaps and thermoelectric properties of the samples were systematically investigated. The sintering pressure exerts a significant influence on the preferential orientation, band gap and thermoelectric properties of PbSe. With increasing pressure, the preferential orientation decreases, mainly due to the decreased crystallinity, while the band gap first decreases and then increases. The electrical conductivity and power factor decrease gradually with increasing pressure, mainly attributed to the decreased carrier concentration and mobility. Consequently, the sample prepared by 2 GPa shows the highest thermoelectric figure-of-merit, ZT, of 0.55 at ˜ 475 K. The ZT of the HPHT-sintered PbSe could be further improved by properly doping or optimizing the HPHT parameters. This study further demonstrates that the sintering pressure could be another degree of freedom to manipulate the band structure and thermoelectric properties of materials.

  8. Orientation selectivity in the visual cortex of the nine-banded armadillo

    PubMed Central

    Scholl, Benjamin; Rylee, Johnathan; Luci, Jeffrey J.; Priebe, Nicholas J.

    2017-01-01

    Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals. NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that

  9. Cross sections for the reactions e+e-→K+K-π+π-, K+K-π0π0, and K+K-K+K- measured using initial-state radiation events

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2012-07-01

    We study the processes e+e-→K+K-π+π-γ, K+K-π0π0γ, and K+K-K+K-γ, where the photon is radiated from the initial state. About 84 000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454fb-1 of BABAR data. The invariant mass of the hadronic final state defines the e+e- center-of-mass energy, so that the K+K-π+π-γ data can be compared with direct measurements of the e+e-→K+K-π+π- reaction. No direct measurements exist for the e+e-→K+K-π0π0 or e+e-→K+K-K+K- reactions, and we present an update of our previous result based on a data sample that is twice as large. Studying the structure of these events, we find contributions from a number of intermediate states and extract their cross sections. In particular, we perform a more detailed study of the e+e-→ϕ(1020)ππγ reaction and confirm the presence of the Y(2175) resonance in the ϕ(1020)f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/ψ in all three final states and in several intermediate states, as well as the ψ(2S) in some modes, and measure the corresponding products of branching fraction and electron width.

  10. FTIR Synchrotron Spectroscopy of the Asymmetric C-H Stretching Bands of Methyl Mercaptan (CH3SH) - a Perplexity of Perturbations

    NASA Astrophysics Data System (ADS)

    Lees, Ronald M.; Xu, Li-Hong; Reid, Elias M.; Thapaliya, Bishnu P.; Dawadi, Mahesh B.; Perry, David S.; Twagirayezu, Sylvestre; Billinghurst, Brant E.

    2016-06-01

    The infrared Fourier transform spectrum of the asymmetric C-H stretching bands of CH3SH has been recorded in the 2950-3100 cm-1 region at Doppler limited resolution using synchrotron radiation at the FIR beamline of the Canadian Light Source in Saskatoon. Assignment of numerous torsion-rotation sub-bands for the asymmetric stretches has revealed a surprising pseudo-symmetric behavior, in which each band is seen in only one of the two possible ΔK selection rules. The upper states of the two asymmetric stretching vibrational bands thus appear to behave more like l = ± 1 components of a degenerate E state of a symmetric top rather than distinct vibrational states. The two components are separated by about 1.5 cm-1 at K = 0, and then diverge linearly at higher K with torsional oscillation amplitude similar to that of the ground state of about 1.3 cm-1. The divergence is consistent with an a-type Coriolis splitting picture with an effective Coriolis constant ζ ≈ 0.075.

  11. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport.

    PubMed

    Pottosin, Igor; Dobrovinskaya, Oxana

    2014-05-15

    Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channel's inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. CRUMP 2003 Selected Water Sample Results

    EPA Pesticide Factsheets

    Point locations and water sampling results performed in 2003 by the Church Rock Uranium Monitoring Project (CRUMP) a consortium of organizations (Navajo Nation Environmental Protection Agency, US Environmental Protection Agency, New Mexico Scientific Laboratory Division, Navajo Tribal Utility Authority and NM Water Quality Control Commission). Samples include general description of the wells sampled, general chemistry, heavy metals and aestheic parameters, and selected radionuclides. Here only six sampling results are presented in this point shapefile, including: Gross Alpha (U-Nat Ref.) (pCi/L), Gross Beta (Sr/Y-90 Ref.) (pCi/L), Radium-226 (pCi/L), Radium-228 (pCi/L), Total Uranium (pCi/L), and Uranium mass (ug/L). The CRUMP samples were collected in the area of Churchrock, NM in the Eastern AUM Region of the Navajo Nation.

  13. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  14. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  15. The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected Via the Sunyaev-Zel'Dovich Effect

    NASA Technical Reports Server (NTRS)

    Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe; hide

    2010-01-01

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.

  16. Scuss u-Band Emission as a Star-Formation-Rate Indicator

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Zhou, Xu; Wu, Hong; Fan, Xiao-Hui; Fan, Zhou; Jiang, Zhao-Ji; Jing, Yi-Peng; Li, Cheng; Lesser, Michael; Jiang, Lin-Hua; Ma, Jun; Nie, Jun-Dan; Shen, Shi-Yin; Wang, Jia-Li; Wu, Zhen-Yu; Zhang, Tian-Meng; Zou, Hu

    2017-01-01

    We present and analyze the possibility of using optical u-band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u-band photometric survey covering about 5000 deg2 of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u-band, Hα, and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer (WISE). The attenuation-corrected u-band luminosities are tightly correlated with the Balmer decrement-corrected Hα luminosities with an rms scatter of ˜0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u-band luminosities and WISE 12 (or 22) μm luminosities, and then calibrated with the Balmer-corrected Hα luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.

  17. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  18. 9 CFR 592.450 - Procedures for selecting appeal samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Procedures for selecting appeal samples. 592.450 Section 592.450 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Appeals § 592.450 Procedures for selecting appeal samples. (a)...

  19. 9 CFR 592.450 - Procedures for selecting appeal samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Procedures for selecting appeal samples. 592.450 Section 592.450 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Appeals § 592.450 Procedures for selecting appeal samples. (a)...

  20. 9 CFR 592.450 - Procedures for selecting appeal samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Procedures for selecting appeal samples. 592.450 Section 592.450 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Appeals § 592.450 Procedures for selecting appeal samples. (a)...

  1. 9 CFR 592.450 - Procedures for selecting appeal samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Procedures for selecting appeal samples. 592.450 Section 592.450 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Appeals § 592.450 Procedures for selecting appeal samples. (a)...

  2. Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies

    NASA Astrophysics Data System (ADS)

    Saladukha, D.; Clavel, M. B.; Murphy-Armando, F.; Greene-Diniz, G.; Grüning, M.; Hudait, M. K.; Ochalski, T. J.

    2018-05-01

    Germanium is an indirect semiconductor which attracts particular interest as an electronics and photonics material due to low indirect-to-direct band separation. In this work we bend the bands of Ge by means of biaxial tensile strain in order to achieve a direct band gap. Strain is applied by growth of Ge on a lattice mismatched InGaAs buffer layer with variable In content. Band structure is studied by photoluminescence and photoreflectance, giving the indirect and direct bands of the material. Obtained experimental energy band values are compared with a k .p simulation. Photoreflectance spectra are also simulated and compared with the experiment. The obtained results indicate direct band structure obtained for a Ge sample with 1.94 % strain applied, with preferable Γ valley to heavy hole transition.

  3. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  4. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  5. ALMA Band 5 receiver cartridge. Design, performance, and commissioning

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Bylund, M.; Desmaris, V.; Ermakov, A.; Ferm, S.-E.; Fredrixon, M.; Krause, S.; Lapkin, I.; Meledin, D.; Pavolotsky, A.; Rashid, H.; Shafiee, S.; Strandberg, M.; Sundin, E.; Aghdam, P. Yadranjee; Hesper, R.; Barkhof, J.; Bekema, M. E.; Adema, J.; Haan, R. de; Koops, A.; Boland, W.; Yagoubov, P.; Marconi, G.; Siringo, G.; Humphreys, E.; Tan, G. H.; Laing, R.; Testi, L.; Mroczkowski, T.; Wild, W.; Saini, K. S.; Bryerton, E.

    2018-04-01

    We describe the design, performance, and commissioning results for the new ALMA Band 5 receiver channel, 163-211 GHz, which is in the final stage of full deployment and expected to be available for observations in 2018. This manuscript provides the description of the new ALMA Band 5 receiver cartridge and serves as a reference for observers using the ALMA Band 5 receiver for observations. At the time of writing this paper, the ALMA Band 5 Production Consortium consisting of NOVA Instrumentation group, based in Groningen, NL, and GARD in Sweden have produced and delivered to ALMA Observatory over 60 receiver cartridges. All 60 cartridges fulfil the new more stringent specifications for Band 5 and demonstrate excellent noise temperatures, typically below 45 K single sideband (SSB) at 4 K detector physical temperature and below 35 K SSB at 3.5 K (typical for operation at the ALMA Frontend), providing the average sideband rejection better than 15 dB, and the integrated cross-polarization level better than -25 dB. The 70 warm cartridge assemblies, hosting Band 5 local oscillator and DC bias electronics, have been produced and delivered to ALMA by NRAO. The commissioning results confirm the excellent performance of the receivers.

  6. Fresh and aged human lymphocyte metaphase slides are equally usable for GTG banding.

    PubMed

    Sajjad, Naheed; Haque, Sayedul; SBurney, Syed Intesar; Shahid, Syed Muhammad; Zehra, Sitwat; Azhar, Abid

    2014-09-01

    The identification of chromosomes for routine cytogenetic analysis is based on quality of metaphases and good banding pattern. Fresh slides of human lymphocytes have been shown to produce good bands for the identification of chromosomes morphology. G-bands by Trypsin using Giemsa (GTG) banding of aged slides is generally considered hard to get desired band pattern of chromosomes persistently. The current study is focused on GTG banding of aged slides. A total of 340 subjects including 290 primary infertile and 50 fertile were selected. The blood samples were drawn aseptically for cytogenetic analysis. Lymphocytes were cultured and GTG banding was done on 1440 glass slides. Giemsa trypsin banding of aged slides were done by adjusting average trypsin time for each month according to the slide age and metaphase concentration. Correlation analyses showed a significant and positive correlation between slide ageing and trypsin pre-treatment time. The results of this study suggest that, the fresh and aged human lymphocyte metaphases are equally usable for GTG banding.

  7. An efficient sampling strategy for selection of biobank samples using risk scores.

    PubMed

    Björk, Jonas; Malmqvist, Ebba; Rylander, Lars; Rignell-Hydbom, Anna

    2017-07-01

    The aim of this study was to suggest a new sample-selection strategy based on risk scores in case-control studies with biobank data. An ongoing Swedish case-control study on fetal exposure to endocrine disruptors and overweight in early childhood was used as the empirical example. Cases were defined as children with a body mass index (BMI) ⩾18 kg/m 2 ( n=545) at four years of age, and controls as children with a BMI of ⩽17 kg/m 2 ( n=4472 available). The risk of being overweight was modelled using logistic regression based on available covariates from the health examination and prior to selecting samples from the biobank. A risk score was estimated for each child and categorised as low (0-5%), medium (6-13%) or high (⩾14%) risk of being overweight. The final risk-score model, with smoking during pregnancy ( p=0.001), birth weight ( p<0.001), BMI of both parents ( p<0.001 for both), type of residence ( p=0.04) and economic situation ( p=0.12), yielded an area under the receiver operating characteristic curve of 67% ( n=3945 with complete data). The case group ( n=416) had the following risk-score profile: low (12%), medium (46%) and high risk (43%). Twice as many controls were selected from each risk group, with further matching on sex. Computer simulations showed that the proposed selection strategy with stratification on risk scores yielded consistent improvements in statistical precision. Using risk scores based on available survey or register data as a basis for sample selection may improve possibilities to study heterogeneity of exposure effects in biobank-based studies.

  8. Exploring possibilities of band gap measurement with off-axis EELS in TEM.

    PubMed

    Korneychuk, Svetlana; Partoens, Bart; Guzzinati, Giulio; Ramaneti, Rajesh; Derluyn, Joff; Haenen, Ken; Verbeeck, Jo

    2018-06-01

    A technique to measure the band gap of dielectric materials with high refractive index by means of energy electron loss spectroscopy (EELS) is presented. The technique relies on the use of a circular (Bessel) aperture and suppresses Cherenkov losses and surface-guided light modes by enforcing a momentum transfer selection. The technique also strongly suppresses the elastic zero loss peak, making the acquisition, interpretation and signal to noise ratio of low loss spectra considerably better, especially for excitations in the first few eV of the EELS spectrum. Simulations of the low loss inelastic electron scattering probabilities demonstrate the beneficial influence of the Bessel aperture in this setup even for high accelerating voltages. The importance of selecting the optimal experimental convergence and collection angles is highlighted. The effect of the created off-axis acquisition conditions on the selection of the transitions from valence to conduction bands is discussed in detail on a simplified isotropic two band model. This opens the opportunity for deliberately selecting certain transitions by carefully tuning the microscope parameters. The suggested approach is experimentally demonstrated and provides good signal to noise ratio and interpretable band gap signals on reference samples of diamond, GaN and AlN while offering spatial resolution in the nm range. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Selection of sampling rate for digital control of aircrafts

    NASA Technical Reports Server (NTRS)

    Katz, P.; Powell, J. D.

    1974-01-01

    The considerations in selecting the sample rates for digital control of aircrafts are identified and evaluated using the optimal discrete method. A high performance aircraft model which includes a bending mode and wind gusts was studied. The following factors which influence the selection of the sampling rates were identified: (1) the time and roughness response to control inputs; (2) the response to external disturbances; and (3) the sensitivity to variations of parameters. It was found that the time response to a control input and the response to external disturbances limit the selection of the sampling rate. The optimal discrete regulator, the steady state Kalman filter, and the mean response to external disturbances are calculated.

  10. Violations of K-Conservation in 178Hf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, A. B.; Cline, D.; Wu, C. Y.

    2006-03-13

    Coulomb excitation of K{pi}=6+(t1/2=77 ns), 8-(t1/2=4.0 s) and 16+(t1/2=31 y) 178Hf isomers has led to the measurement of a set of E{lambda} matrix elements, coupling the isomer bands to the {gamma}- and ground state bands. The resulting matrix elements, derived using a coupled-channel semiclassical Coulomb excitation search code, have been used to probe the K-components in the wave functions and revealed the onset and saturation of K-mixing in low-K bands, whereas K-mixing is negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei. An upper limit on the Coulomb depopulation yield of the 16+ isomer wasmore » calculated based on the present set of matrix elements.« less

  11. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    NASA Astrophysics Data System (ADS)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  12. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  13. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  14. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  15. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  16. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  17. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  18. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    NASA Astrophysics Data System (ADS)

    Wu, C.-C.; York, D. G.; Snow, T. P.

    1981-05-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.

  19. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    NASA Technical Reports Server (NTRS)

    Wu, C.-C.; York, D. G.; Snow, T. P.

    1981-01-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.

  20. Simulation of radar backscattering from snowpack at X-band and Ku-band

    NASA Astrophysics Data System (ADS)

    Gay, Michel; Phan, Xuan-Vu; Ferro-Famil, Laurent

    2016-04-01

    This paper presents a multilayer snowpack electromagnetic backscattering model, based on Dense Media Radiative Transfer (DMRT). This model is capable of simulating the interaction of electromagnetic wave (EMW) at X-band and Ku-band frequencies with multilayer snowpack. The air-snow interface and snow-ground backscattering components are calculated using the Integral Equation Model (IEM) by [1], whereas the volume backscattering component is calculated based on the solution of Vector Radiative Transfer (VRT) equation at order 1. Case study has been carried out using measurement data from NoSREx project [2], which include SnowScat data in X-band and Ku-band, TerraSAR-X acquisitions and snowpack stratigraphic in-situ measurements. The results of model simulations show good agreement with the radar observations, and therefore allow the DMRT model to be used in various applications, such as data assimilation [3]. [1] A.K. Fung and K.S. Chen, "An update on the iem surface backscattering model," Geoscience and Remote Sensing Letters, IEEE, vol. 1, no. 2, pp. 75 - 77, april 2004. [2] J. Lemmetyinen, A. Kontu, J. Pulliainen, A. Wiesmann, C. Werner, T. Nagler, H. Rott, and M. Heidinger, "Technical assistance for the deployment of an x- to ku-band scatterometer during the nosrex ii experiment," Final Report, ESA ESTEC Contract No. 22671/09/NL/JA., 2011. [3] X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard, "3d-var multilayer assimilation of x-band sar data into a detailed snowpack model," The Cryosphere Discussions, vol. 7, no. 5, pp. 4881-4912, 2013.

  1. The quasar luminosity function from a variability-selected sample

    NASA Astrophysics Data System (ADS)

    Hawkins, M. R. S.; Veron, P.

    1993-01-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.

  2. Hybrid selection for sequencing pathogen genomes from clinical samples

    PubMed Central

    2011-01-01

    We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla. PMID:21835008

  3. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  4. THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laag, Edward; Croft, Steve; Canalizo, Gabriela

    2010-12-15

    This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels)more » on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.« less

  5. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  6. A Nonparametric K-Sample Test for Equality of Slopes.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; Koffler, Stephen L.

    1986-01-01

    The development of a nonparametric K-sample test for equality of slopes using Puri's generalized L statistic is presented. The test is recommended when the assumptions underlying the parametric model are violated. This procedure replaces original data with either ranks (for data with heavy tails) or normal scores (for data with light tails).…

  7. Pre-slip and Localized Strain Band - A Study Based on Large Sample Experiment and DIC

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Zhuo, Y. Q.; Liu, L.; Ma, J.

    2017-12-01

    Meta-instability stage (MIS) is the stage occurs between a fault reaching the peak differential stress and the onset of the final stress drop. It is the crucial stage during which a fault transits from "stick" to "slip". Therefore, if one can quantitatively analyze the spatial and temporal characteristics of the deformation field of a fault at MIS, it will be of great significance both to fault mechanics and earthquake prediction study. In order to do so, a series of stick-slip experiments were conducted using a biaxial servo-controlled pressure machine. Digital images of the sample surfaces were captured by a high speed camera and processed using a digital image correlation method (DIC). If images of a rock sample are acquired before and after deformation, then DIC can be used to infer the displacement and strain fields. In our study, sample images were captured at the rate of 1000 frame per second and the resolution is 2048 by 2048 in pixel. The displacement filed, strain filed and fault displacement were calculated from the captured images. Our data shows that (1) pre-sliding can be a three-stage process, including a relative long and slow first stage at slipping rate of 7.9nm/s, a relatively short and fast second one at rate of 3µm/s and the last stage only last for 0.2s but the slipping rate reached as high as 220µm/s. (2) Localized strain bands were observed nearly perpendicular to the fault. A possible mechanism is that the pre-sliding is distributed heterogeneously along the fault, which means there are relatively adequately sliding segments and the less sliding ones, they become the constrain condition of deformation of the adjacent subregion. The localized deformation band tends to radiate from the discontinuity point of sliding. While the adequately sliding segments are competing with the less sliding ones, the strain bands are evolving accordingly.

  8. Automated Selection of Metal-Poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon

    2000-08-01

    -extracted spectra. Trained networks fed with known colors, measured peak fluxes, and the raw fluxes of the low-resolution digital spectra were able to predict the K18 index with a one-sigma scatter in the range 1.2 < SBI < 1.4 Å, depending on the color and strength of the line. By feeding on calibrated, multiple-band, photographic measurements of apparent magnitudes, peak fluxes, and the fluxes of estimated continua of the extracted APM spectra, the trained networks were able to estimate (B-V)0 colors with a scatter in the range 0.13 < SBI < 0.16 magnitudes. From an application of the ANN approach, using the less accurate information obtained from the calibrated estimates of K18 and (B-V)0 colors, it still proved possible to obtain metal abundance estimates with a scatter of SBI = 0.78 dex, and to carry out classifications with an overall correction rate of 40%. By comparison with a large sample of known metal-poor stars, on the order of 60% of the candidates predicted to have a metallicity [Fe/H] < -2.0 indeed fell in this region of abundance (representing a three-fold improvement over the visual selection criteria previously employed in the HK survey). The recovery rate indicated that at least 30% of all such stars in our sample would be identified in a blind sampling, limited, for the most part, by the lack of accurate color information. Finally we report 481 extremely metal-poor star candidates in 10 plates of the HK survey, selected by our newly developed methodology.

  9. An indirect method of studying band alignments in nBn photodetectors using off-axis electron holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xiao-Meng, E-mail: xiaomeng.shen@asu.edu; Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287; He, Zhao-Yu

    2015-09-21

    Mid-wave and long-wave infrared nBn photodetectors with absorbers consisting of InAs/InAsSb superlattices and barriers consisting of InAs/AlGaSb(As) superlattices were grown using molecular beam epitaxy. High-resolution X-ray diffraction showing significant differences in Ga composition in the barrier layer, and different dark current behavior at 77 K, suggested the possibility of different types of band alignments between the barrier layer and the absorber for the mid- and long-wave infrared samples. Examination of the barrier layers using off-axis electron holography showed the presence of positive charge with an estimated density of 1.8 × 10{sup 17}/cm{sup 3} in the mid-wave sample as a result of a type-IImore » band alignment, whereas negligible charge was detected in the long-wave sample, consistent with a type-I band alignment.« less

  10. SCUSS u- BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhimin; Zhou, Xu; Wu, Hong

    2017-01-20

    We present and analyze the possibility of using optical u- band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u -band photometric survey covering about 5000 deg{sup 2} of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u -band, H α , and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer ( WISE ). The attenuation-corrected u -band luminositiesmore » are tightly correlated with the Balmer decrement-corrected H α luminosities with an rms scatter of ∼0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u- band luminosities and WISE 12 (or 22) μ m luminosities, and then calibrated with the Balmer-corrected H α luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.« less

  11. SF_6: the Forbidden Band Unveiled

    NASA Astrophysics Data System (ADS)

    Boudon, V.; Manceron, L.; Kwabia-Tchana, F.; Roy, P.

    2013-06-01

    Sulfur hexafluoride (SF_6) is a greenhouse gas of anthropogenic origin, whose strong infrared absorption in the ν_3 S-F stretching region near 948 cm^{-1} induces a global warming potential 23900 times bigger than CO_2. This heavy species features many hot bands at room temperature (at which the ground state population is only 30 %), especially those originating from the v_6=1 state. Unfortunately, the ν_6 band itself (near 347 cm^{-1}) being, in first approximation, both infrared and Raman inactive, no reliable information could be obtained about it up to now. A long time ago, some authors suggested that this band may be slightly activated through Coriolis interaction and may appear as a very faint band, with an integrated intensity about 2 millionths of that of ν_3. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 165± 2 K temperature, we recorded a spectrum of the ν_6 far-infrared region thanks to the performances of the AILES Beamline at the SOLEIL french synchrotron facility. Low temperature was used to avoid the presence of the 2ν_6-ν_6 hot band and to reduce the neighboring, stronger ν_4-ν_2 difference band. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution is indeed ν_6. We present its fully resolved spectrum. It appears to be activated thanks to unidentified faint interactions resulting in the presence of a first-order dipole moment term that induces unusual selection rules. This spectrum was analyzed thanks to the XTDS software package, leading to accurate molecular spectroscopic parameters that should be useful to model the hot bands of SF_6. W. B. Person, B. J. Krohn, J. Mol. Spectrosc. {98}, 229-257 (1983), C. Chappados, G. Birnbaum, J. Mol. Spectrosc. {105}, 206-214 (1984). Ch. Wenger, V. Boudon, M. Rotger, M. Sanzharov and J.-P. Champion, J. Mol. Spectrosc., {251} 102-113 (2008).

  12. Neutral gas and diffuse interstellar bands in the LMC

    NASA Technical Reports Server (NTRS)

    Danks, Anthony C.; Penprase, Brian

    1994-01-01

    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.

  13. CTEPP STANDARD OPERATING PROCEDURE FOR SAMPLE SELECTION (SOP-1.10)

    EPA Science Inventory

    The procedures for selecting CTEPP study subjects are described in the SOP. The primary, county-level stratification is by region and urbanicity. Six sample counties in each of the two states (North Carolina and Ohio) are selected using stratified random sampling and reflect ...

  14. Performance of a Ka-band transponder breadboard for deep-space applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-01-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  15. K selection in the decay of the (ν 5/2 [532 ] ⊗3/2 [411 ] ) 4- isomeric state in 102Zr

    NASA Astrophysics Data System (ADS)

    Browne, F.; Bruce, A. M.; Sumikama, T.; Nishizuka, I.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Watanabe, H.; Daido, R.; Patel, Z.; Rice, S.; Sinclair, L.; Wu, J.; Xu, Z. Y.; Yagi, A.; Baba, H.; Chiga, N.; Carroll, R.; Didierjean, F.; Fang, Y.; Fukuda, N.; Gey, G.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kameda, D.; Kojouharov, I.; Kurz, N.; Kubo, T.; Lalkovski, S.; Li, Z.; Lozeva, R.; Nishibata, N.; Odahara, A.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Simpson, G. S.; Suzuki, H.; Takeda, H.; Tanaka, M.; Taprogge, J.; Werner, V.; Wieland, O.

    2017-08-01

    The (ν 5/2 [532 ] ⊗3/2 [411 ] ) 4- state in 102Zr, populated in the β decay of 102Y, has been measured to be isomeric with a mean lifetime of 9.5(7) ns. It decays via four transitions, two of which are Δ K =2 (to the 3+ and 4+ members of the 2γ+ band) and one is Δ K =4 (to the 4+ member of the ground state 0+ band). The fourth (low-energy) transition is inferred to decay to an as-yet unassigned state. Hindrances of 106 were derived for the Δ K =2 transitions compared to Weisskopf estimates and the Δ K =4 transition hindered by a factor of 109. These values are consistent with the decay pattern of the analogous isomeric state in the neighboring N =62 nucleus 100Sr and with the broader systematics of such transitions. A comparison of the hindrances for the Δ K =4 transitions suggests that 102Zr is hardened against the γ degree of freedom compared to 100Sr.

  16. EMI survey for maritime satellite, L-band, shipboard terminal

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Brandel, D. L.; Hill, J. S.

    1975-01-01

    The paper presents results of an onboard EMI survey of an L-band shipboard terminal for operation with two geostationary maritime satellites. Significant EMC results include: (1) antenna noise temperature measurements indicate a maximum of 70 K steady background component at 1.6 GHz at sea for elevation angles of 5 degrees and higher; (2) field intensity measurements from 1-10 GHz show that a L-band terminal can operate simultaneously with onboard S-band and X-band navigation radar; (3) radar transmitter case emissions, below deck, in-band from 1535-1660 MHz, at 1 m distance from the cabinet, are equivalent, or greater than above-deck emissions in the same frequency range; and (4) conducted-emission tests of a ship's power lines to both radars show both narrow band and broad band emissions are 15 dB to 50 dB higher than equivalent U.S. commercial power lines from 150 kHz to 32 MHz.

  17. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  18. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  19. Band splitting in Cd3As2 measured by magnetotransport

    NASA Astrophysics Data System (ADS)

    Desrat, W.; Krishtopenko, S. S.; Piot, B. A.; Orlita, M.; Consejo, C.; Ruffenach, S.; Knap, W.; Nateprov, A.; Arushanov, E.; Teppe, F.

    2018-06-01

    Magnetotransport measurements have been performed on (112)-oriented bulk Cd3As2 samples with in situ rotation at low temperature. The frequency analysis of the Shubnikov-de Haas oscillations reveals two weakly separated frequencies arising from two Fermi ellipsoids. The angle dependence of these frequencies is fitted by an analytical expression that we derived for any magnetic field orientation. It is based on an 8 ×8 k .p model which includes the spin-orbit coupling, the crystal field splitting due to tetragonal distortion, and the additional band splitting occurring in noncentrosymmetric crystals. This band splitting is evaluated to a finite value of 30 meV, demonstrating the absence of inversion symmetry in our Cd3As2 crystal.

  20. The far-infrared properties of the CfA galaxy sample. I - The catalog

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Sauvage, M.

    1992-01-01

    IRAS flux densities are presented for all galaxies in the Center for Astrophysics magnitude-limited sample (mB not greater than 14.5) detected in the IRAS Faint Source Survey (FSS), a total of 1544 galaxies. The detection rate in the FSS is slightly larger than in the PSC for the long-wavelength 60- and 100-micron bands, but improves by a factor of about 3 or more for the short wavelength 12- and 25-micron bands. This optically selected sample consists of galaxies which are, on average, much less IR-active than galaxies in IR-selected samples. It possesses accurate and complete redshift, morphological, and magnitude information, along with observations at other wavelengths.

  1. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.

    2017-11-01

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  2. Relaxation Matrix for Symmetric Tops with Inversion Symmetry: Line Coupling and Line Mixing Effects on NH3 Lines in the V4 Band

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2017-01-01

    Line shape parameters including the half-widths and the off-diagonal elements of the relaxation matrix have been calculated for self-broadened NH3 lines in the perpendicular v4 band. As in the pure rotational and the parallel v1 bands, the small inversion splitting in this band causes a complete failure of the isolated line approximation. As a result, one has to use formalisms not relying on this approximation. However, due to differences between parallel and perpendicular bands of NH3, the applicability of the formalism used in our previous studies of the v1 band and other parallel bands must be carefully verified. We have found that, as long as potential models only contain components with K1 equals K2 equals 0, whose matrix elements require the selection rule delta k equals 0, the formalism is applicable for the v4 band with some minor adjustments. Based on both theoretical considerations and results from numerical calculations, the non-diagonality of the relaxation matrices in all the PP, RP, PQ, RQ, PR, and RR branches is discussed. Theoretically calculated self-broadened half-widths are compared with measurements and the values listed in HITRAN 2012. With respect to line coupling effects, we have compared our calculated intra-doublet off-diagonal elements of the relaxation matrix with reliable measurements carried out in the PP branch where the spectral environment is favorable. The agreement is rather good since our results do well reproduce the observed k and j dependences of these elements, thus validating our formalism.

  3. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  4. Mars Global Surveyor Ka-Band Frequency Data Analysis

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  5. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bandsmore » pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.« less

  6. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.

    PubMed

    Doonan, Steven R; Bailey, Ryan C

    2017-04-04

    By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.

  7. Senior Adult Bands: Music's New Horizon.

    ERIC Educational Resources Information Center

    Coffman, Don D.; Levy, Katherine M.

    1997-01-01

    Discusses the success of Iowa City's (Iowa) New Horizons Band that consists of 55 senior adult beginners and former instrumentalists. Describes the organization of the band program, the senior's performance skills and commitment, and the ongoing challenges. Gives a selected listing of the music the band plays at concerts and other events. (CMK)

  8. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  9. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  10. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.

    PubMed

    Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D

    1990-04-15

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27

  11. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Yung Szen, E-mail: yungszen@utm.my; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor; Tabuchi, Yutaka

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, wemore » observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.« less

  12. Sample selection via angular distance in the space of the arguments of an artificial neural network

    NASA Astrophysics Data System (ADS)

    Fernández Jaramillo, J. M.; Mayerle, R.

    2018-05-01

    In the construction of an artificial neural network (ANN) a proper data splitting of the available samples plays a major role in the training process. This selection of subsets for training, testing and validation affects the generalization ability of the neural network. Also the number of samples has an impact in the time required for the design of the ANN and the training. This paper introduces an efficient and simple method for reducing the set of samples used for training a neural network. The method reduces the required time to calculate the network coefficients, while keeping the diversity and avoiding overtraining the ANN due the presence of similar samples. The proposed method is based on the calculation of the angle between two vectors, each one representing one input of the neural network. When the angle formed among samples is smaller than a defined threshold only one input is accepted for the training. The accepted inputs are scattered throughout the sample space. Tidal records are used to demonstrate the proposed method. The results of a cross-validation show that with few inputs the quality of the outputs is not accurate and depends on the selection of the first sample, but as the number of inputs increases the accuracy is improved and differences among the scenarios with a different starting sample have and important reduction. A comparison with the K-means clustering algorithm shows that for this application the proposed method with a smaller number of samples is producing a more accurate network.

  13. Optical variability properties of the largest AGN sample observed with Kepler/K2

    NASA Astrophysics Data System (ADS)

    Aranzana, E.; Koerding, E.; Uttley, P.; Scaringi, S.; Steven, B.

    2017-10-01

    We present the first short time-scale ( hours to days) optical variability study of a large sample of Active Galactic Nuclei (AGN) observed with the Kepler/K2 mission. The sample contains 275 AGN observed over four campaigns with ˜30-minute cadence selected from the Million Quasar Catalogue with R magnitude < 19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of the AGN in our sample. The average power-law slope is 2.5±0.5, steeper than the PSDs observed in X-rays, and the rest-frame amplitude variability in the frequency range of 6×10^{-6}-10^{-4} Hz varies from 1-10 % with an average of 2.6 %. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift, but no such correlation with luminosity. We attribute these effects to the known 'bluer when brighter variability of quasars combined with the fixed bandpass of Kepler. This study enables us to distinguish between Seyferts and Blazar and confirm AGN candidates.

  14. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya

    Amino-acid mutations of Gly{sup 12} (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH{sub 2}) as a consensus sequence. KRpep-2 showedmore » more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K{sub D} and IC{sub 50} values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH{sub 2}) that inhibited enzyme activity of K-Ras(G12D) with IC{sub 50} = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. - Highlights: • The first K-Ras(G12D)-selective inhibitory peptides were generated. • These peptides showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D) in compared to wild type K-Ras. • The peptide KRpep-2d suppressed downstream signal of K-Ras(G12D) and cell proliferations of cancer cell line A427.« less

  15. 40 CFR 94.505 - Sample selection for testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine family. The required sample size is zero if a manufacturer's projected annual production for all Category 1 engine families is less than 100. (ii) The required sample size for a Category 2 engine family... manufacturer will begin to select engines from each Category 1 and Category 2 engine family for production line...

  16. Design studies of the Ku-band, wide-band Gyro-TWT amplifier

    NASA Astrophysics Data System (ADS)

    Jung, Sang Wook; Lee, Han Seul; Jang, Kwong Ho; Choi, Jin Joo; Hong, Yong Jun; Shin, Jin Woo; So, Jun Ho; Won, Jong Hyo

    2014-02-01

    This paper reports a Ku-band, wide band Gyrotron-Traveling-wave-tube(Gyro-TWT) that is currently being developed at Kwangwoon University. The Gyro-TWT has a two stage linear tapered interaction circuit to obtain a wide operating bandwidth. The linearly-tapered interaction circuit and nonlinearly-tapered magnetic field gives the Gyro-TWT a wide operating bandwidth. The Gyro-TWT bandwidth is 23%. The 2d-Particle-in-cell(PIC) and MAGIC2d code simulation results are 17.3 dB and 24.34 kW, respectively for the maximum saturated output power. A double anode MIG was simulated with E-Gun code. The results were 0.7 for the transvers to the axial beam velocity ratio (=alpha) and a 2.3% axial velocity spread at 50 kV and 4 A. A magnetic field profile simulation was performed by using the Poisson code to obtain the grazing magnetic field of the entire interaction circuit with Poisson code.

  17. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z; Pang, J; Tuli, R

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previouslymore » developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where

  18. An X-band Co2+ EPR study of Zn1-xCoxO (x=0.005-0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Andronenko, S. I.; Srinivasa Rao, S.; Chess, Jordan; Punnoose, A.

    2015-11-01

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5-10% Co2+ ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH2CH2OH)2O) (NC-rod-like samples), and (ii) denatured ethanol (CH3CH2OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co2+ ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co2+ ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed.

  19. Band-selective shaped pulse for high fidelity quantum control in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevelsmore » (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.« less

  20. The coalescent of a sample from a binary branching process.

    PubMed

    Lambert, Amaury

    2018-04-25

    At time 0, start a time-continuous binary branching process, where particles give birth to a single particle independently (at a possibly time-dependent rate) and die independently (at a possibly time-dependent and age-dependent rate). A particular case is the classical birth-death process. Stop this process at time T>0. It is known that the tree spanned by the N tips alive at time T of the tree thus obtained (called a reduced tree or coalescent tree) is a coalescent point process (CPP), which basically means that the depths of interior nodes are independent and identically distributed (iid). Now select each of the N tips independently with probability y (Bernoulli sample). It is known that the tree generated by the selected tips, which we will call the Bernoulli sampled CPP, is again a CPP. Now instead, select exactly k tips uniformly at random among the N tips (a k-sample). We show that the tree generated by the selected tips is a mixture of Bernoulli sampled CPPs with the same parent CPP, over some explicit distribution of the sampling probability y. An immediate consequence is that the genealogy of a k-sample can be obtained by the realization of k random variables, first the random sampling probability Y and then the k-1 node depths which are iid conditional on Y=y. Copyright © 2018. Published by Elsevier Inc.

  1. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less

  2. A novel heterogeneous training sample selection method on space-time adaptive processing

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhang, Yongshun; Guo, Yiduo

    2018-04-01

    The performance of ground target detection about space-time adaptive processing (STAP) decreases when non-homogeneity of clutter power is caused because of training samples contaminated by target-like signals. In order to solve this problem, a novel nonhomogeneous training sample selection method based on sample similarity is proposed, which converts the training sample selection into a convex optimization problem. Firstly, the existing deficiencies on the sample selection using generalized inner product (GIP) are analyzed. Secondly, the similarities of different training samples are obtained by calculating mean-hausdorff distance so as to reject the contaminated training samples. Thirdly, cell under test (CUT) and the residual training samples are projected into the orthogonal subspace of the target in the CUT, and mean-hausdorff distances between the projected CUT and training samples are calculated. Fourthly, the distances are sorted in order of value and the training samples which have the bigger value are selective preference to realize the reduced-dimension. Finally, simulation results with Mountain-Top data verify the effectiveness of the proposed method.

  3. METALLICITY AND TEMPERATURE INDICATORS IN M DWARF K-BAND SPECTRA: TESTING NEW AND UPDATED CALIBRATIONS WITH OBSERVATIONS OF 133 SOLAR NEIGHBORHOOD M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Ayala, Barbara; Covey, Kevin R.; Lloyd, James P.

    2012-04-01

    We present K-band spectra for 133 nearby (d < 33 ps) M dwarfs, including 18 M dwarfs with reliable metallicity estimates (as inferred from an FGK type companion), 11 M dwarf planet hosts, more than 2/3 of the M dwarfs in the northern 8 pc sample, and several M dwarfs from the LSPM catalog. From these spectra, we measure equivalent widths of the Ca and Na lines, and a spectral index quantifying the absorption due to H{sub 2}O opacity (the H{sub 2}O-K2 index). Using empirical spectral type standards and synthetic models, we calibrate the H{sub 2}O-K2 index as an indicatormore » of an M dwarf's spectral type and effective temperature. We also present a revised relationship that estimates the [Fe/H] and [M/H] metallicities of M dwarfs from their Na I, Ca I, and H{sub 2}O-K2 measurements. Comparisons to model atmosphere provide a qualitative validation of our approach, but also reveal an overall offset between the atomic line strengths predicted by models as compared to actual observations. Our metallicity estimates also reproduce expected correlations with Galactic space motions and H{alpha} emission line strengths, and return statistically identical metallicities for M dwarfs within a common multiple system. Finally, we find systematic residuals between our H{sub 2}O-based spectral types and those derived from optical spectral features with previously known sensitivity to stellar metallicity, such as TiO, and identify the CaH1 index as a promising optical index for diagnosing the metallicities of near-solar M dwarfs.« less

  4. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    DTIC Science & Technology

    2015-03-20

    In the bandstructure of graphene which is dominated by Dirac description, valence and conduction bands cross the Fermi level at a single point (K...of energy bands and appearance of Dirac cones near the ‘K’ point and Fermi level the electrons behave like massless Dirac fermions. For applications...results. Introduction Graphene, the super carbon , is now accepted as wonder material with new physics and it has caused major

  5. EEG-based mild depressive detection using feature selection methods and classifiers.

    PubMed

    Li, Xiaowei; Hu, Bin; Sun, Shuting; Cai, Hanshu

    2016-11-01

    Depression has become a major health burden worldwide, and effectively detection of such disorder is a great challenge which requires latest technological tool, such as Electroencephalography (EEG). This EEG-based research seeks to find prominent frequency band and brain regions that are most related to mild depression, as well as an optimal combination of classification algorithms and feature selection methods which can be used in future mild depression detection. An experiment based on facial expression viewing task (Emo_block and Neu_block) was conducted, and EEG data of 37 university students were collected using a 128 channel HydroCel Geodesic Sensor Net (HCGSN). For discriminating mild depressive patients and normal controls, BayesNet (BN), Support Vector Machine (SVM), Logistic Regression (LR), k-nearest neighbor (KNN) and RandomForest (RF) classifiers were used. And BestFirst (BF), GreedyStepwise (GSW), GeneticSearch (GS), LinearForwordSelection (LFS) and RankSearch (RS) based on Correlation Features Selection (CFS) were applied for linear and non-linear EEG features selection. Independent Samples T-test with Bonferroni correction was used to find the significantly discriminant electrodes and features. Data mining results indicate that optimal performance is achieved using a combination of feature selection method GSW based on CFS and classifier KNN for beta frequency band. Accuracies achieved 92.00% and 98.00%, and AUC achieved 0.957 and 0.997, for Emo_block and Neu_block beta band data respectively. T-test results validate the effectiveness of selected features by search method GSW. Simplified EEG system with only FP1, FP2, F3, O2, T3 electrodes was also explored with linear features, which yielded accuracies of 91.70% and 96.00%, AUC of 0.952 and 0.972, for Emo_block and Neu_block respectively. Classification results obtained by GSW + KNN are encouraging and better than previously published results. In the spatial distribution of features, we find

  6. 2-Way k-Means as a Model for Microbiome Samples.

    PubMed

    Jackson, Weston J; Agarwal, Ipsita; Pe'er, Itsik

    2017-01-01

    Motivation . Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k -means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project.

  7. 2-Way k-Means as a Model for Microbiome Samples

    PubMed Central

    2017-01-01

    Motivation. Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k-means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project. PMID:29177026

  8. Oral Rehabilitation for Amniotic Band Syndrome: An Unusual Presentation.

    PubMed

    Hotwani, Kavita; Sharma, Krishna

    2015-01-01

    Amniotic band syndrome (ABS) is a congenital disorder caused by entrapment of fetal parts in fibrous amniotic bands while in utero. The syndrome is underdiagnosed and its presentation is variable. The syndrome has been well described in the pediatric, orthopedic and obstetric literature; however, despite the discernable craniomaxillofacial involvement, ABS has not been reported in the dental literature very often. The present report describes a case of a patient with ABS and concomitant dental findings. How to cite this article: Hotwani K, Sharma K. Oral Rehabilitation for Amniotic Band Syndrome: An Unusual Presentation. Int J Clin Pediatr Dent 2015;8(1):55-57.

  9. Thematic mapper studies band correlation analysis

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.; Kiang, R.

    1976-01-01

    Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.

  10. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  11. Identifying relevant hyperspectral bands using Boruta: a temporal analysis of water hyacinth biocontrol

    NASA Astrophysics Data System (ADS)

    Agjee, Na'eem Hoosen; Ismail, Riyad; Mutanga, Onisimo

    2016-10-01

    Water hyacinth plants (Eichhornia crassipes) are threatening freshwater ecosystems throughout Africa. The Neochetina spp. weevils are seen as an effective solution that can combat the proliferation of the invasive alien plant. We aimed to determine if multitemporal hyperspectral data could be utilized to detect the efficacy of the biocontrol agent. The random forest (RF) algorithm was used to classify variable infestation levels for 6 weeks using: (1) all the hyperspectral bands, (2) bands selected by the recursive feature elimination (RFE) algorithm, and (3) bands selected by the Boruta algorithm. Results showed that the RF model using all the bands successfully produced low-classification errors (12.50% to 32.29%) for all 6 weeks. However, the RF model using Boruta selected bands produced lower classification errors (8.33% to 15.62%) than the RF model using all the bands or bands selected by the RFE algorithm (11.25% to 21.25%) for all 6 weeks, highlighting the utility of Boruta as an all relevant band selection algorithm. All relevant bands selected by Boruta included: 352, 754, 770, 771, 775, 781, 782, 783, 786, and 789 nm. It was concluded that RF coupled with Boruta band-selection algorithm can be utilized to undertake multitemporal monitoring of variable infestation levels on water hyacinth plants.

  12. 10 CFR Appendix B to Subpart K of... - Sampling Plan for Enforcement Testing

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sampling Plan for Enforcement Testing B Appendix B to Subpart K of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Pt. 431, Subpt. K, App. B Appendix B...

  13. 10 CFR Appendix B to Subpart K of... - Sampling Plan for Enforcement Testing

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Sampling Plan for Enforcement Testing B Appendix B to Subpart K of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Pt. 431, Subpt. K, App. B Appendix B...

  14. VizieR Online Data Catalog: Main-sequence A, F, G, and K stars photometry (Boyajian+, 2013)

    NASA Astrophysics Data System (ADS)

    Boyajian, T. S.; von Braun, K.; van Belle, G.; Farrington, C.; Schaefer, G.; Jones, J.; White, R.; McAlister, H. A.; Ten Brummelaar, T. A.; Ridgway, S.; Gies, D.; Sturmann, L.; Sturmann, J.; Turner, N. H.; Goldfinger, P. J.; Vargas, N.

    2016-07-01

    Akin to the observing outlined in DT1 and DT2, observations for this project were made with the CHARA Array, a long-baseline optical/infrared interferometer located on Mount Wilson Observatory in southern California. The target stars were selected based on their approximate angular size (a function of their intrinsic linear size and distance to the observer). We limit the selection to stars with angular sizes >0.45mas, in order to adequately resolve their sizes to a few percent precision with the selected instrument setup. Note that all stars that meet this requirement are brighter than the instrumental limits of our detector by several magnitudes. The stars also have no known stellar companion within 3-arcsec to avoid contamination of incoherent light in the interferometers' field of view. From 2008 to 2012, we used the CHARA Classic beam combiner operating in the H band (λH=1.67um) and the K' bandK'=2.14um) to collect observations of 23 stars using CHARA's longest baseline combinations. (5 data files).

  15. The band systems of alkali vapors

    NASA Technical Reports Server (NTRS)

    Weizel, W.; Kulp, M.

    1988-01-01

    A number of band edges of the molecules, Na2, K2, NaK, NaCs, LiK, LiRb, LiCs, and NaRb are arranged in edge schemes. The vibrational quanta of the base terms and the upper terms can be approximately determined. Viewpoints are produced for interpreting electron terms. The terms Na2 are interpreted as terms of a photo-electron.

  16. Sample selection and preservation techniques for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow

    1988-01-01

    It is proposed that a miniaturized electron spin resonance (ESR) spectrometer be developed as an effective, nondestructivew sample selection and characterization instrument for the Mars Rover Sample Return mission. The ESR instrument can meet rover science payload requirements and yet has the capability and versatility to perform the following in situ Martian sample analyses: (1) detection of active oxygen species, and characterization of Martian surface chemistry and photocatalytic oxidation processes; (2) determination of paramagnetic Fe(3+) in clay silicate minerals, Mn(2+) in carbonates, and ferromagnetic centers of magnetite, maghemite and hematite; (3) search for organic compounds in the form of free radicals in subsoil, and detection of Martian fossil organic matter likely to be associated with carbonate and other sedimentary deposits. The proposed instrument is further detailed.

  17. Selected List of Materials. Sarah K. Davidson Family-Patient Library.

    ERIC Educational Resources Information Center

    Sanders, Susan, Comp.; Satterwhite, Betty, Comp.

    Designed as an aid for those wishing to establish pediatric health education resource centers for use by patients and their families, this bibliography lists selected holdings of the Sarah K. Davidson Family-Patient Library, which is located in the Strong Memorial Hospital of the University of Rochester, New York. It is noted that all…

  18. Assignment of vibrational spectral bands of kidney tissue by means of low temperature SERS spectroscopy

    NASA Astrophysics Data System (ADS)

    Velicka, M.; Radzvilaite, M.; Ceponkus, J.; Urboniene, V.; Pucetaite, M.; Jankevicius, F.; Steiner, G.; Sablinskas, V.

    2017-02-01

    Surface enhanced Raman scattering (SERS) spectroscopy is a useful method for detection of trace amounts of molecules. It has already been successfully implemented for detection of explosives, food additives, biomarkers in blood or urine, etc. In the last decade, SERS spectroscopy was introduced into the field of health sciences and has been especially focused on early disease detection. In the recent years, application of SERS spectroscopy for detection of various types of human cancerous tissues emerged. Furthermore, SERS spectroscopy of extracellular fluid shows great potential for the differentiation of normal and cancerous tissues; however, due to high variety of molecules present in such biological samples, the experimental spectrum is a combination of many different overlapping vibrational spectral bands. Thus, precise assignment of these bands to the corresponding molecular vibrations is a difficult task. In most cases, researchers try to avoid this task satisfying just with tentative assignment. In this study, low temperature SERS measurements of extracellular fluid of cancerous and healthy kidney tissue samples were carried out in order to get a deeper understanding of the nature of vibrational spectral bands present in the experimental spectrum. The SERS spectra were measured in temperature range from 300 K down to 100 K. SERS method was implemented using silver nanoparticle colloidal solution. The results of the low temperature SERS experiment were analysed and compared with the results of theoretical calculations. The analysis showed that the SERS spectrum of extracellular fluid of kidney tissue is highly influenced by the vibrational bands of adenine and Lcystine molecules.

  19. Modulation by K+ Plus NH4+ of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae).

    PubMed

    Leone, Francisco A; Bezerra, Thais M S; Garçon, Daniela P; Lucena, Malson N; Pinto, Marcelo R; Fontes, Carlos F L; McNamara, John C

    2014-01-01

    We investigate the synergistic stimulation by K(+) plus NH4 (+) of (Na(+), K(+))-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na(+), K(+))-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K(+) and NH4 (+) binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na(+), K(+))-ATPase activity is stimulated synergistically by ≈ 50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na(+), K(+))-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K(+) and NH4 (+) of gill (Na(+), K(+))-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 (+) during ontogenetic development in M. amazonicum.

  20. Modulation By K+ Plus NH4 + of Microsomal (Na+, K+)-ATPase Activity in Selected Ontogenetic Stages of the Diadromous River Shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae)

    PubMed Central

    Leone, Francisco A.; Bezerra, Thais M. S.; Garçon, Daniela P.; Lucena, Malson N.; Pinto, Marcelo R.; Fontes, Carlos F. L.; McNamara, John C.

    2014-01-01

    We investigate the synergistic stimulation by K+ plus NH4 + of (Na+, K+)-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na+, K+)-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K+ and NH4 + binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na+, K+)-ATPase activity is stimulated synergistically by ≈50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K+ and NH4 + of gill (Na+, K+)-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 + during ontogenetic development in M. amazonicum. PMID:24586919

  1. Selective Assembly of Na,K-ATPase α2β2 Heterodimers in the Heart: DISTINCT FUNCTIONAL PROPERTIES AND ISOFORM-SELECTIVE INHIBITORS.

    PubMed

    Habeck, Michael; Tokhtaeva, Elmira; Nadav, Yotam; Ben Zeev, Efrat; Ferris, Sean P; Kaufman, Randal J; Bab-Dinitz, Elizabeta; Kaplan, Jack H; Dada, Laura A; Farfel, Zvi; Tal, Daniel M; Katz, Adriana; Sachs, George; Vagin, Olga; Karlish, Steven J D

    2016-10-28

    The Na,K-ATPase α 2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca 2+ , whereas α 1 has a more conventional role of maintaining ion homeostasis. The β subunit differentially regulates maturation, trafficking, and activity of α-β heterodimers. It is not known whether the distinct role of α 2 in the heart is related to selective assembly with a particular one of the three β isoforms. We show here by immunofluorescence and co-immunoprecipitation that α 2 is preferentially expressed with β 2 in T-tubules of cardiac myocytes, forming α 2 β 2 heterodimers. We have expressed human α 1 β 1 , α 2 β 1 , α 2 β 2 , and α 2 β 3 in Pichia pastoris, purified the complexes, and compared their functional properties. α 2 β 2 and α 2 β 3 differ significantly from both α 2 β 1 and α 1 β 1 in having a higher K 0.5 K + and lower K 0.5 Na + for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K + and shift of the E 1 P-E 2 P conformational equilibrium toward E 1 P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α 2 β 2 and α 2 β 3 over α 1 β 1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K + affinity of α 2 β 2 could allow an acute response to raised ambient K + concentrations in physiological conditions and explain the importance of α 2 β 2 for cardiac muscle contractility. The high sensitivity of α 2 β 2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α 2 β 2 -selective digoxin derivatives for reducing cardiotoxicity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  3. Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. I.

    2018-03-01

    The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.

  4. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  5. A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample

    DOE PAGES

    Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...

    2012-01-01

    Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less

  6. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  7. The Effects of Universal Pre-K on Cognitive Development

    ERIC Educational Resources Information Center

    Gormley, William T.; Gayer, Ted; Phillips, Deborah; Dawson, Brittany

    2005-01-01

    In this study of Oklahoma's universal pre-K program, the authors relied on a strict birthday eligibility criterion to compare "young" kindergarten children who just completed pre-K to "old" pre-K children just beginning pre-K. This regression-discontinuity design reduces the threat of selection bias. Their sample consisted of…

  8. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  9. VizieR Online Data Catalog: A K-selected catalog of the ECDFS from MUSYC (Taylor+, 2009)

    NASA Astrophysics Data System (ADS)

    Taylor, E. N.; Franx, M.; van Dokkum, P. G.; Quadri, R. F.; Gawiser, E.; Bell, E. F.; Barrientos, L. F.; Blanc, G. A.; Castander, F. J.; Damen, M.; Gonzalez-Perez, V.; Hall, P. B.; Herrera, D.; Hildebrandt, H.; Kriek, M.; Labbe, I.; Lira, P.; Maza, J.; Rudnick, G.; Treister, E.; Urry, C. M.; Willis, J. P.; Wuyts, S.

    2010-01-01

    Hildebrandt et al. (2006A&A...452.1121H) have collected all (up until 2005 December) archival UU38BRVI imaging data taken using the Wide Field Imager (WFI) on the ESO MPG 2.2m telescope. We have supplemented the WFI optical data with original z'-band imaging taken using Mosaic-II camera on the CTIO 4m Blanco telescope. The ECDFS data were taken in 2005 January. The new MUSYC NIR imaging consists of two mosaics in the J and K bands obtained using the Infrared Sideport Imager (ISPI) on the CTIO Blanco 4m telescope. The data were taken over the course of 15 nights, in 4 separate observing runs between 2003 January and 2004 February. (3 data files).

  10. Nitrogen-Pressure Shifts in the v3 Band of Methane Measured at Several Temperatures between 300 and 90 K

    NASA Technical Reports Server (NTRS)

    Tumuhimbise, Anthony T.; Hurtmans, Daniel; Mantz, Arlan W.; Mondelain, Didier

    2008-01-01

    Remote sensing of the Earth's atmosphere requires accurate knowledge of spectroscopic line parameters for the molecules investigated. Knowledge of the temperature dependence of these parameters is also essential if agreement, at the noise level, between calculated and experimental data is to be achieved. The authors recently published results of nitrogen broadening measurements in the v3 band of 12CH4 using the 5.37 m long absorption path length all-copper Herriott cell. The temperature dependent line parameters determined in the laboratory were applied to fit a portion of the atmospheric spectrum recorded with a balloon-borne remote sensing FTIR instrument, called the Limb Profile Monitor of the Atmosphere, and operating in absorption against the sun. Since the authors had a relatively complete series of data for the P(9) transition in the v3 band of 12CH4, the A2 1 as well as the F2 1, F1 1 and A1 1 lines recorded at different pressures and at four temperatures between 300 and 90 K, we reanalyzed the data to derive pressure shift information at different temperatures. The temperatures for which data were collected and analyzed are 298, 140 and 90K. The high precision pressure shift data obtained here over a large range of temperature demonstrate the ability of our experimental arrangement to address specific questions on a given spectral window like in the balloon experiment or in a satellite project, for example.

  11. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  12. X-Ray Properties of K-Selected Galaxies at 0.5 Less than z Less than 2.0: Investigating Trends with Stellar Mass, Redshift and Spectral Type

    NASA Technical Reports Server (NTRS)

    Jones, Therese M.; Kriek, Mariska; vanDokkum, Peter G.; Brammer, Gabriel; Franx, Marijn; Greene, Jenny E.; Labbe, Ivo; Whitaker, Katherine E.

    2014-01-01

    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of approximately 3500 galaxies at 0.5 < z < 2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000 angstrom breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low- and high-mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000 angstrom breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.

  13. Oral Rehabilitation for Amniotic Band Syndrome: An Unusual Presentation

    PubMed Central

    Sharma, Krishna

    2015-01-01

    ABSTRACT Amniotic band syndrome (ABS) is a congenital disorder caused by entrapment of fetal parts in fibrous amniotic bands while in utero. The syndrome is underdiagnosed and its presentation is variable. The syndrome has been well described in the pediatric, orthopedic and obstetric literature; however, despite the discernable craniomaxillofacial involvement, ABS has not been reported in the dental literature very often. The present report describes a case of a patient with ABS and concomitant dental findings. How to cite this article: Hotwani K, Sharma K. Oral Rehabilitation for Amniotic Band Syndrome: An Unusual Presentation. Int J Clin Pediatr Dent 2015;8(1):55-57. PMID:26124582

  14. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Ananya; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in

    SnTe, a Pb-free analogue of PbTe, was earlier assumed to be a poor thermoelectric material due to excess p-type carrier concentration and large energy separation between light and heavy hole valence bands. Here, we report the enhancement of the thermoelectric performance of p-type SnTe by Ag and I co-doping. AgI (1–6 mol%) alloying in SnTe modulates its electronic structure by increasing the band gap of SnTe, which results in decrease in the energy separation between its light and heavy hole valence bands, thereby giving rise to valence band convergence. Additionally, iodine doping in the Te sublattice of SnTe decreases themore » excess p-type carrier concentration. Due to significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands, significant enhancement in Seebeck coefficient was achieved at the temperature range of 600–900 K for Sn{sub 1−x}Ag{sub x}Te{sub 1−x}I{sub x} samples. A maximum thermoelectric figure of merit, zT, of ~1.05 was achieved at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Graphical abstract: Significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands resulted in a maximum thermoelectric figure of merit, zT, of ~1.05 at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Highlights: • AgI alloying in SnTe increases the principle band gap. • Hole concentration reduction and valence band convergence enhances thermopower of SnTe-AgI. • A maximum zT of ~1.05 was achieved at 860 K in p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}.« less

  15. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.

    PubMed

    Wang, Xuanye; Christopher, Jason W; Swan, Anna K

    2017-10-19

    Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

  16. A highly selective and sensitive Tb3+-acetylacetone photo probe for the assessment of acetazolamide in pharmaceutical and serum samples

    NASA Astrophysics Data System (ADS)

    Youssef, A. O.

    2018-04-01

    A novel, simple, sensitive and selective spectrofluorimetric method was developed for the determination of Acetazolamide in pharmaceutical tablets and serum samples using photo probe Tb3+-ACAC. The Acetazolamide can remarkably quench the luminescence intensity of Tb3+-ACAC complex in DMSO at pH 6.8 and λex = 350 nm. The quenching of luminescence intensity of Tb3+-ACAC complex especially the electrical band at λem = 545 nm is used for the assessment of Acetazolamide in the pharmaceutical tablet and serum samples. The dynamic range found for the determination of Acetazolamide concentration is 4.49 × 10-9-1.28 × 10-7 mol L-1, and the limit of detection (LOD) and limit of quantification (LOQ) are (4.0 × 10-9 and 1.21 × 10-8) mol L-1, respectively.

  17. The OSIRIS-REx Mission Sample Site Selection Process

    NASA Astrophysics Data System (ADS)

    Beshore, Edward C.; Lauretta, Dante

    2014-11-01

    In September of 2016, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, REgolith eXplorer) spacecraft will depart for asteroid (101955) Bennu, and in doing so, will turn an important corner in the exploration of the solar system. After arriving at Bennu in the fall of 2018, OSIRIS-REx will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023. The third mission in NASA’s New Frontiers program, OSIRIS-REx will return over 60 grams from Bennu’s surface.OSIRIS-REx is unique because the science team will have an operational role to play in preparing data products needed to select a sample site. These include products used to ensure flight system safety — topographic maps and shape models, temperature measurements, maps of hazards — as well as assessments of sampleability and science value. The timing and production of these will be presented, as will the high-level decision-making tools and processes for the interim and final site selection processes.

  18. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.

    2008-02-01

    Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.

  19. 40 CFR 205.171-2 - Test exhaust system sample selection and preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Test exhaust system sample selection... Systems § 205.171-2 Test exhaust system sample selection and preparation. (a)(1) Exhaust systems comprising the sample which are required to be tested under a test request in accordance with this subpart...

  20. Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang

    2015-04-22

    We report a significant enhancement of the thermoelectric performance of p-type SnTe over a broad temperature plateau with a peak ZT value of similar to 1.4 at 923 K through In/Cd codoping and a CdS nanostructuring approach. Indium and cadmium play different but complementary roles in modifying the valence band structure of SnTe. Specifically, In-doping introduces resonant levels inside the valence bands, leading to a considerably improved Seebeck coefficient at low temperature. Cd-doping, however, increases the Seebeck coefficient of SnTe remarkably in the mid- to high-temperature region via a convergence of the light and heavy hole bands and an enlargementmore » of the band gap. Combining the two dopants in SnTe yields enhanced Seebeck coefficient and power factor over a wide temperature range due to the synergy of resonance levels and valence band convergence, as demonstrated by the Pisarenko plot and supported by first-principles band structure calculations. Moreover, these codoped samples can be hierarchically structured on all scales (atomic point defects by doping, nanoscale precipitations by CdS nanostructuring, and mesoscale grains by SPS treatment) to achieve highly effective phonon scattering leading to strongly reduced thermal conductivities. In addition to the high maximum ZT the resultant large average ZT of similar to 0.8 between 300 and 923 K makes SnTe an attractive p-type material for high-temperature thermoelectric power generation.« less

  1. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Biochemical and nutritional components of selected honey samples.

    PubMed

    Chua, Lee Suan; Adnan, Nur Ardawati

    2014-01-01

    The purpose of this study was to investigate the relationship of biochemical (enzymes) and nutritional components in the selected honey samples from Malaysia. The relationship is important to estimate the quality of honey based on the concentration of these nutritious components. Such a study is limited for honey samples from tropical countries with heavy rainfall throughout the year. A number of six honey samples that commonly consumed by local people were collected for the study. Both the biochemical and nutritional components were analysed by using standard methods from Association of Official Analytical Chemists (AOAC). Individual monosaccharides, disaccharides and 17 amino acids in honey were determined by using liquid chromatographic method. The results showed that the peroxide activity was positively correlated with moisture content (r = 0.8264), but negatively correlated with carbohydrate content (r = 0.7755) in honey. The chromatographic sugar and free amino acid profiles showed that the honey samples could be clustered based on the type and maturity of honey. Proline explained for 64.9% of the total variance in principle component analysis (PCA). The correlation between honey components and honey quality has been established for the selected honey samples based on their biochemical and nutritional concentrations. PCA results revealed that the ratio of sucrose to maltose could be used to measure honey maturity, whereas proline was the marker compound used to distinguish honey either as floral or honeydew.

  3. SamSelect: a sample sequence selection algorithm for quorum planted motif search on large DNA datasets.

    PubMed

    Yu, Qiang; Wei, Dingbang; Huo, Hongwei

    2018-06-18

    Given a set of t n-length DNA sequences, q satisfying 0 < q ≤ 1, and l and d satisfying 0 ≤ d < l < n, the quorum planted motif search (qPMS) finds l-length strings that occur in at least qt input sequences with up to d mismatches and is mainly used to locate transcription factor binding sites in DNA sequences. Existing qPMS algorithms have been able to efficiently process small standard datasets (e.g., t = 20 and n = 600), but they are too time consuming to process large DNA datasets, such as ChIP-seq datasets that contain thousands of sequences or more. We analyze the effects of t and q on the time performance of qPMS algorithms and find that a large t or a small q causes a longer computation time. Based on this information, we improve the time performance of existing qPMS algorithms by selecting a sample sequence set D' with a small t and a large q from the large input dataset D and then executing qPMS algorithms on D'. A sample sequence selection algorithm named SamSelect is proposed. The experimental results on both simulated and real data show (1) that SamSelect can select D' efficiently and (2) that the qPMS algorithms executed on D' can find implanted or real motifs in a significantly shorter time than when executed on D. We improve the ability of existing qPMS algorithms to process large DNA datasets from the perspective of selecting high-quality sample sequence sets so that the qPMS algorithms can find motifs in a short time in the selected sample sequence set D', rather than take an unfeasibly long time to search the original sequence set D. Our motif discovery method is an approximate algorithm.

  4. Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Pilewskie, P. A.; Scott-Fleming, I. C.; Hermann, B. M.

    1986-01-01

    Techniques for extrapolating Earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor system being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  5. Band gap scaling laws in group IV nanotubes.

    PubMed

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-17

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2  + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  6. E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Jay W.; Kiani, Leily S.; Pax, Paul H.

    Here, a Nd 3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signalmore » gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd 3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.« less

  7. E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber

    DOE PAGES

    Dawson, Jay W.; Kiani, Leily S.; Pax, Paul H.; ...

    2017-03-13

    Here, a Nd 3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signalmore » gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd 3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.« less

  8. The design and application of a multi-band IR imager

    NASA Astrophysics Data System (ADS)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  9. Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides.

    PubMed

    Vidal, Julien; Trani, Fabio; Bruneval, Fabien; Marques, Miguel A L; Botti, Silvana

    2010-04-02

    We use hybrid functionals and restricted self-consistent GW, state-of-the-art theoretical approaches for quasiparticle band structures, to study the electronic states of delafossite Cu(Al,In)O2, the first p-type and bipolar transparent conductive oxides. We show that a self-consistent GW approximation gives remarkably wider band gaps than all the other approaches used so far. Accounting for polaronic effects in the GW scheme we recover a very nice agreement with experiments. Furthermore, the modifications with respect to the Kohn-Sham bands are strongly k dependent, which makes questionable the common practice of using a scissor operator. Finally, our results support the view that the low energy structures found in optical experiments, and initially attributed to an indirect transition, are due to intrinsic defects in the samples.

  10. A modern ionotropic glutamate receptor with a K(+) selectivity signature sequence.

    PubMed

    Janovjak, H; Sandoz, G; Isacoff, E Y

    2011-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K(+) channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.

  11. Flat-Band Slow Light in a Photonic Crystal Slab Waveguide by Vertical Geometry Adjustment and Selective Infiltration of Optofluidics

    NASA Astrophysics Data System (ADS)

    Mansouri-Birjandi, Mohammad Ali; Janfaza, Morteza; Tavousi, Alireza

    2017-11-01

    In this paper, a photonic crystal slab waveguide (PhCSW) for slow light applications is presented. To obtain widest possible flat-bands of slow light regions—regions with large group index ( n g), and very low group velocity dispersion (GVD)—two core parameters of PhCSW structure are investigated. The design procedure is based on vertical shifting of the first row of the air holes adjacent to the waveguide center and concurrent selective optofluidic infiltration of the second row. The criteria of < n_g > ± 10% variations is used for ease of definition and comparison of flat-band regions. By applying various geometry optimizations for the first row, our results suggest that a waveguide core of W 1.09 would provide a reasonable wide flat-band. Furthermore, infiltration of optofluidics in the second row alongside with geometry adjustments of the first row result in flexible control of 10 < n g < 32 and provide flat-band regions with large bandwidth (10 nm < Δ λ < 21.5 nm). Also, negligible GVD as low as β 2 = 10-24 (s2/m) is achieved. Numerical simulations are calculated by means of the three-dimensional plane wave expansion method.

  12. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  13. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    NASA Astrophysics Data System (ADS)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  14. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Kaiguang; Valle, Denis; Popescu, Sorin

    2013-05-15

    Model specification remains challenging in spectroscopy of plant biochemistry, as exemplified by the availability of various spectral indices or band combinations for estimating the same biochemical. This lack of consensus in model choice across applications argues for a paradigm shift in hyperspectral methods to address model uncertainty and misspecification. We demonstrated one such method using Bayesian model averaging (BMA), which performs variable/band selection and quantifies the relative merits of many candidate models to synthesize a weighted average model with improved predictive performances. The utility of BMA was examined using a portfolio of 27 foliage spectral–chemical datasets representing over 80 speciesmore » across the globe to estimate multiple biochemical properties, including nitrogen, hydrogen, carbon, cellulose, lignin, chlorophyll (a or b), carotenoid, polar and nonpolar extractives, leaf mass per area, and equivalent water thickness. We also compared BMA with partial least squares (PLS) and stepwise multiple regression (SMR). Results showed that all the biochemicals except carotenoid were accurately estimated from hyerspectral data with R2 values > 0.80.« less

  15. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  16. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-yang; Xu, Xue-cheng

    2015-08-01

    Chemical oxidation is still the major approach to the covalent functionalization of carbon nanotubes (CNTs). Theoretically, the defects on CNTs are more reactive than skeletal hexagons and should be preferentially oxidized, but conventional oxidation methods, e.g., HNO3/H2SO4 treatment, have poor reaction selectivity and inevitably consume the Cdbnd C bonds in the hexagonal lattices, leading to structural damage, π-electrons loss and weight decrease. In this work, we realized the nondestructive covalent functionalization of CNTs by selective oxidation of the defects. In our method, potassium ferrate K2FeVIO4 was employed as an oxidant for CNTs in H2SO4 medium. The CNT samples, before and after K2FeO4/H2SO4 treatment, were characterized with colloid dispersibility, IR, Raman spectroscopy, FESEM and XPS. The results indicated that (i) CNTs could be effectively oxidized by Fe (VI) under mild condition (60 °C, 3 h), and hydrophilic CNTs with abundant surface sbnd COOH groups were produced; and (ii) Fe (VI) oxidation of CNTs followed a defect-specific oxidation process, that is, only the sp3-hybridized carbon atoms on CNT surface were oxidized while the Cdbnd C bonds remained unaffected. This selective/nondestructive oxidation afforded oxidized CNTs in yields of above 100 wt%. This paper shows that K2FeO4/H2SO4 is an effective, nondestructive and green oxidation system for oxidative functionalization of CNTs and probably other carbon materials as well.

  17. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  18. First High Resolution IR Spectra of 1-^{13}C-PROPANE. the νb{9} B-Type Band Near 366.404 \\wn and the νb{26} C-Type Band Near 748.470 \\wn. Determination of Ground and Upper State Constants.

    NASA Astrophysics Data System (ADS)

    Daunt, S. J.; Grzywacz, Robert; Lafferty, Walter; Flaud, Jean-Marie; Billinghurst, Brant E.

    2017-06-01

    We report in this talk on the first high resolution IR spectra (Δν = 0.0009 \\wn) of the 1-^{13}C-Propane isotopologue. Spectra were taken on the Bruker FTS instrument on the Far-IR beamline at the Canadian National Synchrotron (CLS) located at the University of Saskatchewan. The νb{9} B-type band centered near 366.404 \\wn appears unperturbed and lines were assigned up to K = 17 and J = 50. Since the 1960 MW study of Lide only used 6 J lines of K = 0 we had to use GSCD analyses to determine a fuller set of molecular constants for this molecule. Since normal propane has been detected using the νb{26} C-type band in Titan and other astrophysical objects our main focus was on the analagous bands for the both the 1-^{13}C and 2-^{13}C isotopologues. Assigned lines up to K = 17, J = 50 in νb{26} were analyzed with GSCD to independently obtain ground state rotational constants. These were consistent with those obtained from the νb{9} analysis. Upper state constants were also determined that reproduce the vast majority of this band. As in the normal and 2-^{13}C species a Coriolis resonance with the 2νb{9} state causes lines of most K levels above 15 to be shifted. We did not have enough sample available at the time of these experiments to be able to record the 2νb{9} - νb{9} hot band transitions in the low frequency study of νb{9}. Lide, J. Chem. Phys. 33, p. 1514 ff. (1960) Flaud, Kwabia Tchana, Lafferty & Nixon, Mol. Phys. 108, p. 699 ff. (2010)

  19. Shear-band thickness and shear-band cavities in a Zr-based metallic glass

    DOE PAGES

    Liu, C.; Roddatis, V.; Kenesei, P.; ...

    2017-08-14

    Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less

  20. Shear-band thickness and shear-band cavities in a Zr-based metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Roddatis, V.; Kenesei, P.

    Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less

  1. Subaru adaptive-optics high-spatial-resolution infrared K- and L'-band imaging search for deeply buried dual AGNs in merging galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imanishi, Masatoshi; Saito, Yuriko, E-mail: masa.imanishi@nao.ac.jp

    2014-01-01

    We present the results of infrared K- (2.2 μm) and L'-band (3.8 μm) high-spatial-resolution (<0.''2) imaging observations of nearby gas- and dust-rich infrared luminous merging galaxies, assisted by the adaptive optics system on the Subaru 8.2 m telescope. We investigate the presence and frequency of red K – L' compact sources, which are sensitive indicators of active galactic nuclei (AGNs), including AGNs that are deeply buried in gas and dust. We observed 29 merging systems and confirmed at least one AGN in all but one system. However, luminous dual AGNs were detected in only four of the 29 systems (∼14%),more » despite our method's being sensitive to buried AGNs. For multiple nuclei sources, we compared the estimated AGN luminosities with supermassive black hole (SMBH) masses inferred from large-aperture K-band stellar emission photometry in individual nuclei. We found that mass accretion rates onto SMBHs are significantly different among multiple SMBHs, such that larger-mass SMBHs generally show higher mass accretion rates when normalized to SMBH mass. Our results suggest that non-synchronous mass accretion onto SMBHs in gas- and dust-rich infrared luminous merging galaxies hampers the observational detection of kiloparsec-scale multiple active SMBHs. This could explain the significantly smaller detection fraction of kiloparsec-scale dual AGNs when compared with the number expected from simple theoretical predictions. Our results also indicate that mass accretion onto SMBHs is dominated by local conditions, rather than by global galaxy properties, reinforcing the importance of observations to our understanding of how multiple SMBHs are activated and acquire mass in gas- and dust-rich merging galaxies.« less

  2. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less

  3. [Research on K-means clustering segmentation method for MRI brain image based on selecting multi-peaks in gray histogram].

    PubMed

    Chen, Zhaoxue; Yu, Haizhong; Chen, Hao

    2013-12-01

    To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.

  4. Modification of electronic properties of graphene by using low-energy K{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jingul; Lee, Paengro; Ryu, Mintae

    2016-05-02

    Despite its superb electronic properties, the semi-metallic nature of graphene with no band gap (E{sub g}) at the Dirac point has been a stumbling block for its industrial application. We report an improved means of producing a tunable band gap over other schemes by doping low energy (10 eV) potassium ions (K{sup +}) on single layer graphene formed on 6H-SiC(0001) surface, where the noble Dirac nature of the π-band remains almost unaltered. The changes in the π-band induced by K{sup +} ions reveal that the band gap increases gradually with increasing dose (θ) of the ions up to E{sub g} = 0.65 eV atmore » θ = 1.10 monolayers, demonstrating the tunable character of the band gap. Our core level data for C 1s, Si 2p, and K 2p suggest that the K{sup +}-induced asymmetry in charge distribution among carbon atoms drives the opening of band gap, which is in sharp contrast with no band gap when neutral K atoms are adsorbed on graphene. This tunable K{sup +}-induced band gap in graphene illustrates its potential application in graphene-based nano-electronics.« less

  5. Passive Microwave Measurements Over Conifer Forests at L-Band and C-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Chauhan, N.; Kim, E.; Bidwell, S.; Goodberlet, M.; Haken, M.; deMatthaeis, P.

    2000-01-01

    Measurements have been made at L-band and C-band over conifer forests in Virginia to study the response of passive microwave instruments to biomass and soil moisture. A series of aircraft measurements were made in July, August and November, 1999 over relatively homogenous conifer forests of varying biomass. Three radiometers participated in these measurements. These were: 1) the L-band radiometer ESTAR, a horizontally polarized synthetic aperture radiometer which has been used extensively in past measurements of soil moisture; 2) the L-band radiometer SLFMR, a vertically polarized cross-track scanner which has been used successfully in the past for mapping sea surface salinity; and 3) The ACMR, a new C-band radiometer which operates at V- and H-polarization and in the configuration for these experiments did not scan. All three radiometers were flown on the NASA P-3 aircraft based at the Goddard Space Flight Center's Wallops Flight Facility. The ESTAR and SLFMR were mounted in the bomb bay of the P-3 and imaged across track whereas the ACMR was mounted to look aft at 54 degrees up from nadir. Data was collected at altitudes of 915 meters and 457 meters. The forests consisted of relatively homogeneous "managed" stands of conifer located near Waverly, Virginia. This is a relatively flat area about 30 miles southeast of Richmond, VA with numerous stands of trees being grown for the forestry industry. The stands selected for study consisted of areas of regrowth and mature stands of pine. In addition, a small stand of very large trees was observed. Soil moisture sampling was done in each stand during the aircraft over flights. Data was collected on July 7, August 27, November 15 and November 30, 1999. Measurements were made with ESTAR on all days. The ACMR flew on the summer missions and the SLFMR was present only on the August 27 flight. Soil moisture varied from quite dry on July 7 to quite moist on November 30 (which was shortly after a period of rain). The microwave

  6. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  7. Performance interface document for the S-band diplexer for space users of NASA networks

    NASA Technical Reports Server (NTRS)

    Line, L. G.

    1985-01-01

    This report discusses the test results and interfacing information of the S-band diplexer development program supported by RTOP 310 funding. The program was implemented to reduce the S-band transponder noise figure by minimizing the receive channel insertion loss and to also provide Space Transportation System (STS) compatibility by providing 70-db rejection up to 16 GHz in the receive channel. This compatibility includes rejection of signals from the Shuttle S-band Data Link, the K-band Data Link, and the K-band Rendezvous Radar. The first of many projects to benefit from this accomplishment was the Earth Radiation Budget Satellite (ERBS).

  8. Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra.

    PubMed

    Boulet-Audet, Maxime; Buffeteau, Thierry; Boudreault, Simon; Daugey, Nicolas; Pézolet, Michel

    2010-06-24

    Due to its unmatched hardness and chemical inertia, diamond offers many advantages over other materials for extreme conditions and routine analysis by attenuated total reflection (ATR) infrared spectroscopy. Its low refractive index can offer up to a 6-fold absorbance increase compared to germanium. Unfortunately, it also results for strong bands in spectral distortions compared to transmission experiments. The aim of this paper is to present a methodological approach to determine quantitatively the degree of the spectral distortions in ATR spectra. This approach requires the determination of the optical constants (refractive index and extinction coefficient) of the investigated sample. As a typical example, the optical constants of the fibroin protein of the silk worm Bombyx mori have been determined from the polarized ATR spectra obtained using both diamond and germanium internal reflection elements. The positions found for the amide I band by germanium and diamond ATR are respectively 6 and 17 cm(-1) lower than the true value dtermined from the k(nu) spectrum, which is calculated to be 1659 cm(-1). To determine quantitatively the effect of relevant parameters such as the film thickness and the protein concentration, various spectral simulations have also been performed. The use of a thinner film probed by light polarized in the plane of incidence and diluting the protein sample can help in obtaining ATR spectra that are closer to their transmittance counterparts. To extend this study to any system, the ATR distortion amplitude has been evaluated using spectral simulations performed for bands of various intensities and widths. From these simulations, a simple empirical relationship has been found to estimate the band shift from the experimental band height and width that could be of practical use for ATR users. This paper shows that the determination of optical constants provides an efficient way to recover the true spectrum shape and band frequencies of

  9. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  10. Correlation between Na/K ratio and electron densities in blood samples of breast cancer patients.

    PubMed

    Topdağı, Ömer; Toker, Ozan; Bakırdere, Sezgin; Bursalıoğlu, Ertuğrul Osman; Öz, Ersoy; Eyecioğlu, Önder; Demir, Mustafa; İçelli, Orhan

    2018-05-31

    The main purpose of this study was to investigate the relationship between the electron densities and Na/K ratio which has important role in breast cancer disease. Determinations of sodium and potassium concentrations in blood samples performed with inductive coupled plasma-atomic emission spectrometry. Electron density values of blood samples were determined via ZXCOM. Statistical analyses were performed for electron densities and Na/K ratio including Kolmogorov-Smirnov normality tests, Spearman's rank correlation test and Mann-Whitney U test. It was found that the electron densities significantly differ between control and breast cancer groups. In addition, statistically significant positive correlation was found between the electron density and Na/K ratios in breast cancer group.

  11. Sample Selection in Randomized Experiments: A New Method Using Propensity Score Stratified Sampling

    ERIC Educational Resources Information Center

    Tipton, Elizabeth; Hedges, Larry; Vaden-Kiernan, Michael; Borman, Geoffrey; Sullivan, Kate; Caverly, Sarah

    2014-01-01

    Randomized experiments are often seen as the "gold standard" for causal research. Despite the fact that experiments use random assignment to treatment conditions, units are seldom selected into the experiment using probability sampling. Very little research on experimental design has focused on how to make generalizations to well-defined…

  12. A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Edward N.; Franx, Marijn; Quadri, Ryan F.

    2009-08-01

    We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community.{sup 22}Imaging and spectroscopy data and catalogs are freely available through the MUSYC Public Data Release webpage: http://www.astro.yale.edu/MUSYC/. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU {sub 38} BVRIz'JK imaging covering the full 1/2 x 1/2 square circ of the ECDFS, plus H-band photometry for approximately 80% of themore » field. The 5{sigma} flux limit for point sources is K{sup (AB)}{sub tot}= 22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 < K < 22.00 is {approx}>85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1{sigma}) photometric redshift accuracy of {delta}z/(1 + z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest.{sup 23}InterRest is available via http://www.strw.leidenuniv.nl/{approx}ent/InterRest. Documentation and a complete walkthrough can be found at the same address.« less

  13. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сbands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  14. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?

    PubMed

    Ravens, Ursula

    2017-11-01

    In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.

  15. Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael; Villanueva, G. L.; Bonev, B. P.; Mumma, M. J.; Paganini, L.; Gibb, E. L.; Magee-Sauer, K.

    2011-01-01

    For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2

  16. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team

    The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.

  18. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  19. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology.

    PubMed

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya; Yaguchi, Masahiro; Niida, Ayumu; Sasaki, Shigekazu; Miwa, Masanori; Ohkubo, Shoichi; Sakamoto, Jun-Ichi; Kamaura, Masahiro; Cho, Nobuo; Tani, Akiyoshi

    2017-03-11

    Amino-acid mutations of Gly 12 (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH 2 ) as a consensus sequence. KRpep-2 showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K D and IC 50 values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH 2 ) that inhibited enzyme activity of K-Ras(G12D) with IC 50  = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An Active K-Band Receive Slot Array for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.; Lee, K. A.; Sukamto, L. M.; Chew, W.

    1994-01-01

    An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project.

  1. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  2. Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands

    NASA Astrophysics Data System (ADS)

    Abellán, F. J.; Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.

    2018-06-01

    We have studied a complete radio sample of active galactic nuclei with the very-long-baseline-interferometry (VLBI) technique and for the first time successfully obtained high-precision phase-delay astrometry at Q band (43 GHz) from observations acquired in 2010. We have compared our astrometric results with those obtained with the same technique at U band (15 GHz) from data collected in 2000. The differences in source separations among all the source pairs observed in common at the two epochs are compatible at the 1σ level between U and Q bands. With the benefit of quasi-simultaneous U and Q band observations in 2010, we have studied chromatic effects (core-shift) at the radio source cores with three different methods. The magnitudes of the core-shifts are of the same order (about 0.1 mas) for all methods. However, some discrepancies arise in the orientation of the core-shifts determined through the different methods. In some cases these discrepancies are due to insufficient signal for the method used. In others, the discrepancies reflect assumptions of the methods and could be explained by curvatures in the jets and departures from conical jets.

  3. Identification of yrast high-K intrinsic states in {sup 188}Os

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modamio, V.; Jungclaus, A.; Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid

    2009-02-15

    The high-spin structure of the Z=76 nucleus {sup 188}Os has been studied using the incomplete fusion reaction {sup 7}Li+{sup 186}W. A K{sup {pi}}=10{sup +} band has been established up to spin (24{sup +}) and its crossing with the ground-state band has been studied. In addition, intrinsic high-K states have been identified and on top of two of them, K{sup {pi}}=7{sup -} and K{sup {pi}}=10{sup -}, regular bands have been observed. The K{sup {pi}}=16{sup +} and K{sup {pi}}=18{sup +} states are yrast whereas the K{sup {pi}}=14{sup +} level lies only 33 keV above the yrast line and decays with a lowmore » reduced hindrance of f{sub {nu}}<1.3 to the ground-state band ({delta}K=14). The results are discussed by means of a systematic comparison with the even-even neighboring nucleus {sup 186}Os. Configuration-constrained multiquasiparticle potential-energy-surface calculations have been performed to identify the configurations of multiquasiparticle states.« less

  4. TemperSAT: A new efficient fair-sampling random k-SAT solver

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Zhu, Zheng; Katzgraber, Helmut G.

    The set membership problem is of great importance to many applications and, in particular, database searches for target groups. Recently, an approach to speed up set membership searches based on the NP-hard constraint-satisfaction problem (random k-SAT) has been developed. However, the bottleneck of the approach lies in finding the solution to a large SAT formula efficiently and, in particular, a large number of independent solutions is needed to reduce the probability of false positives. Unfortunately, traditional random k-SAT solvers such as WalkSAT are biased when seeking solutions to the Boolean formulas. By porting parallel tempering Monte Carlo to the sampling of binary optimization problems, we introduce a new algorithm (TemperSAT) whose performance is comparable to current state-of-the-art SAT solvers for large k with the added benefit that theoretically it can find many independent solutions quickly. We illustrate our results by comparing to the currently fastest implementation of WalkSAT, WalkSATlm.

  5. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire bandmore » between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.« less

  6. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    PubMed Central

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  7. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach.

    PubMed

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447-2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8-30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics.

  8. The K{sub a}-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glyavin, M.; Luchinin, A.; Morozkin, M.

    2012-07-15

    The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.

  9. Energetic band structure of Zn3P2 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-01-01

    Optical functions n, k, ε1, ε2 and d2ε2/dE2 have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction ΔSO is lower than the splitting caused by the crystal field ΔCR in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn3P2 crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn3P2 are presented.

  10. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2010-08-03

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less

  11. Relativistic effects on galaxy redshift samples due to target selection

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  12. Wetland survey of selected areas in the K-24 Site Area of responsibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosensteel, B.A.; Awl, D.J.

    1995-07-01

    In accordance with DOE Regulations for Compliance with Floodplain/Wetlands Environmental Review Requirements, wetland surveys were conducted in selected areas within the K-25 Area of Responsibility during the summer of 1994. These areas are Mitchell Branch, Poplar Creek, the K-770 OU, Duct Island Peninsula, the Powerhouse area, and the K-25 South Corner. Previously surveyed areas included in this report are the main plant area of the K-25 Site, the K-901 OU, the AVLIS site, and the K-25 South Site. Wetland determinations were based on the USACE methodology. Forty-four separate wetland areas, ranging in size from 0.13 to 4.23 ha, were identified.more » Wetlands were identified in all of the areas surveyed with the exception of the interior of the Duct Island Peninsula and the main plant area of the K-25 Site. Wetlands perform functions such as floodflow alteration, sediment stabilization, sediment and toxicant retention, nutrient transformation, production export, and support of aquatic species and wildlife diversity and abundance. The forested, scrub-shrub, and emergent wetlands identified in the K-25 area perform some or all of these functions to varying degrees.« less

  13. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  14. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between

  15. SNPP VIIRS Spectral Bands Co-Registration and Spatial Response Characterization

    NASA Technical Reports Server (NTRS)

    Lin, Guoqing; Tilton, James C.; Wolfe, Robert E.; Tewari, Krishna P.; Nishihama, Masahiro

    2013-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on 28 October 2011. The VIIRS has 5 imagery spectral bands (I-bands), 16 moderate resolution spectral bands (M-bands) and a panchromatic day/night band (DNB). Performance of the VIIRS spatial response and band-to-band co-registration (BBR) was measured through intensive pre-launch tests. These measurements were made in the non-aggregated zones near the start (or end) of scan for the I-bands and M-bands and for a limited number of aggregation modes for the DNB in order to test requirement compliance. This paper presents results based on a recently re-processed pre-launch test data. Sensor (detector) spatial impulse responses in the scan direction are parameterized in terms of ground dynamic field of view (GDFOV), horizontal spatial resolution (HSR), modulation transfer function (MTF), ensquared energy (EE) and integrated out-of-pixel (IOOP) spatial response. Results are presented for the non-aggregation, 2-sample and 3-sample aggregation zones for the I-bands and M-bands, and for a limited number of aggregation modes for the DNB. On-orbit GDFOVs measured for the 5 I-bands in the scan direction using a straight bridge are also presented. Band-to-band co-registration (BBR) is quantified using the prelaunch measured band-to-band offsets. These offsets may be expressed as fractions of horizontal sampling intervals (HSIs), detector spatial response parameters GDFOV or HSR. BBR bases on HSIs in the non-aggregation, 2-sample and 3-sample aggregation zones are presented. BBR matrices based on scan direction GDFOV and HSR are compared to the BBR matrix based on HSI in the non-aggregation zone. We demonstrate that BBR based on GDFOV is a better representation of footprint overlap and so this definition should be used in BBR requirement specifications. We propose that HSR not be used as the primary image quality indicator, since we

  16. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design ofmore » collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)« less

  17. Band-to-Band Tunneling-Dominated Thermo-Enhanced Field Electron Emission from p-Si/ZnO Nanoemitters.

    PubMed

    Huang, Zhizhen; Huang, Yifeng; Xu, Ningsheng; Chen, Jun; She, Juncong; Deng, Shaozhi

    2018-06-13

    Thermo-enhancement is an effective way to achieve high performance field electron emitters, and enables the individually tuning on the emission current by temperature and the electron energy by voltage. The field emission current from metal or n-doped semiconductor emitter at a relatively lower temperature (i.e., < 1000 K) is less temperature sensitive due to the weak dependence of free electron density on temperature, while that from p-doped semiconductor emitter is restricted by its limited free electron density. Here, we developed full array of uniform individual p-Si/ZnO nanoemitters and demonstrated the strong thermo-enhanced field emission. The mechanism of forming uniform nanoemitters with well Si/ZnO mechanical joint in the nanotemplates was elucidated. No current saturation was observed in the thermo-enhanced field emission measurements. The emission current density showed about ten-time enhancement (from 1.31 to 12.11 mA/cm 2 at 60.6 MV/m) by increasing the temperature from 323 to 623 K. The distinctive performance did not agree with the interband excitation mechanism but well-fit to the band-to-band tunneling model. The strong thermo-enhancement was proposed to be benefit from the increase of band-to-band tunneling probability at the surface portion of the p-Si/ZnO nanojunction. This work provides promising cathode for portable X-ray tubes/panel, ionization vacuum gauges and low energy electron beam lithography, in where electron-dose control at a fixed energy is needed.

  18. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i,j,k

  19. Density-based empirical likelihood procedures for testing symmetry of data distributions and K-sample comparisons.

    PubMed

    Vexler, Albert; Tanajian, Hovig; Hutson, Alan D

    In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K -sample distributions. Recognizing that recent statistical software packages do not sufficiently address K -sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p -values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p -value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p -value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.

  20. CSF oligoclonal banding

    MedlinePlus

    ... oligoclonal bands may point to a diagnosis of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  1. Novel solution of power law for γ-bands

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.

    The power law expression E = aIb offers a single-term formula with just two parameters for expressing the level energies in the spectra of even-Z even-N nuclei. Its application to ground band spectra for a wide range of nuclei has been demonstrated in our earlier works. Here, we extend its application to the rotational bands built on an excited state of K = 2 γ-vibration band and Kπ = 0 2+ beta band. A novel assumption of a virtual level with spin zero for γ-bands is made and its validity and use is illustrated. Here, the constancy of the parameters “b” and “a” with spin, offers a more realistic view of the dependence of the nuclear core deformation on spin, in the excited bands. Also, it enables a spinwise view, not available in the other energy fit expressions.

  2. Fireball Observations in Visible and Sodium Bands

    NASA Astrophysics Data System (ADS)

    Fletcher, Sandra

    On November 17th at 1:32am MST, a large Leonid fireball was simultaneously imaged by two experiments, a visible band CCD camera and a 590nm filtered band equi-angle fisheye and telecentric lens assembly. The visible band camera, ROTSE (Robotic Optical Transient Search Experiment) is a two by two f/1.9 telephoto lens array with 2k x2k Thompson CCD and is located at 35.87 N, 106.25 W at an altitude of 2115m. One-minute exposures along the radiant were taken of the event for 30 minutes after the initial explosion. The sodium band experiment was located at 35.29 N,106.46 W at an altitude of 1860m. It took ninety second exposures and captured several events throughout the night. Triangulation from two New Mexico sites resulted in an altitude of 83km over Wagon Mound, NM. Two observers present at the ROTSE site saw a green flash and a persistent glow up to seven minutes after the explosion. Cataloging of all sodium trails for comparison with lidar and infrasonic measurements is in progress. The raw data from both experiments and the atmospheric chemistry interpretation of them will be presented.

  3. Prey Selection by an Apex Predator: The Importance of Sampling Uncertainty

    PubMed Central

    Davis, Miranda L.; Stephens, Philip A.; Willis, Stephen G.; Bassi, Elena; Marcon, Andrea; Donaggio, Emanuela; Capitani, Claudia; Apollonio, Marco

    2012-01-01

    The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection. Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5±3.90 [SE] % of biomass eaten) and roe deer (33.7±3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manly's standardized selection index using all data across years indicated selection for boar (mean = 0.73±0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies. PMID:23110122

  4. Multi-band analysis of temperature-dependent transport coefficients (conductivity, Hall, Seebeck, and Nernst) of Ni-doped CoSb3

    NASA Astrophysics Data System (ADS)

    Kajikawa, Y.

    2016-02-01

    The experimental data on the temperature dependence of the four transport coefficients, i.e., the electrical conductivity (σ), Hall coefficient (RH), Seebeck coefficient (S), and Nernst coefficient (Q), of n-type Co0.999Ni0.001Sb3 reported by Sun et al. [Nat. Commun. 6, 7475 (2015)] have been analyzed in a multi-band model, especially focusing on the low temperature data. The multi-band model includes not only the lowest valley of the conduction band at the Γ point but also satellite valleys at the second minima together with an impurity band. The lowest valley at the Γ point is assumed to split into the c1 band and the spin-orbit split-off (so) band. For the analysis, the general expression of the Nernst coefficient in the multi-band model is derived. At such low temperatures that the other bands than the c1 and the impurity band can be neglected, this expression is shown to be approximated as the sum of three terms: the intrinsic terms due to the Nernst coefficients in the two bands themselves and a cross term proportional to the difference of Seebeck coefficients between the two bands. As a result of the analysis, it is proved that the anomalous positive peak of S(T) observed around T = 20 K as well as the sharp rise of the Hall mobility observed from 15 K to 40 K are due to the transition from hopping conduction in the impurity band to conduction in the c1 band. On the other hand, the pronounced peak of Q(T) observed slightly below 40 K is proved to be due to the cross term between the impurity band and the c1 band. In addition, a shoulder of Q(T) appeared around T = 80 K lends clear evidence of the existence of the so band, while the increase in both of σ(T) and | S ( T ) | above 150 K suggests the existence of the satellite valleys.

  5. Excitonic and band-band transitions of Cu2ZnSiS4 determined from reflectivity spectra

    NASA Astrophysics Data System (ADS)

    Guc, M.; Levcenko, S.; Dermenji, L.; Gurieva, G.; Schorr, S.; Syrbu, N. N.; Arushanov, E.

    2014-07-01

    Exciton spectra of Cu2ZnSiS4 single crystals are investigated by reflection spectroscopy at 10 and 300 K for light polarized perpendicular (E⊥c) and parallel (E∥c) to the optical axis. The parameters of the excitons and dielectric constant are determined. The free carriers effective masses have been estimated. The room temperature reflectivity spectra at photon energies higher than the fundamental band gap in the polarization Е⊥с and E∥с were measured and related to the electronic band structure of Cu2ZnSiS4.

  6. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  7. A Public Ks -selected Catalog in the COSMOS/ULTRAVISTA Field: Photometry, Photometric Redshifts, and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    Muzzin, Adam; Marchesini, Danilo; Stefanon, Mauro; Franx, Marijn; Milvang-Jensen, Bo; Dunlop, James S.; Fynbo, J. P. U.; Brammer, Gabriel; Labbé, Ivo; van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg2 of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 μm including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K s, tot = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z phot are accurate to Δz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z phot also show good agreement with the z phot from the NEWFIRM Medium Band Survey out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L 2800 and L IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star-forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3-4. .

  8. A New Transition in the Spectrum of YCl: Rotational Analysis of the K1Π- X1Σ +UV Band System

    NASA Astrophysics Data System (ADS)

    Xin, Ju; Klynning, Lennart

    1996-02-01

    The absorption spectrum of the yttrium monochloride molecule (YCl) produced in a King-type furnace has been recorded at high resolution using a 5-m Fastie spectrograph. A new band system in the UV region (centered at 3291 Å) has been found and rotationally analyzed. The transition has been assigned toK1Π-X1Σ+, in accordance with the labeling of the YCl electronic states by Langhoffet al.(J. Chem. Phys.89,396-407, 1988) in their theoretical work. Molecular constants for the new state are presented.

  9. Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.

    PubMed

    Dixit, H; Lamoen, D; Partoens, B

    2013-01-23

    CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.

  10. Narrow band imaging in the diagnosis of intra-epithelial and invasive laryngeal squamous cell carcinoma: a preliminary report of two cases.

    PubMed

    Masaki, Takashi; Katada, Chikatoshi; Nakayama, Meijin; Takeda, Masahiko; Miyamoto, Shunsuke; Seino, Yutomo; Koizumi, Wasaburo; Tanabe, Satoshi; Horiguchi, Satoshi; Okamoto, Makito

    2009-12-01

    Narrow band imaging (NBI) is a novel optical technique that enhances the diagnostic capability of the gastrointestinal endoscope (GIE) by illuminating the intraepithelial papillary capillary loop (IPCL) using narrow bandwidth filters in a red-green-blue sequential illumination system (CV-260SL processor and CLV-260SL light source, Olympus Optical Co. Ltd, Tokyo, Japan). The NBI filter sets (415 nm and 540 nm) are selected to obtain fine images of the microvascular structure. Because 415 nm is the hemoglobin absorption band, capillaries on the mucosal surface can be seen most clearly at this wavelength. NBI is able to represent more clearly both capillary patterns and the boundary between different types of tissue, which are necessary for diagnosing a tumor in its early stage (Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, et al. Endoscopic observation of tissue by narrow band illumination. Opt Rev 2003;10:211-215, Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue feature in narrow-band endoscopic imaging. J Biomed Opt 2004;9:568-577). We present two patients with laryngeal squamous cell carcinoma in whom the spread and the depth of invasion was evaluated with transnasal GIE equipped with NBI. Based on our results, the vascular neoplastic changes of carcinoma in situ of the larynx could be similar to carcinoma in situ of the esophagus.

  11. Broad-band characteristics of seven new hard X-ray selected cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; de Martino, D.; Mukai, K.; Russell, D. M.; Falanga, M.; Masetti, N.; Ferrigno, C.; Israel, G.

    2017-10-01

    We present timing and spectral analysis of a sample of seven hard X-ray selected cataclysmic variable candidates based on simultaneous X-ray and optical observations collected with XMM-Newton, complemented with Swift/BAT and INTEGRAL /IBIS hard X-ray data and ground-based optical photometry. For six sources, X-ray pulsations are detected for the first time in the range of ˜296-6098 s, identifying them as members of the magnetic class. Swift J0927.7-6945, Swift J0958.0-4208, Swift J1701.3-4304, Swift J2113.5+5422 and possibly PBC J0801.2-4625 are intermediate polars (IPs), while Swift J0706.8+0325 is a short (1.7 h) orbital period polar, the 11th hard X-ray-selected identified so far. X-ray orbital modulation is also observed in Swift J0927.7-6945 (5.2 h) and Swift J2113.5+5422 (4.1 h). Swift J1701.3-4304 is discovered as the longest orbital period (12.8 h) deep eclipsing IP. The spectra of the magnetic systems reveal optically thin multitemperature emission between 0.2 and 60 keV. Energy-dependent spin pulses and the orbital modulation in Swift J0927.7-6945 and Swift J2113.5+5422 are due to intervening local high-density absorbing material (NH ˜ 1022 - 23 cm-2). In Swift J0958.0-4208 and Swift J1701.3-4304, a soft X-ray blackbody (kT ˜ 50 and ˜80 eV) is detected, adding them to the growing group of `soft' IPs. White dwarf masses are determined in the range of ˜ 0.58-1.18 M⊙, indicating massive accreting primaries in five of them. Most sources accrete at rates lower than the expected secular value for their orbital period. Formerly proposed as a long-period (9.4 h) nova-like CV, Swift J0746.3-1608 shows peculiar spectrum and light curves suggesting either an atypical low-luminosity CV or a low-mass X-ray binary.

  12. Does self-selection affect samples' representativeness in online surveys? An investigation in online video game research.

    PubMed

    Khazaal, Yasser; van Singer, Mathias; Chatton, Anne; Achab, Sophia; Zullino, Daniele; Rothen, Stephane; Khan, Riaz; Billieux, Joel; Thorens, Gabriel

    2014-07-07

    The number of medical studies performed through online surveys has increased dramatically in recent years. Despite their numerous advantages (eg, sample size, facilitated access to individuals presenting stigmatizing issues), selection bias may exist in online surveys. However, evidence on the representativeness of self-selected samples in online studies is patchy. Our objective was to explore the representativeness of a self-selected sample of online gamers using online players' virtual characters (avatars). All avatars belonged to individuals playing World of Warcraft (WoW), currently the most widely used online game. Avatars' characteristics were defined using various games' scores, reported on the WoW's official website, and two self-selected samples from previous studies were compared with a randomly selected sample of avatars. We used scores linked to 1240 avatars (762 from the self-selected samples and 478 from the random sample). The two self-selected samples of avatars had higher scores on most of the assessed variables (except for guild membership and exploration). Furthermore, some guilds were overrepresented in the self-selected samples. Our results suggest that more proficient players or players more involved in the game may be more likely to participate in online surveys. Caution is needed in the interpretation of studies based on online surveys that used a self-selection recruitment procedure. Epidemiological evidence on the reduced representativeness of sample of online surveys is warranted.

  13. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu3SbSe4.

    PubMed

    Zhang, Dan; Yang, Junyou; Jiang, Qinghui; Zhou, Zhiwei; Li, Xin; Xin, Jiwu; Basit, Abdul; Ren, Yangyang; He, Xu; Chu, Weijing; Hou, Jingdi

    2017-08-30

    The effect of Al-, Ga-, and In-doping on the thermoelectric (TE) properties of Cu 3 SbSe 4 has been comparatively studied on the basis of theoretical prediction and experimental validation. It is found that tiny Al/Ga/In substitution leads to a great enhancement of electrical conductivity with high carrier concentration and also large Seebeck coefficient due to the preserved high band degeneracy and thereby a remarkably high power factor. Ultimately, coupled with the depressed lattice thermal conductivity, all three elements (Al/Ga/In) substituted samples have obtained a highly improved thermoelectric performance with respect to undoped Cu 3 SbSe 4 . Compared to the samples at the same Al/In doping level, the slightly Ga-doped sample presents better TE performance over the wide temperature range, and the Cu 3 Sb 0.995 Ga 0.005 Se 4 sample presents a record high ZT value of 0.9 among single-doped Cu 3 SbSe 4 at 623 K, which is about 80% higher than that of pristine Cu 3 SbSe 4 . This work offers an alternative approach to boost the TE properties of Cu 3 SbSe 4 by selecting efficient dopant to weaken the coupling between electrical conductivity and Seebeck coefficient.

  14. Effects of Sample Selection on Estimates of Economic Impacts of Outdoor Recreation

    Treesearch

    Donald B.K. English

    1997-01-01

    Estimates of the economic impacts of recreation often come from spending data provided by a self-selected subset of a random sample of site visitors. The subset is frequently less than half the onsite sample. Biased vectors of per trip spending and impact estimates can result if self-selection is related to spending pattctns, and proper corrective procedures arc not...

  15. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations

    PubMed Central

    Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-01-01

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  16. Highly Depleted Ethane and Mildly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of a New Empirical nu(sub 2) Band Model for CH30H Near 50 K

    NASA Technical Reports Server (NTRS)

    DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Mumma, M. J.

    2012-01-01

    Infrared spectra of Comet 2lP/Giacobini-Zinner (hereafter 2IP/GZ) were obtained using NIRSPEC at Keck II on UT 2005 June 03, approximately one month before perihelion, that simultaneously measured H2O, C2H6, and CH3OH. For H2O, the production rate of 3.8 x 10(exp 28) molecules / S was consistent with that measured during other apparitions of 21P/GZ retrieved from optical, infrared, and mm-wavelength observations. The water analysis also provided values for rotational temperature (T(sub rot) = 55(epx +3) /-.2 K) and the abundance ratio of ortho- and para-water (3.00 +/-0.15, implying a spin temperature exceeding 50 K). Six Q-branches in the V7 band of C2H6 provided a production rate (5.27 +/- 0.90 x 10(exp 25)/S) that corresponded to an abundance ratio of 0.139 +/- 0.024 % relative to H2O, confirming the previously reported strong depletion of C2H6 from IR observations during the 1998 apparition, and in qualitative agreement with the depletion in C2 known from optical studies. For CH30H, we applied our recently published ab initia model for the v3 band to obtain a rotational temperature (48(exp + 10) / -7 K) consistent with that obtained for H2O. In addition we applied a newly developed empirical model for the CH30H v2 band, and obtained a production rate consistent with that obtained from the v3 band. Combining results from both v2 and v3 bands provided a production rate (47.5 +/- 4.4 x 10(exp 25) / S) that corresponded to an abundance ratio of 1.25 +/- 0.12 % relative to H2O in 21P/GZ. Our study provides the first measure of primary volatile production rates for any Jupiter family comet over multiple apparitions using high resolution IR spectroscopy.

  17. Integrated K-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.; Larsen, S. S.

    2010-02-01

    Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project whose aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for future ones. Our pilot study presents spatially integrated K-band spectra of three old (≥10 Gyr) and metal poor ([Fe/H] ~ -1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H] ~ - 0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO (2-0) absorption features. The Na I index decreases with increasing age and decreasing metallicity of the clusters. The DCO index, used to measure the 12CO (2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction to the predictions of the stellar population models of Maraston (2005, MNRAS, 362, 799). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age ≥ 2 Gyr we find DCO index measurements consistent with the model predictions. Based on observation collected at the ESO Paranal La Silla Observatory, Chile, Prog. ID 078.B-0205.Spectra in FITS format are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A19

  18. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  19. Multi-band Electronic Structure of Ferromagnetic CeRuPO

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Ootsuki, Daiki; Horio, Masafumi; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Saini, Naurang L.; Sugawara, Hitoshi; Mizokawa, Takashi

    2018-04-01

    We have studied the multi-band electronic structure of ferromagnetic CeRuPO (TC = 15 K) by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results show that three hole bands exist around the zone center and two of them cross the Fermi level (EF). Around the zone corner, two electron bands are observed and cross EF. These hole and electron bands, which can be assigned to the Ru 4d bands, are basically consistent with the band-structure calculation including their orbital characters. However, one of the electron bands with Ru 4d 3z2 - r2 character is strongly renormalized indicating correlation effect due to hybridization with the Ce 4f orbitals. The Ru 4d 3z2 - r2 band changes across TC suggesting that the out-of-plane 3z2 - r2 orbital channel plays essential roles in the ferromagnetism.

  20. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  1. Needle position estimation from sub-sampled k-space data for MRI-guided interventions

    NASA Astrophysics Data System (ADS)

    Schmitt, Sebastian; Choli, Morwan; Overhoff, Heinrich M.

    2015-03-01

    MRI-guided interventions have gained much interest. They profit from intervention synchronous data acquisition and image visualization. Due to long data acquisition durations, ergonomic limitations may occur. For a trueFISP MRI-data acquisition sequence, a time sparing sub-sampling strategy has been developed that is adapted to amagnetic needle detection. A symmetrical and contrast rich susceptibility needle artifact, i.e. an approximately rectangular gray scale profile is assumed. The 1-D-Fourier transformed of a rectangular function is a sinc-function. Its periodicity is exploited by sampling only along a few orthogonal trajectories in k-space. Because a needle moves during intervention, its tip region resembles a rectangle in a time-difference image that is reconstructed from such sub-sampled k-spaces acquired at different time stamps. In different phantom experiments, a needle was pushed forward along a reference trajectory, which was determined from a needle holders geometric parameters. In addition, the trajectory of the needle tip was estimated by the method described above. Only ca. 4 to 5% of the entire k-space data was used for needle tip estimation. The misalignment of needle orientation and needle tip position, i.e. the differences between reference and estimated values, is small and even in its worst case less than 2 mm. The results show that the method is applicable under nearly real conditions. Next steps are addressed to the validation of the method for clinical data.

  2. X-band preamplifier filter

    NASA Technical Reports Server (NTRS)

    Manshadi, F.

    1986-01-01

    A low-loss bandstop filter designed and developed for the Deep Space Network's 34-meter high-efficiency antennas is described. The filter is used for protection of the X-band traveling wave masers from the 20-kW transmitter signal. A combination of empirical and theoretical techniques was employed as well as computer simulation to verify the design before fabrication.

  3. An Hα-selected sample of cataclysmic variables - I. Observations of newly discovered systems

    NASA Astrophysics Data System (ADS)

    Pretorius, Magaretha L.; Knigge, Christian

    2008-04-01

    Strong selection effects are present in observational samples of cataclysmic variables (CVs), complicating comparisons to theoretical predictions. The selection criteria used to define most CV samples discriminate heavily against the discovery of short-period, intrinsically faint systems. The situation can be improved by selecting CVs for the presence of emission lines. For this reason, we have constructed a homogeneous sample of CVs selected on the basis of Hα emission. We present discovery observations of the 14 CVs and two additional CV candidates found in this search. The orbital periods of 11 of the new CVs were measured; all are above 3 h. There are two eclipsing systems in the sample, and one in which we observed a quasi-periodic modulation on a ~1000s time-scale. We also detect the secondary star in the spectrum of one system, and measure its spectral type. Several of the new CVs have the spectroscopic appearance of nova-like variables, and a few display what may be SW Sex star behaviour. In a companion paper, we discuss the implications of this new sample for CV evolution.

  4. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tie, S. S.; Martini, P.; Mudd, D.

    In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1),more » and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ 2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i < 19.8 mag and i < 22 mag. For the subset of sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg 2 of the DES supernova fields. Finally, the catalog

  5. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    DOE PAGES

    Tie, S. S.; Martini, P.; Mudd, D.; ...

    2017-02-15

    In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1),more » and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ 2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i < 19.8 mag and i < 22 mag. For the subset of sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg 2 of the DES supernova fields. Finally, the catalog

  6. Retrieval of Lower Thermospheric Temperatures from O2 A Band Emission: The MIGHTI Experiment on ICON

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Englert, Christoph R.; Harlander, John M.; England, Scott L.; Marr, Kenneth D.; Brown, Charles M.; Immel, Thomas J.

    2018-02-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is a satellite experiment scheduled to launch on NASA's Ionospheric Connection Explorer (ICON) in 2018. MIGHTI is designed to measure horizontal neutral winds and neutral temperatures in the terrestrial thermosphere. Temperatures will be inferred by imaging the molecular oxygen Atmospheric band (A band) on the limb in the lower thermosphere. MIGHTI will measure the spectral shape of the A band using discrete wavelength channels to infer the ambient temperature from the rotational envelope of the band. Here we present simulated temperature retrievals based on the as-built characteristics of the instrument and the expected emission rate profile of the A band for typical daytime and nighttime conditions. We find that for a spherically symmetric atmosphere, the measurement precision is 1 K between 90-105 km during the daytime whereas during the nighttime it increases from 1 K at 90 km to 3 K at 105 km. We also find that the accuracy is 2 K to 11 K for the same altitudes. The expected MIGHTI temperature precision is within the measurement requirements for the ICON mission.

  7. Calibration strategies for the direct determination of Ca, K, and Mg in commercial samples of powdered milk and solid dietary supplements using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Dos Santos Augusto, Amanda; Barsanelli, Paulo Lopes; Pereira, Fabiola Manhas Verbi; Pereira-Filho, Edenir Rodrigues

    2017-04-01

    This study describes the application of laser-induced breakdown spectroscopy (LIBS) for the direct determination of Ca, K and Mg in powdered milk and solid dietary supplements. The following two calibration strategies were applied: (i) use of the samples to calculate calibration models (milk) and (ii) use of sample mixtures (supplements) to obtain a calibration curve. In both cases, reference values obtained from inductively coupled plasma optical emission spectroscopy (ICP OES) after acid digestion were used. The emission line selection from LIBS spectra was accomplished by analysing the regression coefficients of partial least squares (PLS) regression models, and wavelengths of 534.947, 766.490 and 285.213nm were chosen for Ca, K and Mg, respectively. In the case of the determination of Ca in supplements, it was necessary to perform a dilution (10-fold) of the standards and samples to minimize matrix interference. The average accuracy for powdered milk ranged from 60% to 168% for Ca, 77% to 152% for K and 76% to 131% for Mg. In the case of dietary supplements, standard error of prediction (SEP) varied from 295 (Mg) to 3782mgkg -1 (Ca). The proposed method presented an analytical frequency of around 60 samples per hour and the step of sample manipulation was drastically reduced, with no generation of toxic chemical residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Study of the Variability of the Reflection Component in Seyfert 1 Galaxies: Connecting the Fe K Variability with the Compton Hump

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Miniutti, G.; Malaguti, G.; Gallo, L.; Goldwurm, A.

    2009-05-01

    We present preliminary results of an ongoing project devoted to the study of the continuum and Fe K band variability in a sample of bright AGNs. These kind of studies may break the spectral degeneracy between the different absorption/emission models, allowing ``safe'' measurements of the disc and black hole properties from the broad line shapes. In fact, the Fe K band, alone, allows a first separation between the different components. Here we show the case of NGC 3783 which shows both a constant and a variable reflection component as well as strong ionized absorption. We show that a fundamental contribution will be given by Simbol-X that will allow to simultaneously measure not only the Fe K variability, but also the connected reflection hump variations.

  9. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  10. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  11. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    PubMed

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solution structure for Pandinus toxin K-alpha (PiTX-K alpha), a selective blocker of A-type potassium channels.

    PubMed

    Tenenholz, T C; Rogowski, R S; Collins, J H; Blaustein, M P; Weber, D J

    1997-03-11

    PiTX-K alpha, a 35-residue peptide recently isolated from the venom of Pandinus imperator, blocks the rapidly inactivating (A-type) K+ channel(s) in rat brain synaptosomes and the cloned Kv 1.2 potassium channel at very low toxin concentrations (6 nM and 32 pM, respectively) [Rogowski, R. S., Collins, J. H., O'Neil, T. J., Gustafson, T. A., Werkman, T. A., Rogawski, M. A., Tenenholz, T. C., Weber, D. J., & Blaustein, M. P. (1996) Mol. Pharmacol. 50, 1167-1177]. The three-dimensional structure of PiTX-K alpha was determined using NMR spectroscopy in order to understand its selectivity and affinity toward K+ channels. PiTX-K alpha was found to have an alpha-helix from residues 10 to 21 and two beta-strands (betaI, 26-28; betaII, 33-35) connected by a type II beta-turn to form a small antiparallel beta-sheet. Three disulfide bonds, which are conserved in all members of the charybdotoxin family (alpha-K toxins), anchor one face of the alpha-helix to the beta-sheet. The N-terminal portion of PiTX-K alpha has three fewer residues than other alpha-K toxins such as charybdotoxin. Rather than forming a third beta-strand as found for other alpha-K toxins, the N-terminal region of PiTX-K alpha adopts an extended conformation. This structural difference in PiTX-K alpha together with differences in sequence at Pro-10, Tyr-14, and Asn-25 (versus Ser-10, Trp-14, and Arg-25 in CTX) may explain why PiTX-K alpha does not block maxi-K+ channels. Differences in three-dimensional structure between PiTX-K alpha and charybdotoxin are also observed in both the tight turn and the loop that connects the first beta-strand to the alpha-helix. As a result, side chains of two residues (Tyr-23 and Arg-31) are in regions of PiTX-K alpha that probably interact with rapidly inactivating A-type K+ channels. The analogous residues in charybdotoxin are positioned differently on the toxin surface. Thus, the locations of Tyr-23 and Arg-31 side chains in PiTX-K alpha could explain why this toxin blocks A

  13. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(sub x)V(sub 1-x) alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(sub x)V(sub 1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(sub x)Te(sub 1-x) and ZnSe(sub y)Te(sub 1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(sub y)Te(sub 1-y) alloys in the entire composition range, y between 0 and 1. The samples used in this study are bulk ZnSe(sub y)Te(sub 1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the

  14. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    DTIC Science & Technology

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  15. NLTE ANALYSIS OF HIGH-RESOLUTION H -BAND SPECTRA. II. NEUTRAL MAGNESIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junbo; Shi, Jianrong; Liu, Chao

    Aiming at testing the validity of our magnesium atomic model and investigating the effects of non-local thermodynamical equilibrium (NLTE) on the formation of the H -band neutral magnesium lines, we derive the differential Mg abundances from selected transitions for 13 stars either adopting or relaxing the assumption of local thermodynamical equilibrium (LTE). Our analysis is based on high-resolution and high signal-to-noise ratio H -band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and optical spectra from several instruments. The absolute differences between the Mg abundances derived from the two wavelength bands are always less than 0.1 dex inmore » the NLTE analysis, while they are slightly larger for the LTE case. This suggests that our Mg atomic model is appropriate for investigating the NLTE formation of the H -band Mg lines. The NLTE corrections for the Mg i H -band lines are sensitive to the surface gravity, becoming larger for smaller log g values, and strong lines are more susceptible to departures from LTE. For cool giants, NLTE corrections tend to be negative, and for the strong line at 15765 Å they reach −0.14 dex in our sample, and up to −0.22 dex for other APOGEE stars. Our results suggest that it is important to include NLTE corrections in determining Mg abundances from the H -band Mg i transitions, especially when strong lines are used.« less

  16. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  17. Representativeness of direct observations selected using a work-sampling equation.

    PubMed

    Sharp, Rebecca A; Mudford, Oliver C; Elliffe, Douglas

    2015-01-01

    Deciding on appropriate sampling to obtain representative samples of behavior is important but not straightforward, because the relative duration of the target behavior may affect its observation in a given sampling interval. Work-sampling methods, which offer a way to adjust the frequency of sampling according to a priori or ongoing estimates of the behavior to achieve a preselected level of representativeness, may provide a solution. Full-week observations of 7 behaviors were conducted for 3 students with autism spectrum disorder and intellectual disabilities. Work-sampling methods were used to select momentary time samples from the full time-of-interest, which produced representative samples. However, work sampling required impractically high numbers of time samples to obtain representative samples. More practical momentary time samples produced less representative samples, particularly for low-duration behaviors. The utility and limits of work-sampling methods for applied behavior analysis are discussed. © Society for the Experimental Analysis of Behavior.

  18. Dual Band Deep Ultraviolet AlGaN Photodetectors

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.

    2007-01-01

    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.

  19. Wideband Bandpass Filter with High Selectivity and an Adjustable Notched-band Adopting a Multi-mode Resonator

    NASA Astrophysics Data System (ADS)

    Ma, Xing-Bing; Jiang, Ting

    2018-04-01

    A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.

  20. Chemical analyses and K-Ar ages of samples from 13 drill holes, Medicine Lake volcano, California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2006-01-01

    Chemical analyses and K-Ar ages are presented for rocks sampled from drill holes at Medicine Lake volcano, northern California. A location map and a cross-section are included, as are separate tables for drill hole information, major and trace element data, and for K-Ar dates.